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Abstract 8 

Abstract 

Background 

The gut microbiome crucially influences human health and physiology, and it is associ-

ated with cardiovascular and kidney diseases. Understanding host-microbiome 

interactions is vital for novel disease therapies. Challenges remain, such as the gut 

microbiome's impact on hypertension-induced damage and fasting effects in metabolic 

syndrome (MetS) patients. Longitudinal data collection mitigates inter-individual 

variations, gaining popularity in microbiome research in recent years. A covariates-aware 

approach is essential for precise analyses; however, current tools lack effective control 

of multiple covariates and explicit assessment of time variable impact amidst other 

covariates. 

Aim 

To address the gap mentioned above and facilitate robust biomarker search in 

longitudinal microbiome analysis, an algorithm is developed and applied to microbiome 

datasets in order to clarify the role of the host-microbiome interaction in cardiovascular 

diseases (CVD), and also asses its generalizability. 

Methods 

LongDat, a covariate-aware longitudinal analysis algorithm, employs unique capabilities 

to simultaneously detect, control covariates, and assess time variable significance. It lev-

erages generalized linear mixed-effect models (GLMMs), accommodating inter-individual 

variance and various data distributions. For broader distribution and reproducibility, Long-

Dat is compiled as an R package. LongDat was applied to MetS patients' gut microbiome 

data undergoing fasting. In addition, the gut microbiome's role in hypertension (HTN) in 

colonized (COL) and germ-free (GF) mice was also explored using models and correla-

tion tests. 

Results 
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LongDat's performance was evaluated against existing tools using real and simulated 

data, illustrating its superior accuracy, runtime, and memory efficiency—particularly in 

scenarios with multiple covariates. When employed in the context of MetS patients un-

dergoing fasting, LongDat unveiled alterations in the gut microbiome affecting microbial 

taxa, gene modules related to short-chain fatty acid (SCFA) synthesis, and indicating po-

tential shifts in immune cells. Moreover, a comparison between COL and GF mice ex-

posed their varied responses to HTN, with GF mice exhibiting worse renal damage. The 

lack of anti-inflammatory SCFA in GF mice suggests that colonization status influences 

HTN-relevant circulating metabolites. Additionally, correlations between the gut microbi-

ome, functional modules, and metabolites were identified. These findings emphasize the 

crucial role of the gut microbiome, SCFAs, and other metabolites in HTN and overall 

health. 

Conclusion 

LongDat and the mixed effect models serve as a robust biomarker exploration tool in 

microbiome research, revealing fasting's potential for MetS intervention and the gut mi-

crobiome's significance in HTN development. This thesis emphasizes the essential role 

of covariate-aware tools in microbiome research, crucial for reproducibility and meaning-

ful inter-study comparisons. 
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Zusammenfassung 

Hintergrund 

Das Darmmikrobiom beeinflusst die menschliche Gesundheit und wird mit Krankheiten 

wie Herz-Kreislauf-Erkrankungen und Nierenleiden in Verbindung gebracht. Das 

Verständnis von Wirt-Mikrobiom-Interaktionen ist für neue Therapien wichtig. 

Herausforderungen bestehen hier unter anderem bei der Erforschung des Einflusses des 

Mikrobioms auf durch Hypertonie verursachte Schäden oder das Fasten beim 

metabolischen Syndrom (MetS). Längsschnittdaten minimieren Variationen und 

gewinnen in Mikrobiomforschung an Bedeutung. Ein kovariatenbewusster Ansatz ist für 

präzise Analysen essenziell, allerdings beherrschen gegenwärtige Tools oft nicht die 

effektive Kontrolle multipler Kovariaten und die Bewertung des Zeitfaktors neben anderen 

Kovariaten. 

Ziel 

Um diese Lücke zu schließen und Biomarker in längsschnittdatenbasierten 

Mikrobiomanalysen zu finden, wurde ein Algorithmus entwickelt. Dieser wurde auf 

Mikrobiomdaten angewendet, um die Wirt-Mikrobiom-Interaktion bei Herz-Kreislauf-

Erkrankungen zu beleuchten und seine Verallgemeinerbarkeit zu prüfen. 

Methoden 

Der Algorithmus LongDat erkennt, kontrolliert und bewertet Kovariaten sowie den 

Einfluss der Zeit. Dafür nutzt er verallgemeinerte lineare gemischte Modelle (GLMMs) für 

kovariatenbewusste Analysen. Um Reproduzierbarkeit zu gewährleisten und weitläufig 

Anwendung zu finden, wurde LongDat als R-Paket erstellt. So wurden mithilfe von Long-

Dat Mikrobiomdaten von MetS-Patienten während des Fastens analysiert. Auch die Rolle 

des Mikrobioms bei Hypertonie (HTN) in besiedelten (COL) und keimfreien (GF) Mäusen 

wurde mit Modellen und Korrelationstests untersucht. 

Ergebnisse 

LongDat übertrifft aktuelle Tools sowohl in Anwendung auf reale als auch simulierte 

Daten hinsichtlich Genauigkeit, Laufzeit und Speichereffizienz, vor allem bei zahlreichen 
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Kovariaten. Bei MetS-Patienten wurden festgestellt, dass Fasten zu einer Veränderungen 

im Mikrobiom führt. Auch wurden Unterschiede in bakteriellen Taxa und Genmodulen, 

die kurzkettige Fettsäuren (SCFA) betreffen, sowie Hinweise auf Veränderungen in 

Immunzellen sichtbar. COL- und GF-Mäuse zeigten unterschiedliche Reaktionen auf 

HTN, wobei GF-Mäuse stärkere Nierenschäden aufwiesen. Das Fehlen 

entzündungshemmender SCFA bei GF-Mäusen legt nahe, dass der Besiedlungsstatus 

HTN-relevante Metabolite beeinflusst. Zudem wurden Korrelationen zwischen dem 

Darmmikrobiom, seinem funktionellen Potential und Metaboliten gefunden. Dies betont 

die Bedeutung des Mikrobioms, SCFAs und anderen Metaboliten für HTN und die 

menschliche Gesundheit im Allgemeinen. 

Fazit 

LongDat und gemischte Effektmodelle sind robuste Werkzeuge für die 

Mikrobiomforschung. Sie zeigen das Potential des Fastens als Internvention bei MetS 

und die Rolle des Mikrobioms bei HTN. Diese Dissertation unterstreicht die essentielle 

Rolle kovariatenbewusster Tools in der Mikrobiomforschung zur Sicherung von 

Reproduzierbarkeit und robuster Studienvergleiche.
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1 Introduction 

1.1 An overview of the gut microbiome 

The human body is home to countless microorganisms. These microorganisms dwell in 

various environments, such as the skin, oral cavity, and gastrointestinal system (including 

stomach, large and small intestines). In fact, the number of microbial cells inhabiting the 

human body is estimated to be equal to or greater than human somatic cells1. The study 

of gut microbiome is rather recent because it was impossible to clarify the identity of these 

microorganisms in the past. Thanks to the rapid development of metagenomic sequenc-

ing technology in recent years, researchers are now able to characterize the composition 

and function of these microorganisms at a fine resolution. Nowadays, literature related to 

the human microbiome spawned, and in turn, facilitates the understanding of these mi-

croorganisms' impact on human health. 

 

While microbial communities at different human body sites have distinct influences and 

interactions with the human body, the gut microbiome, which refers to the microorganisms 

living in the gastrointestinal tract collectively, has received significant interest among all 

the microbial communities for two reasons. First, the gut microbiome encompasses close 

and multifaceted relationships with human health2. Second, since over one thousand dif-

ferent microbial species have been identified in the gut microbiome so far, it stands out 

as the most complicated among the various microbial communities in the human body3. 

To date, it is known that the gut microbiome is highly diverse and consists of various types 

of microorganisms such as viruses, bacteria, archaea, and fungi4. This complex ecosys-

tem is primarily composed of the taxa belonging to two dominant phyla, Bacteroidetes 

and Firmicutes5. Despite great variation between individuals whose age, health status, 

geography, diet, or antibiotic usage differs, the gut microbiome remains relatively stable 

over time if not perturbed by external factors.  

 

The human gut microbiome can be classified into several enterotypes, namely Bac-

teroides (enterotype 1), Prevotella (enterotype 2), and Ruminococcus (enterotype 3)6. 

The enterotypes are characterized by the predominance of certain bacterial genus. Par-

ticularly, the Bacteroides enterotype has been divided into two subtypes, Bacteroides 1 
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and Bacteroides 2, mainly according to the proportion of Faecalibacterium and microbial 

cell density in the gut7. 

1.2 Host-microbiome interaction and human health 

The interaction between the host and microbiome affects human health to a large extent. 

Host-microbiome interactions involve both direct cellular contact and the involvement of 

metabolites. Metabolites originate from bacteria, the host, or the environment and subse-

quently undergo metabolism by the bacteria8. One prominent example of these metabo-

lites is the SCFA. SCFAs are a class of fatty acids consisting of less than six carbon 

atoms and are secreted by the gut microbiome during the fermentation of fibers in the 

large intestine. The main SCFAs being secreted are acetate, propionate, and butyrate9. 

In recent years, SCFAs have become a thriving research field because they are found to 

encompass a variety of beneficial effects on the host, including anti-obesity, anti-diabetic, 

anticancer, anti-inflammatory, and immune-regulating. Furthermore, it is shown that 

SCFAs protect the host against liver, neurological, and CVD10.  

 
The gut microbiome can be categorized into commensals and pathogens based on their 

relationship with human health. Commensals are the ones inhabiting the human gut with-

out posing harm; on the contrary, pathogens cause disease or adverse health effects11. 

Commensals are mostly beneficial and involved in a wide range of human physiology. 

Some examples are outlined below.  
 
First, commensals compete with pathogens for the resources (e.g., nutrients, living space) 

in the gut, making the proliferation of pathogens become more challenging, limiting the 

ability of pathogens to cause infections12. Second, commensals play an important role in 

training the innate and adaptive immune systems to recognize and react to potential 

threats, which is vital in maintaining effective immune response and the ability to defend 

against infections13,14. GF animals lacking gut microbiome exhibit compromised immune 

functions such as decreased immunoglobulin concentration, and have impaired innate 

and adaptive immune responses15,16.  
 
Third, commensals are involved in the regulation and development of the gastrointestinal 

tract. They contribute to the maturation and proper functioning of the gastrointestinal tract, 
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ensuring efficient digestion and absorption of nutrients17. Literature indicates that com-

mensals are critical in maintaining the integrity of the intestinal barrier. The intestinal bar-

rier is a selectively permeable structure that enables the uptake of nutrients and facilitates 

immune sensing, while acting as a barrier against harmful substances and bacteria sim-

ultaneously18. A weakened intestinal barrier allows gut bacteria, bacterial toxins, undi-

gested food, as well as waste products to enter the bloodstream. This dysfunction triggers 

inflammatory responses and might result in “leaky gut syndrome”, which is a collective 

term including symptoms such as food sensitivities, abdominal bloating, cramps, diarrhea, 

constipation, and fatigue19. Moreover, SCFAs produced by commensal microbes are im-

portant energy sources for intestinal epithelial cells, and they strengthen the integrity of 

the intestinal barrier20. 
 
Lastly, commensals influence the function and development of the central nervous sys-

tem (CNS), and disruptions in the gut microbiome may be associated with neurological 

problems21. Recent research emphasizes the significant role of the gut microbiome in 

shaping the gut-brain axis, which connects the central and enteric nervous systems, fa-

cilitating communication between the brain's emotional and cognitive centers and intesti-

nal functions22.  
 

On the opposite side of a healthy gut microbiome, which consists of commensals, is 

dysbiosis, which refers to the imbalanced state of microbes in the gut. Dysbiosis occurs 

when the natural balance of the microbial ecosystem is disrupted, as it allows 

opportunistic bacteria which are originally not dominant to overgrow23. Dysbiosis can 

arise from a variety of factors specific to the host, including genetic background, health 

status (e.g., inflammation), and lifestyle habits. Additionally, environmental factors, such 

as diet (e.g., high in sugar and low in fiber), antibiotics, drugs, and hygiene, play crucial 

roles in leading to dysbiosis as well24. Lately, accumulating evidence demonstrates that 

dysbiosis is linked to human diseases, including autism, obesity, colorectal cancer, in-

flammatory bowel disease (IBD), allergy, diabetes, CVD, and kidney disease25,26.  

1.3 The role of the gut microbiome in CVD and CKD 

CVD is a general term describing a range of diseases related to the heart or blood vessels. 

CVD stands as the major underlying cause of mortality in the world27. Some of the known 
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and well-established risk factors for CVD are unhealthy diet, insufficient physical activity, 

hyperglycemia, obesity, smoking, HTN, MetS, and CKD, among others28,29. CVD, HTN, 

and MetS are all associated with various forms of organ damage, such as renal damage 

or heart disease. Intriguingly, recent findings indicate that changes in the gut microbiome 

(either in composition or function), are involved in the development of CVD30. For example, 

in cross-sectional studies comparing hypertensive patients with healthy individuals, the 

abundance of Prevotella and Klebsiella increased. On the other hand, a reduction in the 

abundance of Faecalibacterium prausnitzii and an elevation in the levels of Ruminococ-

cus gnavus was observed in patients suffering from heart failure. Besides, in atheroscle-

rosis patients, the abundance of Escherichia coli,  Enterobacter aerogenes, and Lacto-

bacillus salivarius were found to rise, while Roseburia intestinalis, Faecalibacterium 

prausnitzii,  Prevotella copri, and Alistipes shahii declined31. Furthermore, several micro-

bial metabolites have appeared to influence cardiovascular disease. For instance, SCFAs 

mediate blood pressure (BP) through GPR-regulated pathways, and lower BP by modu-

lating olfactory receptor 78 (Olfr78) and promoting vasodilation in mice32. Another exam-

ple can be taken from the metabolite known as trimethylamine N-oxide (TMAO). Upon 

dietary intake of choline or carnitine, the gut microbiome metabolizes these compounds 

into trimethylamine (TMA). Subsequently, the liver converts TMA into TMAO, whose level 

in plasma is positively correlated with obesity, insulin resistance, risk of CVD, and mor-

tality33.  

 

As previously stated, CKD is a continual kidney damage resulting in decreased glomeru-

lar filtration rate and albuminuria. CKD has been identified as a risk factor for CVD. More 

accurately, CVD and CKD exhibit a close interconnection, wherein dysfunction in one 

organ can adversely affect the other, eventually resulting in the failure of both. Similar to 

what has been shown in CVD, the gut microbiome plays a vital role in the progression of 

CKD. For example, there is a higher abundance of Desulfovibrio, Escherichia/Shigella, 

and Streptococcus, while a lower abundance of Roseburia, Faecalibacterium, Pyram-

idobacter, and Prevotella in CKD patients34,35. On the other hand, alterations in the me-

tabolites produced by the gut microbiome have significant outcomes. Specifically, a de-

crease in metabolites known to promote health, such as SCFAs, while the accumulation 

of uremic toxins, including ammonia, indoles, and TMAO, exacerbates CKD progression. 

The worsening of CKD is attributed to both the excessive production of these toxins and 
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their reduced elimination due to impaired kidney function, ultimately contributing to the 

development of CKD36. 

 

In short, accumulating studies have indicated that the gut microbiome is pivotal in CVD 

and CKD progressions. Changes in the gut microbiome composition and metabolites con-

tribute to the development of CVD and CKD. By enhancing our knowledge of the gut 

microbiome, novel therapies aimed at managing and treating these diseases (or their risk 

factors) may be developed. 

1.4 The importance of longitudinal study in gut microbiome research  

Based on the research design, there are two categories of microbiome data: cross-sec-

tional and longitudinal. Cross-sectional data are obtained by evaluating more than one 

subjects at a single time point without follow-up, whereas longitudinal data are repeated 

measurements acquired sequentially from the identical subject at various time points37,38. 

Cross-sectional studies are popular since they offer notable advantages in speed and 

cost-effectiveness; they also excel in assessing prevalence rates and investigating con-

nections between various factors and outcomes. Besides, ethical challenges are infre-

quent in cross-sectional studies because participants are not intentionally exposed or 

treated. Nonetheless, cross-sectional studies bear several disadvantages, including their 

inability to examine rare diseases and infer causal relationships. In addition, cross-sec-

tional data are unable to account for inter-individual variations nor track intra-subject 

changes over time37,39.  In contrast, longitudinal studies are specifically designed to cap-

ture the dynamics within individuals throughout the time course, as well as the variations 

between individuals40,41. Furthermore, longitudinal studies are favored over cross-sec-

tional studies when the objective is to determine the causal impact of a specific treatment 

on the outcome, as the temporal sequence of treatment and outcome in longitudinal stud-

ies are clear42. Consequently, over recent years, there has been an increasing adoption 

of longitudinal data collection in the biological and medical fields, including studies related 

to the gut microbiome43. Given the high inter-subject variability observed in gut microbi-

ome data, longitudinal studies play an important role in providing valuable insights and 

understanding the complex dynamics over time. 
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1.5 The proper analysis of longitudinal microbiome data  

When it comes to analyzing longitudinal microbiome data, several factors require consid-

eration. Microbiome data obtained through metagenomics sequencing presents unique 

challenges due to inherent characteristics like uneven total sequencing depth between 

samples, compositional structure, high sparsity, as well as overdispersion 41. Additionally, 

due to the nature of longitudinal data, it is also necessary to incorporate adjustments for 

individual variations in the analyses. 

 

Oftentimes, the objective of gut microbiome research is to identify the dissimilarities in 

the abundance of microbes among different groups (e.g., different treatments or time 

points). In this case, a standard procedure encompasses two stages, namely, pre-pro-

cessing of the raw data and then conducting differential abundance analysis. In the first 

stage, the issue of uneven total sequencing depth in data acquired from metagenomic 

sequencing entails attention during the initial pre-processing since it can introduce bias 

when assessing microbial communities44. Thus, several data-preprocessing techniques 

have been devised to handle the discrepancies in sequencing depth, such as normaliza-

tion, rarefaction, and transformation 45. Commonly used methods of transformation or 

normalization include centered log-ratio (CLR), total-sum scaling (TSS), geometric mean 

of pairwise ratios (GMPR), cumulative-sum scaling (CSS), and trimmed mean of M-val-

ues (TMM)46-48. CLR transforms data for compositional analysis, which involves taking 

the log of the ratios of each value to the average of all values and centering the output 

values around zero.  GMPR computes ratios and takes their geometric mean for normal-

ization. TSS divides the raw absolute abundance by read depth, converting it to relative 

abundance, while CSS addresses TSS bias through quantile normalization. TMM tackles 

composition bias and calculates normalization factors. Finally, rarefaction is a process of 

random subsampling that ensures equal sequencing depth across all samples. 

 

In the second stage, where differential abundance analysis is conducted, it is important 

to take into account the unique attributes of microbiome data. These attributes include 

the compositional structure, high sparsity, and overdispersion. Microbial data from meta-

genomic sequencing exhibit a compositional nature due to fixed total sequencing read 

amounts, resulting in interdependencies among feature abundances across samples49. 
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Various tools have been introduced to address this compositional structure, although lit-

erature indicates that their superiority over non-compositional methods is not consistent50. 

Overdispersion refers to a situation where the data exhibits more variability than what 

would be anticipated based on a particular distribution51. On the other hand, high sparsity 

indicates that the data contains a high proportion of zero values41. Numerous approaches 

for microbiome data analysis have been proposed so far, and there exists a wealth of 

reviews comparing these approaches45,52-54. Yet, there is no universal pipeline (including 

preprocessing and differential abundance analysis) for all kinds of microbiome data, and 

the choice depends on the data characteristics and research objectives. 

 

That said, the utilization of GLMMs emerges as a promising solution for the differential 

abundance analysis of microbiome data55. Longitudinal microbiome datasets violate the 

assumptions of simple linear models (LMs) because their values are not continuous nor 

normally distributed. In addition, the values of longitudinal microbiome data are autocor-

related, which means that there are correlations between measurements taken at differ-

ent time points within the same individual56. Hence, a simple LM is unsuitable to be ap-

plied to longitudinal microbiome data, and an alternative to LMs that account for such 

characteristics is required. This is where GLMMs come into play. The basis of GLMMs is 

constructed on generalized linear models (GLMs). GLMs encompass a group of regres-

sion models that relax the strict assumptions of LM to accommodate various types of 

response variables, including counts, binary, proportion, continuous, categorical, and or-

dinal data57,58. For example, GLMs such as negative binomial regression and zero-in-

flated Poisson regression are commonly utilized to fit microbiome data since they are able 

to account for overdispersion and high sparsity. As mentioned earlier, due to the fact that 

the outcome values in longitudinal microbiome data are autocorrelated, GLMs are further 

extended to account for such correlation. This is achieved by integrating random effects 

into the framework of GLMs, resulting in the formation of GLMMs59. In the analysis of 

longitudinal microbiome data, the individual from which the sample is taken (i.e., the sam-

ple donor) is treated as a random variable, allowing for the inclusion of inter-individual 

variation in microbial abundance within models. 

 

Last but not least, another crucial point when analyzing longitudinal microbiome data is 

the consideration of covariates. When applying model-fitting to longitudinal microbiome 

data, the dependent variables are the microbial features, while the independent variables 
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are the metadata, including the time variable and other factors (e.g., drug intake, age, 

weight). The goal is to examine the impact of the time variable (a proxy for treatment or 

intervention). Covariates refer to variables other than the time variable that may influence 

the outcome (microbial features), and they are commonly present in gut microbiome stud-

ies60. An example of a covariate may be that in a study examining the effects of a new 

exercise program on the gut microbiome, a potential covariate to consider would be the 

dietary habits of the participants. Changes in the participants' dietary patterns throughout 

the study could influence the observed changes in the microbiome composition, making 

it important to assess whether the observed effects are directly related to the exercise 

program or are influenced by the dietary modifications. Therefore, in order to obtain ac-

curate results from longitudinal microbiome data analysis, it is essential to distinguish the 

impacts of the time variable from those of the covariates. The influence of covariates 

needs to be identified and accounted for to prevent drawing erroneous conclusions61,62. 

 

In brief, when analyzing longitudinal microbiome data, challenges related to sequencing 

depth, overdispersion, sparsity, and inter-individual variation need to be considered. The 

utilization of GLMMs is a promising solution to account for the complex characteristics of 

longitudinal microbiome data. Additionally, the inclusion of covariates is crucial to accu-

rately interpret the effects of the time variable. Despite the fact that existing tools for lon-

gitudinal microbiome analysis handle some of these aspects, none of them can control 

for multiple covariates effectively while providing an explicit and detailed assessment of 

how the presence of other covariates influences the effect of the time variable50,63-68. Thus, 

the development of a new tool to bridge this gap in gut microbiome research is imperative. 

1.6 Thesis outline and study aims 

The primary objective of this thesis is to advance our understanding of the intricate rela-

tionship between the gut microbiome and cardiovascular and kidney diseases. The aim 

is to delve deeper into the influence of the gut microbiome on the development and pro-

gression of these diseases, unraveling the underlying mechanisms and identifying poten-

tial therapeutic targets. To facilitate this rigorous analysis, a novel algorithm called Long-

Dat has been developed, enabling the integration of covariates and providing a powerful 

framework for investigating the intricate interplay between the gut microbiome and cardi-

ovascular and kidney diseases. Through these endeavors, this thesis aims to contribute 
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to the advancement of knowledge in this critical area of research and ultimately pave the 

way for improved therapeutic strategies targeting these diseases. 
 

The thesis comprises three papers that collectively contribute to the overarching goal of 

deepening our understanding of the gut microbiome's impact on cardiovascular and 

kidney diseases. The first paper introduces LongDat, the algorithm developed to enable 

covariate-sensitive analysis in gut microbiome research (hereafter called Study 169). The 

second paper explores the effects of fasting on the gut microbiome and immunome in 

MetS patients, investigating the potential of fasting as a non-drug-based approach for 

managing MetS (hereafter called Study 270). Lastly, the third paper goes on to study the 

impact of the absence of gut microbiome on inflammation and organ damage in hyper-

tensive mice, emphasizing the importance of gut microbiome (hereafter called Study 371). 

These three studies are outlined below. 

 

Study 169:  This first study presents the algorithm, LongDat, which is specialized in co-

variate-sensitive longitudinal microbiome analysis69. LongDat has been specifically de-

veloped to address the gap in the current methodology of longitudinal gut microbiome 

research. LongDat combines GLMMs and non-parametric effect size calculations to ac-

commodate different statistical distributions and account for inter-individual variation. 

Therefore, while its main application is in microbiome data analysis, LongDat is a versatile 

tool that can be adapted to other data types like immunome, metabolome, and transcrip-

tome. The methodology of Longdat is presented in section 2.1, and the result of bench-

marking against other existing tools, including MaAsLin2, ANCOM, lgpr, and ZIBR, is il-

lustrated in section 3.1. MaAsLin2, similar to LongDat, focuses on microbiome analysis 

and utilizes GLMMs while allowing for the inclusion of covariates. However, the key dis-

tinctions lie in LongDat's explicit reporting of how the time variable's effect is influenced 

by other covariates, while MaAsLin2 does not provide this information. Furthermore, 

LongDat takes a different approach to dealing with multiple covariates compared with 

MaAsLin2. Besides MaAsLin2, LongDat is also evaluated alongside ANCOM, lgpr, and 

ZIBR, which are other R packages allowing for covariate inclusion in the analyses64,66,68. 

ANCOM employs a compositional approach, lgpr utilizes additive Gaussian process re-

gression for modelling longitudinal data in a non-parametric way, whereas ZIBR com-

bines zero-inflated Beta regressions and logistic models, along with random effects, to 
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assess the impact of time on microbial features. These tools' performances are assessed 

and compared using both real and simulated microbiome data for benchmarking. 

 

Study 270:  As an application of the LongDat algorithm, we implemented its concept in 

this study. The second study inspects how fasting influences the gut microbiome of MetS 

patients, leading to improvement in their BP, body-mass index (BMI), and the need for 

antihypertensive drugs70. MetS is a cluster of chronic conditions induced by Western life 

habits, including obesity, high BP, high blood sugar levels, and abnormal cholesterol lev-

els, that collectively increase the risk of CVD72. In the context of MetS, dysbiosis is asso-

ciated with conditions such as insulin resistance, inflammation, and other metabolic 

dysregulations. Fasting refers to the practice of restraining or restricting the consumption 

of food and, in some cases, beverages for a defined period of time. Recently, fasting has 

been recognized for its capacity to enhance the abundance of beneficial microbial species, 

suppress the growth of pathogens, mitigate inflammation, and consequently contribute to 

a decrease in BP levels73,74. However, there is a lack of knowledge regarding the specific 

effects of periodic fasting on the gut microbiome and immunome in MetS patients. In this 

study, a protocol involving five days of fasting and then followed by three months of the 

modified Dietary Approaches to Stop Hypertension (DASH) diet was executed. This study 

represents a pioneering investigation that examines the impact of lifestyle change com-

bined with fasting intervention in MetS patients using a comprehensive multi-omics ap-

proach, integrating analysis of the gut microbiome and immunophenotyping. Covariate-

aware analyses are implemented throughout the study, such that the effect of the fasting 

treatment is disentangled from that of other metavariables. 

 

Study 371:  The third study demonstrates the significant influence of microbial colonization 

on organ damage and inflammatory responses in HTN, underscoring the pivotal role of 

the microbiome in mediating these effects71. HTN emerges as a formidable risk factor, 

ranking among the most influential contributors to various CVDs that develop throughout 

an individual's lifespan75. The association between HTN and the gut microbiome involves 

inflammation, immune system, and microbial metabolites (e.g., SCFA), which have the 

potential to either alleviate or exacerbate cardiovascular disease and hypertensive dam-

age76-78. However, the specific contribution of the gut microbiome to HTN remains unclear. 

Hence, this study aims to investigate the relative impact of the gut microbiome on the 

burden of hypertensive disease. To address this, GF mice were utilized, which allowed 
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the key differences in the response to hypertensive stimuli compared with COL mice to 

be uncovered. In this study, the partial Mantel test is utilized to partition out the effect of 

covariates to attain a more precise outcome. 

 

Parts of this thesis have been assembled in publications69-71. The text can be similar but 

not identical. 
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2 Methods 

2.1 Covariate-aware approaches of longitudinal data analysis (Study 169) 

2.1.1 The LongDat method 

2.1.1.1 LongDat package overview 

To facilitate its distribution, the LongDat algorithm was compiled into an R package. The 

LongDat R package is built using R (>= 4.0.0), and the dependencies are lme479 (>= 1.1-

28), glmmTMB80 (>= 1.1.3), reshape281 (>= 1.4.4), emmeans82 (>= 1.7.3), bestNormal-

ize83 (>= 1.8.2), tidyverse84 (>= 1.3.1), MASS85 (>= 7.3-56), effsize86 (>= 0.8.1), patch-

work87 (>= 1.1.1), and car88 (>= 3.0-12). The LongDat pipeline encompasses several 

functions to facilitate the generation of the input table, statistical analysis, and visualiza-

tion of the output. The statistical analysis stage of the LongDat pipeline consists of three 

main steps, which are the evaluation of the null time model, the examination of the co-

variate model, and the computation of the effect size (Figure 1).  

 

2.1.1.2 The null time model test 

First, the null time model tests the association between time and each feature (overlook-

ing covariates at this stage), utilizing GLMMs with various R packages like MASS85, 

lme479, and glmmTMB80. LongDat's versatility stems from its utilization of GLMMs. Count 

data composed of integers (e.g., numbers of sequencing reads) is a typical data type of 

microbial abundance table, and is fitted by a negative binomial model89. Proportion data, 

which ranges between 0 and 1, are fitted with a beta model90, while binary data, com-

posed of either 0 or 1, are fitted with binary logistic regression91. Ordinal data (i.e., ranks) 

are fitted with a proportional odds model92. Continuous data is first normalized by the 

bestNormalize83 package and then fitted with LMs. To address non-independence and 

between-individual variability of samples from the same donor, a random intercept model 

is employed in each model, where the sample donor is taken as a random variable. The 

significance of the time variable is inferred by the Wald chi-square test. Multiple testing is 

adjusted using the Benjamini-Hochberg (BH) approach or other relevant approaches93. 

The functions longdat_disc and longdat_cont employ post-hoc tests, which serve as com-

plementary analyses to the null model test (Figure 2, 3). These tests aid in pinpointing 
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the specific time intervals where significant changes occur within the features. In other 

words, post-hoc tests help determine the specific pair of time points where differences 

exist. These analyses utilize the R package emmeans82 and Spearman’s correlation test, 

respectively.  

 

In the case of the “count mode” where negative binomial models are used, two thresholds 

are set to avoid false positives when facing sparse features (i.e., features with high pro-

portions of zeros in their values). The two thresholds are non-zero value count cut-offs 

and 𝜃 (theta) cut-offs. Non-zero value counts are the number of non-zero values of each 

feature. 𝜃,	which characterizes the level of overdispersion in the data, represents the dis-

persion parameter in a negative binomial model. Negative binomial regression is a gen-

eralization of Poisson regression that relaxes the assumption of equal variance and mean. 

Unlike Poisson regression, the variance in negative binomial regression depends on both 

the mean and the parameter 𝜃, and the variance is always larger than the mean. It 

quantifies the degree of variability that is not accounted for by the mean-variance rela-

tionship assumed in a Poisson distribution. A higher 𝜃 indicates greater dispersion, mean-

ing that the variance is larger than what would be expected based on the mean. Con-

versely, a lower 𝜃 suggests less dispersion, with the variance closer to the mean.  

 

The negative binomial regression model operates under the assumption that the mean 

and variance of the response variable are related through a logarithmic link function. The 

negative binomial regression model is expressed as 

𝑙𝑜𝑔'𝐸(𝑌), = 	𝛽! +	𝛽"𝑋" +	𝛽#𝑋#+	. . . +	𝛽ₚ𝑋ₚ										(1) 

where 𝑙𝑜𝑔(𝐸(𝑌)) represents the logarithm of the expected value of the response variable 

𝑌, 𝛽₀, . . . 𝛽ₚ are the regression coefficients associated with the predictor variables 𝑋₁, . . . 𝑋ₚ. 
To account for overdispersion, the variance of the response variable 𝑌 is modelled as a 

function of the mean 𝐸(𝑌) with an additional dispersion parameter theta (𝜃). The formula 

for the variance in a negative binomial regression is: 

𝑉𝑎𝑟(𝑌) = 	𝐸(𝑌) +	(𝜃	 ∗ 	𝐸(𝑌)#)								(2) 

where 𝑉𝑎𝑟(𝑌) represents the variance of the response variable 𝑌, and 𝐸(𝑌) represents 

the expected value of 𝑌.  
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Although there is no strict requirement for the minimum number of non-zero values when 

applying negative binomial models, it is generally recommended to have a sufficient num-

ber of non-zero values for precise parameter estimation in the negative binomial distribu-

tion. Inadequate non-zero values can result in imprecise parameter estimates and com-

promise the model's reliability. For example, when the number of non-zero values is low, 

it can violate the assumption of the negative binomial model that the variance of the data 

exceeds the mean. In an example dataset (gut microbiome data on species level in Study 
270), an interesting finding demonstrates a negative correlation (Spearman’s rho = -0.21, 

p = 3 × 10$%) between the sparsity of features (reversely represented by the number of 

non-zero values) and 𝜃. This relationship is illustrated in Figure 5A, where a distinct 

"cloud" of microbial features with low non-zero counts (high sparsity) and high 𝜃 can be 

observed. In this dataset, the features that either have 𝜃 greater than 2#! and a number 

of non-zero values less than 9, or a number of non-zero values less than 5, were desig-

nated as “to be excluded”, while others were designated as “to be kept”. Among the sig-

nificant features (BH-corrected p-values < 0.1), the raw p-values of these labeled features 

were significantly lower than the p-values of the features to be kept, which may result in 

conclusions that are shaky and lack reliability (Figure 5B). Considering this issue, the 

features with a low number of non-zero values from the analysis are excluded. By exclud-

ing extremely sparse features, one avoids the negative binomial models falsely resulting 

in extremely low p-values from really sparse features. 

 

In the LongDat package, the longdat_disc() and longdat_cont() functions include argu-

ments such as theta_cutoff, nonzero_count_cutoff1, and nonzero_count_cutoff2, which 

allow users to customize the thresholds for excluding features based on theta value and 

non-zero count. As different datasets might possess distinct attributes, to facilitate the 

selection of suitable thresholds, an auxiliary function called "theta_plot()" has been cre-

ated. This function enables users to visualize the relationship between 𝜃 and non-zero 

counts in a similar way as Figure 5A, aiding in the decision-making process for each 

argument. By adjusting these values, users can tailor the analysis to their specific needs 

and data characteristics. 
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2.1.1.3 The covariate model test 

Second, the covariate model test is executed only when covariates (i.e., metadata other 

than the time variable) are present. The covariates that demonstrate a significant associ-

ation with each feature, such as the abundance of the microbiome, are chosen from the 

metadata through non-parametric tests like the Spearman's correlation, Wilcoxon rank-

sum, or Kruskal-Wallis test. Afterward, each chosen covariate is incorporated individually 

as a fixed variable along with the time variable in GLMMs to investigate if the time asso-

ciations could be attributed to the impact of each covariate, which aligns with the "vibra-

tion of effects" (VoE) concept94. VoE refers to the extent to which modifications in the 

combination of independent variables (such as including covariates) influence the result 

and significance of a model. When the VoE is large, it indicates that the relationship be-

tween independent variables and features is less reliable. An authentic correlation should 

maintain its statistical significance despite any changes made to the model configurations. 

The significance of the time variable and the covariate is determined by the Wald chi-

square test. After the model tests, significant time-dependent features are categorized 

based on whether they fulfill the "effect not reducible to covariate," "entangled with co-

variate," or "effect reducible to covariate" criteria. When the time variable continues to be 

a significant variable in all models, it indicates that the feature is identified as an "effect 

not reducible to the covariate." Conversely, when the time variable becomes insignificant, 

but the covariate demonstrates significance in at least one of the models, the feature is 

classified as "effect reducible to the covariate." In case no apparent covariate exists, but 

in at least one model, both the covariate and time variables are not significant, the feature 

is denoted as "entangled with covariate." The decision tree for determining the 

significance of the time variable and the final signal for each feature in the LongDat output 

is presented in Figure 4. 

 

2.1.1.4 Effect size calculation 

Third, the effect size of the feature change between different time points is calculated. 

LongDat employs non-parametric methods to compute effect sizes. For continuous time 

variables, such as days, Spearman’s correlation is utilized, and for discrete time variables, 

such as before/after treatment, Cliff's delta is used95,96. Cliff’s delta is derived by 

𝐷𝑒𝑙𝑡𝑎 = 	
#(𝑥" > 𝑥#) − #(𝑥" < 𝑥#)

𝑛"𝑛#
										(3) 
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where 𝑥" and 𝑥#	 represent values from group one and two, while 𝑛" and 𝑛# stand for the 

sample sizes of the two groups respectively. The symbol # denotes the counts. Cliff’s 

delta ranges from -1 to 1, with -1 or 1 meaning a total difference, and 0 indicating a com-

plete overlap between the distributions of the two groups. Spearman’s correlation (rho) is 

calculated by  

𝑅ℎ𝑜 = 	1 −
6Σ𝑑'#

𝑁(𝑁# − 1)										(4) 

where 𝑑' are the differences in the ranked scores between each observation in the two 

groups, and N is the total number of the samples. Spearman's rho varies between -1 and 

1. A value of 1 implies a perfect association between ranks, while -1 signifies a complete 

negative association among ranks. A value of 0 denotes an absence of any association. 

 

The estimation of effect size is determined by examining the association between the 

feature and the independent variable. Hence, to guarantee the correct estimation of effect 

size by LongDat, it is crucial that the treatment effects remain monotonic (i.e., they show 

no alteration in the direction of association) throughout the time intervals in the data. If 

the treatment effects do not maintain monotonicity, it is advisable to carry out a separate 

analysis on time subranges where monotonicity holds. 
 

2.1.1.5 Randomized control test 

In scenarios using the "count mode," where negative binomial models are applied, there 

is a concern about elevated type I error rates (false positives) associated with negative 

binomial regression. To provide an alert to users regarding the potential occurrence of 

false positives, a randomized control test is implemented. During this step, all rows within 

the initial dataset are randomly shuffled against the time variable. The assumption is that 

positive outcomes should not emerge from a randomized control test. Therefore, any 

signals exhibiting significance in this context are deemed false positives. If false positives 

are detected within this randomized control result, LongDat will issue a warning to the 

user upon completion, and an object named the "Randomized_control table" will be 

generated exclusively. This table is intended to serve as a reference for users, 

showcasing the effect sizes of false positive features, which can be compared with those 

of significant features within the original dataset. In addition, in the context of using long-
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dat_disc, if false positives are present in the randomized control test, users have the op-

tion to assess a feature's significance using the Wilcoxon rank-sum test, which is a more 

conservative testing method. The outcome of the Wilcoxon rank-sum test is provided in 

the LongDat main result table alongside the default post-hoc test results, allowing users 

to make a more conservative evaluation of a feature's significance. 

2.1.1.6 LongDat output 

The above-mentioned steps yield two tables that summarize the results. The first table 

displays the adjusted q-values, which account for multiple testing, indicating time depend-

ency and effect sizes for each feature. The second table shows the covariates and their 

respective status of relative reducibility. In case there are any false positives in the ran-

domized control test, there will be a third table showing the effect sizes of the false posi-

tive features, so that the users can refer to the distribution of their effect sizes and check 

their result table. Users can visualize the result by using the function cuneiform_plot(), 

which creates a comprehensive cuneiform plot based on the result table (Figure 1). 

 

2.1.2 Simulation of longitudinal data 

Microbial taxonomic abundance data for a cohort was simulated longitudinally using two 

R packages, namely microbiomeDASim97 and SparseDOSSA250. MicrobiomeDASim al-

lows users to define parameters such as effect size, sparsity, time points and number of 

samples, and uses a multivariate normal distribution to generate simulated data with a 

first-order autoregressive correlation for longitudinal dependency. A first-order auto-

regressive correlation assumes that the correlation between two observations decreases 

as the time interval between them increases. SparseDOSSA2, on the other hand, uses 

GLMMs to generate feature-covariate associations, such as the time variable and other 

specified covariates, and generates realistic microbial data based on real microbial com-

munities (here, the template was stool microbiome). 

 

2.1.2.1 Simulation of longitudinal data using microbiomeDASim 

First, for the simulation of data with no covariate, 100 simulations were carried out for 

every combination of sample sizes (10, 20, 38, 75, 150, and 300) and effect sizes (Spear-

man’s rho median approximately equals 0.2 or 0.5 for features changing with time). There 
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were 200 features in each simulated dataset. For these datasets, 20 features were sub-

jected to change over time or intervention, whereas the other 180 features were consist-

ently sampled from the identical distribution across different time points. In these datasets, 

each individual was simulated with two time points. 

 

Subsequently, in order to examine the impact of covariates, we generated a simulated 

dataset with a single covariate. A dummy variable was manually introduced to the simu-

lated dataset to assess the effect of this covariate, which consisted of 75 samples and 

exhibited a median effect size of approximately 0.5. The dummy variable was designed 

to exhibit various levels of correlation with the time variable, including approximately 0.25, 

0.5, 0.75, or 0.99, and 100 simulations were conducted for each correlation level.  

 

Lastly, for the simulation of data with multiple covariates, the previously mentioned simu-

lated datasets (with a sample size of 75 and an effect size median of approximately 0.5) 

were manually added with either 1, 2, 4, 8, or 16 dummy variables that were correlated 

with the time variable. In the process of testing the performance of different statistical 

tools, dummy variables were added to a simulated dataset that correlated with the time 

variable at different Spearman’s rho values of about 0.25, 0.5, 0.75, or 0.99, and 100 

simulations were conducted for each correlation level. In comparing the performance of 

Maaslin2 and LongDat, 100 simulations were run for every combination of tool, sample 

size, and effect size. The dataset, in this case, consists of 200 features, where 20 of which 

changed with time and the remaining 180 did not. To compare LongDat, ZIBR, lgpr, and 

ANCOM, 50 simulations were carried out for every combination of effect size, sample 

size, and tool. In this case, the dataset consists of 100 features, 10 of which changed with 

time and 90 that did not. The reason for reducing the number of features and simulations 

was because of the high computational resources (low speed and high memory) required 

by ANCOM, lgpr, and ZIBR. 

 

2.1.2.2 Simulation of longitudinal data using SparseDOSSA2 

First, for the simulation of data with no covariate, 100 simulations were executed for every 

combination of sample sizes (10, 20, 38, 75, 150, and 300) and effect sizes (the median 

of Spearman’s rho approximately equals 0.2 or 0.5 for features changing with time). Each 

simulated dataset comprised 332 features, out of which 33 were spiked, indicating 
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changes with time or under intervention, whereas the other features were sampled from 

the identical distribution over time. In these datasets, each individual was simulated with 

two time points. 

 

Next, for the simulation of data with covariates, the simulated dataset with 332 features 

and different sample sizes had 1, 4, or 16 dummy variables added to it manually, which 

correlated with the time variable. The dummy variables were randomly chosen to achieve 

a Spearman's rho of approximately 0.25, 0.5, 0.75, or 0.99 with the time variable. A hun-

dred simulations were conducted for every correlation level,. 

 

Finally, for the simulation of negative control data, 100 sets of data with two time points, 

150 individuals, and 332 microbial features were generated through simulations with ef-

fect size equals to zero for all microbial features (i.e., there is no spiked feature in the 

simulated data). This is done to examine the influence of systematic effects on sampling 

depth, which could arise in clinical datasets with low biomass. To this end, 6 versions of 

the data were created with varying sequencing depths (i.e., the total microbial abundance 

of each feature). This approach ensured that any signal detected in the simulated data 

reflected only systematic bias. During the simulations, the overall abundances of each 

individual at both the initial and subsequent time points were subjected to rarefaction. In 

versions 1 and 2, the total abundances were rarefied to 50000 and 1000, respectively. In 

version 3, the initial time point underwent rarefaction to 50000, while the second time 

point was rarefied to 5000. Version 4 involved rarefying the first time point to 5000 and 

the second time point to 50000. In version 5, the first time point was rarefied to 50000 

and the second time point to 1000. Finally, in version 6, the first time point underwent 

rarefaction to 1000, while the second time point was rarefied to 50000. When employing 

LongDat's count mode which uses negative binomial models, versions 3 to 6 were addi-

tionally subjected to rarefaction. The rarefaction was performed to either 5000 or 1000, 

depending on the sequencing depth that is the lowest, in order to achieve equal sequenc-

ing depths between the two time points. 
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2.1.2.3 Normalization, transformation and rarefaction of SparseDOSSA2-simulated data 

Various R packages were utilized to pre-process (either normalization or transformation) 

the raw simulated microbial features obtained from SparseDOSSA2, including TSS98, 

CSS99, TMM100, GMPR46, CLR101, rarefaction102. TSS involves dividing absolute abun-

dance by read depth (the total sum of abundance in each individual), resulting in relative 

abundance values ranging from 0 to 1. CSS, which is a quantile normalization technique 

designed to counter the biases introduced by TSS, rescales the relative abundances of 

taxa within samples based on the cumulative sum of their ranks. TMM is a normalization 

approach that estimates correction factors for library sizes by calculating weighted mean 

log ratios between samples after filtering highly expressed and large log ratio genes. 

GMPR computes the ratios for each pair of values, and then followed by calculating their 

geometric mean to normalize the data. The CLR transformation, which is commonly em-

ployed in compositional data analysis, involves taking the log ratios of every component's 

abundance to the geometric mean of all components, resulting in values that are centered 

around zero. Finally, rarefaction is a technique that employs random subsampling to en-

sure uniform sequencing depth across all samples. The available combinations of tools 

(LongDat, lgpr, MaAsLin2, and ZIBR) and normalization/transformation methods were re-

stricted by the tool's specific input format requirement.  

 

2.1.2.4 Semi-synthetic evaluation of metagenomic data 

In order to conduct a semi-synthetic assessment using real microbiome data, the first two 

time points of the stool microbiome data obtained in Study 270 were chosen. The data 

was collected on a clinical group of individuals with MetS who were undergoing either the 

fasting arm or the DASH arm of the study. The fasting arm involved a seven-day fast 

which consisted of two days with a maximum calorie intake of 1200 kcal/day followed by 

five days with an intake of 300-350 kcal/day. After this, the MetS patients followed the 

DASH diet for three months. Gut microbial abundances at the genus level were used for 

analysis, and the time variable was shuffled randomly against other variables to remove 

any association between the time variable and microbes, and also between the time var-

iable and covariates. This was done to ensure that no real intervention or passage of time 

signal remained. Data normalization or rarefaction was carried out as described in the 

2.1.2.3 section. 
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2.1.3 Running LongDat and other tools on longitudinal data 

2.1.3.1 Running LongDat 

The simulated longitudinal data were analyzed using the "longdat_cont()" function in the 

LongDat package. In this analysis, the time intervals between samplings were regarded 

as continuous variables, while the data type was considered as count or relative abun-

dance data. The running time and memory usage were recorded using the peakRAM103 

R package. Feature associations were deemed significant if their BH-corrected null-

model q-values are below 0.1 and post-hoc test q-values are below 0.05. The analysis 

was conducted on LongDat under CentOS Linux 7 and R version 4.1.1 with an 8 giga-

bytes (GB) memory allocation. 

 

2.1.3.2 Running Maaslin2 

To analyze simulated longitudinal data, the function "Maaslin2()" from the MaAsLin2104 

package was utilized. The time variable was treated as a continuous variable, and the 

mode was specified as either "NEGBIN" (negative binomial model) or "LM" (linear model). 

Features having a BH-corrected q-value less than 0.1 were regarded as significant. 

MaAsLin2 was executed on CentOS Linux 7 and R version 4.1.1 with 8 GB of memory 

allocated. 

 

2.1.3.3 Running ANCOM 

The simulated longitudinal data was analyzed using ANCOM in the ancom.R script (avail-

able at https://github.com/FrederickHuangLin/ANCOM-Code-Archive). The time variable 

was regarded as a factor, and the random formula was set to sample ID, whereas all the 

covariates present are included in the adjust formula. Features with W statistics exceed-

ing a cut-off calculated by multiplying the count of taxa by 0.7 were deemed significant. 

ANCOM was executed on CentOS Linux 7 with R version 4.1.1, and 350 GB of memory 

was allocated. 
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2.1.3.4 Running ZIBR 

Simulated longitudinal data was analyzed using the "zibr()" function from the ZIBR66 pack-

age. The time variable was considered a continuous variable and all covariates were 

included in the analysis. Features were deemed significant if their joint q-values corrected 

with BH were less than 0.1. The ZIBR analysis was conducted with CentOS Linux 7 and 

R version 4.1.1 with 8 GB of memory allocated. 

 

2.1.3.5 Running lpr 

The analysis of simulated longitudinal data involved the use of the "lgp()" function in the 

lgpr64 package. The time variable was regarded as a continuous variable, while all covari-

ates present were incorporated for analysis. Sample ID was used as the random variable. 

One hundred drawing samples were obtained from a Stan model, with four Markov chains. 

Features were deemed significant if the ratio of the total explained variance met or ex-

ceeded a 95% threshold after selecting the time variable. The lgpr analysis was executed 

under CentOS Linux 7 with R version 4.1.1, and 8 GB of memory was allocated. 

 

2.1.4 Evaluation of real microbiome and immunome data 

The study under reanalysis in this work examined the effects of fasting on Metabolic Syn-

drome (MetS) patients, as reported by Study 270. There are two arms in this study, with 

a fasting and a DASH arm. MetS patients participating in the fasting arm of the study 

followed a specific seven-day fasting protocol. This regimen involved two days of con-

suming a maximum calorie of 1200 kcal per day, followed by five days of consuming a 

restricted range of 300-350 kcal per day. After the fasting period, there was a three-month 

re-feeding stage, during which MetS patients adhered to the DASH diet. The species-

level microbial abundance and immunome data from the fasting arm were re-analyzed 

using LongDat to showcase its effectiveness and performance. 
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Figure 1.  An overview of the LongDat package. Main functions are shown in bold red text. The 

function “make_master_table()” is used for creating an input table by combining user-provided 

metadata and feature tables. The functions “longdat_disc()” and “longdat_cont()” enable covari-

ate-aware analyses by performing various tests, including null time model tests, effect size calcu-

lations, and covariate model tests, on the input tables to assess the significance of the time vari-

able (representing treatment). The function “longdat_disc()” is designed for datasets with discrete 

time values (e.g., before and after treatment), while “longdat_cont()” is suitable for datasets with 

continuous time representation (e.g., day). Lastly, the function “cuneiform_plot()” creates a sum-

mary figure of the resulting table. This figure has been published as figure 1 in Chen et al., 202369 

(under CC BY 4.0 license). 

 

 

 
Figure 2. Scheme of the function longdat_disc(). Source: own representation. 
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Figure 3. Scheme of the function longdat_disc(). Source: own representation. 
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Figure 4. Decision tree for determining the significance of the time variable and the final signal 

(colored boxes) for each feature in the LongDat output. The threshold of the p-values can be 

adjusted by the users. Source: own representation. 
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Figure 5. The sparsity is an important factor when fitting negative binomial models. (A) The 

scatter plot shows the result of negative binomial models applied to the microbiome data (species 

level) theta values (taken log base 2) versus the number of non-zero counts in Study 2. The blue 

line is added by using ggplot2::geom_smooth(method = “lm”). The p-value comes from 

Spearman’s rho test. (B) The box plot shows the raw p-values of the significant features (BH-

corrected p-value < 0.1). The features that either have a theta value greater than 2!" and less 

than 9 non-zero values, or a number of non-zero values less than 5, were labeled as “to be 

excluded”, while others were labeled as “to be kept”.  The scattered points show the original data. 

Source: own representation. 
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2.2 Fasting effects in patients with MetS (Study 270) 

2.2.1 Experimental procedures 

This project is conducted as a randomized controlled trial, and aimed to investigate the 

effects of periodic fasting and a modified DASH diet on patients with MetS. This study 

received ethical approval from the ethics committees of Charité-Universitätsmedizin Ber-

lin and was registered at ClinicalTrials.gov. Patients who met the inclusion criteria and 

did not meet any exclusion criteria were asked for and provided informed consent. Pa-

tients with MetS (including male and female), as defined by the National Cholesterol Ed-

ucation Program Adult Treatment Panel III (NCEP ATP III) criteria, were included in the 

study. In addition to the NCEP ATP III criteria, patients had to have a diagnosis of systolic 

HTN. 

 

Both the fasting and DASH arms received dietary interventions in the form of a group-

based behavioral intervention. The intervention for the fasting arm combined periodic 

fasting (7 days) and a modified DASH diet. The periodic fasting included 2 days of calorie-

restricted vegan meals followed by 5 days of taking vegetable juices and broth. When the 

fasting was completed, the modified DASH diet intervention focused on a plant-based 

diet with reduced sugar, fat and sodium. The baseline is referred to as time point 1 (V1), 

and time point 2 (V2) is after seven days of fasting (for the fasting arm) or DASH (for the 

DASH arm), while time point 3 (V3) is after three months of DASH diet for both arms. 

Randomization was performed using block randomization with varying block lengths and 

stratification factors. Outcome measures (e.g., 24-hour ambulatory systolic BP) were 

evaluated at baseline, one week, and twelve weeks after randomization. Physician-as-

sessed outcomes such as BP, body weight, body fat percentage, and laboratory meas-

urements were documented. Peripheral blood mononuclear cell analysis was performed 

to study immune cell profiles. 

 

Fecal samples were collected and stored for DNA-based sequencing. DNA was extracted 

and purified. Next, the 16S rRNA gene was amplified and then sequenced on the MiSeq 

platform. Metagenomic DNA libraries were constructed, sequenced on the NovaSeq plat-

form, and processed using NGLess105. Sequences were filtered and mapped to the hu-

man genome. Non-human sequences were mapped to the SILVA106 database and IGC 
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gene catalog. LotuS v1.62107 pipeline was used for sequence processing, and the taxo-

nomic classification was based on the SILVA database. Marker gene-based OTUs were 

generated. Raw counts were rarefied with RTK v0.93.1102 prior to downstream analysis. 

Functional analyses included binning IGC genes to KEGG KOs108, KEGG modules, and 

Gut Microbial Modules109.  

 
The experimental procedures above were conducted by my collaborator, András Maifeld 

(ECRC, Müller/Dechend lab) and other co-authors. Full information about the experi-

mental procedures and individual contributions can be found in Maifeld et al., 202170. 

 

2.2.2 Data statistical analyses 

2.2.2.1 General analysis and machine learning 

The comparison of body weight and BP changes between responders and non-respond-

ers was conducted using a Wilcoxon rank-sum test. Alpha and beta diversity analysis of 

the microbiome data was performed using various metrics, including Shannon diversity, 

richness, evenness, Chao1 index, Simpson's and Inverse Simpson's metrics. Unpaired 

Wilcoxon rank-sum tests were used to examine significance. Beta diversity was evaluated 

using community distances between samples, and multivariate analysis was executed 

using Principal Coordinates Analysis (PcoA) and Permutational Multivariate Analysis of 

Variance (PERMANOVA) tests. 

 

To ensure the reliability of univariate analysis involving clinical, immunome, or microbi-

ome features, covariate effects of medication changes were taken into account through 

a two-step process. In step one, a nested model comparison was conducted for each 

feature, incorporating predictors (e.g., age, patient ID), and normalized medication dos-

age at each time point. An additional predictor of time points V1-V3 was included in the 

model. Likelihood ratio tests were employed to compare these models, and p-values were 

adjusted using the BH method applied within every data space. In step two, features with 

FDR values below 0.1 were selected for post-hoc tests. Wilcoxon rank-sum tests were 

performed for comparisons between values at each pair of time points, with FDR adjust-

ments for multiple testing. Results were considered significant if the BH-adjusted p-value 

was below 0.05. Non-parametric effect sizes (i.e., Cliff’s delta) were calculated.  
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To explore interactions among taxa, immune cells, and phenotypes, a two-step test was 

utilized. Initially, Spearman’s correlation test was conducted to examine the associations 

between the variables. Then, a post-hoc test where mixed-effects models were fitted on 

rank-transformed variables and patient ID was treated as a random effect, was employed 

to account for sample dependency. Correlations were visualized using R packages circi-

lize110. 

 

Machine-learning techniques were used to predict treatment response at the individual 

level. A leave-one-patient-out cross-validation method was employed to evaluate the per-

formance of the predictive model. The input variables were standardized, and a logistic 

regression algorithm was used for binary classification. A forward-stepwise selection 

method was applied to identify the ten most relevant input variables for outcome predic-

tion. The resulting predictive model was validated by assessing its ability to accurately 

predict blood-pressure response in independent participants. The overall performance of 

the model was estimated by averaging the results across all predicted clinical responses. 

 

2.2.2.2 Comparative re-analysis of previous data 

Data from Mesnage et al.111, the sole existing cohort examining fasting effects and en-

compassing both BP data and stool sequencing, was employed for validation purposes. 

This dataset was subjected to analysis in a manner identical to the approach used for the 

main study dataset. 

 

The statistical analyses above were conducted by my collaborator, András Maifeld 

(ECRC, Müller/Dechend lab) and other co-authors. 

 

2.2.2.3 Enterotyping 

The fecal microbiome samples from the fasting arm were classified into enterotypes using 

the DirichletMultinomial112 R package v1.32.0 based on the abundance table at the genus 

level. The dmn() function in the package fits a Dirichlet-Multinomial model to count data, 

and a parameter k represents the number of Dirichlet components (clusters) to be mod-

eled. The optimal k value is determined by Laplace goodness of fit. Then heatmaps show-

ing the dominant taxa in each cluster are plotted with the function heatmapdmn() to facil-

itate the assignment of enterotypes. 
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2.3 Impact of gut microbiome on hypertensive organ damage in mice (Study 371) 

2.3.1 Experimental procedures 

In this study, axenic wild-type C57BL/6J mice were maintained in an isolator with a 12:12 

hour day-night cycle and constant access to water and food. Male mice were randomized 

into GF or passive bacterial colonization groups at 4 weeks of age. At 12 weeks of age, 

mice received either Angiotensin II + 1% NaCl or sham treatment and were euthanized 

after 2 weeks for sample collection, including blood, feces, spot urine, and organs (Figure 

6). Echocardiography and Ang II pressor response assessments were conducted under 

isoflurane inhalation anesthesia. The study involved 40 mice (GF n=5, COL n=5, 

GF+HTN n= 16, COL + HTN n = 14), with five (GF+HTN n=3, COL+ HTN n = 2) taken 

out of the experiment due to ethical termination criteria. Additionally, cells and tissues 

derived from conventionally raised SPF C57BL/6J mice (CONV) were utilized in in vitro 

experiments as a control group. 

 

Immunophenotyping was performed using single-cell suspensions of splenocytes from 

euthanized mice. The full details of this method are described in Avery et al., 202271. 

Briefly, erythrocytes were lysed, and flow cytometry analysis was conducted using 

surface antibodies for staining and intracellular antigens for staining. A total of 106 cells 

per panel were analyzed, excluding dead cells. The data were recorded using a BD FACS 

Canto II and analyzed with FlowJo software. In vitro Type 1 T helper (Th17) polarization 

experiments involved isolating cells from the mesenteric lymph nodes of GF or CONV 

mice. CD4+ T cells were sorted using magnetic activation and then exposed to anti-CD3 

and anti-CD28 stimulation under Th17 polarizing situations. The influence of Ang II on 

Th17 cell polarization was assessed by culturing the cells with Ang II or vehicle for 96 

hours. For SCFA pre-incubation, cells were incubated with a mix of sodium butyrate and 

sodium propionate, or sodium chloride as a control, before the addition of Th17 polarizing 

cytokines and Ang II. The cells were then measured for Th17-specific markers. 

 

Urine analysis was conducted on a subset of experimental mice. Spot urine was collected 

upon sacrifice, and various parameters were measured using the AU480 clinical 

chemistry analyzer. Turbidimetric and enzymatic methods were used to measure urinary 

albumin and creatinine, respectively. Histology staining was performed on heart and renal 

tissue collected from the mice. Cryosections of the tissue were fixed, blocked, and stained 
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with primary and secondary antibodies. Immunofluorescence staining and image analysis 

software were used to quantify cardiac interstitial and perivascular fibrosis, as well as 

infiltrating immune cells. Kidney cryosections were stained for infiltrating immune cells 

and Nephrin, and tissue fixed with formalin was stained with Masson’s trichrome to 

analyze perivascular fibrosis. Every histological staining was digitally scanned by using a 

slide scanner. 

 

Quantitative real-time RT-PCR was conducted on RNA isolated from the kidney and heart 

apex. cDNA synthesis was followed by target gene expression quantification using 

TaqMan or SYBR Green assays on QuantStudio 3. The expression was normalized to 

the 18S housekeeping gene as a reference. 

 

Metabolomics analysis involved using the MxP Quant 500 kit for the analysis of 

metabolites from serum samples. Sample preparation included transferring serum to a 

96-well plate, adding specific solutions for metabolite extraction, and utilizing LC-MS and 

FIA-MS methods for analysis. Data were processed and normalized. Valid metabolites 

above the limit of detection were used for subsequent statistical analysis. Fecal SCFA 

measurements were performed using GC-MS and analyzed with Thermo Scientific 

Xcalibur Software. 

 

DNA isolation and extraction were conducted, and the extracted DNA passed quality 

control was subjected to metagenomics sequencing using the Illumina NovaSeq 6000 

PE150 platform. The sequencing data were processed using NGless105, and taxonomic 

classification was performed by aligning the reads to mOTUs. Functional annotation was 

done using the global microbial gene catalogue113 gmgc v1.0 and MouseGutCatalog v0.9. 

The results were visualized using KronaTools. Additionally, fecal qPCR was done using 

an Applied Biosystems QuantStudio 3 system to quantify specific bacterial genes. Copy 

numbers per gram of feces were calculated, and standard curves were used for 

quantification. The generated microbiome data is publicly accessible in the NCBI 

database under BioProject PRJNA812410. 

 

The experimental procedures above were led by my collaborators, Dr. Ellen Avery (ECRC 

Müller/Dechend lab) and Dr. Hendrik Bartolomaeus (ECRC Wilck lab). Full information 

about experimental procedures and individual contributions can be found in Avery et al., 
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202271. The shotgun sequencing preprocessing was done by another co-author, Dr. Ul-

rike Löber (ECRC, Forslund lab).  

2.3.2 Statistical analysis 

The statistical analyses done by my collaborators and I were performed using R version 

4.0.2 or GraphPad Prism 6. Two-way ANOVA was used for analyzing univariate data, 

considering HTN and microbiome status as the factors of interest. If either factor or both 

were significant, Sidak's multiple comparison test was used for post-hoc analysis to de-

termine the specific source of variation. Relative changes were assessed by expressing 

the values of HTN mice as percentage of the average of the corresponding sham group, 

followed by an unpaired two-tailed Student's t-test for comparing COL and GF. A signifi-

cance level of p < 0.05 was used. PCoA and PERMANOVA were executed in R using the 

vegan114 package, with Euclidean distances for kidney, heart, metabolome, and im-

munome data, and Bray-Curtis dissimilarity for microbiome data. The analysis of effect 

size was conducted using Cliff's delta with the orddom115 package in R and visualized 

using ggplot2116. The in-depth description of my analyses and graphical approaches are 

detailed below. 

 

2.3.2.1 Heat map of metabolites and microbiome   

Initially, metabolites and microbiome species were filtered based on their significant 

changes between the sham and Ang2 groups using the Wilcoxon rank-sum test. Subse-

quently, Spearman's correlation was computed between the chosen metabolites and gen-

era, and the p-values were adjusted using the BH correction. The same procedure was 

applied to determine Spearman's correlation between metabolites and functional mod-

ules. These correlation matrices were then combined to generate the final heatmap using 

the gplots117 package in R. 

 

2.3.2.2 Mantel test 

The Mantel test is a type of regression analysis that investigates the association between 

distance matrices, which represent the pairwise similarities among samples. An advanta-

geous aspect of the Mantel test is its flexibility in handling variables of various types, 

including categorical or rank variables, by utilizing distance matrices. This adaptability 

makes the Mantel test a versatile approach for exploring relationships between diverse 
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types of data. The Mantel tests are performed by using the R packages vegan114 and 

ncf118. 

 

2.3.2.3 Pluznick study data preprocessing 

The raw 16S sequences from the fecal microbiome sequencing of the Pluznick study 

were obtained from the NCBI Sequence Read Archive under the BioProject 

PRJNA514044. To analyze the 16S amplicons, LotuS107 v1.62 software was employed, 

utilizing the SILVA106, Greengenes119, and HITdb120 databases. This analysis generated 

abundance tables for the microbiome at all taxonomic levels. The abundance tables were 

then subjected to rarefaction using the RTK102 method. Specifically, the abundance table 

at the genus level was selected for comparison with our study. For further analysis, PCoA 

was performed using the vegan114 package in R, with Bray-Curtis distances used as the 

dissimilarity measure. 

 

2.3.2.4 Comparative analysis with Pluznick study  

To compare the fecal microbiome data obtained in our study with the data that was pub-

lished by Cheema and Pluznick121 (here called the "Pluznick" data), we needed to rean-

notate our shotgun next-generation sequencing data. This reannotation process aimed to 

transform our data into a format that could be directly compared to the published 16S 

sequencing data. Dr. Ulrike Löber (ECRC, Forslund lab) carried out this reannotation task. 

Additionally, the metabolites from the Pluznick study underwent a curation process to 

identify overlapping metabolites that shared identical biochemical names, CAS IDs, 

HMDB IDs, and/or PubChem IDs. Dr. Ellen Avery (ECRC, Müller/Dechend lab) performed 

this curation process. 

 

The dissimilarity in microbial composition between our data and the Pluznick data was 

visualized using PCoA by using the vegan114 R package, and the Euclidean distance 

metric was utilized. To compare the alterations in metabolites between the sham and 

HTN groups at an individual level, several steps were followed. First, a Wilcoxon rank-

sum test was conducted within the GF or COL groups for each study, with any resulting 

missing values (NAs) removed. Then, the direction of alteration for every metabolite in 

the corresponding group from the Pluznick data or our data was compared. The signifi-

cance of the difference between the GF and COL groups was assessed using a chi-

squared test. To compare the effect size of every metabolite individually between the 
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sham and HTN groups in GF or COL/CONV groups of the Pluznick data or our study, 

Cliff's delta was computed using the orddom115 R package. The discrepancy between the 

effect sizes in the GF or COL groups was determined by calculating the absolute differ-

ence in effect sizes between the two studies. For visualizing the results, the ggplot2116 

package was utilized, and the ggpubr122 package was applied to include the Wilcoxon 

rank-sum test results. The geom_density_2d() in the ggplot2 package, which was used 

to add a layer of 2D kernel density contours to the plot. The 2D kernel density plot uses 

a nonparametric method called kernel density estimation for probability density functions 

to create a representation with a smoothed density of the scatterplot. This plot displays 

the average trend observed in the scatterplot. 

 

 

 

 

 

 

 

 

 

  

  
 
Figure 6. Description of the study protocol. The sample sizes are GF Sham n = 5; GF + HTN n = 

12; COL Sham n = 5; COL + HTN n = 12. This figure is published as figure 1 in Avery et al., 202271 

(under CC BY-NC 4.0 license). Reprinted by permission of Oxford University Press on behalf of 

the European Society of Cardiology. 
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3. Results 

3.1 Results of benchmarking analysis of LongDat compared with other tools (Study 
169) 

Part of the content of this chapter has been published as a research article69, the text can 

be similar but not identical. 

 

LongDat, an algorithm tailored for covariate-aware analysis on high-dimensional 

longitudinal data, was created and subsequently packaged into an R package for ease of 

distribution and enhanced reproducibility. The analysis of microbiome absolute or relative 

abundance data is the main focus of LongDat, although its usage can be extended to 

other data types, like proportion (e.g., immunome), binary (e.g., survival), and ordinal data 

(e.g., pain level). In order to demonstrate that LongDat surpasses other existing tools, 

benchmarking tests were conducted on LongDat and other microbiome-analysis-cen-

tered tools that could consider covariates in their analyses, including MaAsLin250 (the 

closest published counterpart of LongDat), lgpr64, ZIBR66, and ANCOM68 to evaluate their 

speed and performance. To ensure the consistency of the benchmarking results across 

multiple benchmarking platforms, the tools were evaluated using two independent simu-

lation R packages, namely microbiomeDASim97 and SparseDOSSA2123.  

 

The results of microbiomeDASim simulations showed that, in terms of accuracy, true pos-

itive rate (TPR), false discovery rate (FDR), and Matthews correlation coefficient (MCC), 

LongDat performed similarly to MaAsLin2 on data without covariates. However, LongDat 

outperformed MaAsLin2 when the data had multiple covariates (Figure 7A). As the num-

ber of covariates in the simulated data increased, the performance gap between LongDat 

and MaAsLin2 became more evident. Notably, LongDat maintained a controlled FDR of 

zero regardless of the tested effects and sample sizes, whereas MaAsLin2's FDR esca-

lated and TPR diminished, particularly with more than four covariates present. The reason 

for this phenomenon is that LongDat treats covariates by iterating over every covariate in 

parallel models, while MaAsLin2 incorporates all covariates into a single model. This dif-

ference gives rise to the profound discrepancy when analyzing longitudinal microbiome 

data with multiple covariates as observed here, making LongDat more appropriate in such 

cases. In addition, the runtime of LongDat was longer than that of MaAsLin2, and this 
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was because LongDat had a covariate model test part, which conferred robustness to 

LongDat when dealing with multiple covariates (see section 2.1.1.3). MaAsLin2, on the 

other hand, lacked this feature (Figure 7B). As for ANCOM, lgpr, and ZIBR, their compu-

tational efficiency was found to be unsatisfactory. ANCOM was observed to require ex-

cessive memory, while lgpr and ZIBR were slow in execution (Figure 8B). In terms of 

performance, the TPR of ANCOM and ZIBR dropped, while the FDR of lgpr and ZIBR 

surged as the number of covariates increased (Figure 8A). 

 

The results of SparseDOSSA2 reconfirmed the findings of the microbiomeDASim bench-

marking. The performance of LongDat and MaAsLin2 was assessed using linear or neg-

ative binomial models on data pre-processed differently, including TSS-normalized, CSS-

normalized, TMM-normalized, CLR-normalized, GMPR-normalized, or rarefied. Regard-

less of the pre-processing method and the model used, LongDat performed similarly to 

MaAsLin2 on simulated data without covariates, but outperformed MaAsLin2 when more 

than four covariates were present (Figure 9A - H). On the other hand, ZIBR and lgpr 

(ANCOM was excluded in this benchmarking because its memory requirement was too 

large to run on MDC clusters) again suffered from high FDR and long runtime, particularly 

when multiple covariates were present in the data (Figure 10A - H). When comparing 

preprocessing methods and models, MaAsLin2's negative binomial model has higher 

TPR and FDR (and thus similar accuracy and MCC) than its LM, except when fitting LMs 

on CLR-transformed data, which performed the worst. Similar outcomes are yielded by 

LongDat using either linear or negative binomial models with various normalization or 

rarefaction techniques, except when CLR is paired with the LM, which performed poorly. 

Even though the negative binomial model and rarefied count data combination resulted 

in a higher FDR compared with the LM TSS-normalized data, we hold the belief that 

rarefaction is indispensable for certain circumstances. For instance, when longitudinal 

negative control data with different sequencing depths at two time points were simulated, 

a near-zero FPR was obtained when the rarefied count data was fitted with a negative 

binomial model (Figure 11). However, applying the LM to non-rarefied TSS-normalized 

data led to a high FPR when there was substantial variation in sequencing depth between 

the two time points. As a result, it can be deduced that LMs are appropriate for analyzing 

TSS-normalized data only if no consistent deviation in sequencing depth across different 

groups or time periods. Or else, the analysis might produce numerous false positives. 
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Notably, a one-size-fits-all solution does not exist, and choosing the most suitable 

approach primarily relies on the data’s characteristics. 

 

To evaluate the performance of LongDat using data other than simulated data (micro-

biomeDASim and SparseDOSSA2), a semi-synthetic assessment was conducted. This 

was accomplished by randomly shuffling the time variable against other variables in the 

microbiome data at the genus level from Study 270. The comparison was made between 

the significant associations in the data before and after shuffling. The outcomes from 

LongDat's analysis demonstrated minimal to almost negligible instances of false positive 

findings within the shuffled data, irrespective of the presence of covariates in the analysis 

process (Figure 12). On the other hand, MaAsLin2, ZIBR, and lgpr were all affected by 

the addition of covariates in the analyses. MaAsLin2 identified fewer significant associa-

tions in the unrandomized data and more false positives in the randomized data com-

pared with LongDat. ZIBR and lgpr resulted in significantly higher rates of false positives 

than LongDat. As previously observed, it was confirmed by the analysis that LongDat is 

able to effectively minimize false positive results in both semi-synthetic and simulated 

evaluations, indicating its robustness. 

 

Given that MaAsLin2 is the sole alternative tool capable of handling the entire benchmark 

without being hindered by memory and runtime limitations, the following analyses 

primarily concentrate on comparing MaAsLin2 and LongDat. To assess their 

effectiveness in identifying covariate effects, a dummy variable that correlates with the 

time variable was introduced. Whether the dummy variable, when employed as the input 

time variable instead, was erroneously identified as showing an independent association 

with the simulated feature, was then examined (Figure 13A, 13B). LongDat requires only 

one run for this evaluation. MaAsLin2 lacks a corresponding component in its covariate 

model testing compared to the LongDat pipeline’s second part; consequently, two 

separate MaAsLin2 runs were conducted to ensure comparable outcomes with LongDat. 

One run included covariates in the model, while the other run was performed without 

covariates. The findings indicate that both LongDat and MaAsLin2 achieved similar 

performance in correctly detecting covariate effects. The medians of the success rates 

for both tools remained at approximately 0.95, as determined by the FDR threshold or 

family-wise error rate, even in cases where the time and dummy variables exhibited a 

strong correlation. The similarity in performance might be due to the fact that LongDat 
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and MaAsLin2 are both based on GLMMs. These results demonstrate the accuracy and 

reliable identification of covariates by both LongDat and MaAsLin2. 

 

To further show the performance of LongDat on real data, and compare it with that of 

MaAsLin2, a comparative analysis of LongDat and MaAsLin2 using real gut microbial 

data from Study 270 investigating the effects of fasting on MetS patients was conducted70. 

The study objective was to examine the impact of fasting while accounting for changes in 

medication. Initially, without considering any covariates (i.e., drug variables) in the 

MaAsLin2 analysis, both LongDat and MaAsLin2 found 27 species that exhibited signifi-

cant changes in their abundances during the intervention, with 19 species showing con-

sistent results between the two methods (Figure 14A, 14B). However, when covariates 

were included in the analysis, MaAsLin2 reported only two species as significantly differ-

ent in abundance. This limitation arose because the models in MaAsLin2 encountered 

errors (indicated by "NA" values in p-values and standard errors) when more than one 

fixed variables were incorporated into one single model. In contrast, LongDat overcomes 

this issue by including only one covariate at a time and iterating over all covariates. As a 

result, LongDat demonstrates greater robustness than MaAsLin2 when analyzing da-

tasets with multiple covariates, albeit with a longer runtime. 

 

Finally, to showcase the versatility of LongDat beyond microbiome data, LongDat was 

applied to the immunome data obtained from Study 270 (Figures 15, 16). The immunome 

data encompass both proportion (percentage) and non-proportion (non-percentage) data, 

which were analyzed using the proportion and measurement modes of LongDat, respec-

tively. These findings demonstrate that LongDat is capable of handling diverse data types, 

extending its applicability beyond microbiome counts. 

 

Altogether, the results in this study demonstrate that LongDat is a reliable tool for analyz-

ing longitudinal microbiome data, particularly in situations involving multiple covariates 

(Table 1). 
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Table 1. Summary of the comparison of all tools. This table has been published in Chen et al., 202369 as table S1 (under CC BY 4.0 license). 

 TPR FDR 
TPR and FDR 
affected by the 

number of covariates 

Memory 
requirement Speed 

Able to include 
covariates in 

analysis 

Provides 
covariate effect 
of each feature 

Multiple 
test 

correction 

Needs* 
arbitrary 

cutoff 

LongDat 
Low when 

sample size is 
small 

Generally low Not affected Small Medium Yes Yes Yes No 

MaAsLin2 
(Mallick et al. 

2021) 

Low when there 
are multiple 
covariates 

High when 
there are 
multiple 

covariates 

Highly affected Small Fast Yes No Yes No 

ANCOM 
(Mandal et al. 

2015) 

Low when 
sample size is 

small 
Generally low Affected Large Medium Yes No Yes Yes** 

ZIBR (Chen et 
al. 2016) 

Low when there 
are multiple 
covariates 

Generally 
high Highly affected Small Slow Yes No Yes No 

lgpr (Timonen 
et al. 2021) 

Low when 
sample size is 

small 

High when 
sample size is 

small 
Highly affected Medium Slow Yes No No Yes*** 

TPR: true positive rate; FDR: false discovery rate 

*Indicates if the user needs to select an arbitrary threshold to decide the significance of the tested variable 
on a feature. 

**Relies on W statistics, which is the number of each feature is tested to be significantly different against 
other features. 

***Relies on the ratio of total explained variance in a model.  
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Figure 7. Comparison of the performance of LongDat and MaAsLin2. Both tools are employing 

the negative binomial model on the microbiomeDASim-simulated longitudinal data with different 

numbers of covariates. The line plots demonstrate the median values of (A) accuracy, true posi-

tive rate (TPR), false discovery rate (FDR), Matthews correlation coefficient (MCC), and (B) 

runtime and memory usage. This figure has been published in Chen et al., 202369 as figures S3 

and S4 (under CC BY 4.0 license). 
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Figure 8. Comparison of LongDat, lgpr, ZIBR, and ANCOM. This is comparing the performance 

of the tools when analyzing longitudinal data simulated by microbiomeDASim with zero to multiple 

covariates. The line plots show the medians of (A) accuracy, true positive rate (TPR), false dis-

covery rate (FDR), and Matthews correlation coefficient (MCC), and (B) runtime and memory 

usage. This figure has been published in Chen et al., 202369, as figures S10 and S11 (under CC 

BY 4.0 license). 
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Figure 9. Comparison of different modes of LongDat and MaAsLin2. This is comparing their per-

formance and computational resource requirement when applied to longitudinal data simulated 

by SparseDOSSA2 with (A, E) 0 covariate; (B, F) 1 covariate; (C, G) 4 covariates; (D, H) 16 

covariates. (A, B, C, D) The circles show the first quartiles, medians, and third quartiles of (A) 

accuracy, true positive rate (TPR), false discovery rate (FDR), and Matthews correlation coeffi-

cient (MCC), and (E, F, G, H) runtime and total used memory. The filled circles (red) are the 

medians, while the inner and outer hollow circles are the first and third quartiles, respectively. 1 

mebibyte (MiB) ≈ 1.05 megabyte (MB). Negbin: negative binomial model; LM: linear model; TMM: 

trimmed mean of M-values; raw: raw counts; rarefied: rarefied counts; CSS: cumulative-sum scal-

ing; TSS: total-sum scaling; GMPR: geometric mean of pairwise ratios; CLR: centered log-ratio. 

This figure has been published in Chen et al., 202369 as figures S5-S8 (under CC BY 4.0 license). 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



Results 58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FDR MCC

Accuracy TPR

10 20 38 75 150 300 10 20 38 75 150 300

lgpr_CLR

lgpr_CSS

lgpr_GMPR

lgpr_rarefied

lgpr_raw

lgpr_TMM

lgpr_TSS

LongDat_LM_CLR

LongDat_LM_GMPR

LongDat_LM_raw

LongDat_LM_TSS

LongDat_Negbin_CSS

LongDat_Negbin_rarefied

LongDat_Negbin_raw

LongDat_Negbin_TMM

ZIBR_TSS

lgpr_CLR

lgpr_CSS

lgpr_GMPR

lgpr_rarefied

lgpr_raw

lgpr_TMM

lgpr_TSS

LongDat_LM_CLR

LongDat_LM_GMPR

LongDat_LM_raw

LongDat_LM_TSS

LongDat_Negbin_CSS

LongDat_Negbin_rarefied

LongDat_Negbin_raw

LongDat_Negbin_TMM

ZIBR_TSS

Individual

M
od
e_
to
ol

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Median

Q1/Q3
0.00

0.25

0.50

0.75

1.00

FDR MCC

Accuracy TPR

10 20 38 75 150 300 10 20 38 75 150 300

lgpr_CLR

lgpr_CSS

lgpr_GMPR

lgpr_rarefied

lgpr_raw

lgpr_TMM

lgpr_TSS

LongDat_LM_CLR

LongDat_LM_GMPR

LongDat_LM_raw

LongDat_LM_TSS

LongDat_Negbin_CSS

LongDat_Negbin_rarefied

LongDat_Negbin_raw

LongDat_Negbin_TMM

ZIBR_TSS

lgpr_CLR

lgpr_CSS

lgpr_GMPR

lgpr_rarefied

lgpr_raw

lgpr_TMM

lgpr_TSS

LongDat_LM_CLR

LongDat_LM_GMPR

LongDat_LM_raw

LongDat_LM_TSS

LongDat_Negbin_CSS

LongDat_Negbin_rarefied

LongDat_Negbin_raw

LongDat_Negbin_TMM

ZIBR_TSS

Individual

M
od
e_
to
ol

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Median

Q1/Q3
0.00

0.25

0.50

0.75

1.00

A 

B 

0 covariate 

1 covariate 



Results 59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FDR MCC

Accuracy TPR

10 20 38 75 150 300 10 20 38 75 150 300

lgpr_CLR

lgpr_CSS

lgpr_GMPR

lgpr_rarefied

lgpr_raw

lgpr_TMM

lgpr_TSS

LongDat_LM_CLR

LongDat_LM_GMPR

LongDat_LM_raw

LongDat_LM_TSS

LongDat_Negbin_CSS

LongDat_Negbin_rarefied

LongDat_Negbin_raw

LongDat_Negbin_TMM

ZIBR_TSS

lgpr_CLR

lgpr_CSS

lgpr_GMPR

lgpr_rarefied

lgpr_raw

lgpr_TMM

lgpr_TSS

LongDat_LM_CLR

LongDat_LM_GMPR

LongDat_LM_raw

LongDat_LM_TSS

LongDat_Negbin_CSS

LongDat_Negbin_rarefied

LongDat_Negbin_raw

LongDat_Negbin_TMM

ZIBR_TSS

Individual

M
od
e_
to
ol

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Median

Q1/Q3
0.00

0.25

0.50

0.75

1.00

FDR MCC

Accuracy TPR

10 20 38 75 150 300 10 20 38 75 150 300

lgpr_CLR

lgpr_CSS

lgpr_GMPR

lgpr_rarefied

lgpr_raw

lgpr_TMM

lgpr_TSS

LongDat_LM_CLR

LongDat_LM_GMPR

LongDat_LM_raw

LongDat_LM_TSS

LongDat_Negbin_CSS

LongDat_Negbin_rarefied

LongDat_Negbin_raw

LongDat_Negbin_TMM

ZIBR_TSS

lgpr_CLR

lgpr_CSS

lgpr_GMPR

lgpr_rarefied

lgpr_raw

lgpr_TMM

lgpr_TSS

LongDat_LM_CLR

LongDat_LM_GMPR

LongDat_LM_raw

LongDat_LM_TSS

LongDat_Negbin_CSS

LongDat_Negbin_rarefied

LongDat_Negbin_raw

LongDat_Negbin_TMM

ZIBR_TSS

Individual

M
od
e_
to
ol

Q1/Q3
0.00

0.25

0.50

0.75

1.00

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Median

C 

D 

4 covariates 

16 covariates 



Results 60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (minute)

Memory (Mi)

10 20 38 75 150 300

lgpr_CLR

lgpr_CSS

lgpr_GMPR

lgpr_rarefied

lgpr_raw

lgpr_TMM

lgpr_TSS

LongDat_LM_CLR

LongDat_LM_GMPR

LongDat_LM_raw

LongDat_LM_TSS

LongDat_Negbin_CSS

LongDat_Negbin_rarefied

LongDat_Negbin_raw

LongDat_Negbin_TMM

ZIBR_TSS

lgpr_CLR

lgpr_CSS

lgpr_GMPR

lgpr_rarefied

lgpr_raw

lgpr_TMM

lgpr_TSS

LongDat_LM_CLR

LongDat_LM_GMPR

LongDat_LM_raw

LongDat_LM_TSS

LongDat_Negbin_CSS

LongDat_Negbin_rarefied

LongDat_Negbin_raw

LongDat_Negbin_TMM

ZIBR_TSS

Individual

M
od

e_
to

ol

Q1/Q3
0

1000

2000

3000

4000

5000

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

Median

Time (minute)

Memory (Mi)

10 20 38 75 150 300

lgpr_CLR

lgpr_CSS

lgpr_GMPR

lgpr_rarefied

lgpr_raw

lgpr_TMM

lgpr_TSS

LongDat_LM_CLR

LongDat_LM_GMPR

LongDat_LM_raw

LongDat_LM_TSS

LongDat_Negbin_CSS

LongDat_Negbin_rarefied

LongDat_Negbin_raw

LongDat_Negbin_TMM

ZIBR_TSS

lgpr_CLR

lgpr_CSS

lgpr_GMPR

lgpr_rarefied

lgpr_raw

lgpr_TMM

lgpr_TSS

LongDat_LM_CLR

LongDat_LM_GMPR

LongDat_LM_raw

LongDat_LM_TSS

LongDat_Negbin_CSS

LongDat_Negbin_rarefied

LongDat_Negbin_raw

LongDat_Negbin_TMM

ZIBR_TSS

Individual

M
od

e_
to

ol

Q1/Q3
0

1000

2000

3000

0
500
1000
1500
2000
2500
3000

Median

E 

F 

0 covariate 

1 covariate 



Results 61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (minute)

Memory (Mi)

10 20 38 75 150 300

lgpr_CLR

lgpr_CSS

lgpr_GMPR

lgpr_rarefied

lgpr_raw

lgpr_TMM

lgpr_TSS

LongDat_LM_CLR

LongDat_LM_GMPR

LongDat_LM_raw

LongDat_LM_TSS

LongDat_Negbin_CSS

LongDat_Negbin_rarefied

LongDat_Negbin_raw

LongDat_Negbin_TMM

ZIBR_TSS

lgpr_CLR

lgpr_CSS

lgpr_GMPR

lgpr_rarefied

lgpr_raw

lgpr_TMM

lgpr_TSS

LongDat_LM_CLR

LongDat_LM_GMPR

LongDat_LM_raw

LongDat_LM_TSS

LongDat_Negbin_CSS

LongDat_Negbin_rarefied

LongDat_Negbin_raw

LongDat_Negbin_TMM

ZIBR_TSS

Individual

M
od

e_
to

ol

Q1/Q3
0

1000

2000

3000

4000

5000

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

Median

Time (minute)

Memory (Mi)

10 20 38 75 150 300

lgpr_CLR

lgpr_CSS

lgpr_GMPR

lgpr_rarefied

lgpr_raw

lgpr_TMM

lgpr_TSS

LongDat_LM_CLR

LongDat_LM_GMPR

LongDat_LM_raw

LongDat_LM_TSS

LongDat_Negbin_CSS

LongDat_Negbin_rarefied

LongDat_Negbin_raw

LongDat_Negbin_TMM

ZIBR_TSS

lgpr_CLR

lgpr_CSS

lgpr_GMPR

lgpr_rarefied

lgpr_raw

lgpr_TMM

lgpr_TSS

LongDat_LM_CLR

LongDat_LM_GMPR

LongDat_LM_raw

LongDat_LM_TSS

LongDat_Negbin_CSS

LongDat_Negbin_rarefied

LongDat_Negbin_raw

LongDat_Negbin_TMM

ZIBR_TSS

Individual

M
od

e_
to

ol

Q1/Q3
0

1000

2000

3000

4000

5000

0
500
1000
1500
2000
2500
3000
3500
4000
4500

Median

G 

H 

4 covariates 

16 covariates 



Results 62 

Figure 10. Comparison of different modes of LongDat, lgpr and ZIBR. This is comparing their 

performance and computational resource requirement when applied to longitudinal data simu-

lated by SparseDOSSA2 with (A, E) 0 covariate; (B, F) 1 covariate; (C, G) 4 covariates; (D, H) 16 

covariates. (A, B, C, D) The circles show the first quartiles, medians, and third quartiles of (A) 

accuracy, true positive rate (TPR), false discovery rate (FDR), and Matthews correlation coeffi-

cient (MCC), and (E, F, G, H) runtime and total used memory. The filled circles (red) are the 

medians, while the inner and outer hollow circles are the first and third quartiles, respectively. 1 

mebibyte (MiB) ≈ 1.05 megabyte (MB). Negbin: negative binomial model; LM: linear model; TMM: 

trimmed mean of M-values; raw: raw counts; rarefied: rarefied counts; CSS: cumulative-sum scal-

ing; TSS: total-sum scaling; GMPR: geometric mean of pairwise ratios; CLR: centered log-ratio. 

This figure has been published in Chen et al., 202369, as figures S12-S15 (under CC BY 4.0 

license). 
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Figure 11. Evaluation of the false positive rates (FPR) of various modes of LongDat. This data, 

simulated by SparseDOSSA2, is a negative control longitudinal data consisting of 150 individuals, 

332 microbes, and had no time-varying features (i.e., the effect size was zero for all features) at 

two time points. We compared the performance of two different models, an LM paired with TSS 

normalization and a negative binomial model paired with rarefied count, through 100 simulations 

for each mode and tool pairing. Versions 1 through 6 were created using the same raw simulated 

data. In versions 1 and 2, the total abundances for each individual at both time points were rare-

fied to 50000 and 1000, respectively. In version 3, the total abundances at the first time point were 

rarefied to 50000, while the ones at the second time point were rarefied to 5000, whereas in 

version 4, the total abundances at the first time point were rarefied to 5000, while those at the 

second time point were rarefied to 50000. In version 5, the overall abundances were adjusted 

using rarefaction to 50,000 at the initial time point and 1,000 at the second time point. On the 

other hand, in version 6, the total abundances were rarefied to 1,000 at the first time point and 

50,000 at the second time point. Furthermore, for the negative binomial model, versions 3 to 6 

were subjected to additional rarefaction at both time points, with the specific rarefaction threshold 

being determined by the lowest sequencing depth. This threshold was set at either 5000 or 1000. 

Microbes having BH-corrected model test q-values lower than 0.1 and BH-corrected post-hoc test 

q-values lower than 0.05 are deemed to be significant. Negbin: negative binomial model; LM: 

linear model; rarefied: rarefied counts; TSS: total-sum scaling. This figure has been published in 

Chen et al., 202369, as figure S9 (under CC BY 4.0 license). 

 

Figure Ｍ1. Scheme of the LongDat pipeline. Flowchart showing the major func-

tions (bold text in red) and steps. The function “make_master_table()” creates a 

master table that fits the requirement of LongDat input table. Both "longdat_disc()" 

and "longdat_cont()" functions conduct covariate-sensitive analyses, with the for-

mer suitable for discrete time variable (e.g., before/after treatment), and the latter 

suitable for continuous time variable (e.g., day). The primary constituents of these 

functions are the null time model test, effect size calculation, and covariate model 

test. These are implemented on the input master tables to conduct covariate-

aware tests, determining the significance of the time variable (the proxy of treat-

ment). The function “cuneiform_plot()” summarizes result tables and creates plots. 

To access more comprehensive tutorials on the application of LongDat, kindly visit 

GitHub (https://github.com/CCY-dev/LongDat) or refer to its vignettes. This figure 

has been published in Chen et al., as figures 1 (citation) 
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Figure 12.  Bar charts illustrating the proportion of significant associations discovered in genus-

level fasting microbiome data before and after shuffling. This is testing the significance of the time 

variable in the original (unshuffled) and time-shuffled datasets, without (left panel) and with (right 

panel) covariates included in the analyses. A significance threshold (BH-corrected) of 0.1 was 

established, and for every shuffled test, 100 simulations were conducted. Negbin: negative bino-

mial model; LM: linear model; TMM: trimmed mean of M-values; raw: raw counts; rarefied: rarefied 

counts; CSS: cumulative-sum scaling; TSS: total-sum scaling; GMPR: geometric mean of pair-

wise ratios; CLR: centered log-ratio. This figure has been published in Chen et al., 202369, as 

figure S16 (under CC BY 4.0 license). 
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Figure 13. Assessment of covariate-sensitive analysis performance of LongDat and MaAsLin2 

when applied to longitudinal data simulated by microbiomeDASim. To evaluate the performance 

of LongDat and MaAsLin2 in identifying covariates, simulated longitudinal data from microbiome-

DASim was utilized. For this comparison, a dummy variable was introduced into the simulated 

dataset, and its significance was examined. The success criteria involve the tools designating the 

dummy variable as “non-significant”, “reducible to covariate” or “entangled with covariate” (where 

the time variable functions as the covariate in this case). Conversely, failure happens if a tool 

inaccurately identifies the dummy variable as significant while indicating the time variable as non-

significant. (A) The success rates of LongDat and MaAsLin2 in detecting and interpreting covari-

ate effects at various levels of correlation between the time and the dummy variable are depicted 

in the box plot. (B) The bar chart displays the distribution of success and failure rates across 

different correlation levels. Each correlation degree was tested through 100 simulations. This fig-

ure has been published in Chen et al., 202369, as figure 4 (under CC BY 4.0 license). 
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Figure 14. Comparison between LongDat and MaAsLin2 results of analyzing species-level mi-

crobiome data from Study 2. (A) The left panel of the cuneiform plot showcases the gut microbes 

(at the species level) which exhibit significant differences in abundance within at least one time 

interval in the study70. The time intervals are represented as "fasting" (day 0 to 7), "refeeding" 

(day 7 to 90), and "study" (day 0 to 90), reflecting their respective durations. Species highlighted 

in bold indicate those that showed significance in both the LongDat and MaAsLin2 results. The 

panel on the right provides the covariate status for every microbe. OK_nc: OK and no covariate. 

Time/intervention has a significant effect, and no covariate is found. OK_nrc: OK and not reduci-

ble to any covariate. The effect of time/intervention is statistically significant and remains unaf-

fected by the inclusion of all other covariates in the model. RC: Effect reducible to covariate. 

Time/intervention demonstrates significance when analyzed independently, but its impact is bet-

ter elucidated by the inclusion of a covariate in the model, while the reverse does not hold true. 

Microbes are deemed significant if their BH-corrected model test q-values are below 0.1 and their 

BH-corrected post-hoc test q-values are below 0.05. (B) The Venn diagram depicts the microbial 

species identified as significant by LongDat and MaAsLin2, with numbers representing the counts 

and percentages within each category. It is important to note that covariates were not considered 

in the MaAsLin2 analysis conducted in this study. This figure has been published in Chen et al., 

202369, as figure 5 (under CC BY 4.0 license). 
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Figure 15.  The result of the LongDat algorithm analyzing the immunome data (proportion data) 

in Study 2. The left panel of the cuneiform plot illustrates the immune cells that exhibit significant 

variations in their abundance within at least one time interval. The time intervals are categorized 

as "fasting" (day 0 to 7), "refeeding" (day 7 to 90), and "study" (day 0 to 90) to indicate the specific 

durations. The covariate status of each feature is presented on the right panel. OK_nrc: OK and 

not reducible to any covariate. The effect of time/intervention is statistically significant and remains 

unaffected by the inclusion of all other covariates in the model. Features with model test q-values 

below 0.1 and post-hoc test q-values below 0.05 are considered significant. This figure has been 

published in Chen et al., 202369, as figure S18 (under CC BY 4.0 license). 
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Figure 16.  The result of the LongDat algorithm analyzing the immunome data (non-proportion 

data) in the Study 2. The left panel of the cuneiform plot illustrates the immune cells that exhibit 

significant variations in their abundance within at least one time interval. The time intervals are 

categorized as "Fasting" (day 0 to 7), "Refeeding" (day 7 to 90), and "Study" (day 0 to 90) to 

indicate the specific durations. The covariate status of each feature is presented on the right panel. 

OK_nrc: OK and not reducible to any covariate. The effect of time/intervention is statistically sig-

nificant and remains unaffected by the inclusion of all other covariates in the model. Features with 

model test q-values below 0.1 and post-hoc test q-values below 0.05 are considered significant. 

This figure has been published in Chen et al., 202369, as figure S19 (under CC BY 4.0 license). 
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3.2 Effects of fasting on the gut microbiome in MetS patients (Study 270) 

Part of the content of this chapter has been published as a research article70, the text can 

be similar but not identical. 

 

In Study 270, we investigated the impact of fasting on the gut microbiome and immune 

system in MetS patients. My collaborator, Dr. András Maifeld (ECRC, Müller/Dechend 

lab), and his colleagues collected and analyzed the data from a cohort of MetS patients 

either undergoing five days of fasting followed by three months of a modified DASH diet 

(fasting arm), or solely three months of DASH diet (DASH arm). Potential covariates such 

as medication, age, and sex were controlled for in our statistical analyses. Briefly, the 

results showed significant differences in microbial composition and host immune cell 

composition during fasting, which partially reversed after a three-month refeeding period. 

Fasting resulted in changes in immune cell composition, including a reduction in pro-

inflammatory T cells and an increase in monocytes and specific T cell subsets. Moreover, 

fasting led to shifts in the abundance of commensal bacteria (e.g., Eubacterium rectale 

and Coprococcus comes) and alterations in microbial metabolic capacity related to 

SCFAs. The combination of fasting and a modified DASH diet led to a continuous de-

crease in systolic BP and body weight, surpassing the effects of the DASH diet alone. 

Analysis of the gut microbiome and immune system of BP responders (i.e., the patients 

whose systolic BP decreased significantly upon fasting and thus needed less antihyper-

tensive drugs) revealed unique characteristics associated with successful fasting treat-

ment, such as changes in specific microbial taxa (e.g., decreased Clostridiales, Faecali-

bacterium, and Eubacterium at baseline in BP-responders), and immune features. Net-

work analysis showed correlations between certain immune cell populations, microbial 

taxa, and BP. These findings suggest that fasting can influence the gut microbiome and 

immunome, leading to improvements in BP and body weight in individuals with MetS. 

 

Within this research project, I made a direct contribution by conducting the analysis of 

enterotypes. Utilizing the DirichletMultinomial R package, I applied this statistical method 

to the microbiome data obtained from the fasting arm of the study. The purpose was to 

classify the gut microbiomes of the participants into distinct enterotypes, representing 

specific clusters or groupings based on their microbial composition. There are four distinct 
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enterotypes identified, namely Ruminococcus, Prevotella, Bacteroides 1, and Bac-

teroides 2 in our study (Figures 17, 18). Based on the findings presented in Figures 19 A-

C, an intriguing pattern emerged from the analysis: a higher percentage of BP responders 

experienced changes in their enterotypes during the intervention period compared with 

non-responders (47% vs. 29%). However, it is worth noting that the chi-squared test con-

ducted on the contingency table did not yield significant results (p = 0.65). Nevertheless, 

this finding suggests a potential connection between changes in enterotype and the phys-

iological response to the fasting intervention. 

 

In addition to the analysis of enterotypes, I have significantly contributed to this project by 

developing the LongDat algorithm. This algorithm draws its roots from the scripts initially 

conceived by Prof. Dr. Sofia Forslund (ECRC), which is to disentangle the influences of 

covariates (e.g., medication) from the effects of fasting. My contribution transcends the 

mere refinement of existing informal in-house scripts; rather, it represents a comprehen-

sive overhaul involving substantial improvements, effectively evolving Longdat into a 

markedly enhanced algorithm. I dedicated substantial effort to rewriting the codes, focus-

ing on conciseness, readability, and transparency to enhance the reproducibility of the 

research findings. Aside from this, I incorporated various user-friendly features to stream-

line the analysis process. Firstly, I added a covariate selection step to optimize time effi-

ciency by including only relevant variables in the analysis, such that the burden of ana-

lyzing unnecessary variables is alleviated. Secondly, I differentiated the functions for con-

tinuous and discrete time variables, customizing them to their respective characteristics. 

For example, the effect size calculation differs between the two, using correlation for con-

tinuous variables and Cliff's delta for discrete variables. Thirdly, acknowledging the di-

verse nature of data encountered in high-dimensional analyses, I expanded the pack-

age's usability to accommodate different data types, such as count, binary, ordinal, and 

measurement data, by incorporating GLMMs into the package. Moreover, I introduced 

two novel functions to enhance the overall user experience. The first function simplifies 

the data preparation process, making it easier for researchers to input their data into 

LongDat seamlessly. The second function allows for the visualization of result tables, 

aiding researchers in interpreting and presenting their findings effectively. With these fea-

tures, LongDat is a comprehensive pipeline that enables users to perform covariate-

aware analysis on high-dimensional data with ease, from raw data to visualization. Finally, 

I revised the script for submission to The Comprehensive R Archive Network (CRAN), 
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ensuring the package's availability to the scientific community and promoting robust bi-

omarker search by accounting for covariates. The details of the LongDat package, includ-

ing its methodology (Section 2.1) and results (Section 3.1), can be found in the respective 

sections. The reanalysis of the gut microbiome and immunome data in this project is 

demonstrated in Figures 14-16. The figures clearly depict the effect size and statistical 

significance of changes observed during the intervention, while considering the covariate 

status. These visual representations effectively capture the dynamics and impact of each 

feature throughout the study, enabling users to easily identify patterns and focus on their 

targeted features. The latest LongDat algorithm was employed to reanalyze the gut mi-

crobiome data from the fasting group in this study. Table 2 presents the species that 

exhibit significant enrichment or depletion during the fasting and refeeding stages. The 

table highlights the influences of the covariates on the effect of the time variable, which 

is the proxy of fasting or refeeding treatment. A visualization of this result table is shown 

in Figure 14A. 

 

In short conclusion, this study examined the effects of fasting on the gut microbiome and 

immune system in MetS patients. The results showed significant changes in microbial 

composition, immune cell composition, and metabolic capacity during fasting. These find-

ings suggest that fasting can influence the gut microbiome and immunome, leading to 

improvements in BP and body weight in individuals with MetS. My contribution to the 

project involves analyzing enterotypes and developing the LongDat algorithm, which en-

hances reproducibility and facilitates covariate-aware analysis of high-dimensional data 

in the future. 
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Table 2. Result table of the reanalysis of the gut microbiome data in the fasting group using the LongDat algorithm. This table is adapted from 

tables S2 and S3 that are published in Chen et al., 202369 (under CC BY 4.0 license). 
Feature Signal Fasting effect Refeeding effect Study effect Covariates 

Acidaminococcus intestini OK_nrc Decreased Enriched NS ACE inhibitor, antidiabetics, statin, AT2 blocker 

Actinomyces sp. ICM39 OK_nrc NS Decreased NS Beta blocker, thyroid 

Actinomyces sp.ICM47 OK_nc NS NS Decreased - 

Alistipes obesi OK_nrc NS Enriched NS Metformin, statin, xanthan oxidase inhibitor 

Anaerotruncus colihominis OK_nc Enriched NS Enriched - 

Bacteroides nordii OK_nrc Enriched Decreased NS 
AT2 blocker, metformin, PPI, statin, vitamin D, xanthan oxi-

dase inhibitor 

Bacteroides sp. dorei/vulgatus OK_nrc NS Decreased NS Thyroid 

Bifidobacterium adolescentis OK_nrc Decreased Enriched NS Thyroid 

Blautia producta OK_nrc Enriched Decreased NS Beta blocker, PPI, thyroid 

Clostridiales bacterium VE202.09 OK_nc Enriched Decreased NS - 

Clostridium scindens OK_nc Enriched Decreased NS - 

Coprococcus comes OK_nrc Decreased Enriched NS Beta blocker, PPI 

Dialister invisus OK_nrc Decreased Enriched NS ACE inhibitor, AT2 blocker, statin, thyroid 

Eggerthella lenta/ Clostridioides 

difficile 
OK_nrc Enriched Decreased NS Beta blocker, calcium antagonist, thyroid 

Eggerthella sp. CAG 298 OK_nrc Decreased NS Decreased Diuretic, thyroid 

Erysipelotrichaceae sp./ 

Coprobacillus/ Erysipelatoclostridium 

ramosum 

OK_nrc Enriched Decreased NS 
ACE inhibitor, AT2 blocker, calcium antagonist, PPI, thyroid vit-

amin D 

Eubacterium rectale OK_nc Decreased Enriched NS - 

Faecalitalea cylindroides OK_nc NS Decreased NS - 

Oscillibacter sp. 57_20 OK_nrc NS Enriched NS PPI, xanthan oxidase inhibitor 

Oscillibacter sp.ER4 OK_nc Decreased Enriched NS - 

Parabacteroides johnsonii OK_nrc Enriched Decreased NS Thyroid 
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Roseburia hominis OK_nrc Enriched Decreased NS PPI 

Roseburia sp. 40_7 OK_nrc Decreased Enriched NS AT2 blocker 

Clostridium citroniae OK_nrc Enriched NS NS Beta blocker, PPI, thyroid, xanthan oxidase inhibitor 

Clostridium leptum RC Decreased NS Decreased Diuretic*, metformin, xanthan oxidase inhibitor 

Bacterium LF 3 OK_nrc NS Decreased NS Xanthan oxidase inhibitor, 

Unknown Clostridiales Family XIII 
Incertae Sedis 

OK_nrc Decreased NS Decreased Antidiabetics, beta blocker 

AT2 blocker = Angiotensin II receptor blocker 

ACE inhibitor = Angiotensin-converting enzyme inhibitors 

PPI = Proton pump inhibitors 

 

*Covariates in red indicate that the effect of the time variable (proxy of the treatment) is reducible to the effect of the covariate. 

 
OK_nc: OK and no covariate. Time/intervention has a significant effect, and no covariate is found. OK_nrc: OK and not reducible to any covariate. The effect of 

time/intervention is statistically significant and remains unaffected by the inclusion of all other covariates in the model. RC: Effect reducible to covariate. 

Time/intervention demonstrates significance when analyzed independently, but its impact is better elucidated by the inclusion of a covariate in the model, while 

the reverse does not hold true. Microbes are deemed significant if their BH-corrected model test q-values are below 0.1 and their BH-corrected post-hoc test q-

values are below 0.05. 
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Figure 17.  The fecal microbiome shotgun sequencing data from the fasting arm was subjected 

to enterotype classification using the DirichletMultinomial R package. Each narrow column repre-

sents a single sample, while the broader columns represent the group means. The color scale 

represents squared-root counts, with darker colors indicating higher counts. Based on this anal-

ysis, four distinct clusters were identified and designated as specific enterotypes based on the 

dominant microbial taxa. The Ruminococcus enterotype was assigned to cluster one, while clus-

ter two was classified as the Prevotella enterotype. Clusters three and four have a high proportion 

of Bacteroides, but cluster four is depleted of Faecalibacterium. Therefore, cluster three was des-

ignated as the Bacteroides 1 enterotype, and cluster four was assigned as the Bacteroides 2 

enterotype. Source: own representation. 

 

 
 
 
 
 



Results 75 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18.  The PCoA (Bray-Curtis distance) representing the variation in the gut microbiome 

community at the genus level. Paired samples from the same individual are connected by grey 

lines. The ellipses indicate the 95% confidence interval. This figure has been published in Maifeld 

et al., 202170, as figure S7 (reproduced with permission from Springer Nature, under CC BY 4.0 

license). 
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Figure 19. Comparison of the enterotyping results between responders and non-responders. (A) 

The bar plot shows the percentage of individuals whose enterotypes changed or remained un-

changed throughout the study. The raw counts of samples falling within each outcome group are 

denoted by the numbers. (B) The bar plot displays the proportion of enterotypes observed at each 

time point. V1 = before fasting; V2 = after seven days of fasting; V3 = after three months of DASH 

diet (refeeding stage). (C) The line plot illustrates the enterotypes of the patients whose entero-

type was altered throughout the study in BP responders and non-responders. Each patient is 

represented by a colored line. Figures A and B have been published in Maifeld et al., 202170, as 

figure S7 (reproduced with permission from Springer Nature, under CC BY 4.0 license). Source 

of figure C: own representation. 
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3.3 Gut microbial colonization affects hypertensive organ damage in mice (Study 
371) 

Part of the content of this chapter has been published as a research article71, the text can 

be similar but not identical. 

 

In Study 371, we quantified the impact of gut microbiome on inflammation and organ 

damage associated with HTN in mice. In brief, my collaborator, Dr. Ellen Avery (ECRC, 

Müller/Dechend lab), and other co-authors conducted experiments using GF and COL 

mice to investigate the influence of microbial colonization on HTN-induced organ damage. 

Our results showed that upon HTN induction, GF mice exhibited a significantly larger 

extent of albuminuria and a stronger increase in T-helper cells and leukocytes in the kid-

ney compared with COL mice. Additionally, GF mice displayed accentuated kidney fibro-

sis, suggesting a heightened susceptibility of the kidney to microbial influence. However, 

cardiac damage showed similar levels in both groups. Within COL mice, HTN triggered 

an alteration to the gut microbiome composition when compared with the sham group, 

such as a decreased abundance of Dubosiella newyorkensis and Bifidobacterium pseu-

dologum, and an increased abundance of Enterococcus. To explore the role of microbi-

ome-derived metabolites, we conducted serum metabolome analysis. The analysis re-

vealed significant differences in metabolite profiles between GF and COL mice upon HTN 

induction. Interestingly, various classes of metabolites showed similar changes in both 

groups, indicating a microbiome-independent effect. Furthermore, there was little overlap 

in the individual metabolites whose abundance changed in response to HTN within GF or 

COL mice. The serum metabolome was significantly influenced by the microbiome, as 

evidenced by the correlations observed between metabolites and microbial species. No-

tably, GF mice lacked important anti-hypertensive metabolites, including SCFAs such as 

propionate and butyrate, which are hypothesized to contribute to their observed pheno-

type. Moreover, the disturbed inflammatory status of GF mice under HTN induction, along 

with an increase in specific immune cells, suggests that the conditioning of naive T-cells 

in GF and COL mice can influence the polarization of pro-inflammatory T-cells and the 

severity of organ damage in HTN. Our findings highlight the notable influence of the mi-

crobiome and its metabolites, such as SCFAs, on immune cells associated with HTN and 

the observed damage in the heart and kidneys. 
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In this research project, my contribution focuses on three key aspects. Firstly, a thorough 

examination was conducted to explore the correlations between the serum metabolites 

and the fecal microbiome, aiming to uncover potential associations between these com-

ponents. The analysis, illustrated in Figure 20, unveiled a wide range of significant corre-

lations observed between the fecal microbiome and the serum metabolites, as well as the 

functional profile (represented by KEGG modules) and the serum metabolites.  Microbial 

species, including Lactobacillus johnsonii, Enterococcus.faecium/hirae, Bifidobacterium 

pseudolongum, and Dubosiella newyorkensis displayed significant associations with var-

ious metabolites such as sphingomyelins, phosphatidylcholines, triacylglycerides, and 

amino acids. These findings provide valuable insights into the intricate interplay between 

the composition of the fecal microbiome and the abundance of specific metabolites in the 

serum. Furthermore, as anticipated, the analysis also revealed numerous significant cor-

relations between the functional profile and the metabolites, further enhancing our under-

standing of the complex relationships between the functional activities of the microbiome 

and the comprehensive metabolite landscape.  

 

Secondly, I investigated the similarity between the fecal and cecal microbiome collected 

in this study and also identified the important factors for microbiome and metabolome 

compositions by utilizing the Mantel test (Table 3). The Mantel test, a statistical method 

widely used in ecological studies, allowed the estimation of correlation between two dis-

tance matrices, particularly suitable for analyzing multivariate data such as microbial 

abundance. The results of the Mantel test provided a p-value and the Mantel r coefficient, 

ranging from -1 to 1, where values near -1 or 1 suggest strong negative or positive corre-

lations, respectively, while 0 suggests no relationship. In addition, I employed the partial 

Mantel test, an extension of the Mantel test, to assess the relationship between matrices 

while accounting for the influence of a potential covariate (Table 4). This approach ena-

bled the assessment of the unique contributions of each variable and their independent 

associations by statistically controlling the effect of a third matrix. Hence, the partial Man-

tel test is another example of partitioning out the effect of covariates to achieve a more 

accurate result. Throughout this study, I conducted multiple rounds of Mantel and partial 

Mantel tests to explore the associations among various distance matrices, including the 

fecal microbiome, cecal microbiome, metabolome, treatment, and colonization status, as 

presented in Tables 3 and 4. The Mantel test results revealed a strong and positive cor-

relation (Mantel r = 0.99) between the distance matrices of the fecal and cecal microbiome, 
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confirming their highly similar structures. Additionally, the metabolome distance matrix 

exhibited significant positive correlations with both the fecal and cecal microbiome dis-

tance matrices, indicating a close relationship between the metabolome and microbiome, 

consistent with the findings presented in the heatmap (Figure 20). Furthermore, the partial 

Mantel test outcomes demonstrated that the impact of treatment (Ang/Sham) on the mi-

crobiome was more pronounced than its origin (fecal/cecal), which aligns with the previ-

ous finding of high similarity between the fecal and cecal microbiome. Lastly, the results 

indicated that both treatment (Ang/Sham) and colonization status (GF/COL) significantly 

influenced the metabolome. In summary, the Mantel and partial Mantel tests provided 

insights into the similarity between the fecal and cecal microbiome, the association be-

tween the metabolome and microbiome, and the importance of treatment and coloniza-

tion status in shaping these metabolome compositions. 

 

Finally, for the purpose of comparing the results with existing literature, a comparative 

analysis was conducted to assess the congruity between the findings of this study and 

the Pluznick121 study, which was a research exploring the impact of HTN on the microbi-

ome and metabolome in GF and CONV mice. The raw data of the Pluznick study were 

processed by Dr. Ellen Avery (ECRC, Müller/Dechend lab) and Dr. Ulrike Löber (ECRC, 

Forslund lab) to ensure comparability with this study. Unexpectedly, a notable disparity 

was observed at the genus level when comparing the microbiome profiles of the COL 

mice in our study and the Pluznick dataset, where the microbiome clustered based on 

study rather than treatment (Figure 21A). This discrepancy led us to hypothesize that the 

metabolome response would exhibit a similar pattern. Intriguingly, when comparing the 

metabolome data from the Pluznick study with our own (referred to as Avery), a signifi-

cantly greater overlap was found in the response of the metabolites to HTN among the 

GF groups, compared with the COL/CONV groups (Figures 21B, 21C). That is, there is a 

notable reduction in dissimilarity in the impact of HTN on serum metabolites of GF mice 

across these two datasets. This implies that the congruity of the serum metabolome in 

the GF groups in the two datasets is greater than that of the COL groups. These findings 

provide supporting evidence for the notion that the composition of the COL microbiome 

exerts a large influence on the alterations observed in the serum metabolome in response 

to HTN. 
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In conclusion, Study 371 demonstrates the significant impact of gut microbiome on hyper-

tensive disease. GF mice showed worse organ damage, especially in the kidneys, com-

pared with COL mice. The composition of immune cells and inflammatory state, as well 

as the metabolome, differed between the two groups. These findings highlight the im-

portance of gut microbiome in the development and progression of HTN. In this research 

project, my contribution focused on exploring the correlations between serum metabolites, 

fecal and cecal microbiome, and their potential implications in various biological pro-

cesses. In addition, I provided valuable insights into the similarity between the fecal and 

cecal microbiome, the association between the metabolome and microbiome, and the 

influence of treatment and colonization status on these metabolome compositions. Finally, 

I contributed to the validation of our findings by comparing our study with an independent 

dataset, emphasizing the significant influence of the gut microbiome on serum metabo-

lome changes as a response to HTN. 

 
Table 3. Mantel test results. Source: own representation. 

Variable 1 Variable 2 Mantel p-value and r 

Fecal microbiome (species) distance matrix 

(Bray-Curtis) 

Cecal microbiome (species) distance matrix 

(Bray-Curtis) 
0.001*, 0.99 

Metabolome distance matrix (Euclidean) 
Fecal microbiome (species) distance matrix 

(Bray-Curtis) 
0.005*, 0.28 

Metabolome distance matrix (Euclidean) 
Cecal microbiome (species) distance matrix 

(Bray-Curtis) 
0.022*, 0.42 

* Denotes significance (p < 0.05) 

 
Table 4. Partial Mantel test results. Source: own representation. 

Variable 1 Variable 2 Variable 3 p12.3, r12.3 p13.2, r13.2 

Microbiome (species) 

distance matrix (Bray-

Curtis) 

Treatment congruence 

(Same Ang/Sham       or 

not) 

Microbiome origin congruence 

(Same          fecal/cecal or not) 
0.005*, 0.28 0.41, -0.027 

Metabolome distance 

matrix (Euclidean) 

Treatment congruence 

(Same Ang/Sham or 

not) 

Colonization congruence 

(Same GF/COL or not) 
0.024*, 0.18 0.002*, 0.23 

* Denotes signifiance (p < 0.05) 
p12.3 is the Mantel p-value of the correlation between variables 1 and 2 when controlling for variable 3, 

and vice versa. 

r12.3 is the Mantel r of the correlation between variables 1 and 2 when controlling for variable 3, and vice 

versa. 
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M00839 PdtaS−PdtaR two−component regulatory system

M00766 Streptomycin resistance

M00760 Erythromycin resistance

M00729 Fluoroquinolone resistance

M00728 Cationic antimicrobial peptide (CAMP) resistance

M00715 Lincosamide resistance

M00704 Tetracycline resistance

M00701 Multidrug resistance

M00670 Mce transport system

M00669 gamma−Hexachlorocyclohexane transport system

M00664 Nodulation

M00657 VanS−VanR (VanE type vancomycin resistance) two−component regulatory system

M00652 Vancomycin resistance

M00628 beta−Lactam resistance

M00585 L−Cystine transport system

M00582 Energy−coupling factor transport system

M00581 Biotin transport system

M00580 Pentose phosphate pathway

M00572 Pimeloyl−ACP biosynthesis

M00565 Trehalose biosynthesis

M00554 Nucleotide sugar biosynthesis

M00535 Isoleucine biosynthesis

M00533 Homoprotocatechuate degradation

M00524 FixL−FixJ (nitrogen fixation) two−component regulatory system

M00520 ChvG−ChvI (acidity sensing) two−component regulatory system

M00505 KinB−AlgB (alginate production) two−component regulatory system

M00474 RcsC−RcsD−RcsB (capsule synthesis) two−component regulatory system

M00465 ManS−ManR (manganese homeostasis) two−component regulatory system

M00454 KdpD−KdpE (potassium transport) two−component regulatory system

M00453 QseC−QseB (quorum sensing) two−component regulatory system

M00448 CssS−CssR (secretion stress response) two−component regulatory system

M00436 Sulfonate transport system

M00432 Leucine biosynthesis

M00403 HRD1/SEL1 ERAD complex

M00400 p97−Ufd1−Npl4 complex

M00390 Exosome

M00384 Cul3−SPOP complex

M00342 Bacterial proteasome

M00300 Putrescine transport system

M00296 BER complex

M00295 BRCA1−associated genome surveillance complex (BASC)

M00291 MRN complex

M00287 PTS system

M00283 PTS system

M00277 PTS system

M00271 PTS system

M00269 PTS system

M00267 PTS system

M00256 Cell division transport system

M00244 Putative zinc/manganese transport system

M00238 D−Methionine transport system

M00236 Putative polar amino acid transport system

M00233 Glutamate transport system

M00224 Fluoroquinolone transport system

M00222 Phosphate transport system

M00216 Multiple sugar transport system

M00211 Putative ABC transport system

M00210 Phospholipid transport system

M00202 Oligogalacturonide transport system

M00193 Putative spermidine/putrescine transport system

M00171 C4−dicarboxylic acid cycle

M00157 F−type ATPase

M00133 Polyamine biosynthesis

M00122 Cobalamin biosynthesis

M00097 beta−Carotene biosynthesis

M00082 Fatty acid biosynthesis

M00079 Keratan sulfate degradation

M00065 GPI−anchor biosynthesis

M00063 CMP−KDO biosynthesis

M00050 Guanine ribonucleotide biosynthesis IMP => GDP

M00044 Tyrosine degradation

M00040 Tyrosine biosynthesis

M00024 Phenylalanine biosynthesis

M00022 Shikimate pathway

M00020 Serine biosynthesis

M00015 Proline biosynthesis

M00008 Entner−Doudoroff pathway

M00006 Pentose phosphate pathway

Lactobacillus.johnsonii

Enterococcus.faecium.hirae

Dubosiella.newyorkensis

Bifidobacterium.pseudolongum

Bacteroidales.bacterium.M2

Bacteroidales.bacterium.M14

Bacteroidales.bacterium.M10
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M00839 PdtaS−PdtaR two−component regulatory system

M00766 Streptomycin resistance

M00760 Erythromycin resistance

M00729 Fluoroquinolone resistance

M00728 Cationic antimicrobial peptide (CAMP) resistance

M00715 Lincosamide resistance

M00704 Tetracycline resistance

M00701 Multidrug resistance

M00670 Mce transport system

M00669 gamma−Hexachlorocyclohexane transport system

M00664 Nodulation

M00657 VanS−VanR (VanE type vancomycin resistance) two−component regulatory system

M00652 Vancomycin resistance

M00628 beta−Lactam resistance

M00585 L−Cystine transport system

M00582 Energy−coupling factor transport system

M00581 Biotin transport system

M00580 Pentose phosphate pathway

M00572 Pimeloyl−ACP biosynthesis

M00565 Trehalose biosynthesis

M00554 Nucleotide sugar biosynthesis

M00535 Isoleucine biosynthesis

M00533 Homoprotocatechuate degradation

M00524 FixL−FixJ (nitrogen fixation) two−component regulatory system

M00520 ChvG−ChvI (acidity sensing) two−component regulatory system

M00505 KinB−AlgB (alginate production) two−component regulatory system

M00474 RcsC−RcsD−RcsB (capsule synthesis) two−component regulatory system

M00465 ManS−ManR (manganese homeostasis) two−component regulatory system

M00454 KdpD−KdpE (potassium transport) two−component regulatory system

M00453 QseC−QseB (quorum sensing) two−component regulatory system

M00448 CssS−CssR (secretion stress response) two−component regulatory system

M00436 Sulfonate transport system

M00432 Leucine biosynthesis

M00403 HRD1/SEL1 ERAD complex

M00400 p97−Ufd1−Npl4 complex

M00390 Exosome

M00384 Cul3−SPOP complex

M00342 Bacterial proteasome

M00300 Putrescine transport system

M00296 BER complex

M00295 BRCA1−associated genome surveillance complex (BASC)

M00291 MRN complex

M00287 PTS system

M00283 PTS system

M00277 PTS system

M00271 PTS system

M00269 PTS system

M00267 PTS system

M00256 Cell division transport system

M00244 Putative zinc/manganese transport system

M00238 D−Methionine transport system

M00236 Putative polar amino acid transport system

M00233 Glutamate transport system

M00224 Fluoroquinolone transport system

M00222 Phosphate transport system

M00216 Multiple sugar transport system

M00211 Putative ABC transport system

M00210 Phospholipid transport system

M00202 Oligogalacturonide transport system

M00193 Putative spermidine/putrescine transport system

M00171 C4−dicarboxylic acid cycle

M00157 F−type ATPase

M00133 Polyamine biosynthesis

M00122 Cobalamin biosynthesis

M00097 beta−Carotene biosynthesis

M00082 Fatty acid biosynthesis

M00079 Keratan sulfate degradation

M00065 GPI−anchor biosynthesis

M00063 CMP−KDO biosynthesis

M00050 Guanine ribonucleotide biosynthesis IMP => GDP

M00044 Tyrosine degradation

M00040 Tyrosine biosynthesis

M00024 Phenylalanine biosynthesis

M00022 Shikimate pathway

M00020 Serine biosynthesis

M00015 Proline biosynthesis

M00008 Entner−Doudoroff pathway

M00006 Pentose phosphate pathway

Lactobacillus.johnsonii

Enterococcus.faecium.hirae

Dubosiella.newyorkensis

Bifidobacterium.pseudolongum

Bacteroidales.bacterium.M2

Bacteroidales.bacterium.M14

Bacteroidales.bacterium.M10
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Figure 20. The heatmap depicting the correlations between serum metabolites, bacterial species, 

and functional microbial modules within the COL group. Serum metabolites are on the x-axis, 

while bacterial species and functional microbial modules are on the y-axis. Variables that showed 

significant alterations between the HTN and sham groups in the Wilcoxon rank-sum test are se-

lected. Spearman's correlations were calculated, and the results were adjusted for multiple testing 

with BH-correction. White asterisk indicates the Spearman’s q < 0.05. This figure was created by 

Chia-Yu Chen, and its adapted version has been published in Avery et al., 202271, as figure S7 

(under CC BY-NC 4.0 license). Reprinted by permission of Oxford University Press on behalf of 

the European Society of Cardiology. Dr. Ellen Avery and Dr. Ulrike Löber generated and anno-

tated the metabolomics and microbiome data, and I did the analysis and created this figure. 



Results 83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 21. Comparison of the serum metabolites between the Pluznick and Avery studies. (A) 

Principal coordinate analysis (PCoA) shows the dissimilarities between the microbiome (genus 

level) of the COL mice which underwent different treatment from each study, which was done 

using Euclidean distance scaling of microbiome data published by Cheema and Pluznick121 (re-

ferred to as Pluznick) and our data (referred to as Avery). (B) The metabolites measured in the 

serum of mice in both Pluznick and Avery studies are included. The Y-axis displays the effect size 

of HTN compared with sham in COL mice, while the X-axis depicts the effect size of HTN com-

pared with sham in GF mice. The contours indicating densities are added by using the function 

geom_density_2d() in the ggplot2 package.  (C) The quantification of the distance in Figure 21B 

within each metabolite between the GF and COL groups from the Pluznick and Avery studies is 

shown. The y-axis shows the absolute value of the difference in the effect size between the two 

studies. The statistical significance, indicated by p < 0.05, was determined using the Wilcoxon 

rank-sum test. This figure was created by Chia-Yu Chen and its adapted version has been pub-

lished in Avery et al., 202271,  as figure S10 (under CC BY-NC 4.0 license). Reprinted by permis-

sion of Oxford University Press on behalf of the European Society of Cardiology. Dr. Ellen Avery 

annotated the metabolomics data from Pluznick and Avery studies, and I created these plots. 
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4. Discussion  

4.1  Short summary of the results 

The main goal of this thesis is to advance our understanding of the intricate relationship 

between the gut microbiome and cardiovascular and kidney diseases in a covariate-

aware manner. To facilitate this investigation, a specialized algorithm named LongDat69 

has been developed, specifically designed for the covariate-sensitive analysis of high-

dimensional longitudinal data. By incorporating LongDat into the analysis pipeline, we 

were able to disentangle the effects of covariates, such as medication and baseline 

characteristics, from the specific effects of fasting and the DASH diet. LongDat is sub-

jected to benchmarking against existing tools, with the results of this assessment, based 

on either simulated or real data, substantiating LongDat's efficiency and competency in 

comparison to its counterparts. Covariate-sensitive methods were implemented through-

out Studies 270 and 371. In Study 270, significant changes in microbial composition, im-

mune cell composition, and metabolic capacity during fasting were found. The findings 

suggest that fasting influences the gut microbiome and immunome, leading to improve-

ments in BP and body weight in individuals with MetS. In Study 371, it is found that the 

GF mice displayed more severe kidney damage and distinct metabolic profiles compared 

with COL mice, highlighting the influence of the presence of gut microbiome and micro-

biome-derived metabolites on immune cells and organ damage in HTN. Overall, these 

findings provide valuable insights into the role of the host-microbiome interaction in the 

development and progression of CVD and kidney diseases, as well as the potential ther-

apeutic implications of targeting the gut microbiome. 

4.2  Interpreting and integrating results with the current state of research 

To the best of my knowledge, LongDat presented in Study 169 is the first algorithm de-

veloped specifically to address the challenge of multiple covariates commonly encoun-

tered in longitudinal data analysis, particularly in the field of biomedical studies. Initially 

developed for microbiome analysis, LongDat can be adapted for other types of high-

dimensional data with robust methods like GLMMs and non-parametric tests. LongDat 

automates the analysis process, eliminating the need for users to program linear 

modeling functions. LongDat provides standardized output, enabling easy integration, 

comparison, and visualization of findings. When compared with existing longitudinal data 
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analyzing tools that also allow the inclusion of covariates during analysis64,66,68,104, the 

LongDat algorithm proves to be highly effective and efficient in several key aspects. Firstly, 

it demonstrates acceptable speed, allowing for timely analysis of large-scale longitudinal 

datasets. This efficiency is particularly beneficial when dealing with extensive data sets 

characterized by numerous time points and subjects, which are common in biomedical 

studies. Moreover, LongDat exhibits low memory usage, minimizing the computational 

resources required for data analysis. This advantage is especially crucial when working 

with high-dimensional longitudinal data, where memory constraints can significantly 

impact the feasibility of analyses. Most importantly, LongDat excels in its ability to handle 

multiple covariates, a vital feature in studying complex relationships such as those 

involving the gut microbiome, immune system, and cardiovascular health. LongDat 

stands out among other existing tools, particularly in scenarios with multiple covariates, 

owing to its distinctive approach to handling them. Unlike other methods, LongDat adopts 

a unique strategy of iterating over each covariate through parallel models, leading to a 

more robust and effective analysis. By accommodating numerous covariates, the Long-

Dat algorithm enables comprehensive analyses, leading to more accurate results.  

 

The implementation of the LongDat algorithm, the mixed effect models, Mantel and partial 

Mantel tests in this thesis yields critical insights into the complicated interplay between 

the gut microbiome, immune system, and cardiovascular and kidney health, specifically 

by disentangling the effect of covariates and treatment in the analyses. In Study 270, 

fasting induced changes in the population levels of key commensal bacteria, which were 

subsequently restored upon refeeding70. LongDat goes above and beyond merely identi-

fying the abundance of altered features (e.g., gut microbial species) during fasting and 

refeeding. It goes a step further by pinpointing the covariates that have a significant im-

pact on each feature, and determining whether the effect of time is being confounded by 

these covariates. An illustrative case can be observed in Table 2, where the gut microbi-

ome data of MetS patients in the fasting arm were reanalyzed at the species level. Notably, 

the SCFA producer, Clostridium leptum, was found to decrease during fasting124. How-

ever, the result of LongDat found that the observed effect of time, which serves as a proxy 

for treatment, could be attributed to diuretics. Hence, it would be inaccurate to consider 

fasting as the primary reason for the decline in Clostridium leptum. Instead, the main 

contributing factor appears to be the use of diuretics. Diuretics are medications used to 
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increase urine production and are employed to treat conditions like HTN, heart failure, 

kidney disorders, liver cirrhosis, and hypercalcemia125. The impact of diuretics on the gut 

microbiome has been demonstrated to exhibit significant synergistic effects in patients 

with type 2 diabetes, particularly when administered in conjunction with other medications 

like aspirin, angiotensin-converting enzyme inhibitors (ACE inhibitors), and beta-blockers. 

These diuretics show pronounced effects on the abundance of the gut microbiome. For 

example, it is known that diuretics influence the levels of Roseburia126. Furthermore, it 

has been observed that diuretics also induce shifts in microbial composition and richness 

in cirrhosis patients127. 

 

Aside from diuretics, as shown in Table 2, other covariates were also detected, although 

the effect of time cannot be reduced to these covariates. These covariates, some of them 

being drugs commonly used to treat HTN, include ACE inhibitors, antidiabetics, statins, 

angiotensin II receptor blockers (AT2 blockers), beta blockers, thyroid hormone, metfor-

min, xanthine oxidase inhibitors, proton pump inhibitors (PPIs), vitamin D, and calcium 

antagonists. Among them, there is evidence in the literature supporting the capacity of 

ACE inhibitors, statins, AT2 blockers, beta blockers, thyroid hormone, metformin, PPIs, 

vitamin D, calcium antagonists, and antidiabetics to modify or impact the composition of 

the gut microbiome in humans or mice128-134. While the precise mechanisms of how these 

drugs influence the gut microbiome remain unclear, it is likely that they directly affect the 

gut microenvironment, and in turn, promote or inhibit the growth of specific bacteria. For 

example, metformin has been found to foster the growth of beneficial bacteria, contrib-

uting to its therapeutic effects in enhancing insulin resistance and glucose regulation.  

 

In recent years, gut microbiome research has been a thriving research field; nevertheless, 

it confronts obstacles stemming from inconsistent discoveries. These discrepancies might 

arise from a lack of control and inadequate reporting of covariate impacts in publica-

tions62,126,135. The demonstrated influence of various drugs highlights the importance of 

covariate-aware analysis. Understanding the effects of these covariates on the gut micro-

biome is essential for obtaining accurate and meaningful results. The longitudinal data 

analysis in Study 270, performed exclusively with the LongDat algorithm, empowers the 

identification and consideration of covariates like drug usage, which hold significant influ-

ences over the gut microbiome. Particularly, when dealing with multiple covariates in the 
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data, LongDat stands as the sole and essential tool that seamlessly and reliably handles 

the analysis, preventing failures (e.g., inflated FDR, unreasonable runtime, excessive 

memory usage, or NAs in the results) associated with such complexity. In short, LongDat 

proves vital in identifying covariate effects that would otherwise be overlooked in naïve 

analyses, ultimately improving the consistency and reliability of gut microbiome research. 

The utilization of LongDat in this study also contributes to the broader scientific 

community by making the algorithm available on platforms such as CRAN and GitHub. 

This availability enables researchers in the biomedical fields to apply LongDat to their 

own datasets and thus promotes the good practice of covariate-aware research. 

 

Study 270 represents the first comprehensive investigation using high-resolution multi-

omics to characterize fasting in MetS patients. It includes detailed clinical assessments, 

immunophenotyping, and sequencing of the gut microbiome. The main biomedical-wise 

discovery in Study 270 is that the combination of fasting and a modified DASH diet for 

three months triggers unique and coordinated changes in both the gut microbiome and 

immune system. These changes result in a lasting decrease in BP, a benefit not observed 

in patients solely on the DASH diet. Specifically, fasting induced significant changes in 

the gut microbiome, including shifts in butyrate-producing bacteria (e.g., Eubacterium rec-

tale and Coprococcus comes), which are also reported in previous literature135. These 

changes were observed during the fasting phase and partially reverted after refeeding. 

Despite many fasting-induced shifts being temporary, a lasting improvement in BP was 

observed in the patients. It is revealed that individuals who responded positively to the 

fasting+DASH intervention for BP improvement had depleted SCFA-producing taxa and 

gene modules at the baseline. During fasting or refeeding, these taxa and gene modules 

increased, counteracting the initial depletion. The improved availability of SCFAs in the 

body is considered a vital mechanism for the observed improvement, as SCFA has been 

shown to lower BP136. 

 

Gut microbial dysbiosis is associated with HTN in humans and rodents137,138. However, 

the overall contribution of the microbiome to HTN remains understudied. In Study 371, by 

comparing the HTN-induced inflammation and organ damage between GF and COL mice, 

it is found that GF mice displayed significantly higher mean arterial pressure, more severe 

albuminuria, and increased T-helper cells and leukocytes in the kidneys. These results 
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indicate a heightened susceptibility of the kidneys to microbial influence, whereas the 

cardiac damage levels were similarly severe between the two groups. The proposition is 

that the reduced overall damage observed in COL mice is probably attributed to the ex-

istence of SCFAs, which have been shown to regulate BP139. On the other hand, when 

comparing COL+sham mice with COL+HTN mice, there is a decrease in the abundance 

of Dubosiella newyorkensis and Bifidobacterium pseudolongum, accompanied by an in-

crease in the abundance of Enterococcus. Interestingly, Dubosiella newyorkensis is a 

recently discovered species and a potential probiotics known for its anti-aging properties 

in aged mice by reducing oxidative stress, and the ability to inhibit the renin-angiotensin 

system140-142. Bifidobacterium pseudolongum is a prevalent commensal species in the 

animal gut, known for its ability to improve metabolic health and alleviate intestinal inflam-

mation143,144. The correlation analysis revealed a positive association between Dubosiella 

newyorkensis and serotonin, while Bifidobacterium pseudolongum showed a negative 

correlation with kynurenine. Both serotonin and kynurenine are metabolites derived from 

tryptophan and are linked to conditions like HTN, heart disease, and obesity145-147. These 

results shed light on the complex interaction between the gut microbiome and serum me-

tabolites in the context of CVD. 

 

The implementation of the LongDat algorithm was not employed in Study 371 as a result 

of the cross-sectional nature of the data used in the study. Nonetheless, the research 

incorporated the principles of covariate-aware analysis. This was exemplified through the 

application of the partial Mantel test, a statistical tool used to disentangle the effects of 

colonization status and treatment on the serum metabolome, as well as the treatment and 

origin (fecal vs cecal) on gut microbiome composition. The results indicate that both col-

onization status and the HTN-inducing treatment significantly impact the metabolome. 

This observation is consistent with previous literature showing notable alterations in 

plasma metabolome during HTN induction121. Additionally, it has been demonstrated that 

the microbiome is crucial in explaining variations in the metabolome among germ-free, 

gnotobiotic, and specific-pathogen-free mice148. On the other hand, although previous 

study states that the microbial composition in the cecum of humans exhibits both quanti-

tative and qualitative distinctions compared with the microbial composition in the feces149,  

the microbiome of COL mice in Study 371 is much more affected by the treatment than 

the origin of the microbiome, implying a substantial systematic change in the microbiome 

upon HTN induction. 
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The findings of Study 371 are contradictory to the Karbach study150 where GF mice were 

protected from HTN when compared with COL mice. Two potential reasons for the dis-

crepancy were proposed, including differences in experimental protocols and the distinct 

microbiome backgrounds of the COL mice used. From the comparative analysis of the 

microbiome and metabolome of the Pluznick study121 and the data from Study 371, it is 

found that there are significant differences in the microbiomes of the CONV/COL mice 

between the two studies. Importantly, the serum metabolome of GF mice showed less 

distance between the two studies compared with the CONV/COL mice. This suggests 

that the microbiome has an observable influence on serum metabolome changes as a 

response to HTN and may explain the conflicting results between the Karbach studies 

and Study 371. Hence, transparent documentation and accessibility of microbiome data 

in future studies are crucial to ensure reproducibility and comparability between studies.  

4.3  Limitations 

Despite the careful execution of all three studies, it is important to acknowledge the 

presence of certain limitations that should be addressed. One limitation of the LongDat 

algorithm presented in Study 169 is that it reports standardized nonparametric effect sizes 

of discrete and continuous variables (Cliff’s delta and Spearman’s rho, respectively), com-

puted independently of other covariates. As a result, when the time effect (the proxy of 

the treatment effect) is reported as significant, and its effect is not reducible to covariates, 

it is considered reliable. However, while the direction of the effect is correct, the estimation 

of its strength is not ideal as it does not consider the influence of covariates that may 

independently affect the measured feature. Currently, there is a lack of knowledge re-

garding partial effect size metrics, which are standardized and directional, that could help 

address this limitation. Nonetheless, active efforts are underway to search for such met-

rics to potentially incorporate them in later versions of the LongDat algorithm. Furthermore, 

LongDat currently does not support the inclusion of interactive terms, such as those be-

tween the time variable and covariates. This feature is planned to be added in future 

updates of the LongDat algorithm to expand its usage. 

 

In Study 270, the study has several limitations. Firstly, the participants were exclusively 

from a Caucasian-European background, which may introduce selection bias. Further 

research is needed to determine if the findings are applicable to a more diverse patient 
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population. Additionally, the study design did not allow for investigating fasting’s long-

term effects without the following DASH diet on immunome, microbiome or BP. Next, 

identified alterations in microbiome taxonomic and functional features, microbial metabo-

lites, and immunome suggest potential explanations for the intervention's efficacy. How-

ever, causal conclusions necessitate further experimental work. For example, one can 

validate the BP-associated bacteria by introducing them into animal models such as mice 

and then observe the difference in phenotypes. Moreover, the relatively low number of 

patients in the study may lead to insufficient power, and thus limit the comprehensive 

understanding of fasting-associated host and microbiome features, necessitating larger 

studies for validation. Notwithstanding these limitations, the core findings in Study 270 

persist in parallel with findings from other studies, with the strongest microbiome altera-

tion replicated across various studies135. Therefore, Study 270 demonstrates the potential 

of fasting followed by a DASH diet as a non-drug-based approach for treating MetS pa-

tients.  

 

Finally, in Study 371, there are also a few limitations to be acknowledged. For starters, 

the low number of samples in each group may result in limited statistical power to detect 

changes in the microbiome or immunome analysis. To address this, future studies could 

consider increasing the sample size to enhance the robustness of the findings. Secondly, 

as previously mentioned, the implanted microbiome plays a significant role in shaping the 

metabolome and phenotype related to HTN. However, in this study, only one type of mi-

crobiome (i.e., the microbiome comes from a single environmental source) for passive 

bacterial colonization was utilized. To validate and generalize the results in Study 371, it 

would be necessary to investigate the effects of different compositions of implanting mi-

crobiomes in follow-up studies, or consider using wildling mice (mice possessing the ge-

netic background of laboratory mice but harboring the microbiome of wild mice) as an 

alternative151.  

4.4  Implications for practice and future application 

The LongDat69 algorithm serves as an ideal tool for the analysis of longitudinal data, with 

a particular focus on investigating intervention effects while accounting for covariates 

throughout the study. Initially designed as a specialized microbiome analysis tool, Long-

Dat has undergone enhancements to accommodate a diverse range of high-dimensional 
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data types, making its usage more flexible and versatile. LongDat offers a seamless and 

efficient alternative to cumbersome programming models and non-parametric tests from 

scratch, automating the data analysis process. By utilizing LongDat, users gain access to 

standardized output, complete with effect sizes, and visually engaging representations 

that elucidate the impacts of covariates for every feature. This enables users to integrate, 

compare, and visually explore their results with ease. In order to promote covariate-aware 

analysis within the scientific community and enhance reproducibility, I have compiled the 

LongDat algorithm into an R package, leveraging the widely adopted R environment. This 

integration ensures that LongDat can be easily downloaded and installed from CRAN, the 

standard repository for R packages, making it accessible to a broad range of researchers 

and facilitating its adoption in scientific research. 

 

In addition to its broader utilization in the science community, the LongDat algorithm is 

set to play a crucial role in the analysis of the CRC1365 project, "Renoprotection." The 

aim of the Renoprotection project is to clarify the interaction between the gut microbiome 

and immune cells of the host, and further investigate how this interaction affects the path-

ogenesis of HTN-induced CKD. This project involves the generation of longitudinal data 

on metagenome, metabolome, immunome, and phenotype. It is divided into multiple 

stages, including data collection from HTN-induced CKD development in double-trans-

genic rats, exploring the effects of microbiome-targeting drugs on CKD, and evaluating 

different gut microbiome effects on CKD progression through fecal microbiome trans-

plants. By incorporating LongDat in the analyses, the goal is to ensure covariate-aware 

analysis and proper evaluation of longitudinal data. The result is anticipated to pave the 

way for innovative and improved therapeutic strategies for CKD. 

 

The research findings from Studies 270 and 371 highlight the substantial impact of the gut 

microbiome and its metabolites on the conditions of MetS and HTN, both of which are 

major risk factors for CVD. Promisingly, the positive results observed with fasting followed 

by a DASH diet during the refeeding phase suggest a potential intervention to effectively 

manage high BP in MetS patients. Additionally, the discovery that COL mice, as opposed 

to their GF counterparts, are protected from damage through anti-inflammatory SCFAs, 

introduces a novel approach to address HTN and inflammation. The potential of elevating 

SCFA levels through direct supplementation or via influencing the gut microbiome to pro-
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mote SCFA-generating microbial species, such as through dietary fiber or nutritional ther-

apies, emerges as a promising strategy. In summary, both fasting and SCFA supplemen-

tation offer promising prospects for managing conditions related to MetS and HTN. These 

strategies provide an opportunity to propel non-pharmacological approaches that en-

hance patient outcomes, creating novel avenues for mitigating CVD considering the sig-

nificant role of MetS and HTN as contributing risk factors. 

 

 

 

 

 

 

 



Conclusions 93 

5. Conclusions  

In this thesis, LongDat was developed as a covariate-aware algorithm tailored for analyz-

ing high-dimensional longitudinal data. The challenge of multiple covariates commonly 

encountered in longitudinal microbiome data analysis was addressed by LongDat, offer-

ing a unique and efficient approach to detect and control for these covariates. LongDat 

enhances the consistency and reliability of gut microbiome research, enabling users to 

perform covariate-aware analyses with increased efficiency and accuracy. By applying 

LongDat to gut microbiome data from MetS patients, significant changes in microbial 

composition, and immune cell composition during fasting were uncovered. These findings 

suggest that the gut microbiome and immunome are influenced by fasting, leading to 

improvements in BP and body weight in individuals with MetS. LongDat algorithm's ability 

to identify and account for covariates, played a crucial role in disentangling the effects of 

fasting and the DASH diet, providing a clearer understanding of the intervention's impact. 

Additionally, insights into the role of the gut microbiome in HTN development as revealed 

by the study comparing HTN impacts between COL and GF mice. GF mice displayed 

more severe kidney damage and distinct metabolic profiles compared with COL mice, 

highlighting the influence of the presence of gut microbiome and microbiome-derived me-

tabolites on immune cells and organ damage in HTN. The presence of anti-inflammatory 

SCFAs in COL mice seemed to protect them from damage, implying a novel approach to 

address HTN and inflammation. 

 

Overall, via covariate-aware methods, the thesis advances the understanding of the intri-

cate relationship between the gut microbiome and diseases, shedding light on potential 

therapeutic implications. The findings from this thesis offer valuable insights into the role 

of host-microbiome interaction in MetS, HTN and organ damage, paving the way for non-

pharmacological interventions in the realm of CVD and kidney diseases. Last but not least, 

this thesis has convincingly demonstrated that better comparability and reproducibility of 

scientific studies can only be achieved by providing a thoroughly transparent report of the 

microbiome composition, drug usage, diet, lifestyle, and any other covariates that might 

influence the outcome. Consequently, embracing transparency and covariate-aware 

analyses will foster greater trust and confidence in the scientific community and facilitate 

meaningful progress in the field of biomedical research.
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Chia-Yu Chen 1,2,3,4, Ulrike Löber 1,2,3,4 and Sofia K. Forslund1,2,3,4,5,*

1Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany, 2Experimental and Clinical
Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the
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Abstract

Summary: We introduce LongDat, an R package that analyzes longitudinal multivariable (cohort) data while simul-
taneously accounting for a potentially large number of covariates. The primary use case is to differentiate direct
from indirect effects of an intervention (or treatment) and to identify covariates (potential mechanistic intermediates)
in longitudinal data. LongDat focuses on analyzing longitudinal microbiome data, but its usage can be expanded to
other data types, such as binary, categorical and continuous data. We tested and compared LongDat with other tools
(i.e. MaAsLin2, ANCOM, lgpr and ZIBR) on both simulated and real data. We showed that LongDat outperformed
these tools in accuracy, runtime and memory cost, especially when there were multiple covariates. The results indi-
cate that the LongDat R package is a computationally efficient and low-memory-cost tool for longitudinal data with
multiple covariates and facilitates robust biomarker searches in high-dimensional datasets.
Availability and implementation: The R package LongDat is available on CRAN (https://cran.r-project.org/web/pack
ages/LongDat/) and GitHub (https://github.com/CCY-dev/LongDat).
Contact: chia-yu.chen@mdc-berlin.de or sofia.forslund@mdc-berlin.de
Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Recent years have seen the spawning of high-dimensional data (i.e.
data with a large number of features) as biotechnology develops rap-
idly (Assent, 2012; Witten et al., 2010). For instance, metabolomics,
immunomics and metagenomics are becoming prevalent. Among
them, count data derived from microbial metagenomics sequencing
especially require specific methods to tackle since they have several
inherent properties, including uneven sequencing depth across sam-
ples, compositional structure, overdispersion and high sparsity
(Kodikara et al., 2022; Zhang et al., 2017). When the research aim
is to find out the differences in the abundance of microbial features
between groups (e.g. time points, treatments), a typical workflow
consists of pre-processing and differential abundance analysis steps.
Uneven sequencing depth in metagenomic shotgun sequencing needs
to be addressed at the pre-processing step because it is known to
cause bias in evaluating microbial communities (Sanchez-Cid et al.,
2022). Therefore, data-preprocessing approaches such as normaliza-
tion, transformation and rarefaction have been developed to deal

with varying sequencing depth (Lin et al., 2020). When it comes to
differential abundance analysis, we need to consider the typical
characteristics of microbiome data, including () compositional struc-
ture, (ii) overdispersion and (iii) high sparsity. Microbial data from
shotgun sequencing are inherently compositional since the total
amount of reads each sequencing run can generate is fixed. Thus
the abundances of features are not independent of each other
(Gloor et al., 2017). Tools have been proposed to account for the
compositional structure (Mandal et al., 2015). However, some
literature shows that the compositional methods do not always out-
perform the non-compositional methods (Mallick et al., 2021).
Overdispersion denotes a larger variability observed in data than
expected from a specific distribution, while high sparsity implies
that the data are inflated with zeros. When fitting models to the
microbiome data, overdispersion and high sparsity should be
addressed. For example, models like negative binomial regression
and zero-inflated Poisson regression have been introduced to solve
overdispersion and high-sparsity problems (Mallick et al., 2021;
Zhang et al., 2017). Collectively, many different microbiome data
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analysis methods have been proposed so far, and there are plentiful
reviews on their comparisons (Calgaro et al., 2020; Swift et al.,
2023; Weiss et al., 2017). However, there is no universal method for
analyzing all types of microbiome data. Hence, it depends on the
characteristics of the data and the user’s research aim to opt for an
appropriate method in different scenarios.

Microbiome data can be divided into cross-sectional and longitu-
dinal based on its study design. Cross-sectional data are collected by
examining multiple subjects at one time point (Levin, 2006). In con-
trast, longitudinal data from observational or intervention cohorts
are repeated measurements from the same individuals at different
time points (Liu et al., 2010). Compared with cross-sectional stud-
ies, longitudinal studies account for individual variation and enable
researchers to trace changes over time (Hua et al., 2009). Thus, lon-
gitudinal data collection has become more common in biological
and medical fields nowadays (Liu et al., 2010). When fitting models
to longitudinal microbiome data, microbiome features are the de-
pendent variables, while the metadata (i.e. information about the
individuals) are the independent variables. The metadata may in-
clude the time variable and other variables, such as dietary supple-
ments, changes in meals and weight. The aim of longitudinal
microbiome data analysis is to investigate the effect of the time vari-
able since it is the proxy for treatment or intervention in longitudin-
al data. Accordingly, all variables in the metadata except for the
time variables are referred to as covariates, which are defined as the
factors other than the variable we are interested in (here the time
variable) that might associate with the outcome (here microbiome
features) (Field-Fote, 2019). Examples of covariates include, for ex-
ample, how patients benefiting from a dietary intervention (coded as
a time variable) may have their medication dosages reduced during
the course of a trial, raising the question of whether observed -omics
signature changes are direct effects of the intervention or indirect
effects following from the alteration of medication regime (Maifeld
et al., 2021). Consequently, to ensure proper analyses of longitudin-
al microbiome data, it is important to disentangle the time variable’s
effects from the covariates’ effects. In other words, covariates should
be uncovered and controlled for to avoid false conclusions (Pedersen
et al., 2018). In addition, two other critical points need to be consid-
ered when analyzing longitudinal microbiome data. First, selecting
appropriate statistical tests from empirical data distributions is im-
portant for obtaining proper interpretations (Nahm, 2016). Second,
inter-individual variation (e.g. differences in microbial abundance
levels between individuals) should be addressed. Several tools deal-
ing with longitudinal microbiome data already exist, and some
allow taking in covariates for analysis (Asar et al., 2013; Chen et al.,
2016; Gonçalves et al., 2021; Mallick et al., 2021; Mandal et al.,
2015; Opgen-Rhein et al., 2021; Timonen et al., 2021).
Nevertheless, none of these tools reports explicitly on how the effect
of time variable is affected by the presence of other covariates while
detecting and simultaneously controlling for them. Therefore, we
developed LongDat, an R package capable of performing the tasks
as described above.

LongDat is developed and tested centered on microbiome data.
However, we extended its utility to work on different data types
(e.g. immunome, metabolome, transcriptome). The key to
LongDat’s flexibility to adapt to input data with different statistical
distributions lies in the utilization of generalized linear models
(GLMs) and non-parametric effect size calculations in the pipeline.
GLMs can fit skewed data (e.g. data with overdispersion and high
sparsity), allow non-constant variances (heteroscedasticity) and
model various data types, such as continuous, categorical and ordin-
al data (Lindsey et al., 1998). To account for inter-individual vari-
ation in longitudinal data, we treat sample donor origin (i.e.
individual) as a random effect, expanding the GLMs framework to
the generalized linear mixed models (GLMMs) (Bolker et al., 2009).
LongDat utilizes GLMMs to test the significance of the time variable
without and with the presence of covariates in the models, respect-
ively. Subsequently, the effect size of the time variable on each
microbiome feature is calculated. In a longitudinal setting, an effect
size is defined as the degree of feature difference before and after
treatment. Reporting effect sizes in the result is in line with the

current best practice, which urges researchers to report effect sizes
along with P-values in biomedical research (Sullivan et al., 2012).
P-values from the abovementioned model tests indicate the statistic-
al significance of the time variable (proxy of treatments), whereas
standardized and directional effect sizes allow users to interpret the
magnitude of effects both manually and within automated frame-
works. In the LongDat pipeline, directional non-parametric effect
sizes (e.g. Spearman’s rho and Cliff’s delta) are applied to handle
both normally and non-normally distributed data (Marfo et al.,
2019). LongDat focuses on analyzing monotonic (i.e. the direction
of change is fixed) treatment effects within time intervals while
reporting covariates for each feature.

In this report, we describe the method of the LongDat R package
and validate its performance by comparing it with its closest pub-
lished counterpart to date, MaAsLin2 (Mallick et al., 2021). We
tested the performance of LongDat and MaAsLin2 on simulated,
semi-synthetic and real microbiome data. MaAsLin2 is an R pack-
age similar to LongDat in several aspects. They both focus on micro-
biome analysis, adopt GLMMs and allow covariates to be included
in the models. The main difference between MaAsLin2 and
LongDat is that MaAsLin2 does not explicitly report how the effect
of the time variable is affected by the presence of other covariates.
In addition, the ways of treating covariates in the two tools differ.
MaAsLin2 takes in all covariates along with the time variable into a
model at once, while LongDat loops over each covariate in parallel
models (see Methods). This distinction leads to significant differen-
ces in the results of analyzing longitudinal microbiome data with
many covariates, making LongDat more suitable when there are
multiple covariates (see Results). Aside from MaAsLin2, we also
compared LongDat with other R packages which allow covariates
to be included in the analysis, namely ANCOM (Mandal et al.,
2015), lgpr (Timonen et al., 2021) and ZIBR (Chen et al., 2016).
ANCOM is a microbiome-oriented tool that utilizes the compos-
itional method. Lgpr uses additive Gaussian process regression (a
Bayesian method) to achieve non-parametric modeling of longitu-
dinal data. ZIBR incorporates logistic models and zero-inflated Beta
regressions with random effects to test the effect of time on micro-
biome features. Since normalization and rarefaction of the microbial
count data might induce considerable changes to the analysis result,
we compared the performances of these tools when different nor-
malization or rarefaction techniques were applied, including total-
sum scaling (TSS), cumulative-sum scaling (CSS), trimmed mean of
M-values (TMM), geometric mean of pairwise ratios (GMPR), cen-
tered log-ratio (CLR), rarefaction (Chen et al., 2018; McKnight
et al., 2019; Mulè et al., 2022). TSS divides absolute abundance by
the total sum of read depth and converts it into relative abundance
ranging between 0 and 1. CSS is a quantile normalization method
that addresses the bias arising from TSS. The purpose of TMM is to
tackle the problem of composition bias and calculate normalization
factors that aid in comparing different libraries. GMPR computes
the ratio between each pair of values and then takes the geometric
mean of those ratios to normalize data. CLR transformation, com-
monly used for compositional data analysis, takes the logarithm of
the ratios of each component to the geometric mean of all compo-
nents, and then centers the resulting values around zero. Lastly, rar-
efaction randomly subsamples the data to obtain an equivalent
sequencing depth across all samples. Altogether, we assessed how
these tools performed with various normalization or rarefaction
techniques.

The real microbiome data used in this study for comparison are
from our previous study, which reported on a clinical cohort investi-
gating fasting effects on patients with metabolic syndrome (MetS)
(Maifeld et al., 2021). By reanalyzing this dataset in which MetS
patients benefit from a dietary intervention while medication dos-
ages were altered subsequently during the trial course as an indirect
effect following improved health, we demonstrated the need to re-
solve the time variable (proxy of dietary intervention) and covariate
effects in real data. The research question is whether the beneficial
outcome is a direct effect of the intervention or an indirect effect fol-
lowing the alteration of the medication regimen. Below we show
that LongDat could disentangle the intervention’s beneficial direct
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effect from the indirect effect of the changes in drug dosage. Finally,
to demonstrate LongDat’s flexibility to deal with other datatypes be-
sides microbiome data, we also applied LongDat to the immunome
data in the study described above.

2 Methods

2.1 The LongDat method
The LongDat pipeline comprises three major steps, namely the null
time model test, covariate model test and effect size calculation
(Fig. 1).

1. Null time model test. We test whether time associates signifi-

cantly with each feature (dependent variable), regardless of

covariates. LongDat incorporates several R packages specializ-

ing in GLMMs, such as MASS, lme4 and glmmTMB (Bates

et al., 2015; Brooks et al., 2017; Venables et al., 2002), provid-

ing high flexibility for input data types. A negative binomial

model is used to fit count data composed of integers (Ver Hoef

et al., 2007), such as numbers of sequencing reads. A beta model

is applied to proportion data (i.e. that range between 0 and 1)

(Ferrari et al., 2004). For binary data (consisting of either 0 or

1), binary logistic regression is performed (Nick et al., 2007).

For ordinal data (where the features correspond to ranks), a pro-

portional odds model is adopted (Liu, 2009). Finally, continuous

data are first normalized and then fitted by linear models. Each

model is a random intercept model with the sample donor origin

treated as a random factor to account for between-individual

variability and non-independence of samples from the same

donor. P-values are adjusted for multiple testing using the

Benjamini-Hochberg method or other approaches (Benjamini

et al., 1995).

2. Covariate model test. If covariates are present in a dataset, this

step identifies them and disentangles their effects from those of

variables of interest (here, the time variable). In the metadata,

covariates that exhibit significant association with each feature

(e.g. microbiome abundance) via non-parametric tests (i.e. the

Wilcoxon rank-sum, Kruskal-Wallis or Spearman’s correlation

test) are selected. And then, each selected covariate is included

one by one as a fixed effect, together with the time variable, in

GLMMs to examine whether or not the time associations can be

reduced to the influence of each covariate, reflecting the ‘vibra-

tion of effects’ (VoE) concept (Tierney et al., 2021). VoE is the

degree to which different combinations of independent variables

(e.g. adding covariates) change the outcome and assessed signifi-

cance of a model. The larger the VoE, the less robust the associ-

ation is between features and independent variables. That is, a

true association should remain significant across all model

configurations. Significant time-dependent features are subse-

quently classified as fulfilling conditions of ‘effect not reducible

to covariate’, ‘entangled with covariate’ or ‘effect reducible to

covariate’ according to these model tests. If the time variable

remains a significant predictor in all models, the feature will be

flagged as ‘effect not reducible to covariate’. If the time variable

loses significance but the covariate does show significance in any

of the models, the feature is marked as ‘effect reducible to cova-

riate’. If there is no clear covariate but at least one model in

which the covariate and time both failed to show significance,

the feature will be labeled ‘entangled with covariate’.

3. Effect size calculation. Non-parametric effect size calculations

are implemented. These are Spearman correlation for continuous

time variables (e.g. day) and Cliff’s delta for discrete time varia-

bles (e.g. before/after treatment) (Macbeth et al., 2010). Effect

size calculation is based on a naı̈ve association between the inde-

pendent variable and the feature, without being partitioned by

covariates. Therefore, to ensure LongDat calculates the correct

effect size, treatment effects should be monotonic (i.e. no change

in the direction of association) within the time interval of the in-

put data. If this is not the case, analyses should be done separate-

ly on time subranges of the data for which monotony holds.

All results of the steps mentioned above are summarized into
two tables. One table lists the significance estimate (q-values
adjusted for multiple testing) of time dependence and effect sizes
across all features. The other table lists relevant covariates with rela-
tive reducibility status for each of them.

2.2 LongDat package overview
LongDat is built with R (!4.0.0), and its dependencies include lme4
(!1.1-28) (Bates et al., 2015), glmmTMB (!1.1.3) (Brooks et al.,
2017), reshape2 (!1.4.4) (Wickham, 2007), emmeans (!1.7.3)
(Lenth, 2021), bestNormalize (!1.8.2) (Peterson, 2021), MASS
(!7.3-56) (Venables et al., 2002), tidyverse (!1.3.1) (Wickham
et al., 2019), effsize (!0.8.1) (Torchiano, 2020), patchwork
(!1.1.1) (Pedersen, 2020) and car (!3.0-12) (Fox et al., 2019).
There are four main functions that are the most relevant to users of
the LongDat package (Fig. 1). For more detailed tutorials for
LongDat, please visit GitHub (https://github.com/CCY-dev/
LongDat), or install LongDat and then access its vignettes with the
command ‘browseVignettes(“LongDat”)’.

2.3 Simulation of longitudinal data with
microbiomeDASim
Longitudinal data corresponding to microbiome taxonomic abun-
dance measurements from a cohort were simulated using
microbiomeDASim (Williams et al., 2019). MicrobiomeDASim is an
R package aimed at simulating longitudinal differential microbiome

Fig. 1. LongDat pipeline overview. Flowchart of LongDat showing the major functions (bold text in red) and steps. The function ‘make_master_table()’ creates a master table
that can be taken as input by joining metadata and feature tables provided by the user. The two functions ‘longdat_disc()’ and ‘longdat_cont()’ both perform covariate-sensitive
analyses. The main components of them are the null time model test, the effect size calculation and the covariate model test, applied to input master tables to perform covari-
ate-aware tests for the significance of the time variable (the proxy of treatment). The function ‘longdat_disc()’ is suitable for data where time is discrete (e.g. a before/after treat-
ment dataset), whereas ‘longdat_cont()’ is for data with time represented as a continuous variable (e.g. day). Finally, the function ‘cuneiform_plot()’ generates a summarizing
plot of the result table. For more detailed tutorials of LongDat application, please visit GitHub (https://github.com/CCY-dev/LongDat), or refer to its vignettes
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data. It allows the users to define sparsity, effect size, number of
samples and time points. Here, simulated data were generated from
a multivariate normal distribution, and the parameter encoding the
longitudinal dependency within individuals was a first-order autore-
gressive correlation structure.

1. Simulated data with no covariate. For each sample size (10, 20,

38, 75, 150 and 300) and effect size (Spearman’s rho median !
0.2 or 0.5 for time-varying features) combination, 100 simula-

tions were performed. Each simulated dataset contained 200 fea-

tures. Among them, 20 features changed over time/under

intervention, while the remaining 180 were sampled from the

same distribution across time points. Two time points were

simulated for each individual.

2. Simulated data with a single covariate for covariate effect ana-

lysis. A dummy variable correlating with the time variable was

manually added to the aforementioned simulated dataset (sam-

ple size ¼ 75, effect size median ! 0.5). The dummy variable

was sampled to correlate with the time variable at a Spearman’s

rho of approximately 0.25, 0.5, 0.75 or 0.99. For each correl-

ation level, 100 simulations were performed. For the negative-

control data, we shuffled the time variable against all other vari-

ables randomly within each individual to wipe out the associ-

ation between the time variable and the features, and the

association between the time variable and the covariates.

3. Simulated data with multiple covariates. 1, 2, 4, 8 or 16 dummy

variables correlating with the time variable were manually added

to the abovementioned simulated dataset (sample size ¼ 75, ef-

fect size median ! 0.5). The dummy variables were randomly

sampled to correlate with the time variable at a Spearman’s rho

of approximately 0.25, 0.5, 0.75 or 0.99. For each correlation

level, 100 simulations were performed. For the comparison be-

tween LongDat and Maaslin2, each dataset contained 200 fea-

tures (20 changed over time and 180 did not), and for each

combination of sample size, effect size and tool, 100 simulations

were performed. For the comparison between LongDat,

ANCOM, lpgr and ZIBR, each dataset contained 100 features

(10 changed over time and 90 did not), and 50 simulations were

performed for each combination of sample size, effect size and

tool. The reduction of feature number and simulation number

was due to the heavy computational resource ANCOM (large

memory), lgpr (long runtime) and ZIBR (long runtime) required.

2.4 Simulation of longitudinal data with SparseDOSSA2
Besides microbiomeDASim, another set of longitudinal microbial
data was simulated using SparseDOSSA2 (Ma et al., 2021).
SparseDOSSA2 is an R package specialized for simulating realistic
new microbiome data templated on real microbial communities. In
these longitudinal data simulations, SparseDOSSA2 adopts general-
ized linear models to create feature-covariate associations (here,
the time variable and other covariates) specified by users, and
the template was based on stool microbiome. We followed the tutor-
ial of SparseDOSSA2 (https://github.com/biobakery/biobakery/wiki/
SparseDOSSA2) as a complementary approach to the above to simu-
late longitudinal microbial data for benchmarking.

1. Simulated data with no covariate. For each sample size (10, 20,

38, 75, 150 and 300) and effect size (Spearman’s rho median

! 0.2 or 0.5 for time-varying features) combination, 100 simula-

tions were performed. Each simulated dataset contained 332 fea-

tures. Among them, 33 features were spiked (changed over time/

under intervention), while the remaining ones were sampled

from the same distribution across time points. Two time points

were simulated for each individual.

2. Simulated data with multiple covariates. 1, 4 or 16 dummy vari-

ables correlating with the time variable were manually added to

the abovementioned simulated dataset with 332 features and

varying sample sizes. The dummy variables were randomly

sampled to correlate with the time variable at a Spearman’s rho

of approximately 0.25, 0.5, 0.75 or 0.99. For each correlation

level, 100 simulations were performed.

3. Simulated negative control data. Simulations were done to gen-

erate 100 sets of data with two time points, 150 individuals, 332

microbes and zero effect size for all microbial features (i.e. no

spiked feature). Six versions of the data with different sequenc-

ing depths (the sum of microbial abundance of each feature)

were further generated, to test the impact of systematic effects

on sampling depth as may occur, for example, in clinical low

biomass datasets. Accordingly, for these simulated data, any sig-

nal detected will reflect such systematic bias only. In versions

one and two of the simulation, both of the total abundances at

the first and second time points of each individual were rarefied

to 50 000 and 1000, respectively. In version three, the total

abundances at the first time point were rarefied to 50 000 and

the second time point to 5000, while in version four, the total

abundances at the first time point were rarefied to 5000 and the

second time point to 50 000. In version five, the total abundan-

ces at the first time point were rarefied to 50 000 and the second

time point to 1000, while in version six, the total abundances at

the first time point were rarefied to 1000 and the second time

point to 50 000. When applying LongDat count mode (running

negative binomial models), versions three to six were further

rarefied to either 5000 or 1000 (as per the lowest sequencing

depth) at both time points, such that the sequencing depths are

the same between the two time points, reflecting how a user con-

cerned over unequal sampling depths would preprocess the data

for this method.

2.5 Normalization of the data simulated by
SparseDOSSA2
Several R packages were used to normalize or transform the raw
simulated microbial features from SparseDOSSA2, TSS, rarefaction
(Saary et al., 2017), CLR (van den Boogaart et al., 2008), GMPR
(Chen et al., 2018), TMM (Robinson et al., 2010) and CSS
(Metwally et al., 2018). The combinations of the tools (LongDat,
MaAsLin2, lgpr, ZIBR) and the normalization methods are limited
by each tool’s requirement of the input format.

2.6 Running LongDat on simulated longitudinal data
The function ‘longdat_cont()’ in the LongDat package was used for
analyzing simulated longitudinal data, where the time between sam-
plings was treated as a continuous variable and the data type as
count data. The R package peakRAM was adopted to record run-
ning time and memory usage (Quinn, 2017). Feature associations
with Benjamini-Hochberg (BH)-corrected null-model q-value < 0.1
and BH-corrected post-hoc test q-values < 0.05 were considered sig-
nificant. LongDat was run under CentOS Linux 7 and R version
4.1.1 with 8 GB of memory allocated.

2.7 Running MaAsLin2 on simulated longitudinal data
The function ‘Maaslin2()’ in the MaAsLin2 package was used for
analyzing simulated longitudinal data, where the time between sam-
plings was treated as a continuous variable, and the mode was set as
‘NEGBIN’ for negative binomial model mode and ‘LM’ for linear
model mode (Mallick et al. 2021). Since MaAsLin2 lacks a covariate
model test component that corresponds to the second part of the
LongDat pipeline, we ran MaAsLin2 with two separate runs (with
and without simulated covariate included as a fixed effect,
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respectively) for each simulated data with covariates, such that the
MaAsLin2 result is comparable with that of LongDat. Features with
BH-corrected q-value < 0.1 were considered significant. MaAsLin2
was run under CentOS Linux 7 and R version 4.1.1 with 8 GB of
memory allocated.

2.8 Running ANCOM on simulated longitudinal data
The function ANCOM in the ancom. R Rscript (https://github.com/
FrederickHuangLin/ANCOM-Code-Archive) was used for analyz-
ing simulated longitudinal data. The time between samplings was
treated as a factor, while the random formula was set as sample ID,
and the adjust formula included all the present covariates. Features
were considered significant if their W statistics passed the cutoff of
the number of taxa multiplied by 0.7. ANCOM was run under
CentOS Linux 7 and R version 4.1.1 with 350 GB of memory
allocated.

2.9 Running ZIBR on simulated longitudinal data
The function ‘zibr()’ in the ZIBR package (Chen et al., 2016) was
used for analyzing simulated longitudinal data, where the time be-
tween samplings was treated as a continuous variable. All covariates
in the data were included for analyses, while subjects and time
points were specified. Features with joint P values corrected by BH
< 0.1 were considered significant. ZIBR was run under CentOS
Linux 7 and R version 4.1.1 with 8 GB of memory allocated.

2.10 Running lgpr on simulated longitudinal data
The function ‘lgp()’ in the lgpr package (Timonen et al., 2021) was
used for analyzing simulated longitudinal data, where the time be-
tween samplings was treated as a continuous variable. Sample ID
was set as the random effect, and all covariates in the data were
included for analyses. The number of drawing samples from a Stan
model was 100, and the number of Markov chains was 4. If the time
variable was selected using a 95% threshold for the proportion of
total explained variance, then the feature was considered significant.
Lgpr was run under CentOS Linux 7 and R version 4.1.1 with 8 GB
of memory allocated.

2.11 Semi-synthetic evaluation of metagenomic data:

Fasting study
To perform a semi-synthetic evaluation based on real microbiome
data, we selected the first and second time points from the stool
microbiome data, using bacterial genus abundances. Next, we ran-
domly shuffled the time variable against all other variables for each
individual to eliminate any associations between the time variable
and the microbes, as well as between the time variable and the cova-
riates, such that no real signal of the intervention or of the passage
of time should remain. Data were normalized or rarefied as the
methods in the ‘normalization of the data simulated by
SparseDOSSA2’ section.

2.12 Evaluation of real metagenomic and immunome

data: Fasting study
The fasting study reanalyzed here reported on a clinical cohort
investigating fasting effects on patients with MetS (Maifeld et al.,
2021). This study has two arms, one being the fasting arm and the
other being the DASH (Dietary Approaches to Stop Hypertension,
DASH) arm. MetS patients in the fasting arm first underwent seven-
day fasting, which consists of two days in which the patients took in
a maximum of 1200 kcal/day and five days in which the patients
took in 300–350 kcal/day. And then, there was a three-month re-
feeding stage where MetS patients were asked to follow the DASH
diet. Microbial abundance at the species level and the immunome
data of the fasting arm were reanalyzed to demonstrate the value
and performance of LongDat.

3 Results

3.1 LongDat outperforms MaAsLin2 when there are
multiple covariates in the simulated data
First, we compared the performance of LongDat with its closest
counterpart up to date, MaAsLin2, by running them on
microbiomeDASim-simulated longitudinal datasets templated on
microbiome data from cohort studies without covariates. The de-
fault setting of MaAsLin2 was doing total-sum scaling (TSS) that
converted the data into relative abundance and then fitting linear
model (LM). However, this default setting performs worse than
using the negative binomial model in terms of accuracy, true positive
rate (TPR), false discovery rate (FDR) and Matthews correlation co-
efficient (MCC) (Supplementary Fig. S1). Therefore, we focused on
the MaAsLin2 negative binomial model mode results instead of its
default setting. Both LongDat and MaAsLin2 use negative binomial
models to fit the data. LongDat and MaAsLin2 have comparable ac-
curacy ranging between 0.9 and 1 (Fig. 2). While MaAsLin2
achieves a higher TPR when sample sizes are small, this comes at the
cost of a higher FDR. In contrast, the FDR median of LongDat was
controlled at zero across all tested effects and sample sizes, while
TPR increases with sample size (Supplementary Fig. S2). LongDat
and MaAsLin2 have comparable memory footprints, whereas
LongDat has a longer runtime (Fig. 3A and B) due to the additional
covariate model test, which MaAsLin2 does not possess. Although
MaAsLin2 and LongDat perform similarly on simulated data with-
out covariates, their difference in performance rises as the number
of covariates increases in the simulated data (Supplementary Figs
S3A, B, S4A and B). The performance of LongDat remains stable
across all numbers of covariates. In contrast, FDR escalates and
TPR diminishes in MaAsLin2 as the number of covariates increases,
especially when more than four covariates are present.

Apart from evaluating LongDat and MaAsLin2 using
microbiomeDASim-simulated data, we utilized SparseDOSSA2, an-
other microbiome data simulation tool, to validate that the bench-
marking outcome of LongDat is consistent between different
simulation tools. Here, we assessed the performance of LongDat
and MaAsLin2 using various modes, such as linear or negative bino-
mial models, on simulated data that was either raw, normalized or
rarefied. The benchmarking of performance and requirement of
computational resources on SparseDOSSA2-simulated data with 0
(Supplementary Fig. S5A and B), 1 (Supplementary Fig. S6A and B),
4 (Fig. S7 and S7B) and 16 covariates (Supplementary Fig. S8A and
B) are presented. Within a broader perspective, these results repro-
duce our findings in the benchmarking using microbiomeDASim-
simulated data, where MaAsLin2 and LongDat perform similarly on
simulated data in the absence of covariates. However, as the number
of covariates increases, the performance gap between the two meth-
ods becomes more evident. The performance of LongDat remains
stable across all numbers of covariates while FDR surges and TPR
diminishes in MaAsLin2, particularly when more than four covari-
ates are present. Upon closer examination of each normalization
method, MaAsLin2’s negative binomial model mode generally pro-
duces higher TPR but also higher FDR than its linear model mode
(except when run on CLR-transformed data, which has a high
FDR), thus similar accuracy and MCC. On the other hand, LongDat
produces comparable outcomes when either linear or negative bino-
mial models are run on data processed through different normaliza-
tion or rarefaction methods (except for CLR paired with linear
model, which performs the worst). Specifically, we believe rarefac-
tion is necessary for some situations, although the pair of negative
binomial model and rarefied count data has higher FDR than the
pair of linear model TSS-normalized data. For example, we simu-
lated longitudinal negative control data with two time points in
which the sequencing depths varied systematically between the two
points. In this scenario, the negative binomial model applied to rare-
fied count data maintains a near-zero false positive rate (FPR), while
the linear model applied to non-rarefied TSS-normalized data results
in a high FPR when the depth variation between the two time points
was large (Supplementary Fig. S9). Therefore, we conclude that the
use of linear models to analyze TSS-normalized data is reasonable
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Fig. 2. Comparison of LongDat and MaAsLin2 (using the negative binomial model mode) on performance and power applied to microbiomeDASim-simulated longitudinal
data. The box plots show the accuracy, true positive rate (TPR), false discovery rate (FDR) and Matthews correlation coefficient (MCC). The upper panel features a low effect
size (median ! 0.2) while the lower panel features a medium effect size (median ! 0.5). For each combination of sample size, effect size and tool, 100 simulations were
performed

Fig. 3. Comparison of LongDat and MaAsLin2 (using the negative binomial model mode) on computational resource profiling applied to microbiomeDASim-simulated longi-
tudinal data. Runtime (A) and total used memory (B) required by LongDat and MaAsLin2 when run on simulated data with 200 features and various sample sizes. For each
sample size, 200 simulations were performed. 1 mebibyte (MiB) ! 1.05 megabyte (MB)
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only when there is no systematic bias in sequencing depth between
groups or time points; otherwise, the analysis may result in many
false positives. There is no method suitable for all scenarios; instead,
the selection of an appropriate approach highly depends on the
data’s nature.

3.2 LongDat outperforms ANCOM in computational
efficiency and outperforms lgpr and ZIBR in overall
performance when tested on simulated data
In addition to MaAsLin2, we also compared LongDat with several
other tools capable of analyzing longitudinal microbiome data,
including ANCOM, lgpr and ZIBR, by examining their performan-
ces when multiple covariates are present (Supplementary Figs S10A,
B, S11A and B). Here the simulated data were generated by
microbiomeDASim. The results show that the FDR of ANCOM
remains around zero as LongDat does and has comparable accuracy,
TPR and MCC when there are less than four covariates, whereas
TPR dwindles as the number of covariates increases. The major
drawback of ANCOM is that it needs large memory (requires
350 GB to be allocated or else errors would occur and halt) to run
through each simulated dataset (here each containing 100 features),
making it challenging to run ANCOM on a large scale. ZIBR does
not perform well because its FDR is high, and its accuracy, TPR and
MCC are low across all numbers of covariates. Moreover, ZIBR
needs much time to run through each dataset with large sample sizes
(e.g. around 55 h to finish a run with 300 samples and 16 covari-
ates). Lastly, while lgpr has better TPR than LongDat when the sam-
ple size is small (!38), it simultaneously has a high level of FDR.
The primary shortcoming of lgpr is that its run time (e.g. around
65 h with 150 samples and 1 covariate) is substantially longer than
all other tools, and it could not finish any run within the time limit
(96 h) of the high-performance computing cluster we used. This
impedes lgpr from being widely applied to microbiome data in a
common research environment. From these results, we concluded
that LongDat is the ideal tool for data with multiple covariates since
it has decent performance and low computational resource require-
ments (Supplementary Table S1).

As we did with the comparison between LongDat and
MaAsLin2, we employed SparseDOSSA2 to assess the performance
of LongDat, lgpr and ZIBR, in addition to the microbiomeDASim-
simulated data comparison. ANCOM’s high memory requirement
(>350 GB) for SparseDOSSA2-simulated data analysis caused it to
fail to run on the high-performance computing cluster we utilized,
leading to its exclusion from the analysis here. The assessment of
computational resource requirements and performance benchmark-
ing using SparseDOSSA2-simulated data with varying numbers of
covariates (0, 1, 4 and 16) is depicted in Supplementary Figures
S12A, B, S13A, B, S14A, B, S15A and B, respectively. These findings
confirm our earlier observations based on microbiomeDASim-
simulated data. ZIBR, which operates on TSS-normalized data, has
a high FDR and takes a long time to execute. lgpr performs better
than LongDat in terms of TPR for small sample sizes, regardless of
normalization or rarefaction, but it also has a high FDR. The pri-
mary disadvantage of lgpr is that it takes significantly longer to run
than any of the other tools, making it not able to complete any run
within the time limit (96 h) of the high-performance computing clus-
ter we used when the sample size is relatively large. The performan-
ces of both ZIBR and lgpr decline as the number of covariates
increases. In contrast, LongDat maintains decent performance and
computational resource requirements regardless of the number of
covariates.

3.3 The performance of LongDat was evaluated using
semi-synthetic data, demonstrating a low false positive
rate
To estimate the performance of LongDat based on data aside from
simulated data (microbiomeDASim and SparseDOSSA2), we con-
ducted a semi-synthetic evaluation as well. In this evaluation, we
shuffled the time variable against all other variables in the fasting

microbiome data (at the genus level). Next, we compared the ratio
of significant associations between unshuffled and shuffled data.
The result of LongDat indicates few to no false positives in the
shuffled data in all modes, regardless of whether covariates were
included or excluded in the analysis (Supplementary Fig. S16).
Conversely, MaAsLin2, lgpr and ZIBR were all influenced by the
presence of covariates in their analyses. MaAsLin2 identifies fewer
significant associations in the unshuffled data and more false posi-
tives in the shuffled data than LongDat. ZIBR and lgpr result in
much higher false positive rates than LongDat. Consistent with prior
analyses, we confirmed that LongDat is robust against false positive
findings in both simulated and semi-synthetic evaluations.

3.4 LongDat provides a more smooth and more efficient
workflow than MaAsLin2 despite similar performance
Since MaAsLin2 is the only alternate tool where memory and run-
time scaling do not preclude its application to our full benchmark,
the analyses below focus on the comparison between MaAsLin2 and
LongDat. To compare the performance of LongDat and MaAsLin2
on detecting covariate effects, we added a dummy variable correlat-
ing with the time variable and tested whether this dummy variable,
when instead used as the time input variable, was wrongly reported
as exhibiting a relationship to the simulated feature independent of
time (Fig. 4A and B). LongDat requires only a single run for this
test. In contrast, MaAsLin2 lacks a covariate model test component
corresponding to the LongDat pipeline’s second part, so we ran
MaAsLin2 in two separate runs (with and without covariate
included in the model, respectively) to generate comparable results
with LongDat. We found that LongDat and MaAsLin2 achieved
similar performance, with the median success rate for both tools in
correctly concluding covariate effects remaining at "0.95 (as per
FDR threshold/family-wise error rate) even when the dummy and
time variables were strongly correlated. As a negative control, we
tested how LongDat performs when both the features and covariates
are not associated with time by shuffling the time variable randomly
within each individual (Supplementary Fig. S17). Here we tested if
the shuffled time variable was reported as significant. We found no
false positive occurred across all correlation degrees (the correlation
between the time variable and covariate was, in fact, destroyed be-
cause time was shuffled). These results demonstrate that both
LongDat and MaAsLin2 perform well in accuracy and correctly
flagging covariates.

In the simulated data, with rho being as high as 0.99 between the
dummy and time variables, we demonstrated that LongDat could
distinguish data generated from different underlying ground truths
even when there is substantial confounding. It is worth noting that
LongDat does not label the dummy variable as ‘non-significant’ (i.e.
having no relationship with the feature at all) but rather as ‘redu-
cible to covariate’ or ‘entangled with covariate’ when the correlation
degree is high. These two labels do not signify that the dummy vari-
able is irrelevant to the features but instead intend to communicate
that its association with the features might be from an indirect asso-
ciation. In real data, however, it will be more challenging to discern
between the dummy and the time variables if they are highly corre-
lated. In that case, more investigation or experiments are required to
confirm which variable has direct versus indirect influence, necessi-
tating more careful inspection and domain knowledge before robust
conclusions can be drawn.

3.5 LongDat performs more robustly than MaAsLin2 in
real data with multiple covariates
Subsequently, to compare the performance of LongDat and
MaAsLin2 on real data, we reanalyzed gut microbial data from a
clinical cohort investigating fasting effects on patients with MetS
(Maifeld et al., 2021). One aim of the study was to investigate how
fasting affects blood pressure while controlling for changes in medi-
cation. When no covariates (i.e. medication variables) were included
in the MaAsLin2 analysis, LongDat and MaAsLin2 each identified
27 microbial species that were significantly altered in abundance
throughout the intervention, with 19 of them being consistent

LongDat: an R package for covariate-sensitive longitudinal analysis of high-dimensional data 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/3/1/vbad063/7172481 by D
uke U

niversity user on 21 August 2023



Printing copies of the publications 116 

 

 

 

 

between the two (Fig. 5A and B; Supplementary Tables S2, S3 and
S4). However, when covariates were included, only two species
were reported significantly different in abundance by MaAsLin2
(Supplementary Table S5). This is because models fitting most of the
significantly affected species returned errors (showed NA in P-values
and standard errors) when multiple fixed effects were included.
LongDat avoids this problem by having only one covariate in a
model at one time and loops over all of them. Thus, LongDat per-
forms more robustly than MaAsLin2 for this type of data when mul-
tiple covariates are present in the dataset, but at the cost of higher
runtime.

3.6 LongDat can be applied to other data types, such as

immunome data
Finally, to demonstrate that LongDat can run on other data types
besides microbiome data, we applied LongDat to the immunome
data from the same fasting study mentioned above (Supplementary
Figs S18 and S19; Supplementary Tables S6–S9). The immunome
data consist of proportion (percentage) and non-proportion (non-
percentage) data, so they were analyzed by LongDat proportion
mode and measurement mode, respectively. These results show that
LongDat can tackle other types of data in addition to microbiome
counts.

4 Discussion

We introduce LongDat, an R package that analyzes longitudinal
data for intervention (or treatment) effects while accounting for
covariates throughout the intervention. LongDat was developed and
tested as a microbiome analysis tool, and we made it able to work
on other high-dimensional data types by using flexible and robust
approaches, chiefly GLMMs and non-parametric tests. The resulting
output allows convenient downstream analysis and interpretation.

Instead of proposing a new theory or mathematical tool to deal with
the problems of high-dimensional data, multiple covariates and dif-
ferent data types (distribution), we packaged the GLMMs and non-
parametric tests together to automate the process of analyzing high-
dimensional data. LongDat relieves the users of the burden of having
to program the R linear modeling functions from scratch. With the
standardized output, including effect sizes reported in Cliff’s delta,
and the visualization of the significances and influences of covariates
for each feature, it is easier for biologists to integrate, compare and
visualize their findings. Though here we do not present a theoretical
advance, we believe LongDat is a practical and convenient modeling
tool immediately applicable to the scale of problems faced, e.g. in
cohort- or intervention-centered systems medical research, and
therefore promotes high-dimensional data analysis in the biomedical
research field. One limitation of LongDat is that it reports standar-
dized non-parametric effect sizes of discrete (Cliff’s delta) or con-
tinuous (Spearman’s rho) variables, both of which are calculated
independently of other covariates. Thus, when covariates are present
in the data, the reported effect size is not a perfect estimate as it does
not incorporate covariates for calculation. We currently are not
aware of any partial standardized directional effect size metrics that
would let us circumvent this obstacle, but we are actively searching
for them to include in later versions of LongDat.

By conducting simulations using two independent tools, namely
microbiomeDASim and SparseDOSSA2, we confirm that the state-
ments below are consistent across benchmarking platforms. The
advantages of LongDat over the most similar existing tool,
MaAsLin2, include lower FDR, the ability to explicitly report cova-
riate effects and their effect sizes, and thus a more convenient func-
tionality in reporting and describing covariates for each feature. The
latter, which reports the influence of covariates on the tested vari-
able, is the exclusive feature of LongDat that no other tool possesses
to the best of our knowledge. The other important feature of
LongDat is that it can handle multiple covariates at once and main-
tain stable performance. This feature is achieved by having only one

Fig. 4. Comparison of LongDat and MaAsLin2 on covariate-sensitive analysis applied to microbiomeDASim-simulated longitudinal data. To compare the ability of LongDat
and MaAsLin2 on detecting covariates, a dummy variable was added to the simulated data and was tested for its effect. ‘Success’ is defined as a tool indicating the dummy vari-
able as either ‘non-significant’, ‘reducible to covariate’ or ‘entangled with covariate’ (time is the covariate here), whereas ‘failure’ occurs when a tool wrongly concludes that
the dummy variable is significant and the time variable is not. (A) The box plot shows the success rate of using LongDat and MaAsLin2 to filter out and conclude covariate
effects at different degrees of correlation between the dummy variable and time. (B) The bar chart illustrates the proportion of success and failure across correlation degrees.
For each degree of correlation, 100 simulations were done
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covariate in a model at one time and looping over them instead of
including all covariates at once, which forms a lengthy formula.
This approach grants LongDat robustness when facing multiple
covariates, but at the cost of higher runtime. By contrast, the per-
formance of MaAsLin2 is highly dependent on the number of cova-
riates in the data. While MaAsLin2 and LongDat have comparable
accuracy when there are no covariates, we observe a trade-off be-
tween TPR and FDR in them. Hence, MaAsLin2 and LongDat are
suitable in different scenarios depending on the priorities of the

application. For instance, when a lower FDR is more emphasized in
an analysis, or when there are many covariates in a study, LongDat
will be a better choice. In contrast, if a higher TPR and power are
prioritized, and no covariate is in the data, then MaAsLin2 is a good
option.

In addition to MaAsLin2, we also compared LongDat with three
other tools: ANCOM, lgpr and ZIBR. While the performance of
ANCOM is fairly good when the number of covariates is low,
ANCOM suffers from the need for huge memory to run. On the

Fig. 5. Comparison of LongDat and MaAsLin2 on analyzing real microbiome data. (A) The cuneiform plot on the left panel shows the gut microbes (species level) that display
significant differences in their abundance in at least one of the time intervals in the assessed study (Maifeld et al., 2021). In that study, metabolic disease patients underwent
7-day fasting and then a 3-month re-feeding period. In the plot, ‘fasting’ indicates the time elapsed from Day 0 to 7, while ‘refeeding’ indicates Day 7 to 90, and ‘study’ indi-
cates the overall duration from Day 0 to 90. Bold species are the ones that appeared significant in both LongDat and MaAsLin2 results. The right panel reports the covariate
status of each microbe as follows. OK_nc: OK and no covariate. Time/intervention has significant effect and there is no covariate. OK_nrc: OK and not reducible to any cova-
riate. Time/intervention has significant effect, and its effect is independent of all tracked covariates. RC: Effect reducible to covariate. Time/intervention when tested on its
own achieves significance; however, its effect is better explained by that of a covariate (whereas the inverse is not true). Microbes with BH-corrected model test q-values < 0.1
and BH-corrected post-hoc test q-values < 0.05 are regarded as significant. (B) The Venn diagram shows the significant species found by LongDat and MaAsLin2. Numbers in-
dicate counts and percentages of each category. Note that for MaAsLin2, covariates were not included in the analyses here. When covariates were included in MaAsLin2 ana-
lysis, only 2 of the species showed significance here remained significant, while all others returned error due to NA in P-values and standard errors (Supplementary Table S5)
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other hand, the performances of both lgpr and ZIBR are highly de-
pendent on the number of covariates, and both tools suffer from
long runtime. Furthermore, ANCOM and lgpr rely on arbitrary cut-
offs (W statistics and the proportion of total explained variance, re-
spectively), which might pose inconvenience and confusion to the
users. Despite the unfavorable ZIBR results shown here, we believe
in the potential of the zero-inflated models (represented by ZIBR
here) since they characterize the distribution of highly sparse micro-
biome data well. We will keep track of its development (or other
related zero-inflated models) and plan to integrate it into the future
version of LongDat.

To investigate the impact of normalization and rarefaction on
analysis results, we conducted benchmarking tests on each tool
using different preprocessing methods. Interestingly, we find that
LongDat and MaAsLin2 have similar overall performance (based on
accuracy and MCC) when analyzing data without any covariates, ir-
respective of the modes (negative binomial or linear model) and pre-
processing methods (except for the CLR transformation). However,
the discrepancy in the performance of LongDat and MaAsLin2
widens as the number of covariates increases. While all modes of
MaAsLin2 struggle to maintain high true positive rates and low false
discovery rates with four or more covariates, LongDat remains sta-
ble and performs well across all scenarios. Meanwhile, ZIBR and
lgpr did not excel in this round of benchmarking test because of
high FDR and extremely long runtime that impedes the users from
applying them effectively. Furthermore, by simulating datasets with
high variation in sequencing depth between time points (or groups),
we underscored that the choice of normalization or rarefaction tech-
nique should be tailored to the specific characteristics of the data. In
the example above, rarefaction is required to remove the systematic
bias between time points, which leads to false positive findings.
Ultimately, we believe that there is no one-size-fits-all approach to
data preprocessing and analysis, and researchers should carefully se-
lect appropriate protocols according to the unique features of their
data.

In conclusion, our comprehensive benchmarking, including inde-
pendent simulation tools, semi-synthetic and real data evaluations,
demonstrates that the LongDat package we present here is a compu-
tationally efficient and low-memory-cost analysis tool for longitu-
dinal data with multiple covariates, and facilitates robust biomarker
searches in high-dimensional datasets.
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Fasting alters the gut microbiome reducing
blood pressure and body weight in metabolic
syndrome patients
András Maifeld 1,2,3,4, Hendrik Bartolomaeus 1,2,3,4, Ulrike Löber1,3,4, Ellen G. Avery 1,3,4,5,
Nico Steckhan 2,6, Lajos Markó 1,2,3, Nicola Wilck 1,3,7,8, Ibrahim Hamad9,10, Urša Šušnjar1,
Anja Mähler1,2,3, Christoph Hohmann6, Chia-Yu Chen1,2,3,4, Holger Cramer11, Gustav Dobos11, Till Robin Lesker12,
Till Strowig 12,13, Ralf Dechend1,2,3,14, Danilo Bzdok 15,16,17, Markus Kleinewietfeld 9,10,
Andreas Michalsen 2,6,18✉, Dominik N. Müller 1,2,3,4,18✉ & Sofia K. Forslund 1,2,3,4,18✉

Periods of fasting and refeeding may reduce cardiometabolic risk elevated by Western diet.

Here we show in the substudy of NCT02099968, investigating the clinical parameters, the

immunome and gut microbiome exploratory endpoints, that in hypertensive metabolic syn-

drome patients, a 5-day fast followed by a modified Dietary Approach to Stop Hypertension

diet reduces systolic blood pressure, need for antihypertensive medications, body-mass index

at three months post intervention compared to a modified Dietary Approach to Stop

Hypertension diet alone. Fasting alters the gut microbiome, impacting bacterial taxa and gene

modules associated with short-chain fatty acid production. Cross-system analyses reveal a

positive correlation of circulating mucosa-associated invariant T cells, non-classical mono-

cytes and CD4+ effector T cells with systolic blood pressure. Furthermore, regulatory T cells

positively correlate with body-mass index and weight. Machine learning analysis of baseline

immunome or microbiome data predicts sustained systolic blood pressure response within

the fasting group, identifying CD8+ effector T cells, Th17 cells and regulatory T cells or

Desulfovibrionaceae, Hydrogenoanaerobacterium, Akkermansia, and Ruminococcaceae as

important contributors to the model. Here we report that the high-resolution multi-omics

data highlight fasting as a promising non-pharmacological intervention for the treatment of

high blood pressure in metabolic syndrome patients.
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Fasting can prolong survival and reduce disease burden in
rodent models, and possibly in humans1. In contrast, today’s
Western diet promotes cardiometabolic disease (CMD)2.

How diet affects the gut microbiota, immune system and subse-
quently host (patho)physiology is not fully understood, and
information is lacking on how periodic fasting affects the gut
microbiome in patients with metabolic syndrome (MetS). To
reduce CMD risk, exercise and a healthy diet are often prescribed.
Shifting from a “Western diet” to a healthier “Mediterranean-
like” DASH diet3 to achieve optimal nutrition and negative
energy balance is recommended, although compliance is a major
hurdle. Our study is the first of its kind to investigate the effects of
a lifestyle modification in combination with fasting therapy in
patients with MetS using a multi-omics approach by combining
gut microbiome analysis and deep immunophenotyping. The
“Western diet” is known to induce metabolic inflammation,
accelerating CMD4. The gut microbiota is a delicate ecosystem
that plays a pivotal role in health and disease. Dysbiosis has been
observed as a characteristic of several inflammatory, cardiovas-
cular, and metabolic disorders (e.g. obesity)5, including
hypertension6,7. The “healthy” gut microbiome is relatively stable,
although various factors such as antibiotics, intestinal infections,
and profound dietary or lifestyle changes, such as moving on or
off a “Western diet”, can induce transient or persistent changes to
this ecosystem. Traditionally, fasting plays an important role in
different cultural and religious practices. Dramatic caloric
restriction not only affects host health and physiology, but also
has an impact on the microbiome8–10. Here, we studied the role
of fasting in cardiovascular risk patients with MetS (Table 1). Five
days of fasting followed by 3 months of a modified DASH diet
induced distinct microbiome and immunome changes not seen
under DASH alone, as well as a sustained SBP benefit even
3 months post-intervention. Applying machine-learning algo-
rithms, we were able to make effective predictions regarding
which patients would respond positively to treatment via BP
reduction from either baseline immunome or 16S microbiome
data. The microbial signature for BP responsiveness generalizes
to a recently published cohort investigating the impact of
fasting in 15 healthy male volunteers, as do many of the micro-
biome changes upon fasting. These data highlight fasting followed
by a shift to a health-promoting diet as a promising non-
pharmacological intervention for patients with hypertensive
MetS, with possible implications for a wider spectrum of health
states.

Results
Fasting affects the gut microbiome and immunome. As we have
previously reported a major influence of common MetS drugs on
the microbiota11, we accounted for any changes in medication
regime or dosage in our statistical tests, alongside controlling for
important demographic features such as age and sex. There were
substantial and significant (PERMANOVA P= 0.001) differences
in microbial composition within individuals during fasting,
reflecting a characteristic intervention-induced shift, which later
partially reverted following a 3-month refeeding period on a
DASH diet (Fig. 1d, Supplementary Data 1 and Fig. 1a). This was
echoed by analogous significant (PERMANOVA P= 0.001)
changes in host immune cell composition during the interven-
tion, revealing a fasting-specific signature, which likewise largely
reversed during refeeding (Fig. 1e, Supplementary Data 1).
We did not observe significant changes to the microbiome
species richness/alpha diversity (between-group Mann–Whitney
U (MWU) P > 0.05, within-individual likelihood ratio test FDR >
0.1 for all comparisons; Supplementary Data 2; Shannon: Fig. 1b,
Supplementary Fig. 2) after either fasting or refeeding in the

present dataset, though a trend of reduced, then restored diversity
was seen in the longitudinal tests. Similarly, there were no sig-
nificant changes between time points in the intersample gut
taxonomic variability/beta diversity (Bray–Curtis distance,
Fig. 1c. DASH without fasting neither affected the microbial
composition nor the host immune cell composition (P= 0.374
and P= 0.378, respectively, Supplementary Fig. 1B, C).

Fasting resulted in a reduction of CD3+, CD4+ T cells, and
CD19+ B cells, while the frequency of CD8+ T cells was unaltered.
In contrast, fasting increased the abundance of monocytes (CD14
+CD11c+CD19−CD3−) and TCRγ/δ+ T cells. However, these
changes were reversed upon refeeding (Fig. 1h, Supplementary
Data 1). Of note, frequency of CD123+CD14−CD16−HLA-DR+
plasmacytoid dendritic cells also increased upon fasting and was
still enriched after refeeding (Fig. 1h, Supplementary Data 1).
When looking closer into monocyte subsets, fasting increased (and
refeeding reduced) the frequency of classical CD14highCD16−,
non-classical CD14lowCD16++, and intermediate CD14high
CD16+ monocytes (Fig. 1i, Supplementary Fig. 1, Data 1), which
was confirmed by unbiased FlowSOM analyses (Supplementary
Fig. 4A–D). Fasting also affected the relative abundance of
differentially activated T cells. Upon fasting, CD8+ T cells showed
a higher percentage of terminally differentiated cells (Teff,
CD45RO−CD62L−) and a lower percentage of the naïve
phenotype (Tn, CD45RO−CD62L+), while memory T cells were
not affected (Fig. 1i, Supplementary Fig. 3, Data 1). A similar

Table 1 Patient characteristics at baseline.

FASTING+
DASH

DASH

Females/Males 23/12 21/15
Age (year) 58 ± 8 62 ± 8
Height (cm) 171 ± 8 171 ± 9
Office SBP (mm Hg) 136 ± 15 138 ± 16
Office DBP (mm Hg) 88 ± 11 88 ± 9
24 h ABPM SBP (mm Hg) 132 ± 9 131 ± 9
24 h ABPM DBP (mm Hg) 81 ± 8 81.4 ± 7
24 h ABPM MAP (mm Hg) 104 ± 8 104 ± 7
24 h ABPM peripheral resistance (mm
Hg*s/ml)

1.4 ± 0.1 1.3 ± 0.1

SBP day (mm Hg) 134 ± 10 133 ± 10
DBP day (mm Hg) 83 ± 9 84 ± 7
SBP nocturnal (mm Hg) 120 ± 12 121 ± 10
DBP nocturnal (mm Hg) 71.5 ± 8 71.6 ± 7
Weight (kg) 99 ± 17 96 ± 17
BMI (kg/m2) 34 ± 4.9 33 ± 4.7
Hip circumference (cm) 115 ± 20 113 ± 17
Waist circumference (cm) 116 ± 11 114 ± 12
Waist to hip ratio 1.1 ± 0.7 1.0 ± 0.2
Body fat percentage (%) 42 ± 8 39 ± 10
HOMA index 2.8 ± 2.1 3.4 ± 2.4
Insulin (mU/l) 10.4 ± 6.4 12.1 ± 7.4
Plasma glucose (mg/dl) 105 ± 20 110 ± 20
Hb-A1C (%) 5.8 ± 0.4 5.9 ± 0.7
Hb-A1C IFCC (mmol/mol) 39.6 ± 4.8 41.2 ± 7.4
Triglyceride (mg/dl) 166 ± 106 169 ± 109
Cholesterol (mg/dl) 220 ± 48 222 ± 54
HDL (mg/dl) 50 ± 11 51 ± 10
LDL(mg/dl) 137 ± 36 140 ± 45
LDL/HDL ratio 2.8 ± 0.7 2.8 ± 0.9
CRP (mg/l) 0.4 ± 0.4 0.3 ± 0.3
IL-6 (pg/ml) 3.1 ± 2.0 2.8 ± 2.2
Creatinine (mg/dl) 0.9 ± 0.2 0.9 ± 0.2
eGFR Cockroft-Gault (ml/min) 120 ± 39 107 ± 32

Mean values and +/− one standard deviation are shown
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pattern was observed in CD4+ Teff (Fig. 1i, Supplementary
Data 1). Further, fasting decreased the frequency of pro-
inflammatory Th17 (CD27bright CD161+CCR6+CXCR3−
CD25−CD4+), as well as TNFα- and IFNγ-producing Th1 cells
(Fig. 1i, Supplementary Data 1). These changes were partially
reverted upon refeeding (Fig. 1i). Neither fasting nor refeeding
changed the overall frequency of CD161+Vα7.2+ CD3+ mucosa-

associated invariant cells (MAIT, Fig. 1h, Supplementary Fig. 3).
However, frequency of pro-inflammatory MAITs producing
TNFα and IFNγ significantly decreased upon fasting and were
minimally affected by refeeding (Fig. 1i, Supplementary Data 1).

Next, we tested all gut microbial taxa and gene functional
(KEGG12, GMM13) modules for abundance shifts during fasting
or refeeding, as well as persistent shifts across the 3-month study
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period, controlling for age, sex and any changes in medication
(Fig. 1f–h, Supplementary Data 1). Fasting stimulated shifts in the
abundance of several core commensals, which were reversed
upon refeeding (Fig. 1f, Supplementary Data 1). Many Clostridial
Firmicutes shifted significantly in abundance, with an initial
decrease in butyrate producers such as Faecalibacterium praus-
nitzii, Eubacterium rectale and Coprococcus comes, which had also
reverted after 3 months. Interestingly, modeling the shift in C.
comes abundance as a function of body-mass index (BMI)
changes during the study yielded a better fit of the data than when
it was modeled as a function of the fasting intervention.
Bacteroidaceae showed the opposite pattern. At the end of the
refeeding period, a persistent depletion could be seen in
Enterobacteriaceae, especially Escherichia coli. These shifts were
accompanied by vast changes in microbial metabolic capacity
(Fig. 1g, Supplementary Data 1). Fasting enriched for propionate
production capacity, mucin degradation gene modules, and
diverse nutrient utilization pathways.

Reanalyzing previously published data, we compared the
microbiome signatures of metformin use and MetS to those seen
in our dataset11,14. For ease of comparability, we proceeded with
only human gut-specific functional modules (GMM) assessed
from shotgun sequencing data available for the fasting arm.
Certain fasting- or refeeding-associated functional gene modules
from our data were found to overlap with signatures of
metformin usage or MetS, though there was little concordance
on a taxonomic composition level, in line with previously
described higher functional than taxonomic concordance between
microbiomes. Of note, when comparing the metformin signal to
the MetS signal, it is clear that these two effects are functionally
distinct and often oppose one another. In contrast, the inferred
gut functional signature of metformin treatment shared some
features with that of our fasting intervention (Supplementary
Fig. 5).

Fasting reduces long-term systolic blood pressure and body
weight in MetS patients. Assessing the clinical relevance of our
intervention, we inspected clinical outcomes in the two study
arms. While DASH reduced office SBP after 3 months (Fig. 2h), it
did not significantly (MWU P= 0.27) affect 24 h ambulatory
SBP, the gold standard of clinical BP measurements (Fig. 2a)3. In
contrast, fasting followed by a modified DASH diet led to a
sustained reduction both in 24 h ambulatory SBP and mean
arterial pressure (MAP) (MWU P < 0.05, Fig. 2a). Further,

subjects undergoing fasting could significantly (χ2 P= 0.035)
reduce their intake of antihypertensive medication in 43% of
cases, compared to only 17% of the cases on DASH alone, while
their BP remained under control (Fig. 2b, Supplementary Data 3).
Because the BP response to fasting was heterogeneous in our
cohort (Fig. 2a, b), we applied a decision tree model to stratify
patients based on their ambulatory BP response, adjusted for
antihypertensive medication (Supplementary Fig. 6, Data 4).
The responder group (n= 22) had a median SBP decrease of
8.0 mmHg, irrespective of the high reduction in medications
amongst these patients, while the decrease in the non-responder
group (n= 10) was significantly lower (0.3 mmHg; Fig. 2c). In the
DASH-only arm, 17 patients were classified as responders with
a median SBP decrease of 8.0 mmHg, while the non-responders
(n= 14) showed no decrease in median SBP (0.5 mmHg, Fig. 2c).
Fasting followed by a modified DASH diet, unlike a modified
DASH diet alone, significantly (drug-adjusted post-hoc P < 0.05)
reduced BMI and body weight even 3 months post-fasting
(Fig. 2d, e). Although all fasting+DASH participants showed a
reduction in body weight, this reduction alone could not explain
the long-term ambulatory SBP and MAP changes exclusive to the
fasting arm (Fig. 2f, g), nor the microbiome or immunome
changes accompanying it. 95% of significant findings retain sig-
nificance when BMI is added as a predictor to the nested models
for longitudinal data (see Supplementary Data 5). Very few of the
significant effects observed in the fasting+DASH arm could be
replicated in the equally powered DASH-only arm (Fig. 3a–c).

BP responder-specific changes in the gut microbiome and
immunome. Because the BP responsiveness was heterogeneous in
the fasting+DASH arm (Fig. 2a–c), despite the similar disease
severity indicated by the baseline clinical characteristics of these
patients (Supplementary Data 6), we hypothesized that unique
characteristics involving the immunome or microbiome of these
patients may contribute to their BP response. We compared the
impact of fasting and refeeding in the complete fasting arm, in the
BP responders of the fasting arm, and in the DASH-only arm
(Fig. 4a, b, Supplementary Data 2, 7, 8). Even at reduced statistical
power, we were able to capture changes in the abundance of many
gut microbial taxa that were uniquely characteristic of successful
fasting treatment even 3 months post-fasting (Fig. 4a, Supple-
mentary Data 7, 8). Fasting combined with DASH resulted in the
sustained depletion of Actinobacteria family members Cor-
ynebacteriaceae and Actinomycetaceae (Fig. 4a). BP responders

Fig. 1 Fasting has a pervasive host and microbiome impact. a Study design is shown. Subjects are followed from baseline (V1), randomly assigned to
begin a modified DASH diet only or to undergo a 5-day fast followed by a modified DASH diet. Follow-up is done at one week (V2) and 3 months (V3).
b Fasting has no significant (two-sided MWU P > 0.05) impact on gut microbiome alpha diversity (Shannon diversity from mOTUv2 OTUs) across
observation times V1–V3. c Fasting has no significant (two-sided MWU P > 0.05) impact on gut microbiome beta diversity (Bray–Curtis dissimilarity from
mOTUv2 OTUs, shown are all between donor comparisons per time point) across observation times V1–V3. d Fasting significantly shifts the gut
microbiome towards a characteristic compositional state, while refeeding reverses this change. Unconstrained Principal Coordinates graph with first two
dimensions shown. Axes show Bray–Curtis dissimilarities of rarefied mOTUv2 OTUs between samples; each participant in the fasting arm is shown as two
lines, one red (fasting change), one blue (refeeding change) connected (centered) at the origin for ease of visualization. Axes show fasting and refeeding
deltas after one-week intervention and 3-month refeeding. Pseudonym participant ID numbers are shown on the point markers. Transparent circle markers
show arithmetic mean position of fasting and recovery deltas, respectively. PERMANOVA test P-values reveal significant dissimilarity (P < 0.05) between
samples from each visit V1–V3 in the original distance space, stratifying by donor. e Fasting significantly shifts the host immune cell population towards a
characteristic state, while refeeding reverses it. Same as in (d), using Euclidean distances. f Gut microbial taxa significantly enriched/depleted upon
fasting/refeeding. Taxa (mOTUv2 OTUs) are shown on the vertical axis, and effect sizes (Cliff’s delta) shown on the horizontal axis. Red arrows represent
fasting effects (V2–V1 comparison), blue arrows refeeding effects (V3–V2 comparison). Bold arrows are significant (nested model comparison of a linear
model for rarefied abundance of each taxon, comparing a model incorporating patient ID, age, sex and all dosages of relevant medications) to a model
additionally incorporating time point, requiring likelihood test Benjamini-Hochberg corrected FDR < 0.1 and additionally pairwise post-hoc two-sided MWU
test P < 0.05. g Gut microbial gene functional modules (KEGG and GMM models analyzed together) significantly enriched/depleted upon fasting/
refeeding. h General immune cell populations significantly enriched/depleted upon fasting/refeeding. i Specific immune cell subpopulations. g–i Same test
as in (f), subset of altered features shown for clarity. Effect sizes and FDR-corrected P values can be found in Supplementary Data 1,2.
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were uniquely characterized by immediate and sustained
enrichment of an unclassified Clostridium species, with con-
comitant depletion of Sphingomonas (genus-16S) and Pre-
votellaceae NK3B31 group (Fig. 4a). In addition, responders
experienced a significant and sustained enrichment of the
butyrate-producer F. prausnitzii upon refeeding (Fig. 4a). We
further classified microbiomes in the fasting+DASH arm into
enterotypes as previously described15, finding a trend towards
more samples shifting enterotype during intervention in subjects,

who achieved BP decrease (Supplementary Fig. 7). Virtually no
overlap with effects seen in the equally powered DASH arm were
found, indicating that fasting may be needed on top of a BP-
reducing diet for these changes to occur (Fig. 4a, b).

In profiling the microbial metabolic potential in BP responders,
we focused on gene modules curated for relevance to metabolism
in the human gut (GMM)13. On a functional level, responder-
characteristic changes resemble those in the fasting arm at large,
but with even more pronounced relative enrichment for
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propionate production (MF0126, MF0121) modules (Fig. 4c).
Some modules were significantly altered in abundance only in
this stratified subgroup, indicating these changes strongly
characterize BP responders compared to non-responders (Sup-
plementary Data 7). For example, pyruvate:formate lyase
(MF0085) is depleted during recovery only in responders.

Changes to the immunome of responders are similar to those
seen in the unstratified fasting group and differ from those in the
DASH arm (Fig. 4d, Supplementary Data 2, 7, 8). In the fasting
arm, several immune features related to pathogen-sensing and
mucosal immunity (e.g. MAIT cells, IL-17+-producing Th and
γδT cells) changed in abundance significantly only when tested in
the responder group, indicating relevant differences between
responders and non-responders. Upon fasting, the frequency of
both pro- and anti-inflammatory adaptive immune cells showed a
stronger decrease in responders, indicating a stronger anti-
inflammatory effect of fasting in responders.

Network analysis of microbial, immune, and clinical features.
We next aimed to explain the beneficial role of fasting on BP by
studying interacting microbiome-immune features through net-
work analysis. We assessed all triplets of pairwise interactions
between host clinical phenotypes, immune cell populations, and
microbiome taxa or functional profiles, respectively, using mod-
ified Spearman correlations (requiring FDR < 0.1 in each com-
parison of two data spaces, and P < 0.05 in a post-hoc test
accounting for the presence of the same subjects at all three time
points (see Methods, Supplementary Data 9). Figure 5a shows a
chord diagram constructed from these data, where the colored
outer rings are lined with components from one of our three
tested system spaces during fasting, refeeding, and over the full
duration of the study, and the color of the connectors between
factors indicate a positive or negative association (Spearman’s
rho). We identified a cluster of circulating cytokine-producing
MAIT cells (absolute number and fraction of CD3+ T cells),
which positively correlated with 24 h ambulatory SBP (Figs. 5a,
6c, Supplementary Fig. 8) and MAP, but not with 24 h diastolic
BP (Fig. 5a, Supplementary Data 9).

In addition, abundance of IL-2+ and granulocyte-macrophage
colony-stimulating factor (GM-CSF)-producing CD4+ cells
significantly correlated with SBP. These immune clusters showed
significant interconnection to a remarkable number of microbial
SCFA producers (Fig. 5a, b Supplementary Data 10), though
some are rather poorly characterized. Notably, abundance of the
butyrate producers E. rectale (ref mOTU v2 1416) and Dorea
longicatena (ref mOTU v2 4203), and the acetate producer
Hungatella hathewayi (ref mOTU v2 0882) negatively correlated
with the abundance of the GM-CSF and IL-2-producing CD4+

T cells, and with the absolute number of IFNγ+ and TNFα-
producing MAITs, respectively.

16S analyses of the gut microbiome identified a positive
correlation between the pro-inflammatory cytokine-producing
MAITs and the microbial taxa Acidaminococcaceae (family), and
of two Alistipes spp. (shahii and inops) (Fig. 5a, b). While further
characterization of these taxa in the context of the gut
microbiome is needed, previously published data indicated that
these taxa can produce acetate, and likely butyrate and propionate
as well (Supplementary Data 10).

Abundance of KEGG module M00209 (osmoprotectant
transport system), reported to facilitate the uptake of nutrients
mostly found in red meat16–18, was negatively associated with
IFNγ+ and TNFα+ MAIT cells (Fig. 5a, b, Supplementary
Data 9). Interestingly, fasting depleted various cytokine-
producing MAIT cells with the most pronounced long-lasting
decrease seen in IL-2+TNFα+ producing MAIT in BP responders
(Figs. 5a, b, 6a, Supplementary Data 9).

The association between MAIT cells and BMI is still a matter of
debate19. We found in our study that the abundance of
MAIT cells did not correlate with BMI, weight, waist circumfer-
ence, waist-hip ratio, or body fat percentage (Supplementary
Fig. 8, Data 9). Though we did find that BMI correlated with
the abundance of a subset of circulating Treg-like cells (CD62L+
CD45RO−CD25+CD4+), a cell type previously linked to morbid
obesity in human subjects20.

A recent publication showed non-classical monocyte enrich-
ment in hypertensive patients21. Interestingly in our study,
circulating non-classical monocytes were enriched upon fasting
and then depleted again upon refeeding to remain below baseline
levels 3 months after fasting (Figs. 1h, 5a, Supplementary Data 2).
Network analysis revealed an association between non-classical
monocytes, MAP and gut abundance of Sutterella showed an
inverse correlation with non-classical monocytes (Figs. 5a, b, 6d,
Supplementary Data 9).

Baseline indicators predicting efficacy of fasting on blood
pressure. As previously stated, a large proportion of fasting
patients responded with a substantial drop in BP, allowing them
to reduce their use of antihypertensive medication while BP
remained controlled. As not all patients experienced this bene-
ficial effect, we sought to understand whether the factors
underlying successful fasting intervention in the BP responders
could be predicted at baseline. Responder and non-responder
subgroups differ considerably in immunome and microbiome
features, not only post-fasting and at three-month follow-up, but
also at baseline, suggesting a favorable clinical response may be
predictable in single patients (Supplementary Fig. 9A–C).

Fig. 2 Fasting effects are distinct from those of a modified DASH diet only, and connected to vascular health benefits. a Fasting followed by a modified
DASH diet, but not a DASH diet alone, significantly improves 24 h ambulatory SBP and MAP 3 months post-intervention (two-sided MWU, FDR-corrected
P-values are shown). Lines show individual participant trajectories. b MetS subjects beginning a modified DASH diet post-fasting significantly reduce their
intake of antihypertensive medication by 3 months post-intervention, compared to subjects beginning a DASH diet only. Two-sided χ2 test, P= 0.035.
c Changes in 24 h ambulatory SBP in responders and non-responders including change in antihypertensive medication (two-sided MWU). d, e One week of
fasting followed by modified DASH diet, but not DASH diet alone, caused significant (two-sided MWU, FDR-corrected P values are shown) BMI and body
weight reduction in MetS patients, persisting 3 months later. f Comparison of changes in 24 h ambulatory SBP and body weight, respectively between
baseline and follow-up in both study arms. Each dot represents an individual. g Body weight change is not significantly different between responders and
non-responders in the fasting arm between baseline and follow-up (two-sided MWU). h Selected cardiometabolic risk parameters (vertical axis) altered in
the fasting arm compared to the DASH arm. Heatmap hues show Cliff’s delta signed effect sizes, with asterisk indicating post-hoc univariate significance
after compensating for drug dosage changes (see Methods). Horizontal axis shows each time point comparison: change during fasting/week three of
DASH, change during refeeding/3 months of DASH, and change during the study period as a whole. Boxplot hinges denote 25th–75th percentile. Line
within the boxplot indicates median. Whiskers on (c, g) are drawn from minimum to maximum values. Whiskers on (d, e) are drawn to minimum and
maximum values, but not further than 1.5 × IQR.
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Fig. 3 Fasting and recovery effects are not replicated in an equally powered control cohort, indicating they are intervention-specific. a A majority of
host and microbiome effects reported from the fasting+DASH arm are not replicated in DASH-only patients. Comparative effect size plot contrasting
features altered significantly only under fasting+DASH (colored markers, n= 315) with features altered significantly also under DASH alone, or with
absolute effect size greater in DASH alone (gray markers, n= 146). For the former category, color hue shows direction of effect, color intensity scope of
effect, and marker shape which time point comparison is shown. Vertical axis shows effect size in DASH only, horizontal effect size in fasting+DASH.
Selected features are named for reference. b, c Volcano plots show post-hoc FDR for all features significantly altered in either arm between any two time
points in the fasting arm (horizontal axis), compared to the same sample number DASH arm (vertical axis). Point color shows which time point comparison
is plotted. Quadrants (formed by the FDR < 0.05 thresholds) and summary counts highlight features significantly altered in each dataset for immune cell
(b) and functional or taxonomic microbiome features (c). Only the fasting arm had a significant effect on the microbiome, and while a smaller fraction of
immune features were altered in the DASH-only arm, these were largely not significant in the fasting arm.
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To further elucidate this phenomenon, we applied machine-
learning algorithms and empirically show that we can make
effective predictions from the immunome data. From 494 total
immune variables, stepwise forward regression identified the top
ten discriminators of responders from non-responders at base-
line. Evaluating the machine-learning model, we constructed for

predicting whether fasting+DASH will reduce BP by testing it on
unseen data, a prediction accuracy of 71% (sensitivity 75%,
specificity 70%, and F1 score 77%) was achieved using a leave-
subject-out cross-validation for whether or not a future patient
would respond favorably to fasting with regards to BP (Fig. 7a).
Within this multivariate analysis, the driving immune features
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of this classifier highlighted a lower CXCR3+CD25−CD4
+/CD25highCD4+ (most likely Th1/Treg ratio), alongside lower
abundances of CD24+ memory CD8+ T cells and IL-17+TNFα
+MAIT cells in responders relative to non-responders (Fig. 7b,
Supplementary Fig. 9E). Regarding the top ten features derived as
indicative for successful patient classification, responders seem to
have less of a pro-inflammatory immune signature at baseline
(Fig. 7b). Notably, we could increase the prediction performance
of the classifier up to 78% by using changes of immune cell
abundances between baseline and 3-month follow-up visit as a
basis for prediction of BP response at the single-patient level
(Supplementary Fig. 9D, F). In contrast, for subjects on a DASH
diet only, corresponding classifiers were unable to predict BP
response above chance level.

Regarding responder-specific features, we identified microbial
features as both characteristic of responders at baseline and
during the intervention (Fig. 8a). Microbiomes of BP responders
were depleted pre-intervention for Desulfovibrionaceae, pre-
viously shown to be enriched in type 2 diabetic patients in a
Chinese cohort17, and were moreover depleted of propionate
biosynthesis genes (Fig. 8a). Fasting strongly elevated the
abundance of this taxa and enriched these propionate production
modules, indicating that responders suffer a treatable deficit. By
3 months post-intervention, propionate modules are almost back
at baseline while BP (relative to medication dosage) remains
improved, suggesting that their transient elevation during
refeeding may have stabilized a less hypertensive state through
mechanisms active beyond the gut (Fig. 8a). An opposing pattern
was shown by a poorly characterized Lachnospira sp., which had a
higher abundance in responders at baseline (Fig. 8a). These
findings indicate that baseline state of the gut microbiome in
these MetS patients predicts individual degree of success of the
fasting+DASH intervention.

The question was raised whether independent data could
confirm these findings. We therefore reanalyzed the data from the
only other existing cohort investigating the effect of fasting, where
both BP data and stool sequencing22 (herein referred to as
“Mesnage data”) was available, using the same software pipeline
as for our own samples. We compared the results to ours,
collapsing species/OTU fasting/refeeding/long-term follow-up
signals in either dataset at the genus level for clarity (Fig. 8b,
Supplementary Data 11). Despite substantial differences between
the two study settings (e.g. MetS vs. healthy, mixed vs. single-sex
cohort) even at reduced statistical power (Mesnage n= 15), we
observe substantial agreement between the two datasets;
dynamics of Bifidobacterium, Roseburia, Bacteroides, Coprococcus
and Intestinimonas are comparable (Fig. 8b). Though differences
can also be observed in the patterns of Oscillibacter and Alistipes
in these two studies. The SCFA producer Faecalibacterium
showed discordant fasting responses in the healthy vs. MetS
cohort but exhibited consistent growth upon refeeding in both
datasets (Fig. 8b).

Due to the similarity of the study designs, we next assessed
whether a decrease in BP in the Mesnage cohort could be
predicted by a model trained on our 16S dataset. We classified the
Mesnage patients according to their BP decrease 3 months post-
fasting (Supplementary Data 12). A stepwise selection model
was built on our 16S baseline data, filtered for significant
responder-specific taxa. The model was then evaluated, using the
corresponding features from the Mesnage dataset as input.
The model classified correctly 10 out of 15 subjects in the
Mesnage cohort as either BP responders or non-responders. Top
five contributors to the predictor highlighted gut microbiomes
of non-responders to be enriched and responders to be depleted
of the taxa Desulfovibrionaceae, Hydrogenoanaerobacterium,
Akkermansia, Ruminococcaceae GCA-900066225 and Hydroge-
noanaerobacterium sp. (Fig. 8c).

Discussion
Here we demonstrate that fasting induces changes to the gut
microbiome and immune homeostasis with a sustained beneficial
effect on body weight and BP in hypertensive MetS patients.
There is a growing interest in understanding how dietary inter-
ventions shape the gut microbiome and interact with metabolic
diseases, including obesity, MetS, type 2 diabetes, and (cardio-
vascular) health8–10,23–27. Several lifestyle interventions aimed at
weight loss have shown that the gut microbiome changes in
obese, type 2 diabetic or MetS patients10,23,24,26,27. Although
these interventions led to beneficial clinical outcomes, their effect
on the gut microbiome was highly variable10,23,24,26,27 (more
information in Supplementary Data 13). In mice, intermittent
fasting decreased obesity-induced cognitive impairment and
insulin resistance associated with increased abundance of the
Lactobacillus and the butyrate-producer Odoribacter25. In a small
human pilot study, Ramadan fasting9 affected the microbiome of
healthy subjects enriching several SCFA producers. Each of the
aforementioned studies are described in greater detail in Sup-
plementary Data 13.

We have carried out the first high-resolution multi-omics
characterization of (periodic) fasting in patients with MetS,
including detailed clinical and immunophenotyping along with
gut microbiome sequencing. Our major finding is that periodic
fasting followed by 3 months of a modified DASH diet induces
concerted and distinct microbiome and immunome changes that
are specific to fasting itself, leading to a sustained BP benefit
(Fig. 3a), which was not seen in the patients following a DASH
diet alone.

Fasting followed by modified DASH also led to a significant
long-term reduction in body weight. However, neither the change
in BP nor global changes to the microbial composition or
immunome appeared to be mediated by this BMI decrease (95%
of findings retained significance when deconfounded for BMI
change, see Supplementary Data 5, and body weight reduction
was not more pervasive in treatment responders than non-

Fig. 4 Subjects responding favorably to fasting exhibit stronger changes in commensal abundance under intervention. a Cuneiform plot shows subset
of bacterial taxa, at different taxonomic levels, and measured either using 16S sequencing or shotgun sequencing, altered significantly (drug-adjusted post-
hoc FDR < 0.05) in abundance tested in intervention responders only (vertical axis) and showing a study effect, comparing to baseline and follow-up (V3).
Signed effect size are shown through marker direction and color, hue and size represent absolute effect size. Solid borders indicate significance. Markers
not shown could not be tested in the DASH arm as shotgun data was unavailable, or showed no difference in rank-transformed values (Cliff’s delta=0).
Horizontal axis separates tests for fasting (comparison of baseline to after one week), recovery (comparison of after one week to 3 months), and study
effect (comparison of baseline to 3-month follow-up). DASH results are from the DASH arm only, responders are tests using only the responders (as per
decision tree) in the fasting arm. b Same view as (a), showing 16S or shotgun sequencing microbial taxa significantly altered either at fasting (V1 vs. V2) or
refeeding (V2 vs. V3) in responders excluding features already in (a) to avoid redundancy. c same view as (a), with regards to gut functional modules
(selected subset shown for clarity). d Same view as (a) but with regards to immune cell subpopulations (selected subset shown for clarity). Treg: FoxP3+

cells, MAIT: Vα7.2+CD161+CD4−CD3+.
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Fig. 5 Blood pressure-microbe-immune association. a Chord diagram visualizes the interrelation between BP (24 h ambulatory systolic, mean or diastolic
BP) and fasting-impacted microbiome functional or taxonomic features, and immune cell subsets. Features are shown that form triplets of immune,
microbial and phenotype variables where at least two of three correlations are significant (Spearman FDR < 0.05, post-hoc nested model test accounting
for same-donor samples < 0.05) in the fasting arm of our cohort, and where in addition one or more features is significantly (drug-adjusted post-hoc FDR <
0.05) affected by the intervention. Color of the connectors indicates positive or negative association (Spearman’s rho), color of the cells within the tracks
indicates changes upon fasting, refeeding and study effect (Cliff’s delta, white if not significant), respectively. b Hierarchical clustering of microbiome
features-associated immune features. Color indicates Spearman’s rho.
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responders, Fig. 2g). Furthermore, BP and BMI were both asso-
ciated with various immune cell subsets and microbial taxa on a
multivariate level, and the effects of fasting on these two features
are divergent (shown as chord plots on Fig. 5, Supplementary
Fig. 8, respectively). Nevertheless, the data indicate that a 5-day
fast exerted an effect on microbiome composition and immune
cell subsets. Even though many of these shifts post-fasting are

transient, a sustained improvement of BP was seen in our
patients. Comparison of V1 to V2 suggests that microbiome and
immune cells may reset to some extent during and after the
intense caloric restriction, similar to a preconditioning mechan-
ism. The subsequent DASH diet consistent across all patients thus
seem to act differently depending on whether this precondition-
ing took place or not. This interpretation is supported by the fact
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that the DASH diet alone neither reduced SBP nor BMI,
while affecting different (and substantially fewer) immune cell
subsets. In line with the preconditioning hypothesis, we consider
that (1) those subjects who benefit most with regards to BP from
a fasting+DASH intervention are those depleted at baseline for
both SCFA producing taxa (including core butyrate producers)
and SCFA production gene modules; (2) that such taxa and gene
modules enrich either during the fasting phase or the refeeding
phase thus ameliorating the aforementioned baseline depletion;
and (3) that at least some enrichment remains at 3-month follow-
up in BP responders (less so in non-responders). Our inter-
pretation is that one crucial mechanism for the improvement
stems from the effects of increased SCFA availability, either
locally in the intestine (impacting immune signaling and intest-
inal permeability), systemically, or both. While we cannot directly
test it in the present cohort, it is a scenario consistent both with
expectations from the literature and with our observations of a
consistent depletion-then-regrowth pattern. Thus, future work
will include studying a larger fasting/refeeding cohort at various
intermediate time intervals.

Fasting induced a profound change in circulating immune
populations; e.g. depleted Th1 cells and permanently enriched
dendritic cells, which both have been shown previously to play a
role in the pathogenesis of experimental hypertension28,29. Fur-
ther, we discovered significant correlations between circulating
MAIT cells and 24 h ambulatory BP and MAP.

A growing body of evidence suggests that the abundance of
certain microbes is associated with cardiovascular health. Pre-
vious reports on hypertensive patients have shown taxonomic
and functional gut microbiome shifts6,7. For example, Firmicutes
have been shown to be more abundant in healthy controls
compared to pre-hypertensive and hypertensive patients7. Upon
fasting, several Clostridial Firmicutes shifted significantly in
abundance, with an initial decrease in butyrate producers such as
F. prausnitzii, E. rectale and C. comes, which were reverted after
3 months upon refeeding; with the latter taxon likely being an
indirect effect of the observed weight reduction (Supplementary
Data 5). Further, functional microbial metabolism in fasting
patients at baseline share some similarities to the previously
profiled hypertensive microbiome7. In the fasting arm, the
functional shift during refeeding enriches for functional modules
also enriched in non-hypertensive controls, i.e. for potentially BP-
protective factors.

Clinical studies represent a highly heterogeneous situation with
multifactorial disease features and strongly variable microbial and
lived environments. To account for this heterogeneity, we com-
pared the data from our longitudinal study (post-fasting and 3-
month) to the respective baseline values of the study subjects.
This intraindividual analysis allowed us to identify BP responder-
specific changes in spite of the reduced power in such a sub-
stratified analysis. The responder-specific microbiome changes in
our fasting arm post-intervention (enrichment of F. prausnitzii,
Bacteroides and Firmicutes, depletion of Actinomyces) are likely

beneficial to the host. A recent study profiling the hypertensive
microbiome showed that during disease, patients experienced an
enrichment of Actinomyces, and a depletion of F. prausnitzii,
Bacteroides and Firmicutes7. Moreover, Guevara-Cruz et al.
recently showed in a Mexican cohort involving 146 MetS patients,
that a 75 day long, 500 kcal/day, low-saturated fat dietary inter-
vention improved the clinical phenotype, significantly decreased
gut dysbiosis and increased the abundance of Akkermansia
muciniphila and SCFA producer F. parusnitzii27 (Supplementary
Data 13). Furthermore, abundance of some functional gut-
specific gene modules was significantly altered in our dataset only
in BP responders, for example, the pyruvate:formate lyase mod-
ule, MF0085, which was decreased after refeeding. This decrease
(from a trending elevation at baseline) may contribute to vascular
health, as a recent study demonstrated enrichment of the same
enzyme in atherosclerosis patients relative to healthy controls30,
and formate production has been previously linked to BP
regulation31,32.

Stratification of the cohort to BP responsiveness showed that
also immune changes present in the fasting arm are more pro-
nounced in responders than in non-responders, and are funda-
mentally different from the changes observed in the DASH-only
arm. The DASH-only arm was associated with the decrease of
CD8+ Tem cells, previously reported to play a role in
hypertension29,33. Responders and non-responders not only
reacted differentially to fasting, but also differed at baseline with
regards to their propionate synthesis capacity pre-intervention
and the relative depletion by depletion of Desulfovibrionaceae,
which has been linked to a lean phenotype34,35. These features
were then normalized during fasting. Notably, recent experi-
mental work suggested an antihypertensive effect of propionate
treatment in mice36. Furthermore, responders were enriched in
Lachnospira sp. at baseline, which was shown to contribute to
diabetes in obese mice and is enriched in obese children37,38. Our
findings indicate responders and non-responders to our inter-
vention differ with regards to several gut microbiome features
relevant to hypertension, with fasting-induced normalization of
these differences seen during a successful fasting intervention.

Through network analysis of the immunome, microbiome, and
clinical data, we identified significant correlations between cir-
culating MAIT cells and 24 h ambulatory SBP and MAP.
MAIT cells represent up to 10% of peripheral blood T cells, but in
contrast to other classical T cells29, have not yet been linked to the
regulation of BP. They differ in many aspects from conventional
T cells by expressing a semi-invariant TCR α-chain Vα7.2-Jα33.
MAITs can produce various cytokines mimicking an effector/
memory-like phenotype and yet they behave rather like innate
cells. During aging18 and CMD19,39, absolute circulating MAIT
number and frequencies decrease, while certain subsets of
cytokine-producing and adipose tissue MAITs were found to be
enriched in obese type 2 diabetic patients19. In addition,
this network analysis revealed that abundance of SCFA
producing microbes correlates significantly with circulating

Fig. 6 The association between blood pressure and specific circulating immune cell populations. a Cumulative absolute number and relative abundance
of circulating IFNγ+TNFα+, IL-2−TNFα+ and IL-2+TNFα+ mucosa-associated invariant T cells (MAIT) cells within the fasting arm subdivided by BP
responsiveness (median, n= 30 for all, n= 20 for responders, n= 8 for non-responders, respectively). Absolute number of circulating IL-2+TNFα+ (All:
P= 0.019, Responder: P= 0.024), TNFα+ (All: P= 0.006; Responder: P= 0.022) and IFNγ+ (All: P= 0.001; Responder: P = 0.007); (a) two-sided MWU
test after Benjamini–Hochberg correction. b MAIT cells within the fasting arm subdivided by BP responsiveness (n-number as in (a); two-sided MWU test
after Benjamini–Hochberg correction). c Correlations of circulating IL-2+TNFα+, TNFα+, and IFNγ+ MAIT cells and 24 h ambulatory SBP (*FDR-corrected
P= 0.044, 0.022, and 0.022, respectively). d Correlations of circulating non-classical CD14lowCD16++HLA-DR+ monocytes and 24 h ambulatory MAP in
responder (FDR-corrected P= 0.002). e Correlations of circulating GM-CSF+IL-2−IL-17− of % CD3+ and 24 h ambulatory SBP (FDR-corrected P=
0.047). n-number for (c–g) as in (b). MAIT: Vα7.2+CD161+CD4−CD3+. Boxplot hinges denote 25th–75th percentile. Line within the boxplot indicates
median. Whiskers are drawn to minimum and maximum values, but not further than 1.5 × IQR. c–e Gray shading represents 95% CI.
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pro-inflammatory cytokine-producing MAIT cells and GM-CSF+
IL-2+ T helper cells. Of note, most of these microbes are relatively
poorly characterized taxa and further description is needed to
elucidate their role in the gut and as contributors of dys- or
eubiosis.

Using machine learning, we were able to utilize deep immu-
nophenotyping data to predict at baseline, which subjects were
likely to decrease their BP during fasting despite the small
number of subjects. In addition, the accuracy of the prediction
was enhanced further taking the dynamics of immune popula-
tions along the course of the study into account. No

corresponding prediction of a favorable response to a DASH-only
intervention was possible. The features informing the predictor
indicate BP responders and non-responders present with differ-
ing severities of a pro-inflammatory immune signature at base-
line, raising the question whether responders and non-responders
suffer from varying degrees of MetS severity at baseline.
Remarkably, no significant difference in baseline BP, BMI, lipid
levels, or glucose homeostasis parameters between BP responders
and non-responders was observed before the intervention (Sup-
plementary Data 6). However, BP responders exhibited higher
median SBP than non-responders (135 mmHg and 128 mmHg,

Fig. 7 Long-lasting BP responders and non-responders differ in immunome composition. a Prediction model weights for BP response using the
immunome dataset at baseline. The top ten immunome features were used to build a multivariate logistic-regression algorithm. Single-subject prediction
was quantified using a leave-one-out cross-validation procedure. The bar plots represent the regression in a model with binary output (responder yes= 1
vs. no= 0) for every feature. b Quantification of the immunome features at baseline used in the prediction model to predict BP response in the future, split
into responders and non-responders. MAIT: Vα7.2+CD161+CD4−CD3+. Boxplot hinges denote 25th–75th percentile. Line within the boxplot indicates
median. Whiskers are drawn to minimum and maximum values, but not further than 1.5 × IQR.
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respectively). Baseline antihypertensive medication did not differ
significantly between the groups (responders’ normalized mean
dose: 1.4, non-responders’ normalized mean dose: 2.1). Addi-
tionally, responders had lower median BMI than non-responders;
32.0 and 36.5, respectively. In addition, body fat percentage was

slightly higher in the fasting+DASH group compared to the
DASH group (median 42%, 39%, respectively). Furthermore, BP
responders had a baseline median LDL of 149 mg/dl compared to
122 mg/dl for non-responders, while HDL did not differ (in
both groups 48 mg/dl). These data indicate that although BP
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responders and non-responders do demonstrate slightly different
trends in some clinical parameters, BP responders do not show
any less severe disease phenotype.

Through the reanalysis of the Mesnage dataset, the only fasting
cohort in the literature with a similar study design and which
includes both BP and microbiome data, we were able to
demonstrate concordant treatment-related microbiome shifts in
both studies. This finding suggests the effects of fasting and
refeeding on gut microbiota generalizable. A machine-learning
model built from microbiome features differentially abundant at
baseline in BP responders in our cohort was able to predict sig-
nificant long-term BP decrease in the Mesnage et al. subjects with
about 70% accuracy, further supporting the idea that these
findings are likely generalizable.

Previous works have also shown that some outcomes of dietary
interventions in cardiovascular patients might be related to
baseline microbiome features. Notably, a recent study demon-
strated that higher baseline Akkermansia abundance was asso-
ciated with persistent weight loss in a study investigating MetS/
obese patients undergoing a 52-week long weight reduction
program10 (Supplementary Data 13). In addition, Velikonja et al.
showed in a study investigating the effect of beta-glucan sup-
plementation in MetS patients that a higher baseline abundance
of Akkermansia muciniphila and Bifidobacter spp. was char-
acteristic of patients whose cholesterol decreased due to the
intervention23 (Supplementary Data 13).

Thus, we demonstrate the practical utility of a machine-
learning analysis pipeline for predicting BP benefit of fasting in
MetS patients with hypertension using both baseline immunome
and microbiome data.

It is important to recognize that our study represents patients
with hypertension and MetS solely from a Caucasian-European
background. This selection criterion introduces a selection bias in
our study design. Additional research is necessary to elucidate
whether the results presented here could be applicable in a more
heterogeneous patient population. Further, our recruitment pro-
cedure could already have introduced a selection bias toward
patients who were interested in fasting/dietary studies and
therefore are sensitive about their cardiometabolic health. Since
the participants were especially interested in the fasting proce-
dure, the allocated DASH participants were offered a cost-free
fasting cycle after successful completion of the study. However,
we cannot exclude that this led to an increased long-term moti-
vation compared to the participants who started with the fasting
protocol. Furthermore, the study design did not allow us to
investigate the long-term effects of a fasting intervention without
a subsequent DASH diet on the BP, microbiome, or immunome.
In our cohort, fasting was required on top of DASH to achieve the
observed outcomes, but we cannot conclude (and do not expect)
fasting without a subsequent dietary change to do so either. We
can only claim fasting was required prior to the DASH diet to
achieve the effects observed in our cohort. DASH, which is rich in
fibers, might furthermore “fuel” the beneficial microbiome, thus

further contributing to cardiovascular health, and may play a part
in maintaining this microbiotal state longer. However, some
effects are replicated in the similar dataset from healthy males
(without MetS and without DASH intervention) in the Mesnage
dataset22, thus indicating the precise DASH setup may not be
strictly needed. Most likely, the two components of the inter-
vention synergize—fasting may potentiate the microbiome in
these patients to be shifted to a more DASH-compatible micro-
biota upon diet change. While we identify changes in microbial
taxonomic and functional features, bacterial metabolites and
immune processes, which could explain the efficacy of the
intervention, robust conclusions of causality will require follow-
up experimental work, particularly in animal models (e.g. gno-
tobiotic mice colonized with bacteria strongly associated with
BP). In addition, the relatively low patient number could be
regarded as a limitation. Although our present study is large
enough to allow inference of significance for the strongest con-
tributors to the observed effect, our results are likely not com-
plete, and follow-up in additional and larger studies will be
needed for a comprehensive view of subtle fasting-associated host
and microbiome features. Our study design did not allow for the
blinding of participants regarding their intervention. To maxi-
mally reduce the bias, the scientific staff were blinded during the
course of processing, measurement, and analysis of collected
samples. Further, the present study cannot infer how frequently
fasting cycles should be repeated to control BP in at-risk patients,
nor whether it is as effective without a concomitant DASH
intervention. Despite the low number of participants of the study,
machine-learning algorithms were able to predict BP respon-
siveness based on the immunome and 16S data. Only the latter
could be confirmed in an independent dataset, as no equivalent
immunome profiling in a fasting dataset has been published to
date. Confirmation of the predictive capability of the immunome
data and testing further hypothesis raised above (e.g. the inter-
action between SCFA availability and BP responsiveness) require
future prospective clinical studies. The favorable impact of fasting
followed by a DASH diet during refeeding phase shown here
highlights this intervention as a promising non-pharmacological
intervention for the treatment of high BP in MetS patients.

Methods
Study planning and ethical approval. The study was planned as part of a
randomized-controlled bi-centric trial conducted by the outpatient center of the
department of Internal and Integrative Medicine at Charité-Universitätsmedizin.
The study was approved by the ethics committees of the Charité-
Universitätsmedizin Berlin (approval number: EA4/141/13) and registered at
ClinicalTrials.gov (registration number: NCT02099968).

Participants. Participants were recruited from the existing patients at study centers
and through local newspaper announcements. Patients were first screened over the
phone by a research assistant to assess eligibility. Eligible patients were invited for
an assessment by a physician, where they were examined and provided detailed
written information describing the study. If patients met all inclusion criteria and
did not meet any exclusion criteria, informed consent was obtained and they were
included in the study.

Fig. 8 Baseline microbiome predicts long-lasting BP responsiveness. a Circles denote features differing at baseline in responders vs. non-responders and
altered during intervention in responders. Effect size (Cliff’s delta) is shown comparing responders and non-responders. b Comparison of results from the
present study (MetS; all samples and BP responders only shown as orange and red tags, respectively, separately) with those of a recent similar fasting
intervention in healthy men (Mesnage; blue tags). Effect sizes at the species or OTU level were averaged at the genus level for clarity, and are shown in the
plot (direction rendered as marker shape and hue; scope rendered as marker size and intensity) for all genera where at least one constituent taxon
achieved significance either in the Mesnage or MetS study (these are shown in boldface). Columns denote phases of each intervention - fasting phase,
refeeding, and follow-up vs. baseline. Substantial agreement between the two studies is seen, which is typically stronger for the subset of BP responders.
c Prediction model weights for BP response using the MetS 16S dataset at baseline. The top five immunome features were used to build a multivariate
logistic-regression algorithm. Single-subject prediction on the Mesnage dataset22 was quantified using a leave-one-out cross-validation procedure. The bar
plots represent the regression in a model with binary output (responder yes= 1 vs. no= 0) for every feature.
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Male and female patients with MetS according to National Cholesterol
Education Program Adult Treatment Panel III (NCEP ATP III) criteria were
included. MetS was defined as the presence of at least three out of five risk factors:
(i) increased waist circumference (>94 cm in men and >80 cm in women), (ii)
hypertriglyceridemia (>150 mg/dl (1.7 mmol/l) or lipid-lowering medication), (iii)
low levels of high-density lipoprotein cholesterol (HDL-C; < 40 mg/dl (1 mmol/l) in
men and <50 mg/dl (1.3 mmol/l) in women or use of HDL-increasing medication
(niacin or fibrate), (iv) elevated blood pressure (≥130/85 mm Hg or use of
antihypertensive medication), and (v) elevated fasting plasma glucose (≥110 mg/dl
or treatment for diabetes mellitus). Beyond NCEP ATP III criteria, patients were
required to have been diagnosed with systolic hypertension (either being on
antihypertensive medication or untreated). Further inclusion criteria included basic
mobility and the ability to provide informed consent.

Exclusion criteria included (i) diabetes mellitus type 1 or insulin bolus therapy
(c-peptide < 1.2 ng/ml), (ii) manifest treated coronary artery disease, myocardial
infarction, pulmonary embolism, or stroke within the past 3 months, (iii) heart
failure ≥ stage I NYHA, (iv) peripheral artery disease ≥ stage 2, (v) chronic kidney
disease > stage 2 (GFR < 60 ml/min), (vi) manifest eating disorder, vii) dementia or
manifest psychosis, or viii) other severe internal diseases.

Periodic fasting and plant-based Mediterranean diet intervention
Dietary interventions. The interventions in both groups were delivered as an
intensive group-based behavioral intervention. The educational concept incorpo-
rated aspects of the mind–body program designed by the Benson–Henry Mind/
Body Medical Institute of Harvard Medical School40. The dietary education
included counseling, comprehensive lectures and cooking classes.

Periodic fasting and modified DASH diet intervention. Intervention within the
fasting arm (Fig. 1a) started with two calorie-restricted vegan days (max 1200 kcal/
day), followed by 5-days with a daily nutritional energy intake of 300–350 kcal/day,
derived from vegetable juices and vegetable broth. After completion of fasting, weekly
6 h multimodal sessions were provided for a total of 10 weeks; both groups received
intensified nutritional counseling/nutritional classes and additional general lifestyle
recommendations for exercise and stress reduction41. The program entailed 10 h of
group sessions for the initial periodic fasting and 50 h of nutritional education, which
included lectures and cooking lessons. Similar to protocols from previous trials on
periodic fasting in rheumatoid arthritis and diabetes mellitus type 242,43 patients were
instructed to follow a modified DASH diet after the fasting period, with additional
emphasis on plant-based and Mediterranean diet to optimize refeeding44–46.

Modified DASH diet intervention. The DASH group (Fig. 1a) was trained in the
Dietary Approaches to Stop Hypertension (DASH) diet, a sodium-, fat- and sugar-
reduced mainly plant-based diet, which has been shown to reduce high blood
pressure47,48. The intervention was similarly delivered as an the fasting group-
based behavioral intervention with aspects of the mind–body program of the
Benson–Henry Mind/Body Medical Institute, Harvard Medical School40. Overall,
the program consisted of 50 h of group sessions over a period of 10 weeks and also
included comprehensive lectures and cooking lessons.

Randomization. Patients were randomly allocated to Fasting or DASH by block-
randomization with randomly varying block lengths, stratified by a) study center,
and b) the intake/non-intake of antihypertensive medication. The randomization
list was created by a biometrician not involved in patient recruitment or assessment
using the Random Allocation Software49. The list was password-secured and only
the biometrician was able to access it. On this basis, sealed, sequentially numbered
opaque envelopes containing the treatment assignments were prepared.

Outcome measures. Outcomes were assessed at baseline and at 1 and 12 weeks after
randomization by a blinded outcome assessor who was not involved in patient
recruitment, allocation, or treatment. Two primary outcome measures were
defined: 24 h ambulatory systolic blood pressure at week 12 and the Homeostasis
Model Assessment (HOMA)-index at week 12.

Physician-assessed outcomes. Twenty-four-hour ambulatory blood pressure mon-
itoring (ABPM) and pulse pressure recording were performed using a digital blood
pressure monitor (Mobil-O-Graph® PWA, I.E.M., Stolberg, Germany)50. Baseline
ABPM measurements were performed within one week before the starting of the
intervention, those at week 12 within a week after the end of the intervention.
ABPM was initiated at the same time of day for each successive visit. The mon-
itoring software automatically removed incorrect measurements using built-in
algorithms. Blood pressure and heart rate values were further categorized as day or
night values using each patient’s reported awake and sleep times. Office blood
pressure was measured in the hospital by a sphygmomanometer, using the average
of three consecutive measurements after 5 min rest while sitting in a quiet room.
Office blood pressure was measured at each time point, ambulatory blood pressure
only at baseline and week 12.

Body weight, body fat percentage, and lean mass percentage were measured
using the Omron BF 511 bioelectrical impedance device51. BMI was calculated as
the weight in kilograms divided by the square of height in meters. Waist

circumference was measured by two research assistants using a measuring tape in
the horizontal plane exactly midway between the iliac crest and the costal arch.
Measures were repeated twice and the mean of both measures was used. If the two
measures differed by more than 1 cm, both measures were repeated. Hip
circumference was measured in the horizontal plain at the maximal circumference
of the hips or buttock region above the gluteal fold, whichever is larger, using the
same approach as for waist circumference. Waist-hip-ratio was measured as the
quotient of waist circumference and hip circumference52.

Laboratory measures. Blood samples were collected from the antecubital vein into
vacutainer tubes and analyzed using the Modular P analyzer (Roche, Mannheim,
Germany). Metabolic parameters included plasma and blood glucose levels, blood
insulin levels, HbA1C, and HbA1C IFCC and were analyzed using standard pro-
cedures. HOMA index was calculated as blood insulin level (µU/ml) × blood
glucose level (mmol/l)/22.553. Further laboratory parameters included blood lipid
levels (total cholesterol, HDL cholesterol, LDL cholesterol, LDL/HDL ratio, tri-
glyceride), uric acid, blood creatinine level, estimated glomerular filtration rate
(eGFR), C-reactive protein (CRP), insulin-like growth factor 1 (IGF-1), and
interleukin-6 (IL-6), triglyceride, fasting glucose level54. Samples were destroyed
after the analysis and were not further stored.

Safety. All adverse events occurring during the study period were recorded. Patients
experiencing adverse events were asked to see the study physician to assess their
status and initiate any necessary response. The most common symptoms during
the fasting period were mild weakness, headaches, and mild perception of hunger.
No serious adverse effects were reported. During the normocaloric diet periods no
adverse effects were reported.

Multiple imputation. All analyses were conducted on an intention-to-treat basis,
including all participants being randomized, regardless of whether or not they gave
a full set of data or adhered to the study protocol. Missing data were multiply
imputed by Markov chain Monte Carlo methods55,56.

Peripheral blood mononuclear cell analysis. Whole blood staining was performed
using antibodies against major leukocyte lineages. Quantitative measurement was
performed using a high throughput sampler (BD) and a BD FACS CantoII (BD).
Peripheral venous blood was obtained and mononuclear cells were isolated within
24 h of collection by density gradient centrifugation using Biocoll and cryopre-
served until further processing. Thawed cell aliquots were either labeled for
extracellular antigens using fluorophore-conjugated monoclonal antibodies or CD4
+ cells were selected (Miltenyi CD4+ Selection Kit). Cells (106) from CD4+ and
CD4− fractions were placed onto U-bottom plates and re-stimulated for 4 h at 37°
C and 5% CO2 in a humidified incubator in a final volume of 200 µl RPMI 1640
(Sigma) supplemented with 10% FBS (Merck), 100U/ml penicillin (Sigma), 100
mg/ml streptomycin (Sigma), 50 ng/ml phorbol 12-myristate 13-acetate (PMA,
Sigma), 250 ng/ml ionomycin (Sigma) and 1.3 µl/ml Golgistop (BD). After re-
stimulation, cells were labeled with Life/Dead Fixable Aqua Dead Cell Stain Kit, for
405 nm excitation (Invitrogen), followed by labeling with surface antigen-specific
fluorophore-conjugated monoclonal antibodies. Cells were then fixated and per-
meabilized by FoxP3/Transcription Factor Staining Kit (eBioscience), and subse-
quently labeled with intracellular-antigen-specific fluorophore-conjugated
monoclonal antibodies. Antibodies are listed in Table 2. Samples were analyzed
using the FACSCanto II multicolor flow cytometer (BD). The acquisition was
performed with Diva 6.1.3 (BD). Data analysis was performed using FlowJo 10.3
(FlowJo LLC) and FCSExpress V6.02 (De Novo Software) software. Absolute cell
numbers were calculated using the relative percentage of cell population compared
to a marker used in the whole blood staining.

FlowSOM. Data were manually gated on single live cells and exported as FCS files
in FCS Express V6.02 (De Novo Software). The automated analysis of FCS files was
done by the FlowSOM57 algorithm, an R58 bio-conductor package that uses self-
organizing maps for dimensional reduction and visualization of flow cytometry
data. All data were scaled and log-transformed on import. Cells were assigned to a
Self-Organizing Map (SOM) with a 10 × 10 grid, grouping similar cells into 100
nodes. Each node in the FlowSOM tree gets a score indicating its correspondence
with this requested cell profile. To visualize similar nodes in branches, a minimal
spanning tree (MST) was constructed and cell counts were log scaled. To visualize
the differences between the two-time points, the mean percentage per sample
group was computed in each cluster and then the statistical difference was per-
formed by applying MWU test on every node within metaclusters. P values were
two-sided and analysis was performed using RStudio (version 3.4.4). The Flow-
SOM algorithm was run 3 times to ensure reproducibility of the results and P <
0.05 was considered to be statistically significant.

Medication data collection and cleanup. Antihypertensive drugs were normalized in
order to track changes during intervention. In a first step, antihypertensives
(according to the WHO ATC classification system), diuretics, beta-blocking agents,
calcium channel blockers, and agents acting on the renin-angiotensin system as well
as the given dosage were identified at V1 and at follow-up visit after 3 months (V3).
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Secondly, drug dosage was normalized to the lowest drug dosage per patient
and drug. The lowest drug dosage at baseline was set to one, while corresponding
drug dosages at other time points where either zero if the medication was
discontinued, one if there was no change in drug dosage between time points,
smaller than one if the drug dosage was decreased or greater than one if the drug
dosage was increased at a certain time point. The sum of the agents taken was
calculated at each time point.

DNA isolation. For DNA-based 16S rRNA gene and metagenomics sequencing, fecal
samples were collected into RNALater containing tubes, shipped at room temperature
and stored at −80 °C until processing. The DNA isolation protocol has been pre-
viously described59. Briefly, samples were treated with 500 µl of extraction buffer (200
mM Tris, 20 mM EDTA, 200mMNaCl, pH 8.0), 200 µl of 20% SDS, 500 µl of phenol:
chloroform:isoamyl alcohol (24:24:1) and 100 µl of zirconia/silica beads (0.1mm
diameter). Samples were homogenized twice with a bead beater (BioSpec) for 2 min.
After precipitation of DNA, crude DNA extracts were resuspended in TE Buffer with
100 µg/ml RNase I and column purified to remove PCR inhibitors.

16S rRNA gene amplification and sequencing. Amplification of the V4 region (F515/
R806) of the 16S rRNA gene was performed according to previously described

protocols60,61. Briefly, for DNA-based amplicon sequencing 25 ng of DNA was
used per PCR reaction in a final volume 30 µl. The PCR conditions consisted
of initial denaturation for 30 s at 98 °C, followed by 25 cycles (10 s at 98 °C, 20 s at
55 °C, and 20 s at 72 °C). Each sample was amplified in triplicates and subsequently
pooled. After normalization, PCR amplicons were sequenced on MiSeq PE300
platform (Illumina) at the Helmholtz Centre for Infection Research, Braunschweig,
Germany.

Metagenomic DNA library construction and sequencing. Sixty microliters of total
DNA was used for shearing by sonication (Covaris). Fragmentation was performed
as follows; processing time: 150 s, fragment size: 200 bp, intensity: 5, duty cycle: 10.
Library preparation for Illumina sequencing was performed using the NEBNext
Ultra DNA library prep Kit (New England Biolabs). The library preparation was
performed according to the manufacturer’s instructions. An input of 500 ng of
sheared DNA was used and the size selection was performed using AMPure XP
beads with the following parameters. First bead selection: 55 µl, and second: 25 µl.
Adaptor enrichment was performed using seven cycles of PCR using NEBNext
Multiplex oligonucleotides for Illumina (Set1 and Set2, New England Biolabs).
Sequencing was performed on NovaSeq PE1000 platform (Illumina) at the
Helmholtz Centre for Infection Research, Braunschweig, Germany.

16S sequence processing. Reads retrieved from 16S amplicon sequencing were
analyzed using the LotuS (1.62) pipeline62. The pipeline includes sequence quality
filtering63, read merging64, adapter and primer removal, chimera removal65,
clustering66, and taxonomic classification67 based on the SILVA (v138)68 database.
The validation dataset22 was reprocessed using the exact same settings.

Shotgun metagenomic processing. Metagenomic shotgun sequences were processed
within the NGLess framework (0.10)69. Reads were quality filtered by a minimum
read length of 45 bp and a minimum Phred quality score of 25. Sequences passing
that filter were mapped to the human genome (adapted from hg19; minimum 45
bp match, 90% minimum identity) and filtered. Sequences identified as non-human
were mapped with bwa70 to a) the IGC gene catalog (0.5)70 with a minimum match
size of 45 bp and a minimum identity of 95%, b) 40 reference marker genes
described in Ciccarelli et al.71 and Sorek et al.72 with a minimum match size of 45
bp and a minimum identity of 97%. Reads mapping to the marker genes were
extracted and further mapped to marker gene-based OTUs73. Mapping statistics
can be found in Supplementary Data 14.

Microbiome statistical analysis
Data pre-processing. Reads mapped to the IGC microbial gene catalog (0.5)71 were
rarefied using the RTK (0.93.1)74 with default settings (95% of smallest total reads
—here 15,247,497 reads/sample). Reads were mapped to the mOTUv2 (2.1)
taxonomic marker genes73 were likewise rarefied (5838 reads/sample). Reads
mapped to 16S OTUs (27813 reads), to ensure sample compatibility regardless of
sampling depth. For functional microbiome analysis, IGC genes were binned to
KEGG KOs75 based on the annotations in MOCAT2 (2.0.1)75, then binned by
averaging over KOs to KEGG modules and to Gut Microbial Modules (GMMs)76.
16S and mOTUv2 (2.1) OTUs were binned at more rootwards taxonomic levels
using the taxonomies provided with LotuS (1.62)62 and the mOTUv2 (2.1) tool73
respectively.

Alpha and beta diversity analysis. We assessed several metrics for gut alpha
diversity using the 16S species data (thus, available in equal form for both arms),
namely species richness, Shannon diversity, community evenness, Simpson’s and
the Inverse Simpson’s metric, and the Chao1 index, calculated using the RTK
(0.93.1)tool74. Unpaired MWU tests failed to reach significance (P > 0.05) for all
comparisons of subsets of samples: each time point versus each other time point, in
each arm separately and pooled, and between the arms within each time separately
and pooled. Subsequently, we assessed within-individual changes in alpha diversity
for both the DASH and the fasting+DASH arm, analogously to analysis of
microbial taxa, functional modules, clinical phenotypes, and immune cell popu-
lation counts, controlling for medication changes in the same manner. Supple-
mentary Data 1 shows these results. In short, there is a nonsignificant trend for
fasting to reduce diversity, which refeeding then restores, in the fasting+DASH
arm, whereas no such trend is visible in the DASH-only arm. Beta diversity
was assessed as community distances between samples computed using the vegan
(2.5-5) R package. For microbiome data, Bray-Curtis distances on rarefied samples
were used, and for immunome data, Euclidean distances. Comparisons of distance
profiles was performed using Mann–Whitney U tests.

Multivariate analysis. Mutlivariate analysis was carried out using Principal Coor-
dinates Analysis (PcoA) as per the vegan (2.5-5) R package, with the same distance
metrics as noted above. Where described, delta metrics for the first two dimensions
of unconstrained ordination were computed. PERMANOVA tests for multivariate
effect were done using the adonis function in the vegan (2.5-5)77 R package,
stratified for patient ID.

Table 2 Antibodies used for the flow cytometry analysis.

Antibody SOURCE RRID Dilution

a-CD11c APC Miltenyi AB_871587 2:25
a-CD123 PE Miltenyi AB 244211 1:10
a-CD127 PE-Vio770 Miltenyi AB_2659856 1:10
a-CD14 APC Miltenyi AB_244301 1:25
a-CD14 PE-Vio770 Miltenyi AB_2660180 1:25
a-CD16 FITC Miltenyi AB_2655402 1:10
a-CD16 PE Miltenyi AB_2655404 1:10
a-CD161 FITC Miltenyi AB_871631 1:10
a-CD19 PE Miltenyi AB_244223 2:25
a-CD196 (CCR6) APC Miltenyi AB_2655933 1:10
a-CD24 PerCP-Vio700 Miltenyi AB_2660665 1:10
a-CD25 APC Miltenyi AB_871644 1:10
a-CD25 PE Miltenyi AB_244320 1:10
a-CD27 PerCP-Vio700 Miltenyi AB_2660841 1:10
a-CD27 PE-Vio770 Miltenyi AB_2660837 1:10
a-CD3 PerCP-Vio700 Miltenyi AB_2659948 1:10
a-CD31 FITC Miltenyi AB_871662 1:10
a-CD39 APC-Vio770 Miltenyi AB_2660873 1:10
a-CD4 FITC Miltenyi AB_871682 1:10
a-CD4 VB Miltenyi AB_10829954 1:10
a-CD45 FITC Miltenyi AB_244234 1:10
a-CD45RA PerCP-Vio700 Miltenyi AB_2660987 1:10
a-CD45RO FITC Miltenyi AB_10827692 1:10
a-CD56 APC Miltenyi AB_244331 1:10
a-CD62L APC Miltenyi AB_244246 1:10
a-CD69 APC Miltenyi AB_615096 1:10
a-CD8 FITC Miltenyi AB_244336 1:10
a-CD8 PE-Vio770 Miltenyi AB_10829189 1:10
a-CXCR3 PE-Vio770 Miltenyi AB_2655740u 1:10
a-FoxP3 PE Biolegend AB_10579944 1:5
a-GM-CSF PE Miltenyi AB_2572656 1:20
a-Helios FITC eBioscience AB_2572656 1:120
a-HLA-DR PerCP-Vio700 Miltenyi AB_10839556 1:10
a-IFNγ PE-Vio770 Miltenyi AB_2661063 1:30
a-IL10 PE-Cy7 eBioscience AB_2573523 1:20
a-IL17A APC-Vio770 Miltenyi AB_2659812 1:10
a-IL2 FITC eBioscience AB_2572512 1:20
a-IL2 PE Miltenyi AB_244197 1:10
a-IL22 eFluor450 eBioscience AB_11150956 1:20
a-IL5 APC Biolegend AB_315330 1:20
a-Ki67 APC Miltenyi AB_2573218 1:120
a-TCRγδ APC-Vio770 Miltenyi AB_2654040 1:10
a-TCRγδ PE Miltenyi AB_2654034 1:10
a-TCRVα 7.2 APC-Vio770 Miltenyi AB_2653673 1:10
a-TCRVα 7.2 VB Miltenyi AB_2653669 1:10
a-TNFα APC Miltenyi AB_244201 1:10
a-TNFα eFluor450 eBioscience AB_2043889 1:20
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Univariate contrast analysis. For all univariate analysis of clinical, immunome, or
microbiome features, medication changes during the course of the study were
accounted for as possible confounders using the following two-step procedure. The
first step was a nested model comparison of a linear model for each feature,
involving as predictors age, patient ID, sex, and normalized dosage of each salient
medication tracked at each time point, with the same model but additionally
containing time point V1-V3 as a predictor. Models were compared using a like-
lihood ratio test as implemented in the lmtest (0.9-37)78 R package, and adjusted
for false discovery rate (FDR) using the Benjamini–Hochberg (BH) procedure
within each measurement space. In the second step, features with FDR < 0.1 were
retained for a second phase of post-hoc tests using Mann–Whitney U comparisons
between values at each pair of time points, BH FDR-adjusted between time point
comparisons (n= 3) and requiring FDR < 0.05 to retain the result as significant.
Standardized non-parametric effect sizes were taken using the (signed) Cliff’s delta
metric as implemented in the orddom (3.1)79 R package. The same methods were
used to analyze the validation dataset, with the exception no drugs were adjusted
for as subjects were unmedicated22.

Statistical analysis of 24 h ambulatory blood pressure and body weight
changes. Body weight and blood pressure change differences between Responders
and Non-Responders were compared with two-sided Mann–Whitney U test using
GraphPad Prism (6.01).

Fasting arm enterotyping. Enterotypes of the samples in the fasting arm were
performed by implementing the R package DirichletMultinomial (1.32.0.)15 on the
genus-level abundance table.

Correlation analysis. To assess possible interactions between immune cells, taxa,
and quantitative phenotypes, another two-step test was used: first a Spearman
correlation test using samples pooled across time points, and with Spearman’s rho
used as standardized signed effect estimate. P-values from this were FDR-adjusted
with the BH method for each comparison of two data spaces, requiring FDR < 0.05
for significance. Second, a post-hoc test was done to account for dependency
between same-donor samples: for each of two correlated features, a mixed-effects
model was fitted of the rank-transformed variable using the rank of the other as
predictor, with patient ID as a random effect. This model was compared to a
simpler model containing only the random effect under a likelihood ratio test as
implemented in the lmtest (0.9–37)78 R package. The highest P-value for the two
possible such models was taken, and P < 0.05 was additionally required to retain
the correlation as robust. Correlation was visualized by the R packages circilize80
and pheatmap81.

Re analysis of previous datasets for comparison. Samples from Kushugulova
et al.14 and Forslund et al.11 were previously mapped to the IGC gene catalog (0.5)
and the mOTU marker genes; these abundances (binned at the level of KEGG and
GMM modules as per the above in case of functional profiles). The Kushugulova
samples were tested for significantly differential abundances between MetS cases
and controls using the Mann–Whitney U test, then controlling that a MetS status
predictor still significantly improves fit (using the R lmtest ((0.9–37)78 package) of
the rank-transformed abundances when added to a linear model already incor-
porating metformin status as a predictor, thereby controlling for confounding
influence of metformin treatment status. Analogously, the Forslund samples were
tested for significantly differential abundances between metformin-treated and
untreated patients using the Mann–Whitney U test, then controlling that a met-
formin status predictor still significantly improves fit (using the R lmtest (0.9–37)78
package) of the rank-transformed abundances when added to a linear model
already incorporating MetS status as a predictor, thereby controlling for con-
founding influence of MetS status. The validation dataset22 was analyzed exactly as
the main study dataset, as described above.

Machine-learning prediction of treatment response at the single-subject level.
To estimate how well the omics data enables forecasting of the blood-pressure
response in future patients, we performed a leave-one-patient-out cross-validation
procedure. This approach represents the gold standard in the machine-learning
community to carry out an acid-test that empirically evaluates the practical value of
a predictive model82. To this end, the set of n participants was iteratively split into n
− 1 participants as training set, and the untouched data from the hold-out parti-
cipant as the test set. All input variables were z-scored by centering to zero mean
and unit-scaling to a variance of one83. In each of n cross-validation folds, the
logistic-regression algorithm was a natural choice of method for binary classification
(no intercept term, L2 shrinkage penalty, hyper-parameter C defaulted to 1.0).
Given that the number of variables was >10× times larger than the number of
participants, dimensionality reduction was necessary for a preliminary selection of a
set of ten most promising input variables that could be relevant for outcome pre-
diction. Forward-stepwise selection is an established means84 to screen the relevance
of several hundred quantitative measures. The first step identifies the single input
variable among the p candidates, with the best p-value having a statistically sig-
nificant association with the blood-pressure outcome. After adding this first variable
to the empty null model, the second most significant (i.e., smallest p-value) was

searched based on the remaining p− 1 input variables. Based on a two-variable
model, the third most significant variable was searched based on p− 2 remaining
variables, and so forth. This successive identification of the ten most promising
among the p overall input dimensions did not bias the subsequently performed
prediction performance estimate, because the entire variable reduction scheme was
exclusively carried out on the n− 1 participants of the current cross-validation fold.
Based on the top 10 variables, the logistic-regression algorithm could be more
robustly fit to these subselected ten input dimensions only. The ensuing predictive
model was then explicitly validated by computing whether or not the obtained
model parameters allowed for accurate derivation of the relevant blood-pressure
response for the independent, unseen participant. In this way, the omics data of
each patient in our dataset served as test observation once. Averaging these yes-no
results over all n predicted, versus observed clinical responses, yielded an estimate of
the expected forecasting accuracy of the predictive model in participants that we
would observe in other or later acquired datasets.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the conclusions of this manuscript will be made available by the authors,
without undue reservation, to any qualified researcher. The Python code for this analysis
can be found online: https://github.com/fastingproject/Fasting_Paper_202085. Databases
are to be found under the following links. KEGG: https://www.genome.jp/kegg/, SILVA:
https://www.arb-silva.de. mOTU: https://motu-tool.org/, Mesnage dataset: https://www.
ncbi.nlm.nih.gov/bioproject/PRJNA531091, IGC: https://db.cngb.org/microbiome/
genecatalog/genecatalog_human/. Stool sequencing data: https://www.ncbi.nlm.nih.gov/
bioproject/PRJNA698459.
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Aims Hypertension (HTN) can lead to heart and kidney damage. The gut microbiota has been linked to HTN, although it is difficult 
to estimate its significance due to the variety of other features known to influence HTN. In the present study, we used germ- 
free (GF) and colonized (COL) littermate mice to quantify the impact of microbial colonization on organ damage in HTN.

Methods 
and results

4-week-old male GF C57BL/6J littermates were randomized to remain GF or receive microbial colonization. HTN was 
induced by subcutaneous infusion with angiotensin (Ang) II (1.44 mg/kg/day) and 1% NaCl in the drinking water; sham- 
treated mice served as control. Renal damage was exacerbated in GF mice, whereas cardiac damage was more compar-
able between COL and GF, suggesting that the kidney is more sensitive to microbial influence. Multivariate analysis re-
vealed a larger effect of HTN in GF mice. Serum metabolomics demonstrated that the colonization status influences 
circulating metabolites relevant to HTN. Importantly, GF mice were deficient in anti-inflammatory faecal short-chain fatty 
acids (SCFA). Flow cytometry showed that the microbiome has an impact on the induction of anti-hypertensive myeloid- 
derived suppressor cells and pro-inflammatory Th17 cells in HTN. In vitro inducibility of Th17 cells was significantly higher 
for cells isolated from GF than conventionally raised mice.

Conclusion The microbial colonization status of mice had potent effects on their phenotypic response to a hypertensive stimulus, and 
the kidney is a highly microbiota-susceptible target organ in HTN. The magnitude of the pathogenic response in GF mice 
underscores the role of the microbiome in mediating inflammation in HTN.
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1. Introduction
Hypertension (HTN) is the leading risk factor for non-communicable dis-
eases worldwide,1 and is known as a multifactorial disease, where complex 
mechanisms often co-occur to lead to a persistent increase in blood pres-
sure (BP). Several studies have indicated that alterations in the compos-
ition and function of the intestinal microbiota may contribute to the 
burden of hypertensive disease.2–6 However, it is difficult to estimate 
the contribution of the microbiota, especially in human studies, where 
the added complexities of other contributing factors easily obstruct our 
understanding. The aim of our study is to understand the relative contri-
bution that the microbiota has to the burden of hypertensive disease.

Mounting evidence suggests that inflammation is not only character-
istic of hypertensive cardiovascular disease (CVD) but is causally linked 
to disease progression and severity.3 Components of both the innate 
and adaptive immune system have been implicated.3 T-helper 17 
(Th17) cells and Type 1 helper T-cells (Th1) have been shown to be in-
tegrally interlinked with hypertensive disease, and have been demon-
strated to exacerbate cardiac and renal damage.5,7,8 Moreover, 
myeloid-derived suppressor cells (MDSCs) derived from hypertensive 
mice were shown to have immunosuppressive properties, and upon 
adoptive transfer were able to mitigate BP increase in response to angio-
tensin II (Ang II) infusion.9 MDSC, Th17, and Th1 cells have each been 
shown in different settings to be influenced by the microbiota.5,9–11

We and others could recently demonstrate the role of several anti- 
inflammatory microbial metabolites in HTN. Short-chain fatty acids 
(SCFA) such as acetate, propionate, and butyrate, are produced by 
gut microbiota through the fermentation of indigestible dietary fibre.12

Acetate has been shown to ameliorate hypertensive damage to the kid-
ney and heart in mice.13 Our recent work elucidated the protective role 
of propionate in Ang II-induced inflammation and cardiovascular dam-
age.14 Furthermore, low butyrate levels have been associated with wor-
sened CVD in several models.15 In addition to SCFA, we have recently 
shown that a bacterially produced indole metabolite derived from tryp-
tophan suppresses Th17-driven inflammation in salt-sensitive HTN.5 In 
contrast, metabolites of microbial origin can also exacerbate disease in 
some contexts. For example, pro-inflammatory metabolites like tri-
methylamine N-oxide (TMAO) and indoxyl sulfate (IS) have been shown 
to aggravate CVD.16,17

To address our central aim, we utilized germ-free (GF) mice. C57BL/ 
6J GF littermates were randomized at 4 weeks of age to either receive a 
microbiota transfer from our in-house C57BL/6J colony, or to remain 
GF for the duration of the experiment. Here, we have uncovered several 
differences between GF and colonized (COL) mice in response to Ang II 
and 1% NaCl in the drinking water, which underscores the importance 
of the microbiota in the pathogenesis of HTN-induced organ damage. 
Of note, we show an exacerbation of damage in GF mice compared 
with COL mice, which is more distinct in the kidney than in the heart.

2. Materials and Methods
Detailed description of all analytical methods and data analysis used are 
available in the Supplementary material online.

2.1 Animal ethics
All experiments performed complied with the German/European law 
for animal protection and were approved by the local ethics committee 
(G0280/13, G0028/21).

2.2 Animal protocol
Wild-type C57BL/6J mice were bred under axenic conditions in an iso-
lator (Metall + Plastic, Radolfzell-Stahringen, Germany). Mice were main-
tained on a 12:12 h day: night cycle with constant access to food and 
water. Until Week 4, mice in both experimental groups grew under 
GF conditions. At 4 weeks of age, male mice were randomized to either 
remain GF in the isolator or receive passive bacterial colonization 
(COL). For colonization, mice were introduced in the regular SPF animal 
facility and placed in cages from healthy wild-type male C57BL/6J mice. 
Until 12 weeks of age mice received sterilized tap water as drinking 
water. At 12 weeks of age, COL and GF mice received Angiotensin II 
(Ang II, 1.44 mg/kg/day) by subcutaneous infusion via an osmotic mini-
pump (Alzet) and 1% NaCl (Carl Roth) in the drinking water or sham 
treatment. Sham-treated animals received the same operation proced-
ure without minipump implantation. Minipumps were implanted under 
sterile conditions, GF mice were kept sterile throughout the experi-
ment. Sterile drinking water was delivered via the Hydropac system 
(Plexx B.V., Elst, the Netherlands). Throughout the experiment mice 
were fed autoclaved standard breeding chow (V1124, Ssniff, Soest, 
Germany). After 2 weeks of Ang II + 1% NaCl or sham treatment 
mice were euthanized by isoflurane anaesthesia and blood, spot urine 
(where possible), faeces, and organs were collected. The Ang II infusion 
model was performed in 40 mice (GF n = 5, COL n = 5, GF + HTN n = 
16, COL + HTN n = 14). Over the course of the experiments, five ani-
mals were taken out of the experiment (GF + HTN n = 3, COL + 
HTN n = 2), due to pre-specified ethical termination criteria in order 
to counteract severe distress in this experiment. These five mice were 
not included in the analysis. Additionally, invasive BP measurements 
were performed in 10 animals (GF n = 5, COL n = 5), these animals 
were not included in any other analysis. As a control group for in vitro 
experiments, cells, and tissues from age-matched conventionally raised 
SPF C57BL/6J mice (referred to as CONV) were used.

Mice were euthanized by isoflurane anaesthesia (5% isoflurane–air 
mixture). Furthermore, echocardiography, BP, and Ang II pressor re-
sponse measurements were performed in isoflurane inhalation anaes-
thesia (2–2.5% isoflurane–air mixture). Details are given in 
Supplementary material online.

3. Results
3.1 Absence of microbiota exacerbates 
cardiorenal damage
To exclude confounding effects relating to the genetic background of mice 
used in our study, GF littermates were randomized at 4 weeks of age for 
colonization with SPF microbiota (COL) or further kept under GF condi-
tions. At 12 weeks of age, we induced HTN by subcutaneous Ang II infu-
sion and 1% NaCl-supplemented drinking water. After 14 days, we 
analysed hypertensive target organ damage (Figure 1A). Of note, we did 
not include surgical uninephrectomy to avoid bacterial contamination. 
The standard model in our lab includes uninephrectomy to induce a 
more severe form of renal damage,8,18 thus we expected a lower degree 
of renal damage when compared with the published literature.19 To val-
idate the integrity of our experiment, we first checked the colonization 
status of the mice. Gross morphological changes were assessed, and the 
characteristics typical of the gastrointestinal (GI) tract in GF mice (e.g. 
megacecum) did not persist in the mice which had been colonized 
(COL) (see Supplementary material online, Figure S1A). To confirm the 
microbial status of the respective group, we examined faecal pellets 
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produced on the final day of experimentation. First, pellets were incu-
bated in a thioglycolate medium for 96 h, and GF mice were found to 
show no bacterial growth (see Supplementary material online, 
Figure S1B). Second, 16S rDNA copies per gram stool measured by 
qPCR were found to be similar in COL (Sham and HTN) and conventional 
SPF mice (CONV), whereas GF mice did not have more 16S rDNA copies 
than blank samples (see Supplementary material online, Figure S1C). Finally, 
unimputed serum metabolomics confirmed the presence of bacterially- 
derived metabolites in COL mice only (see Supplementary material 
online, Figure S1D). Shotgun metagenomics revealed that the grafted bac-
teria in COL mice showed the largest overlap with mouse gut metagen-
omes published in the global microbial gene catalogue (GMGC) (see 
Supplementary material online, Figure S2). We therefore concluded that 
the GF and COL groups were maintained as intended to confidently pro-
ceed with further analyses. Of note, it has been previously reported for 
the Ang II infusion model that HTN induction leads to changes in the mi-
crobiome composition.20 Likewise, we found Ang II infusion influenced 
the abundance of various taxa in COL mice (see Supplementary 
material online, Figure S1E) as shown by shotgun sequencing. Indeed, 
both the caecal and faecal compartments displayed differences between 
the COL sham and HTN groups on phylum and genus levels (see 
Supplementary material online, Figure S1F and G, and File S1–4).

One of the hallmarks of hypertensive target organ damage is renal 
damage, which is characterized by abnormally high excretion of albumin 
with the urine (albuminuria), fibrosis, and inflammation. In line with the 
literature,19 our HTN induction without uninephrectomy lead to a mod-
erate increase in albuminuria in COL mice (Figure 1B). GF mice devel-
oped a greater degree of albuminuria upon HTN induction, which is 
abundantly clear when comparing the relative increase of GF and 
COL mice compared with their respective sham groups (Figure 1B). 
HTN also lead to a significant increase in renal damage marker 
lipocalin-2 in GF mice (Lcn2), which was not evident in COL mice 
(Figure 1C). Next, we analysed nephrin, a protein in the podocytes’ slit 
membrane, by immunofluorescence. We observed a significant de-
crease of nephrin immunofluorescence in GF mice, where COL mice ex-
hibited a similar but insignificant trend (Figure 1D). HTN led to a 
significant increase of macrophages (F4/80+ cells, Figure 1E) and cyto-
toxic T-cells (CD8+ cells, Figure 1F) in the kidney of GF mice, not reach-
ing significance in COL mice. Likewise, we found that mRNA expression 
of CC-chemokine ligand 2 (Ccl2, see Supplementary material online, 
Figure S3A) and infiltrating T-cells (CD3+, see Supplementary material 
online, Figure S3B) were selectively increased in the GF group upon 
HTN. While T-helper cells (CD4+ cells) were shown to increase in 
both GF and COL mice, GF mice displayed a stronger increase 

Figure 1 Renal damage is exacerbated under GF conditions. (A) Description of experimental protocol (unless otherwise stated, GF Sham n = 5, GF + 
HTN n = 12, COL Sham n = 5, COL + HTN n = 12 for further analyses). (B) Urinary albumin-to-creatinine ratio from spot urine collected upon sacrifice 
from a subset of mice (COL n = 5, COL + HTN n = 5, GF n = 4, GF + HTN n = 6). (C ) Lcn2 gene expression was measured from kidney tissue by qPCR. 
(D) Histological kidney sections were stained for nephrin. Representative glomeruli are shown (left). Nephrin immunofluorescence was quantified as mean 
fluorescence intensity (MFI) in the glomerular space averaged per mouse. The scale bar represents 20 µm. (E) Macrophages (F4/80+), (F ) CD8+, and 
(G) CD4+ T-cells from kidney sections were counted from five representative high-power fields within the cortex. For (B–G), the left graph was tested 
using a two-way ANOVA and post hoc Sidak multiple comparison’s test and depicts the raw values for each variable. For (B–F), HTN was identified as the 
source of variation using two-way ANOVA, and post hoc multiple comparison between sham and HTN within each group revealed that the GF comparison 
was the source of variation. In (G), HTN was identified as the source of variation using two-way ANOVA, and post hoc multiple comparison between sham 
and HTN within each group revealed that both the GF and COL comparison were significant. For B through G, the right plot depicts the relative change 
induced by Ang II + 1% NaCl in comparison with the respective sham group, tested using an unpaired two-tailed t-test. No change (100%) depicted as 
dotted line. For all plots, P-values are as follows; *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.
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(Figure 1G). The number of leukocytes (CD45+ cells) within the kidney 
confirms the stronger effect of HTN on renal inflammation in GF (see 
Supplementary material online, Figure S3C). For all immune populations 
in the kidney, the change in HTN relative to sham was consistently ex-
acerbated in GF compared with COL (Figure 1E–G, and see 
Supplementary material online, Figure S3B and C). Finally, we investigated 
kidney fibrosis. Expression of Col3a1 was significantly increased only in 
GF + HTN mice (see Supplementary material online, Figure S3D). 
Perivascular fibrosis analysed by Masson’s trichrome staining was accen-
tuated in GF mice but not statistically different between the groups using 
two-way analysis of variance (ANOVA); although when comparing the 
relative increase from sham to HTN, there was a significant difference 
between GF and COL (see Supplementary material online, 
Figure S3E). Similar to what was previously shown,21 GF mice tended 
to have lower baseline values for several damage markers when compar-
ing sham-treated GF and COL mice. Overall, renal pathology upon HTN 
induction was greater in GF mice when compared with their COL 
littermates.

Next, we examined the cardiac phenotype. HTN induction led to 
greater hypertrophy in GF compared with COL mice, as measured by 
heart weight-to-tibia length ratio (Figure 2A). Left ventricular weight taken 
from echocardiography relative to the tibia length (Figure 2B) as well as 
cardiac Nppb expression (Figure 2C) confirmed this finding. Neither the 
GF + HTN nor COL + HTN mice had a reduced ejection fraction 
(Figure 2D), indicating none of these mice were experiencing systolic heart 
failure. Using two-way ANOVA, both perivascular (Figure 2E) and intersti-
tial (Figure 2F) fibrosis were significantly increased in GF + HTN and not in 
COL + HTN mice compared with their respective sham group. 
Interestingly, when assessing the relative increase in HTN compared 
with sham for markers of cardiac fibrosis, there was no difference in GF 
compared with COL mice (Figure 2E and F). Next, we examined cardiac 
inflammation. Despite an increase in Ccl2 expression in GF and not 
COL (see Supplementary material online, Figure S4A), macrophages (F4/ 
80+) were increased in both GF and COL hearts upon HTN; and GF + 
HTN showed significantly less macrophages than COL + HTN mice 
(Figure 2G). The change in overall leukocytes (CD45+) within the heart mi-
mics the changes seen for macrophages (see Supplementary material 
online, Figure S4B). Furthermore, no significance was reached when com-
paring CD4+ T-helper cell infiltration (Figure 2H), whereas CD8+ cyto-
toxic T-cells in the hearts increased in both GF + HTN and COL + HTN 
mice compared with sham (Figure 2I). We also observed an increase in 
the cardiac expression of pro-inflammatory cytokine Tnfa selectively in 
the GF + HTN group compared with sham (see Supplementary material 
online, Figure S4C). Altogether, cardiac hypertrophy and inflammation fol-
lowing HTN were affected to a greater extent in GF, but when assessing 
the relative change for GF and COL mice in HTN compared with sham we 
saw many similarities in the development of the cardiac fibrosis. Whereas 
in the kidney, there was a clear difference in the development of HTN 
damage between GF and COL mice, these distinctions were less evident 
in the heart.

3.2 Hypertensive kidney damage is more 
sensitive to microbial status than cardiac 
damage
The aforementioned findings indicate that GF mice respond more sen-
sitively to HTN. Within the context of our initial statistical approach 
(two-way ANOVA) we often saw a loss of significance for the HTN ef-
fect in COL mice under equal statistical power; and the differences 

between GF and COL response where much clearer when assessing 
the relative increase for a given marker in HTN (unpaired t-test). To ex-
pand on this idea to increase our understanding of the differences be-
tween GF and COL, we assessed the size of the HTN-induced effect 
by calculating an effect size (Cliff’s delta) and fold change for each mark-
er. Using a comprehensive univariate testing strategy, we assessed the 
significance in the different tissue spaces using a robust false discovery 
rate (FDR) correction within GF and COL groups to root out any spuri-
ous findings. From the majority of kidney parameters assessed, across 
the subcategorizations of damage, fibrosis, and inflammatory markers, 
a very consistent pattern emerged in that the GF mice experienced wor-
sened kidney outcomes compared with COL mice (Figure 3A, see 
Supplementary material online, Table S1). In contrast to the renal dam-
age, both GF and COL mice experienced a more similar cardiac damage 
pattern, particularly regarding markers of cardiac fibrosis (Figure 3B, and 
see Supplementary material online, Table S2). Albeit several cardiac para-
meters reached significance in GF and COL mice, the fold changes ob-
served in GF mice were often larger (e.g. Nppb, perivascular fibrosis, 
Ccn2, Lcn2, F4/80, CD8; see Supplementary material online, Table S2). 
GF + HTN mice develop a significant increase in lung weight-to-tibia 
length ratio (Figure 3B), indicating the development of lung congestion22

due to aggravated cardiac dysfunction. Taken together, there was more 
overlap in the cardiac response to HTN in GF and COL groups than was 
seen for the kidney parameters.

To further quantify the HTN effect across the renal (Figure 3C) and 
cardiac (Figure 3D) tissue space, we performed a multivariate principal co-
ordinate analysis (PCoA) summarizing the overall (dis)similarities 
amongst the groups. To assess pairwise comparisons of interest, the 
overall dataset was divided and tested using PERMANOVA (Figure 3C). 
The pairwise comparisons of the kidney phenotypic data show a signifi-
cant distance in the COL group from sham to HTN (P-value = 0.012, 
F-value = 4.8). However, the effect of HTN, as measured by the 
F-value, was greater in the GF mice (P-value = 0.001, F-value = 8.2). In 
line with our initial univariate targeted analysis (Figure 1), this indicates 
that the overall phenotypic change in the kidney in response to HTN 
was larger in GF mice than in COL mice. Furthermore, the pairwise 
PERMANOVA between GF + HTN and COL + HTN groups (P-value = 
0.044, F-value = 3.2) indicates that HTN induction resulted in a different 
outcome on a multivariate level. Despite some slight differences within 
some univariate kidney data in the sham groups (e.g. albuminuria, F4/80 
+ cells), pairwise comparison of GF and COL sham samples was insignifi-
cant (P-value = 0.262, F-value = 1.4).

For the multivariate analysis of our cardiac data, pairwise comparisons 
were also used to assess the trajectory of each group (Figure 3D). 
Consistent with our conclusions from the univariate assessment of 
the overall cardiac phenotype (Figure 3B), we saw that the comparison 
between GF + HTN and COL + HTN group showed significant overlap 
in the PCoA plot, and the pairwise comparison between these samples 
was not significant (P-value = 0.391, F-value = 1.1). Conversely, the dif-
ference between sham GF and COL samples was significant, suggesting 
that perhaps the basal cardiac phenotype is sensitive to the host’s 
microbiome status (P-value = 0.01, F-value = 5.6). As expected, the 
comparison of HTN with sham samples within the GF (P-value = 0.01, 
F-value = 4.8) and COL (P-value = 0.046, F-value = 3.2) samples were 
both significant. The cardiac data again indicate larger phenotypic shifts 
in GF mice most likely driven by significantly different sham groups.

Taken together, our univariate and multivariate approaches indicate a 
larger effect of HTN in GF mice. In the case of the kidney, this increased 
effect is indeed driven by a stronger adverse response of GF mice to 
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HTN, whereas in the case of the heart, this effect is driven by phenotypic 
differences in the healthy groups (sham-treated mice).

3.3 Vascular response to Angiotensin II is 
similar in GF and COL mice
There is some evidence from the literature that vascular reactivity may 
be dependent on microbial colonization.23,24 We opted not to implant 
telemetry devices for the measurement of BP in our primary experimen-
tal animals, as microscopic vascular surgery was not possible under ster-
ile conditions. Although we decided to forgo this gold-standard for BP 
measurement, we still questioned whether the axenic status of our 
GF mice would impact the basal mean arterial pressure (MAP), or BP 
reactivity to Ang II. We therefore colonized additional mice using the 
same colonization procedure as previously outlined, and we performed 
in vivo BP measurements using an implanted arterial catheter in freely 

moving mice. Interestingly, we found that GF mice had a significantly 
higher MAP (Figure 4A) than their colonized counterparts, although 
the mean of each group (GF mean value = 118.4 mmHg, COL mean va-
lue = 107.8 mmHg) was still in a range considered normal for untreated 
C57BL/6J mice.25 Acute intravenous infusion of Ang II induced an in-
crease in BP (Figure 4B) which was nearly identical for GF and COL 
mice, suggesting that Ang II-dependent reactivity of the vasculature is 
similar in these mice. Similarly, we investigated ex vivo vascular contract-
ility of mesenteric arteries isolated from conventionally colonized mice 
(CONV) or GF mice (GF). CONV mice were used for this in vitro ex-
periment due to ease of availability because colonization of GF mice is 
a lengthy procedure. GF mice showed similar contractile response com-
pared with CONV mice in response to Ang II (see Supplementary 
material online, Figure S5A). Additionally, mesenteric arterial rings 
from GF mice showed similar contraction force in response to KCl to 
CONV mice (see Supplementary material online, Figure S5B). Similarly, 

Figure 2 Cardiac inflammation and hypertrophy are aggravated in GF mice. Unless otherwise stated, GF Sham n = 5, GF + HTN n = 12, COL Sham n = 5, 
COL + HTN n = 12. (A) Heart weight-to-tibia length (g/m) from mice taken at sacrifice. (B) Left ventricular (LV) mass was estimated using echocardiography 
and normalized to tibia length (g/m). (C ) Cardiac ventricular natriuretic peptide gene expression (Nppb) measured by qPCR. COL + HTN n = 11, otherwise 
as stated above. (D) Echocardiography prior to sacrifice revealed no change in the ejection fraction upon HTN induction in GF or COL mice. 
(E) Perivascular fibrosis from cardiac vessels, evaluated by measuring the fibrotic area relative to the medial area of vessels from Collagen 1-stained histology 
slides. GF Sham n = 4, otherwise as stated above. (F ) Cardiac interstitial fibrosis was evaluated as fibronectin positive area proportionate to total area from 
five representative 40× magnification pictures from histological slides. In scale bar represents 40 µm. (G) Macrophages (F4/80+) were counted from five 
representative high-power fields, and (H) CD4+, and (I ) CD8+ T-cells were counted from whole heart sections. Two-way ANOVA and post hoc Sidak 
multiple comparison’s test for (A–I) was used to test significance in the left plot. In (A–C) and (E and F), HTN was identified as the source of variation using 
two-way ANOVA, and post hoc multiple comparison between sham and HTN within each group revealed that the GF comparison was the source of vari-
ation. In (G) HTN and the microbiome were both identified as sources of variation using two-way ANOVA, and significant post hoc comparisons are shown. 
In (I ), HTN was identified as the source of variation using two-way ANOVA, and post hoc multiple comparison between sham and HTN within each group 
revealed that both the GF and COL comparison were significant. To the right in (A–I), the relative change induced by Ang II + 1% NaCl in comparison with 
the respective sham group was tested using an unpaired two-tailed t-test. No change (100%) depicted as dotted line. For all plots, P-values are as follows; *P 
≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.
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Figure 3 Unbiased assessment of kidney and heart damage in HTN-treated GF vs. COL mice. Unless otherwise stated, GF Sham n = 5, GF + HTN n = 12, 
COL Sham n = 5, COL + HTN n = 12. For cardiac RNA expression COL + HTN n = 11, otherwise as stated before. (A) Effect sizes [Cliff’s delta (D)] and fold 
changes are shown to assess the effect of HTN treatment relative to the respective sham group in GF and COL on the kidney phenotype. Colour and 
triangle direction indicates effect size. Size indicates log2-transformed fold change (Log2FC) of HTN compared with the respective sham group. 
Significance was calculated using the Mann–Whitney U-test and was FDR-corrected with the Benjamini–Hochberg procedure to account for multiple test-
ing. Markers for significant Q-values are superimposed, and transparency indicates non-significant effects. °q < 0.1, *q < 0.05, **q < 0.01. Variables are or-
ganized by subcategory (damage, fibrosis, inflammation). (B) Same univariate analysis as in (A) was performed on cardiac phenotypic data. Variables are 
organized by subcategory (function, hypertrophy, fibrosis, inflammation). (C ) PCoA was performed based on Euclidean distance scaling of kidney pheno-
typic data to demonstrate the dissimilarities between study groups in a quantitative phenotypic state space (GF + HTN = 11, otherwise as stated). Pairwise 
comparisons between groups were preformed using PERMANOVA and reported in the inset table. (D) PCoA as in (C ) was performed on the cardiac 
phenotypic data.
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endothelial-dependent (see Supplementary material online, Figure S5C) 
and –independent (see Supplementary material online, Figure S5D) re-
laxation was not influenced by colonization status.

3.4 Microbiota and microbial metabolites 
shape serum metabolome changes in HTN
Although the vascular reactivity of GF mice was similar to those housing 
microbes, we were interested to understand the different phenotypic 
and inflammatory response to HTN. We therefore decided to investi-
gate the microbiome itself and associated metabolite production, as 
our group and others have previously shown that some metabolites 
of microbial origin can be anti-inflammatory in HTN.5,13,14

Consistent with the literature,20 the metabolome of GF and COL an-
imals was affected by HTN induction. We found a multitude of differ-
ences when analyzing the serum metabolome (MxP Quant 500, 
Biocrates) from GF and COL mice in HTN compared with the respective 
sham, which we grouped together by class to show the composite shift of 
over 300 individually measured metabolites (Figure 5A, and see 
Supplementary material online, Table S3). Of the 15 classes of metabolites 
where HTN induction had an effect, four of those classes (phosphatidyl-
cholines, hexosylceramides, alkaloids, fatty acids) showed similar trajector-
ies, suggesting these classes changed in a microbiome-independent 
manner upon HTN (Figure 5A, individual metabolites shown in see 
Supplementary material online, Figure S6A–D). For individual metabolites, 
we compared the impact of HTN induction on metabolite trajectories. 
When comparing sham with HTN, there was little overlap between the 
metabolites that decreased (Figure 5B) or increased (Figure 5C) within 
GF or COL. Overall, in GF mice more metabolites were regulated by 
HTN than in COL mice (see Supplementary material online, Table S11) 
(Figure 5D). Of note, a subset of metabolites which were upregulated in 
GF mice were downregulated in COL mice in response to HTN and 
vice versa (Figure 5D, shown in black). Taken together, the alterations of 
the metabolome in response to HTN show little overlap in GF and 
COL mice (Figure 5D, referred to as ‘both’). Unsurprisingly, the serum me-
tabolome was significantly impacted by the microbiome, and we saw a 

wide range of correlations between individual metabolites and microbial 
species, as well as functional modules derived from shotgun sequencing 
data (see Supplementary material online, Figure S7). Although the serum 
metabolite measurements used here were very comprehensive, they 
did not cover SCFA metabolites, which we and others have shown to 
have high importance in the progression of HTN. It has been demon-
strated elsewhere that GF mice are devoid of some important SCFA.26

We confirmed this for our mouse colonies (GF and CONV, which 
were the source populations for our experiments) by performing mass 
spectrometry measurements of faecal acetate, propionate, and butyrate 
(Figure 5E). We expect that the lack of the potent anti-hypertensive me-
tabolites propionate and butyrate influences the phenotype seen in GF 
mice.

3.5 Inflammation contributes to the 
differing phenotypic response to HTN in 
GF and COL mice
It has been shown that the immune system and the gut microbiome are 
strongly interconnected, and several studies have shown the importance 
of immune cells in HTN.2,3 We and others have also shown that meta-
bolites of microbial origin can influence inflammation in HTN.5,13,14 We 
examined the splenic immune cell composition a surrogate for systemic 
inflammation in GF and COL mice by flow cytometry (gating strategies 
are shown in see Supplementary material online, Figure S8). Of the 23 
immune cell subsets we investigated, 12 were differentially influenced 
by HTN when compared with the respective sham group (Figure 6A, 
and see Supplementary material online, Table S4). We then examined 
all immune parameters multivariately to assess how changes in immune 
cells would be reflected in the distance between each group using PCoA 
(Figure 6B). It is known that the immune system of GF mice differs from 
their colonized counterparts.27 Our data confirms this observation as 
the pairwise comparison of sham-treated GF and COL mice (P-value 
= 0.011, F-value = 6.6) was significant. Interestingly, this difference be-
tween COL and GF was still evident after HTN induction (P-value = 
0.026, F-value = 2.8). Pairwise comparisons of individual groups using 
PERMANOVA indicated that the HTN to sham comparison was signifi-
cant in the GF group (P-value = 0.006, F-value = 4.8), but not within the 
COL group (P-value = 0.177, F-value = 1.6) (Figure 6B). It can be con-
cluded that overall, the inflammatory status of GF mice was disturbed 
to a greater degree by HTN induction.

Previous studies have shown that splenic MDSC increase in HTN and 
have anti-hypertensive properties.9 In line with the literature, there was 
an increase in monocytic MDSC (mMDSC) upon HTN induction, and 
this increase was only significant in COL + HTN mice (Figure 6C). 
Furthermore, for both mMDSC and granulocytic MDSC (gMDSC) 
(Figure 6D) subtypes, COL + HTN mice showed a significantly higher fre-
quency of these anti-hypertensive immune cells than GF + HTN mice. 
The relative increase in HTN compared with sham for mMDSC was less-
er in GF mice but greater for gMDSC than in COL (Figure 6C and D). 
The dynamics of whether the relative increase, or absolute number of 
MDSCs is relevant in HTN is currently unknown. Additionally, we saw 
an increase in Th17 cells in both GF and COL mice, though this effect 
only reached significance in GF mice (Figure 6E). This increase was driven 
by pathological Th1-like Th17 cells, defined by their co-expression of 
RORgt and Tbet (Figure 6F).28 Recent evidence suggest that pre-existing 
conditions can influence naive T-cell responses towards effector differ-
entiation.29–31 We hypothesized that the absence of microbes and their 
metabolites in GF mice would render naive T-cells more vulnerable to 

Figure 4 BP and Angiotensin II reactivity in GF and COL mice. N = 5 
animals per group. (A) GF and COL mice were implanted an arterial 
catheter for BP measurement. MAP was measured in resting and awake 
animals, and the difference was tested using an unpaired two-tailed 
t-test (**P ≤ 0.01). (B) The increase in BP after acute intravenous infu-
sion of Angiotensin II as a bolus was measured. No statistical difference 
between GF and COL mice was found using a two-way repeated meas-
urement ANOVA (P = 0.14), whereas Ang II dose had a significant in-
fluence (P ≤ 0.0001, not shown).
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cytokines. Therefore, we performed an in vitro Th17 polarization of na-
ive T-cells from GF and CONV mice (which were used in place of COL 
due to ease of accessibility) in the presence or absence of Ang II. Naive 
T-cells from GF mice more readily polarized towards Th17 cells than 
cells from CONV mice, particularly in the presence of Ang II 
(Figure 6G). To demonstrate that the conditions for the polarization 
of Th17 cells indeed exist in vivo, we quantified the expression of each 
of the Th17-polarizing cytokines (Il-6, Il-1b, and TGFb) by qPCR from 
kidney (see Supplementary material online, Figure S9A, and Figure 3A) 
and heart (see Supplementary material online, Figure S9B, and 
Figure 3C) tissue. These key cytokines were increased upon HTN. The 
comparison of effect sizes (Figure 3A and C) often indicated larger effects 
of HTN in GF mice. We suspected that the reason naive CD4+ T-cells 
isolated from CONV mice were less inducible toward Th17 in the pres-
ence of Ang II may be due to the priming of immune cells by SCFA in the 
in vivo microenvironment. To test this hypothesis, prior to Th17 induc-
tion in the presence of Ang II, naive CD4+ cells were pre-treated for 
24 h with the SCFA butyrate and propionate. While the pre-treatment 
did not affect the induction of Th17 in CONV, SCFA pre-treatment 

prevented the enhanced Th17 induction of naive T-cells from GF 
mice (Figure 6H).

In summary, our in vitro findings suggest that the different pre- 
conditioning of naive T-cells within GF and COL mice may impact polar-
ization into pro-inflammatory effector T-cells and thus severity of target 
organ damage. We anticipate that this effect contributes to our in vivo 
findings, where the absence of microbes and microbiota-derived meta-
bolites like SCFA had a potent impact on immune cells relevant in HTN 
and cardiorenal damage.

4. Discussion
Gut microbial dysbiosis associates with HTN in humans5,32 and in ro-
dent models.5,32–34 Faecal microbiota transplantation from hypertensive 
patients into mice has also been shown to induce an increase in BP.32

However, few studies have focused on the overall contribution of the 
microbiome to the pathogenesis of HTN, such that it may be contextua-
lized relative to other known contributors to hypertensive disease 

Figure 5 Microbiome heavily influences the metabolome in response to HTN. (A) Using the Biocrates MxP500 Quant kit, serum metabolites were ana-
lysed from GF and COL mice. Metabolites were grouped by class to demonstrate the overall effect on the serum metabolome (Sham GF n = 5, Sham COL n 
= 5, GF + HTN n = 10, COL + HTN n = 11). Effect size [Cliff’s delta (D)] is shown to demonstrate the effect of HTN relative to the respective sham group in 
GF and COL. Colour and triangle direction indicates effect size. Size indicates log2-transformed fold change (Log2FC) of HTN mice compared with the 
respective sham group. Significance was calculated using the Mann–Whitney U-test and was FDR-corrected using the Benjamini–Hochberg procedure to 
account for multiple testing. Markers for significant Q-values are superimposed, and transparency indicates non-significant effects. °q < 0.1, *q < 0.05, **q < 
0.01. For (B) and (C ), individual metabolites rather than metabolite classes within the GF and COL group were compared using the effect size calculation 
listed in (A, see Supplementary material online, Table S11). Those metabolites which were significantly altered in the sham to HTN comparison, as tested 
using the Mann–Whitney U-test with Benjamini–Hochberg FDR correction were selected and separated based on the directionality of their shift. 
Metabolites which decreased (B) or increased (C ) in HTN relative to sham are compared between the COL and GF conditions using a Venn diagram. 
The number of metabolites and the percentage within each subcategory are overlayed. In (D) significant changes to individual metabolites (points) are 
shown in GF (y-axis) and COL (x-axis) as log2-fold changes in response to HTN. Metabolites exclusively significantly regulated in GF or in COL are shown 
in red and blue, respectively. Purple points indicate metabolites significantly regulated similarly in GF and COL (significant in both and same trajectory), while 
black points indicate metabolites regulated significant in both groups but with opposite trajectories. Grey points are metabolites which were reliably mea-
sured but not significantly altered in either group. (E) Faecal SCFA from GF or CONV mice demonstrates the absence of potent anti-hypertensive me-
tabolites butyrate and propionate in the GF setting (GF n = 6, CONV n = 4). Significance was tested using unpaired two-tailed Student’s t-test (***P ≤ 
0.001, ****P ≤ 0.0001). LC-MS, liquid chromatography-mass spectrometry; FIA-MS, flow injection analysis-mass spectrometry.
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burden. Here we show in a presence/absence scenario, that the micro-
biota has a potent effect on HTN-induced cardiac and renal damage in 
mice. GF mice showed a stronger adverse response to HTN than their 
COL littermates. Interestingly, the kidney seems to be more sensitive to 
changes in microbial status than the heart. Finally, we propose that the 
altered inflammatory response in GF mice contributes to their aggra-
vated phenotype in HTN.

We have shown robustly that the kidney damage within GF mice 
upon HTN is comparatively more severe than the damage experienced 
by their COL littermates. Some of the larger effects in our univariate 
analysis may be related to the slightly lower baseline level of putative 
markers for kidney damage within sham GF mice compared with 

sham COL, though these groups do not significantly differ. We surmise 
that the baseline differences between GF and COL mice are likely due to 
the immunological uniqueness of GF mice, which has been documented 
in the literature.27 Indeed, across renal damage, fibrosis and inflamma-
tion markers, we consistently saw a significant effect of HTN selectively 
in the GF group (Figure 3A). Furthermore, we show on a multivariate le-
vel that the difference between sham GF and GF + HTN mice for the 
composite of kidney parameters is significant, while the equivalent com-
parison within the COL mice is insignificant (Figure 3C). Consistent with 
other inflammatory markers, we show an increase of infiltrating macro-
phages (F4/80+ cells, Figure 1E) in GF + HTN kidneys, as well as the in-
creased expression of Ccl2 (see Supplementary material online, 

Figure 6 Colonization status influences the inflammatory reaction to HTN. Unless otherwise stated, GF Sham n = 5, GF + HTN n = 12, COL Sham n = 5, 
COL + HTN n = 12. (A) Several unique immune cell subsets were measured from the spleen, as a proxy measure of systemic inflammation. Effect size (Cliff’s 
delta [D]) is shown to demonstrate the effect of HTN relative to the respective sham group in GF and COL. Colour and triangle direction indicates effect 
size. Size indicates log2-transformed fold change (Log2FC) of HTN induction compared with the respective sham group. Significance was calculated using 
the Mann–Whitney U-test and was FDR-corrected using the Benjamini–Hochberg procedure to account for multiple testing. Markers for significant 
Q-values are superimposed, and transparency indicates non-significant effects. °q < 0.1, *q < 0.05, **q < 0.01. Immune cell subsets are organized by sub-
category (Innate immunity and T-cell overview, differentiation, and subtypes) and subsets, and cell types where no significant effect in either GF or COL was 
found are not shown. (B) PCoA was performed based on Euclidean distance scaling of immune cell abundances to demonstrate the dissimilarities between 
study groups. Pairwise comparisons between groups were performed using PERMANOVA and reported in the inset table. Monocytic MDSCs (mMDSC, 
C ) and granulocytic MDSCs (gMDSC, D), as well as Th17 (E) and Th1-like Th17 cells (F ) from the spleen are shown as boxplots on the left. (G) naive CD4+ 
T-cells from mesenteric lymph nodes of either GF of CONV mice, polarized in vitro towards a Th17 using a cocktail of IL-1β, TGFβ, and IL-6 with or without 
Ang II (GF n = 4, CONV n = 5). In (H) naive CD4+ T-cells were pre-treated with 1 mM SCFA mix (0.5 mM of each butyrate and propionate) or 1 mM NaCl. 
Subsequently, the pre-treatment was removed, and cells were polarized toward Th17 in the presence of Ang II as described in G (GF n = 6, CONV n = 6). 
To the left in (C–G), two-way ANOVA and post hoc Sidak multiple comparison’s test was used to test significance. To the right in (C–F), the relative change 
induced by Ang II + 1% NaCl in comparison with the respective sham group was tested using an unpaired two-tailed t-test. No change (100%) depicted as 
dotted line. In (H ) for the Th17 + Ang II and Th17 + Ang II + SCFA mix a one-tailed t-test was performed per group, as a pre-specified hypothesis from 
Figure 6G was tested. For all plots in (C–G), P-values are as follows; *P ≤ 0.05, **P ≤ 0.01.
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Figure S3A), which has been implicated as a major player in worsening 
kidney damage in mice35 and humans.36 Infiltrating macrophages during 
renal injury are known to contribute to the secretion of cytokines like 
IL-1β, which enhances the activation and differentiation of Th17 cells.37

A previous study additionally showed that SCFA-treatment in 
ischaemia-reperfusion injury (IRI) radically reduced kidney Ccl2, Il-1b, 
and associated kidney damage.38 SCFA have been shown to have anti- 
inflammatory properties in several cell types,39–42 which could contrib-
ute to the lessened damage in COL mice, since only mice harbouring 
microbiota have significant SCFA production within the GI tract 
(Figure 5C). Our results are highly compatible with previous studies 
showing that GF status exacerbates kidney damage in the context of 
IRI43 and adenine-induced chronic kidney disease.21,44

Intriguingly, we found that the cardiac phenotype was less influenced 
by the microbial status of the host. Here we have shown that particularly 
for markers of fibrosis (Figure 3B), regardless of the microbiome status, 
the mice developed significant injury. For CD8+ T-cells, F4/80+ macro-
phages and overall CD45+ leukocytes, we observed significant changes 
in GF and COL mice, although GF mice tended to show a higher fold 
change in response to HTN (see Supplementary material online, 
Table S2). Despite these similarities, both cardiac hypertrophy 
(Figure 2A) and left ventricular mass-to-tibia length (Figure 2B) were sig-
nificantly altered upon HTN induction in the GF but not COL mice. 
Nonetheless, our data suggest that the kidney, more so than the heart, 
represents a subspace of hypertensive target organ damage, which is 
more susceptible to microbial colonization. It is conceivable that cardiac 
damage could be further exacerbated as renal function declines. Thus, 
the gut microbiota could be added as an important modulator of the 
well-known cardiorenal axis. Further research to follow up this idea is 
required, perhaps using several iterations of variations to a defined com-
munity of microbes, to test the universality of this hypothesis.

Metabolites of microbial origin, some of which are known to be asso-
ciated with CVD and accumulate in chronic kidney disease,16,17 were 
measurable within the serum metabolome of our COL but not our 
GF mice, such as IS and TMAO (see Supplementary material online, 
Figure S1D). Our results very clearly indicate that GF mice experience 
robust kidney damage to a greater extent than COL mice, despite GF 
mice being devoid of these harmful metabolites. However, we suggest 
that the reason COL mice experience less overall damage is likely due 
to the presence of SCFA. We and others have shown the potent effect 
of SCFA in mouse models.13,14 Here we have shown again, for a repre-
sentative set of animals, that SCFA are depleted in GF mice (Figure 5C). 
We hypothesize that the potency of SCFA in COL mice counterba-
lances the presence of IS and TMAO. Further research on this topic is 
required to definitively conclude the effects of the co-occurrence of 
these various metabolites of microbial origin.

Furthermore, we show that systemic inflammatory response to HTN 
is altered by colonization status. MSDC, which represent an important 
subset of innate anti-inflammatory cells in HTN,9 reacted differently 
GF mice compared with COL (Figure 6C and D). Additionally, we found 
that Th17 cells were increased during HTN in GF mice (Figure 6E). 
Th1-like Th17 cells, which are known to be pathogenic, trended towards 
enrichment in GF + HTN mice (Figure 6F). We wanted to explore in vitro 
that naive T-cells from GF mice were more sensitive to polarizing cyto-
kines and Ang II. We found that upon polarization, naive T-cells from GF 
mice skewed more towards Th17, particularly when Ang II was added 
(Figure 6G). As it has been recently demonstrated that the SCFA propi-
onate can decrease the rate of Th17 cell differentiation,41,42 we sus-
pected that this could be part of the reason naive cells from COL 

mice were less inducible toward Th17. Indeed, when we pre-treated na-
ive CD4+ T-cells with butyrate and propionate, we observed a decline in 
Th17 inducibility in the presence of Ang II in GF; an effect that was not 
seen in cells isolated from CONV mice (Figure 6H). Recently, Krebs and 
colleagues showed that the development of Th17 cells in the kidney is 
dependent on the cytokine micromilieu and can be blocked with specific 
antibodies against IL-1b and IL-6.45 We also could show that the polar-
ization conditions used in our Th17 in vitro assay were practically avail-
able in vivo, and the expression of each polarizing cytokine was 
increased within heart and kidney tissue of hypertensive mice.

To our knowledge, one study similar to ours exists within the litera-
ture, published by Karbach et al.46 It is clear from the extensive pheno-
typing performed in our study that our findings were not congruent with 
their data, where they showed that GF mice were protected from de-
veloping HTN and related vascular damage. Though this was initially a 
surprise, upon further examination, there are two likely scenarios that 
may explain this. First, the protocol of our experiments did differ 
from one another. The study from Karbach and colleagues compared 
GF mice with conventionally raised mice, whereas we compared GF 
mice with littermates that had been colonized early in life. Therefore, 
our study was able to account for known genetic drifts in gnotobiotic 
colonies. Additionally, Ang II infusion was only performed for seven 
days, while we studied a more chronic phenotype. Furthermore, our 
mice ate different diets, and as Kaye and colleagues recently demon-
strated, the composition of the diet can have a profound impact on 
the resultant hypertensive phenotype.47 Second, it is highly likely that 
the microbiome used in our study and in the study by Karbach and col-
leagues may be distinct from one another. Incongruencies like ours have 
also been found in other contexts. The comparison of microbiome-rich 
and GF mice in one study showed the amelioration of an IRI of the kid-
ney by the microbiome,43 where another study demonstrated the op-
posite effect.48

To investigate the second scenario further, we hypothesized that the 
microbiome background used in any given study might have drastic im-
plications for the study outcome. Our group and others have shown 
that microbially-produced metabolites have a potent effect on the 
pathogenesis of HTN.5,13,14,49 In reference to that, if the microbiota it-
self were to change, we expect the circulating metabolites to be likewise 
altered within the host. Unfortunately, the study from Karbach et al.46

did not include any information regarding the microbiome and metabo-
lome of their microbiota-rich mice. Although, we did find a recent study 
from Cheema and Pluznick20 where these data were made available, but 
their phenotypic data is not reported.20 Nevertheless, to test our hy-
pothesis regarding the putative comparability of the colonizing micro-
biome between studies, and the impact this may have on resultant 
study outcome, we decided to compare our microbiome and metabo-
lome with the published data from Cheema and Pluznick. To compare 
the microbiomes from these two studies, we re-annotated our shotgun 
microbiome sequencing data such that it would be comparable to the 
16s rDNA sequencing data from Cheema and Pluznick. The microbiome 
of CONV between the two studies were starkly contrasting in sham and 
HTN mice (shown as a multivariate PCoA plot derived from genus level 
information from each of the studies, see Supplementary material 
online, Figure S10A). We surmised that because of the lack of overlapping 
microbiome signatures within our study and the Pluznick dataset, that 
the metabolome signal would likewise be dichotomous. We compared 
the serum metabolome dataset from the two studies by using metabo-
lites which could be measured in both studies from all COL and GF mice. 
We found that interestingly, there was significantly less distance 
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between the effect of HTN on individual metabolites within the serum 
metabolome of GF mice from these two studies than in the equivalent 
COL mice comparison (see Supplementary material online, Figure S10B 
and C). This result suggests that the congruence of the serum metabo-
lome in GF groups within these two datasets is higher than the COL 
groups. These exploratory data support the idea that the structure of 
the implanted microbiome has a measurable impact on serum metabo-
lome alterations in response to HTN. Because of our and others’ find-
ings regarding the importance of microbial metabolites in HTN, we 
believe that this could be a driving factor behind the contradictory 
phenotypic results of our study compared with the data from 
Karbach et al.46 It is nonetheless critical in future studies for the micro-
biome to be well documented and openly accessible to avoid questions 
regarding the reproducibility of existing studies.

5. Conclusion
We have shown that the microbiota has a profound effect on hyperten-
sive disease pathogenesis. Furthermore, we have shown that GF mice, 
when compared with their colonized littermates, experienced an aggra-
vation of target organ damage, which was more distinct in the kidney 
than in the heart. Additionally, we demonstrated that the metabolome 
is influenced significantly by the microbiome used for experimentation, 
which underscores the need for standardization of experimentation and 
reporting within the field. The immunophenotype of HTN mice, and in 
particular, the alteration of MDSC and Th17 cells, which have been pre-
viously implicated in HTN, give us some indication of how GF mice may 
have developed an exacerbated hypertensive phenotype in our study. In 
vitro, SCFA rescued the pro-inflammatory phenotype of T-cells isolated 
from GF mice. We propose that the COL mice were protected from 
damage in comparison with their GF counterparts due to the absence 
of the potent anti-inflammatory SCFA metabolites under GF conditions.
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Supplementary material is available at Cardiovascular Research online.
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Translational perspective
To assess the potential of microbiota-targeted interventions to prevent organ damage in hypertension, an accurate quantification of microbial in-
fluence is necessary. We provide evidence that the development of hypertensive organ damage is dependent on colonization status and suggest that 
a healthy microbiota provides anti-hypertensive immune and metabolic signals to the host. In the absence of normal symbiotic host-microbiome 
interactions, hypertensive damage to the kidney in particular is exacerbated. We suggest that hypertensive patients experiencing perturbations to 
the microbiota, which are common in CVD, may be at a greater risk for target-organ damage than those with a healthy microbiome.
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