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Abstract

In mammals, female cells achieve dosage compensation between the sexes ran-

domly chosing and transcriptionally silencing one of the two X chromosomes

through a process known as X-chromosome inactivation (XCI). This process is

initiated during early development through up-regulation of the long non-coding

RNA Xist, which mediates chromosome-wide gene silencing of the future inactive

chromosome (Xi) in cis. Upon completion of the XCI process Xi will maintain

its silenced state in all daughter cells, which results in the genetic mosaicism of

female organisms. Cell differentiation, Xist up-regulation and gene silencing are

thought to be coupled at multiple levels to ensure inactivation of exactly one out

of two X chromosomes.

In this thesis I performed an integrated analysis of all three processes through

the analysis of allele-specific single-cell RNA-sequencing data. Specifically, I

investigated the endogenous random XCI process in hybrid mouse embryonic

stem cells at different time points throughout cellular differentiation developing

dedicated analysis approaches that rely on the high number of polymorphisms

between the two parental strains.

Putative Xist regulators were identified exploiting the inter-cellular hetero-

geneity of XCI onset. A large fraction of cells transiently expressed Xist on

both X chromosomes which resulted in biallelic gene silencing right before being

resolved to a monoallelic state, confirming a prediction of the stochastic model

of XCI. The two X chromosomes showed different gene silencing dynamics, and

a number of strain-specific escapees (namely, genes that escape transcriptional

silencing) were identified and experimentally validated. These results suggest

that genetic variation modulates the XCI process at multiple levels, providing a

potential explanation for the long-known X-controlling element (Xce) effect, which

leads to preferential inactivation of a specific X chromosome in inter-strain crosses.

Overall, this work provides a detailed picture of the different levels of regu-

lation that govern both Xist up-regulation and the initiation of XCI.





Zusammenfassung

In Säugetieren erreichen weibliche Zellen einen Dosisausgleich zwischen den

Geschlechtern, indem sie eines der beiden X-Chromosomen zufällig auswählen

und durch einen als X-Chromosomen-Inaktivierung (XCI) bekannten Prozess

transkriptionell ausschalten. Dieser Prozess wird während der frühen Entwicklung

durch die Hochregulierung der langen nichtkodierenden RNA Xist eingeleitet.

Die Xist RNA vermittelt das Ausschalten des kompletten zukünftig inaktiven X-

Chromosoms (Xi) in cis. Auch nach dem Abschluss des XCI-Prozesses bleibt das

Xi in allen Tochterzellen ausgeschaltet, weshalb weibliche Individuen genetische

Mosaike sind. Zelldifferenzierung, Xist Hochregulierung und Gen-Silencing sind

vermutlich auf mehreren Ebenen miteinander gekoppelt, um die Inaktivierung

genau eines der beiden X-Chromosomen sicherzustellen.

Diese Arbeit analysiert allelspezifische Einzelzell-RNA-Sequenzierungsdaten

anhand derer eine integrierte Analyse aller drei Prozesse durchgeführt wird.

Insbesondere untersucht sie den endogenen zufälligen XCI-Prozess in hybriden

embryonalen Stammzellen von Mäusen zu verschiedenen Zeitpunkten während

der zellulären Differenzierung. Hierzu werden spezielle Analyseansätze en-

twickelt, welche auf der großen Zahl an Polymorphismen zwischen den beiden

Elternstämmen aufbauen.

Durch Ausnutzung der intrazellulären Heterogenität zu Beginn des XCI

Prozesse können außerdem potenzielle Xist Regulatoren identifiziert werden. Ein

großer Teil der Zellen exprimiert Xist zeitweise von beiden X-Chromosomen, und

beginnt deshalb mit der Abschaltung beider X-Chromosomen. Kurze Zeit später

wird dieser biallelische Xist Expressionszustand zu monoallelischer Expression

aufgelöst, was eine zentrale Vorhersage des stochastischen XCI Modells bestätigt.

Die beiden X-Chromosomen zeigen außerdem unterschiedliche Dynamiken der

Genabschaltung, und es werden eine Reihe von stamm-spezifischen Escapees

(Gene, die der Ausschaltung entkommen) identifiziert und experimentell validiert.

Diese Ergebnisse legen nahe, dass genetische Variation den XCI-Prozess auf

mehreren Ebenen moduliert. Dies könnte eine potenzielle Erklärung für den

seit langem bekannten X-Kontrollelement (Xce)-Effekt sein, der zur bevorzugten

Inaktivierung eines bestimmten X-Chromosoms in Kreuzungen verschiedener

Stämme führt.

Insgesamt liefert diese Arbeit ein detailliertes Bild der verschiedenen Regu-

lationsniveaus, die sowohl die Hochregulierung von Xist als auch den Beginn der

XCI steuern.
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1 Introduction

1 Historical perspective

Figure 1: (a) Neuronal nucleus of a mature female cat (left) and a mature male cat
(right). The arrow indicates the nucleolar satellite [9]. (b) Female nuclei of rat liver
cells on interphase (left) and early prophase (right) [139]. (c) Dorsal and ventral sides
of two dappled female mice [113].

Mary Lyon’s postulation of X chromosome inactivation (XCI) as the key process that

mammalian organisms use to achieve dosage compensation between the sexes was sug-

gested by a number of previous discoveries. In 1928 Emil Heitz provided a broad classifi-

cation of the genomic content into loose and condensed chromatin, respectively referred

to as euchromatin and heterochromatin. Through cytological studies he characterized

the latter as densely stained chromatin representing the unaccessible and inactive portion

of the genome, while the former as the gene active counterpart [85]. The first evidence

leading to Lyon’s hypothesis can be attributed to the work of Murray Barr and Ewart

Bertam [9]. In 1949 they observed that the neuronal nuclei of female cats were character-

ized by a nucleolar satellite located adjacent to the nucleolus, which was absent in males

(Fig. 1a). This unit, which will later be referred to as Barr body, was hypothesized to

represent a sex chromosome. In 1960 Susumu Ohno and others observed a similar het-

eropyknotic unit in neoplastic and normal diploid female cells of mouse and rat, which

resembled a single X chromosome in both length and heterochromatic content (Fig.

1b) [141]. In 1961 Mary Lyon hypothesized that the Barr body characterizing female

mammalian cells was the result of the random inactivation of either the paternal (Xp)

or maternal (Xm) X chromosomes at the early stages of embryonic development [111].

2
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This silenced state was then propagated through subsequent cellular divisions leading to

cellular mosaicism of X-linked genes in female cells. This conclusion was supported by

the mosaic phenotype observed in female mice carrying heterozygous sex linked genes

(Fig. 1c), and by the normal development of female mice lacking a second X chromo-

some (XO) [113]. A further classification of heterochromatin was provided by Spencer

Brown in 1966 [23]. Brown defined as facultative the chromatin which could take either

a heterochromatic or euchromatic state across different parental chromosomes, cell types

or developmental stages, and as constitutive the chromatin which always maintains its

heterochromatic form. In mammals the X chromosome represents one of the clearest

examples of facultative heterochromatin. Where the heterochromatic X chromosome is

characterized by a condensed shape and late replication timing [82, 112].

2 Dosage compensation mechanisms across species

Figure 2: Sex chromosome dosage compensation mechanisms across species.

In mammalian diploid organisms, males represent the heterogametic sex (XY) and fe-

males the homogametic sex (XX). Present day X and Y chromosomes evolved by a com-

bination of decay and differentiation of an ancestral homolog pair of autosomes, where

the absence of recombination between the two chromosomes led to the progressive accu-

mulation of mutations, rapid degradation and loss of many genes on the heterogametic

Y-chromosome (Muller’s ratchet theory). The X chromosome carries a much larger num-

ber of transcribed genes than the Y-chromosome, and is enriched in genes associated

to sexual reproduction and brain functions. On the other hand, the Y-chromosome is

enriched of male advantageous genes around the testis determining gene (SRY ) and of

several testis expressed genes which are essential for male fertility [54, 67, 84, 126].
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Dosage compensation mechanisms aim to balance the unpaired gene expression levels

between the X and Y sex chromosomes, and between these and the autosomes. X-linked

genes are thought to have evolved higher expression levels than their ancestral coun-

terparts to compensate for the two-fold reduction of X chromosome gene expression in

males, and to balance their expression with respect to the autosomal pairs. In mam-

malian organisms the female specific XCI process balances the two-fold difference in

gene expression levels between male and female organisms at the earliest stages of em-

bryonic development. In mice, every female mouse embryonic cell undergoes two waves

of chromosome-wide gene silencing throughout its early developmental stages. First, ev-

ery cell composing the mouse embryo transcriptionally silences Xp at the 4-8 cell stage,

through a process known as imprinted XCI (iXCI). Xp will retain its inactive state in

the trophectoderm, while it will restore its gene activity in the inner cell mass (ICM)

by the epiblast stage. Every cell composing the ICM will then undergo random XCI

(rXCI), which leads to the silencing of either Xp or Xm. Once established, the inac-

tive X chromosome (Xi) will irreversibly maintain its silenced state throughout cellular

divisions in all daughter cells, leading to phenotypic chimaerism of X-linked genes in

female organisms. On the other hand, female human embryonic cells do not undergo

iXCI, and maintain both X chromosomes transcriptionally active until the occurrence

of rXCI at the late blastocyst stage. Distantly related species evolved different mecha-

nisms to compensate for the difference in genetic content between the sex chromosomes

[67, 93, 108, 142, 147, 193, 203].

While eutherian mammals randomly select and inactivate either Xp or Xm indepen-

dently in every cell composing the female embryo through the XCI process, marsupials

specifically silence the paternal X chromosome, although this silencing process was re-

ported as quite leaky and unstable [77, 94, 115]. Differently from mammalian organ-

isms, Drosophila achieve dosage compensation between the sexes through the two-fold

up-regulation of the X-linked genes in males, while females maintain both X chromo-

somes active [46, 70]. In birds, where females represent the heterogametic sex (ZW) and

males the homogametic sex (ZZ), the lack of a global dosage compensation mechanism

between the sexes results in significantly higher expression levels in males’ sex chromo-

somes compared to their female counterpart [11, 89, 93]. In Caenorhabditis Elegans,

where the sex is determined by the number of X chromosome copies, the difference in

gene expression levels between the sexes is compensated down-regulating the expression

of both X chromosomes in hermaphrodites (XX) [54].

For the aims of this project, the following sections provide a description of the random

XCI process in Mus Musculus, with a particular focus on mouse embryonic stem cells

(mESCs). This is an in vitro system derived from pre-implantation blastocysts from the

inner cell mass of E3.5 mouse embryos, which are undifferentiated cells characterized by

the expression of pluripotency-associated factors such as Nanog and Oct3/4 (Pou5f1 )
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[18]. This in vitro system has been extensively used to study the murine random XCI

process upon induced cellular differentiation.

3 The X-inactivation center (Xic)

Figure 3: Schematic representation of the X inactivation center (Xic) and of Xist
positive (red) and negative (blue) cis regulators lying within this locus.

In mammals the XCI process is controlled by a master regulatory locus named X inac-

tivation center (Xic), a minimal genetic region on the X chromosome which is necessary

and sufficient to initiate random XCI when present in two copies [5, 67, 152]. The Xic

locus is relatively GC-poor, enriched in repetitive regions, and shows little sequence

conservation across mammalian species. Many of the genes stored within the Xic code

for untranslated RNAs (Ftx, Jpx, Linx, Tsix, Xist, Xite), while others are specifically

expressed in the testis (Tsx, Ppnx ) [5, 21, 67, 152, 153].

The Xic locus in human and mice harbors the Xist (Xi-specific transcript) gene, which

is exclusively expressed by the inactive X chromosome (Xi) in somatic cells and encodes

an alternatively spliced long non-coding RNA (lncRNA) 17kb-long transcript which is

retained in the nucleus. Embryonic cells characterized by two transcriptionally active X

chromosomes, hence bi-allelic expression of Xist, undergo the random XCI process. This

is initially triggered by the up-regulation of Xist on the future inactive allele (Xi), with

the Xist lncRNA localizing within the nucleus and gradually coating the X chromosome

in cis, which then mediates its transcriptional silencing [20, 22, 42, 128, 181, 201].

Xist RNA creates a repressed nuclear compartment depleted of transcriptional machin-

ery on the X chromosome from which it is expressed, which recruits and transcriptionally

silences genes in cis. Xist RNA is necessary to induce chromosome wide gene silencing,

indeed its heterozygous deletion results in non-random silencing of the wild type allele,
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while experiments employing Xist cDNA transgenes on autosomes demonstrated that

Xist RNA is sufficient to transcriptionally repress autosomal genes during early devel-

opmental stages [101, 146, 198].

The Xist locus shows little sequence conservation across mammalian organisms, however

it is characterized by highly conserved repetitive regions which are present at different

copy numbers across eutherian mammals. Among these repeat rich regions (Rep A-F)

the RepA sequence, localized at the 5’ end of Xist, is the most conserved across different

species and plays a crucial role for Xist silencing function. Indeed its deletion results

in Xist RNA molecules which are still able to associate with chromatin and spread over

the chromosome, while being unable to trigger its transcriptional repression [132, 199].

Both prior and after cellular differentiation, the Xic of each X chromosome is parti-

tioned into two topologically associated domains (TADs). Notably the Xist gene is

located at the boundary between these two regions of increased gene-to-gene interac-

tion, and separates the regions upstream and downstream of Xist which respectively

harbor most of its positive and negative regulators [136].

3.1 Positive Xist regulators

One of the most extensively studied Xist activators encoded within the Xic is the E3

ubiquitin ligase Rnf12, which is also referred to as Rlim [92]. Rlim plays a crucial role in

the imprinted XCI (iXCI) process, indeed its knockout in oocytes results in a defective

iXCI process which leads to embryo death. On the other hand Rlim is dispensable for

rXCI, indeed mouse embryonic stem cells lacking Rlim are still capable of forming Xist

clouds and of silencing some genes within the X chromosome during rXCI [173, 174].

Rlim is expressed at higher levels in females than in male cells, it is up-regulated in

differentiating mouse embryonic stem cells and acts as a trans-activator of Xist tran-

scription through the ubiquitination and proteasomal degradation of the pluripotency

factor Rex1, which acts as an Xist repressor [7, 76, 131]. Previous studies showed that

the enhanced expression of Rlim in mouse ESCs causes the ectopic initiation of the XCI

process on the single X chromosome of male cells, and in both X chromosomes of female

cells. On the other hand, the heterozygous deletion of Rlim in differentiating female

mouse ES cells delays the initiation of the rXCI process [92].

Rlim was reported to activate Xist expression acting in concert with two lncRNAs en-

coded within the Xist TAD, namely Jpx and Ftx [8]. In mice, Jpx escapes X-inactivation

and activates Xist expression at the onset of XCI by binding to and titrating away CTCF,

a protein which represses Xist transcription, from the Xist promoter of a single allele

[186]. While its role as an Xist activator is well established, it is still controversial

whether Jpx regulates Xist transcription acting in cis or trans [27, 190]. Notably the
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regulatory mechanism of this gene differs across eutherian mammals. Indeed in mice the

Jpx transcript is necessary to activate Xist expression, while in humans the sole act of

JPX transcription rather than its RNA product activates XIST expression in cis [164].

Ftx (five prime to Xist) is a X-linked lncRNA whose deletion results in a considerable

decrease of Xist RNA transcripts [40]. Ftx expression is dispensable for imprinted XCI

in preimplantation embryos, while this gene is up-regulated in female mESCs at the on-

set of random XCI [40, 178]. Ftx is required to promote Xist expression in cis, where its

regulatory function depends on the gene’s transcription rather than its lncRNA product

[65]. Finally, Xert is a recently identified lncRNA which mediates Xist activation in cis

during the random XCI stage where it is up-regulated together with Jpx and Ftx [75].

3.2 Negative Xist regulators

The major negative Xist regulator within the Xic locus is its antisense transcription unit,

named Tsix. This gene, which entirely overlaps the Xist locus on the opposite strand,

encodes an alternatively spliced long non-coding RNA (lncRNA) 4kb-long nuclear tran-

script [100]. While undifferentiated cells express this gene on both X chromosomes,

Tsix becomes monoallelically expressed by the future active allele (Xa) at the onset of

the XCI process. The heterozygous deletion of the Tsix locus or its promoter leads to

non-random Xist up-regulation on the mutated allele, which precedes its transcriptional

silencing through the XCI process [43, 102]. Notably, the expression of Xist does not

significantly increase whenever the Tsix gene is deleted [125]. The transcription of Tsix

prevents Xist up-regulation rather than repressing its expression, hence playing a crucial

role in determining which allele will be silenced. Tsix was indeed shown to silence Xist

through the modification of its chromatin structure, which is mediated by the establish-

ment of a repressive chromatin configuration at the Xist promoter [129, 138, 166]. A

number of genomic loci within the Tsix TAD are tightly associated with Tsix expres-

sion levels. The following paragraph shortly describes their role in the regulation of Tsix

activity.

DXPas34 is a 34mer minisatellite which plays a dual role throughout the XCI pro-

cess. At the onset of XCI it enhances the activity of Tsix promoter, while it represses

Tsix expression once XCI has been established [44, 183]. DXPas34 ’s deletion results in

the loss of Tsix transcription, which is followed by non-random Xist up-regulation and

initiation of XCI on the mutated allele [52, 195]. Xite (X-inactivation intergenic tran-

scription element) is an untranslated gene which enhances Tsix expression. Its deletion

or lack of transcription at the onset of XCI results in the down-regulation of Tsix cis

expression, leading to Xist cis up-regulation and non-random XCI of the mutated allele

[137, 183]. Tsx and Linx are two lncRNAs located within the Tsix TAD, which are

reported to slightly enhance Tsix expression. Deletion of Tsx prior to cellular differenti-

ation mildly affects the expression of both Xist and Tsix, while it does not significantly
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influence the choice of which X chromosome will be inactivated [3, 49]. Linx is an un-

translated gene which is generally monoallelically expressed together with Tsix in the

ICM of mice. The promoter of Linx (LinxP) represses the cis expression of Xist, which

is independent of Linx transcription or its effects on Tsix expression levels [68, 73, 136].

4 Gene silencing mechanism

Differently from other eutherian mammals, mice undergo two waves of XCI. Through

the iXCI process every cell composing the mouse embryo specifically silences the pater-

nal X chromosome (Xp) at the 4-8 cell stage, while the other X chromosomes remain

transcriptionally active due to the presence of a genetic imprint which is mediated by the

deposition of H3K27me3 histon marks preventing the cis up-regulation of Xist. Every

cell composing the ICM of blastocysts then reactivates Xp, and independently silences

a single X chromosome through the rXCI process [88, 93].

The following sections describe the Xist-mediated gene silencing mechanism employed

in the murine rXCI process, which can be broadly divided into four key steps: initiation,

spreading, silencing and maintainance.

4.1 Initiation

The random XCI process initiates with the up-regulation of the Xist gene on the future

inactive X chromosome, Xi.

The expression level of Xist is tightly linked to that of core pluripotency trans-acting

factors such as Oct4, Nanog and Sox2 which bind to a region within the first intron of

Xist. While the depletion of these factors in undifferentiated cells leads to the ectopic

up-regulation of Xist in male embryos, which would otherwise be expressed at very low

levels in both male and female embryos, the deletion of their Xist binding site does not

considerably affect Xist expression levels. This suggests that Oct4, Nanog and Sox2

might indirectly regulate Xist expression levels. Notably, while the above core pluripo-

tency factors maintain their expression levels unchanged upon Xist up-regulation, other

stem cell factors such as Rex1 and Prdm14 are strongly down-regulated. Finally a recent

work demonstrated that GATA transcription factors play a crucial role in the early Xist

activation, and are essential to ensure XCI induction in mouse preimplantation embryos

[7, 130, 131, 133, 154].

Throughout the last few decades several mechanisms were proposed to explain how

XCI can effectively count the number of X chromosomes and ensure that a single X

chromosome remains active in male and female cells. A recent work hypothesized and

verified experimentally that the presence of an X-linked XCI activator (xXA) results in



Introduction 9

the effective silencing of (N − 1) X chromsomes in female cells characterized by N ≥ 2

X chromosomes. xXA would indeed initiate XCI once its expression exceeds a certain

threshold, which can be set in between xXA’s expression levels in males and female cells.

Therefore this mechanism would result in the XCI process in female cells characterized

by two or more active X chromosomes, and ensure that a single X chromosome remains

active in both male and female cells [112, 127, 172].

4.2 Spreading

Xist expression leads to the formation Xist RNA clouds along the X chromosome, which

will progressively cover the future inactive allele.

The mechanism by which Xist RNA spreads throughout Xi has been extensively studied

through RNA crosslinking and super resolution imaging, depicting this as a two step

procedure. First a high number of Xist molecules are synthesized, localizing around its

own locus and spreading to 3D closeby gene-rich regions. Specifically, a couple of Xist

molecules are tethered to the X chromosomes at approximately 50 loci along the future

inactive allele. This stage is followed by a steady phase where a smaller number of

RNA molecules are produced and the Xist RNA hubs progressively diffuse to gene-poor

regions and almost entirely cover the X chromosome [62, 117, 162, 176].

Xist repeats play an important role for the Xist RNA spreading stage. The lack of

Xist repeat A results in a defective expansion of the Xist RNA cloud hence leading to

incomplete chromosome wide silencing, while the deletion of repeat B leads to incomplete

cis coating of the X chromosome. Xist repeat E plays a crucial role for Xist RNA’s

tethering to the X chromosome. At early stages of differentiation repeat E interacts

with Ciz1 whose deletion leads to the diffusion of Xist RNA throughout the nucleus,

while at later time points interacts with Ptpb1 and Celf1 which ensure the correct

adhesion of Xist RNA molecules to the chromosome. Furthermore the Xist repeat C,

the YY1 protein and hnRNP-U ensure Xist RNA tethering [45, 91, 144, 157, 187].

4.3 Silencing

Concomitantly to the cis-spreading of the Xist RNA clouds, the future inactive X chro-

mosome undergoes drastic chromatin changes leading to the silencing of the majority of

X-linked genes.

Upon Xist monoallelic up-regulation the transcriptional machinery RNA Pol II is de-

pleted from the Xist RNA clouds, and a repressive nuclear compartment is formed. The

genes undergoing silencing will be relocated within this compartment, while the ones

escaping silencing will remain located outside where they will still be accessible by the

transcriptional machinery [35, 58, 108].
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One of the first events following the formation of Xist clouds is the loss of histone acety-

lation. This is mediated by Xist repeat A which recruits the transcriptional repressor

Spen, whose depletion in mESCs prevents effective gene silencing. Specifically Spen plays

a crucial role in gene silencing recruiting the Histone Deacetylase 3 (HDAC3) which leads

to the loss of H3 and H4 acetylation marks. Following this Polycomb repressive com-

plexes (PRCs) accumulate on Xi, rendering it hypomethylated with respect to its active

counterpart Xa. Specifically hnRNP-K, which binds to Xist repeat B, is thought to

mediate with PCGF3 and PCGF5 in the recruitment of PRC1 complex which catalyzes

the monoubiquitylation of H2AK119. This mediates chromatin compaction and has the

effect of gradually recruiting more and more genes within the Xist compartment. The

deposition of the H2AK119ub1 repressive mark and the mediation of Jarid2 in turn

enable the recruitment of the PRC2 complex which is responsible for the trimethylation

of H3K27 histone. These histone modifications result in a clear distinction between

Xi and Xa chromatin folding profiles. Indeed upon the completion of the XCI process

Xa is organized into topologically associated domains (TADs) throughout the entire X

chromosome, on the other hand Xi is splitted into two heterochromatic mega-domains

which are separated by the Dxz4 locus [17, 39, 45, 47, 50, 59, 74, 134, 148, 206].

The silencing mechanism described above does not however affect each gene on the X

chromosome, where the genes avoiding transcriptional silencing are generally referred

to as escapees. The percentage of genes escaping the XCI considerably varies between

different organisms and cell types within the same organism. Indeed while more than

20-30% of X-linked genes escape XCI in humans, only around 3-7% of X-linked genes

remain biallelically expressed in mice. Specifically the escapees are broadly categorized

as constitutive if they avoid XCI in most cell types or developmental stages, or as faculta-

tive otherwise. Notably, constitutive escapees in mice are depleted of repressive histone

modifications and are not coated by Xist RNA. Furthermore some of these escapees such

as Kdm5c and Kdm6a (Jarid1c and Utx, respectively) play a role in XCI establishment

catalyzing the demethylation of H3K27me3 and H3K4me2 [6, 13, 25, 35, 192].

4.4 Maintenance

As previously described, upon completion of the XCI process the silenced status of Xi

will be maintained in all daughter cells throughout cellular divisions.

The maintainance of the silenced status does not seem to directly depend on Xist tran-

scription, indeed Xist deletion in somatic cells leads to the reactivation of only a small

subset of genes on Xi. Nonetheless a recent experiment demonstrated that during the

initiation stage Xist recruits a set of proteins (PTBP1, CELF1, TDP-43 and MATR3)

known for their role in RNA processing, which bind to Xist repeat E and are crucial

for the maintenance of the silenced state upon XCI completion independently of Xist

expression. Furthermore DNA methylation seems to play a crucial role for silencing
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maintanance. Indeed mice deficient for Dnmt1 show Xi reactivation, while Smchd1 mu-

tant mice show H3K27me3 depletion and gene reactivation on Xi [1, 19, 48, 69, 144, 165].

5 X controlling element (Xce)

As previously described, whenever each cell undergoes the random XCI process either

the maternal or the paternal X chromosomes (Xm and Xp, respectively) up-regulate the

expression of Xist and initiate the silencing process in cis. The randomness of this cell-

specific choice leads to genetic mosaicism in female somatic cells, where approximately

half of the cells silenced Xp and the other half Xm.

Nonetheless more than 50 years ago the work of Cattanach and others revealed the

presence of silencing skewing in mice whenever their parental X chromosomes derived by

different mouse strains. Specifically they identified a macro-region on the X chromosome

within the Xic with four possible alleles, referred to as the X controlling element (Xce),

where each pair of alleles leads to a different extent of silencing skewing. Namely the four

alleles were characterized as follows: Xcea in (129Sv, C3H, CBA), Xceb in (BALB/C,

C57Bl6/J, DBA), Xcec in (Pjgk1a, Cast/EiJ) and Xced in (Mus spretus). WhereXcea <

Xceb < Xcec < Xced, and whenever paired the weaker chromosome tends to be silenced

in a higher fraction of cells than the stronger one [29, 31–33].

During the last decades there were multiple attempts to define the precise genomic

location and key components of the Xce. The Xce, that was initially mapped to a 9Mb

region, was ultimately restricted to a 80kb locus downstream of Xist lieing between

the DxPas28 and DxPas41 microsatellite repeats. Moreover a recent paper claimed

that Linx, which resides within the Xce locus, controls the occupancy of pluripotency

factors in Xist Intron 1 hence indirectly modulating Xist expression levels. Specifically

this work highlights that Linx expression depends on the presence of Oct4, and that

upon Linx ’s deletion both Oct4 and Rex1 show decreased binding to Xist Intron 1 and

DxPas34. These results suggest that Linx expression might prevent the initiation of the

XCI process in cis and explain the Xce effect [26, 30, 66, 87, 175].

6 Previous studies

Throughout the last two decades several studies employed sequencing technologies to

study the transcriptional dynamics characterizing the murine XCI process. Recent tech-

nological advancements have considerably improved our understanding of the processes

governing the first stages of mouse embryonic development.
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During the first decade of the 21st century, several studies adopted microarray-based

technologies to explore the global differences in expression between the autosomes and

sex chromosomes across several organisms and tissues [79, 135, 155].

Microarrays technologies were however less and less adopted with the advent of RNA-

Sequencing technologies (RNA-Seq). The sequencing of mRNA transcripts provided

a number of advantages over array-based sequencing methods, such as a considerably

higher reproducibility combined with the ability to detect lowly expressed genes, alter-

native splicing events and novel transcripts. A number of research groups profiled the

transcriptomes of differentiating mESCs both in vivo and in vitro cultures. A number of

these experiments were performed on mESCs derived by the cross of two distantly related

mouse strains, where the high number of SNPs between the two parental chromosomes

enabled allele specific resolution [16, 60, 71, 116, 118, 119, 171, 200, 206].

Finally, the latest technological advancements enabled the refined profiling of single

cells rather than bulk population of cells. A number of research groups employed sin-

gle cell assays to explore the murine XCI process with cell-specific resolution in terms

of their transcriptomic profile (scRNA-Seq), chromatin accessibility (scATAC-Seq) and

chromatin 3-dimensional architecture (scHiC) [14, 16, 36, 38, 53, 103, 156, 163, 189].

Notably, previous works relied on engineered systems to ensure the preferential inac-

tivation of a single X chromosome where the non-random XCI was achieved through:

allele specific deletion of Xist, insertion of a stop codon in Tsix, or through the inclusion

of a Dox-inducible promoter upstream of the Xist locus. On the contrary, the present

work explores Xist regulation and random XCI in endogenous conditions with single

cell, allelic and temporal resolutions, which enables the analyses of both these processes

in a context where each cell independently chooses and inactivates either its paternally

or maternally inherited X chromosome.

7 Aim of the study

The present work relies in the analysis of strand-specific single cell and bulk RNA-

Sequencing data derived from hybrid (C57BL/6NJ x CAST/EiJ) XX and XO mESCs,

which were profiled throughout four days of cellular differentiation.

This project aims to explore the transcriptomic profiles of female mESCs undergoing

cellular differentiation, Xist up-regulation and random XCI in their endogenous context

with stranded, allelic and cellular resolutions.

Furthermore, the analyses which are described in the following sections aim to explore

the extent of gene silencing upon monoallelic and biallelic Xist up-regulation, to provide

a detailed picture of the differential gene silencing kinetics on the two X chromosomes,

and to identify the genes involved in Xist up-regulation and XCI processes.



2 Methods

1 Experimental Setup

All the data and results described in this thesis derive from the analysis of in vitro

experiments performed on mouse cell lines. Specifically the following sections describe

the experimental design and procedures adopted to generate the transcriptomic data,

whose analysis is the object of the present work.

1.1 Mouse cell lines

The TX1072 is a F1 hybrid female mouse embryonic stem cells (mESCs) line derived from

a cross between the C57BL/6NJ (B6) and CAST/EiJ (Cast) mouse strains. XX cells

inherited one X chromosome from each parental genome. On the other hand, mESCs

with a single X chromosome (XO cells) were characterized by the loss of the Cast X

chromosome. The TX1072 cell line carries a doxycycline responsive promoter in front

of the Xist gene on the B6 allele, and a reverse tetracycline-controlled transactivator

(rtTA) insertion in the Rosa26 locus [171].

The TXΔXic cell lines were derived by TX1072 XXmESCs deleting through CRISPR/Cas9-

mediated genome editing a 773 kb region around the Xist locus on either alleles, which

corresponds to the X inactivation center (Xic). Namely TXΔXicB6 carries the deletion

on the B6 chromosome (chrX:103,182,701-103,955,531, mm10), while TXΔXicCast on

the Cast allele (chrX:103,182,257-103,955,698, mm10).

1.2 Cell culture and differentiation

Cells were maintained in a fully pluripotent state by growing them on gelatin-coated

flasks in serum-containing ES cell medium (DMEM (Sigma), 15% ESC-grade FBS

(Gibco), 0.1mM β-mercaptoethanol, 1000 U/ml leukemia inhibitory factor (LIF, Mil-

lipore) supplemented with 2i (3 µM Gsk3 inhibitor CT-99021, 1 µM MEK inhibitor

PD0325901, Axon).

Cellular differentiation was then induced by 2i/LIF withdrawal in DMEM supplemented

with 10% FBS and 0.1mM β-mercaptoethanol at a density of 1.5·104cells/cm2 in fibronectin-

coated (10 µg/ml) tissue culture plates.

Upon cellular differentiation every TX1072 XX cell undergoes random XCI leading to

the silencing of either one or the other X chromosome, while its XO counterpart will not

initiate this process due to the presence of a single X chromosome. The absence of the

Xic in TXΔXic cells leads to non-random XCI resulting in Xist mono-allelic expression

and gene silencing on the wild type X chromosome.

13
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1.3 Single cell and Bulk RNA-Sequencing

In order to explore the transcriptomic profiles of murine mESCs at different stages of

the X-chromosome inactivation process, RNA-Sequencing experiments were performed

throughout cellular differentiation at both single cell and bulk resolutions.

1.3.1 Single cell RNA-Sequencing

The transcriptomes of female TX1072 mESCs characterized by a single (TX1072 XO)

or two X chromosomes (TX1072 XX) were profiled through single cell RNA sequencing

(scRNA-seq) in an undifferentiated state (day 0, 2i & Lif) and throughout four days

of induced cellular differentiation (days 1-4, after 2i & Lif withdrawal). For each time

point, TX1072 XX and XO mESCs were isolated and sequenced using the Fluidigm C1

system and high-throughput integrated fluidics circuits (HT IFCs) mRNA Chip. The

following sections briefly describe the experimental procedure implemented to profile the

transcriptome of every cell through scRNA-seq experiments.

Single cell isolation and imaging

The HT IFCs mRNA Chip microfluidics system enables the simultaneous capture and

isolation of single cells from two different samples. Every chip is divided into two halves

composed by 10 separate columns each, where every column can isolate up to 40 single

cells. At each time point throughout cellular differentiation (days 0-4), TX1072 XX and

XO cells were separately loaded onto the two halves of the chip, resulting in a maximum

of 400 cells isolated for each cell population.

scRNA-seq libraries were prepared with the C1-HT mRNA-seq v2 protocol according

to the manufacturer’s recommendations (Fluidigm). Cells were rinsed thoroughly with

PBS, trypsinized for 7 minutes and resuspended in the respective growth medium at a

concentration of 400 cells/µl. 30 µl cell suspension was diluted with 20 µl of suspension
reagent (Fluidigm) and 10 µl of the dilution was loaded into one compartment of a

Single-Cell mRNA Seq HT IFC 10-17 µm. The loading step was repeated on the two

halves of the chip, for TX1072 XX and XO cells separately.

Cell viability staining was performed on the IFC using the LIVE/DEAD viability/Cy-

totoxicity Kit (Thermofisher) with 1 µM Ethidium and 0.05 µM Calcein. IFC loading

and life/dead staining was analyzed with automated image acquisition using a Zeiss

CellDiscoverer microscope (Zeiss) with a 20x objective.
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Transcriptome sequencing

During the lysis step ERCC Spike-in Mix 1 (Thermofisher) was added with a final

dilution of 1:200.000. ERCC Spike-ins are artificial sequences added at known concen-

trations which are generally used in sequencing experiments to assess the sensitivity of

the sequencing platform or to perform downstream data normalization.

Lysis, reverse transcription and cDNA amplification was performed on the C1 machine.

cDNA pools were quantified by Qubit and Bioanalyzer HS. Around 2.25 ng of each

pool were subjected to tagmentation and library preparation using the NexteraXT li-

brary preparation kit according to the C1-HT protocol. All pools were mixed in equal

proportions and quantified with KAPA Library Quant-Kit.

The libraries were sequenced on a HiSeq2500 instrument (Illumina) with asymmetric

read length, either in High Output (Read1: 13bp, Index read: 8pb, Read2: 48bp) or

in Rapid Run mode (Read1: 16bp, Index read: 8pb, Read2: 36bp), with 10pM loading

concentration and 5% PhiX. Where read R1 contains a custom cellular barcode (posi-

tion 1-6, row barcode) and a unique molecular identifier (position 7-11, UMI molecular

barcode), read R2 maps to the cDNA sequence and read R3 contains a Nextera (column)

barcode.

This strategy enables the sequencing of all the transcripts derived by the cells isolated

on the chip, and their following single cell demultiplexing through the row and column

barcodes, which uniquely identify each cell isolated on the chip.

Read demultiplexing

For each sequenced read, the row (R1) and column (R3) barcodes are used to uniquely

identify the single cell isolated on the sequencing chips which synthesized the transcript.

These two barcodes were used to demultiplex the FASTQ files originating from each time

point onto single-cell FASTQ files. This was achieved in BASH using the FastqToSam

command to convert FASTQ files to a SAM format, which were then demultiplexed with

TagBamWithReadSequenceExtended command through the Drop-seq pipeline [114].

1.3.2 Bulk RNA-Sequencing

The transcriptomes of TX1072 XX and TXΔXic mESCs were profiled through bulk

RNA-sequencing in an undifferentiated state (day 0, 2i & Lif) and throughout four

days of induced cellular differentiation (days 1-4, after 2i & Lif withdrawal) with three

biological replicates per cell line and time point. The following subsection describes
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the experimental procedure used to profile each sample through bulk RNA-sequencing

experiments.

Transcriptome sequencing

For the TX1072 XX cell line, bulk RNA-Sequencing was performed in parallel to the

single cell RNA-Seq experiment (replicate 1) and for two more biological replicates

(replicate 2 & 3). RNA-Seq libraries were generated using the Tru-Seq Stranded Total

RNA library preparation kit (Illumina) with 1 µg starting material for rRNA-depletion

and amplified with 15 Cycles of PCR. For each time point, each biological replicate was

sequenced 2x50bp on a HiSeq 2500 with 1% PhiX spike-in, which generated 50 Mio.

fragments per sample.

For TXΔXic cell lines, libraries were generated with the KAPA-RNA Hyper Prep-

Kit with RiboErase (Roche) following the protocol, with 500ng total RNA used for

rRNA-depletion. For undifferentiated (TXΔXicCast) samples fragmentation was ad-

justed (85°C/5min instead of 94°C/8min) due to RNA degradation. Nextflex unique

dual-index-adaptors (PerkinElmer) were used and the final library was PCR-amplified

with 10 cycles. For each cell line and time point, three biological replicates were se-

quenced 2x100bp on a NovaSeq6000 with 1% PhiX spike-in, which generated 50 Mio.

fragments per sample.

1.4 RNA FISH

RNA FISH is a cytogenic technique that relies on fluorescent probes designed to target

and bind to specific RNA sequences of interest. The hybridization of these probes to

the target RNAs results in a fluorescent signal which can be captured and visualized

through fluorescence microscopy.

For the aims of this analysis, Stellaris RNA FISH probes were used to visualize the

allele specific expression of two X-linked genes (Xist and Huwe1 ) in TX1072 XX mESCs

throughout cellular differentiation (days 2-4).

Cells were dissociated using Accutase (Invitrogen) and adsorbed onto coverslips (#1.5,

1mm) coated with Poly-L-Lysine (Sigma) for 5 min. Cells were fixed with 3% paraformalde-

hyde in PBS for 10 min at room temperature (18–24°C) and permeabilized for 5 min

on ice in PBS containing 0.5% Triton X-100 and 2 mM Ribonucleoside Vanadyl com-

plex (New England Biolabs). Coverslips were preserved in 70% EtOH at -20°C. Prior
to FISH, coverslips were incubated for 5 minutes in Stellaris RNA FISH Wash Buffer

A (Biosearch Technologies), followed by hybridization overnight at 37°C with 250 nM

of each FISH probe in 50 µl Stellaris RNA FISH Hybridization Buffer (Biosearch Tech-

nologies) containing 10% formamide. Coverslips were washed twice for 30 min at 37°C
with Stellaris RNA FISH Wash Buffer A (Biosearch Technologies), with 0.2 mg/ml Dapi
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being added to the second wash. Prior to mounting with Vectashield mounting medium

coverslips were washed with 2xSSC at room temperature for 5 minutes.

For each time point, images of three biological replicates were acquired using a widefield

Z1 Observer microscope (Zeiss) with a 100x objective. The intronic signal of Huwe1 was

used in combination with Xist to estimate the percentage of XO cells in the population.

For each replicate sample and time point, the fraction of cells showing mono-allelic and

bi-allelic gene expression was calculated over 100 individual cells.

1.5 Pyrosequencing

Pyrosequencing is a DNA-sequencing procedure where the sequence characterizing a

single stranded DNA (ssDNA) target molecule is read by synthesing its complementary

strand adding one nucleotide (A, T, C, G) at a time. The target DNA sequence is

first denatured, then the ssDNA molecule is hybridized to a sequencing primer and

mixed with DNA polymerase, ATP sulfurylase and firefly luciferase. Starting from

the sequencing primer, whenever a nucleotide complementary to the target ssDNA is

added to the mix the DNA polymerase hybridizes it to the ssDNA resulting in the

release of pyrophosphate. The light signal emitted by the pyrophosphate release is

captured by a camera, where the intensity of the recorded light signal indicates if a

single or several nucleotides successfully hybridized to the ssDNA. On the other hand,

the absence of light signal indicates that the nucleotide has not hybridized to the ssDNA.

Adding one different nucleotide at a time to the mix, recording the light intensity upon

each nucleotide addition and repeting this procedure until the synthesis of the whole

complementary strand reveals the target ssDNA sequence.

For the aims of this analysis, Pyrosequencing experiments were performed at each time

point throughout cellular differentiation (days 0-4) to analyse the relative allelic expres-

sion of a number of X-linked genes (Atrx, Cul4b, Hprt, Klhl13, Pir, Prdx4, Renbp, Rnf12

and Xist). Notably the relative allelic expression of each gene was quantified across four

biological replicates.

For each target gene, an amplicon containing a SNP between the two parental lines was

amplified by PCR from cDNA using GoTaq Flexi G2 (Promega) with 2.5mM MgCl2

or Hot Star Taq (Qiagen) for 40 cycles. The PCR product was then sequenced using

the Pyromark Q24 system (Qiagen), and allelic expression was quantified counting the

number of reads with either genotypes. Table 2.1 stores the SNP loci and sequencing

primers which were used to perform the Pyrosequencing experiments.
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1.6 Author contributions

Ilona Dunkel (Max Planck Institute for Molecular Genetics, Schulz group) cultured and

subcloned TX1072 XX and XO mESCs, and set up the differentiation experiments. Ver-

ena Mutzel (Max Planck Institute for Molecular Genetics, Schulz group) generated the

TXΔXic cell lines through CRISPR-Cas9-mediated gene editing [described in Meth-

ods sections: 1.1-1.2]. Norbert Mages (Max Planck Institute for Molecular Genetics,

Sequencing core facility) prepared the libraries and performed RNA sequencing experi-

ments at single-cell and bulk resolutions with the input from Edda Schulz (Max Planck

Institute for Molecular Genetics) and Bernd Timmermann (Max Planck Institute for

Molecular Genetics, Head of the Sequencing core facility) [described in Methods sections:

1.3]. Ilona Dunkel performed the Pyrosequencing, qPCR and RNA FISH experiments

on TXΔXic mESCs at different stages of cellular differentiation [described in Methods

sections: 1.4-1.5].

The original contribution of the doctoral candidate Guido Pacini (Max Planck Institute

for Molecular Genetics, Schulz group) to the thesis is the analysis and interpretation of all

the experimental data described in this section. This was achieved under the supervision

of Edda Schulz and Annalisa Marsico (Helmholtz Center, Institute for Computational

Biology).

Table 2.1: Pyrosequencing sequencing primers and SNPs

Gene Dispensation order SNP position / ID

Hprt ATCGTCTA mm10: 53,021,504

Prdx4 GCTGTGTA mm10: 155,330,388

Cul4b GACTGTGA mm10: 38,539,035

Renbp CAGCATGA mm10: 73,927,864

Pir GATCGAGA rs250477126

Klhl13 GCAGTCATTAAT rs237072964

Rnf12 CTCGTAGCTA rs29081561

Xist CAGTCTCA mm10: 103,470,658

Atrx TCGTGCTA rs29078297
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Gene Primer name Sequence

Hprt ES705 F1, bio [Bio]ATTCAGGAGAGAAAGATGTGATTG TC/GGTCTAAATTAACAATATCAATCACA

ES706 R1 CCACTGAGCAAAACCTCTTAGAT

ES707 S1 AAATCGAGAGCTTCAGAC

Prdx4 ES714 F1-bio [Bio]TGTCCTGAGTCTTCAAGGTATACA C/TGGTGTATACCTTGAAGACTCAGGAC

ES715 R1 GACTGGGGCCAATAAGGATT

ES716 S1 CATCAGATCTCAAAGGACTA

Cul4b ES717 F1-bio [Biotin]AGTTTGTGTTTGAAATCGTCATTA AC/TGGTGACAAATTTATTTGTAATGACG

ES718 R1 TCCTAAGGGCAAAGATATTGAAG

ES719 S1 GGGCAAAGATATTGAAG

Renbp ES720 F1-bio [Biotin]TCCGCATCCTGGAAGTAGA A/GCATGGAGGCCTCTTCTACTTCCAGG

ES721 R1 CTGCTCCAGTATGCCCTCAG

ES722 S1 TGGATGGGACCCTGA

Pir ID80 F1 bio [Biotin]CCAGCACTCTAGGAGTCAGAGACA ATC/TGGAGATACCCAATGTCTCTGACTCC

ID81 R1 TCAAGACAGATGGGCTTGGAA

ID82 S1 CAGATGGGCTTGGAA

Klhl13 ID83 F1 AATCCCCATTTTTCATGGAAG C/AAGTCAATTTTTAAAAATTTGTATTT

ID84 R1 bio [Biotin]TTGGTTTGGGGTTTTTTTTAAG

ID85 S1 TCACATTTATTTGACCTGA

Rnf12 ID004 F1 TGTTGTTCGGAGCCTGAGAT TCTG/ACTAGCTATACT

ID005 R1 bio [Biotin]GGAGAATACCGGCAGAGAGATA

ID006 S1 CCTGAGATCTTGATCGAGT

Xist ES400 F1 bio [Biotin]AGAGAGCCCAAAGGGACAAA A/GTCTCACATAG

ES401 R1 TGTATAGGCTGCTGGCAGTCC

ES402 S1 GCTGGCAGTCCTTGA

Atrx F1 CTGAATTCTGATCCCCAATCAC G/CTTGCTTAG

R1 bio [Biotin]CCTCACAAGGTACCCAAAGCTAA

S1 TGATCCCCAATCACTG
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2 Bulk RNA-sequencing data pre-processing

This section describes the pre-processing procedures implemented to align the sequencing

reads resulting from the bulk RNA-Sequencing experiments to a custom mouse genome,

to quantify the overall and allele-resolved expression of each annotated gene in every

TX1072 or TXΔXic mESC sequenced sample, and to normalize the resulting count

matrices.

2.1 Read alignment procedure

2.1.1 Custom mouse genome

Since all the mESCs under investigation are hybrids between the B6 and Cast mouse

strains, half of their transcriptome is inherited by each parental allele. Aligning the

sequencing reads of samples derived from this hybrid cell line to the B6 or Cast mouse

genomes individually would bias the alignment procedure towards one or the other

parental allele. Indeed the large number of single nucleotide polymorphisms (SNPs)

between these two distantly related mouse strains would be erroneously regarded as

alignment mismatches, hence underestimating the gene expression of either alleles.

In order to avoid biases in the read alignment and gene expression quantification proce-

dures, a custom mouse genome was first generated using the SNPsplit software (v.0.3.2)

[96] to mask a set of high confidence SNPs (18658116 SNPs genome-wide) between the

two distantly related parental cell lines. Where the set of masked SNPs was confirmed

to be present in the TX1072 cell line based on previous ChIP-seq data [60]. Following

this, every sequencing read was aligned to the masked mouse genome in combination

with the 96 ERCC spike-in sequences.

2.1.2 Read alignment

Paired-end reads for each TX1072 or TXΔXic sequenced sample were first aligned to the

masked mouse genome combined with 96 ERCC spike-in sequences with STAR (v.2.5.2b)

[56], keeping only uniquely aligned reads with a maximum of two mismatches.

For allele specific (AS) transcript quantification, each read overlapping at least one SNP

position was assigned to its parental genome using the SNPsplit software (v.0.3.2) [96],

discarding the reads overlapping multiple SNPs with discordant genotypes.
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2.2 Gene expression quantification

For every sample j, the number of molecules transcribed by the g-th gene was estimated

as the number of uniquely aligned reads overlapping its annotated exonic regions. Re-

peating this procedure for all sequenced samples and genes led to the estimation of the

count matrix B = [bg,j ] ∈ NG×N . The same procedure was repeated for each allele

separately, restricting the analysis to SNP-overlapping reads assigned to either parental

genome. This resulted in the estimation of the AS count matrices BB6 = [bB6
g,j ] ∈ NG×N

and BCast = [bCast
g,j ] ∈ NG×N .

In detail, the Rsubread (v.1.34.7) R package [104] was used to quantify the expression of

each gene. Where Xist (ENSMUSG00000086503) AS gene expression was also quantified

using only two SNPs on its 5’-end (namely, chrX:103,482,240 and chrX:103,482,895,

mm10).

2.3 Data normalization

Count matrix normalization aims to remove technical and biological biases between

samples, such as differences in capture efficiency, sequencing depth or composition bias.

Where the latter refers to the presence of up-regulated or down-regulated genes in a

subset of samples which results in spurious under or over representation of the remaining

genes, respectively. These biases can be accounted for dividing every gene count by a

sample-specific scaling factor. As a result, the normalized counts will show no difference

in gene expression for the majority of genes.

The following subsections describe the methods used to normalize the previously defined

not-AS and AS bulk RNA-Sequencing count matrices.

2.3.1 TMM normalization procedure

The most widely used normalization methods for bulk RNA-sequencing expression data

select a sample or pseudo-sample as the reference, compute the ratio of gene expression

between this and every other sample, and robustly estimate the sample-wise scaling

factor across a set of putatively not differentially expressed (not-DE) genes.

In this work, bulk RNA-sequencing count data were normalized through the Trimmed

Mean of M-values (TMM) normalization procedure [159], which is briefly described

below.

The TMM method computes sample-specific scaling factors aiming to equate the overall

expression of every gene (g = 1, . . . , G) across all sequenced samples (j = 1, . . . , N),

under the hypothesis that the majority of genes G are not differentially expressed across
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the N samples. This procedure involves selecting a sample r as the reference, and

scaling the gene expression of every other sample j relative to r. For each gene g, the

log-fold-change M r
g,j and absolute intensity Ar

g,j are computed as:

M r
g,j =

log2

(
bg,j/

∑G
g=1 bg,j

)

log2

(
bg,r/

∑G
g=1 bg,r

)

Ar
g,j =

1

2
· log2

(
bg,j∑G
g=1 bg,j

· bg,r∑G
g=1 bg,r

)

such that: bg,j �= 0 and bg,r �= 0

(Eq. 1)

Where, as previosuly described in Section 2.2, bg,j represents the observed read counts

for the g-th gene and j-th sample.

A robust estimate of the scaling factor sf r
j for sample j relative to sample r is then

computed as a weighted average of the M r
g,j values across a set of putatively not-DE

genes G∗. Under the assumption that genes with extremely high or low M and A values

are more likely to be DE across samples, the subset of genes G∗ is identified trimming

both the M and A values (by default by 30% and 5%, respectively). The scaling factors

sf r
j are then estimated taking a weighted average of the M values, with weights equal

to the inverse of the approximate asymptotic variance:

log2
(
sf r

j

)
=

∑
g∈G∗

wr
g,j ·M r

g,j

∑
g∈G∗

wg,j

where: wr
g,j =

( ∑
g∈G∗

bg,j

)
− bg,j

( ∑
g∈G∗

bg,j

)
· bg,j

+

( ∑
g∈G∗

bg,r

)
− bg,r

( ∑
g∈G∗

bg,r

)
· bg,r

such that: sf r
r = 1

(Eq. 2)

This factor sf r
j can then be used to scale the total number of counts for sample j, such

that every sample is normalized to the same number of counts observed in reference

sample r across the not-DE genes G∗.

In detail, the TMM normalization procedure was implemented through the edgeR (v.3.26.8)

R package [161], where the scaling factor of every sequenced sample was computed

through the calcNormFactors R function.
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2.3.2 Normalized Counts Per Million (CPM) values

Let sf r
j represent the scaling factor for sample j which was estimated by the TMM

method for bulk RNA-sequencing data. Since XX cells undergo XCI throughout cellular

development, X-linked genes are more likely to be differentially expressed across sam-

ples with respect to autosomal genes. For this reason the scaling factors estimate was

restricted to autosomal genes. Then the normalized Counts Per Million (CPM) values

for each gene g and sample j (CPMg,j) of both the AS and not-AS count matrices were

computed as:

CPMX
g,j =

xg,j
sfj ·

∑
g
xg,j

· 106 (Eq. 3)

Where sfj is the scaling factor for sample j, X = [xg,j ] is a random variable which

represents the AS or not-AS count matrices relative to the bulk RNA-sequencing data

X = {B,BB6,BCast}, and
∑

g xg,j represents the overall gene expression across all genes

profiled for sample j.

3 Single cell RNA-sequencing data pre-processing

Similarly to the previous section, the following sub-sections describe the pre-processing

procedures implemented to align the sequencing reads resulting from the single cell RNA-

sequencing experiments to the previously defined custom mouse genome, to quantify the

overall and allele-resolved expression of each annotated gene in every TX1072 mESC

sequenced cell, and to normalize the resulting count matrices.

3.1 Read alignment

Hybrid mESCs were profiled throughout cellular differentiation with single cell paired-

end RNA sequencing, where sequencing read 1 (R1) carries both the cellular and UMI

molecular barcodes, while the 3’-biased cDNA sequence of every transcribed gene is

encoded in read 2 (R2).

The Drop-seq pipeline [114] was first used to extract from R1 both the cellular and UMI

molecular barcodes (respectively bps 1-6 and 7-11). All the R2 sequences were then

aligned to the custom mouse genome using STAR (v.2.5.2b) [56]. Downstream analyses

were restricted to uniquely aligned reads with a maximum of two mismatches.

For allele specific (AS) gene expression quantification, every R2 sequence which was

aligned onto one or more high confidence SNP loci was assigned to its parental allele
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according to the SNP genotypes. This was achieved using the SNPsplit software (v.0.3.2)

[96]. Notably we removed from all downstream analyses the reads overlapping multiple

SNP loci which were characterized by discordant genotypes, as well as the sequencing

reads assigned to the paternal and maternal genomes carrying identical UMI barcode

sequences.

3.2 Gene expression quantification

For any cell j, the amount of molecules transcribed by the g-th gene can be estimated

as the number of unique UMI barcodes across all the reads which align over the g-th

annotated exonic regions. The use of random UMI barcodes, annealed to every cDNA

molecule prior library amplification, reduces the bias in gene expression quantification

caused by differences in amplification efficiency across transcripts.

Repeating the above UMI counting procedure for all N cells and G annotated genes, re-

sults in the estimation of the UMI count matrix: Y = [yg,j ] ∈ NG×N , which quantifies the

expression of every annotated gene across every sequenced mESC. The same procedure

was then repeated for each allele separately, restricting the analysis to SNP-overlapping

reads which were previously assigned to either parental genomes. This resulted in the

estimation of allele-specific UMI count matrices, one for the B6 and one for the Cast

allele, namely: YB6 = [yB6
g,j ], Y

Cast = [yCast
g,j ] ∈ NG×N . These two counting procedures

are referred to as not allele specific (not-AS) and allele specific (AS) gene expression

quantifications throughout the text.

In order to estimate the number of spliced and unspliced mRNA molecules, the not-AS

and AS quantifications described above were repeated separately for the subset of reads

completely aligned to an exonic region, or to those overlapping an intronic region. This

resulted in the estimation of the spliced (not-AS: S = [sg,j ]; AS: S
B6 = [sB6

g,j ] and SCast =

[sCast
g,j ]) and unspliced (not-AS: U = [ug,j ]; AS: UB6 = [uB6

g,j ] and UCast = [uCast
g,j ]) UMI

count matrices, such that: S,SB6,SCast,U,UB6,UCast ∈ NG×N .

In detail, the Drop-seq pipeline [114] was first used to tag the uniquely aligned reads

overlapping annotated genes. Then the amount of molecules transcribed by each gene

was estimated as the number of unique UMI barcodes across all tagged reads.

3.3 Data normalization

A strong limitation of the previously described TMM normalization procedure is that

zero counts can’t be included in the calculation of the sample-specific scaling factors

(Eq. 1). Therefore, given the characteristic zero-inflation observed in single cell RNA-

sequencing count data, the TMM procedure might fail to accurately estimate the nor-

malization factors. When dealing with zero-inflated data, meaningful scaling factors can
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be obtained grouping cells with similar transcriptomic profiles, pooling their counts to

reduce the number of gene dropouts, computing a scaling factor for each pooled sample,

and estimating single cell scaling factors through linear deconvolution.

In this work, single cell RNA-sequencing count data were normalized using the pooling-

clustering normalization procedure [2], which is briefly described below.

3.3.1 Pooling-clustering normalization procedure

Let yg,j represent the observed read counts for the g-th gene and j-th cell, as previosuly

described in Section 3.2. Then the expected value of the random variable Yg,j can be

written as: E(Yg,j) = sfj · λg, where sfj is the cell-specific bias factor and λg is the

expected gene count.

Let Tj represent the library size of the j-th cell (i.e. the total number of gene counts

across all profiled genes,
∑

g Yg,j), then the random variable for the relative gene expres-

sion can be written as: Zg,j = Yg,j · T−1
j , where E(Zg,j) = sfj · λg · T−1

j .

Let Vg,k be the random variable representing the sum of the relative gene expression

values observed for all cells belonging to a set Sk, and let the random variable Ag

represent the average relative gene expression values across all N cells. These two

random variables have expected values: E(Vg,k) = λg ·
∑

j∈Sk
sfj · T−1

j and E(Ag) =

λg ·N−1 ·
∑N

j=1 sfj · T
−1
j .

Assuming that most genes are not-DE between the k-th cell pool Vg,k and the overall

average Ag, the scaling factor for the k-th cell pool can be estimated as the median of

the ratios Rg,k = Vg,k/Ag across all genes. This can be written as the linear combination

of the cell-specific scaling factors relative to the cells composing the pool Sk, as:

sfSk
= median

g=1,...,G

Vg,k

Ag
=

∑
j∈Sk

αj · sfj (Eq. 4)

Repeating the above procedure for several cell pools (Sk) results in a linear system of

equations which can be solved by weighted least squares to estimate the cell-wise scaling

factors (sfj , with j = 1, . . . , N). Where every cell pool of size w is defined grouping

cells with similar library sizes, such that every cell is represented in w equations and the

total number of equations equals the number of cells N . Finally the cell cluster with

the most non-zero counts is defined as the reference, and used to re-scale the size factors

from all the others.

The above procedure can also be performed for separate clusters of cells, in order to

further reduce the strength of the non differential expression assumption. In this case,

each nested cell pool is normalized towards its cluster’s average resulting in cluster
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specific scaling factors. The inferred scaling factors are only comparable between clusters

upon rescaling, which is achieved by selecting a cluster’s average as the reference and

normalizing each scaling factor with respect to it [2].

In detail, the above method was implemented through the scran (v.1.12.1) R package

[2]. Cell clusters were defined independently for each time point through the compute-

SumFactors function and the clusters parameter, restricting the cell pooling step to

cells sequenced at the same time point of cellular differentiation. Cluster-based scaling

factors were then deconvoluted into cell-specific factors (sfj ; for j = 1, . . . , N).

3.3.2 Normalized Counts Per Million (CPM) values

Let sfj represent the scaling factor for cell j which was estimated by the pooling-

clustering method. Similarly to the bulk RNA-sequencing data analysis, the estimation

of cell-specific scaling factors was restricted to autosomal genes. Indeed on one hand

XX cells undergo XCI throughout cellular development while on the other XO cells

have a single copy of the X chromosome, hence X-linked genes are more likely to be

differentially expressed across cells with respect to autosomal genes.

The normalized Counts Per Million (CPM) values for each gene g and cell j (CPMg,j)

of both the AS and not-AS count matrices were computed in the same way as described

for bulk RNA-sequencing data (Eq. 3).

Where sfj is the scaling factor for cell j, X = [xg,j ] is a random variable which represents

the AS or not-AS count matrices relative to single cell RNA-sequencing data X =

{Y,YB6,YCast}, and
∑

g xg,j represents the overall gene expression across all genes

profiled for cell j.

4 Data filtering

Data filtering is a crucial step in the analysis of transcriptomic data, since the presence

of outlying samples and genes could bias downstream analyses.

The following sections describe the pre-processing procedures which were applied to

scRNA-seq not-AS and AS count matrices aiming to identify and remove from the

analysis putatively dead or poorly sequenced cells, as well as lowly expressed or poorly

annotated genes.

4.1 Cell filtering

Problematic cells could be identified combining imaging and gene expression data.
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4.1.1 Image-based filtering

Capture sites isolating multiple cells or no cells were identified through manual inspection

of their brightfield images and removed from subsequent analyses. Furthermore, the

dead (Eithidium) and life (Calcein) stain fluorescence levels of every capture sites were

quantified as the average intensity signal measured within a rectangle of constant size

which was manually centered at each capture site.

In detail, the fluorophores’ intensities of each capture site were quantified through the

ZEN (Zeiss v2.3) software.

4.1.2 Transcriptome-based filtering

Putatively dead cells were identified as the samples characterized by extremely low se-

quencing depth, total number of transcripts or number of expressed genes, as well as cells

with extremely high dead stain fluorescence intensities, percentages of mithochondrial

DNA or ERCC spike-in reads.

Let x ∈ RN be a random variable representing the values observed for any of the above

features measured across all the N sequenced cells. Then the k-fold median-absolute-

deviation (k·MAD) upper and lower thresholds can be computed as:

median(x)± k ·median(
∣∣x−median(x)

∣∣ ) (Eq. 5)

The 3-fold median-absolute-deviation (k = 3) thresholds were used to identify prob-

lematic capture sites, and remove from the analysis putatively dead cells. Specifically

capture sites showing extreme values for any of the above variables were removed from

all the downstream analyses.

4.1.3 Remove cells losing one X chromosome

Aiming to remove XO cells within the XX population, any sequenced cell that didn’t

express the Xist gene and with more than 80% of its X-linked AS UMI counts assigned

to a single allele, was assumed to have lost one X chromosome.

To this end, the X-chromosomal ratio of the j-th XX cell (namely, XRj) was computed

as the fraction of X-linked AS UMI counts assigned to the B6 allele:

XRj =

∑
g∈chrX

yB6
g,j

∑
g∈chrX

(
yB6
g,j + yCast

g,j

) (Eq. 6)
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Any XX cell j such that XRj ≥ 0.8 or XRj ≤ 0.2 and yB6
Xist,j + yCast

Xist,j = 0 was assumed

to be XO and removed from all the downstream analyses.

4.2 Gene filtering

In order to get robust results in downstream data analyses, the gene filtering procedures

described below aim to identify and remove from the analysis poorly detected genes as

well as those genes characterized by skewed detection biases.

4.2.1 Dropout rate

Let the dropout rate of a gene g represent the proportion of profiled cells that do not

transcribe the gene.

For every gene g, we can estimate its not-AS and AS dropout rates (DropRatenotAS
g and

DropRateAS
g , respectively) as:

DropRatenotAS
g =

∑
j

I(yg,j = 0)
/ ∑

j

1

DropRateAS
g =

∑
j

I(yB6
g,j + yCast

g,j = 0)
/ ∑

j

1
(Eq. 7)

Where I( ) represents the indicator function, j denotes each sequenced XX cell, and∑
j 1 quantifies the number of profiled cells.

Aiming to restrict the analysis only to genes with sufficiently high detection rates, we

excluded from downstream analyses any gene with a dropout rate higher than 0.8. Im-

portantly, since a much smaller set of genes could be profiled with allelic resolution

relative to the not allele specific one, this filtering procedure was performed separately

for the not-AS (DropRatenotAS
g ≥ 0.8) and AS (DropRateAS

g ≥ 0.8) downstream data

analyses.

4.2.2 Allelic rate

Let the allelic rate of a gene g represent the fraction of molecules transcribed by the B6

allele across all sequenced cells.

For every gene g, we can estimate the allelic rate (AllelicRateg) as:

AllelicRateg =
∑
j

yB6
g,j

/ ∑
j

(
yB6
g,j + yCast

g,j

)
(Eq. 8)
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Aiming to exclude any gene showing strong detection skewing towards a single allele, we

removed from both AS and not-AS downstream data analyses every gene such that over

90% of its transcripts derived from a single allele (AllelicRateg ≥ 0.9 or AllelicRateg ≤
0.1).

5 Global and gene-wise X-linked silencing measures

This section describes a number of measures which were used to characterize the extent

of global and gene-wise X-linked expression and silencing for each single cell throughout

cellular differentiation.

Specifically the Xist AS ratio estimates the extent of mono or bi-allelic expression of the

Xist gene for each single cell. The X:A ratio compares the average gene expression on the

X-chromosome and autosomes, which is a commonly used measure to estimate the silenc-

ing of X-linked genes. Finally the Xi:Xa ratio and X chromosome inactivation progress

(XP) compare the expression levels of the Xist positive and negative X-chromosomes,

which are used to estimate the extent of Xist-mediated chromosome-wide gene silencing

for each sequenced XX cell.

5.1 Xist AS ratio

Every XX cell j was classified based on its allelic expression of the Xist gene (EN-

SMUSG00000086503). Where the Xist allele specific ratio for the j-th XX cell was

computed as:

ratioXist,j =
yB6
Xist,j

yB6
Xist,j + yCast

Xist,j

(Eq. 9)

Cells with more than 5 Xist AS counts were classified as: Monoallelic (MA-B6 or MA-

Cast) if all AS counts mapped to the same allele; Skewed if more than 80% of the AS

counts were assigned to a single allele; Biallelic (BA) if at least 20% of the AS counts

were assigned to each allele; and Undetected if the cell didn’t express Xist at the not-AS

level:

• Undetected: if yXist,j = 0

• Low: if (yB6
Xist,j + yCast

Xist,j) ≤ 5

• MA-B6 (Xi = B6): if (yB6
Xist,j + yCast

Xist,j) > 5 and ratioXist,j = 1

• MA-Cast (Xi = Cast): if (yB6
Xist,j + yCast

Xist,j) > 5 and ratioXist,j = 0
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• BA: if (yB6
Xist,j + yCast

Xist,j) > 5 and ratioXist,j ∈ [0.2, 0.8]

• Skewed: if (yB6
Xist,j + yCast

Xist,j) > 5 and ratioXist,j ∈ {(0, 0.2) ∪ (0.8, 1)}

5.2 X:A ratio

The X-to-Autosome (X:A) ratio compares the average expression observed across the

genes on the X chromosome and autosomes. Similarly to a previous study [16], a boot-

strapping approach was used to account for the larger number of autosomal genes com-

pared to X-linked genes. For each cell, a set of autosomal genes (g′b) of the same size of

the X-linked gene set was randomly sampled with reintroduction, and the ratio between

the average X-linked expression and the average expression across the sampled autoso-

mal genes was computed. This step was repeated B=1000 times, and the X:A ratio for

each cell was estimated as the median across all B bootstrap ratios. Only genes retained

through the gene filtering step were included in this analysis. For each cell j, the not-AS

and AS X:A ratios were computed as:

X:Anot-AS
j = median

b=1,...,B

( ∑
g∈chrX

yg,j

/ ∑
g∈g′b

yg,j

)

X:AB6
j = median

b=1,...,B

( ∑
g∈chrX

yB6
g,j

/ ∑
g∈g′b

yB6
g,j

)

X:ACast
j = median

b=1,...,B

( ∑
g∈chrX

yCast
g,j

/ ∑
g∈g′b

yCast
g,j

)
(Eq. 10)

5.3 Xi:Xa ratio

The Inactive-to-Active X chromosome expression ratio (Xi:Xa) is a measure which com-

pares the global X-linked expression of the two alleles. This ratio was estimated as the

fraction between the number of X-linked molecules transcribed by the future inactive al-

lele (Xi) and the active allele (Xa), excluding the UMI counts assigned to the Xist gene.

For each XX cell with Xist monoallelic expression (namely, MA-B6 and MA-Cast), this

measure was computed as:

Xi:Xaj =
∑

g∈chrX
g �=Xist

yXi
g,j

/ ∑
g∈chrX
g �=Xist

yXa
g,j

if j ∈ MA-B6 : Xi = B6 and Xa = Cast

if j ∈ MA-Cast : Xi = Cast and Xa = B6

(Eq. 11)
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Where for each cell j classified as monoallelically expressing Xist, yXi
g,j and yXa

g,j represent

the observed read counts for the g-th gene on the Xist expressing and negative alleles,

respectively.

5.4 X chromosome inactivation progress (XP)

The XCI progress (XP) is a measure which quantifies the percentage of global X-linked

silencing of the future inactive allele (Xi) relative to the active allele (Xa). For each XX

cell with Xist monoallelic expression (namely, MA-B6 and MA-Cast), this measure was

computed as:

XPj = 100 ·

(
1−

∑
g∈chrX

yXi
g,j + 0.01

∑
g∈chrX

yXa
g,j + 0.01

)

if j ∈ MA-B6 : Xi = B6 and Xa = Cast

if j ∈ MA-Cast : Xi = Cast and Xa = B6

(Eq. 12)

Intuitively, a high XPj value indicates that the cell has already substantially reduced

the expression of genes on Xi, while a value proximal to zero implies that the two alleles

have similar gene expression levels. The XPc value was set to 0 for those cells showing

higher X-linked gene expression on Xi compared to Xa.

5.5 Gene silencing progress (Xi/Xa)

Similarly to the previous measure, the extent of silencing of every X-linked gene g and

Xist monoallelic XX cell j was measured as:

Xi:Xag,j =
yXi
g,j + 0.01

yXa
g,j + 0.01

∈ [0, 1]; g ∈ chrX

if j ∈ MA-B6 : Xi = B6 and Xa = Cast

if j ∈ MA-Cast : Xi = Cast and Xa = B6

(Eq. 13)

Intuitively, a value proximal to 0 indicates that the gene is silenced on the Xi allele,

while a value proximal to 1 indicates that the gene is equally expressed by the two alleles.
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6 Trajectory inference and RNA-velocity methods

6.1 Dimensionality reduction techniques

RNA-sequencing experiments profile each sample measuring its expression over a large

number of genes. Dimensionality reduction techniques are crucial tools for data explo-

ration and clustering. These procedures enable the visual inspection of the sequenced

samples into a lower dimensional space, where the closer the samples the more similar

their transcriptomic profiles.

The following sections describe the most widely adopted dimensionality reduction meth-

ods to visualize bulk and single cell RNA-sequencing data.

6.1.1 Bulk RNA-Sequencing

In this work, the differences between the sequenced bulk RNA-sequencing samples were

explored through the multi-dimensional-scaling (MDS) plot, which can be used to verify

the similarity between the transcriptomic profiles of the sequenced samples together with

the presence of batch effects.

Shortly, the MDS method [110, 158] plots the differences between samples such that

the distance between each pair of samples is computed as the root-mean-square of their

largest 500 log2FCs, which is commonly referred to as the leading fold change.

In detail, following the TMM gene count normalization procedure, the MDS procedure

was implemented with the limma (v.3.52.4) R package [158] through the plotMDS R

function with default parameters.

6.1.2 Single cell RNA-Sequencing

The Uniform Manifold Approximation and Projection (UMAP) [121] is a non-linear

dimensionality reduction procedure which is commonly used for the graphical represen-

tation of high dimensional data, such as single cell RNA-sequencing data.

Shortly, UMAP first defines a high-dimensional graph representation of the data and

then optimizes a low-dimensional graph to minimize the cross-entropy between the two

topological representations.

In detail, following the log-transformation of the gene and cell filtered not-AS CPM

count matrix, the analysis was restricted to the 500 most variable genes across all cells

and time points. Principal Component Analysis (PCA) was performed on this matrix,

which was implemented with the pcaMethods (v.1.88.0) R package [182] through the
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pca R function. The top 50 principal components were then provided as the input to

the UMAP dimensionality reduction method, which resulted in a two-dimensional cell

embedding.

Specifically, the UMAP procedure was implemented with the umap (v.0.2.10.0) R package

[121] through the umap R function, using 20 nearest neighbors and a minimum distance

of 0.5 (respectively, n neighbors and min dist parameters).

6.2 Trajectory inference

When single cell measurements are collected to study a continuous process, every cell can

be thought of as an observation along a trajectory defined by the expression similarity

between cells. The aim of trajectory inference methods is to assign every single cell to

a continuous measure, referred to as pseudotime, which measures its distance from the

origin of the process along the estimated trajectory.

Most of trajectory inference methods developed for single cell data select a number of

highly variable genes across cells and project every observation onto a lower dimensional

space that accounts for a large portion of between cell variability, define a manifold

structure that connects the most similar cells within the lower dimensional space, identify

a set of cells representing the origin of the biological process under investigation, and

finally estimate the pseudotime of each cell as the distance between the origin and the

projection of the cell onto the estimated manifold [81, 150, 151, 184, 191].

A recent work provides an extensive comparison of several single-cell trajectory inference

methods [167]. This analysis highlights that the methods under investigation mostly

differ on whether the manifold topology is fixed, and on the type of topologies that each

method is able to identify. Based on this method comparison, one of the best performing

unsupervised trajectory inference methods (namely Monocle-DDRTree) was applied to

the time series gene expression data of XX cells, aiming to identify a smooth trajectory

and estimate cellular pseudotimes. This method is briefly described in the following

section.

6.2.1 Trajectory and pseudotime estimation with Monocle

Monocle is a fully unsupervised trajectory inference method, meaning that it doesn’t

require any a priori information about which genes drive the continuous biological process

under investigation, nor about the topology of the inferred manifold structure. Briefly,

this method can be summarized into three major steps: identification of the ordering

genes, dimensionality reduction, and pseudotimes calculation [150, 151, 191].

Let Y be the filtered and normalized expression count matrix which quantifies the ex-

pression of G genes across N single cells resulting from a single-cell RNA-seq experiment.
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The ordering genes are defined as the n genes showing the highest variability across all

cells or time points. In the latter case, the normalized expression vector for gene g

across all cells (yg ∈ RN ) can be modeled as the response variable of a Generalized

Linear Model (GLM) where the time measurement is defined as the only independent

variable. The significance of each gene g is then evaluated through a likelihood ratio

test (LRT), which compares the full model to an intercept-only model. The ordering

genes are then selected as the ones showing the n smallest significance values.

Monocle uses the Reversed Graph Embedding (RGE) method to learn a function which

projects the data onto a lower dimensional space, while simultaneously learning a graph

structure into this space that can be projected back to the higher dimensional space.

Let fG : Rd → RG be a function which projects the latent points within a lower d-

dimensional space (Z = (z1, . . . , zN ); where zj ∈ Rd) back to the original observed gene

expression space (Y = (y1, . . . ,yN ); where yj ∈ RG), and let G = (Z, ε) be the graph

structure where the edges ε connect the latent vertices zj=1,...,N [151]. Given a set of

graph structures Gb, the RGE method optimizes the objective function:

min
G∈Gb

min
fG∈F

min
Z

N∑
j=1

||yj − fG(zj)||2 +
λ

2

∑
(Vi,Vj)∈ε

bij ||fG(zi)− fG(zj)||2 (Eq. 14)

Where the λ parameter controls the degree of minimization between the first term, which

minimizes the distance between observed data and the image associated to their latent

values, and the second term, which minimizes the distance in original space between

neighboring observations. This might however encounter scalability problems as the

number of cells increases. This problem is accounted for by the DDRTree method, which

solves the above minimization problem on a smaller set of latent points defined as the

K centroids of the N observed latent points. Where in the first run of the minimization

problem, the K centroids are set to the K-means of the N latent points [151].

Once that an optimal solution is found for the above minimization problem, the root

cell of the graph is identified as the node with the highest number of cells sequenced

at the earliest time point. The latent point of every cell zj=1,...,N is then projected to

the inferred graph, distances are computed between every projection, and a minimum

spanning tree (MST) is constructed. The pseudotime of every cell pdtj=1,...,N is then

computed as the geodesic distance on the MST from the root cell [151]. Finally, the

pseudotime estimate for each cell j is divided by the maximum observed value across all

N cells:

pdt∗j =
pdtj

max
j=1,...,N

pdtj
(Eq. 15)
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In detail, single cell pseudotime trajectories were constructed using the monocle (v.2.12.0)

R package, restricting the analysis to XX cells only. Similarly to a previous study [24],

a set of ordering genes was defined as the 500 most differentially expressed genes over

time points (differentialGeneTest R function). The DDRTree method was then used

to project the cells into a two-dimensional space based on the expression of the selected

genes, and simultaneously learn a graph structure into this space (reduceDimension(method

= "DDRTree") R function). Pseudotime values were then estimated as the distance of

each cell from the root of the graph. Where the root was defined as the state with

the highest number of undifferentiated XX cells (orderCells R function). The scaled

pseudotime values were computed dividing the estimated pseudotimes by the maximum

value observed across all XX cells. Finally the pseudotimes estimated for each single

cell were visualized onto the first two UMAP cellular embeddings.

6.3 RNA velocity of single cells

One of the central dogma of biology is that upon gene transcription a pre-mRNA tran-

script is synthesised from the gene’s DNA sequence by RNA polymerase enzymes. No-

tably the pre-mRNA molecules consist of both coding and non-coding RNA-sequences,

namely referred to as exons and introns respectively. These molecules are then processed

into mature mRNA transcripts in a process known as RNA splicing, where introns are

removed and exons are joined together.

A recent work suggests that the high number of intronic reads detected in single cell

RNA-seq experiments could be used to quantify the number of unspliced mRNA tran-

scripts. Modeling together the number of spliced and unspliced mRNA molecules ob-

served for each gene and cell would then enable the prediction of the future transcrip-

tomic profile of every sequenced cell [97]. The RNA velocity method is briefly described

in the following sections.

6.3.1 Modeling spliced and unspliced mRNA transcripts

Suppose that a single cell RNA-seq experiment results in the quantification of spliced

and unspliced transcripts for G genes and N cells, which are respectively estimated by

the count matrices S = [sg,j ],U = [ug,j ] ∈ NGxN .

Intuitively, the number of unspliced molecules increases at every transcription event and

decreases at every splicing event. On the other hand, the number of spliced molecules

increases at every splicing event and decreases anytime a spliced molecule is degraded.

This can be described by the following differential equations:
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du

dt
= α(t)− β(t)ut

ds

dt
= β(t)u(t)− γ(t)s(t)

(Eq. 16)

Where (α(t), β(t), γ(t)) represent the time-dependent transcription, splicing, and degra-

dation rates respectively. While u(t) and s(t) represent the expected number of unspliced

and spliced mRNA transcripts at time point t, respectively.

The above system of differential equations can be simplified assuming constant tran-

scription and degradation rates over time (α(t) = α and γ(t) = γ), and setting the

splicing rate to 1 (β(t) = 1). Whenever the number of spliced reads are in steady state

(dsdt = 0), the number of unspliced molecules equals the number of degraded transcripts:

u(t) = γs(t). Therefore, the degradation rate of each gene g, can be estimated by

ordinary least squares as the slope coefficient of a linear model.

Assuming that the number of spliced reads varies at a fixed rate (dsdt = v), for each cell

j and gene g, the predicted number of spliced molecules after a time interval t and the

velocities can be estimated as:

vg,j = ug,j − γ̂g · sg,j
sg,j(t) = sg,j + vg,j · t

(Eq. 17)

Where sg,j and ug,j respectively represent the observed number of spliced and unspliced

transcripts, sg,j(t) the predicted number of spliced molecules after a time interval t, and

vg,j the velocity for gene g and cell j, which is derived by the estimated gene-specific

degradation rate γ̂g.

6.3.2 Degradation rate estimation in real data analysis

In real data analysis, the gene-specific degradation rate γg is estimated as the slope of

a linear model with the cell-specific relative unspliced transcripts as response variable

(ug = [ug,j · (
∑G

g=1 ug,j)
−1] ∈ [0, 1]N ) and the relative spliced transcripts as the only

independent variable (sg = [sg,j · (
∑G

g=1 sg,j)
−1] ∈ [0, 1]N ):

ug = o+ γg · sg + ε

where: ε ∼ N(0, σ2)
(Eq. 18)
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Where o represents an optional offset value which accounts for any baseline skewing,

and the error term ε is a normally distributed random variable.

The above linear model provides an unbiased estimator for γg if and only if the steady

state assumption is met. This limitation is addressed through a quantile fit, which

restricts the linear fit to the cells resulting in the highest or lowest number of transcripts

(by default selecting cells up to the 2.5th percentile, and above the 97.5th percentile),

under the assumption that these cells are more likely to be in a steady state.

Notably, the high dropout rates which affects both the spliced and unspliced transcript

quantification might bias the linear model fit. This problem is accounted for by pool-

ing the spliced and unspliced transcripts of cells showing similar transcriptomic profiles.

For each cell j, a k-Nearest-Neighborhood (kNN) is defined based on the Pearson linear

correlation distances computed across all G genes. First the spliced and unspliced tran-

scripts of all cells assigned to each kNN are added up, then a robust estimate of γg can

be obtained fitting the quantile linear model to the pooled counts.

The velocity estimation is restricted to genes G∗ with sufficiently high degradation rates

and Pearson’s correlations coefficients (by default γ̂g ≥ 0.05 and cor(ug, sg) ≥ 0.05,

respectively). Following the gene-specific model fitting, the velocities vg,j and predicted

spliced transcripts sg,j(t) can be estimated as described above (Eq. 17).

6.3.3 Projection into a lower dimensional space

The vector of predicted spliced transcripts after a time interval t for every cell j (namely,

sj(t) ∈ RG∗
) can be visualized onto a linear or non-linear cell embedding.

Suppose that the principal component analysis (PCA) method was applied to the original

spliced count matrix S, and that every cell was then projected into the lower dimen-

sional space defined by the first two principal components. The matrix of predicted

spliced transcripts after a time interval t (namely, S(t) = (s1(t), . . . , sN (t))) can then

be projected onto the same two-dimensional PCA plot. Where the coordinates of each

predicted cell state sj(t) are derived by the eigenvectors of the S matrix associated to

the first two principal components.

For non-linear embeddings (such as UMAP [121]) the position of the predicted cell state

is estimated as the one which maximizes the Pearson correlation coefficient between the

estimated velocity vector vj and the expression difference between every pair of cells rij ,

with j, i = 1, . . . , N . Let E = (e1, . . . , eN ) represent the coordinates of the N cells on a

non-linear embedding space. Upon estimating the transition probability matrix between

each pair of cells (j, i), namely P = [pj,i], the projection of the j-th predicted cell state

on this embedding is derived by its predicted velocity displacement ∆ej , which can be

computed as:
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∆ej =
N∑
i=1

(pj,i − 1/N) · ei − ej
||ei − ej ||

(Eq. 19)

For large values of N , individual cell velocities can be summarized by a vector field

representation. First the embedding space is partitioned through a grid. Then, for each

position on the grid, the grid vector field is estimated applying a Gaussian kernel to

cell-specific velocity vectors.

6.3.4 not-AS RNA velocity model fit

The RNA velocity method was applied to the not-AS spliced and unspliced count matri-

ces, removing the genes with low average spliced (s̄g ≤ 1) or unspliced (ūg ≤ 0.5) expres-

sion across all time points and XX cells. RNA velocities were calculated (velocyto.R

(v.0.6) R package) setting the cell neighbourhood size to kCells = 20, performing the

gene-wise fit on the top and bottom 2.5% quantiles (fit.quantile = 0.025), and set-

ting the remaining parameters to their default values.

Every XX cell was projected onto a UMAP cell embedding. This was estimated based

on the expression of the 500 genes showing the highest variance across all XX cells.

The number of variables was further reduced through a principal component analysis

based on the mean-centered expression levels of the selected genes (pca function from the

pcaMethods (v.1.76.0) R package). The top-50 PCs were provided as an input to UMAP

dimensionality reduction method (umap function from the umap (v.0.2.3.1) R package)

to further reduce dimensionality to two variables. The estimated velocities were then

projected onto the UMAP embedding, and locally summarized through a vector field

representation of single cell velocities (using the show.velocity.on.embedding.cor

function from the velocyto.R (v.0.6) R package).

6.3.5 Visualization of X-linked RNA velocities

The RNA velocities estimated for X-linked genes were then used to predict the future

transcriptional state of the X chromosome for each sequenced XX cell. Aiming to vi-

sualize the predicted transcriptomic profile of every XX cell on an embedding space

which separates cells silencing one or the other allele, the fraction of spliced UMI counts

assigned to the B6 allele was computed for each X-linked gene g and XX cell j as:

lg,j = sB6
g,j/(s

B6
g,j + sCast

g,j ) ∈ [0, 1] (Eq. 20)

Where g represents any X-linked gene for which the RNA velocity model could be fitted.
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The embedding space which separates XX cells silencing either alleles was then obtained

applying the PCA method to the matrix of X-linked allelic ratios, L = [lg,j ], and project-

ing every XX cell to the space defined by the first two principal components. For every

XX cell, the vector of predicted spliced X-linked transcripts (Eq. 17) was first projected

onto the PCA embedding space, and then summarized by a vector field representation

of single cell velocities, as described above.

Notably, the PCA loadings of the first two components correspond to those X-linked

genes which account for most of the variance in the X-linked allelic ratios, and therefore

are the most important in determining differential silencing between the two alleles.

6.3.6 Predicted change in X chromosome expression

Based on the previously described not-AS RNA velocity fit, the predicted change in

X-linked gene expression for every XX cell j was measured as:

∆Xj =

∑
g∈chrX

(
sg,j

/∑
g
sg,j

)

∑
g∈chrX

(
sg,j(t)

/∑
g
sg,j(t)

) (Eq. 21)

Where g represents any X-linked gene for which the RNA velocity model could be fitted;

and sg,j(t) represents the predicted expression for the j-th sample after a time interval

t (Eq. 17).

Intuitively, high values indicate that the cell is predicted to undergo XCI, while low values

indicate that the X chromosome is predicted to increase its global gene expression.

7 Differential expression analysis

Suppose that the samples under investigation can be partitioned into two or more groups

representing different experimental conditions or cell sub-populations. The aim of differ-

ential expression analysis is to identify a subset of genes showing significantly different

expression levels between the groups, therefore indicating a causal relation between their

expression values and the phenotype of interest.

Suppose that half of the samples sequenced through a bulk RNA-sequencing experiment

belong to group A and the other half to group B, and let ȳg,A and ȳg,B denote the

average log2-expression values of the g-th gene observed on samples from group A and

B respectively. The log2-Fold Change (log2 FC) for the g-th gene can then be defined

as:
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log2 FCg = ȳg,A − ȳg,B (Eq. 22)

In order to assess whether the g-th gene is differentially expressed between two con-

ditions, the null hypothesis H0 : log2 FCg = 0 can be tested. If this hypothesis is

not accepted then the g-th gene is said to be differentially expressed (DE) between the

two groups, or otherwise not differentially expressed (not-DE). The DE genes may be

further divided into up-regulated or down-regulated genes, meaning that the average

log2-expression values observed for group A is significantly higher or lower than the one

for group B, respectively.

7.1 Negative Binomial regression

Any experimental design can be represented in terms of a gene-wise linear model. Let

yg = (yg,1, . . . , yg,N )T be the vector of log2-expression values observed for the gene g on

N samples. Then for each gene, a linear model can be defined as [161, 177]:

yg = Xβ + ε (Eq. 23)

Where X ∈ RN × p is a full column rank design matrix, which describes the study

design specifying how the different treatment or group labels are assigned to the samples.

Moreover β ∈ R p is a vector of unknown coefficients whose components represent the

treatment effects or contrasts associated with the gene g. Finally ε ∈ RN is the vector of

N errors or residuals, which are assumed to be multivariate normals with an unknown

correlation structure between the genes [177]. Suppose for example that in a case-control

experiment G genes have been analyzed on four samples. Where the first two samples

are controls and the latter two are cases. Then the matrices defining each of the G

gene-wise linear models may be written as:

Y =




y 1,1 y 1,2 y 1,3 y 1,4

y 2,1 y 2,2 y 2,3 y 2,4

. . . . . . . . . . . .

yG,1 yG,2 yG,3 yG,4



=




yT
1

yT
2

. . .

yT
G



; X =




1 0

1 0

1 1

1 1



; β =


β g,0

β g,1


 (Eq. 24)

Suppose that the contrast between cases and controls βg,1 is of biological interest. Then

we can define the vector c = (0, 1)T such that cTβg = βg,1. The coefficient β g,1 estimates

the treatment effect associated with the log2-expression values of gene g such that β̂ g,1 =

ȳg,cases− ȳg,controls. Importantly it can be noticed that this coefficient estimates the g-th
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log2-fold change (log2FCg) relative to that contrast. Hence the null hypothesis for the

g-th gene can be tested estimating the coefficients of the gene-wise linear models [177].

Given the count nature of bulk RNA-sequencing data, the expression of the g-th gene is

usually assumed to follow a Negative Binomial (NB) distribution [160, 161, 177]:

yg ∼ NB(µg, φg)

E(yg) = µg

V (yg) = µg + φg · µ2
g

(Eq. 25)

Where µg and φg are respectively the average and dispersion parameters for the g-th

gene. Such that the Negative Binomial reduces to a Poisson distribution if φg = 0.

The log-transformed normalized expression of each gene can then be fitted through a

Generalized Linear Model (GLM), and the gene-wise null hypotheses H0 : log2 FCg =

β̂ g,1 = 0 be tested through a likelihood ratio test (LRT) or an F-test [109, 160, 161].

7.2 Model-based Analysis of Single Cell Transcriptomics (MAST)

Similarly to the count data normalization procedures, issues might arise when applying

methods developed for bulk RNA-sequencing data to zero-inflated counts such as the

ones resulting from a single cell RNA-seq experiment. Although the performance of bulk

methods applied to single-cell RNA-Seq data is still very much debated, a large number

of approaches accounting for the bi-modal distribution of single cell gene count data

have been recently proposed. Specifically, some recent DE analysis method comparisons

highlighted that while bulk methods have the tendency to result in a large number of

false discoveries when dealing with lowly expressed genes with high dropout rates, the

majority of genes don’t need the inclusion of an extra component to separately model

the dropout events [37, 51, 179].

Among the available methods for differential expression analysis, MAST (Model-based

Analysis of Single Cell Transcriptomics) [64] was pointed out as one of the approaches

showing the best performance for a number of real and simulated single cell RNA-seq

datasets. Briefly, this method fits a two-part GLM Hurdle model which separately

models a discrete variable representing the presence of zero counts and a continuous

one which refers to strictly positive gene expression values, where the continuous model

parameters are estimated through an Empirical Bayes method.

Let CPMg,j represent the normalized CPM values observed for gene g and cell j. Let

the Cellular Detection Rate (CDR) for cell j represent the proportion of expressed genes,

such that:
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Zg,j = 0, if CPMg,j = 0

Zg,j = 1, if CPMg,j > 0

CDRj =
1

N

G∑
g=1

Zg,j

(Eq. 26)

Therefore the random variables CPM and Z are conditionally independent. A Hurdle

model can then be used to fit a two part GLM which separately models the zero counts

through a logistic model, and the strictly positive expression values through a Gaussian

linear model, with mean Xgβ
C
g and variance equal to σ2

g [64]:

logit
(
P (Zg,j = 1)

)
= Xgβ

D
g

P
(
Yg,j = y | Zg,j = 1

)
= N

(
Xgβ

C
g , σ

2
g

) (Eq. 27)

Since the cellular detection rate accounts for a large proportion of gene expression vari-

ability between cells, this nuisance parameter is usually included as a column of the

design matrix X to account for differences in dropout rates across cells.

Suppose that a contrast between two groups of cells βg is of biological interest, and that

we aim to identify the subset of genes showing the most significant difference in gene

expression levels between these two groups. Then, gene-wise differential expression can

be tested summing up χ2 distributed statistics (such as LRT or Wald tests) computed on

the discrete (Zg,j) and continuous (Yg,j) components. Given the gene-wise conditional

independence between these two components, the resulting statistic will still follow a χ2

distribution, with a number of degrees of freedom (dof) equal to the sum of the dof of

the discrete and continuous components [64].

Parameter estimation of the discrete component (βD
g ) is achieved through a Bayesian

approach, setting its prior to a Cauchy distribution centered at zero. On the other

hand, the continuous variance (σ2
g) is regularized through an Empirical Bayes’ method

by setting a Gamma prior to the precision parameter ( 1
σ2
g
∼ Gamma(α0, β0)), obtain-

ing maximum likelihood estimates (MLE) for the two hyper-parameters (α0, β0), and

estimating the posterior precision as a weighted average between its MLE and its prior

estimate.

7.3 Identification of putative Xist and XCI regulators

Aiming to identify candidate regulators of Xist expression and XCI initiation, we used

two different approaches based on differential expression and correlation analyses to
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ensure the robustness of our results. These two approaches are described in the following

sections.

7.3.1 Differential expression analysis

MAST differential expression analysis method was applied to the not-AS count matrix

Y in order to identify a set of putative regulators of the Xist gene and of the XCI

process. This set of genes was identified by two separate DE analyses.

In the first analysis, putative Xist regulators were identified comparing the gene-wise

expression levels of cells showing high and low Xist expression. First, XX cells across

all time points were clustered with K-means algorithm (K = 7) based on the logarithm

of Xist not-AS CPM expression values, namely log10(CPMY
Xist,j + 1). Cells belonging

to the top and bottom 3 K-means groups were classified as Xist-high and Xist-low,

respectively. Where the number of clusters K was set in a way to minimize the within-

cluster sum of squares value, while ensuring a minimum number of 50 cells in the two

groups at each time point of differentiation (days 1-4). The set of differentially expressed

genes between these two groups of cells were identified at each time point fitting gene-

wise Hurdle GLMs (zlm function from the MAST (v.1.10.0) R package), including as

model predictors a dummy variable representing the two cell groups and the cellular

detection rate (Eq. 26). The significance of each gene was then assessed through a χ2

likelihood ratio test, and corrected for the multiple hypotheses testing issue through the

Benjamini-Hochberg (BH) procedure [12, 64].

The second analysis aims to identify genes regulating the XCI process comparing the

gene-wise expression levels of cells predicted to decrease or increase the expression of

chromosome X by the previously described RNA velocity method. First, XX cells at

each time point were clustered with K-means algorithm (K = 3) based on their predicted

change in X-linked expression log2(∆Xj) values (Eq. 21). Separately for each time point,

the set of differentially expressed genes between the cells in the top and bottom clusters

were identified through the MAST differential expression analysis method, as described

above. Where the cells’ K-means clusters and cellular detection rate were again included

as independent variables.

7.3.2 Correlation analysis

Similarly to the previous analyses, a set of putative Xist and XCI regulators were iden-

tified performing gene-wise correlation analyses with respect to Xist not-AS CPM ex-

pression and the RNA velocity predicted change in X-linked expression, respectively.

For each time point throughout cellular differentiation and gene g, the Spearman’s cor-

relation coefficient (ρXist
g ) between the not-AS CPM expression values observed for Xist
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and for the g-th gene was computed. Similarly, the Spearman’s correlation coefficient

(ρ∆X
g ) was computed between the not-AS CPM expression of each gene g and the RNA

velocity predicted change in X-linked gene expression.

For each time point and gene g, the null hypotheses H0 : ρXist
g = 0 and H0 : ρ∆X

g = 0

were tested through a Student’s T test, and the significance values were corrected for

the multiple hypotheses testing issue through the Benjamini-Hochberg (BH) procedure

[12].

8 Differential silencing analysis

This analysis accounts for the global silencing differences between the two parental alleles

aiming to classify X-linked genes based on their allele specific silencing kinetics, and to

identify the subset of genes showing significantly different silencing dynamics between

the two alleles.

8.1 Robust measures of silencing progress

Since analyzing the allelic expression of individual genes in single cells tends to be noisy,

the cells with similar extent of global X-silencing (XPj , Eq. 12) were grouped and the

overall and gene-wise silencing progress measures were robustly estimated by aggregating

the UMI counts of cells in each group. The following steps were performed separately for

Xist monoallelic XX cells silencing the B6 (MA-B6) and Cast (MA-Cast) X chromosome.

First, the analysis was restricted to cells which had already initiated the XCI process

(namely, j : XPg > 10%). Then, these cells were divided into B = 10 equally sized bins

based on the XP observed across the two Xist monoallelic populations. For each Xist

monoallelic population and b-th bin (where b = 1, . . . , B), the binned overall and gene-

wise silencing progress (XPb and Xi:Xag,b, respectively) were estimated aggregating the

allele specific UMI counts observed across all cells assigned to the same bin, as:

XPb = 100 ·

(
1−

∑
j∈b

∑
g∈chrX

yXi
g,j + 0.01

∑
j∈b

∑
g∈chrX

yXa
g,j + 0.01

)

Xi:Xag,b =

( ∑
j∈b

yXi
g,j

)
+ 0.01

( ∑
j∈b

yXa
g,j

)
+ 0.01

if j ∈ MA-B6 : Xi = B6 and Xa = Cast

if j ∈ MA-Cast : Xi = Cast and Xa = B6

(Eq. 28)
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Where XPb quantifies the extent of X inactivation across all cells assigned to the b-th

bin; while Xi:Xag,b is a proxy for the extent of inactivation of a specific gene in that

bin. Intuitively, a value of Xi:Xag,b close to zero indicates that the X-linked gene has

been completely silenced on the Xi allele, while a value proximal to one indicates that

the two alleles have similar gene expression levels. For each gene and allele, the above

measures were computed only for bins containing a minimum of 5 cells and a total of at

least 25 AS counts, and to genes with a minimum of 5 such bins.

In order to account for basal expression skewing due to genetic variations between the

two alleles, the Xi:Xag,b values were then scaled by the allelic gene ratios computed by

aggregating the allele specific UMI counts of all undifferentiated Xist-negative cells with

similar expression levels of the two X chromosomes (bcg). The normalized binned gene

silencing measures (Xi:Xa∗g,b) were then computed as:

bcg =

( ∑
j∈J

yB6
g,j

)
+ 0.01

( ∑
j∈J

yCast
g,j

)
+ 0.01

Xi:Xa∗g,b = Xi:Xag,b
/
Xi:Xag,baseline

where: Xi:Xag,baseline =



bcg, if Xi = B6

bc−1
g , if Xi = Cast

(Eq. 29)

Where J represents the set of undifferentiated (day 0) Xist-negative cells with XRj ∈
[0.4, 0.6].

8.2 Silencing halftimes

The silencing halftime of a gene (XP50,g) represents the extent of global X chromosome

silencing at which the inactive allele (Xi) reduces its expression of the g-th gene by half

relative to the active allele (Xa).

As the silencing halftime is expected to follow an exponential decay distribution, this

measure was estimated modeling the log-transformed normalized gene silencing rates for

gene g on chromosome X (Xi:Xa∗g,b) as linear function of the X chromosome silencing

process (XPb) separately for the two alleles, as:
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E[log2(Xi:Xa∗g,b)] = βg,1 ·XPb + βg,2 ·XPb ·A

where: A =



0, if Xi = B6

1, if Xi = Cast

(Eq. 30)

Where A represents a dummy variable, which enables the above model to estimate the

gene silencing rates for Xist monoallelic cells silencing the B6 allele (β̂B6
g = β̂g,1) or

silencing the Cast allele (β̂Cast
g = β̂g,1 + β̂g,2). The gene-specific silencing halftimes for

the two alleles were then computed as the XPb value corresponding to a Xi:Xa∗g,b ratio

of 0.5, as:

XP50,g =



−1

/
β̂g,1, if Xi = B6

−1
/(

β̂g,1 + β̂g,2
)
, if Xi = Cast

(Eq. 31)

Where the XP50,g values greater than 100 were set equal to 100.

Intuitively, aXP50,g value close to 0 indicates that the g-th gene is silenced at the earliest

stages of XCI, while increasingly higher values identify genes silenced at a later stage of

XCI or escaping the silencing process.

For each allele, the K-means clustering algorithm (K = 4) was applied to the estimated

XP50,g values in order to assign every gene to a silencing dynamics class (fast, interme-

diate, slow, escape).

8.3 Identification of differentially silenced genes

This analysis aims to identify a subset of genes showing significantly different silencing

kinetics on the two X chromosomes.

In order to identify such genes, the fit of the allele specific linear model (m1, Eq. 30)

was compared to the one of a simpler linear model which fits both Xist monoallelic

populations with a single slope (m0):
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H0 : βg,2 = 0

m1 : E[log2(Xi:Xa∗g,b)] = βg,1 ·XPb + βg,2 ·XPb ·A

m0 : E[log2(Xi:Xa∗g,b)] = βg,1 ·XPb

where: A =



0, if Xi = B6

1, if Xi = Cast

(Eq. 32)

For every gene g, an ANOVA F test was used to assess whether the βg,2 parameter was

significantly different from zero. Intuitively, a significant result suggests considerably

different silencing kinetics on the two alleles. Otherwise the two alleles are deemed

to have similar gene silencing trends, which can be recapitulated by a single silencing

rate βg,1. Finally, any gene with a Benjamini-Hochberg adjusted p-value [12] smaller

or equal than the nominal FDR=0.05 was deemed as differentially silenced between the

two alleles.

9 TXΔXic data analyses

Upon differentiation both the TXΔXicB6 and TXΔXicCast mESCs underwent non-

random XCI, expressing Xist and silencing the genes on the wild type X chromosome.

Gene expression was measured every 24 hours throughout four days of cellular differen-

tiation through bulk RNA-sequencing and pyrosequencing. These data were analyzed

to validate the global and gene-specific allelic differences in gene silencing dynamics

revealed by the analyses of single cell RNA-seq data.

9.1 Pyrosequencing data analysis

Let pg,j be a random variable representing fraction of B6 molecules observed for the

X-linked gene g on replicate sample j at a specific time point.

For each day of cellular differentiation, the gene-specific Xi:Xa ratio was computed as:

Xi:Xag,j = (1− pg,j)/pg,j , if j ∈ TX∆XicB6

Xi:Xag,j = pg,j/(1− pg,j), if j ∈ TX∆XicCast

(Eq. 33)

In order to account for basal expression skewing due to genetic variations between the

two alleles, the above ratios were divided by the average ratio observed across the un-

differentiated (day 0) biological replicates.
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For each gene deemed as significant in the single cell differential silencing analysis and

time point, the normalized allelic ratios for the two deletion lines were compared through

an unpaired t-test statistic. Where significant results identify genes showing differential

silencing on the two alleles at specific time points throughout cellular differentiation.

For each gene deemed as not significant in the single cell differential silencing analysis and

time point, the normalized allelic ratios were averaged across replicates and compared

between the two deletion lines through a Wilcoxon signed-rank test. Where a significant

result at a specific time point of differentiation highlights the global difference in X

chromosome silencing kinetics between the two alleles.

9.2 Bulk RNA-sequencing data analysis

For each time point and deletion cell line (namely, TXΔXicB6 and TXΔXicCast), the

extent of silencing of each X-linked gene g on the wild type X chromosome (Xi) relative

to the allele carrying the deletion (Xa) was measured summing up the counts observed

across replicate samples j:

Xi:Xag =

∑
j
bXi
g,j + 1

∑
j
bXa
g,j + 1

if j ∈ TX∆XicCast : Xi = B6 and Xa = Cast

if j ∈ TX∆XicB6 : Xi = Cast and Xa = B6

(Eq. 34)

Where X-linked genes g within the deleted region (chrX: 103,182,257 - 103,955,531,

mm10) or with less than 50 allelic counts across replicates were excluded from the

analysis. For each time point, the gene-specific allelic ratios observed in the two deletion

lines were compared through a paired t-test statistic. Where significant results highlight

differences in global silencing dynamics of the two X chromosomes at specific time points

throughout cellular differentiation.

Furthermore, the differential silencing of individual X-linked genes g across the two

deletion lines was inspected by measuring for each replicate sample j:

Xi:Xag,j = bXi
g,j/b

Xa
g,j

if j ∈ TX∆XicCast : Xi = B6 and Xa = Cast

if j ∈ TX∆XicB6 : Xi = Cast and Xa = B6

(Eq. 35)
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Basal genetic skewing was again accounted for on each deletion line dividing the above

ratios by the average allelic ratio across undifferentiated replicates. For each time point

and gene g, the normalized allelic ratios of the two deletion lines were compared through

an unpaired t-test statistic. Where significant results identify genes showing differential

silencing on the two alleles at specific time points of cellular differentiation.

Furthermore, a differential silencing analysis similar to the one described for single cell

RNA-seq data was performed. This analysis was restricted to X-linked genes with a

minimum of 500 allele specific counts across biological replicates at each time point of

cellular differentiation (days 1-4) in both deletion cell lines. Similarly to the procedure

described to identify differentially silenced genes for single cell RNA-seq data, basal

genetic skewing was accounted for dividing the gene-wise Xi:Xa ratios (Eq. 34) by the

value observed across undifferentiated replicates (day 0), and the XCI progress (Eq. 12)

was measured at each time point across replicate samples excluding the genes within

the deleted region. For each X-linked gene included in this analysis, the allele specific

silencing halftime was measured fitting an intercept free gene-wise linear model to the

Xi:Xa and XP values observed on each cell line (Eq. 30, Eq. 31). Finally, a set of

putative differentially silenced genes was identified comparing the fit of the gene-wise

allele specific linear model to a simpler model fitting the data from both deletion cell lines

with a single slope (Eq. 32). Where the significance of each gene was again inspected

through an ANOVA F test.



3 Results

1 Experimental design and single cell RNA sequencing

Figure 1: Experimental design
(a); Sequencing chip (b); Image
analysis (c); RNA sequencing (d)

This section describes the experimental de-

sign and single cell RNA-Sequencing which was

performed on the TX1072 cell line aiming to

study the transcriptomic profiles of female XX

and XO mouse embryonic stem cells (mESCs)

throughout cellular differentiation.

XX and XO cells were cultured in 2i&LIF con-

ditions, which preserves their fully pluripotent

and undifferentiated cellular profiles (day 0).

Differentiation was then induced by 2i&LIF

withdrawal, and the transcriptomic profiles of

samples from the XX and XO populations

were collected and measured every 24 hours

throughout four days of induced cellular differ-

entiation (days 1-4). Notably the XO mESCs

after two days of induced cellular differentia-

tion could not be sequenced due to a mistake

in the cell loading procedure. Loss of pluripo-

tency leads to up-regulation of the Xist gene

which initiates the XCI process in the XX pop-

ulation, while their XO counterparts do not

undergo XCI given the absence of a second X

chromosome (Fig. 1a).

Xist up-regulation and XCI are very asyn-

chronous processes especially when culturing

mESCs in vitro, moreover every XX cell in-

dependently chooses and transcriptionally si-

lences one of the two X chromosomes. This

leads to high levels of heterogeneity in gene ex-

pression levels and in X chromosome silencing

extent across cells sequenced at the same time

point. For these reasons we opted for a single

cell RNA sequencing approach rather than a

bulk assay.

50
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Indeed, while the latter estimates the average gene expression profile across an entire

population of heterogeneous cells, the former enables to define the transcriptomic profile

of each individual cell.

The Single-Cell mRNA Seq HT integrated fluidic circuit (IFC) microfluidics system

enables the simultaneous capture and isolation of single cells from two different samples.

Every sequencing chip is divided into two sections, composed by 10 separate columns

with 40 IFCs each. At each time point throughout cellular differentiation (days 0-4),

XX and XO cells were separately loaded onto the two halves the sequencing chip, and a

maximum of 400 cells could be isolated and sequenced on each half. Every cell isolated

on the 800 IFCs is uniquely identified by a combination of row and column barcodes,

which is essential for the following sequencing reads demultiplexing procedure (Fig. 1b).

Prior to mRNA sequencing, every IFC was inspected through a Zeiss CellDiscoverer mi-

croscope (Zeiss) with a 20x objective. Capture sites without a cell or with multiple cells

were identified by manual inspection based on brightfield imaging, while the intensity

signals of the life and dead stain fluorophores (Calcein and Ethidium, respectively) were

quantified using ZEN v2.3 software (Zeiss) (Fig. 1c).

All the cells isolated within the same column were jointly harvested, and their cellu-

lar membranes sheared to proceed with RNA extraction and sequencing. The poly-

adenylated (polyA) mRNA molecules were enriched through a polyT primer which was

ligated to: a random 5-mer nucleotide sequence (UMI barcode), a cell-specific 6-mer row

barcode, and a sequencing primer. Single stranded cDNA libraries were then synthesized

by reverse transcription. Each of the 20 cDNA libraries was then amplified, fragmented

and tagmented. The fragments that contained the polyT primer were amplified by PCR.

Every enriched molecule was then paired-end sequenced, where read 1 (R1) stores both

the row and UMI barcodes, while read 2 (R2) the 3’-end biased cDNA sequence (Fig.

1d).

2 Read alignment and gene quantification

For each time point throughout cellular differentiation, the sequencing reads deriving

by the single cell RNA-seq experiment were demultiplexed and assigned to their cell

of origin using the row and column barcodes. The following subsections describe the

results of the sequencing, reads alignment and gene counting procedures.

2.1 Sequencing, alignment and gene counting throughput

Figure 2a summarizes the read alignment and gene expression quantification procedures

for an example gene. The sequencing reads are first aligned to the custom SNP-masked
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Figure 2: (a) Read alignment and gene expression quantification scheme for an exam-
ple gene, defined by two exons and one intron. Uniquely aligned reads are portayed as
rectangles, while their color identifies their UMI barcode sequence. (b) Single cell RNA-
seq sequencing, alignment, not-AS and AS gene expression quantification throughput
throughout cell lines and cellular differentiation.

mouse genome. Where this procedure aims to account for the presence of polymor-

phisms between the two distantly related parental genomes. Importantly, for each gene

under investigation, the reads carrying an identical UMI barcode sequence can be as-

sumed to derive from the same mRNA molecule. The overall number of transcribed

mRNA molecules is quantified restricting the UMI counting procedure to the uniquely

aligned (UA) reads with at least one nucleotide overlapping any of the gene’s annotated

exons (Exon overlapping). The number of spliced and unspliced mRNA molecules are

estimated restricting the analysis to the reads entirely aligned to exonic regions (Spliced

reads) and to the ones with at least one nucleotide overlapping any intronic region (Un-

spliced reads), respectively (Fig. 2a, left). For each subset of UA reads, the number

of transcribed mRNA molecules is estimated as the number of unique UMI barcodes

(UMI not-AS). Similarly, allelic gene expression quantification is performed assigning

SNP-spanning reads to their parental genome according to the observed SNP-genotype,
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and repeating the above UMI counting procedure for each subset of allele-specific reads

(UMI B6/Cast). The number of not-AS and AS UMI counts relative to the exon-

overlapping, spliced and unspliced gene expression quantification for this example gene

are summarized by the table (Fig. 2a, right).

The bar plots (Fig. 2b) summarize the throughput of the single cell sequencing, align-

ment, not-AS and AS gene quantification for XX and XO cells sequenced throughout

cellular differentiation. The sequencing procedure resulted in a median of around 400,000

reads per cell, where around half of these were uniquely aligned to the masked mouse

genome. Around 30% of all the sequenced reads were exon-overlapping and carried a

unique UMI barcode, hence were used to quantify the not-AS expression of annotated

mouse genes. Almost all the exon overlapping reads were completely aligned within

exonic regions and therefore used to quantify the number of spliced mRNA molecules,

while the number of unspliced molecules was quantified based on around 3.5% of the

total number of sequenced reads. On the other hand allele-specific gene expression was

quantified by around 4% of the total number of reads, which were almost equally divided

between the two parental alleles (UMI B6 and UMI Cast). Spliced AS quantification

was carried out based on a slightly reduced fraction of total reads, while around 0.6%

of total reads were used for unspliced AS gene quantification. These results highlight

that the sequencing of XX and XO cells showed similar throughput throughout cellular

differentiation.

2.2 Xist 5’-biased read coverage

The C1-HT paired-end sequencing protocol enriches and sequences poly-adenylated

(polyA) mRNA molecules, resulting in sequencing reads which align to the 3’ end of

the gene’s transcript. The expected 3’-end read alignment bias can be observed looking

at the read coverage track across all sequenced cells of a number control of genes (Fig.

3a).

Notably, the expected 3’ bias was not observed for the Xist gene (Fig. 3b). Rather

its reads aligned to Xist ’s first annotated exon, and were almost completely absent at

the 3’ end of its transcripts. Interestingly, this unexpected read coverage is not specific

to the protocol being used, as it was also observed in a previous study which used the

CEL-Seq2 3’-end biased scRNA-sequencing protocol [83]. Inspection of the sequence

upstream of the Xist 5’-alignment peak revealed a 25 base pair (bp) long genomically

encoded polyA sequence. Therefore, it can be hypothesized that the internal polyA

sequence serves as a template to prime reverse transcription, and that Xist mRNA’s

polyA tail is likely inaccessible to the reverse transcription reaction.

Xist ’s read coverage was summarized through a heatmap, which shows the 100bp-binned

Xist minus strand read coverage in XX cells throughout cellular differentiation (Fig. 3c).
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Figure 3: (a) 3’-end reads coverage for three control genes (Esrrb, Rlim, Map2k1).
(b) Composite track showing Xist 5’-biased read coverage and a 25bp internal polyA
sequence on Xist locus. (c) Xist (100bp-binned) read coverage in XX cells over time.
Every row of the heatmap represents a single XX cell, colored and ordered by Xist
expression. Every column of the heatmap represents a 100bp bin across the Xist gene
locus. The plots above the heatmap highlight Xist and Tsix gene annotations, B6/Cast
SNPs loci, and a 10bp running mean showing the Adenine enrichment on the minus
strand.

Regardless of the unexpected reads’ alignment Xist expression showed the expected up-

regulation throughout cellular differentiation, characterized by almost none of undiffer-

entiated mESC expressing the gene and increasing expression throughout differentiation.

This led us to conclude that the expression of Xist can correctly quantified by its 5’-

biased read coverage. Furthermore the plot highlights that the Xist expression is very

heterogeneous and asynchronous throughout differentiation, indeed we can observed high
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Figure 4: (a) Fluorophore intensities and image classification. Capture sites which
isolated multiple or no cells are highlighted in red. (b) Violin plots of the observed
filtering measures, and 3-MAD cell filtering thresholds for XX and XO cells (black and
brown dashed lines, respectively). (c) XO cells filtering in XX population

number of Xist-negative cells even after four days of induced cellular differentiation.

3 Data filtering

This section describes the cell and gene filtering procedures, which aim to remove from

the analysis the cells and genes which might bias any of the downstream analyses.

3.1 Cell filtering

The aim of cell filtering is to identify and discard empty wells, dead and low-quality

cells. This was achieved by combining gene expression and imaging data analyses.
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Figure 5: (a) Concordance between gene expression and imaging filtering measures.
Left panel: number of low-quality cells identified by each image or trascriptome-based
measure (x-axis) and any other measure (color). Right panel: percentage of low-quality
cells identified by each image or trascriptome-based measure (x-axis) which were also
identified by a second variable (color). (b) Table summarizing the XX and XO cell
filtering steps

The intensity signals of the Calcein (life stain) and Ethidium (dead stain) fluorophores

recorded for each cell are represented through a scatter plot (Fig. 4a). The capture sites

which isolated none (left panel) or multiple cells (right panel) were identified through

visual inspection of each brightfield image. The scatter plots highlight an unexpected

correlation between the intensities of the two fluorophores, with the live stain signal

spikes up whenever the dead stain is detected. For this reason we used only the dead

stain fluorophore to identify cells with a broken cellular membrane, while the signal

associated to the life stain was not taken into consideration.

In addition to the dead stain, several transcriptome-based measures were used to identify

low quality cells (Fig. 4b). These were identified as the cells resulting in low number of

reads, low number of UMI transcripts or low number of expressed genes, as well as cells

with high percentage of mitochondrial DNA or ERCC spike-in reads and high Ethidium

fluorophore intensity. The violin plots (Fig. 4b) show the distribution of these measures

across all cells and time points. For each measure, a 3·MAD threshold was used to

identify and remove from the analysis outlying XX and XO cells (Eq. 5). This filtering

procedure was performed separately for the two cell lines due to their marked differences

in sequencing throughput and gene expression quantification. Indeed XX cells resulted

in a higher number of detected genes and total UMI transcripts, and lower percentages

of spike-in and mitochondrial DNA reads compared to their XO counterpart. Where
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the black and brown horizontal dashed lines represent the thresholds computed for the

XX and XO populations, respectively.

Moreover, some XX cells might lose one of the two X chromosomes either before or

throughout cellular differentiation. XX cells not expressing Xist and with more than

80% of their X-linked transcripts mapping to a single allele (Eq. 6) were assumed to

have lost one X chromosome and were removed from the analysis (Fig. 4c).

The concordance between the above filtering criteria can be represented with bar plots

(Fig. 5a). The above filtering criteria showed high degree of concordance. Indeed

transcriptome-based measured identified the same cells as problematic (Fig. 5a, right).

As expected, the vast majority of sites classified as empty were characterized by ex-

tremely few reads or UMI transcripts, and high percentages of ERCC transcripts. On

the other hand, approximately half of the site with extremely high dead stain intensities

and around 75% of the sites with multiple cells were not pointed out as problematic

by any other transcriptome-based measure. This reflects the effectiveness of combining

image and gene expression measurements to perform an optimal cell filtering procedure.

The above filtering criteria were combined, and any cell with at least one problematic

measurement was removed from the analysis (Fig. 5b).

3.2 Gene filtering

The aim of gene filtering procedures is to identify and remove from the analysis lowly

expressed or poorly annotated genes. This pre-processing step was performed separately

for the AS and not-AS gene expression quantifications.

The scatter plots (Fig. 6a) represents the relationship between gene expression level

and dropout rate, where these two measures were computed separately with respect to

the not-AS and AS UMI count matrices (top and bottom panels, respectively) across

all XX cells and time points. As expected, the gene-wise dropout rate decreases as the

average gene expression increases. Since the presence of lowly expressed genes might

bias downstream analyses such as the data normalization, cell clustering and differential

expression analyses, we kept only those genes which were detected (UMI > 0) by at least

20% of cells throughout all sequenced time points. Notably, given the different detection

rate and genes which could be investigated by the not-AS and AS quantifications, this

filtering procedure was performed separately for the two analyses.

The expression of some genes detected across a large set of cells might however be biased

by their poor SNP annotations. Indeed the scatter plots (Fig. 6b) show that a subset

of the genes detected by more that 20% of the cells, hence passing the previous filtering

step, showed expression bias towards a single allele as more than 90% of their AS counts

were derived by a single allele. These genes, 95 autosomal and 4 X-linked genes, were
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Figure 6: (a) Scatter plots showing the relationship between the gene-wise average
normalized expression (x-axis) and the fraction of zero UMI counts (y-axis) for the not-
AS and AS expression quantifications, separately for X-linked and autosomal genes.
The shaded area represents the genes removed from the downstream analyses. (b)
Scatter plots showing the gene-wise relationship between the fraction of UMI counts
between the two alleles (x-axis) and the fraction of zero UMI counts (y-axis). The
shaded area identifies genes with putatively wrong SNP annotation, which have been
removed from downstream analyses. (c) Table summarizing the number of genes which
have been removed from the analysis with respect to the not-AS and AS quantifications.
The number of X-linked genes is represented in brackets.

deemed to have a low quality SNP annotation and removed from both the not-AS and

AS downstream analyses.

The table (Fig. 6c) shows that these two gene filtering steps resulted in 9276 and 5018

with high detection rate and no allelic skewing which have been included in downstream

not-AS and AS analyses. This filtering procedure highlights that a larger percentage of

genes which could be quantified with allele-specificity showed extremely low detection

rates with respect to the notAS quantification, respectively around 80% and 70% of the

detected genes. This difference is even more pronounced on the X chromosome indeed

the genes passing the filtering step at the notAS level were more than double relative to

the ones with AS quantifications, respectively 374 and 159.

4 Cell clustering

The complex transcriptomic profiles of single cells measured by the expression of thou-

sands of genes can be visually inspected through dimensionality reduction algorithms

which project every cell into a lower dimensional space, where the closer the cells the

more similar their transcriptomes. Furthermore the expression of the most variable genes

can be modeled to define a data-driven ordering of cells, which is commonly referred to
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Figure 7: (a) UMAP embedding of XX and XO cells colored with respect to their
sequencing time point (left). UMAP embedding with cells colored by notAS percentage
of X-linked reads and Xist normalized expression levels (right). (b) UMAP embedding
of XX cells where the arrows represent the predicted transcriptome change estimated
through RNA velocity analysis (left). UMAP embedding with cells colored according to
markers’ normalized gene expression levels (right). (c) Pseudotime estimation based on
the 500 most variable genes across XX cells, with individual cells colored by sequencing
time point. The black line represents the principal graph describing the pseudotime
trajectory of the projected cells as computed by Monocole2 DDRTree method (left).
Scatter plot representing Xist normalized expression levels and scaled pseudotime for
each XX cell colored by sequencing time point.

as pseudotime. In this section we projected and visualized each cell through the Uni-

form Manifold Approximation and Projection (UMAP) [121] dimensionality reduction
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procedure aiming to explore the similarity of their transcriptomes while inspecting the

expression of the X chromosome together with some known Xist regulators. Further-

more we used Moncole DDRTree algorithm [151] to estimate pseudotime measures and

to verify if it can recapitulate the ongoing cellular differentiation and XCI processes.

In a first step (Fig. 7a, left) UMAP dimensionality reduction was applied to compare

the transcriptomic profiles of XX and XO cells throughout cellular differentiation. The

second dimension of the UMAP embedding clearly separates the undifferentiated cells

from the ones undergoing induced cellular differentiation, suggesting that the change

of culture condition induced a major change in the transcriptomic profiles. On the

other hand the first dimension clusters cells based on their sequencing time point. This

UMAP embedding shows that XX and XO cells cluster separately at day 0 and 1 of

differentiation, while the two cell lines group together at later time points. This result

confirms the previously observed difference between the transcriptomic regulation of

female mESCs characterized by one and two X chromosomes in undifferentiated cells and

right upon differentiation, where the presence of a second X chromosome considerably

affects the regulation of the pluripotency network leading to delayed exit from the ground

pluripotency state [171]. On the other hand at later stages of differentiation the two

populations show similar transcriptomic profiles, indeed the XX and XO cells tend to

cluster together after three days of induced cellular differentiation.

When coloring every single cell (Fig. 7a, right) by the percentage of X-linked UMI

counts, we can observe the expected basal difference in X-linked expression between

XX and XO undifferentiated mESCs. Notably while a subset of XX cells decreases

the mRNA contribution of the X chromosome, others increase its expression throughout

differentiation. This difference is clarified when visualizing the the normalized expression

of the Xist gene. Indeed the former set of cells express Xist which induces the initiation

of the X-silencing process (XCI), while the latter fail the gene’s up-regulation which leads

to an increase of X-linked expression (X up-regulation). This mechanism was previously

observed in differentiating male mESCs and in male pre/post-implantation embryos in

vivo [16, 54, 99, 103, 106, 122, 197]. On the other hand almost all the XO cells, with few

exceptions, do not express Xist and also undergo X up-regulation over time. Consistently

with this observation the XX cells clustering more closely to their XO counterparts are

the ones which reduced the global expression of the X chromosome, while the XX cells

that have not completed the XCI process have a more distal cell clustering.

The UMAP method was then applied only to XX cells similarly to the previous analysis,

and the UMAP embedding was combined with the gene expression predictions of the

RNA velocity method [98] (Fig. 7b, left). This method fits gene-wise linear models to

the spliced and unspliced not-AS gene expression matrices in order to predict future

changes in mature mRNA gene expression. The RNA velocity model was fitted for 3433

autosomal and 174 X-linked genes, for which enough spliced and unspliced transcripts

were available to fit a linear model and predict the future number of mRNA transcribed
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molecules (Eq. 17, Eq. 18). The vector field gene expression predictions of the RNA

velocity method (arrows) suggest that XX cells move along a single differentiation tra-

jectory. This was in accordance with the expression of some marker genes (Fig. 7b,

right), such as the down-regulation of naive pluripotency factors (Nanog and Esrrb)

and up-regulation of Xist and Dnmt3a, a marker of primed pluripotency [130, 131, 171].

Some levels of expression heterogeneity is observed across the XX cells sequenced at the

same stage of cellular differentiation. Notably this embedding highlights an intermedi-

ate group of XX cells between the day 1 and day 2 clusters, which is composed by cells

sequenced after 2-4 days of induced differentiation. These cells are characterized by high

expression of the pluripotency markers and low expression of Dnmt3a and Xist.

The pseudotime analysis of XX cells also revealed that undifferentiated cells clustered

distantly from cells undergoing differentiation. The pseudotime of each sequenced XX

cell was measured based on the expression of the 500 most variable genes over time

through the Monocle2 DDRTree method (Eq. 14). A scaled measure of pseudotime

was then obtained dividing the observed pseudotime estimates by the maximum value

across all XX cells (Eq. 15). However, the estimated pseudotime measurements were

highly correlated with the sequencing time point and failed to capture transcriptomic

differences associated to Xist expression levels.

This analysis reveals a considerable difference in the transcriptomic profiles of XX and

XO mESCs which reduces over time as the result of the ongoing cellular differentiation

and X-silencing processes. Our data show that while Xist expressing cells decrease the X-

linked global expression, the XX cells failing the gene’s up-regulation increase X-linked

expression over time. Notably both the Xist up-regulation and X-silencing processes

seem to be very asynchronous throughout cellular differentiation in XX mESCs. Fi-

nally, the pseudotime measures estimated for XX cells fails to explain the difference

in expression of the Xist gene, but rather seems to be driven by the global differences

between sequencing time points.

5 Xist and X chromosome expression

This section aims to further explore the association between Xist up-regulation and XCI

process which was described in the previous section. Specifically we are going to inspect

the transcriptional regulation of the X chromosome in Xist positive or negative XX and

XO mESCs with both not-AS and AS resolutions. Where the latter approach enables us

to further characterize the Xist expressing XX mESCs, and to explore the two processes

separately for the subpopulations silencing the B6 or the Cast alleles.
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Figure 8: (a) Violin plots representing Xist not-AS UMI and CPM expression levels,
and percentage of Xist+ cells in XX and XO mESCs throughout sequencing time points.
Every point in the violin plot represents Xist expression of each single cell. (b) Box
plots of bootstrapped X:A ratios grouped by cell line and Xist classification, throughout
developmental time.

5.1 not-AS gene expression

Following data filtering and normalization, every cell was classified based on its not-AS

UMI expression of the Xist gene. Every XX cell which detected Xist with more than

5 not-AS UMI counts was classified as Xist+, the ones not detecting Xist expression as

Xist−, and the remaining cells (0 < yXist,j ≤ 5) as Xist-low.

The barplots (Fig. 8a) show that none of the XO and only 2% of the XX undifferentiated

cells detected Xist expression with more than 5 not-AS UMI counts. The percentage

of Xist+ XX cells sharply increased upon cellular differentiation, with Xist reaching its

peak in expression after two days of induced cellular differentiation and decreasing at

later time points. Notably Xist expression levels were very heterogeneous across the

XX cells sequenced at the same time point. Indeed Xist UMI expression varied from

around 10 molecules for XX cells sequenced at day 1, to more than 100 molecules at

later stages of cellular differentiation. A much lower fraction of XO cells were classified

as Xist+, and their Xist expression levels were considerably smaller compared to their

XX counterparts. Although an unexpectedly high percentage of XO cells were Xist+

at day 1, the vast majority of these cells transcribed less than 10 Xist molecules across

all sequencing time points. The detection rate for this experiment was estimated to be

around 30%, given that the number of mRNAs present in an ES cell has been estimated

to be around 400,000 molecules [28], 120,000 of which were detected per cell (Fig. 4b).

The actual mean copy number of the Xist RNA in Xist-expressing cells would thus

increase from 79 at day 1 to 243-314 at the later time points, which is in good agreement

with a previous estimate of around 300 Xist transcribed molecules per cell [185].
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Aiming to investigate the XCI process using data with not-AS resolution, we compared

the expression of the X chromosomes relative to the autosomes (Fig. 8b). A robust

estimate for this measure, commonly referred to as the X:A ratio (Eq. 10), was obtained

using a bootstrapping procedure similarly to a previous study [16]. This approach

compares the average UMI expression of autosomal and X-linked genes while accounting

for the considerably different number of genes in these two sets (8902 and 374 genes,

respectively). This analysis reveals that Xist+ XX cells initiate the XCI process, down-

regulating the expression of X-linked genes relative to their autosomal counterparts,

only after two days of induced cellular differentiation. As expected, Xist+ XX cells

progressively reduce the expression of the X chromosome at later time points as a result

of the ongoing XCI process (Fig. 8b, Appendix 1a). Indeed the median X:A ratio of 1.26

across all XX undifferentiated cells significantly reduced to 1.02 at day 4 in Xist+ XX

cells (Mann-Whitney U two-sided test: p-value < 2.2 ·10−16). Importantly, the observed

down-regulation of X-linked genes is not affected by the choice of the UMI threshold

used to classify Xist+ XX cells (Appendix 1b).

On the other hand, the median X:A ratio of Xist− XX cells significantly increased to

1.57 after 4 days of cellular differentiation compared to all XX undifferentiated cells

(Mann-Whitney U two-sided test: p-value < 1.2 · 10−13). Similarly, XO cells increased

the expression of the X chromosome over time, with the median X:A ratio increasing

from 0.68 in undifferentiated cells to 0.89 after 4 days of differentiation (Mann-Whitney

U two-sided test: p-value < 2.2 · 10−16). This result confirms the observation of the

previous section and the significant change in X-linked expression of Xist− XX cells

and XO cells throughout differentiation. Specifically X up-regulation is a mechanism

which is thought to have evolved to compensate for the loss of the genes located on the

Y chromosome as stated by Ohno’s hypothesis [140], although this is still controversial

[55, 103, 200]. Finally, the XX cells characterized by low levels of Xist expression (Xist

low) are characterized by very heterogeneous X:A ratio values throughout differentiation.

This suggests that the few Xist molecules transcribed on the Xist expressing allele might

not be sufficient to initiate the XCI process while the Xist negative allele successfully

undergoes X up-regulation over time. This combined effect might explain the similar

transciptional behavior observed in Xist low and Xist− XX cells.

These results confirm the conclusions of several previous studies [20, 42, 201] stating

that Xist up-regulation precedes and is necessary for the initiation of the X chromosome

inactivation process. Indeed while the majority of XX cells express Xist already after

one day of induced cellular differentiation, the XCI process initiates from day 2 onward.

Furthermore, only Xist expressing XX cells undergo X inactivation, while Xist− XX

cells and XO cells upregulate the expression of X-linked genes over time.
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Figure 9: (a) Xist AS UMI counts associated to the B6 allele (x-axis) and Cast allele
(y-axis) for each individual cell colored by Xist AS classification (left), and percentage
of cells assigned to each Xist AS class (right) throughout developmental time and cell
lines. (b) Violin plot comparing Xist allelic expression levels from the B6 (green) and
Cast chromosomes (orange) in Xist-MA XX cells. For each time point p-values of a
Mann-Whitney U two-sided test are shown. (c) Ratios between inactive and active X
chromosome expression (excluding Xist) for each Xist-MA XX cell. For each time point
p-values of a Mann-Whitney U two-sided test are shown. (d) Scatter plot comparing
the the normalized expression of Xist (left: full gene body, right: 5’ peak locus) of bulk
RNA-Sequencing data of the TX1072 mESCs collected with 3 replicate samples per
time point. For each time point the average value (horizontal bar) and the p-values of
a two-sided unpaired Student’s T-test are shown.

5.2 Allele-specific (AS) gene expression

Given the stochastic nature of Xist up-regulation from one or the other parental X

chromosomes, allelic resolution is crucial to investigate XX mESCs undergoing Xist up-

regulation and random XCI process in their endogenous context. In this subsection we
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are going to further characterize Xist expressing XX mESCs based on the expression of

the gene on the paternal and maternal alleles.

The XX cells which did not express Xist at the not-AS level (namely, yXist,j = 0)

were classified as Undetected, while the ones with up to 5 AS UMI counts (namely,

0 < yB6
Xist,j + yCast

Xist,j ≤ 5) as Low. Any XX cell with more than 5 Xist AS UMI counts

was classified as: Monoallelic (Xist-MA) if all counts were assigned to a single allele,

Skewed if more than 80% of Xist counts mapped to one allele, and Biallelic (BA) if each

allele accounted for at least 20% of all Xist AS UMI counts (Eq. 9). The scatter plot

shows the number of Xist UMI transcripts assigned to either parental alleles for each

XX and XO cell throughout cellular differentiation, where the classification procedure

described above is summarized by the area plots (Fig. 9a). As previously observed by

the not-AS gene quantification, the vast majority of XO cells transcribed very few or no

Xist molecules throughout developmental time. After one day of cellular differentiation

around 9% of XO cells monoallelically expressed Xist from the B6 allele, while almost

no Xist-MA cell was detected at later time points. Unexpectedly a small fraction of XO

cells showed Xist expression from the Cast allele, which should not be detected in this

cell line lacking the Castaneous X chromosome. This unexpected result was likely caused

by sequencing errors at Xist ’s SNP loci which resulted in the erroneous assignment of

these transcripts to the Cast allele.

As showed by the not-AS results, the XX cells start transcribing Xist already after one

day of induced cellular differentiation and reach the highest fraction of Xist positive

cells (Xist AS UMI > 5) at day 2. Notably, Xist AS quantification highlighted transient

biallelic Xist expression at the early stages of cellular differentiation. Indeed at day 1

and 2 at least half of Xist positive XX cells expressed the gene on both alleles, which

reached its peak after two days of differentiation with 27% and 19% of all XX cells

classified as Biallelic or Skewed, respectively. Xist biallelic gene expression was then

resolved to a monoallelic fashion at later time points of differentiation. Indeed at day 4,

88% of Xist positive cells transcribed Xist on a single allele. Importantly, the observed

transient biallelic Xist expression was not affected by the choice of the UMI threshold

used to identify Xist positive cells (Appendix 1c). Furthermore, the same trend was

highlighted by RNA-FISH at day 2,3 and 4 of cellular differentiation (Appendix 1d). The

image classification of 100 cells across three biological replicates per time point indeed

showed that on average 49% of XX cells exhibited two Xist RNA clouds at day 2, which

reduced to 12% and 5% at days 3 and 4 respectively. Importantly, the transient biallelic

expression of Xist has been recently pointed out by in vivo experiments of random XCI

[128, 181].

After four days of differentiation a larger fraction of cells monoallelically expressed Xist

on the B6 allele than on the Cast allele (29% and 16%, respectively). The observed pref-

erential inactivation of the B6 allele is in agreement with previous findings in B6xCast
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F1 hybrid cells, which associated this effect to differing X-controlling elements (Xce)

[34, 149].

The B6 allele showed significantly higher Xist expression levels compared to the Cast

allele starting from day 2 of cellular differentiation (Fig. 9b). This observation is in

agreement with the prediction of the stochastic model of XCI onset, where the faster

Xist up-regulation from one allele results in preferential inactivation of that chromosome

[128]. However the higher expression of Xist on the B6 allele was not confirmed by bulk

RNA-sequencing of TX1072 mESC triplicate samples collected in parallel to the single

cell experiment (Fig. 9d). Indeed when comparing the normalized expression of Xist on

the two alleles, the unpaired Student’s T-tests show no evidence of higher expression on

the B6 allele. These results are consistent both when quantifying the gene’s expression

levels based on all its transcripts, and also when the quantification is restricted to the

transcripts aligned to its 5’-end peak. These results suggest a potential bias in the single

cell protocol.

Finally, when comparing the overall X-linked gene expression levels (excluding Xist)

on the Xist-expressing (Xi) and Xist-negative (Xa) alleles for the XX cells classified

as monoallelically expressing Xist (Eq. 11), the Cast X chromosome appeared to be

silenced significantly faster than the B6 allele (Fig. 9c).

Overall, the allele-specific Xist expression quantification reveals a transient biallelic Xist

expression which is then resolved to a monoallelic state, with the preferential inactivation

of the B6 chromosome, and the faster silencing of the Cast allele.

5.3 Silencing kinetics

Aiming to explore the allele-specific kinetics which characterize the Xist up-regulation

and XCI processes, we computed for each XX mESC the fraction of B6 transcripts for

the Xist gene (Xist ratio) and for the X chromosome (X chromosome ratio). Where the

latter ratio was computed upon excluding the Xist transcripts.

The violin plots (Fig. 10a) show the distribution of the Xist and X chromosome ratios

across all XX cells, separately for each Xist AS class and sequencing time point. Namely,

values of 0.5 reflect equal expression levels from the two alleles, while ratios around the

values of 1 and 0 highlight monoallelic expression. The X chromosome ratio portrays

the XCI trend which was already observed in the previous section. Indeed, Xist− cells

show nearly equal expression of the two X chromosomes throughout developmental time.

On the other hand, the distribution of the X chromosome ratio in Xist+ cells broadens

over time starting at day 2, defining two separate populations at day 4. These two

represent the subset of Xist+ cells which have almost completely silenced the Cast and

the B6 X chromosomes, respectively identified by ratios approaching values of 1 and 0. A

fraction of Xist low cells shows much lower X-silencing levels, while the majority of them
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Figure 10: (a) Violin plots showing the distribution of the B6 allelic expression ratio
for the: entire X chromosome excluding Xist (left) and Xist gene (right), coloring each
XX cell by Xist AS classification. Scatter plot showing the observed ratios for each
Xist+ XX cells throughout developmental time (bottom). (b) Box plot showing the
not-AS bootstrapped X:A expression ratios, grouping XX cells by Xist AS classification.
(c) Box plot showing the AS bootstrapped X:A expression ratios, grouping XX cells by
Xist AS classification

maintain both X chromosomes equally active throughout time. As previously observed

(Fig. 9a), the distribution of the Xist ratio highlights that some Xist+ cells undergo

transient biallelic gene expression up to day 2 of differentiation, while a subset of XX

cells monoallelically express Xist already after a single day of differentiation. The Xist

and X chromosome allelic ratios observed for each Xist+ cell can be represented through

a scatter plot. This plot reveals that Xist monoallelic expression precedes the silencing of

the Xist-expressing X chromosome, which reflects Xist-induced chromosome-wide gene

silencing. Moreover, transient biallelic Xist expression is resolved to a monoallelic state

around day 2 of cellular differentiation, and Xist biallelic cells show similar expression

levels of the two X chromosomes.
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Notably the extent of biallelic X-silencing can not be inspected using the above allele-

specific ratios, however it can be investigated through the not-AS and allele-specific X:A

ratios (Eq. 10). The not-AS X:A ratios (Fig. 10b) show that X-linked gene silencing of

Xist biallelic cells was even more pronounced than the one observed for Xist monoallelic

cells (p=0.45/0.01/0.08 at day 1/2/3, Mann-Whitney U two-sided test). Moreover, the

AS X:A ratios show that Xist biallelic XX cells reduce X-linked gene expression on both

alleles (Fig. 10c).

In summary, the allele-specific analyses quantitatively assess the relationship between

Xist expression and global gene silencing. These results suggest that Xist expression

is necessary for X-linked gene silencing, which started around two days after Xist was

initially upregulated. Upon Xist monoallelic expression, the differentiating XX cells

silence the Xist-expressing X chromosome. On the other hand Xist biallelic expression

induces the silencing of both X chromosomes with similar kinetics. Xist biallelic XX cells

then resolve Xist expression to a monoallelic state, and undergo Xist-induced X-silencing

in cis. Notably the AS X:A ratios of Xist Undetected cells do not show any significant

up-regulation over time, previously observed at not-AS resolution. The discrepancy

between these two might arise from the reduced number of X-linked genes which could

be quantified with allelic resolution.

5.4 RNA-velocity predicted X-linked expression

In order to apply the concept of RNA velocity, for every XX cell and annotated gene the

number of spliced and unspliced transcripts was quantified as the amount of uniquely

aligned reads with a unique UMI barcode sequence overlapping the gene’s exonic and

intronic regions, respectively.

The scatter plots (Fig. 11a) represent the total number of X-linked spliced and unspliced

molecules which could be assigned to either parental alleles for each cell throughout

differentiation (159 X-linked genes). Where every XX cell, which is represented by a

point in the plot, is colored according to its Xist AS classification. Notably, the expected

XCI trend was observed in both spliced and unspliced transcripts’ quantification. Indeed

Xist monoallelic cells decreased the number of X-linked molecules transcribed by the

Xist-expressing allele over time, while Xist negative and biallelic cells showed similar

expression levels of the two X chromosomes. Observing the expected XCI trend in both

spliced and unspliced quantifications motivated the application of the RNA velocity

method to predict the future not-AS spliced X-linked expression of each XX cell (Eq.

17).

The number of predicted not-AS X-linked spliced molecules estimated by the RNA

velocity method were then visualized within a lower dimensional space which separates

the cells silencing the B6 and the Cast alleles (Fig. 11b). Such cellular embedding was
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Figure 11: (a) Scatter plots showing spliced (top) and unspliced (bottom) reads
mapping to the X chromosome on the B6 and Cast alleles. XX cells are colored by
Xist AS classification. (b) XX cells embedding on the first two principal components
of the allelic expression ratio matrix of X-linked genes. Arrows indicate the predicted
change in spliced transcripts as estimated by RNA velocity method. (c) Box plot of
the log-ratio between RNA-velocity estimates of current and predicted normalized X-
chromosomal gene expression (ΔX), grouping XX cells by Xist AS classification

computed applying the Principal Component Analysis (PCA) method to the matrix of

X-linked B6 ratios. Every XX cell sequenced throughout developmental time was then

projected onto the first two principal components and colored by its X chromosome

ratio value. Where the position of each cell in this embedding is defined by its X-linked

B6 ratio, while its future state (arrow) was predicted based on the vector of not-AS

velocities estimated for the same X-linked genes (Eq. 17, Eq. 20, Appendix 1e). The

first principal component, which accounts for 8.6% of all the variability in the X-linked

B6 ratio matrix, clearly separates the XX cells silencing the B6 (left) or Cast (right)

X chromosomes from the cells which have not yet initiated the XCI process (center).

Notably, the latter show almost no predicted change in their X-linked B6 ratios while

the former are predicted to proceed towards the completion of the XCI process.

The RNA-velocity predicted states (arrows) can be explained by the fact that the gene-

wise X-linked ratios between spliced and unspliced transcripts are in steady state for

the cells that equally express both X chromosomes (PC1 = 0), since these cells have

not yet initiated to down-regulate their X-linked unspliced transcripts. Therefore both
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their predicted X-linked gene expression and X-linked B6 ratio levels will be similar

to the observed ones. On the other hand, the velocities estimated for the cells which

have already initiated the XCI process account for the observed under-representation of

X-linked unspliced transcripts, which results in predicting a future down-regulation of

X-linked transcripts. Specifically, the cells characterized by more extreme X chromosome

ratios are likely down-regulating the unspliced transcripts of multiple genes, which results

in fewer predicted X-linked transcripts and more extreme predicted ratios compared to

the cells with observed X chromosome ratios closer to 0.5. This explains why the XX

cells showing higher extent of X-silencing are also predicted to proceed faster towards

the state corresponding to the completion of the XCI process.

The RNA velocity gene-wise linear models were then used to estimate the change in

X-linked gene expression for each XX cell as the ratio between the measured and future

predicted X chromosome gene expression (Eq. 21), which is denoted as ΔX (Fig. 11c).

Where this ratio is expected to increase upon initiation of the XCI process, and decrease

upon X up-regulation. Accordingly, both Xist monoallelic and biallelic cells result in

slightly higher ΔX values compared to Xist negative cells after two days of induced

cellular differentiation, when XCI is first initiated.

These results show that the expected AS decrease in X-linked reads could also be ob-

served in both spliced and unspliced gene expression quantifications, which motivates

the use of the RNA velocity method to predict the future expression of X-linked reads.

Accordingly, the predicted ΔX values show higher values in Xist Monoallelic and Bial-

lelic cells compared to Xist Undetected cells at day 2, which corresponds to the time

point when X-silencing is first observed. This suggests the potential use of this measure

to identify putative regulators of Xist and XCI.

6 Identification of putative Xist and XCI regulators

The aim of this section is to identify a set of genes which regulates Xist expression or

plays a role in the initiation of the XCI process. The expression levels of such genes

are expected to be associated to variations in Xist or overall X-linked expression levels.

In these analyses, Xist expression was quantified by Xist not-AS CPM values (Fig.

8a) while the changes in X chromosome expression levels were estimated by the RNA-

velocity predicted change in X-linked gene expression, which is referred to as ΔX (Fig.

11c).

Based on the observed Xist CPM or ΔX values across all XX cells throughout differen-

tiation, a set of putative regulators was identified using two different approaches relying

on differential expression and correlation analyses. On one hand, putative regulators

were identified through MAST differential expression (DE) analysis method comparing

the gene-wise expression levels of XX cells characterized by high and low Xist CPM or
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ΔX values. On the other hand, the Spearman’s correlation coefficient between every

gene’s CPM expression values and Xist CPM or ΔX values was computed, and a puta-

tive set of regulators was identified as the subset of genes whose correlation coefficients

were significantly different from zero.

Although these analyses were performed separately for each sequencing time point, the

identification of such regulators was restricted to days 1 and 2 of differentiation, since

these represents the earliest stages of Xist up-regulation and XCI, respectively (Fig. 8).

6.1 Identify regulators based on Xist expression

In order to perform MAST DE analysis, the XX cells were first clustered into 7 groups

applying the K-means clustering algorithm (K = 7) to Xist not-AS CPM expression

levels observed across all time points. The cells assigned to the top three K-means

classes were classified as Xist-high cells, the ones assigned to the bottom three groups

as Xist-low, while the ones assigned to the intermediate Xist expression class (K-4)

were excluded from the DE analyses (Fig. 12a). The optimal value for K was chosen

to minimize the within-cluster sum of squares value, while ensuring that at least 50

cells were assigned to the Xist-high and Xist-low groups at each time point throughout

cellular differentiation.

MAST DE analysis method was then performed separately for each time point with

at least 10 XX cells assigned to the Xist-high and Xist-low groups, testing for each

gene the significance of the difference in expression between these two groups (H0 :

log2 FC = 0). Since none of the undifferentiated XX cells was assigned to the Xist-

high class, DE analysis was only performed for cells undergoing differentiation. The

number of autosomal and X-linked genes deemed to be differentially expressed between

the Xist-high and Xist-low cells at each time point of differentiation (namely, with a

Benjamini-Hochberg adjusted p-value: FDR ≤ 0.05) are summarized by the barplots

(Fig. 12b). The red and blue bars represent the number of differentially expressed

genes (DEGs) showing significantly higher expression in the Xist-high and Xist-low

groups, respectively. After one day of induced cellular differentiation only two autosomal

genes were deemed as differentially expressed between the two groups of cells, while

the number of DEGs sharply increased over time presumably due to global X-dosage

effects such as modulation of the differentiation-promoting MAPK signalling pathway

and DNA hypomethylation [171, 180, 205]. As expected, the number of X-linked genes

which significantly down-regulated their expression in the Xist-high group increased

throughout differentiation as a result of the ongoing XCI process of Xist expressing

cells. Since the up-regulation of Xist leads to the down-regulation of X-linked genes,

putative regulators of Xist and the XCI process were identified restricting the analysis

to autosomal DEGs and up-regulated X-linked DEGs identified at the earliest stages of

cellular differentiation. On the other hand, significantly down-regulated X-linked genes
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Figure 12: (a) Xist not-AS CPM K-means (K=7) clustering at each sequencing time
point. (b) Number of significantly differentially expressed genes (DEG: FDR ≤ 0.05)
between Xist-high and Xist-low XX cells throughout cellular differentiation. (c) Ex-
pression of DEGs (rows) with absolute fold change above 1.5 at day 1 (top) and day
2 (bottom) in single cells (columns). X-linked genes with Xist-low>Xist-high are ex-
cluded. (d) Number of genes with CPM expression significantly correlated (FDR ≤
0.05) to Xist CPM expression. (e) Top 20 genes showing highest significantly positive
(left) or negative (right) correlations to Xist CPM expression at day 1 or 2 (exclud-
ing pseudogenes), ordered by decreasing absolute correlation coefficient. Size and color
indicate the correlation coefficient as indicated. White dots represent significant corre-
lations (FDR ≤ 0.05).
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and pseudogenes were not deemed as putative regulators since their association to Xist

might be confounded with the overall XCI process.

The heatmaps show the cell-wise CPM expression of every autosomal or up-regulated

X-linked DEG with an absolute fold change greater than 1.5, which were identified

for XX cells after 1 and 2 days of differentiation (Fig. 12c). Where cells (columns) are

grouped by Xist K-means classification, while the genes (rows) are ordered by decreasing

fold change. After one day of induced cellular differentiation, the known Xist regulator

Nanog (log2FC = -2.15) was significantly down-regulated in the Xist-high group, while

the lncRNA Snhg11 (log2FC = 1.81) was deemed as a putative Xist activator. After

2 days of induced cellular differentiation, we identified a number of previously reported

pluripotency factors implicated in Xist repression (such as Nanog : log2FC = -2.23;

Klf2 : log2FC = -1.93; Prdm14 : log2FC = -1.22) together with other pluripotency-

associated factors (such as Esrrb: log2FC = -2.86; Fbxo15 : log2FC = -1.91; Tcl1 :

log2FC = -1.48) [120, 130, 143] which were significantly down-regulated in the Xist-high

group, hence were deemed to be putative Xist repressors. On the other hand, a number

of genes involved in transcriptional regulation and signalling were up-regulated in the

Xist-high group, hence were deemed to be putative Xist activators. These included some

transcription factors (such as Wt1 : log2FC = 1.74; Gm15446 : log2FC = 1.57), DNA

methyltransferases and splicing factors (such as Zcrb1 : log2FC = 1.49; Dnmt3b: log2FC

= 1.15; Dnmt3a: log2FC = 0.98) and genes modulating the MAPK and TGF-β/Smad

signalling pathways (such as Gadd45g : log2FC = 1.51; Skil : log2FC = 1.11), which were

reported in several previous studies [61, 78, 90, 170, 196]. Interestingly, the X-linked

gene Pim2 was found to be significantly up-regulated in the Xist-high group starting at

day 2 of differentiation (log2FC = 2.41/1.32/2.06 at day 2/3/4 respectively). This gene

encodes an oncogenic kinase which cooperates with the Myc transcription factor[123]

which was never reported to play a role in the XCI process, making it an interesting

candidate for future studies. For each sequencing time point the gene-wise average CPM

expression level and log2FCs between the two groups are shown through scatter plots

(Appendix 2a) with significantly up- and down-regulated genes (FDR ≤ 0.05) colored

in red and blue, respectively.

Similarly to a previous work [95], putative Xist regulators were identified for each time

point throughout cellular differentiation testing if the Spearman’s correlation coefficient

(namely, ρ) between Xist CPM expression and the normalized expression of every other

detected gene was significantly different from zero, H0 : ρ = 0. In concordance with

the previous DE analyses, the number of significantly correlated genes (namely, with a

Benjamini-Hochberg adjusted p-value FDR ≤ 0.05) increased over time and most of the

significant X-linked genes were negatively correlated to Xist expression as a result of the

ongoing Xist-mediated XCI process (Fig. 12d). The identification of Xist regulators was

again limited to XX cells sequenced after one and two days of induced cellular differen-

tiation, excluding negatively correlated X-linked genes and pseudogenes. The results of
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these analyses are summarized by the dot plot (Fig. 12e), which highlights the correla-

tion coefficients over time for the 20 genes resulting in the highest significantly positive

or negative correlation coefficients to Xist CPM expression at day 1 or day 2. The DE

and correlation analyses were highly concordant. Indeed, at day 1 of differentiation the

correlation analysis identified Snhg11 (ρ= 0.26) as a putative Xist activator and Nanog

(ρ= -0.27) as its repressor. In addition to these, the correlation analysis also highlighted

the cell stem marker gene Jam2 (ρ= -0.25) as a negative Xist regulator, and the lncRNA

Snhg14 (ρ= 0.245) as a putative Xist activator at day 1 [169]. Also the results for day

2 of cellular differentiation were highly concordant to the DE analysis results for the

same time point. Indeed also this analysis identified Dnmt3a (ρ= 0.36), Dnmt3b (ρ=

0.34) and Pim2 (ρ= 0.34) as Xist putative activators, in addition to the transcription

factor Zfp644 (ρ= 0.26) and signalling genes Gng3 (ρ= 0.28), Dusp6 (ρ= 0.26) and Trio

(ρ= 0.25). Furthermore, Esrrb (ρ= -0.30), Klf2 (ρ= -0.32) and Nanog (ρ= -0.25) were

again deemed as Xist putative repressors, in addition to other pluripotency factors such

as Dppa5a (ρ= -0.28), Dppa3 (ρ= -0.28), the Wnt signalling pathway regulator Vangl1

(ρ= -0.28) and the E3 ubiquitin ligase Trim25 (ρ= -0.26).

6.2 Identify regulators based on predicted variation in X chromosome

expression

A similar analysis was performed based on the ratio between the current and the RNA-

velocity predicted overall X-linked expression, namely ΔX. Since this ratio varies greatly

across developmental time, the subset of XX cells characterized by high and low ΔX

values were identified applying the K-means clustering algorithm (K = 3) separately

for each sequencing time point (Fig. 13a). The cells assigned to the top K-means class

were classified as ΔX-high cells (red), the ones assigned to the bottom group as ΔX-low

(blue), while the remaining cells (grey) were excluded from the following DE analyses.

MAST DE analysis method was then performed separately for each time point through-

out cellular differentiation, comparing the gene-wise expression difference between the

ΔX-high and ΔX-low XX cells (H0 : log2 FC = 0). Similarly to the previous section, the

number of autosomal and X-linked genes deemed to be differentially expressed between

the two groups at each time point throughout differentiation (namely, with a Benjamini-

Hochberg adjusted p-value: FDR ≤ 0.05) are summarized by the barplots (Fig. 13b).

After one day of induced cellular differentiation only two X-linked genes were deemed

as differentially expressed between the two groups of cells, while the number of DEGs

sharply increased at day 2 following the initiation of the XCI process. Similarly to

the previous analysis, putative regulators were identified restricting the analysis to the

earliest time points of differentiation while excluding pseudogenes and down-regulated

X-linked genes, whose difference in expression level might be the result and not the cause

of the XCI process.
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Figure 13: (a) RNA-velocity predicted change in X-linked gene expression (ΔX) K-
means (K=3) classification at each time point. (b) Number of significantly differentially
expressed genes (DEG: FDR≤ 0.05) betweenΔX-high andΔX-low XX cells throughout
cellular differentiation. (c) Expression of genes (rows) with FDR ≤ 0.01 and absolute
fold change above 1.5 at day 1 (top) and day 2 (bottom) in single cells (columns).
X-linked genes with ΔX-low>ΔX-high are excluded. (d) Number of genes with CPM
expression significantly correlated (FDR ≤ 0.05) to ΔX value. (e) Top 20 genes showing
highest significantly positive (left) or negative (right) correlations to ΔX value at day
1 or 2 ordered by decreasing absolute correlation coefficient, excluding pseudogenes.
Size and color indicate the correlation coefficient as indicated. White dots represent
significant correlations.
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The heatmaps (Fig. 13c) show the cell-wise CPM expression of every autosomal or

up-regulated X-linked gene with BH-adjusted pvalue (FDR) smaller than 0.01 and an

absolute fold change greater than 1.5. The cells (columns) are grouped by ΔX K-means

classification, while the genes (rows) are ordered by decreasing fold change. After one

day of induced cellular differentiation the X-linked transcription factor Rhox5 (log2FC

= 1.53) whose overexpression was previously shown to prevent the exit from mESCs’

pluripotent state [16, 41, 63], and the protein coding gene Renbp (log2FC = 1.65) were

significantly up-regulated by the ΔX-high cells. Similarly to the previous analysis, at

day 2 of cellular differentiation the ΔX-high cells significantly down-regulated a number

of known plutipotency-associated genes (such as Fbxo15 : log2FC = -1.94; Esrrb: log2FC

= -1.66; Nanog : log2FC = -1.31; Prdm14 : log2FC = -0.91), and up-regulated several

genes involved in transcriptional regulation and signalling (such as Sox11 : log2FC =

2.05; Lef1 : log2FC = 1.78; Sox4 : log2FC = 1.52; Zcrb1 : log2FC = 1.43; Dnmt3b:

log2FC = 1.26; Dnmt3a: log2FC = 1.19). Notably, the X-linked gene Pim2 (log2FC

= 2.46) was again deemed as significantly up-regulated in the ΔX-high cells. For each

sequencing time point, the gene-wise average CPM expression level and log2FCs between

the two groups are shown through scatter plots (Appendix 2b) with significantly up- and

down-regulated genes (FDR ≤ 0.05) colored in red and blue, respectively.

A set of putative Xist regulators was then identified testing if the Spearman’s correlation

coefficient (namely, ρ) between the ΔX values and the normalized expression of every

detected gene was significantly different from zero, H0 : ρ = 0 (Fig. 13d). The results

of these analyses are summarized by the dot plot (Fig. 13e), which highlights the

correlation coefficients over time for the 20 genes with the highest significantly positive

or negative correlations to ΔX values at day 1 and day 2. The results of the correlation

analyses were in agreement with the previous DE analyses. At day 1 of differentiation,

also the correlation analysis highlighted the X-linked Rhox5 (ρ= 0.41) and Renbp (ρ=

0.33) as Xist putative regulators, in addition to other genes. At day 2 of differentiation,

Pim2 (ρ= 0.42) was again identified as one of the top Xist activators together with DNA

methyltransferases Dnmt3b (ρ= 0.35) and Dnmt3a (ρ= 0.32), and other genes involved

in transcriptional regulation (Lef1 : ρ= 0.26; Sox4 : ρ= 0.21; Sox11 : ρ= 0.21; Zcrb1 : ρ=

0.19). Furthermore, also the pluripotency factors Fbxo15 (ρ= -0.24), Prdm14 (ρ= -0.2),

Nanog (ρ= -0.2) and Esrrb (ρ= -0.18) were deemed as Xist putative repressors.

6.3 Putative Xist and XCI regulators

The results of the above 8 analyses (Xist/ΔX, day1/day2, DE/Correlation) were inte-

grated, focussing on the autosomal and up-regulated X-linked genes deemed as signif-

icant (FDR ≤ 0.05) activators or repressors in at least 3 analyses (Fig. 14a and 14b,

respectively).
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Figure 14: Putative activators (a) and repressors (b) of early XCI identified through
correlation and differential expression (DE) analyses based on Xist expression and early
gene silencing (ΔX) at day 1 and 2 of differentiation. For each gene deemed as significant
(FDR ≤ 0.05) in at least 3 of the 8 analyses (day1/2, Xist/ΔX, DE/Correlation): the
Benjamini-Hochberg corrected p-values (FDR, left), the log2-transformed fold changes
(log2FC, middle) and Spearman’s correlation coefficients (ρ, right) are shown. Pseu-
dogenes and X-linked genes with negative correlation coefficients ρ or log2FCs are not
shown. Asterisks indicate statistically significant tests.

After one day of induced cellular differentiation, the analyses identified a handful of

genes as putative regulators of XCI initiation. Among these, the known Xist repressor

Nanog [130] was significantly differentially expressed between the Xist-high and Xist-low

groups, and its expression was negatively correlated to Xist expression. On the other

hand, Nanog expression levels did not significantly differ between the two ΔX groups,

nor significantly correlated to the ΔX values.

At day 2 of differentiation, the analyses identified a much larger number of genes as pu-

tative regulators of XCI initiation. Several pluripotency factors such as Nanog, Prdm14,

Esrrb and Fbxo15 [10, 130, 145, 188, 202] were deemed as putative Xist repressors by

both Xist and ΔX analyses. On the other hand, a number of genes involved in tran-

scriptional regulation or signalling were deemed as putative Xist activators. Among the

genes promoting the initiation of XCI: the transcription factor Pou3f1, which is associ-

ated with early ESC differentiation, the DNA methyltransferases Dnmt3a and Dnmt3b,

and the splicing factor Zcrb [10, 78, 194]. Notably the X-linked kinase Pim2, which

cooperates with the Myc transcription factor [86, 123], was deemed as a putative acti-

vator by several analyses and exhibited the highest significance and fold change between



Results 78

the two Xist and ΔX groups after two days of differentiation, making it an interesting

candidate for further studies.

Interestingly, this analysis only identified a subset of the previously proposed regulators

of Xist and XCI process. A comprehensive analysis of genes that have been implicated

in Xist regulation before showed that Nanog, Klf2, Klf4 and Prdm14 were correlated

with Xist and early XCI, while other pluripotency factors such as Oct4 (Pou5f1 ) and

Sox2 were not (Appendix 2c, 2d). On the other hand, the above analyses unexpectedly

deemed the known Xist repressor Ctcf as a putative activator [57], and the Xist activator

Rnf12 (Rlim) as a putative repressor [76, 92].

Taken together these results show that the down-regulation of naive pluripotency factors,

in particular Nanog, combined with the up-regulation of early differentiation factors,

such as Pou3f1 and Dnmt3a and Dnmt3b, seem to play a role in the initiation of Xist

expression and the initiation of the XCI process. It has to be noticed that these analyses

identify genes whose expression is significantly associated to a change in Xist or X-

chromosome expression levels. These analyses however do not clarify if these genes

directly regulate the changes in expression levels, or rather if they are involved in a more

complex regulatory network leading to differential expression. One way to investigate

their role in the XCI process would be to design an experiment where their expression

gets significantly reduced or inhibited, for example through shRNA guides or CRISPR-

Cas9 technologies respectively, and analyse the transcriptomic profiles of mESCs at

the earliest stages of differentiation. Observing perturbed Xist expression levels or

failure/delay in the XCI process with such experimental settings would provide more

insights in the role of these genes and of their co-regulators.

7 Allele-specific silencing dynamics

The analysis of Xist allelic expression revealed that while this gene was expressed at

higher levels and by a larger fraction of XX mESCs on the B6 allele, the silencing of

X-linked genes proceeded faster on the Cast X chromosome (Fig. 9b,c). The detection

bias of the Xist gene might however be a technical artifact caused by a mapping bias

towards the reference genome (B6), indeed no difference was detected in parallel bulk

RNA-sequencing experiments (Fig. 9d).

In order to verify if the allelic gene counts were consistently higher on the B6 allele

throughout the entire genome, we computed for each autosomal and X-linked annotated

gene the ratio between the total number of B6 and Cast UMI counts grouping XX cells by

time point and Xist AS classification (Appendix 3a). While the X-linked genes in Xist-

MA cells showed the expected preferential detection of the Xist-negative allele over time

as a result of the ongoing XCI process, the median B6-to-Cast ratio of autosomal and

X-linked genes in Xist negative cells ranged between values of 0.99 and 1.05 throughout
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cellular differentiation. This result suggested the absence of a strong genome-wide allelic

mapping bias both in autosomal and X-linked genes.

The aim of the following analysis is to identify X-linked genes showing differential silenc-

ing kinetics between the two alleles, and to classify the silencing speed of each gene, while

accounting for the faster silencing of the Cast allele compared to the B6 X chromosome.

7.1 XCI progress and linear model fit

Figure 15: (a) Schematic representation of XCI progress (XP), defined as the per-
centage of X-silencing on Xi relative to the Xist-negative allele (left); violin plot of
observed XP values in Xist-MA cells (center); comparison of XCI progress with scaled
pseudotime, coloring Xist-MA cells by time point (right). (b) Step-by-step procedure
for the identification of differentially silenced X-linked genes, shown for an example gene
(Eif1ax). Transparent dots indicate individual cells and solid dots the binned values
for cells with similar XP values. The solid line shows the log-linear fit, used to estimate
the XP50 value (dashed arrows).

In this analysis we modeled the extent of silencing of every X-linked gene with respect

to the silencing of the entire Xist-expressing chromosome, and compared the gene-wise

trends observed in the two Xist-MA populations aiming to identify the genes with dif-

ferent silencing dynamics between the two alleles.

For every Xist-MA XX cell we defined a measure (Fig. 15a) representing the extent

of chromosome-wide silencing, referred to as the ”XCI progress” (XP, Eq. 12). This

is computed as the percentage of silencing of the Xist-expressing X chromosome (Xi)

relative to the Xist-negative allele (Xa). The XP values (Fig. 15a) were highly variable

across the Xist-MA cells collected at the same time point or associated with similar
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pseudotime values, reflecting the asynchronous nature of the XCI process in XX mESCs.

Similarly, we quantified the silencing of each X-linked gene (Xi:Xa, Eq. 13) as the ratio

between the UMI counts observed on the inactive and active alleles.

In order to identify differentially silenced X-linked genes (Fig. 15b), the analysis was

restricted to the Xist-MA cells which had already initiated the XCI process, namely

excluding cells with an XP value smaller than 10%. Aiming to robustly estimate the

XP and Xi:Xa values, all Xist-MA cells sequenced throughout cellular differentiation

were clustered into groups with similar extent of chromosome-wide silencing. This was

achieved dividing the range of XP values observed across all Xist-MA cells into B equally

sized bins (B = 10), and calculating for each bin and Xist-MA population the binned

XP and Xi:Xa values by aggregating the AS UMI counts of every single cell assigned to

the same bin (Eq. 28).

For each gene, the presence of basal expression skewing between the two alleles was

accounted for by normalizing the binned Xi:Xa values to the B6:Cast ratio computed

across Xist-negative undifferentiated cells, whose difference in expression between the

two alleles is not caused by silencing nor by differentiation (Eq. 29). For each Xist-

MA populations and X-linked gene, a zero-intercept linear model was then fitted to the

log2-transformed normalized Xi:Xa values, regressing out the binned XP values (Eq.

30).

In order to quantify the silencing kinetics of each gene in each Xist-MA population,

the estimated allele-specific slopes were used to compute the allelic XP50 values (Eq.

31). This measure represents the expected percentage of chromosome-wide silencing

corresponding to a two-fold decrease in the gene expression on Xi relative to Xa.

Finally differentially silenced genes were identified through an ANOVA F test, which

compares the fit of the allele-specific linear model to a simpler model fitting a single

slope to both Xist-MA populations (Eq. 32).

7.2 Identification of differentially silenced genes

The allele-specific linear model fit was restricted to X-linked genes with at least 5 bins

characterized by a minimum of 5 cells and at least 25 allele-specific counts. Only 35

X-linked genes passed this filtering step and could be fitted a linear model on both Xist-

MA populations, while 39 additional genes could only be fitted for the population of cells

which monoallelically expressed Xist on the B6 allele. The higher number of genes fitted

for the latter subpopulation is due to the larger number of cells which monoallelically

express Xist and undergo silencing on the B6 allele.

The allelic XP50 values of the 35 X-linked genes which were analyzed on both Xist-MA

populations can be visualized through a scatter plot (Fig. 16a, left) that compares the
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Figure 16: (a) Comparison of XP50 values estimated for the B6 and Cast chromo-
somes. Genes with significantly different silencing dynamics (ANOVA F test: BH-
corrected p-value ≤ 0.05) are colored in red and shown on the right panels. (b) Allele-
specific K-means clustering (K=4) of genes according to their XP50 values (side panels).
The bars compare the allelic classifications for the 35 genes for which the XP50 value
could be estimated on both chromosomes (center). (c) Genomic distance from the Xist
gene for genes grouped according to their XP50 values as in (b): on the B6 (left, 74
genes) and Cast X chromosomes (right, 35 genes), respectively. Dots represent indi-
vidual genes and the horizontal bars show the median value. (d) Comparison of the
estimated XP50 values with previously determined silencing classes. Dots represent
individual genes and the horizontal bars show the median value.

estimated gene-wise silencing dynamics of the two alleles. Upon normalization for the

allelic global silencing dynamics, as expected the majority of genes resulted in XP50

values located on the proximity of the diagonal line, meaning that these X-linked genes

were silenced with similar kinetics on the two alleles. On the other hand, the ANOVA F

test identified three genes (Klhl13, Pir and Hprt) as significantly differentially silenced

between the two alleles (Fig. 16a, right). Specifically Klhl13 escaped silencing and was

up-regulated on the Cast allele while being silenced on the B6 allele. On the other hand

both Pir and Hprt were silenced significantly faster on the Cast allele. Notably, the

results of this analysis were robust upon variations of the XP threshold and the number

of equally sized bins (Appendix 3b), consistently identifying these three genes as being

significantly differentially silenced between the two alleles.
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The K-means clustering algorithm (K=4) was then applied to the estimated XP50 values

separately for the B6 and Cast alleles (74 and 35 X-linked genes, respectively) in order to

classify the allelic silencing kinetics of each gene as: fast, intermediate, slow, or escaping

silencing (Fig. 16b). The majority of the X-linked genes which could be analyzed on both

Xist-MA populations were assigned to the same or to the neighboring allelic silencing

classes (19 grey and 13 orange bars, respectively), while the significantly differentially

silenced genes Klhl13 and Pir together with Jade3 (ANOVA F test: FDR = 0.19) were

assigned to the fast silencing class on one allele and to the slow or escaping group on

the other (Fig. 16b, central panel). Furthermore, the average genomic distance from

Xist in mega base pairs (Mbp) was computed for each X-linked gene, and the genes were

grouped according to their K-means allelic silencing class (Fig. 16c). In accordance with

previous studies [16, 60, 119], the X-linked genes located in proximity of the Xist locus

were silenced faster compared to distal ones, with the exception of genes escaping the

XCI process.

These results were then validated comparing the estimated allelic XP50 values with some

previous studies which classified the allele-specific silencing dynamics of X-linked genes

in female mice (Fig. 16d). The estimated XP50 values relative to genes silenced on the

B6 allele were in good agreement with a previous analysis which measured the RNA

expression of (129 x Cast) female mESCs by bulk RNA-Sequencing, where the silencing

of the 129 X chromosome (closely related to the B6 mouse strain) was induced by a

transcriptional stop in the Tsix of the 129 allele [119]. The allele-specific XP50 values

were also concordant with the results of a previous study which used scRNA-sequencing

to characterize the transcriptomic profile of pre-implantation (B6 x Cast) female mouse

embryos in order to analyze the silencing dynamics of genes on both X chromosomes

[16], although this comparison was restricted to a limited number of X-linked genes (Fig.

16d, left). Furthermore, the estimated allelic XP50 values were in good agreement with

a study which measured the nascent transcriptome of (B6 x Cast) female mESCs by

allele-specific PRO-seq, where Xist up-regulation and silencing on the B6 allele were

induced by doxycycline treatment (Fig. 16d, left) [60]. Indeed, the estimated XP50

values for genes silencing the B6 allele which were classified as ”Silencing Dynamics:

Early” were significantly lower than the ones classified as ”Silencing Dynamics: Late”

(one-sided Wilcoxon rank sum test, p-value = 0.008), while the XP50 values of genes

classified as ”XCI/Escape: Silenced” were significantly lower than the ones classified

as ”XCI/Escape: Not Silenced” (one-sided Wilcoxon rank sum test, p-value = 0.0007).

Notably, while all the 11 genes classified as ”Silencing Dynamics: Early” were assigned

to the fast or intermediate silencing class based on the K-means classification of their

B6 XP50 values, discordant results were obtained for two X-linked genes (Klhl13 and

Mmgt1 ) which were assigned to the fast silencing class in our analysis while being

classified as ”XCI/Escape: Not Silenced” by the analysis of PRO-seq data.

This analysis shows that, when accounting for the overall faster silencing of the Cast X
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chromosome, the majority of genes seems to have similar silencing kinetics on the two

alleles. Nonetheless, the silencing dynamics of a number of genes appears to be altered

by genetic variations between the B6 and Cast X chromosomes.

8 Experimental validation on non-random XCI cell line

The results of the differential silencing analysis were also validated through an orthog-

onal experimental approach, where mESCs underwent non-random XCI of either X

chromosomes upon induced cellular differentiation.

8.1 Generation of ΔXic cell lines

Figure 17: (a) Schematic representation of the generation of ΔXic cell lines, which
undergo non-random XCI upon differentiation. (b) Comparison of Xist expression
patterns in differentiating TXΔXicB6 and TXΔXicCast mESCs: allelic expression was
quantified by Pyrosequencing (left), the percentage of Xist-positive cells was estimated
by RNA-FISH (center), and relative expression was assessed by qPCR (right). For the
latter plot, at each time point p-values of a two-sided unpaired Student’s T-test are
shown.

To assess the silencing dynamics of the B6 and Cast X chromosomes independently, two

cell lines were generated deleting the X-inactivation center (Xic) of TX1072 mESCs on

the B6 (TXΔXicB6) or on the Cast (TXΔXicCast) alleles (Fig. 17a, Appendix 4a,b).

Upon induced cellular differentiation, the presence of a single copy of the Xist gene on

the wild-type (WT) X chromosome leads to monoallelic Xist expression, which initi-

ates the non-random XCI of the WT allele. Therefore, TXΔXicB6 and TXΔXicCast
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mESCs respectively silenced the Cast and B6 X chromosomes. This experimental set-

ting enabled the study of allele-specific silencing dynamics through bulk assays, such as

Pyrosequencing and bulk RNA-sequencing experiments.

As expected both cell lines showed monoallelic expression of the Xist gene on the WT

X chromosome (Fig. 17b, left), with a similar percentage of Xist expressing cells (Fig.

17b, center), showing an increase in Xist expression throughout cellular differentiation

(Fig. 17b, right). Notably, the qPCR quantifications of Xist relative expression levels

over time showed similar allele-specific expression levels at the earliest time points, and

significantly higher expression of Xist on the Cast allele after 4 days of induced cellular

differentiation. This strengthens the hypothesis that the significantly higher expression

of Xist on the B6 allele which was previously observed in Xist monoallelic cells could

be the result of a technical artifact (Fig. 9b,d).

8.2 Pyrosequencing

Figure 18: (a) Xi:Xa ratios, for 5 genes with similar XP50 values on both alleles,
averaged across four biological replicates and normalized to the average ratio observed
in undifferentiated cells (day 0). Every dot represents the average value of a single
gene, and the horizontal bar their average value. For each time point p-values of a two-
sided paired Student’s T-test are shown. (b) Xi:Xa expression ratios in each replicate
sample, for genes previously deemed as differentially silenced between the two alleles,
normalized to the average ratio observed in undifferentiated cells (day 0). Every dot
represents the ratio observed in each replicate sample, and the horizontal bar their
average value. For each time point p-values of a two-sided unpaired Student’s T-test
are shown.

The allelic gene expression levels of TXΔXicB6 and TXΔXicCast cells throughout cellular

differentiation were first measured through Pyrosequencing, which performs quantitative
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sequencing over individual SNPs on cDNA. The allelic expression of the three genes

previously deemed as being differentiatially silenced between the two mouse strains

(Hprt, Klhl13 and Pir) and five X-linked control genes which resulted in similar XP50

values (Atrx, Cul4b, Prdx4, Renbp, Rnf12 ) was measured at each time point on four

biological replicates (Appendix 4c).

The allelic expression (Eq. 33) observed across the five control genes again highlights

that, at the latest time points of cellular differentiation, the Cast allele is silenced faster

compared to the B6 X chromosome (Fig. 18a).

Similarly to the previous analysis on single cell RNA-seq data, the Xi:Xa ratios observed

on each biological replicate for the genes deemed as differentially silenced were first

normalized to the average value observed in undifferentiated cells (day 0), and then

compared between the two cell lines at each time point of differentiation. The results

agree with the previous findings, showing that Klhl13 escapes silencing on the Cast allele

while being silenced on the B6 allele, and that Hprt and Pir are silenced significantly

slower on the B6 allele after 4 days of cellular differentiation.
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8.3 Bulk RNA-sequencing

Figure 19: (a) Multi-Dimensional Scaling (MDS) plot, where the distance between
each pair of samples is computed as the root-mean-square of the 500 genes with the
largest log2 fold changes between the two samples. Every sequenced sample is colored
by time point (left) and cell line (right). (b) Xist CPM expression in the TXΔXicB6 and
TXΔXicCast cell lines throughout cellular differentiation. The pvalues on top derive
by the two-sided unpaired Student’s T-tests comparing the values observed in the two
cell lines at each time point.

The genome wide gene expression levels of TXΔXicB6 and TXΔXicCast mESCs through-

out induced cellular differentiation were then measured through bulk RNA-Sequencing

experiments on three biological replicates per time point and cell line.

The difference in the transcriptomic profile of each sequenced sample can be explored

through a multi-dimensional scaling (MDS) plot, which projects every sample on a two-

dimensional subspace where the distance between each pair of samples is computed as

the root-mean-square of the 500 genes with the largest log2 fold changes between the

two samples (Fig. 19a). As expected, the MDS dimensionality reduction method clearly

separates the undifferentiated samples from the ones sequenced throughout cellular dif-

ferentiation, and highlights that the samples cluster together by sequencing time point.

In agreement with the previous qPCR quantification of Xist relative expression (Fig.

17b, right) the observed CPM expression levels were not deemed as significantly different

between the two cell lines, although Xist expression was slightly higher on the Cast allele

after 3 and 4 days of induced cellular differentiation (Fig. 19b).

8.4 Allelic XCI and validation of differentially silenced genes

The analysis of the Pyrosequencing and single-cell RNA-seq data suggested that the

Cast X chromosome was silenced faster than the B6 allele over time (Fig. 9c, Fig. 18a).

The same chromosome-wide difference in silencing kinetics is also observed through the

analysis of bulk RNA-sequencing data (Fig. 20a) when comparing the Xi:Xa ratios of

each X-linked gene (left) and of the entire chromosome X (right) between the two cell

lines (Eq. 34).
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Figure 20: (a) Xi:Xa expression ratios for X-linked genes outside the CRISPR-deleted
region (660 genes) computed: for each X-linked gene (median and first/third quartiles),
summing up the expression of three biological replicates (left); and for each replicate
sample (individual replicates and average), summing up the expression of X-linked genes
(right). For each time point p-values of a two-sided paired Student’s T-test (left) and p-
values of a two-sided unpaired Student’s T-test (right) are shown. (b) Xi:Xa expression
ratios in each replicate sample, for genes previously deemed as differentially silenced
between the two alleles, normalized to the average ratio observed in undifferentiated
cells (day 0). Every dot represents the ratio observed in each replicate sample, and the
horizontal bar their average value. For each time point p-values of a two-sided unpaired
Student’s T-test are shown.

The Xi:Xa ratios (Eq. 35) of every gene which was previously deemed as differentially

silenced between the two X chromosomes (Fig. 16a) were normalized to the average

baseline ratio observed across the three undifferentiated replicates (day 0), and the

normalized ratios of the two cell lines were compared at each time point of cellular dif-

ferentiation (Fig. 20b). The results of this analysis agreed with the differential silencing

analysis of single cells. Indeed, Klhl13 escaped silencing and was up-regulated on the

Cast allele while being silenced on the B6 allele. On the other hand, both Hprt and Pir

showed significantly lower Xi:Xa values on the Cast allele at late stages of differentiation,

which was in agreement with their faster silencing on the Cast X chromosome.

8.5 X chromosome silencing map

While the single-cell RNA-seq data enabled the analysis of a restricted number of X-

linked genes with allele-specific resolution, the higher sequencing depth and full length

read coverage of bulk RNA-sequencing data could be exploited to explore the silencing
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Figure 21: (a) Gene-wise expression ratios map (n = 136) of the mutated allele
(Xi/Xt) across X-linked genes for each ΔXic cell line, time point and replicate, ordered
by genomic position. The genes are ordered by their genomic position, and the Xist lo-
cus is highlighted by a black triangle. (b) Difference between the allelic ratios computed
lumping counts observed across replicate samples on the two cell lines (left); LOESS fit
(span = 1/5) of the allelic ratios observed for each time point and cell line (right)

dynamics of a much larger set of genes. This analysis aims to define a refined silenc-

ing map of the X chromosome for cells silencing the B6 (TXΔXicCast) or the Cast

(TXΔXicB6) alleles throughout differentiation.

This analysis was restricted to the subset of X-linked genes with at least 50 AS counts

(Xi + Xa) detected for each cell line, sequencing time point and replicate sample (136

genes). For each cell line, replicate sample and X-linked gene, we computed the fraction

of counts assigned to WT allele (Xi) which undergoes XCI upon differentiation (Fig.

21a). The comparison between the two cell lines revealed a subset of genes which were

solely expressed by the B6 (1810030O07Rik, Rpl10, Trap1a) or by the Cast (Eif2s3x )

alleles. For the latter set, this analysis showed three genes (Pgk1, Sms and AU015836 )

which seem to be almost uniquely expressed by the Cast allele at day 0 and 1, and then

get reactivated only on the TXΔXicB6 allele. This map also highlights the known escapee

Kdm6a [13], which has almost equal biallelic expression levels throughout sequencing

time.

In order to compare the silencing kinetics of the alleles over time, we robustly estimated

the Xi/(Xi+Xa) gene-wise ratios at each time point lumping the gene counts derived

from each replicate sample, and computed the difference across biological replicates

between the values observed on the two cell lines at each time point (Fig. 21b, left).
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The overall gene-silencing trend across the X chromosome was then summarized for

each time point by the LOESS fit of the observed fractions in the two cell lines (Fig.

21b, right). This analysis revealed that the difference in silencing kinetics between the

two mouse strains was a chromosome-wide effect. Indeed the vast majority of X-linked

genes under investigation were silenced faster on the Cast allele. Interestingly it can be

noticed that, while TXΔXicB6 mESCs silenced the WT allele progressively over time,

the mESCs silencing the B6 allele seemed to reach a silencing plateau after two days of

induced cellular differentiation.

Overall this analysis revealed that the silencing of X-linked genes proceeds faster through-

out the entire Cast allele over time, while the B6 allele seems to reach a silencing peak

after two days of differentiation. Moreover the silencing map describes a subset of genes

uniquely expressed on one or the other allele.

8.6 Differential silencing analysis

Both the Pyrosequencing and bulk RNA-Sequencing data analyses comparing the allelic

expression of putatively differentially silenced genes between the two cell lines over time

(Fig. 18b, 20b) confirmed the results of the differential silencing analysis on single cell

RNA-seq data (Fig. 16a). However a strong limitation of the analyses on the ΔXic

lines is that they did not take into account the difference in global silencing kinetics

between the two alleles (Fig. 21a,b). For this reason, it is difficult to conclude whether

the difference observed for Hprt and Pir is due to a gene-specific effect, or rather if it

is a consequence of the overall faster silencing of the Cast X chromosome. This issue

was taken into account performing a differential silencing analysis similar to the one

previously shown for single cell RNA-seq data (Fig. 22).

The following analysis (Fig. 22a) was restricted to the set of X-linked genes with at least

500 AS gene counts across all replicate samples for each time point throughout differen-

tiation (177 genes). For each time point and cell line, a robust measure of silencing of

the WT X chromosome (XP) and gene-wise silencing (Xi/Xa) was estimated lumping

the allele-specific gene counts observed across replicate samples. For each gene and cell

line, the observed silencing ratios were normalized to the value of undifferentiated cells

(day 0) and a log-linear model was fitted to the normalized Xi/Xa ratios relative to the

XP values observed over time. The allelic silencing dynamic of each X-linked gene was

then measured through the XP50 statistic, and these values were used to assign every

gene to an allele-specific silencing class through K-means clustering algorithm (Fig. 21a,

left): fast (k=1), intermediate (k=2), slow (k=3) or escaping XCI (k=4). The density

plots of the allele-specific XP50 values revealed a larger number of genes escaping the

silencing process on B6 compared to the Cast allele (58 and 37 genes, respectively). No-

tably a set of genes which are known to escape the XCI process (namely: Ddx3x, Pbdc1,

Kdm5c and Kdm6a) [13] were assigned to the escape class on both cell lines. Similarly
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Figure 22: (a) Comparison of XP50 values estimated for the TXΔXicB6 and
TXΔXicCast cell lines. Genes with significantly different silencing dynamics (ANOVA
F test: BH-corrected p-value ≤ 0.05) are colored in red and shown on the right panels.
(b) Allele-specific K-means clustering (K=4) of genes according to their XP50 values
(side panels). The bars compare the allelic classifications for the 35 genes for which the
XP50 value could be estimated on both chromosomes (center). (c) Genomic distance
from the Xist gene for genes grouped according to their XP50 values as in (b): on the B6
(left, 74 genes) and Cast X chromosomes (right, 35 genes), respectively. Dots represent
individual genes and the horizontal bars show the median value. (d) Comparison of
the estimated XP50 values with previously determined silencing classes. Dots represent
individual genes and the horizontal bars show the median value.

to the single-cell RNA-seq data analysis, putative differentially silenced genes were then

identified through an ANOVA F test which compared the fit of the allele-specific linear

model to a simpler model fitting the Xi/Xa ratios of the two cell lines with a single slope.

Overall, this analysis identified 65 differentially silenced X-linked genes with FDR≤0.05,
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and 8 genes with FDR≤0.01 (Fig. 22a, right). This analysis validated the results of the

previous single cell RNA-seq data analysis, confirming that Klhl13 (FDR = 0.003), Pir

(FDR = 0.009) and Hprt (FDR = 0.025) are differentially silenced between the two

alleles. Furthermore, this analysis revealed the presence of a much larger number of

genes with different silencing kinetics between the two alleles compared to the set of

genes which were pointed out by the single cell RNA-seq data analysis (Fig. 16a/b).

Similarly to the single cell assay (Fig. 16c), the average genomic distance from Xist in

mega base pairs (Mbp) was computed for each X-linked gene, and genes were grouped

according to their K-means allelic silencing class (Fig. 22b). This comparison revealed

that the distance from Xist of fast silenced genes was significantly smaller than the one

observed for intermediate/slow silenced genes in the TXΔXicCast cell line, while it was

not in the TXΔXicB6 cell line (two-sided unpaired Student’s T-test, Bonferroni adjusted

p-values: 0.02 and 0.13, respectively).

Furthermore, the allele-specific estimates of the gene-wise XP50 values largely agreed

with some previous studies which classified the allele-specific silencing dynamics of X-

linked genes in female mice [16, 119] (Fig. 22c). Moreover, the estimated XP50 values

for genes silencing the B6 which were classified [60] as ”Silencing Dynamics: Early”

were significantly lower than the ones classified as ”Silencing Dynamics: Late” (one-

sided Wilcoxon rank sum test, p-value = 0.0004), while the XP50 values of genes clas-

sified as ”XCI/Escape: Silenced” were significantly lower than the ones classified as

”XCI/Escape: Not Silenced” (one-sided Wilcoxon rank sum test, p-value = 0.0003).

Overall the analyses of bulk RNA-sequencing and Pyrosequencing data from the TXΔXic

cell lines confirmed the overall faster silencing of the Cast allele compared to the B6 al-

lele. Where this difference derives by a chromosome-wide faster silencing of genes on

the Cast allele, and not by a subset of differentially silenced genes. Moreover the above

analyses confirmed that Klhl13 escapes silencing on the Cast allele, and that Hprt and

Pir are silenced significantly faster on the Cast allele even when accounting for the over-

all difference in global silencing kinetics between the two alleles. Finally, the analysis

of bulk RNA-sequencing data identified a larger set of differentially silenced genes com-

pared to the previous single cell RNA-sequencing data analysis, and the estimated allelic

gene-wise silencing kinetics were in good agreement with previous studies.
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In the present work we studied the endogenous onset of Xist up-regulation and rXCI in

mESCs undergoing cellular differentiation with allelic and strand specific transcriptomic

resolutions. This was achieved performing single cell RNA-Sequencing of TX1072 female

mESCs in undifferentiated state (2i&Lif) and throughout four days of cellular differenti-

ation (induced upon 2i&Lif removal). Specifically, the design of this experiment enabled

us to explore the transcriptomic profile of each cell at the not-AS and AS levels.

The read alignment procedure resulted a median of 400000 reads per cell, 30% of which

uniquely aligned to exonic regions and carried a unique UMI barcode, while around

4% were exonic and overlapped at least one high-confidence SNP between the B6 and

Cast genomes. These two subsets of reads were used to quantify the not-AS and AS

transcriptomic profiles of each cell across approximately 9000 and 5000 murine annotated

genes, respectively.

The analysis of not-AS gene counts revealed that XX cells up-regulated the lncRNA gene

Xist after a single day of cellular differentiation, while Xist-mediated gene silencing ini-

tiated after one additional day. Both events are however very asynchronous throughout

cellular differentiation, indeed approximately 20% of XX cells at day 4 did not express

Xist nor initiated the rXCI process. Notably Xist+ XX cells decreased the X:A ratio

throughout differentiation as a result of Xist-mediated XCI process, while Xist− XX

and XO mESCs underwent X-linked up-regulation over time.

The analysis of AS gene expression levels enabled us to better understand the mech-

anisms which characterize both Xist up-regulation and random XCI processes. As a

result of the Xce effect, a higher fraction of TX1072 XX cells preferentially silenced the

B6 allele, although the chromosome-wide gene silencing proceeded faster on the Cast

allele. We observed transient biallelic Xist up-regulation in around 50% of cells at day 2

which was coupled by the partial silencing of both X chromosomes. Notably the silencing

extent of these cells was even more pronounced than in their monoallelic counterparts.

However the biallelic Xist expression and X-silencing was later resolved to a monoallelic

state by four days of differentiation. The transient presence of Xist biallelic cells was

also confirmed by orthogonal RNA-FISH experiments performed on the same cell line.

Differential expression analysis between Xist highly and lowly expressing cells, together

with gene-wise correlation analyses with respect to Xist CPM expression levels were

performed in order to identify putative Xist regulators. Moreover, we used the RNA-

velocity method to model the spliced and unspliced transcripts of X-linked genes which

estimated the future change in expression of the genes on the X chromosome (ΔX).

Similarly to the previous analysis, we performed differential expression between ΔX

high and low cells and correlation analyses. All these analyses were performed separately

for XX cells sequenced at day 1 and 2, which correspond to the time points when we

first observed a subset of cells initiating the Xist up-regulation and XCI processes. The
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analyses based on Xist expression andΔX provided highly concordant results identifying

a set of known and novel regulators of Xist expression and Xist-mediated gene silencing.

We then accounted for the difference in X-silencing kinetics between the two alleles and

fitted gene-wise log-linear models separately for the two Xist-MA populations in order

to estimate and classify the silencing speed of each X-linked gene, and to further identify

X-linked genes showing differential silencing kinetics between the two alleles. This anal-

ysis revealed that, when correcting for strain-specific global silencing effects, most genes

showed similar silencing dynamics while only a handful of genes showed silencing differ-

ences between the B6 and Cast alleles. Furthermore the strain-specific classifications of

the silencing speed of X-linked genes were highly concordant with previous studies, and

the genes in proximity of the Xist locus resulted to be silenced significantly faster than

distal ones, with the exception of genes escaping the XCI process.

Finally, these results were validated by orthogonal experiments (Pyro-Sequencing, RNA-

FISH, qPCR and bulk RNA-Sequencing) performed on female B6xCast mESCs cell

lines undergoing non-random XCI, achieved by the heterozygous deletion of the Xic

locus on either alleles. The analyses of Pyro-sequencing and bulk RNA-Sequencing data

confirmed the silencing trends observed for the genes deemed as differentially silenced

by the scRNA-Seq data, and the faster silencing of the Cast allele. Furthermore, the

analysis of bulk RNA-Seq data revealed the presence of a larger set of differentially

silenced genes between the B6 and Cast X chromosomes, and further highlighted that

the differences in silencing kinetics between the two alleles affected most of the genes

along the X chromosome.



5 Discussion

In this study we profiled the transcriptomic regulation of mESCs during Xist up-

regulation and random XCI at the early stages of cellular differentiation. This was

achieved by the transcriptomic profiling of XX hybrid cell lines throughout four days

of cellular differentiation. The presence of a high number of polymorphisms between

the two mouse strains combined with the use of 3’-end scRNA-Sequencing technologies

enabled us to explore the transcriptomic profiles of each mESC with allelic and strand

specific resolution.

1 Xist gene expression quantification and regulation

The efficient C1-HT protocol library preparation combined with deep sequencing re-

sulted in a median of 120,000 mRNA molecules per cell, which was significantly higher

than other UMI-based methods [204]. The efficiency of this scRNA-Seq experiment

enabled the quantification of the allelic expression of more than 5000 murine genes, in-

cluding Xist and 158 other genes on the X chromosome. The relatively high number

of X-linked genes whose transcripts overlapped high confidence SNPs was crucial to

investigate the endogenous rXCI process of differentiating mESCs.

1.1 Xist transcripts’ alignment

Differently from the vast majority of murine annotated genes, Xist (mm10, chrX: 103,453,491-

103,482,714) did not show the expected 3’-end read alignment bias. Indeed the vast

majority of its reads uniquely aligned to the 5’-end of its transcript, and were almost

completely absent at its 3’-end locus.

Xist 5’-end read coverage was also observed in a previous study relying on the CEL-

Seq2 3’-end biased sequencing protocol [83]. This suggests that the mild denaturation

conditions of single cell protocols might not be sufficient to render Xist 3’-end polyA

tails accessible for reverse transcription. This observation is in agreement with the

problematic amplification of Xist single cell mRNA libraries both in vitro ESCs and in

vivo blastocysts observed in previous studies [15, 171].

The inspection of Xist 5’ locus revealed the presence of a 25bp long polyA sequence

upstream of Xist reads’ alignment region, which was likely targeted for reverse tran-

scription. Nonetheless the quantification of Xist expression based on these transcripts

showed the expected trend in gene expression. Indeed while the transcripts were al-

most completely absent in XO mESCs and undifferentiated XX mESCs, differentiating

XX mESCs showed an increasing number of transcripts throughout developmental time.
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This led us to the conclusion that the internal poly-A sequence was preferentially tar-

geted for reverse transcription while Xist 3’-end was inaccessible, and that Xist 5’-end

aligned reads could still provide a good quantification of the gene’s expression levels.

The unexpected alignment of Xist reads highlights the importance of relying on strand

specific sequencing protocols whenever quantifying the expression of genes characterized

by anti-sense transcripts. This is especially relevant in studies involving Xist-mediated

gene silencing where Xist 5’-end biased reads could be erroneously used to quantify Tsix

expression, one of Xist ’s major repressors [36, 38, 103]. Furthermore this rises questions

on how many other genes might not be detected by single cell sequencing protocols due

to the incapacity of the polyT sequencing primer to successfully ligate the polyA tail of

the target mRNAs molecules and perform reverse transcription.

1.2 Xist allele-specific gene expression

The overlap between Xist transcripts and high confidence SNPs between the B6 and

Cast mouse strains enabled the quantification of its expression with allelic resolution.

The transcriptomic profiling of Xist AS expression in XX mESCs confirmed the well

known Xce effect which characterizes hybrid murine cell lines. Indeed we observed a

much larger fraction of Xist+ cells monoallelically expressing the gene on the B6 allele

compared to Cast, leading to a higher fraction of cells which transcriptionally silence

the B6 X chromosome [29, 31–33].

Comparing the Xist gene expression levels between the two monoallelic populations we

observed a significantly higher expression of the B6 allele compared to Cast in scRNA-

Sequencing data. Although the two alleles seemed to be equally expressed across all the

autosomal genes whose transcripts overlapped strain specific SNPs, the fact that many

other X-linked genes showed higher expression on the B6 allele suggests that this effect

might be a technical artifact caused by the preferential mapping towards the reference

genome. This was indeed confirmed by the analysis of Xist allelic expression levels in

TX1072 and TXΔXic XX mESCs through bulk assays such as qPCR and bulk RNA-

Sequencing, which revealed no significance difference between the B6 and Cast alleles.

Interestingly, the scRNA-Sequencing data revealed transient biallelic expression of Xist

starting already at day 1 and reaching a peak at day 2 of differentiation with more

than half of Xist+ cells showing expression from both X chromosomes. Notably this

effect was observed regardless on the UMI threshold used to define Xist-expressing cells.

The fraction of cells expressing Xist on both alleles then decreased after the second

day of differentiation, and the gene’s expression was resolved to a monoallelic state

at later time points. This trend was also confirmed by RNA-FISH experiments which

showed that around 50% of differentiating mESCs have two Xist RNA clouds at day 2 of

differentiation, and that this percentage considerably reduces at later time points coupled
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with the increasing percentage of cells characterized by a single Xist RNA cloud. The

transient biallelic Xist expression pattern observed in our work confirms the observations

of previous experiments both in vitro differentiating mESCs and in vivo mouse embryos

[80, 128, 181], and supports the model of stochastic Xist expression stating that the two

alleles might independently undergo Xist up-regulation [124, 127, 128].

2 Transcriptional regulation of Xist and X chromosome

2.1 X chromosome regulation throughout differentiation

Similarly to a previous study we used the X:A ratio as a measure to explore the XCI

process by comparing the expression of the X chromosomes and autosomes throughout

cellular differentiation [16].

The not-AS X:A ratios revealed that Xist− XX and XO cells significantly increase the

ratio throughout cellular differentiation, as a result of the X chromosome up-regulation

(XCU) process. This process is thought to have evolved to compensate the loss of genes

on the Y chromosomes [140], and was previously observed in differentiating male mESCs

and in male pre/post-implantation embryos [16, 99, 106, 122, 197]. Surprisingly the AS

X:A ratios of Xist− XX cells did not reveal any significant up-regulation over time. The

discordance between the not-AS and AS ratios could be caused by the much smaller

number of genes with allelic quantification which might not be enough to capture the

extent of up-regulation observed at the not-AS level.

A recent work analysed Smart-Seq3 unstranded scRNA-Sequencing data to study B6xCast

F1 hybrid mESCs differentiating into EpiSCs [103]. The authors concluded that the

XCU process could only be observed on the active allele of XX cells which completed

the XCI process (XaXi, such that: X chromosome ratio ∈ [0, 0.1] or [0.9, 1]), while no

up-regulation was observed for XX cells with two active X chromosomes (XaXa, such

that: X chromosome ratio ∈ [0.4, 0.6]). The discrepancy between this result and ours

could be explained by the authors’ definition of the XaXa subpopulation. Indeed the

XaXa group would include not only the vast majority of Xist Undetected cell, but also

all the Xist biallelic cells, together with a large fraction of Xist monoallelic cells. Such

heterogeneous classification might mitigate the XCU effect across the XaXa population,

which we solely observed in differentiating Xist Undetected XX and XO cells.

Xist+ XX cells significantly decrease their X:A ratio starting one day after Xist up-

regulation. The analysis of the X:A ratios separately for Xist monoallelic and biallelic

cells revealed that the latter initiate the silencing of both X chromosomes prior to re-

solving their Xist expression to a monoallelic state and silencing a single allele. This

observation is in line with the model which postulates that both Xist up-regulation

and X-silencing might take place independently on both alleles, and that Xist biallelic
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expression would be reverted to a monoallelic state upon the complete silencing of an

essential X-linked Xist activator which serves as a negative feedback to ensure the silenc-

ing of a single X chromosome [124, 128]. Notably the biallelic silencing observed in mice

resembles the dampening effect observed in early human embryos, although mice seem

to resolve the transient biallelic expression to a monoallelic state much faster compared

to humans [147, 168].

The analysis of X:A and Xi/Xa ratios observed for the Xist monoallelic cells revealed

that the X chromosome undergoes a significantly more efficient silencing on the Cast al-

lele compared to its B6 counterpart. Notably the analysis of bulk RNA-Sequencing data

not only confirmed this observation, but also showed that this effect can be observed

chromosome-wide. Moreover this analysis revealed that while the Cast allele gradually

decreases its expression after each day of cellular differentiation, the B6 X chromosomes

seems to reach a silencing plateau after two days of cellular differentiation. These re-

sults suggest that polymorphisms between the two mouse strains, independently on Xist

expression levels, modulate the silencing kinetics throughout the entire genome.

2.2 Identification of Xist putative regulators

Given the very heterogeneous and asynchronous expression patterns of Xist in differen-

tiating XX mESCs, which was also reported in previous studies [36, 38], we identified

putative Xist regulators either by performing DE analyses between Xist highly and

lowly expressing cells or through correlation analyses with respect to Xist normalized

gene expression levels, similarly to a previous work [95].

At day 1 when we first observed Xist up-regulation, only Nanog was deemed as a sig-

nificant negative regulator of Xist expression levels in both analyses, while other known

Xist regulators were not. This result suggests that the down-regulation of Nanog, more

than other known pluripotency factors, might play a crucial role in the initiation of Xist

up-regulation [10, 130]. On the other hand, at day 2 the down-regulation of a number

of pluripotency factors previously implicated in Xist regulation [10, 130, 145, 188, 202],

including Nanog, Esrrb and others, was coupled with the up-regulation of early differ-

entiation factors such as Pou3f1, the de-novo methyltransferases Dnmt3a and Dnmt3b,

the polycomb-like protein Phf19 and the splicing factor Zcrb which all together played

a role on early silencing of the X chromosome, as previously reported by other studies

[10, 78, 194].

Interestingly these analyses highlighted a number of genes as putative Xist regulators

which were not previously reported. Specifically both the correlation and DE analyses

highlighted the X-linked kinase Pim2, an oncogene cooperating with the Myc transcrip-

tion factor which is involved in cell survival and proliferation, as the gene showing the

highest positive association to Xist expression [86, 123]. Furthermore the correlation
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analyses at day 1 and both analyses at day 2 deemed the autosomal lncRNA Snhg14, a

poorly studied gene only expressed from the paternally inherited chromosome [4], and

the protein coding Ldha, a gene which was reported to interact with Rac1 to promote

glycolysis and cancer [107], as putative early activators. Given their significant associa-

tion to Xist expression level at the time point when we first observed Xist up-regulation,

it would be interesting to further investigate the regulatory roles of these genes.

Nonetheless the DE and correlation analyses have also revealed some unexpected as-

sociations to Xist expression and initiation of silencing. Indeed Ctcf, which encodes a

protein preventing Xist up-regulation [186], was deemed as a positive regulator of Xist

expression by correlation analyses both at day 1 and 2 of differentiation. Furthermore

Rlim, acting as a trans-activator of Xist transcription [7, 76], appeared to be strongly

down-regulated by Xist+ cells upon the initiation of silencing at day 2. Rlim might how-

ever represent the essential X-linked Xist activator leading to the transition from biallelic

to monoallelic Xist expression, which was discussed in the previous section [124, 128].

Its down-regulation observed after two days of differentiation might indeed be the result

of its fast silencing in Xist+ cells.

2.3 Strain-specific silencing kinetics

In this work we developed a strategy to account for global differences in silencing kinetics

between the two mouse strains, aiming to classify the strain-specific silencing dynamic

of each gene and to identify differentially silenced ones.

This analysis revealed that, when accounting from strain specific differences, most of the

genes under investigation showed similar silencing dynamics on the two X chromosomes.

Our gene-wise classification of silencing speed based on genes’ silencing half-lifes was

highly concordant with the results obtained in previous studies [16, 60, 119]. Similarly

to these studies we also observed that genes located in the proximity of the Xist locus

were silenced faster compared to distal ones, with the exception of genes escaping the

silencing process.

Moreover this analysis led to the identification of three differentially silenced genes be-

tween the two mouse strains, namely: Klhl13, Pir and Hprt. The analysis of Pyrose-

quencing and bulk RNA-Sequencing data on the TXΔXic cell lines confirmed their sig-

nificantly different silencing dynamics between the two alleles. These data revealed that

Klhl13 was indeed escaping silencing and getting significantly up-regulated throughout

differentiation on the Cast chromosome, while being silenced on the B6 allele. Recent

studies showed that Klhl13 inhibits X-linked differentiation, and that its silencing might

enable the differentiation of cells with two active X chromosomes [72, 171, 180]. There-

fore its escape might have evolved to postpone and account for the faster silencing of the

Cast allele. On the other hand, both Pir and Hprt were confirmed to be differentially
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silenced on the two alleles, however these data could not clarify if these differences were

caused by the overall faster silencing of the Cast allele or by polymorphisms between

the two mouse strains. Finally, the analysis of bulk RNA-Seq data from the TXΔXic

cell lines enabled the characterization of the allele-specific silencing dynamics of many

more X-linked genes compared to the scRNA-Sequencing assay. Indeed it revealed the

presence of a much larger set of differentially silenced genes between the two mouse

strains, known escapees and genes solely expressed by a single allele.

This approach could be extended to explore the XCI status in other contexts such as in

primary human cells. Although humans carry much fewer heterozygous SNPs compared

to the hybrid murine cell line which was investigated throughout this study, scRNA-

Sequencing technologies could be combined with variant calling methods to de novo

identify SNPs loci aiming to explore the roles of escapees and allele specific XCI in

disease susceptibility between the sexes [105, 192].

3 Outlook

3.1 Limitations

This work provides a detailed picture of the transcriptomic regulation of mESCs through-

out Xist up-regulation and random XCI, however it presents some limitations.

The major limitation and advantage of this study is represented by the protocol used for

the scRNA-Sequencing experiment. On one hand this protocol enables the collection of

strand-specific reads, the use of UMI barcodes and the visual inspection of cells isolated

on each IFC. On the other, strand specificity comes at the cost of a considerably lower

read coverage throughout the mouse genome. As previously mentioned throughout this

work, the use of a 3’-end biased protocol restricted the number of genes which could be

explored with allelic resolution compared to full length assays. This was also clear when

comparing the differential expression and silencing analyses performed using the bulk

and single cell assays.

Furthermore the reduced transcript coverage of 3’-end biased protocols limits the allele

specific analysis to rely on a handful of SNP loci whenever assigning a SNP-aligned read

to either alleles. This might result in erroneous AS quantifications whenever sequencing

errors occur on SNP loci, which was observed for a handful of XO cells showing biallelic

or Cast monoallelic Xist expression. Nonetheless the use of strand specific reads enabled

us to achieve an unbiased quantification of sense-antisense genes such as Xist and Tsix,

which was crucial for all downstream analyses.

A further technical limitation of this study was the absence of XO cells at day 2 of

differentiation, which was the time point where we first observed XCI in XX cells.
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Nonetheless we could still draw meaningful observations from the XO cell lines such as

their X-linked up-regulation throughout cellular differentiation, although this cell line

was not extensively explored as this project mostly focused on XX mESCs.

Finally, an additional limitation of this study is that since mESCs undergo Xist up-

regulation and rXCI in a more heterogeneous and less synchronized manner compared

to in vivo embryos, the results of the present work might differ from the ones observed

in vivo differentiating mouse embryos.

3.2 Future studies

The differential expression and correlation analyses of Xist expression levels and of the

RNA-velocity predicted change in X-linked expression (ΔX) revealed a number of novel

putative regulators.

These analyses however reflect mere associations of their expression levels to changes

in expression of Xist or ΔX, hence it can not be concluded if these genes are direct

regulators or rather if they are part of a more complex regulatory network leading to

a significant change in expression. In order to elucidate their regulatory role, future

studies could perturb these genes’ expression though small interfering RNA (siRNA),

short hairpin RNA (shRNA) or CRISPR-Cas9 screens which would reveal how their

reduced or absent transcription affects the expression of other genes, together with the

Xist up-regulation and XCI processes.

Moreover it would be interesting to repeat the experiments and analyses described

throughout this work on a hybrid cell line characterized by paternally inherited B6 and

maternally inherited Cast alleles, aiming to verify if and how the paternal iXCI affects

the downstream gene-silencing process during rXCI. Finally the Xce effect and differ-

ential gene silencing could be further explored combining the scRNA-Sequencing with

scATAC-sequencing and scHiC experiments, aiming to better understand how strain-

specific polymorphisms affect chromatin accessibility and chromatin tri-dimensional ar-

chitectures.



6 Appendix

Figure 1: (a) UMAP embedding of single cells grouped by cell line and Xist classifica-
tion and colored by bootstrapped X:A ratios values. (b) Box plots of bootstrapped X:A
ratios obtained when varying the Xist not-AS used to classify cells as Xist+, through-
out developmental time. (c) Percentage of XX cells assigned to each Xist AS class
obtained when varying the Xist AS UMI threshold used to classify Xist-expressing
cells, throughout developmental time. (d) RNA FISH of Xist in TX1072 mESCs at
days 2-4 of cellular differentiation. (left) Bar graph showing the quantification of three
biological replicates over time (100 cells were counted for each replicate). (right) An
example image at day 2 of differentiation, where dotted lines indicate the outline of cell
nuclei stained with Dapi (blue) and Xist (red). (e) Bar plots representing the top 20
absolute loadings for the first two principal components of the embedding defined for
the centered B6 X-ratio matrix computed on XX mESCs.
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Figure 2: (a) For each sequencing time point, the scatter plots show the results of
MAST DE analysis between Xist-high and Xist-low XX cells where significantly up-
/down-regulated genes (FDR le 0.05) are colored in red/blue while the not significant
genes are colored in black. Where every point represents the average normalized ex-
pression and observed log2FCs (Xist-high vs Xist-low cells) for each single gene being
tested. (b) Same scatter plot as described in (a), obtained when performing MAST DE
analysis between the ΔX-high and ΔX-low XX cells. (c) Heatmaps showing the results
of MAST DE and Correlation analyses obtained when comparing Xist-high and Xist-
low XX cells (left) or ΔX-high and ΔX-low XX cells (right) for a set of genes which
have been previously implicated in Xist regulation. The boxes labeled with a white
star represent significant (FDR le 0.05) results. (d) Line plots showing the average
normalized expression of the same genes showed in (c) throughout developmental time,
computed separately for XX cells assigned to different Xist not-AS expression classes.
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Figure 3: (a) Plot showing the gene-wise ratios e (median and first/third quartiles)
computed lumping up all B6 and Cast AS UMI counts across all XX cells, separately
for autosomal and X-linked genes (divided by Xist Undetected and MA cells), through-
out developmental time. (b) Dot plot showing the significance (dot size) of X-linked
genes when performing the differential silencing analysis, obtained when varying the
XP thresholds and the number of bins.
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Figure 4: (a) Schematic representation of the X inactivation center (top). Genes
on the plus strand are shown above the line and genes on the minus strand below.
Scissors demark the deleted region. The position of the sgRNA used to generate the
deletion (bars) and of the primers (arrows) used for genotyping are shown together with
the expected sizes for the PCR products. Namely, TXΔXicB6 carries the deletion on
the B6 chromosome (chrX:103,182,701-103,955,531, mm10), while TXΔXicCast on the
Cast allele (chrX:103,182,257-103,955,698, mm10). (b) Genotyping PCRs for clones A1
and A6 and the parental cell line TX1072. The experiment was performed twice with
similar results and the identity of the PCR bands was confirmed by Sanger sequencing.
(c) Scatter plots showing the percentage of Pyro-sequencing reads assigned to the B6
allele for the TXΔXicB6 (orange) and TXΔXicCast (green) cell lines, for each replicate
sample (dot) with the horizontal bar representing the average value. Data are shown
for five genes with similar silencing kinetics (top) and for the three genes deemed as
differentially silenced between the two TXΔXic cell lines.
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[5] Sandrine Augui, Elphège P Nora, and Edith Heard. Regulation of x-chromosome

inactivation by the x-inactivation centre. Nature Reviews Genetics, 12(6):429–442,

2011.

[6] Bradley P Balaton and Carolyn J Brown. Escape artists of the x chromosome.

Trends in Genetics, 32(6):348–359, 2016.

[7] Tahsin Stefan Barakat, Nilhan Gunhanlar, Cristina Gontan Pardo, Eskeatnaf Mu-

lugeta Achame, Mehrnaz Ghazvini, Ruben Boers, Annegien Kenter, Eveline Rent-

meester, J Anton Grootegoed, and Joost Gribnau. Rnf12 activates xist and is

essential for x chromosome inactivation. PLoS genetics, 7(1):e1002001, 2011.

[8] Tahsin Stefan Barakat, Friedemann Loos, Selma van Staveren, Elvira Myronova,

Mehrnaz Ghazvini, J Anton Grootegoed, and Joost Gribnau. The trans-activator

rnf12 and cis-acting elements effectuate x chromosome inactivation independent

of x-pairing. Molecular cell, 53(6):965–978, 2014.

[9] Murray L Barr and Ewart G Bertram. A morphological distinction between neu-

rones of the male and female, and the behaviour of the nucleolar satellite during

accelerated nucleoprotein synthesis. Nature, 163(4148):676–677, 1949.

[10] Antonio Barral, Isabel Rollan, Hector Sanchez-Iranzo, Wajid Jawaid, Clau-

dio Badia-Careaga, Sergio Menchero, Manuel J Gomez, Carlos Torroja, Fatima
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René AM Dirks, Guido van Mierlo, Onkar Joshi, Shuang-Yin Wang, Tomas Babak,

Cornelis A Albers, et al. Dynamics of gene silencing during x inactivation using

allele-specific rna-seq. Genome biology, 16(1):1–20, 2015.

[120] Graziano Martello and Austin Smith. The nature of embryonic stem cells. Annual

review of cell and developmental biology, 30, 2014.

[121] Leland McInnes, John Healy, and James Melville. Umap: Uniform mani-

fold approximation and projection for dimension reduction. arXiv preprint

arXiv:1802.03426, 2018.

[122] Hisham Mohammed, Irene Hernando-Herraez, Aurora Savino, Antonio Scialdone,

Iain Macaulay, Carla Mulas, Tamir Chandra, Thierry Voet, Wendy Dean, Jennifer

Nichols, et al. Single-cell landscape of transcriptional heterogeneity and cell fate

decisions during mouse early gastrulation. Cell reports, 20(5):1215–1228, 2017.

[123] Patrizia Mondello, Salvatore Cuzzocrea, and Michael Mian. Pim kinases in hema-

tological malignancies: where are we now and where are we going? Journal of

hematology & oncology, 7(1):95, 2014.

[124] Kim Monkhorst, Iris Jonkers, Eveline Rentmeester, Frank Grosveld, and Joost

Gribnau. X inactivation counting and choice is a stochastic process: evidence for

involvement of an x-linked activator. Cell, 132(3):410–421, 2008.
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[195] Sébastien Vigneau, Sandrine Augui, Pablo Navarro, Philip Avner, and Philippe

Clerc. An essential role for the dxpas34 tandem repeat and tsix transcription in

the counting process of x chromosome inactivation. Proceedings of the National

Academy of Sciences, 103(19):7390–7395, 2006.

[196] Kay-Dietrich Wagner, Nicole Wagner, and Andreas Schedl. The complex life of

wt1. Journal of cell science, 116(9):1653–1658, 2003.

[197] Feng Wang, JongDae Shin, Jeremy M Shea, Jun Yu, Ana Bošković, Meg Byron,
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