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Abstract

Over the past decade, technological progress has facilitated profiling single cell and single

nuclei transcriptomes through innovative next-generation sequencing approaches that

empowered the exploration of cellular phenotypes in healthy and diseased tissues with

unprecedented precision. This dissertation aimed to unravel a deep understanding of human

development and disease biology by studying the underlying cellular architecture and

molecular mechanisms using single nuclei RNA sequencing (snRNA-seq). Specifically, two

distinct systems were investigated, namely, a) maternal-fetal interface in healthy and early-

onset pre-eclamptic pregnancies that comprised of human decidua and placenta and b)

pancreatic neuroendocrine carcinoma and its comparison with healthy adult pancreatic cell

types or states.

Pre-eclampsia (PE) stands out as one of the most severe pregnancy disorders,

characterized by hypertension, proteinuria, cardio-metabolic dysfunctions, and various multi-

organ complications, ultimately leading to preterm delivery, maternal mortality, and

associated morbidities. Early-onset pre-eclampsia (eoPE) is particularly formidable, typically

necessitating delivery before the 34th week of gestation and leading to approximately 80,000

maternal and 500,000 fetal deaths annually. Importantly, eoPE currently lacks adequate

biomarkers for early screening and clinical management. Diagnosis relies solely on clinical

and biomarker signs in late pregnancy, where maternal and fetal morbidity is often

irreversible. This dissertation presents a comprehensive cell atlas of the human maternal-

fetal interface, comprising of around 225,000 nuclei from the maternal decidua and fetal

placenta obtained during the first trimester, healthy term and eoPE pregnancies, utilizing

complex snRNA-seq data harmonization. A novel nuclear state termed juvenile

syncytiotrophoblast (STBjuv) was identified, demonstrating previously unexplored

transcriptomic diversity and a division of labor within the placental syncytiotrophoblast.

Notably, the comparative analysis of decidua and placenta samples from term controls and

eoPE revealed differences in composition, differential gene expression and transcriptional

regulation patterns, along with changes in signaling pathways. These findings provide

mechanistic insights into cell type or state-specific dysregulations occurring in eoPE.

Moreover, employing advanced spatial transcriptomics techniques such as In-situ RNA

sequencing (ISS) and 10X Visium sequencing facilitated the spatial delineation of cell types

and states within the human placenta and established a connection between spatial and

transcriptomic heterogeneity, presenting a novel discovery in this evolving field of pregnancy

research.
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The computational analysis identified a dysregulated syncytiotrophoblast development to

serve as an initiation point for eoPE that is characterized by perturbations in transcriptional

factors/co-activators, specifically the master-regulator EP300, FOXO1, SCRT2, FOXO4, FOS,

and PAX5. Significantly, the enriched transcriptional regulators exhibited a noteworthy

overlap in their downstream targets, imparting functional implications across various

signaling pathways, including HIF1, AP1, TGFb, Wnt, PI3K-Akt signaling, and vesicle-

mediated transport. Of note, a significant proportion of the perturbed syncytiotrophoblast

differentiation drivers included EP300 (or, p300) regulated fusogenic targets that suggest

impaired trophoblast syncytialization as a significant contributing factor in the development of

eoPE.

Significantly, the discoveries from this work indicate that eoPE possibly originates in the

outer syncytiotrophoblast sub-states in the fetal placenta and is marked by an augmented

senescence-associated secretory phenotype (SASP) profile. The heightened senescence

resulted from elevated ligand pressure, facilitated by the secretion of GDF15, INHBA,

HSPG2, MIF, TGM2, ADAM9, and ADAM12 that could potentially traverse the maternal-fetal

interface, and translate the disease from the fetal to the maternal side. Of note, In-situ RNA

sequencing (ISS) analysis unveiled a statistically significant proximity between the senescent

marker (INHBA) and markers of fetal vessels in eoPE. This association is not detected in

term controls. Consequently, the findings of this thesis emphasize that a disrupted

communication between syncytiotrophoblast sub-states and maternal decidua is the key to a

dysregulated maternal-fetal barrier and potentially compromised maternal uterine vessel

remodeling in eoPE. Remarkably, the presented data suggest a potential strategy for the

prevention, intervention, and clinical management of eoPE through the pharmacological

inhibition of these ligands associated with the senescence-associated secretory phenotype

(SASP), including GDF15, HSPG2 and INHBA.

The subsequent chapter of this dissertation delved into the molecular intricacies guiding the

development of healthy pancreatic islets— specifically, the beta cell type, and next assessed

the role of these differentiation drivers in the context of pancreatic cancer. Specifically, this

thesis focused on high-grade pancreatic neuroendocrine carcinoma (panNEC) with large cell

morphology, a subtype presenting challenges in classification and treatment. While

advancements in molecular genetics have progressively uncovered significant inter-tumor

heterogeneity, there remains an unexplored realm regarding the extent of intra-tumoral

heterogeneity and lineage plasticity. Like the pre-eclampsia study, a snRNA-seq approach

was utilized to deconstruct the cellular landscape of panNEC that delineated both shared and
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unique malignant sub-states associated with specific signaling pathways and transcriptomic

regulatory programs driving tumor pathophysiology and heterogeneous clinical behavior.

Notably, this work identified a shared neuroendocrine sub-state characterized by robust

induction of heat shock protein encoding mRNA (HSP+), exhibiting signatures indicative of

activation of the unfolded protein response, hypoxia, mTORC/PI3K-AKT signaling, and

glycolytic shift. In one patient sample, a unique stromal sub-state depicted enriched

YAP/TAZ-associated Hippo signaling alongside mesenchymal and basaloid programs

expression, reflecting transcriptomic similarities with pancreatic ductal-adenocarcinoma

(PDAC). Furthermore, one of the shared neuroendocrine sub-states was highly proliferative

and was characterized by overexpressed E2F targets, including Enhancer of Zeste homolog

2 (EZH2). Notably, this sub-state demonstrated significant enrichment for PTF1A-regulated

targets specific to the brain while repressing the pancreas-specific targets. This observation

suggests a shift from a pancreatic lineage program in the cell of origin towards a more

generic neuronal phenotype and a concomitant enrichment of signatures related to the DNA

damage response, vulnerabilities in cancer stem cells, and chemotherapeutic resistance. Of

note, this de-differentiated neuronal program could be exploited as the achilles heel of

panNEC for devising therapeutic strategies.

Hence, the presented data unmasked considerable heterogeneity and therapeutic

vulnerabilities in high-grade panNEC, emphasizing the importance of tumor profiling for

personalized treatment approaches. Of note, it highlights the prospect of clinical intervention

to target two shared neuroendocrine sub-states suggesting the feasibility of personalized

combination therapies in clinical settings.

In a nutshell, this dissertation extensively explored two distinct but critical systems at a

cellular resolution in the context of disease development and progression. The snRNA-seq

approach presented an unbiased and deep understanding of disease biology that

demonstrated significant translational potential. Notably, in both systems, specific cell (or,

nuclear) sub-states were ascribed to the disease origin that added to our understanding on

how a disease evolves on a molecular level and suggested potential avenues for therapeutic

development. This transition from concentrating on a single molecular target to addressing

the underlying cellular dysfunction presents novel opportunities for the clinical targeting of

cellular signatures for complex diseases and for developing a new generation of therapeutics.
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Zusammenfassung

In den letzten zehn Jahren hat der technologische Fortschritt die Erstellung von Profilen der

Transkriptome einzelner Zellen und Zellkerne durch innovative Sequenzierungsansätze der

nächsten Generation erleichtert, die die Erforschung zellulärer Phänotypen in gesunden und

kranken Geweben mit bisher unerreichter Präzision ermöglichen. Ziel dieser Dissertation war

es, durch die Untersuchung der zugrundeliegenden zellulären Architektur und molekularen

Mechanismen mit Hilfe der Einzelkern-RNA-Sequenzierung (snRNA-seq) ein tieferes

Verständnis der menschlichen Entwicklung und Krankheitsbiologie zu erlangen. Konkret

wurden zwei verschiedene Systeme untersucht, nämlich a) die mütterlich-fötale Schnittstelle

in gesunden und früh einsetzenden präeklampsischen Schwangerschaften, die aus

menschlicher Dezidua und Plazenta besteht, und b) das neuroendokrine Pankreaskarzinom

und sein Vergleich mit gesunden erwachsenen Pankreaszelltypen oder -zuständen.

Präeklampsie (PE) ist eine der schwersten Schwangerschaftserkrankungen und ist durch

Bluthochdruck, Proteinurie, kardio-metabolische Störungen und verschiedene Multiorgan-

Komplikationen gekennzeichnet.Letztlich führt sie zu Frühgeburten, Müttersterblichkeit und

damit verbundenen Krankheiten. Besonders bedrohlich ist die früh einsetzende

Präeklampsie (eoPE), die in der Regel eine Entbindung vor der 34. Schwangerschaftswoche

erforderlich macht und jährlich zu etwa 80 000 mütterlichen und 500 000 fötalen Todesfällen

führt. Wichtig ist, dass es bei eoPE derzeit keine geeigneten Biomarker für ein frühzeitiges

Screening und klinisches Management gibt. Die Diagnose stützt sich ausschließlich auf

klinische Anzeichen und Biomarker in der Spätschwangerschaft, wo die mütterliche und

fetale Morbidität oft irreversibel ist. In dieser Dissertation wird zum ersten Mal ein

umfassender Zellatlas der menschlichen mütterlich-fetalen Schnittstelle vorgestellt, der

225.000 Zellkerne aus der mütterlichen Dezidua und der fetalen Plazenta umfasst, die

während des ersten Trimesters, gesunder Terminschwangerschaften und eoPE-

Schwangerschaften gewonnen wurden, wobei eine komplexe snRNA-seq-

Datenharmonisierung eingesetzt wurde. Es wurde ein neuartiger Kernzustand identifiziert,

der als juveniler Synzytiotrophoblast (STBjuv) bezeichnet wird und eine bisher unerforschte

transkriptomische Vielfalt sowie eine Arbeitsteilung innerhalb des plazentaren

Synzytiotrophoblasten aufzeigt. Die vergleichende Analyse von Dezidua- und

Plazentaproben von Terminkontrollen und eoPE ergab Unterschiede in der

Zusammensetzung, der differentiellen Genexpression und den Mustern der

Transkriptionsregulierung sowie Veränderungen in den Signalübertragungswegen. Diese

Ergebnisse liefern mechanistische Einblicke in zelltyp- oder zustandsspezifische
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Dysregulationen, die bei eoPE auftreten. Darüber hinaus erleichterte der Einsatz

fortschrittlicher räumlicher Transkriptomik-Techniken wie In-situ-RNA-Sequenzierung (ISS)

und 10-fache Visium-Sequenzierung die räumliche Abgrenzung von Zelltypen und -

zuständen innerhalb der menschlichen Plazenta und stellte eine Verbindung zwischen

räumlicher und transkriptomischer Heterogenität her, was eine neue Entdeckung in diesem

sich entwickelnden Bereich der Schwangerschaftsforschung darstellt.

Die computergestützte Analyse identifizierte eine dysregulierte Synzytiotrophoblasten-

Entwicklung, die als Initiationspunkt für eoPE dient und durch Störungen bei

Transkriptionsfaktoren/Co-Aktivatoren gekennzeichnet ist, insbesondere dem Master-

Regulator EP300, FOXO1, SCRT2, FOXO4, FOS und PAX5. Es ist bezeichnend, dass die

angereicherten Transkriptionsregulatoren eine bemerkenswerte Überschneidung bei ihren

nachgeschalteten Zielen aufweisen, was funktionelle Auswirkungen auf verschiedene

Signalwege hat, darunter HIF1, AP1, TGFb, Wnt, PI3K-Akt-Signalisierung und Vesikel-

vermittelter Transport. Bemerkenswert ist, dass ein signifikanter Anteil der gestörten

Synzytiotrophoblasten-Differenzierungstreiber EP300/p300-regulierte fusogene Ziele

umfasste, was darauf hindeutet, dass eine gestörte Trophoblasten-Synzytialisierung ein

wesentlicher Faktor für die Entwicklung von eoPE ist.

Die Entdeckungen dieser Arbeit deuten stark darauf hin, dass eoPE in den äußeren

Synzytiotrophoblasten-Substadien der fetalen Plazenta entsteht und durch ein erhöhtes

Profil des Seneszenz-assoziierten sekretorischen Phänotyps (SASP) gekennzeichnet ist. Die

erhöhte Seneszenz resultiert aus einem erhöhten Ligandendruck, der durch die Sekretion

von GDF15, INHBA, HSPG2, MIF, TGM2, ADAM9, und ADAM12 begünstigt wird, die

potenziell die mütterlich-fetale Schnittstelle passieren und die Krankheit von der fetalen auf

die mütterliche Seite übertragen könnten. Bemerkenswert ist, dass die In-situ-RNA-

Sequenzierungsanalyse (ISS) eine statistisch signifikante Ähnlichkeit zwischen dem

Seneszenzmarker (INHBA) und Markern der fetalen Gefäße bei eoPE aufdeckte. Diese

Assoziation wurde bei Terminkontrollen nicht festgestellt. Folglich unterstreichen die

Ergebnisse dieser Arbeit, dass eine gestörte Kommunikation zwischen

Synzytiotrophoblasten-Subzuständen und der mütterlichen Dezidua der Schlüssel zu einer

dysregulierten mütterlich-fetalen Barriere und einem potenziell beeinträchtigten mütterlichen

Uterusgefäßumbau bei eoPE ist. Bemerkenswerterweise legen die vorgestellten Daten eine

potenzielle Strategie zur Prävention, Intervention und klinischen Behandlung von eoPE durch

die pharmakologische Hemmung dieser Liganden nahe, die mit dem seneszenzassoziierten

sekretorischen Phänotyp (SASP) assoziiert sind, einschließlich GDF15, HSPG2 und INHBA.
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Das folgende Kapitel dieser Dissertation befasste sich mit den molekularen Feinheiten der

Entwicklung gesunder Pankreasinseln, einschließlich der Beta- und Alphazelltypen, und

bewertete anschließend die Rolle dieser Differenzierungsfaktoren im Zusammenhang mit

Pankreaskrebs. Im Mittelpunkt dieser Arbeit stand das hochgradige neuroendokrine

Karzinom der Bauchspeicheldrüse (panNEC) mit großzelliger Morphologie, ein Subtyp, der

eine Herausforderung bei der Klassifizierung und Behandlung darstellt. Während Fortschritte

in der Molekulargenetik nach und nach eine erhebliche Heterogenität zwischen den Tumoren

aufgedeckt haben, bleibt das Ausmaß der intra-tumoralen Heterogenität und die Plastizität

der Abstammung unerforscht. Wie bei der Präeklampsie-Studie wurde ein snRNA-seq-

Ansatz verwendet, um die zelluläre Landschaft von panNEC zu dekonstruieren. Dabei

wurden sowohl gemeinsame als auch einzigartige maligne Unterzustände beschrieben, die

mit spezifischen Signalwegen und transkriptomischen Regulationsprogrammen verbunden

sind, die die Pathophysiologie und das heterogene klinische Verhalten des Tumors

bestimmen.

In dieser Arbeit wurde ein gemeinsamer neuroendokriner Substatus identifiziert, der durch

eine starke Induktion von Hitzeschockprotein-mRNA (HSP+) gekennzeichnet ist und

Signaturen aufweist, die auf eine Aktivierung der "Unfolded Protein Response", Hypoxie,

mTORC/PI3K-AKT-Signalisierung und eine glykolytische Verschiebung hinweisen. In einer

Patientenprobe zeigte sich ein einzigartiger stromalähnlicher Sub-Status mit angereicherter

YAP/TAZ-assoziierter Hippo-Signalisierung neben der Expression mesenchymaler und

basaloider Programme, was transkriptomische Ähnlichkeiten mit dem duktalen Pankreas-

Adenokarzinom (PDAC) widerspiegelt. Darüber hinaus war einer der gemeinsamen

neuroendokrinen Substadien hochgradig proliferativ und zeichnete sich durch

überexprimierte E2F-Ziele aus, darunter Enhancer of Zeste homolog 2 (EZH2).

Bemerkenswerterweise zeigte dieser Subtype eine signifikante Anreicherung von PTF1A-

Zielgenen, die gewebespezifisch im Gehirn exprimiert werden, während die Pankreas-

spezifische Zielgene unterdrückt wurden. Diese Beobachtung deutet auf eine Verschiebung

der zellulären Identität von einem pankreatischen Abstammungsprogramm in der

Ursprungszelle hin zu einem allgemeineren neuronalen Phänotyp hin, und einer damit

einhergehenden Anreicherung von Signaturen mit Bezug zu DNA-Reparaturprogrammen,

Krebsstammzellen und Chemotherapieresistenz. Möglicherweise könnte dieses gegenüber

dem Organgewebe dedifferenzierte neuronale Programm als Achillesferse von panNEC für

die Entwicklung therapeutischer Strategien genutzt werden.

Die vorgestellten Daten haben also eine beträchtliche Heterogenität und therapeutische

Schwachstellen bei hochgradigen panNEC aufgedeckt, was die Bedeutung der
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Tumorprofilierung für personalisierte Behandlungsansätze unterstreicht. Bemerkenswert ist

auch die Aussicht auf klinische Interventionen, die auf zwei gemeinsame neuroendokrine

Substadien abzielen und die Machbarkeit personalisierter Kombinationstherapien im

klinischen Umfeld nahelegen.

Zusammenfassend lässt sich sagen, dass in dieser Dissertation zwei unterschiedliche, aber

kritische Systeme auf zellulärer Ebene im Zusammenhang mit der Entstehung und dem

Fortschreiten von Krankheiten eingehend untersucht wurden. Der snRNA-seq-Ansatz

ermöglichte ein unvoreingenommenes und tiefes Verständnis der Krankheitsbiologie,

welches ein erhebliches translationales Potenzial aufweist. Insbesondere wurden in beiden

Systemen spezifische Zell- (oder Kern-) Unterzustände dem Krankheitsursprung

zugeschrieben, die zu unserem Verständnis der Krankheitsentwicklung auf molekularer

Ebene beitrugen und mögliche Wege für die therapeutische Entwicklung aufzeigten. Dieser

Übergang von der Konzentration auf ein einzelnes molekulares Ziel zur Behandlung der

zugrundeliegenden zellulären Dysfunktion bietet neue Möglichkeiten für die klinische

Ausrichtung auf zelluläre Signaturen für komplexe Krankheiten und für die Entwicklung einer

neuen Generation von Therapeutika.
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1 Introduction

Cells are the most fundamental unit of life on earth, and every multicellular organism critically

depends on the intricate interplay of a multitude of cells that contribute to the formation of

intricate tissues. The genesis of most multicellular organisms commences from a single cell,

involving a series of events encompassing cell division, differentiation, and specialization.

Through these processes, cells organize into distinct tissues, and organs assume specific

functions.

Despite sharing the same genetic code, these cells manifest remarkably diverse phenotypes.

The transcriptome serves as a pivotal mediator orchestrating distinct cell types and states

within functional tissues [1]. The foundational concept of cells serving as the fundamental

building blocks of organisms traces its roots to seminal works like the 'Cell Theory,'

propounded by Rudolf Virchow and his contemporaries during the 19th century [2]. These

insights were forged through a culmination of two centuries of scientific exploration,

beginning with Robert Hooke's inaugural depiction of a cell in 1665, made possible by Antoni

van Leeuwenhoek's pioneering microscope [3]. After these pivotal revelations, investigators

have endeavored to categorize cells into distinct types characterized by their unique

responses and interactions with their surroundings, thereby influencing formation of tissues

and ultimately, entire organisms. The initial taxonomy was grounded in morphological

distinctions among cells. However, as our comprehension of the molecular mechanisms

governing cellular phenotypes has deepened, the classifications have evolved to encompass

the diverse molecular strata comprising DNA, RNA, and proteins.

Cellular organelles, including the nucleus, mitochondria, endoplasmic reticulum, and others,

play specialized roles in maintaining the structural and functional integrity of cells. Among

these organelles, the nucleus holds particular significance within the context of this

dissertation. It houses genetic material in the form of DNA, enclosed by a nuclear membrane

with pores that regulate molecular movement between the nucleus and cytoplasm. A

standard cell typically contains about 6 pg of DNA, 50,000-300,000 mRNA molecules (5-30

pg), and millions of proteins (20-200 pg) [4-6]. The nucleus assumes a crucial role in

governing gene expression and safeguarding the integrity of DNA.
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1.1 Central Dogma of life – from DNA to protein

Biological systems inherently exhibit a natural flow of information. Within cells, this

information flow entails the transfer of genetic information from DNA to RNA and, ultimately,

to proteins (Figure 1.1). In the initial step, transcription occurs within the nucleus, where a

segment of DNA is transcribed into RNA [7-9]. The resulting messenger RNA molecule

(mRNA) is then transported out of the nucleus to a ribosome, where the mRNA is decoded in

the translation process, giving rise to proteins that perform specific functions within or outside

the cell. The regulation of this information flow is a sophisticated and tightly controlled

process crucial for cellular functionality. Understanding the underlying mechanisms is

essential for advancing our comprehension of molecular cell biology and developing new

therapeutic strategies.

1.1.1 Decoding life's blueprint – DNA and the genome

The genome serves as the intricate blueprint that choreographs the complexity of life within

organisms, encapsulating the complete set of genetic instructions essential for their growth,

development, and functioning. At the heart of this genetic blueprint lies the remarkable

interplay of genes, DNA, and the fundamental process of replication.

Human genetic information is comprised of DNA molecules organized into condensed

structures known as chromosomes. Somatic cells, found in most tissues, possess two sets of

chromosomes totalling 46 (44 autosomal and two sex chromosomes), while cells in the

human reproductive system carry only half, or 23 chromosomes (22 autosomal and one sex

chromosome), facilitating their fusion during fertilization to generate a new organism with a

distinct combination of genetic material from both parents [10-12]. The DNA molecule

exhibits a double helix structure, consisting of pairs of four bases- cytosine (C), guanine (G),

adenine (A), and thymine (T). Each base is linked to a 2-deoxyribose sugar molecule and

three phosphate groups, forming the basic building block of DNA, a nucleotide. Adhering to

specific base-pairing rules, A pairs with T, and C pairs with G, establishing hydrogen bonds

that maintain the structural integrity of the DNA. The sequence of these bases along the DNA

strands forms the genetic code, akin to the language that directs the synthesis of proteins.

Replication, a fundamental biological process, ensures the faithful transmission of genetic

information from one generation of cells to the next. Replication involves the unwinding of the

DNA double helix, followed by the synthesis of complementary strands facilitated by the DNA

polymerase enzyme [13, 14]. This meticulous process guarantees that each daughter cell
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inherits a complete and accurate copy of the genetic material, maintaining the continuity and

integrity of the genomic information.

1.1.2 RNA Symphony– gene expression dynamics and the transcriptome

Ribonucleic Acid (RNA) stands as a versatile and dynamic macromolecule crucial for various

cellular functions. Derived from DNA through the process of transcription, RNA comes in

different forms, each serving specific roles within the cell. Contrasting with DNA, the

nucleotides found in RNA molecules contain ribose sugar (as opposed to 2-deoxyribose),

three phosphate groups, and feature uracil (U) in lieu of thymine (T). RNA can be

categorized into two major groups: coding and non-coding [15, 16]. Transfer RNA (tRNA)

assists in assembling amino acids during protein synthesis, and ribosomal RNA (rRNA)

forms an integral part of the cellular machinery responsible for protein production. Both tRNA

and rRNA represent non-coding RNA. Given that the research presented in this thesis

centres on analysing expression of protein-coding genes, the subsequent section will

exclusively concentrate on coding RNA.

Messenger RNA (mRNA) [15] carries the genetic instructions from DNA to the ribosomes,

where proteins are synthesized. mRNA synthesis is accomplished through the process of

transcription that begins with an initiation phase, where an enzyme called DNA-dependent

RNA polymerase binds to a specific region of DNA known as the promoter. The promoter

region acts as a signal for the start of transcription and provides a binding site for RNA

polymerase. Once bound to the promoter, RNA polymerase unwinds the DNA double helix,

exposing a segment of the DNA template. This exposed DNA strand serves as the template

for the synthesis of a complementary RNA molecule. As RNA polymerase moves along the

template, it catalyzes the addition of nucleotides to the growing RNA chain, following the

base-pairing rules: adenine (A) pairs with uracil (U), guanine (G) pairs with cytosine (C). The

elongation phase continues until RNA polymerase reaches a termination signal in the DNA

sequence. At this point, the newly synthesized RNA molecule is released, and RNA

polymerase detaches from the DNA template. The transcribed RNA molecule, often referred

to as pre-mRNA, undergoes further post-transcriptional processing steps, including splicing,

5’ end capping and 3’ end polyadenylation. Of note, splicing indicates the removal of non-

coding regions (introns) and the joining together of coding regions (exons). On the other

hand, a modified guanine nucleotide is added at the 5' end of the pre-mature mRNA. This

cap structure not only protects the RNA from degradation but also facilitates its transport out

of the nucleus and aids in translation initiation during protein synthesis. At the 3' end of the

pre-mature mRNA, a poly-A tail composed of adenine nucleotides is added. This
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polyadenylation contributes to mRNA stability, enhances mRNA export from the nucleus, and

influences translation efficiency. Hence, these post-transcriptional modifications contribute to

the complexity and diversity of the transcriptome, allowing cells to fine-tune gene expression

in response to internal and external signals. Subsequently, the final mature mRNA is then

transported out of the nucleus and into the cytoplasm, where it serves as a template for

protein synthesis during the process of translation [17].

The transcriptome, in essence, represents the complete set of RNA molecules present in a

cell at any given moment. It provides a dynamic snapshot of the cellular activity, reflecting

not only the genes expressed but also the complex regulatory networks underlying cellular

functions. Understanding the transcriptome is akin to deciphering the symphony of genetic

expression that underlies the diverse cellular phenotypes observed in different physiological

states or environmental conditions.

However, in 1970, the concept of reverse transcription, a reversal of the flow of genetic

information, was first elucidated in viruses [18]. This phenomenon involves the conversion of

RNA into a DNA molecule and is facilitated by the enzyme RNA-dependent DNA polymerase,

commonly known as reverse transcriptase. This enzymatic process enables the virus to

integrate its genetic material into the host cell's genome, effectively co-opting the cellular

machinery to synthesize viral proteins and assemble new viral particles. The revelation of

reverse transcription marked a groundbreaking moment in molecular biology, giving rise to

the ability to generate complementary DNA (cDNA) from RNA molecules [18]. This technique

has since become a pivotal tool in research, particularly for quantifying mRNA levels in cells

and tissue samples to investigate gene expression. Additionally, it has found widespread

utility in various applications such as cloning and vaccine development.

1.1.3 Probing the proteome – decoding protein function and diversity

Proteins are complex macromolecules essential for the structure, function, and regulation of

cells. Composed of amino acid chains folded into unique three-dimensional structures,

proteins carry out diverse biological functions. They serve as enzymes catalyzing

biochemical reactions, structural components providing cellular support, transporters

facilitating the movement of molecules, and signalling molecules regulating various cellular

processes.

Translation [17] is a central process in molecular biology where the genetic information

encoded in mRNA (messenger RNA) is used to synthesize proteins. It is achieved with the
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help of ribosomes, which read the mRNA codons and recruit corresponding amino acids. A

complex interplay of transfer RNA (tRNA) molecules ensures the accurate alignment of

amino acids, forming a polypeptide chain. As the ribosome moves along the mRNA, the

amino acids are sequentially added, ultimately resulting in the synthesis of a functional

protein. In the translation process, proteins are constructed using a set of up to 20 amino

acids. The specific order of these amino acids is dictated by the sequence of nucleotides in

mRNA molecules. Each group of three consecutive nucleotides forms a codon, which serves

as either the starting or stopping point for translation, or codes for a single amino acid.

The proteome [19] encompasses the entire set of proteins expressed by an organism, tissue,

or cell at a specific time under defined conditions. The proteome is influenced by factors such

as genetics, environment, and cell state, making it a dynamic and informative reflection of the

cellular landscape [20, 21].

1.2 Cellular phenotypes – What is a cell type/state?

A cellular phenotype refers to a cell's observable characteristics or traits resulting from the

interactions between its genetic makeup and environment [1, 22]. These characteristics

include a cell's shape, size, behavior, and function. The phenotype of a cell is determined by

its genotype (the genetic information encoded in its DNA) and its environment (which can

include factors such as nutrients, chemical signals, temperature, and physical forces).

Changes in either the genotype or the environment can alter the phenotype of a cell [24].

Hence, the cell phenotype can provide important information about its health, developmental

stage, and function [23-25]. For example, abnormal cellular phenotypes are often associated

with several metabolic, hematology, oncology, and developmental diseases [26-32].

Investigating the changes in how cells behave can provide valuable insights into an

organism's underlying biology and disease mechanisms, and hence can help identify

markers for diseases and develop treatment strategies.

Our cells can be classified into different types based on structure, function, and molecular

markers. For example, humans have various types of cells, such as neurons, muscle cells,

skin cells, blood cells, and many more, each with unique structures and functions. In contrast,

cell states refer to the different states or stages that a cell can be in, which can be influenced

by various factors such as environmental conditions, developmental stage, and disease state.

For instance, differentiation during embryonic development starts with pluripotent stem cells

(PSCs), which exhibit the capability to differentiate into all cell types within an organism.

These cells possess the dual capacity to self-renew and generate daughter cells that retain
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their original state, and under specific conditions, can undergo differentiation into specialized

cell types. A mature cell may be in a more specialized and differentiated state with limited

potential change. Understanding cell types and states is critical to understanding how the

body works and how diseases develop, as well as developing therapies and treatments for

various diseases [33-35].

Traditionally, the classification of phenotypes at the individual cell level has predominantly

concentrated on protein identification through microscopy techniques, such as

immunofluorescence light microscopy. Over time, with continuous advancements in these

methodologies, the classification of cells based on imaging has evolved to include the

quantitative characterization of molecular features. This expanded scope encompasses the

assessment of RNA molecules through techniques like fluorescence in-situ hybridization

(RNA-FISH) and the examination of structural attributes of DNA using diverse fluorescent

dyes [36-38]. Nevertheless, it is important to note that these approaches necessitate a

prerequisite understanding of the target, such as knowledge of protein structure for epitope

detection via antibodies or awareness of RNA molecules for hybridization to a consensus

sequence.

1.2.1 Analysis of gene expression with next-generation sequencing

The initial stride toward an impartial approach for exploring the molecular makeup of cells

began with microarray technology. Microarrays operate on the principle of hybridization

between labeled target nucleic acids (e.g., DNA or RNA) from a sample and complementary

probe immobilized on a solid support [39]. The detection of hybridized targets allows the

simultaneous analysis of gene expression levels, genetic variations, or other genomic

features across thousands of genes. While this enabled profiling of many genes, the first

unbiased technique materialized with the capability to reconstruct the sequence of an

unidentified DNA molecule [40].

Presently, a diverse array of technologies, collectively termed next-generation sequencing

(NGS), empowers the precise determination of the sequence of any given DNA or RNA

molecule [41-43]. The Human Genome Project (HGP) played a pivotal role in revolutionizing

NGS technology by setting the stage for large-scale sequencing endeavors [44]. The HGP,

completed in 2003, provided a foundational reference genome, stimulating advancements in

sequencing techniques, reducing costs, and enhancing the accuracy and throughput of NGS.

This synergy between the Human Genome Project and NGS has facilitated groundbreaking

discoveries in genomics and propelled the field of personalized medicine. While the HGP
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incurred a staggering cost of up to $3 billion, the advent of new sequencing technologies has

revolutionized the landscape, allowing for the complete sequencing of a human genome

within a few days at a mere cost of a few thousand US dollars. This dramatic reduction in

both time and expense renders it practical to address scientific inquiries swiftly and

comprehensively on a large scale [44].

NGS is a high-throughput DNA sequencing technology that allows for the rapid and parallel

sequencing of millions of DNA fragments [41, 45]. Illumina, being a marker leader

revolutionized NGS, particularly in terms of throughput and cost-effectiveness, making it

highly accessible and one of the most widely utilized platforms [46]. Their method employs

sequencing-by-synthesis on a solid surface, involving repetitive cycling of fluorescently

labelled nucleotides that integrate into growing DNA strands. At the end of each cycle, a

high-resolution image is captured to determine the sequences of immobilized molecules.

This iterative process is replicated numerous times, producing millions to billions reads per

run (depending on the system used) that are subsequently assembled into a complete

sequence [47]. This transformative approach has significantly increased the speed and

efficiency of DNA sequencing, alongside a simultaneous reduction in the cost per sequenced

base. This shift facilitated comprehensive genomic analysis and development of bench-top

technologies for both research and diagnostic applications [48, 49].

1.2.2 RNA-sequencing – from bulk to single cell

While proteins traditionally serve as the ultimate effectors of cellular functions, RNA has

emerged as a valuable tool for studying cellular phenotypes. The choice of RNA over

proteins is grounded in the dynamic nature of the transcriptome. Since RNA levels are more

dynamic and responsive to cellular changes than proteins, RNA analyses provide a real-time

assessment of cellular responses, offering a more nuanced and temporally precise

perspective compared to protein-based approaches. The higher abundance of RNA relative

to proteins allows for the detection of a broader range of genes and their expression levels.

Additionally, studying RNA allows researchers to gain insights into post-transcriptional

modifications, alternative splicing events, and non-coding RNA molecules, offering a more

comprehensive understanding of cellular dynamics. Furthermore, the use of RNA in cellular

studies often overcomes challenges associated with the stability and turnover rates of

proteins.

The advent of reverse transcription and NGS has broadened the spectrum of possibilities for

advancing novel approaches in studying gene expression. Since then, bulk RNA sequencing
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(bulk RNA-seq) has emerged and expanded its use in both basic research and clinical

applications [42, 43, 50-52]. In this methodology, total RNA is extracted from a cell

population or tissue, converted into cDNA, and subsequently sequenced on NGS platforms.

Consequently, this yields aggregated data from a large number of cells, encompassing

various distinct cell types. Bulk RNA-seq boasts several advantages, such as the detection of

low-abundant transcripts, identification of novel transcripts, and are relatively high throughput.

However, it presents a limitation by offering only an averaged snapshot of gene expression

for the entire sample, thereby masking variations in gene expression levels among individual

cells [53]. Even when individual cell types were isolated through sorting techniques, both bulk

RNA-seq and microarray analyses provide averaged measurements across a population of

cells. As a result, these techniques most likely overlook cellular heterogeneity, missing

variations in gene expression that exist among individual cells within a sample [54, 55].

The transcriptomic signature of individual cells mirrors their respective states and is

influenced by both systematic and local stimuli. The growing fascination with exploring cell

diversity and heterogeneity has propelled advancements in technology, particularly in the

realm of single-cell RNA sequencing (scRNA-seq) [56-59]. Over the last couple of years,

scRNA-seq technologies have emerged to address the limitations of bulk RNA-seq by

providing a more granular and precise understanding of gene expression at the individual cell

level [60, 61]. Even cells that belong to the same cell type and reside in the same tissue can

exhibit variable gene expression owing to cellular microenvironment or stochastic fluctuations

in gene regulation [60-64]. By identifying the sources of variability within a cell population,

researchers can better understand how cells respond to their environment and maintain their

identity and function.

While scRNA-seq emerged as the current state-of-the-art technique for transcriptome

profiling, it presents several drawbacks when compared to bulk RNA-seq. The higher cost of

scRNA-seq, stemming from specialized reagents and the requirement for deeper sequencing,

can be a limiting factor for large-scale studies. Technical variability is amplified in scRNA-seq

due to the need for single-cell isolation protocols and the associated challenges of low RNA

input, leading to increased technical noise [65], dropout events and high data sparsity [66, 67]

that are detailed in subsequent sections. The limited range and transcript coverage in

scRNA-seq may affect the accuracy of quantitative measurements, especially for low-

abundance transcripts. Despite its revolutionary impact, careful consideration of these

downsides is crucial for researchers selecting the most suitable sequencing approach for

their specific biological questions.
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1.3 Single cell or nucleus RNA sequencing

Single-cell RNA-seq [56-59] is a technique that allows the measurement of gene expression

at a cellular resolution. It involves isolating and capturing the RNA content of individual cells,

followed by cDNA synthesis, library preparation, and high-throughput sequencing. Presently,

widely adopted scRNA-seq techniques typically involve hybridizing the polyA tails of mRNA

molecules to barcoded polyT primers, prior to library preparation and sequencing [68].

On the other hand, single nucleus RNA sequencing (snRNA-seq) is a technique that allows

the measurement of gene expression from the nuclei of individual cells [69]. snRNA-seq

involves isolating and capturing individual nuclei, amplifying, and sequencing their

transcriptome. This technique is particularly useful for analyzing samples that are difficult to

isolate, or cells that have undergone significant degradation, exhibit high ribonuclease

activity such as pancreatic acinar cells and for fresh-frozen biobanked samples [70-73]. In

addition, the size of nuclei varies less than cells, therefore snRNAseq cell proportions are

more representative than that of scRNAseq. Although snRNA-seq can function as an

alternative to scRNA-seq, it is important to recognize that the former selectively captures

mRNA within the nucleus. Exclusion of cytoplasmic mRNA can result in a limited ability to

capture certain biological processes [74].

Both techniques provide notable insights into cellular heterogeneity and diversity, allowing

the identification of known and rare cell types/states and characterization of gene expression

patterns at a cellular level. This can also help classify cells into groups based on their

functional properties and developmental origins, providing insights into how cells differentiate

and specialize over time [75, 76]. Overall, both techniques are powerful for studying cellular

variability and can help uncover the underlying mechanisms that drive cellular phenotypes in

health and disease. The choice between these techniques depends on the biological

question being addressed, the type of tissue or cells being analyzed, and the experimental

constraints.

1.3.1 Brief history of single cell/nuclei RNA-seq technology

In recent years, single cell transcriptomics has played a pivotal role in advancing precision

medicine, offering unprecedented insights into the molecular and genetic heterogeneity at

the individual cell level. The previous limitations of NGS for single-cell sequencing primarily

revolved around the challenges associated with the amount of material required and the

absence of technologies for capturing and amplifying nucleic acids at single-cell resolution.
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That former means the material requirements of NGS technologies far surpassed the typical

quantities of DNA or RNA present in a single cell.

The first scRNA-seq technology was developed in 2009 by Tang et al. [57], who described a

single-cell digital gene expression profiling assay that enabled the amplification and

sequencing of full-length mRNA transcripts from individual cells. However, it was limited in

throughput and could only sequence several cells simultaneously. Among the initial

techniques for single-cell analysis, Single-Cell Tagged Reverse Transcription Sequencing

(STRT-seq) developed by Islam et. al. [77] stands out as a method that relies on 5' tag

counting of transcripts. When conducted on the microfluidics Fluidigm C1 platform, STRT-

seq [78] emerged as a versatile scRNA-seq, offering precise, sensitive, and crucially,

molecular counting of transcripts at the individual cell level. In 2015, Macosko et al. [79]

developed the Drop-seq method that leveraged microfluidic droplets to isolate and barcode

individual cells for high-throughput sequencing that allowed the analysis of thousands of cells

in a single experiment and enabled the identification of known and rare cell types and

subpopulations. Since then, various other scRNA-seq technologies have been developed,

including SMART-Seq [58], SMART-Seq2 [80, 81], CEL-Seq [82], CEL-Seq2 [83], inDrop [84]

and MARS-Seq [85]. Importantly, SMART-Seq (Switching Mechanism At 5' end of RNA

Template) and its successor SMART-Seq2 protocols were developed to capture and amplify

full-length transcripts from individual cells. SMART-Seq was initially introduced by Ramskold

et. al. 2012 [58]. This method utilized template-switching reverse transcription to capture the

entire transcript, providing a comprehensive view of the transcriptome from single cells.

SMART-Seq2 incorporated improvements such as reduced amplification bias, increased

sensitivity, and lower input requirements, making it a powerful tool for profiling the

transcriptomes of individual cells with high resolution. Taken together, these technologies

have improved sensitivity, accuracy, and throughput and have enabled the analysis of large

numbers of cells at a lower cost [86-88].

Of note, 10X Genomics, a biotechnology company, introduced its GemCode technology [89]

in 2015, marking a milestone in single-cell genomics. GemCode utilized a microfluidic system

to encapsulate single cells with unique barcoded gel beads, each containing a unique

molecular identifier (UMI). Subsequently, 10X Genomics released the Chromium scRNA-seq

Solution, an upgraded version of GemCode, providing a robust platform for high-throughput

single-cell transcriptomics that enabled the simultaneous analysis of thousands to millions of

cells. The Chromium system utilizes barcoded gel beads to uniquely label RNA molecules

within each cell. This barcoding strategy enables the distinction of transcripts originating from

the same cell, overcoming challenges related to amplification biases. Importantly, Cell
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hashing [90] is a technique that involves labeling cells with unique oligonucleotide barcodes

during sample preparation. This allows for the multiplexing of samples, enabling the

simultaneous analysis of multiple samples in a single experiment. To increase the scalability

and cost-effectiveness, 10X Genomics introduced Cell Hashing, allowing multiplexing of

samples, by using oligo-tagged antibodies to uniquely label cells before pooling them,

facilitating the analysis of multiple samples in a single experiment.

The 10X single cell or nuclei RNA-seq platform found widespread applications in various

biological fields, including immunology, hematology, oncology, and neuroscience [91-93].

1.3.2 10X single nuclei isolation, library construction and sequencing

The sequential steps of a typical 10X snRNA-seq experiment include the nuclei isolation,

GEM generation and barcoding, cDNA QC and quantification, 3’ gene expression library

construction and sequencing followed by CellRanger mapping and downstream analysis [72-

74].

Initially, nuclei isolation is a critical step, achieved through specialized buffers and enzymatic

or mechanical dissociation techniques. The isolated nuclei are then individually encapsulated

into droplets or wells using microfluidic devices, ensuring the preservation of cellular

heterogeneity within complex tissues. During encapsulation, each poly-A tailed RNA

molecule is captured and labelled with unique barcodes, and subsequently are reverse

transcribed to yield cDNA. The cDNA is then processed and amplified using the 10X

Genomics Single Cell 3' Solution protocol, which includes fragmentation, tagging, and

amplification of the cDNA. Barcoding is a crucial step in 10X Genomics-based protocols.

Here, unique barcode sequences are introduced during PCR amplification to enable the

pooling of samples for parallel sequencing while still distinguishing between individual nuclei.

For optimal experimental results, it is crucial to utilize high-quality tissue samples.

Quality control steps may include checking the size distribution of the library fragments [94,

95]. In this context RNA integrity is typically assessed by the RNA Integrity Number (RIN)

[96]. Typically, an RIN score exceeding 8 is deemed satisfactory for advancing to

subsequent downstream experiments.

For single nuclei experiments, it is imperative to generate pre-mRNA reference files [97] in

order to distinguish between reads that align to exonic (mature mRNA) and intronic regions,

aiding in the quantification of transcriptional activity within the cell.
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1.3.3 Technical differences between scRNA and snRNA-seq

Single-nucleus RNA-seq is specifically designed to analyze gene expression at a cellular

resolution while circumventing the challenges associated with traditional scRNA-seq

methodologies. For instance, cells in certain tissues like skeletal muscle, adipose tissue or

pancreas are difficult to dissociate or isolate without causing major damage to their integrity

[70-74]. In another case, some cell types are challenging to isolate intact, and the isolation

process may lead to biased representation or loss of specific cell populations in a scRNA-seq

[73, 74]. Also, snRNA-seq is useful for analyzing both fresh and frozen (or archived) tissues-

so, this eliminates the requirement of immediate sample processing and helps reduce any

changes caused by the stress response to enzymatic treatment [70-74]. Moreover, earlier

investigations indicate that snRNA-seq consistently demonstrated satisfactory sensitivity – a

measure of the identified UMIs or genes counts per cell in datasets sampled with an equal

number of reads per cell [74]

Given the loss of cytoplasm, nuclei typically exhibit lower mRNA levels compared to whole

cells, resulting in a reduced total number of detected genes and unique molecular identifiers

(UMIs) per cell [74]. Ultimately, the variations in sensitivity between single-nucleus and

single-cell RNA sequencing depend largely on the sample specific characteristics. Generally,

the quality control (QC) cut-off(s) can be decided by investigating the relationship among

number of UMI, genes and %MT-transcripts per nuclei [98, 99].

In a snRNA-seq experiment, the cytoplasmic proteins released during the extraction process

includes RNAses that could potentially destroy the transcripts after encapsulation and lysis of

the nuclei. All procedural steps are required to be conducted in a cold environment to prevent

unwanted artefactual transcriptional changes, taking advantage of the stabilizing effect of the

cool milieu.

1.4 snRNA-seq data analysis

The computational analysis of both single cell or nuclei RNA-seq data involves several steps:

read alignment, gene expression quantification, QC, normalization, dimensionality reduction,

and identification of differentially expressed genes to identify cell type or states [98, 99].

There are several challenges in the downstream single cell or nuclei RNA-seq analysis,

starting from quality control and data harmonization to ensure appropriate data interpretation.

A few major points are summarized below:
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1.4.1 Handling technical noise and quality control

snRNA-seq data can be noisy due to various technical factors such as cellular barcoding and

indexing errors, amplification bias, sequencing depth, dropout events, and other batch effects.

These technical factors [65-67] can introduce unavoidable variability in downstream data

analyses, such as cell type identification and differential gene expression analysis. Quality

control measures, such as assessing the percentage of reads with valid barcodes, can help

identify and filter out cells affected by barcoding errors. On the other hand, using unique

molecular identifiers (UMIs) to tag individual RNA molecules, and optimizing PCR conditions

can help reduce amplification-related noise.

Also, contamination from ambient RNA or from adjacent cells during tissue dissociation can

introduce extraneous RNA- often, leading to misinterpretation of cell type composition and

gene expression profiles [100, 101]. To computationally mitigate these artifacts, state-of-the-

art tools like Cellbender employ a statistical approach to distinguish ambient RNA from true

cellular RNA and correct for this contamination [101]. Also, single cell/nuclei profiling is prone

to dropout events where certain transcripts fail to be detected due to technical limitations,

leading to false negatives in gene expression analysis [66, 67, 102].

Technical doublets in snRNA-seq data refer to instances where two or more nuclei are

mistakenly captured and sequenced as a single unit [103-105]. These artifacts can arise

during the nuclei isolation process and lead to misinterpretation of the true biological

heterogeneity. Tools like Scrublet [103] specifically for the identification and removal of

technical doublets. Scrublet operates by creating a nearest-neighbor classifier for each

nucleus based on its transcriptomic similarity to other nuclei in the dataset. It then assesses

the observed and expected rates of doublets, assigning a doublet score to each nucleus.

Nuclei with higher doublet scores are considered more likely to be technical doublets.

Researchers can use these scores to confidently flag and if required, exclude potential

doublets from downstream analyses [103-105]. Nonetheless, there is a lack of gold standard

tools for flagging biological doublets that can be optimally labelled by investigating

expression of conflicting cell type/state markers and is detailed in sub-section 1.4.3.

In addition, single nuclei isolation can be challenging, and some nuclei could be damaged or

incomplete, resulting in incomplete transcripts and lower sequencing quality [106]. Often,

such nuclei exhibit relatively low UMI counts but a high percentage mitochondrial transcripts

per nucleus- possibly, derived from the ‘soup’ of the single-nuclear isolation preparation.

Hence, both the number of UMI and %mitochondrial transcripts per nucleus should be
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modelled as technical covariates in downstream analysis. Also, some nuclei have a high

number of UMI(s) but only a few numbers of genes that could be explained by nuclei

undergoing apoptosis or necrosis. Such populations can represent low complexity cell types.

Hence, the number of UMI or genes per nuclei alone might not be a reliable proxy of a good

sample quality in isolation. In this regard, it is recommended to investigate sample complexity

that is defined as the number of genes detected per UMI [107]. For example, a higher

number of genes detected per UMI indicates higher complexity or high sample quality.

Usually, a score > 0.8 suggests a good sample quality [107].

snRNA-seq data normalization is a critical step in data analysis to correct differences in

sequencing depth and technical factors that can bias gene expression measurements

between cells or nuclei [98, 99, 108]. However, selecting the appropriate normalization

method can be challenging as different methods may perform better in different scenarios.

1.4.2 Challenges in snRNA-seq data harmonization

Harmonizing snRNA-seq data from different experiments or platforms is challenging due to

several technical variations underlying the data. For instance, processing samples in different

batches or at different sequencing runs can induce sample specific effects that potentially

introduce technical variation unrelated to biological differences. Additional complexities might

arise from variability in tissue dissociation protocols, nuclei isolation methods, and library

preparation techniques- hence, modelling appropriate covariates is required depending on

the experimental set-up. Hence, to ensure robust downstream analyses, appropriate batch

effect removal and data harmonization methodologies are required to optimally align data

stemming from different sources [99, 109-116]. Moreover, to achieve effective data

harmonization, one has to struggle with the trade-off between two scenarios — (1) properly

mixing datasets to prevent separation by biological or technical replicates and (2) retaining

the original data structure, as illustrated in Figure 1.1.

Several algorithms require dimensional reduction methods before data integration which is

described below.

 Linear and non-linear dimension reduction techniques

Linear and non-linear dimension reduction techniques are commonly used in snRNA-seq

analysis for cellular phenotyping. These techniques reduce the high-dimensional gene

expression data into lower-dimensional representations that can be analyzed and visualized.
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Linear dimension reduction techniques, such as principal component analysis (PCA),

independent component analysis (ICA), and factor analysis (FA) are based on linear

transformations of the data. PCA [117, 118] is a general-purpose linear dimensionality

reduction technique that aims to capture the maximum variance in the data by projecting it

onto a new set of orthogonal axes, called principal components. PCA, in its traditional form,

is not explicitly designed for batch correction and generally used for capturing variance within

a single dataset. In contrast to many other methods, principal components (PC) are easier to

select for and interpret as they are ranked by variance i.e., the first PC accounts for the most

variance, followed by the second PC (orthogonal to the first) and so on [117, 118]. In contrast,

Independent Components (IC) [119, 120] and Factors [121] are not naturally ordered like

PC(s) that complicates their interpretation without further analysis.

Several software tools leverage linear dimension reduction strategies for the snRNA-seq

data harmonization. A popular tool, Harmony [110] is grounded on adjusting PC(s) to

effectively reduce batch effect during data harmonization. In the transformed PC space,

Harmony employs k-means clustering to delineate clusters having maximum diversity. The

diversity of each cluster is evaluated based on whether it includes balanced proportions of

cells from each batch (such as donor or condition) intended for integration. Once diverse

clusters are defined, Harmony assesses the impact of a cell’s batch identity on its PC

coordinates and applies a correction to 'shift' the cell toward the centroid of its respective

cluster. Subsequently, cells are projected again using these corrected PCs, and the iterative

repetition of this process continues until convergence is achieved [110].

On the other hand, BBKNN (Batch Balanced k-Nearest Neighbors) [111] aims to adjust the

shared neighbor graph of the cells. Firstly, the algorithm identifies k-nearest neighbors for

each cell (or, nucleus), and iteratively correcting for batch effects by applying correction

vectors based on the differences in expression profiles between cells and their neighbors

across different batches. This approach ensures a balanced representation of cells from

various batches, ultimately harmonizing the data and facilitating effective integration for

downstream analyses such as clustering and visualization. Moreover, it is technically feasible

to employ a sequential integration approach, firstly adjusting the principal component(s) with

Harmony, and subsequently using the corrected principal component(s) to build an adjusted

k-nearest neighbors (KNN) graph through BBKNN.

Furthermore, Seurat utilizes another linear dimension reduction method, called Canonical

Correlation Analysis (CCA) [116] that is designed to uncover linear relationships between two

or more sets of variables. It aims to find linear combinations of variables (canonical variables)
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in each set such that their correlation is maximized. CCA is commonly used in multivariate

statistics and data integration tasks where there are two sets of related variables [116]. In

biology, this means integrating datasets having common anchors i.e., common cell

types/states. Also, the Reciprocal PCA [122] approach implemented in Seurat involves

computing the PCs separately for each batch and then adjusting the PCs to minimize

differences between batches, providing a corrected representation of the data that is more

amenable to integration and downstream analyses. The reciprocal nature of the approach

ensures mutual correction between batches, enhancing the harmonization of diverse

datasets in a reciprocal manner.

In contrast, non-linear dimension reduction techniques, such as t-distributed stochastic

neighbor embedding (t-SNE) [123, 124] and uniform manifold approximation and projection

(UMAP) [125, 126], are based on non-linear transformations of the data. These techniques

aim to preserve the local structure of the data while reducing the dimensionality. t-SNE

models the high-dimensional data as a probability distribution of pairwise similarities and

maps it to a low-dimensional space. UMAP is a relatively newer technique developed by

McInnes et. al 2018 [125] that also preserves the local structure of the data but uses a

different optimization approach compared to t-SNE. However, t-SNE and UMAP are widely

used for data visualization rather than dimension reduction for sc/sn RNA-seq datasets [124,

126].

Hence, various tools for data harmonization have been developed to address batch effects,

each with its specific strengths and limitations. However, recent methodological progress has

propelled the adoption of deep-learning frameworks because of their previously

demonstrated efficacy in handling complex integration tasks.

 Deep learning techniques

Deep learning algorithms based on artificial neural networks (ANNs) can be leveraged for

various tasks in single-cell analysis, such as cell type classification, gene expression

imputation, and data integration. These algorithms can learn patterns and relationships from

the data without explicit feature engineering or manual annotation, making them highly

adaptable and flexible [127-129]. For example, convolutional neural networks (CNNs) have

been used for image-based analyses of spatial transcriptomics data [130]. In contrast,

recurrent neural networks (RNNs) have been used for time-series analyses [131, 132].
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Deep learning-based data integration tools have gained prominence in the analysis of single-

cell or nuclei RNA sequencing data due to their ability to capture complex non-linear

relationships and extract high-level features from large-scale datasets [112-115]. They often

provide a more nuanced representation of biological variability compared to linear methods

like PCA. Two popular methods for deep learning-based data integration are autoencoder-

based approaches and Deep Generative Models, including Variational autoencoders (VAE)

[133, 134].

Autoencoders can be employed to integrate sc/sn RNA-seq data from multiple conditions or

technologies. By training on diverse datasets, the autoencoder learns a low-dimensional

representation capturing the shared features and variability across datasets. VAE is a type of

deep generative model that incorporates a probabilistic framework, wherein they map input

data to a probability distribution within the latent space [112, 113, 135-138]. VAE(s) are

trained to generate a latent space that follows a specific probability distribution and allows

more nuanced uncertainty modelling. Several recent studies [139-141] have delved into the

challenge of incorporating bias and uncertainty into the modeling of single-cell data. A

prevalent approach in these studies involves treating each data point (representing cell-gene

pairs) as a random variable and fitting a probabilistic model accordingly.

Deep generative techniques, such as scVI (single-cell Variational Inference) [112], extend

the VAE framework to sc/sn RNA-seq data. scVI utilizes variational inference to estimate

gene expression variability across cells, reducing noise in sc/sn RNA-seq data, and captures

both the global structure of the data and the variability specific to individual cells, facilitating

data integration and batch correction. scVI adopts a probabilistic approach and models the

underlying gene expression distribution using a Zero-inflated negative binomial model (ZINB)

that enhances its ability to capture the variability present in sc/sn RNA-seq data compared to

traditional methods. It is known that nuclei have lower RNA content compared to whole cells,

leading to increased dropout rates and decreased sensitivity in detecting low-abundance

transcripts, potentially influencing downstream analyses in snRNA-seq. Hence, scVI’s

probabilistic modelling coupled with its ability to impute missing data seem to reliably account

for the uncertainty associated with low expression levels and high dropouts in individual

nuclei in snRNA-seq data [112].

On a similar note, single-cell ANnotation using Variational Inference (scANVI) [113] can be

applied on semi-annotated data or label transfer from reference to perturbed/disease

datasets. Both scVI/scANVI frameworks [112, 113] allow encoding different categorical and

continuous covariates besides the key batch to remove technical artifacts from downstream
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analysis effectively. Notably, scVI/scANVI were top performing tools for complex data

harmonization tasks that balanced both batch effect removal and preserving biological

heterogeneity in an extensive benchmarking study by Luecken et. al 2021 [114]. Furthermore,

in addition to scVI/scANVI, numerous other studies have shown the effectiveness of ANN(s)

and VAE(s) in integrating scRNA-seq datasets in a scalable fashion [135-138].

Hence, by applying generative models like scVI/scANVI, researchers can gain new insights

into the complexity of cellular heterogeneity and the underlying biological processes. These

techniques provide relatively more efficient ways to analyze large-scale scRNA-seq datasets,

enabling researchers to identify new cell types, understand cell states and transitions, and

unravel the mechanisms driving disease and development.

Figure 1.1: Challenges of single cell or single nuclei RNA-seq data harmonization.
Schematic illustrating uncorrected, over-corrected and optimally batch corrected data harmonization. A
challenge in performing optimal data harmonization comes with achieving two goals- (1) mixing
datasets properly to avoid separation by biological/technical replicates and (2) retaining the original
structure of datasets. In the first scenario (No Correction), the datasets are not mixed and hence,
strongly separated into batches. In the second scenario (Over Correction), the first goal is improved,
but the second goal becomes worse. The third scenario (Optimal Correction) reflects balancing two
goals to achieve adequate data harmonization needed for downstream analysis.
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1.4.3 Cell type/state identification

After adequate batch effect removal and data harmonization, the task is to identify cell type

or cell states, which is typically done through clustering gene expression profiles obtained

from single cells/nuclei. Louvain [142] and Leiden [143] clustering are community detection

algorithms commonly applied in snRNA-seq data analysis to identify distinct cell populations

or clusters. The Louvain algorithm, based on modularity optimization, iteratively refines

partitions of cells into communities to maximize the density of connections within

communities compared to between them [142]. Leiden clustering, an extension of the

Louvain method, introduces a resolution parameter that modulates the size and granularity of

identified clusters, allowing for a more flexible adjustment of cluster boundaries [143]. Both

algorithms are widely used for their efficiency and effectiveness in uncovering meaningful cell

populations in heterogeneous datasets. On a technical note, they both are relatively robust to

noise and outlier than traditional methods like K-means clustering that can improve cell-type

or -state identification.

It is also important to evaluate cluster quality using metrics like adjusted silhouette score or

adjusted Rand index [114, 115] before finalizing annotation. Additionally, visually inspect

clustering results to ensure biological relevance and coherence. If large clusters contain

multiple cell types, sub-clustering is considered to further dissect cell type heterogeneity

within major groups [144, 145].

Apart from filtering out technically low-quality cells in QC step, it is critical to investigate

biological doublets i.e., nuclei confounded by looking into the expression of conflicting

lineage markers after initial annotation of clusters [146-148]. For example, if a cluster

expresses marker for both astrocytes and vascular cells- it indicates potentially confounded

cells, and thus should be removed from downstream analysis [147].

1.4.4 Data visualization

Non-linear techniques like t-SNE [123, 124] and UMAP [125, 126] were developed for

effective visualization of sc/snRNA-seq data. Although linear methods such as PCA [117,

118] can capture and visualize the main sources of variations in the data, it is usually unable

to capture subtle and complex relationships among the clusters.
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While t-SNE is still a useful tool for visualizing and analyzing single-cell data, UMAP offers

several advantages that make it a more attractive option for many researchers in the field

[125, 126].

 Scalability and speed: UMAP is generally faster and more scalable than t-SNE,
making it advantageous for larger datasets. Also, UMAP can handle larger datasets
than t-SNE. While t-SNE can struggle with datasets containing more than 50,000
cells, UMAP can efficiently process datasets with hundreds of thousands of cells.

 Better preservation of data structure: UMAP tends to better preserve the global
structure of the data compared to t-SNE. It maintains the relationships between
distant points in the high-dimensional space more accurately when projecting them
into lower-dimensional space. This means that the overall layout of clusters or cell
populations is better maintained in UMAP, reflecting the broader relationships
between different groups of cells. Also, UMAP is known for its ability to maintain more
faithful representations of local neighborhoods and distances between neighboring
data points. This results in improved preservation of local relationships among cells,
capturing both fine-scale and coarse-scale structures within clusters.

 Flexibility in parameter tuning: UMAP offers greater flexibility in adjusting
parameters, such as the number of neighbors and the minimum distance, allowing
users to fine-tune the trade-off between global and local structure preservation based
on the characteristics of their data.

 Parameter independence: UMAP's performance is less dependent on the choice of
hyperparameters compared to t-SNE. While t-SNE's perplexity parameter requires
careful tuning, UMAP is less sensitive to variations in its parameters, making it more
user-friendly.

 Interpretability: UMAP provides more consistent embeddings across different runs
or subsamples of the same dataset. This stability is crucial for obtaining reliable and
reproducible results, especially when exploring the same dataset under different
conditions or at different time points.

1.4.5 Trajectory analysis

It is to be noted that cell differentiation and maturation are inherently dynamic and might not

be adequately captured by discrete analytical approaches like clustering. Hence, trajectory

inference and estimation of pseudotime (proxy of developmental time) has surfaced that

allow researchers to reconstruct developmental trajectories and capture dynamic transitions

among cell populations within complex tissues [149-152]. This approach unveils the nuanced

dynamics of cellular differentiation and maturation by modelling critical decision points, often

referred to as branch points of a lineage trajectory. Through this analysis, crucial insights into
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key regulatory genes and signalling pathways are revealed, providing a comprehensive

understanding of the intricate nature of cellular development.

Several state-of-the-art tools have been developed for inferring trajectory analysis. For

example, STREAM [149] grounded on inferring Elastic Principal Graph optimization [153] is a

popular tool for disentangling complex trajectories, with multiple lineage differentiation paths

and subsequently, visualizing them. Another well-known method is Diffusion Pseudotime

(DPT) [150] that infers the progression of cells along developmental trajectories by modelling

the diffusion of cellular states according to global transcriptomic similarities.

1.4.6 Receptor-ligand interaction analysis

Receptor-ligand interaction analysis using snRNA-seq data provides a system-level

understanding of cell communication within tissues [154-157]. It helps identify potential

signalling networks that contribute to cellular function, development, and disease. This

approach is particularly powerful in capturing the nuanced and cell type/state-specific nature

of intercellular communication within complex tissues. Differential expression analysis such

as, Wilcoxon rank sum or multivariate Logistic Regression test may be performed to identify

significant changes in receptors or ligands expression between different conditions or cell

types [156].

1.4.7 Transcription regulation and network modelling

PySCENIC (Python Single-Cell rEgulatory Network Inference and Clustering) [158, 159] is a

powerful tool used for transcription factor (TF) inference analysis in snRNA-seq data. This

computational framework aims to uncover regulatory networks by identifying potential

transcriptional regulators and their target genes within individual nuclei. PySCENIC employs

the GENIE3 algorithm to predict regulatory interactions based on gene expression patterns,

capturing both direct and indirect relationships between TFs and their targets. By integrating

these predictions with known cis-regulatory motifs, PySCENIC infers TF activity in single

nuclei, providing insights into the transcriptional landscape of individual nuclei. The resulting

information aids in understanding the regulatory dynamics of cellular states, offering a

valuable resource for deciphering the intricacies of gene regulatory networks in complex

tissues at a single-cell resolution.

In general, sc/snRNA sequencing exhibit high drop-out events and low library sizes, posing

challenges in detecting differentially expressed TFs and co-regulators [160]. Previously,
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methods like scCapture-Seq [160] were developed for the targeted sequencing of TFs. The

authors observed a 36-fold enrichment for TF reads compared to pre-capture scRNA-seq

data, leading to an increased detection of total TFs in the sample. Moreover, each cell was

shown to express a broader range of TFs based on log-fold change thresholds. Hence, it is

possible to utilize a list of differentially expressed genes (such as cell or disease markers)

and reverse-engineer the enriched TF or co-regulators acting on distinct target sets. In this

regard, iRegulon [161] combines motif enrichment analysis, motif scanning, and a genome-

wide ranking-and-recovery method to assign an enrichment score to each TF or co-regulator,

reflecting the likelihood that the TF regulates an optimal set of direct targets. In this way,

tools such as PySCENIC and iRegulon can unveil the transcriptional regulatory network

associated with a cell type/state or in disease vs healthy conditions [158, 159, 161].

On other hand, network analysis of differentially expressed genes (DEGs) inferred from

snRNA-seq data involves the construction and exploration of biological networks to uncover

interactions and functional relationships among genes. Nodes in the network represent

genes, and edges represent interactions or correlations between them [162, 163]. Various

types of networks can be constructed, such as co-expression networks (based on expression

patterns), protein-protein interaction networks, or regulatory networks. Importantly, clustering

algorithms, such as Glay [164] or MCODE [165] are often applied to identify modules or

groups of genes that are tightly interconnected within the network. These modules may

represent functional units or pathways, and hence are required for organization and

coordination of cellular activities. Of note, most of the biological networks are scale free i.e.,

where a few nodes (hubs) have a disproportionately high number of connections (degree)

compared to most nodes. This topology follows a power-law distribution and contributes to

the robustness and resilience of biological networks [163, 166-168]. Identifying the hub

nodes using tools like NetworkAnalyzer [169] aids in uncovering central regulators of the

network and is crucial for understanding the hierarchical organization and control points

within biological systems.
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1.5 Spatial transcriptomics

Recent advancements in single cell and nuclei RNA sequencing techniques and Human Cell

Atlas (HCA) initiative [170], enabled researchers to highlight the diversity within cell

populations. Complementing this insight by showing where specific cell types or states are

located within tissues contributes to a more detailed understanding of cellular heterogeneity

and functions. The recognition of the need to incorporate information into a spatial context

has driven the development of novel techniques collectively known as spatially resolved

transcriptomics (SRT). Spatially resolved transcriptomics [171, 172] serves as an umbrella

term encompassing various methods employed to associate gene expression information

with its spatial location. In recent years, the efficacy of these approaches has been

demonstrated across diverse tissues and systems, ranging from oncology research to

studies on organ development [173-179]. In context cancer, understanding the spatial

distribution of gene expression can shed light into tumor heterogeneity and tumor

microenvironment [173, 177]. This knowledge could be translated into developing targeted

therapies and precision medicine approaches. In case of embryonic development [178] or

tissue regeneration [179], spatial transcriptomics helps map the precise gene expression

patterns in different regions. This adds to the understanding of how cells differentiate and

organize themselves spatially to form functional tissues and organs.

1.5.1 In-situ sequencing

Efforts to gauge gene expressions in a spatial context have been established through

techniques such as multiplexed fluorescence in situ hybridization (FISH) [180-182] and in

situ/intact tissue sequencing [183-188]. These methods enable the simultaneous

measurement of mRNA localization in a spatial context. Like FISH, in-situ sequencing (ISS)

[183-185] employs fluorescence microscopy to visualize individual transcripts with subcellular

precision. In contrast to sequential imaging of barcoded FISH probes, ISS is a technique that

allows for the direct imaging and sequencing of RNA molecules within intact cells or tissues.

To be precise, this method involves the use of sequence (or, gene) specific padlock probes,

which hybridize to target RNA sequences, and rolling-circle amplification (RCA) to generate

localized signals [185]. These signals are then read using sequential imaging and

sequencing steps, providing spatial information about the distribution of specific RNA

molecules within their native cellular context. ISS offers a powerful approach to studying

gene expression patterns at the single-cell level, enabling researchers to analyze the spatial

organization of RNA in complex biological samples.
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1.5.2 10X Visium

Sequencing-based technologies, constituting the second group of SRT methods, involve the

utilization of a solid surface with spatially indexed locations for the capture of RNA molecules.

A technique introduced by Ståhl et al. in 2016 [187], referred to as spatial transcriptomics

(ST), utilizes glass slides featuring microarrays comprised of capture regions arranged in a

spot pattern. In this configuration, each spot incorporates millions of oligonucleotides that

bear a spatial barcode designating the spot's position, a unique molecular identifier (UMI),

and a polyT sequence designed for capturing polyadenylated transcripts. Subsequent

refinements by 10x Genomics enhanced the method's resolution by reducing the spot

diameter from 100 µm to 55 µm. Additionally, the total number of spots per capture area

increased from ~1,000 to ~5,000 and ~14,000 spots [189]. This modified technique was

subsequently commercialized as the Visium spatial gene expression assay. 10X Visium

technique was originally designed to work on fresh frozen samples but was later expanded to

FFPE samples [190]. Upon placing fresh-frozen tissue sections onto the Visium capture

areas, the samples are fixed using methanol and then stained, commonly with

immunostaining or Hematoxylin and Eosin, to acquire histological images. The Visium assay

offers a significant advantage by combining histological images with transcriptomics data,

enabling the integration of gene expression and histological information. This integration

provides a spatial perspective to transcriptome profiling. Following the imaging step, tissue

sections undergo enzymatic permeabilization to open the plasma membrane, facilitating the

diffusion of RNA out of the cells toward the array surface. Given that each tissue possesses

a unique cell composition with distinct properties, it is crucial to optimize the permeabilization

time for each tissue type to achieve uniform permeabilization across the entire section. After

RNA hybridization to the array surface, a reverse transcription reaction extends the surface

probes. This merging of the RNA sequence with its spatial position barcode enables the

simultaneous readout of both transcript and location information. The subsequent stage

involves synthesizing complementary strands from cDNA, which are then collected for the

final library preparation and subsequent sequencing.

1.5.3 Advantages and limitations of ISS and 10X Visium

Identifying the project goals accurately is crucial for informed decision-making in choosing

between targeted ISS and untargeted 10X Visium approaches and determining the requisite

resolution to address raised questions and hypotheses. While imaging-based ISS offers

subcellular resolution, it struggles with the optical crowding effect, limiting the number of

imaged molecules. Partial mitigation involves serial staining rounds or molecule separation
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via sample expansion, but both methods increase imaging time, a notable bottleneck. Tissue

expansion diminishes the area captured per field of view, restricting imaging throughput. ISS

is known to have a higher precision for the identification of individual cells, given targeted

sequencing of RNA molecules [185]. In contrast, sequencing based 10X Visium ensures

faster sample processing and higher throughput while targeting the entire transcriptome at a

lower resolution. Hence, it is difficult to capture extremely fine details of cellular interactions

due to the size of tissue spots [53, 187-191]. In this regard, emerging methodologies such as

the Xenium in-situ technique [192] have demonstrated significant enhancements in

throughput and sensitivity compared to other in ISS methods. It has garnered attention for its

capability to map hundreds of transcripts in situ with subcellular resolution.

Generally, for analyzing a selected gene set, targeted approaches with subcellular resolution

are preferable, while untargeted methods are common in exploratory research. Untargeted

methods serve as a starting point to identify genes of interest for subsequent targeted

analysis, offering higher resolution measurements and further validation of findings.

1.5.4 Building an atlas- integrating snRNA-seq with spatial transcriptomics

A pivotal technology employed in constructing cell atlases is single cell and single nuclei

RNA seq. As described before, this approach facilitates the exploration of cellular

heterogeneity at the transcriptomic level, enabling the categorization of cells based on their

gene expression profiles and the discovery of previously unidentified cell types/states [192-

194]. Despite the merits of single cell or nuclei RNA-seq, the overall tissue organization is not

investigated that creates a knowledge gap in linking transcriptomic heterogeneity with the

spatial organization of the tissue. While imaging can offer insights into the histological-level

spatial organization of cells within each tissue, the advent of SRT methods has been

instrumental in studying in situ gene expression, cell types/states, their spatial relationships.

 Integration of snRNA-seq data with 10X Visium

snRNA-seq provides gene expression data at the individual nuclei level but does not profile

the spatial organization of cells. 10X Visium [187] gene expression retains spatial information,

but the resolution of each spot is constrained, as each spot encompasses multiple cells,

typically ranging from 1 to 10 cells. Hence, this integration allows researchers to leverage the

complementary strengths of each technology. For instance, deconvolution methods strive to

discern the cell types/states and their respective proportions contributing to a spot, while

mapping methods aim to assign the most probable dominant cell type to a spot [195-197].
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Deconvolution approach-based tools such as RCTD [195] and Spotlight [196] employ

probabilistic models based on references to identify cell types within a single spot, which may

contain a mixture of cell types. It utilizes a maximum-likelihood estimation to infer the

proportions of different cell types and subsequently projects this information onto a spatial

map of cell types.

 Integration of snRNA-seq data with ISS

Aligning the spatial information from ISS data with snRNA-seq inferred gene expression

profiles can be challenging. This involves mapping the spatial coordinates of in situ data to

the corresponding cell identities in snRNA-seq data [198]. Mostly, snRNA-seq and ISS are

performed on separate samples of a tissue- so, highly specific, and robust cell type or

condition specific markers can be used as a proxy to integrate two data modalities and

investigate spatial relationships between clusters. Unlike 10X Visium but like FISH, ISS

utilizes pre-designed probes for labelling target transcripts. Hence, differential gene

expression analysis using snRNA-seq can be used to pre-determine marker genes for the

targeted ISS probe panels. This predefined repertoire of target genes results in a biased

detection of transcriptomes. Often, a correlation analysis is used between the snRNA-seq

derived signatures, and the observed mRNA counts within the cells of segmented spatial

data.

A meticulously constructed cell atlas functions as a valuable resource for the scientific

community, bearing substantial implications for comprehending physiological processes.

Furthermore, it establishes a benchmark for investigating the underlying mechanisms of

diseases. Cell atlases play a pivotal role in the identification of novel therapeutic targets or

biomarkers. By offering a comprehensive understanding of cell identity and function, they

contribute significantly to the development of innovative medical approaches.

1.6 Single nuclei profiling in advancing Precision Medicine

The development of snRNA-seq revolutionized the field of Precision Medicine. It allowed

researchers to examine the transcriptomes of individual cells, providing insights into the

diversity of cell types, gene expression patterns, and regulatory networks in both healthy and

diseased tissues. In summary, the history of snRNA-seq in precision medicine has evolved

from uncovering genetic variations to providing detailed insights into cellular functions and

interactions [199-202]. Its integration into clinical practice holds great promise for tailoring

medical treatments to individual patients based on the specific characteristics of their cells.
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Like single cell profiling, snRNA-seq has made significant contributions to precision medicine

across various fields, providing high-resolution insights into gene expression profiles at the

cellular resolution. Here are some notable advancements of snRNA-seq in precision

medicine:

 Heterogeneity Analysis: snRNA-seq allows for the profiling of individual cell nuclei,
providing a detailed understanding of cellular heterogeneity within tissues. This level
of resolution is crucial for identifying rare cell populations, understanding cellular
diversity, and characterizing subtypes within complex tissues or tumors.

 Clinical Biomarker Discovery: In diseases such as cancer, neurodegenerative
disorders, and autoimmune conditions, snRNA-seq has been instrumental in
discovering molecular subtypes based on gene expression profiles. These subtypes
may have distinct clinical outcomes and responses to treatments, allowing for more
precise disease stratification and personalized therapeutic strategies.

 Identification of rare cell types: In tissues where certain cell types are rare but
functionally critical, such as stem cells or specific immune cell subsets, snRNA-seq
facilitates their identification and characterization. This is particularly relevant in the
context of diseases where these rare populations may play a crucial role.

 Inferring developmental trajectories: In the context of Precision Medicine,
trajectory analysis offers valuable insights into the heterogeneity of cellular responses
in various disease states or during therapeutic interventions. In diseases such as
cancer, understanding the trajectories of malignant cells can aid in identifying specific
driver genes and potential therapeutic targets. Moreover, trajectory analysis can
inform the development of targeted interventions tailored to individual patient profiles.
Leveraging the information derived from snRNA-seq data, Precision Medicine
strategies can be refined, allowing for the design of personalized therapeutic
approaches that consider the specific developmental trajectories and molecular
signatures of patient-derived cells.

 Mapping Tissue Architecture: Integrating spatial information with gene expression
data is essential for understanding tissue architecture. Techniques like 10X Visium
and spatial transcriptomics combined with snRNA-seq enable the mapping of gene
expression within the spatial context of tissues, providing insights into how cells
interact and organize in their native environments.

 Drug Response Prediction: By characterizing the transcriptomic profiles of
individual cells, snRNA-seq contributes to the identification of potential drug targets
and predicts responses to specific treatments. This can inform the development of
personalized treatment plans tailored to the molecular characteristics of a patient's
disease.
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 Longitudinal Studies: snRNA-seq enables the study of how gene expression
profiles change over time. This longitudinal approach is valuable for understanding
disease progression, identifying early markers of pathology, and monitoring the
effects of interventions over time.

 Integration with Multi-Omics Data: Integrating snRNA-seq data with other omics
data, such as genomics, epigenomics, and proteomics, allows for a more
comprehensive understanding of cellular function. This holistic approach is essential
for unravelling the complexity of diseases and identifying multi-faceted therapeutic
targets.

As technology matures, snRNA-seq is moving toward clinical translation. Its potential for

diagnosing diseases, predicting disease progression, and guiding treatment decisions

underscores its role in advancing precision medicine into clinical practice [199-202]. In

summary, snRNA-seq has significantly advanced precision medicine by providing

unparalleled insights into the cellular and molecular landscapes of tissues and diseases. The

integration of differentiation trajectory analysis with Precision Medicine holds great promise

for advancing our understanding of disease mechanisms, optimizing treatment strategies,

and ultimately improving patient outcomes by tailoring interventions to the individual cellular

and molecular characteristics of each patient.

1.7 Human pregnancy and maternal-fetal interface

Human pregnancy is a complex and dynamic process that involves the growth and

development of a fertilized egg into a fully formed fetus, culminating in the birth of a new life.

The pregnancy is divided into three trimesters, each lasting approximately 12-13 weeks [203].

During the first trimester, the fertilized egg lodges itself in the uterus, initiating the formation

of an embryo enveloped by a structure known as the gestational sac, supplying nutrients and

support for its growth [204, 205]. As the embryo grows, it forms placenta, a temporary organ

which connects to the mother's uterine wall and facilitates nutrients and oxygen exchange

between the mother and the developing fetus [206-208]. During the second trimester, the

fetus considerably develops, and its underlying organs start to mature. The placenta keeps

growing and expanding, providing increased nourishment to the developing fetus. The fetus

undergoes its final development during the third trimester and prepares for birth. The

mother's body also undergoes significant changes, including producing hormones that help

relax the uterus muscles and prepare for labor and delivery.

The maternal-fetal interface is the bridge between the maternal and fetal tissues [146, 209-

211]. This interface is formed by the placenta (fetal tissue) and decidua (maternal tissue) and
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acts as a protective barrier between the two, as illustrated in Figure 1.2. In this regard, the

placenta serves as a shield that prevents the mother's immune system from attacking the

developing baby. This point of contact is a complex and dynamic system orchestrated by

various cells and signaling molecules, including immune cells, cytokines, and hormones.

Disruptions to this interface can lead to serious complications during pregnancy, including

preterm labor, pre-eclampsia, and fetal growth restriction [212, 213]. Elucidating the

pathophysiological mechanisms that regulate the maternal-fetal interface is a growing area of

research that has significant implications for the mother and her child.

Previous major single-cell studies, such as those by Rosa Vento Tormo et al. in 2018 [209]

and Surywavanshi et al. in 2018 [146], were focused solely on the first trimester of pregnancy.

These studies comprehensively characterized the cell types and states at the maternal-fetal

interface, providing insights into trophoblasts (the outer layer of the developing placenta),

fetal vessels, and distinct decidual cell types, encompassing stromal, endothelial, immune,

and epithelial cells (Figure 1.2).

The development of the human placental trophoblast is a complex and dynamic process that

begins shortly after fertilization and continues throughout pregnancy. Trophoblast cells are

the first cells to differentiate from the fertilized egg and are responsible for the formation and

function of the placenta [146, 209-211, 214]. In this regard, major trophoblasts subtypes were

identified, including invasive extra-villous trophoblasts (EVT) that help to anchor the placenta

to the uterine wall and ultimately, invade the maternal decidua to drive uterine vessel

remodelling [215-218]. Syncytiotrophoblasts (STB) are relatively homogenous and are in

contact with the maternal blood [209-212]. Hence, STB cell type is involved with the gas and

nutrient exchange alongside hormone production required to sustain healthy pregnancies.

Importantly, cytotrophoblasts (CTB) play a crucial role in the early stages of pregnancy by

serving as proliferative and undifferentiated cells that give rise to EVT and STB [209, 219],

thereby contributing to placental development and establishing the maternal-fetal interface

(Figure 1.2).

The maternal decidua constitutes the specialized lining of the uterus that forms during

pregnancy under the influence of progesterone. Former scRNA-seq studies [146, 209]

profiling decidua decoded major subtypes of stromal cells (DSCs), fibroblasts (FB), pericytes,

endothelial cells (EC) epithelial cells (EpC) and different subsets of immune cells (Figure
1.2). Importantly, maternal decidua is an immunologically fertile site, where several types of

immune cells intermingle, including natural killer (NK) cells, macrophages, and T-cells.
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Overall, the placental and decidual cells cooperate to support fetal growth and development

and protect it from external injuries. Hence, understanding the physiological roles of these

cells in healthy and diseased pregnancies is an important area of research that has important

implications for maternal and fetal health.

1.7.1 Cell types/states of human decidua

Several cell types have been identified within the decidua, which are detailed as follows:

 Decidual stromal cells: Decidual stromal cells (DSC) [146, 209, 220, 221] play a
pivotal role in pregnancy by contributing to the formation and maintenance of the
decidua, the specialized uterine lining essential for successful implantation and
embryo development. These cells undergo dynamic changes, exhibiting
immunomodulatory properties that regulate maternal-fetal immune tolerance,
ensuring a supportive environment for embryonic growth. Additionally, decidua
stromal cells participate in tissue remodeling and angiogenesis, crucial processes for
establishing a functional placenta and sustaining a healthy pregnancy.

 Immune cells: The decidua is an immunologically active site [222] that harbors
native immune cells such as macrophages (MAC), dendritic cells (DC), natural killer
(NK) cells, and T cells. These cells play central roles in regulating maternal immune
responses throughout gestation and protecting the developing fetus from pathogens
[146, 209, 222-225].

 Decidual endothelial cells: Major endothelial cell types (EC) [146, 209, 226-229]
include the vascular and lymphatic endothelial cells. Vascular endothelial cells (VEC)
form the inner lining of blood vessels within the decidua, playing a crucial role in
facilitating nutrient and oxygen exchange between the maternal blood and the
developing fetus. On the other hand, lymphatic endothelial cells (LEC) are involved in
the formation and maintenance of lymphatic vessels in the decidua. These vessels
are essential for draining excess fluids and immune cells from the tissue, contributing
to the regulation of the local immune response and tissue homeostasis during
pregnancy. Both types of EC(s) are integral components of the complex
microenvironment in the decidua, supporting the physiological processes associated
with pregnancy.

 Decidual epithelial cells: This cell type or EpC line the surfaces of the maternal and
fetal tissues and play an important role in maintaining the integrity of the barrier
between the two tissues. A subset of EpC also forms the lining of the uterine cavity
and those that make up the chorion (a membrane that surrounds the developing fetus)
[146, 209, 230].

 Extravillous trophoblasts: These specialized cells are originally derived from the
placenta and invade the maternal tissues of the decidua, where they play important
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roles in establishing and maintaining the maternal-fetal interface [215-218].

1.7.2 Cell types/states of human placenta

As mentioned before, the human placenta is a pivotal organ supporting fetal growth and

development during pregnancy. It comprises several different cell types that are detailed

below:

 Syncytiotrophoblasts: These are the outermost cells of the placenta and are
involved in the nutrient and gas exchange between the mother and fetus. Importantly,
STB is endocrine in nature i.e., they produce placental hormones critical for
maintaining pregnancy, such as human chorionic gonadotropin (hCG), placental
lactogen CSH1 and CSH2 [231, 232]. CGA is a subunit of hCG and is integral to STB
functions, including implantation, corpus luteum support, and immunomodulation [233,
234].

 Cytotrophoblasts: These cells are located beneath the STB and are involved in the
development of the placenta, including the formation of new blood vessels [146, 209-
212].

 Cell column trophoblasts: The placental part of EVT (pre-invasion) is also called as
cell column trophoblasts (CCT) that play a crucial role in invasion and remodeling of
maternal tissues, facilitating the establishment of the maternal-fetal interface and
ensuring proper nutrient and oxygen exchange between the mother and the
developing fetus. Their invasive properties are essential for processes such as
implantation, uterine spiral artery modification, and the formation of a functional
placental bed to support a healthy pregnancy [235, 236].

 Hofbauer cells: Hofbauer cells (HBC) [237-240], also known as fetal macrophages,
are specialized immune cells found within the placenta. These macrophages hold
multifactorial roles, including immune modulation, phagocytosis, and the regulation of
inflammation, contributing to the dynamic interactions at the maternal-fetal interface.
Their presence in the placenta suggests a role in both immune defense and the
maintenance of a tolerogenic environment to support fetal development.

 Placenta associated maternal macrophages: Apart from the fetal-originating HBC,
a group of maternal macrophages linked to the placenta (PAMM) [238] has recently
been identified, and these can be observed attached to the surface of placental villi.
In contrast to HBC, PAMM(s) are HLA-DRA positive and FOLR2 negative cells [238].
PAMM is suggested to play a role in inhibiting microbe transmission at areas where
the syncytium is damaged. Conversely, they could potentially serve as a pathway for
infection by allowing the survival and replication of microbes within macrophages.

 Fibroblasts: These connective tissue cells are involved in tissue development,
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wound healing, and the synthesis of extracellular matrix components (ECM),
contributing to the structural and functional integrity of during embryonic development
[146, 241].

 Endothelial cells: Placental EC(s) mainly constitute the vascular endothelial cells
(VEC) that line the blood vessels and regulate blood flow to the developing fetus [195,
196].

Figure 1.2: Illustration of maternal-fetal interface and underlying cell type/state atlas.
Cell types derived from the early embryo include villous cytotrophoblast (CTB) cells, which line
placental structures called villi, syncytiotrophoblast (STB) cells covering the villus surface, and
extravillous trophoblast (EVT) cells lining maternal blood vessels and intermingling with maternal cells
in the decidua. Previous studies identified various maternal immune cell types, including T-cells and
decidual natural killer (dNK) cells, along with stromal cells providing structural and functional support
to the decidua throughout the pregnancy. Figure adapted from Rajagopalan et. al 2018 [242] and
digitally painted from scratch using InDesign software.

1.7.3 Development of human placental trophoblast

During the first week of development, the fertilized egg undergoes several cell divisions to

form a blastocyst structure. The genesis of all trophoblast lineages originates from the

trophectoderm (TE) cells, the outer layer of blastocyst (Figure 1.3). Placental trophoblast
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stem (TS) cells are a population of precursor cells that give rise to the various subtypes of

placental trophoblast cells. These progenitors are believed to be present in the early stages

of placental development and are responsible for initiating the process of trophoblast

differentiation [219].

TS cells exhibit the ability for self-renewal, maintaining an undifferentiated state through cell

division facilitated by signalling pathways, including the fibroblast growth factor (FGF) and

bone morphogenetic protein (BMP) [219]. Also, placental TS cells are considered pluripotent

and express markers associated with pluripotency, such as transcription factors Oct4

(Octamer-binding transcription factor 4), Sox2 (SRY-Box 2), and Nanog [243-247]. CDX2

and EOMES are two key transcription factors that orchestrate the differentiation and function

of TS cells [219, 247, 248]. CDX2 plays a crucial role in the early specification of

trophectoderm and the maintenance of trophoblast identity, while EOMES is also involved in

the differentiation of mouse and human trophoblast progenitors [247, 248]. After implantation

into the uterine wall, the TS cells differentiate into major trophoblast subtypes.

Biologically, the CTB is known to harbor TS progenitors that can further differentiate into two

divergent lineage paths- STB and EVT [209, 219] (Figure 1.3). The process begins with the

proliferation of mononuclear CTB cells that initially populate the chorionic villi. Further, CTB(s)

undergo fusion to form multinucleated STB(s), which create a syncytial layer crucial for

nutrient exchange and hormonal production. STB forms a layer on the surface of the

chorionic villi, which are finger-like projections of the placenta that extend into the maternal

blood supply.

Of note, a previous scRNA-seq study focussed on TS cells derived from cultured human

blastocysts and were able to recapitulate emergence of two lineages, including STB and

migratory trophoblasts transcriptomically same as EVT [249]. The synchronized processes of

proliferation and differentiation among these lineages play a crucial role in ensuring the

success of a pregnancy. Disruptions in trophoblast development and function are believed to

be associated with diverse pregnancy complications, encompassing miscarriage, pre-

eclampsia, and intrauterine growth restriction [212, 213, 250]. Hence, unravelling the

molecular mechanisms governing early placental development have potential implications for

reproductive medicine and understanding pregnancy-related disorders.
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Figure 1.3: Schematic illustrating trophoblast development.
Blastocyst derived trophoblast stem cells differentiating into two divergent lineages,
syncytiotrophoblast (STB) cells and cell-column trophoblasts (CCT). Biologically, cytotrophoblast (CTB)
act as progenitors and are known to harbor trophoblast stem cells. Figure adapted from Okae et al
2018 [219] and created using InDesign software.

1.8 Early onset Pre-eclampsia

Pre-eclampsia (PE) is a pregnancy-specific disorder characterized by elevated blood

pressure and proteinuria (protein in the urine) occurring after 20 weeks of gestation [251-254].

PE and associated hypertensive disorders are reported to contribute to ~14% of annual

maternal deaths worldwide, ranking second only to hemorrhage [255, 256], and incur an

approximate healthcare cost of nearly 2 billion USD within the first year following delivery

[257].

The condition is classified into early-onset pre-eclampsia (eoPE) [258], which manifests

before 34 weeks of gestation, and late-onset pre-eclampsia, with onset after 34 weeks. eoPE

is typically considered more severe and is linked to higher risks of adverse maternal and fetal

outcomes, including preterm delivery, abnormal maternal spiral arteries remodelling,

intrauterine growth restriction (IUGR), and fetal distress [259-261]. Despite causing

approximately 80,000 maternal and 500,000 fetal deaths annually [262], eoPE remains an

under-investigated area of research. In contrast, late-onset pre-eclampsia generally presents

milder symptoms, and a lower risk of adverse outcomes [263]. This thesis focuses on eoPE
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due to its strong association with placental dysfunction, abnormal fetal development, and

maternal factors such as chronic hypertension, autoimmune diseases, and genetic

predisposition [264-267].

Generally, it is acknowledged that eoPE unfolds in two stages: irregular placentation during

early pregnancy, succeeded by systemic endothelial dysfunction [268, 269]. In normal

pregnancy, invading trophoblast cells (EVT) undergo a process of remodelling maternal

spiral arteries to ensure proper blood flow to the developing placenta [215-218]. However, in

eoPE, inadequate remodelling of these uterine vessels leads to impaired perfusion, hypoxia,

and enhanced oxidative stress, contributing to the development of the condition [270, 271].

Additionally, dysregulated interactions between invading EVT and maternal immune cells

(like, dNK cells) further exacerbate the inflammatory response, leading to the characteristic

features of eoPE, including endothelial dysfunction and maternal vascular complications, as

illustrated in Figure 1.4.

If untreated, eoPE can lead to lifelong cardiovascular and metabolic complications for the

mother and child, that could potentially lead to stroke, liver and kidney failure, and even end-

organ damage [264-267]. In terms of clinical management and treatment, eoPE often

requires earlier delivery of the baby and more intensive monitoring and medical management

of maternal and fetal health. Significantly, once eoPE is established, delivery becomes the

sole recourse to address the maternal crisis [259, 272]. The placenta plays a pivotal role in

the genesis of eoPE, which is evident in the alleviation of symptoms upon placental delivery

[268-270, 273]. Nevertheless, the early pathological mechanisms within the placenta that

culminate in the clinical manifestations of PE remain a mystery.
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Figure 1.4: Physiological adaptations in pre-eclampsia relative to non-pregnancy and
normal pregnancy conditions.
Schematic illustrating maternal spiral artery (uterine vessels) in non-pregnant individuals, and how the
same is remodelled during healthy and preeclamptic pregnancies. Early-onset pre-eclampsia (eoPE)
is distinguished by aberrant trophoblastic invasion, stemming from shallow and constricted
transformation of spiral arteries. This condition results in placental ischemia and heightens oxidative
stress. Figure created using InDesign software, and partly adapted from Dimitriadis E et al 2023 [293]

1.8.1 Genomics and bulk transcriptomics of early onset pre-eclampsia

Pre-eclampsia is known to result from intricate interactions involving multiple maternal and

fetal genes, and demonstrate evident heritability, estimated to range between 31% and 54%

[274, 275]. Past Whole Genome/Exome Sequencing studies examining pre-eclampsia

provided valuable insights into the genetic landscape of the disorder that further illuminated

the dysregulation of molecular pathways associated with trophoblast function, vascular

remodelling, and immune regulation [274-278]. Former studies found specific genetic

variants in or proximal to genes such as RAS, AGT, ACE, CTLA4, ENG, F5, F2, FV, APOE,

GST, LPL, NOX1 and SERPINE1 [274, 278]. Significantly, several of these variants are also

recognized as risk factors for cardiovascular disease via the renin–angiotensin system,

fibrinolysis and coagulation regulation, oxidative stress, and lipid metabolism- indicating

shared genetic predispositions between pre-eclampsia and cardiovascular conditions.
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Prominent diagnostic biomarkers identified in the context of pre-eclampsia, include sFlt-1

(Soluble Fms-Like Tyrosine Kinase-1) [279] and PlGF (Placental Growth Factor) [281] that

offer valuable insights into the pathophysiology for the condition. A previous study analyzed

over 7 million genetic variants in 2,658 offspring from preeclamptic individuals and 308,292

controls from the general population pinpointed a singular association with the FLT1 (Fms-

like tyrosine kinase 1) gene on chromosome 13 [279]. The FLT1 gene encodes sFLT1, a

splice variant of the vascular endothelial growth factor (VEGF) receptor renowned for its

antiangiogenic properties, achieved through the inhibition of proangiogenic factor signaling

[279, 280]. Importantly, pre-eclampsia is characterized by elevated levels of sFlt-1, which

hinders PIGF and VEGF, contributing to endothelial dysfunction and hypertension [279].

Major advances over the last decade explored the diagnostic and prognostic value of RNA-

based markers in maternal blood or placental tissues, using bulk RNA-seq and microarray

approaches [282-284]. Of note, previous studies identified potential biomarkers, such as

sFLT1, PGF, PAPPA2, and INHBA, and linked altered placental gene expression to impaired

trophoblast invasion, abnormal vascular remodelling, and compromised maternal-fetal

exchange. A previous study based on bulk RNA-seq, and weighted gene correlation network

analysis (WGCNA) postulated eoPE±FGR samples were consistently distinguished by

glycolysis/gluconeogenesis metabolic pathway [285]. This could be related to placental

metabolic reprogramming under oxidative stress and hypoxia during eoPE.

Having said that, traditional bulk RNA-seq and microarray methods mask the heterogeneity

of individual cell populations, limiting our understanding of the specific cell types and states

involved in the pathogenesis of eoPE. Hence, single cell profiling of maternal-fetal interface

can enhance our knowledge regarding the intricate biology of eoPE by unravelling key

dysregulated pathways, novel biomarkers, and offers potential targets at a cellular resolution

for therapeutic intervention. Although two previous studies [286, 287] performed scRNA-seq

of PE-affected placenta- they were very limited in terms of sample size, number of cells

profiled and lacked a comprehensive overview of molecular dysregulations across maternal-

fetal interface.
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1.8.2 scRNA-seq of early onset pre-eclampsia

In a recent scRNA-seq study conducted by Admati et al. in 2023 [288], significant

dysregulation of major placental cell types was identified in eoPE, but not in late-onset PE.

The study further highlighted heightened cellular stress and pre-apoptotic states specific to

the placental vasculature in eoPE, a distinction not observed in late-onset PE [288]. Also,

eoPE was found to exhibit relatively higher prevalence of inflammatory cell types, and

increased expression of pro-inflammatory cytokines in various myeloid cell types as

compared to late PE. Taken together, these observations indicated that eoPE severely

affects the underlying maternal-fetal cell types/states relative to late PE.

However, the investigation did not uncover detailed molecular dysregulations in STB beyond

cell-autonomous transcriptional regulation of FLT1/PGF [288]. Of note, it is known that STB

nuclei undergo senescence as part of the differentiation process, ultimately shedding into the

maternal bloodstream [236, 289, 290]. Along with their secreted factors and cellular debris,

STB nuclei contribute to the release of up to 3 grams of fetal-origin protein mass daily into

the maternal circulation [236]. Prior research has indicated that factors shed from the pre-

eclamptic placenta are implicated in the development of cardiovascular and hypertensive

symptoms in the mother, subsequently categorized as the clinical syndrome recognized as

the “maternal pre-eclampsia syndrome” [291]. Hence, a detailed understanding of STB

specific markers and its dysregulated secreted factors are required to be profiled to

understand the disease pathogenesis. Moreover, no sc/snRNA-seq studies delved into

understanding the role of abnormal trophoblast development in eoPE- mainly, how molecular

disruptions in STB can potentially lead to exacerbated maternal and fetal outcomes.

Importantly, no studies so far clearly identified the cell-of-origin of eoPE and how the disease

is translated between placenta and decidua.

1.8.3 Spatial transcriptomics of early onset pre-eclampsia

A recent study by Arutyunyan, Roberts et. al 2023 [292] constructed a spatially detailed

multi-omics single-cell atlas encompassing the first-trimester human maternal–fetal interface,

inclusive of the myometrium. Leveraging this cellular map, the authors inferred potential

transcription factors orchestrating EVT differentiation, invasion, demonstrating their

conservation in in-vitro models derived from primary trophoblast organoids and trophoblast

stem cells. However, no former studies spatially profiled the maternal-fetal interface in

healthy term and eoPE affected pregnancies.
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Hence, integration of spatial transcriptomics with snRNA-seq can significantly advance eoPE

research by building a comprehensive disease atlas. For example, it would enable the

identification and localization of dysregulated genes associated with eoPE, shedding light on

the molecular mechanisms underlying the disorder. Mapping the spatial relationships

between the placental cell types/states can elucidate how communication is disrupted in

eoPE. Moreover, the approach will facilitate the characterization of vascular remodeling

patterns associated with eoPE. Overall, integration of spatial transcriptomic data may unveil

targetable biomarkers, enhance our understanding of disease progression, and open

avenues for personalized therapeutic strategies in eoPE.

1.9 Human pancreatic islet development

In the early stages of development, the endoderm is responsible for generating the epithelial

lining of the digestive tract. The dorsal pancreatic bud emerges from the posterior foregut,

and simultaneously, the ventral pancreatic bud originates from the hepatic diverticulum.

Eventually, these buds merge to constitute the pancreas.

The pancreas is a dual-function organ with endocrine and exocrine functions [72, 294, 295].

The endocrine portion, called the islets of Langerhans, produces hormones such as insulin

and glucagon, regulating blood sugar levels. The exocrine part secretes digestive enzymes

into the small intestine to aid in the digestion of food. The details of pancreatic cell types are

discussed below:

 Exocrine cells: These cells are organized into small clusters called acinar cells that
produce a mixture of enzymes that help to break down carbohydrates, proteins, and
fats in food. The two main types of exocrine cells are:

 Acinar cells: These cells produce digestive enzymes and other substances
that are released into the ducts.

 Duct cells: line the ducts that carry digestive enzymes from the acini to the
small intestine. Additionally, multipotent progenitors can differentiate into
ductal progenitors, which play a crucial role in pancreas homeostasis and
regeneration. The dynamic interplay of these cell types orchestrates the
complex functions of the mature pancreas.

 Endocrine cells: These cells are responsible for producing and releasing hormones
directly into the bloodstream. The endocrine cells of the pancreas are clustered
together in groups called islets of Langerhans. The islets contain several different
types of endocrine cells, including glucagon secreting alpha cells, insulin producing
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beta cells, somatostatin producing delta cells, gamma cells, and pancreatic
polypeptide secreting PP cells which helps to regulate digestion. These cell types
form the islets of Langerhans and regulate hormonal balance.

The pancreatic microenvironment plays a role in influencing cell fate decisions and

differentiation. Previous studies have explored how the cellular context and

microenvironment affect alpha and β cell differentiation and regeneration [296-299]. In this

regard, both in vivo animal models and in vitro cell culture systems have been employed to

explore islet regeneration mechanisms in the adult pancreas. Moreover, various approaches

have been utilized to stimulate the regeneration of β cells, encompassing pancreatectomy,

partial duct ligation, and inducing massive β cell loss through chemicals [300-303].

Comprehending the factors underlying the reduced proliferation observed in aging human

pancreatic islet β cells can provide significant insights in type 1 diabetes treatment, where

there is a deficiency of insulin-producing beta cells.

Previous scRNA-seq studies of human islet cells have unveiled signatures linked to both type

1 (T1D) and type 2 (T2D) diabetes [304-307], markers associated with islet maturation, islet

dedifferentiation, aging, and islet transdifferentiation [308-310]. However, these former

studies mostly investigated sorted human fetal pancreatic cells and transplanted insulin-

secreting β cells that closely resemble adult islets. It is known that beta cells are incompletely

functional at the neonatal stage; however, their roles, such as glucose-regulated insulin

secretion, develop and mature over time [311]. Nevertheless, no former studies extensively

investigated age-dependent transcriptomic changes in healthy islets by performing

comparative studies using neonatal and adult pancreas.

1.10 Pancreatic neuroendocrine carcinoma

Neuroendocrine neoplasms (NEN) [312-314], marked by neuroendocrine differentiation, can

develop in various epithelial organs throughout the body. Neuroendocrine cells [315] exhibit

features of both nerve cells (neurons) and endocrine cells, which release hormones into the

bloodstream. These cells play crucial roles in regulating various physiological processes,

including the control of hormone secretion, response to stress, and modulation of the

nervous system. In the context of diseases like cancer, understanding the neuroendocrine

cell state is essential for unravelling the complexities of tumor heterogeneity and behavior.

The gastrointestinal (GI) system is the predominant site, representing two-thirds of NEN(s),

with the pancreas being a major primary location [316, 317]. These neoplasms encompass

several distinct entities with diverse etiologies, clinical features, morphological and genomic
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characteristics. In this regard, the World Health Organization (WHO) classification of

Digestive System Tumour categorized NEN into three groups: well-differentiated

neuroendocrine tumors (NETs), poorly differentiated neuroendocrine carcinomas (NECs),

and mixed neuroendocrine-non-neuroendocrine neoplasms (MiNEN) [316, 318]. High-grade

gastroenteropancreatic NENs (GEP-NENs), including poorly differentiated GEP-NECs and

high-grade well-differentiated GEP-NETs, constitute a group of highly aggressive and

clinically diverse cancers. Clinical treatment currently utilized for GEP-NENs have been

adapted from those employed for small-cell lung cancers (SCLC) owing to their evident

clinical and histomorphological resemblances [316, 322]. Taken together, there is a pressing

demand for effective therapeutic interventions to address these challenging malignancies

[319-322].

Pancreatic neuroendocrine carcinoma (panNEC) is a rare yet highly aggressive cancer

among GEP-NECs, comprising only 1-5% of all pancreatic neoplasms [323, 324]. Molecular

studies have identified genetic alterations associated with panNEC, including mutations in

TP53, RB1, KRAS, and alterations in chromatin remodeling genes [323, 324]. However, the

defining characteristic of panNEC lies in its undifferentiated morphology that distinguishes it

from well-differentiated panNET. This differentiation status is determined by assessing

proliferation activity, indicated by a mitotic rate and Ki-67 proliferation index exceeding 20%.

The Ki-67 index, a measure of cell proliferation, is determined based on the percentage of

actively dividing tumor cells. panNETs exhibit histologically low-grade nuclear characteristics

and are classified as G1, G2, or G3 based on their Ki-67 index [318, 319]. In contrast,

panNECs exhibit a very high Ki-67 index and carcinoma-like nuclear features, indicating

aggressive clinical behavior, frequent metastases, chemotherapeutic resistance, and worse

survival outcomes. Although G1 panNETs reportedly demonstrate an overall survival of > 10

years, G2 panNETs typically exhibit the same of around 6 years [319]. Conversely, high-

grade panNENs present poorer survival outcomes, with patients diagnosed with NECs

surviving less than 10 months [325]. Notably, panNECs exhibit distinct morphological and

genetic features compared to well-differentiated tumors [323, 338]. Additionally, panNECs

carry a higher mutational burden compared to NET and share genomic traits with

adenocarcinomas of the same anatomical sites, such as frequent KRAS mutations in

panNEC and pancreatic ductal adenocarcinoma (PDAC) [324]. Patient-derived (PD)

xenografts of GEP-NENs provide insufficient insights into the functional and mechanistic

aspects of drug responses [326, 327]. Additionally, the restricted availability of NEN cell lines

fails to accurately represent panNEC biology [326, 327]- thereby, posing considerable

challenges in developing novel treatments and combination therapies for GEP-NEN patients,

including panNEC.
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Routine diagnostic markers for panNEC include Chromogranin A (CgA) and Synaptophysin

(SYP) [328, 329]. CgA is a protein found in the secretory granules of neuroendocrine cells,

and elevated levels in the blood or detected by immunohistochemistry in tissue samples can

indicate the presence of NE tumors or carcinoma. The presence of SYP is an indicator of

neuroendocrine differentiation. CD56, or NCAM1 (neural cell adhesion molecule) [330], is a

cell surface protein that is often expressed in neuroendocrine tumors. In combination with

CgA and SYP, it can be used as an immunohistochemical marker to confirm the

neuroendocrine nature of the carcinoma [331].

panNECs can manifest as either large cell or small cell forms, though this difference lacks a

clear molecular basis and clinical implications. panNEC(s) are typically diagnosed at an

advanced, metastatic stage, precluding curative surgical intervention. Palliative treatments

mainly involve platinum-based chemotherapy, particularly Cisplatin in combination with

Etoposide. Also, Temozolomide-based chemotherapy is presently employed in clinical

settings for high-grade GEP-NET [332] due to observed lower response rates with platinum-

based therapies [325]. Despite these aggressive treatments, the median overall survival for

patients with metastatic GEP-NECs remained less than one year [319-321]. The

complications in therapeutic response and emergence of multi-drug resistance in panNEC

majorly likely stem from the substantial intra-tumoral heterogeneity and plasticity within a

tumor that is not properly investigated yet. One of the primary challenges in developing

therapeutic strategies for panNEC is the lack of a clear understanding of the fundamental

mechanisms that drive tumor biology. This is further complicated by limited access to tumor

tissue and the absence of suitable in-vitro and in-vivo experimental models. Also, patients

with panNEC frequently exhibit vague symptoms, posing a challenge for early diagnosis.

Therefore, there is a pressing need to create a detailed cellular map of panNEC, aiming to

unravel its tumor biology, identify early diagnostic and novel therapeutic targets, and broaden

the horizons of precision medicine in panNEC treatment.

A recent scRNA-seq investigation [333] has offered valuable insights into the anatomical

subtypes and molecular heterogeneity of well-differentiated GEP-NET, along with its

interaction with the immune microenvironment. While the study extensively explored the

heterogeneity of lymphoid and myeloid immune cell types or states, there is limited

information about the subtyping of neuroendocrine (NE) tumor [333]. Importantly, this study

did not profile poorly differentiated NEC. Hence, the cause and consequences of the

significant clinical heterogeneity observed in panNEC are still in the early stages of

understanding, necessitating further single-cell research. While scRNA-seq has previously

been instrumental in characterizing shared and distinct cellular phenotypes in several solid



Introduction

43

tumors, applying it to the pancreas is reported to be challenging due to its high intrinsic

nuclease activity [72]. Instead, snRNA-seq emerged as a promising alternative that can be

utilized with frozen samples, facilitating high-resolution profiling of the tumor and immune

microenvironments.

Of note, a recent study conducted by Domenico et al. in 2020 [334] proposed that panNETs

has at least two origins- either from α- or β-cells within the islets of Langerhans, based on

epigenetic data. Furthermore, this study revealed that relapses and metastases most

frequently occurred within an intermediate group, which was found to have closer

associations with α-cells rather than β-cells. Interestingly, other studies based on gene

expression and enhancer analysis have also suggested the panNET origin from the same

[335, 336]. Conversely, Sadanandam et al. 2015 [337] found that a subset of aggressive

panNETs, referred to as "metastasis-like primary," exhibit a stemness associated phenotype

demarcated by the expression of pancreatic progenitor-specific genes, in comparison to well-

differentiated tumors. This suggests a potential shared origin for high-grade pancreatic NENs,

whether from immature multipotent pancreatic progenitors or specialized tip, trunk, or

endocrine progenitors [308]. Another seminal study by Yachida et al 2022 [338] postulated

that panNEC could be categorized into two subgroups, namely "ductal-type" and "acinar-

type," distinguished by their genomic and epigenomic characteristics. In the "ductal-type

panNEC," transcription factors such as SOX2, ASCL1, NKX2-1, EZH2, and E2F1 were

consistently overexpressed, with most exhibiting loss of RB1 protein and TP53 mutations

[338]. Conversely, the "acinar-type panNEC" displayed alterations in WNT signaling

(including mutations in APC and CTNNB1 genes), alongside with overexpression of

transcription factors like PTF1A, GATA4, NR5A2, and RBPJL dedicated for acinar lineage.

However, it was observed that phenotypically distinct cells shared a common origin only

when they exhibited specific genomic abnormalities. Previously, no deep phenotyping

approaches utilizing single-cell or nuclei RNA-seq were conducted to systematically examine

developmental trajectories and investigate transcriptomic resemblances among panNEC

samples or specific sub-states, aiming to explore potential common or multiple origins.
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Figure 1.5: Schematic illustrating possible origins of well differentiated pancreatic
neuroendocrine tumors (PanNET) and carcinoma (PanNEC).
Adapted from Domenico et. al. 2020 [334] and Yachida et. al. 2022 [338]. Illustration created
using InDesign software.
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2. Aims and objectives:

Within healthy tissues, a diverse array of specialized cells exists, each capable of adopting

specific functional states to execute distinct functions in a coordinated fashion. The

transcriptome of individual cells plays a crucial role in translating genetic and epigenetic

information into observable phenotypic traits, facilitating cellular communication with the

surrounding environment. Consequently, the transcriptome serves as a surrogate indicator

for cellular identity in both health and perturbed situations, including diseases and upon drug

treatment. The human placenta and pancreas are two strikingly different organs of

endodermal origin, serving vastly different functions in the body. Nonetheless, the

development of both organs involves intricate and complex processes of cellular

differentiation, migration, and cellular communication that can be investigated using

approaches like single cell or nuclei RNA sequencing. An explicit focus of this dissertation is

on the snRNA-seq based deep phenotyping approach that was deliberately applied to

different biological systems, having unconnected translational needs, and have remained

unsolved in prior research works.

Recent investigations utilizing single-cell sequencing techniques have yielded valuable

insights into the maternal-fetal interface, trophoblast subtypes, and endometrium within

healthy female reproductive tissues, both in non-pregnant states and during the first trimester

of pregnancy [146, 209]. A significant gestational time gap is unavoidable for studies

comparing maternal-fetal tissues in healthy term pregnancies and those affected by eoPE.

Early diagnosis of eoPE before the 12th gestational week is currently impractical, and

delayed diagnosis in later stages of pregnancy results in irreversible health consequences.

Therefore, a comprehensive understanding of the early patho-mechanisms underlying eoPE

is crucial for timely diagnosis and improved clinical management. The challenge lies in

obtaining uteroplacental tissue samples for eoPE studies, as this is associated with an

elevated risk of preterm miscarriage.

The primary objective of the first segment of this thesis was to establish a reference cellular

atlas of early (first-trimester) pregnancies, healthy term controls, and eoPE affected

pregnancies using snRNA-seq. A key goal was to delineate cell type/state specific differential

gene and transcriptomic dysregulation in eoPE in comparison to term controls to get

mechanistic insights into disease pathomechanisms. For comparative analysis, term controls

were selected instead of preterm controls, given that the latter group is often confounded by

clinical factors such as respiratory distress syndrome, developmental delays, and long-term
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cardio-metabolic complications [264-267]. Subsequently, the study aimed to investigate if a

significant fraction of trophoblast development drivers were dysregulated during eoPE, by

leveraging trajectory analysis. Since conducting longitudinal studies on placental tissue from

the same pregnancy during pregnancy poses challenges, it is proposed that computational

trajectory modelling of snRNA-seq data can partially overcome this limitation. Here, an

integration of snRNA-seq data analysis with a multi-omics framework encompassing 10X

Visium spatial transcriptomics and proteomics was considered to validate differentiation

markers characterizing the divergent trophoblast lineages. On this note, the trophoblast

syncytium was a major focus, with an emphasis on uncovering how perturbed syncytium

fusion could impact the development of eoPE. Importantly, this work majorly aimed to

understand how dysregulated senescence associated secretory phenotype (SASP) in

placenta could possibly associate with exaggerated hallmarks of eoPE, including placental

dysfunction, oxidative stress, apoptosis, and autophagy. Additionally, ISS was applied to

study the localization of specific SASP mRNA(s) in eoPE relative to term controls placenta.

In parallel, this thesis investigated the molecular and signalling level perturbations in the

analogous immune cell types/states in decidua and villi, using snRNA-seq data. Notably, this

dissertation sought to identify the potential cell(s) of origin for eoPE and specifically

examined whether the disease originates autonomously in both maternal and fetal tissues or

if it is translated from one to the other. Taken together, this extensive multi-omics

investigation is anticipated to uncover additional biomarkers crucial to understanding the

pathogenesis of eoPE and potentially pave the way for innovative treatments.

The second segment of this dissertation delved into understanding the developmental

progression and maturation of healthy islets (emphasized on beta cells) by comparing

neonatal and adult pancreas. To be precise, trajectory modelling of snRNA-seq data and

statistical frameworks such as Generalized Additive Models (GAM) were applied to find

significant gene expression changes as the neonatal cells differentiate towards adult. This

approach provided insights into the previously unexplored age-dependent developmental

trajectory of islets. The analyses relate to physiological processes and represent a different

use-case for snRNA-seq for otherwise unresolvable knowledge gaps in developmental

biology. Overall, integrating snRNA-seq data from neonatal and adult pancreases would

facilitate a comprehensive understanding of age-dependent changes in human islets- mainly,

the maturation of β cells and the establishment of glucose homeostasis during postnatal

development. In terms of translation, the results are expected to be relevant to diabetes

research and possibly to well differentiated panNET(s).
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Subsequently, the primary objective of the last segment of this thesis was to

comprehensively elucidate the cellular landscape of large cell pancreatic neuroendocrine

carcinoma (panNEC) by addressing the gaps in understanding the fundamental mechanisms

driving tumor biology. The rationale was to identify distinct malignant sub-states, and how

their signatures associate with tumor growth, progression, and clinical variability. Also, this

research aimed to overcome some of the challenges posed by limited access to tumor tissue

and the absence of suitable experimental models, by establishing the first reference snRNA-

seq based atlas for panNEC. To gain insights into lineage plasticity and possible

developmental origins of panNEC sub-states, single cell and nuclei RNA-seq data from both

healthy mouse and adult pancreas cell atlas were utilized [72, 339]. Specifically, adult

pancreas snRNA-seq data [72] was computationally integrated. It was assumed that

juxtaposing inferred panNEC sub-states with key cell markers and transcription factors

specific to various healthy pancreas cell types would shed light on their molecular origins.

Similarly, this thesis sought to explore the transcriptomic similarities between panNEC and

NEC in the lungs [340] and prostate [341], as well as with previously decoded oncogenic

programs found in PDAC [342]. A major focus was to investigate if any of the oncogenic sub-

state(s) demonstrate therapeutic vulnerabilities and could be exploited to develop treatment

strategies for panNEC. Through this endeavor, this work attempted to unravel novel

therapeutic targets, and advance precision medicine approaches for the treatment of

panNEC.
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3 Results | Maternal-fetal interface in eoPE
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3.1 Cohort establishment and data generation

The adopted study design involved separate sampling of 34 decidua and placenta villi

samples followed by performing snRNA-seq, comprehensive computational data analytics,

and multi-level validation of major data-driven findings, as illustrated in Figure 3.1. The study
population was carefully selected (see Methods; Supplementary Table 1), ensuring

homogeneity of recruited samples by excluding pre-eclamptic patients confounded with other

maternal disease conditions. Specifically, samples associated with acute kidney injury, liver

dysfunction, neurological symptoms, hemolysis, and thrombocytopenia [272] were removed.

Instead, the recruitment focused exclusively on one diagnostic criterion Fetal Growth

Restriction (FGR) that serves as the sole indicator for diagnosing severe fetal outcomes

associated with severe eoPE. In this way, the heterogeneous confounders associated with

this multi-factorial disease were reduced by solely focusing on PE placenta(s) with FGR. This

aligns with the International Society for the Study of Hypertension in Pregnancy (ISSHP)

[272], which considers FGR as one of the criteria for diagnosing PE in a patient who

develops high blood pressure after 20 weeks of pregnancy. This is because both conditions

often coexist and share underlying pathophysiological mechanisms linked to impaired

placental function [343, 344]. Subsequent investigation aimed to determine whether FGR is

independently linked to the PE signature or if it is characterized by an overlap with it.

Analysis of placental microarray data [345] from cases of eoPE with FGR (n=18) and eoPE

without FGR (n=19) did not reveal significant differences. This indicated that FGR did not

introduce major confounding factors independent of eoPE (Supplementary Table 1).

The temporal progression of eoPE was examined using uteroplacental tissue samples i.e.,

decidua and placenta villi stemming from early controls (n=13), healthy term controls (n=10),

and eoPE pregnancies (n=11) (Figure 3.1, Supplementary Table 1). Due to limitations in

longitudinal sampling, all snRNA-seq samples were obtained after elective surgical

termination in early pregnancy (at 5-10 weeks of gestation i.e., first-trimester), and during a

cesarean section in term pregnancy. In cases of eoPE, cesarean delivery occurred at 27-33

weeks of gestation. Labor-related confounding factors were mitigated by recruiting cesarean

section deliveries for both healthy term and eoPE groups. A concise cohort description table

is shown in Table 1.
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First-trimester
healthy

Term control
(healthy)

eoPE (diseased)

Early
villi

Early
decidua

Term
villi

Term
decidua

eoPE villi eoPE
decidua

Gestational age at delivery
(in days)

59 43 273.5 277.5 214 192

Maternal age (in years) 29.5 31 36 36 33 32
Maternal BMI (in kg/m2) 21.007 21.8299522 24.5 24.05 26.1 23.2
Total Samples (N=34) 10 3 6 4 6 5
Male (fetal sex) 3 1 5 3 6 4
Female (fetal sex) 7 2 1 1 0 1
FGR/SGA*
No FGR 10 3 6 4 2 (status

unknown)
0

YES FGR 0 0 0 0 4 5
* Fetal growth restriction / small for gestational age
Table 1: Cohort characteristics table
Table presenting an overview of the cohort characteristics, encompassing samples from the first
trimester (early), term controls, and eoPE villi and decidua. Median values for gestational age at
delivery (in days), maternal age (in years), and BMI (Body mass index; in kg/m2) are reported. The
total number of samples for early, term, and eoPE villi and decidua is summarized (N=34). Additionally,
the distribution of male and female samples, based on fetal sex, is provided. Samples identified as
male fetuses are categorized accordingly. Furthermore, the presence or absence of FGR/SGA status
in an eoPE patient sample is indicated. FGR was determined based on pathological fetal doppler
results and/or a baby percentile below 3, while the absence of FGR was defined according to the
consensus set by DRT, 20190114. For detailed references, please refer to Supplementary Table 1. To
address potential confounding factors related to labor, cesarean section deliveries were included for
both the healthy term and eoPE groups- hence, this is not separately tabulated.

As securing placental biopsies is not feasible in ongoing healthy pregnancies, term instead of

preterm controls were utilized in this study. As mentioned in previous section 1.11, healthy

term was considered as a preferred control group, given that preterm deliveries are at higher

risk of developing certain diseases and often confounded by super-imposed clinical

conditions [272, 293, 346-352]. Hence, there exists a gap of around 6-8 gestational weeks in

eoPE, as compared to term controls. To address this temporal gap and compensate for the

lack of gestation age matched controls, an external scRNA-seq data from Regi et al. 2019

[353] (n=16; Supplementary Table 1) that profiled uteroplacental samples of non-

preeclamptic, non-hypertensive preterm deliveries (before 34th week) were utilized. This

integration adjusted for major cell type/state-specific signatures that could introduce bias in

gene expression owing to preterm birth. (Figure 3.1; also, section 3.7 & Methods).
Potential confounder related to labor was eliminated by only including samples from births

delivered by cesarean section prior to labor.
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However, the above scRNA-seq study did not profile vSTB, the largest cell type constituting

the placenta. These cells have numerous nuclei but share a common cytoplasm, posing

challenges for isolating individual nuclei for sequencing. Additionally, the high level of RNA

degradation and the loss of nuclear integrity during cell isolation further complicate the

accurate profiling of gene expression in multinucleated cells using scRNA-seq techniques. In

this regard, a bulk microarray dataset [345] obtained from placental preterm and term

deliveries was leveraged to account for vSTB specific preterm signatures (see Methods &

Supplementary Table 1). This is because vSTB comprises of most cells in term villi,

specifically, the surface area of vSTB measures approximately 12 square meters at term,

compared to only 5 square meters at the 28th week of gestation [354]. More precisely, earlier

studies indicated that the number of vSTB nuclei reaches approximately 58 billion at term,

representing approximately 90% of the total villi [355-357]. Samples most suitable for

gestational age correction were identified from that study by matching the characteristics of

this study cohort: age (18 – 40), BMI (18.5 – 35, WHO normal to obese), delivery mode

(caesarean section), and the absence of FGR and chronic hypertension. After excluding

individuals with chronic hypertension (Supplementary Table 1), 10 preterm (<34 weeks) and

16 term (>37 weeks) samples were retained respectively and were considered for

downstream analysis.

Subsequently, a multi-omics analytics framework encompassing spatial proteomics and 10X

Visium [187] based spatial transcriptomic profiling were included for validating snRNA-seq

based findings w.r.t early control placenta (Figure 3.1). Also, for the first time, ISS technique

[185] was applied to spatially resolve and compare eoPE and term placenta samples to gain

mechanistic insights about disease biology (Figure 3.1). In a nutshell, multi-omics with a

major focus on snRNA-seq analysis was utilized to understand the longitudinal pathogenesis

of eoPE.
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Figure 3.1: Clinical and multi-omics study design with patient cohorts.
Schematic illustration of experimental design across stages of gestation - early control or first-trimester
pregnancy (e.ctrl), early onset pre-eclampsia (eoPE) versus late term control pregnancies (trm.ctrl).
Uteroplacental tissues were surgically procured and separately sampled to collect villi and decidua
from mostly same patients for snRNA-seq. Early controls (e.ctrl) corresponds to gestational age
ranging between 5-10 weeks, early onset pre-eclampsia (eoPE) induces delivery before 34 weeks
(ranged between 27-33 gestational weeks), and healthy term control (trm.ctrl) at 39 weeks (ranged
between 38-40 gestational weeks). The gestational age difference between healthy term controls
(trm.ctrl) and diseased pre-term eoPE were adjusted by using additional scRNA-seq data from preterm
delivered non-hypertensive obstetric pathologies.

3.2 A snRNA-seq atlas of the healthy and eoPE maternal-fetal interface

In this study, a separate sampling of placental villi (fetal part) and decidua (maternal part)

was performed to delineate the cellular architecture of the maternal-fetal interface, as

illustrated in Figure 3.2. Also, the cellular origin could be distinguished through distinct

sampling and processing of villous and decidual tissues (Figure 3.2 & Figure 3.3). It is to be
noted that the multinucleated STB layer covering the surface of placental villi posed a

challenge during the fluorescence-activated cell sorting (FACS) step for preparation in the

scRNA-seq analysis pipeline, potentially causing fragmentation. It is known that

multinucleated cells like vSTB are tedious to isolate and may exhibit functional or

transcriptional heterogeneity among their nuclei [357, 358]. Thus, traditional scRNA-seq,

designed for single-cell analysis, may not faithfully capture vSTB heterogeneity, as it tends to
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provide an average representation of gene expression across all nuclei within a

multinucleated cell. In contrast, a more comprehensive exploration of the maternal-fetal

interface in contact with maternal circulation and the depiction of the diverse nuclear content

of this multinucleated cell layer were facilitated by employing snRNA-seq profiling (Figure
3.2). Subsequently, the cellular landscape underlying the maternal-fetal interface was

deciphered using 10X snRNA-seq bioinformatic analysis (conceptualized in Figure 3.2).

Figure 3.2:Schematic illustration of experimental design and histological changes
across gestation in healthy and early onset preeclamptic (PE) pregnancies.
Placental tissue was separately sampled to collect villi and decidua from mostly the same patients for
10X single-nuclei RNA sequencing (snRNA-seq). Early tissues correspond to gestational ages
between 7-10 weeks. Late pregnancy included healthy term controls between 39-40 weeks and early
onset pre-eclampsia (early onset PE) to < 34 weeks. Figure adapted from Nonn, Debnath & Valdes et
al. 2022 [363] (unpublished) and re-sketched using Adobe InDesign software.

In total, there were 10 early villous samples, 6 term control samples, and 5 eoPE villi

samples profiled. Regarding decidua, there were 3 early samples, 4 term control samples,

and 5 eoPE samples collected. Firstly, Cellranger detected a median of 50,659 sequenced

reads (52,833 in villi, and 43,473 in decidua), with 91.15% median mapped reads (91.35% in

villi, and 90.25% in decidua). Secondly, QC measures included the removal of cell barcodes

confounded with ambient RNA(s) and random barcode swapping using CellBender [101],

followed by traditional QC analysis using scanpy toolkit [98], and subsequent elimination of

ambiguous clusters expressing conflicting cell type markers (see Methods). A concise

summary tabulating quantitative QC metrics at these three levels of analysis is depicted in

Table 2. Extensive QC per nuclei and per cell type/state were visualized and tabulated

(Extended Data Figure 1e, f; Supplementary Table 3-5).
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Number of nuclei
recovered

Number of UMI per
nuclei

Number of genes
detected per nuclei

CellBender level QC
statistics (before
filtering cells)

6134.5 (6211 in villi,
and 5534 in decidua)

1418.25 (1469.5 in
villi, and 1058 in
decidua)

984.5 (1026 in villi,
and 834 in decidua)

Scanpy level QC
statistics

5786.5 (6032.5 in villi,
and 5470.5 in decidua)

1521 (1633 in villi, and
1113.5 in decidua)

1128 (1224.5 in villi,
and 882.5 in decidua)

Downstream filtering 5729.5 (6026 in villi,
and 5470.5 in decidua)

1516 (1669.5 in villi,
and 1112.25 in
decidua)

1125.25 (1254.25 in
villi, and 880.75 in
decidua)

Table 2: QC statistics summarizing number of nuclei recovered, number of UMI per
nuclei and number of genes detected per nuclei across major levels of analysis.
QC summarized across three levels of computational analysis- i) CellBender [101] (denotes QC after
adjusting for ambient RNA expression and random barcode swapping, but before downstream filtering
of nuclei), ii) Scanpy [98] (filtering high quality nuclei, after filtering for %mtRNA, #UMI, #Genes) and iii)
Downstream filtering (after removing donor-specific and ambiguous clusters). Only median values are
tabulated.

Additionally, a detailed breakdown of QC across different gestational conditions and library

chemistry (10X V3 or V2) is summarized in Table 3.
Gestational condition 10X V3 samples 10X V2 samples
Early villi n=7

TC= 7035
#genes= 3088
N= 67037

n=3
TC= 1867
#genes= 1465
N= 12848

Early decidua Not added n=3
TC= 1661
#genes= 1248
N=15582

Late term control villi Not added n=6
TC= 1157
#genes= 851
N= 29702

Late term control
decidua

n=1
TC= 3374
#genes= 1942
N= 6554

n=3
TC= 801
#genes= 661
N= 14649

eoPE villi n=2
TC= 4707
#genes= 1892
N= 12365

n=3
TC= 1123
#genes= 790
N= 23685

eoPE decidua n=2
TC= 3233
#genes= 1887
N= 15405

n=3
TC= 898
#genes= 731
N= 13910

Table 3: Quantitative QC analysis presenting nuclei recovery, UMI, and gene detection
metrics across early, late term, and eoPE villi/decidua, stratified by 10X V3 and 10X V2
library chemistry.
Only median values are tabulated. TC= total UMI counts per nuclei; #genes= the number of genes
with at least 1 count in a nucleus. and N= #nuclei per condition; n sample size. The median
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values for TC and #genes are noted. 10X V3 detected a substantially higher number of UMI and
genes than 10X V2 for which ‘library chemistry’ was considered as a covariate during data integration
and downstream cell type/state markers analysis (see Methods).

Ultimately, snRNA-seq data analysis unveiled 24 and 15 cell types/states in the decidua and

villi, respectively encompassing immune, vascular-endothelial, matrisome, and trophoblast

compartments (Figure 3.3 a-b). This attributed to a total of 210,618 sequenced nuclei in both
tissues, after removing low-quality and confounded cells. Precisely, 95,253 nuclei originated

from the early controls (e.ctrl), 64,850 from late term controls (trm.ctrl) and 50,515 from

severe eoPE pregnancies (Figure 3.3 c-d; Supplementary Table 2-4). For data

harmonization of samples stemming from different gestational time points (i.e., early, term

controls, and severe eoPE), scVI/scANVI [112, 113] deep generative model-based tool was

applied. Individual donor ID served as a key batch, and additional covariates such as

sampling site (procurement center of the sample) and gestational condition were encoded in

the VAE model to minimize technical and batch-specific effects in the downstream analysis

(see Methods). The aim was to achieve optimal clusters, i.e., cell types or states segregated

by biological variability, as extensively discussed in “Section 3.6 scVI data harmonization
and evaluation of performance.” Of note, this complex integration and clustering was

separately performed for decidua and villi to delineate tissue specific cell types or states (see

Methods). Robust and specific markers characterizing decidual and villi cell types/states

were computed using the Logistic Regression framework [360, 361], out of which a few key

markers were visualized (Figure 3.4, Figure 3.5, Supplementary Table 8), which are further
elaborated in sub-sections 3.2.1 & 3.2.2, respectively.

Variations in cell composition within the immune, vascular-endothelial, matrisome, and

trophoblast compartments were observed at different gestational time points, reflecting

specific physiological and functional adaptations at different stages of pregnancy (Figure 3.3
c-d; Extended Data Figure 1c, d & g; Supplementary Table 2). Statistically significant

shifts in cell type/state composition were noted between early and term control pregnancies

(Extended Data Figure 1g). For instance, in early placenta samples, there were statistically

higher levels of vCTB and vCTBp (FDR < 0.01, two-tailed Wilcoxon rank sum test [362]

corrected for multiple states testing). This agrees with the known biology of first-trimester villi

[146, 209] where vCTBp represents mitotically active trophoblast progenitors whose active

proliferation is required for the expansion and growth of a functional placenta [214, 219,359].

Additionally, various cell types/states in villi, such as vFB and vHBC also showed differential

abundance in early samples compared to term controls (FDR < 0.01, two-tailed Wilcoxon

rank sum test [362] corrected for multiple states testing) (see Extended Data Figure 1g).
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Nevertheless, the limited number of samples in the late term and eoPE groups posed

challenges for statistical analysis of cell type/state composition.

In the villi, the syncytiotrophoblast (vSTB) was found to exist in various sub-states, namely

vSTB1, vSTB2 and vSTBjuv (illustrated in Figure 3.3b) and constituted the predominant cell

type of villi. Of note, 69.4% of villous nuclei in early pregnancy, 89.2% in healthy term

pregnancies, and 92.7% in severe eoPE belonged to trophoblast cell-types forming a barrier

separating maternal and fetal circulation (Figure 3.3d). Importantly, both vSTB1 and vSTB2

were found to be differentially abundant in term controls relative to early (FDR < 0.01, two-

tailed Wilcoxon rank sum test [362] corrected for multiple states testing) (Extended Data
Figure 1g). This is to support the continuous growth and maturation of the placenta to

accommodate the increasing needs of the developing fetus and to ensure efficient maternal-

fetal exchange of nutrients and gases [355-357]. Importantly, nuclei of fetal origin expressing

STB and extravillous trophoblasts (EVT) profiles were identified in decidua and termed as

dDSTB and dEVT, respectively (Figure 3.3a).
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Figure 3.3: Cellular landscape of maternal-fetal interface in healthy controls and early-
onset pre-eclampsia.
a) Decidual (maternal; n=12 samples) and b) placenta villi (fetal; n=22 samples) cell types/states
visualized using UMAP. Each dot represents a nuclear transcriptome of decidua and villi in (a) and (b)
respectively, colored by the cell type or state. The samples within decidua and placenta were
separately integrated using scVI/scANVI (single-cell variational inference) across all gestational time-
points to allow comparative analysis. (c,d) Cell composition (%) distribution per cell type of state,
numbers under bars indicate the sample size of sequenced nuclei. Compositions presented across
gestational time points (e.ctrl, trm.ctrl) and additionally for a disease state (eoPE) in late pregnancy for
(c) decidua and (d) placenta villi. e). Cell name abbreviations for annotated cell types and states
presented in this study. CCT, cell column trophoblast; CTB, villous cytotrophoblast; CTBpf,
cytotrophoblast post-fusion; STB, syncytiotrophoblast; DSTB, deported STB; VEC, vascular
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endothelial cell; LEC, lymphatic endothelial cell; LECP, LEC progenitor; SMC, smooth muscle cell; MC,
myocyte; FB, fibroblast; EpC, epithelial cell; MSC, mesenchymal stem cell; DSC, decidual stromal cell;
EB, erythroblast; HBC, Hofbauer cell; PAMM, placenta-associated maternal macrophage; Mono,
monocyte; MAC1, M1-like macrophage; MAC2, M2-like macrophage; NK, natural killer cell; PC,
plasma cell; DC, dendritic cell, Granul, granulocyte; v, villous/placental; d, decidual; p, proliferative; juv,
juvenile.

3.2.1 Identification of decidual cell types and states

The decidual cell types/states were deconstructed using key markers extracted from Logistic

Regression based GLM test [360, 361] (Figure 3.4; Supplementary Table 7). Additionally,
the cell type or state associated markers were also verified using the Negative Binomial

framework. In the mesenchymal compartment, progenitor-like dMSC and two sub-states of

decidua stromal cell, namely, DSC1 and DSC2 were detected. dDSC1 exhibited high

expression of markers such as ABI3BP, SYT1, SCARA5, RGCC, and SIPA1L2, whereas

dDSC2 expressed robust IGFBP1, IGFBP2, LUM and classical decidual marker prolactin

(PRL) genes (Figure 3.4). A previous scRNA-seq study by Vento-Tormo et. al. 2018 [209]

revealed that decidua compacta, a site of initial EVT invasion, is significantly enriched in

IGFBP1+ stromal cells. Also, two distinct sets of decidual fibroblasts- dFB1 and dFB2 were

identified that share key markers such as COL1A1, COL1A2 and COL3A1 (Figure 3.4).
Additionally, dFB2 noted specific expressions of genes such as EDIL3, TNC, SLIT2, and

SULF1 (Figure 3.4) associated with cell adhesion, migration, and ECM remodelling [364-

367]. Interestingly, dFB2 was detected only in eoPE and term conditions, not in early

samples (Figure 3.3c, Extended Figure 1d & Supplementary Table 2). Of note, dSMC
showed robust expression of GUCY1A2, ADGRL3, ACTA2, and specific RGS5 expression

(Figure 3.4). Activation of GUCY1A2 (guanylate cyclase) and subsequent cGMP production

contribute to vasodilation and relaxation of smooth muscle cells [368]. In smooth muscle,

RGS5 has been implicated in regulating vasoconstriction and blood vessel tone by

modulating signaling pathways involved in the response to vasoactive agents [369, 370].

Importantly, the cell types/states underlying decidual lymphoid and myeloid immune lineage

were characterized using previously demonstrated mutually exclusive key markers (Figure
3.4). Decidual Natural Killer cell type (dNK) was found to exist in three sub-states, namely,

dNK1, dNK2 and dNKp (Figure 3.3a & 3.4). As expected, all these three states exhibited

prominent expression of CD96 - an immune checkpoint cell surface receptor contributing to

NK cell activation and cytotoxicity [371, 372] (Figure 3.4). Another marker, NCAM1, or CD56
[373], is a neural cell adhesion molecule having an established role in NK cell activation and
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cell adhesion. Moreover, NCAM1 or CD56 expression is known to be associated with

different uterine NK cell subsets, where CD56bright NK cells are considered more

immunoregulatory and CD56dim NK cells are more cytotoxic [223, 374-376]. Two other

marker genes included KLRD1 (also known as CD94) and KLRC1 (also known as NKG2A)

that are known cell surface receptors playing crucial roles regulating functions of dNK, such

as, immune tolerance and immune surveillance [377]. In contrast to dNK1, the dNK2 sub-

state exhibited low but specific expression of CD160 and ITGAE (dNK2; Figure 3.4). CD160
is a glycoprotein expressed on the surface of NK cells that can act as both co-stimulatory

and co-inhibitory receptor, depending on the context and the ligands it interacts with [378,

379]. ITGAE (or, CD103) is known to be involved in promoting the retention of NK cells within

epithelial tissues, where it interacts with E-cadherin and facilitates local immune surveillance

and responses to infections or tumors [380-382]. On this note, dNKp is a proliferating sub-

state expressing MKI67, TOP2A, POLQ and CENPF, while sharing other dNK1/2 markers

(dNKp; Figure 3.4). dTcells were characterized using key expressions of THEMIS, CD3D,

CD2, CD8A, IL7R, CCL5 and CAMK4 (dTcells; Figure 3.4). THEMIS is known for its role in

T-cell development and activation [383, 384]. CD3D is a component of the T-cell receptor

(TCR) complex and plays a central role in signal transduction during T-cell activation [385].

CD2 is a cell adhesion molecule and co-stimulatory receptor involved in T-cell activation,

adhesion to antigen-presenting cells, and the formation of immunological synapses [386].

Previous literature suggests that CD8+ dTcells exhibit atypical cytokine profile that is possibly

linked to the local effects of progesterone [387]. Also, maternal–fetal tolerance may be

favored by CD8+ dTcells, and the decidual microenvironment promotes the residency of

CD8+ T cells to balance between tolerance and defense.

Furthermore, dMono1 and dMono2 constituted decidual monocyte sub-states characterized

by distinct set of markers. dMono1 exhibited specific expressions of CTSS, CD300E, FCN1,

LYZ, PRAM1, relatively robust LST1 while also expressing CD14 and MS4A6A (dMono1;
Figure 3.4). This might indicate the presence of classical monocytes [388]. On the other

hand, expression of S100A9, S100A8, AQP9, CSF3R, FCGR3B, and TNFRSF10C in

dMono2 indicate it to be neutrophil-like monocytes [389] (dMono2; Figure 3.4). Of note,
neutrophil-like monocytes might contribute to the immune surveillance within the decidua,

actively patrolling the tissue to detect and eliminate potentially harmful microorganisms or

abnormal cells [390]. Also, they are expected to play a role in regulating local inflammatory

responses, and tissue remodelling. Of note, AQP9 (Aquaporin 9) [391] encodes a water

channel protein whose expression might indicate metabolic adaptations required to adjust

with decidual immune responses. A former study by Shi et al 2022 [392] showed

compromised monocyte chemotaxis in AQP9−/− mice. Importantly, dMAC1 sub-state was
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characterized using key markers such as CD14, MRC1 (or, CD206), SPP1, CD163, F13A1,

RBPJ, and SELENOP (dMAC1; Figure 3.4). A previous study by Vondra et al 2023 [393]

performed flow cytometry of CD14+ dMAC cells and found two subpopulations-

CD163+CD206+ macrophage-like and CD163-CD206- monocyte-like. Of note, dMAC1

closely resembled their CD14+ CD163+ CD206+ cells. Next, dDC was characterized using

well-known dendritic cell markers, like HLA-DRA, HLA-DRB1 that encode major

histocompatibility complex class II (MHC-II) molecules, IRF8 and XCR1 and absence of other

immune lineage genes (dDC; Figure 3.4). A small subgroup of cells (n=203) expressing

MS4A1, BANK1, BACH2, and FCRL2 were found and annotated as dBcells (dBcells;
Figure 3.4).

Figure 3.4: Known and novel cell types and states of maternal decidua characterised
by discrete and functionally relevant markers.
Dot-plots featuring known and specific novel markers characterising each cell type or state in decidua
as computed by Logistic Regression based Generalized Linear model (Bonferroni adjusted two-sided,
P < 0.05 and log2FC cut-off of ±0.25). Genes are scaled across clusters. dDSTB, deported STB; EVT,
extravillous trophoblast; VEC, vascular endothelial cell; LEC, lymphatic endothelial cell; LECP, LEC
progenitor; SMC, smooth muscle cell; MC, myocyte; FB, fibroblast; EpC, epithelial cell; MSC,
mesenchymal stem cell; DSC, decidual stromal cell; EB, erythroblast; Mono, monocyte; MAC1, M1-
like macrophage; MAC2, M2-like macrophage; NK, natural killer cell; PC, plasma cell; DC, dendritic
cell, Granul, granulocyte; d, decidual; p, proliferative.

3.2.2 Identification of placental cell types and states

Known and novel cell types/states underlying the human placenta were annotated using

literature resources and Logistic Regression-inferred markers [360, 361] (Figure 3.5;
Supplementary Table 7). On a computational note, the cell type or state associated markers
were also verified using the Negative Binomial framework.

vCTB cell type exhibited robust expression markers, including YAP1, LGR5, TP63, PEG10,

PARP1, and FRAS1, aligning with the known biology of vCTB [146, 209]. YAP1 [394], a
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transcriptional co-activator, plays a crucial role in regulating cell proliferation and apoptosis in

CTB(s). LGR5 [292, 395, 396] may be involved in regulating the balance between self-

renewal and differentiation, contributing to the dynamic process of CTB differentiation. TP63

is also indicative of vCTB stemness [395] and is a member of the p53 family of transcription

factors, likely contributes to cell fate decisions, differentiation, and the establishment of

epithelial integrity [397]. On the other hand, PEG10 is a well-known CTB marker that is an

imprinted gene involved in cell proliferation and differentiation [398]. PARP1 is an enzyme

involved in DNA repair and likely contributes to the maintenance of genomic integrity,

ensuring proper cell function and response to stressors during trophoblast differentiation

[399]. FRAS1 is a component of the extracellular matrix [400] and might be involved in the

regulation of cell adhesion, migration, and tissue architecture during trophoblast

differentiation. Importantly, an actively proliferating sub-state of CTB, termed as vCTBp,

which is believed to represent trophoblast progenitors, was detected. vCTBp expresses

markers associated with cell-cycle regulation and G2M checkpoint kinases such as MKI67,

TOP2A, POLQ, CENPE, and CENPK (vCTBp; Figure 3.5). Apart from this, vCTBp

expresses major characteristic markers of vCTB, as mentioned above.

An intermediate trophoblast sub-state specifically expressing fusiogenic markers such as

GREM2, ERVFRD-1, ERVV-1/2, OTUB2, ABTB2, and DYSF, that recapitulated the

transcriptomic profile previously described by Liu et al. 2018 [401] as ERVFRD-1 positive

CTB cells was identified. This sub-state was regarded as vCTB pre-fusion (vCTBpf) (vCTBpf;
Figure 3.5). During early human placentation, the mononuclear layer of cytotrophoblasts

fuses to establish multinucleated syncytia responsible for hormonal production and nutrient

exchange between the mother and the child. Furthermore, all three vSTB states express

markers related to hormone secretion, such as CSH1, CSH2, and CGA [231-234], into the

maternal circulation, playing a crucial role in maintaining and modulating pregnancy

(vSTBjuv/1/2; Figure 3.5).

Also, a cell-column trophoblast (CCT) cell type was detected using well-known markers like

HLA-G, MYCNUT, NOTUM, DIO2, LAIR2, and ASCL2 (vCCT; Figure 3.5). HLA-G and

LAIR2 are both implicated in immune tolerance, contributing to the immunosuppressive

environment at the maternal-fetal interface, facilitating successful pregnancy [402-404].

MYCN upstream transcript (MYCNUT) and Achaete-scute homolog 2 (ASCL2) are

transcription factors known for regulating trophoblast differentiation and invasion. A detailed

description of vCCT and the role of different markers in regulating its functional heterogeneity

is provided in “Section 2.6 Subcluster analysis of invasive-phenotype cell column

cytotrophoblast cell type.”
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In terms of immune cell states, placental F13A1+/FGF13+ resident macrophages, known as

Hofbauer cells (vHBC), which uniquely express the hyaluronan receptor LYVE1 in the

immune cell subset, were identified [237-240]. These cells are suggested to maintain arterial

tone and possess pro-angiogenic functions. They are HLA-DR (-) but express markers such

as MRC1, SPP1, VSIG4, CD36, RBPJ, and MAF, revealing their transcriptomic similarity to

decidual macrophages [238] (vHBC; Figure 3.5). Interestingly, a highly proliferative sub-

state of vHBC characterized by MKI67, TOP2A, CENPE, and potentially denoting progenitors

of this immune cell type was detected (Figure 3.5; Supplementary Table 7). Together with
vHBC cells, vHBCp possibly contributes to maintaining immune tolerance, production of

various cytokines and growth factors, angiogenesis, and interaction with trophoblasts [237-

240]. Additionally, antigen-presenting HLA-DRA+ placenta-associated maternal

monocytes/macrophages (vPAMM), which are villi-associated and of extra-embryonic or

maternal origin, were identified. The annotation and transcriptomic profile of this sub-state

agrees with Thomas et al 2020 that characterized PAMMs using flow cytometry [238]. Villi

fibroblast (vFB) was characterized using key fibroblast markers, such as COL1A1, COL1A2,

COL3A1, CDH11, DCN, and SOX5 (vFB; Figure 3.5). Villi myocyte (vMC) was identified

based on their GUCY1A2, AGTR1 expression (vMC; Figure 3.5). Importantly, vVEC was

characterized using key vascular endothelial cell markers, including CD34, MEOX2,

PECAM1, LDB2 and DACH1 (vVEC; Figure 3.5).

Figure 3.5: Known and novel cell types and states of placenta villi characterised by
discrete and functionally relevant markers.
Dot-plots featuring known and specific novel markers characterising each cell type or state in the villi
computed by Logistic Regression based Generalized Linear model (Bonferroni adjusted two-sided, P
< 0.05 and log2FC cut-off of ±0.25). Genes are scaled across clusters. Placental F13A1+/FGF13+
resident macrophages (Hofbauer cells, vHBC) uniquely express hyaluronan receptor LYVE1 in the
immune cell subset, suggested to maintain arterial tone and have pro-angiogenic functions [,].
Additionally, antigen presenting HLA-DRA+ placenta associated maternal monocytes/macrophages
(vPAMM) were identified as villi-associated and of extra-embryonic (or maternal) origin, respectively [].
Villi myocytes were identified through their expression of AGTR1. CTB, villous cytotrophoblast; STB,
syncytiotrophoblast; DSTB, deported STB; CCT, cell column trophoblast; EVT, extravillous trophoblast;
VEC, vascular endothelial cell; MC, myocyte; FB, fibroblast; HBC, Hofbauer cell; PAMM, placenta-
associated maternal macrophage; v, villous; d, decidual; p, proliferative; juv, juvenile; pf, pre-fusion.
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3.2.3 Global transcriptomic similarity among clusters

A hierarchical clustering of cell types/states and Pearson correlation analysis was conducted

to infer the similarities in the global transcriptomic profile among the clusters identified in the

decidua and villi (Figure 3.6). As anticipated, vSTB1, vSTB2, and dDSTB were clustered

together, reflecting their conserved expression of key STB signatures and overall STB

phenotype. Additionally, vPAMM closely clustered with decidual macrophages, i.e., dMAC1

and dMAC2, as the former represents maternal-origin macrophages infiltrated into villi to

support the growing placenta. vHBC- being functionally analogous to decidual macrophages

also revealed high positive Pearson correlation scores between dMAC1 and dMAC2.

Figure 3.6: Global transcriptomic similarities among decidua and villi clusters.
Pearson correlation map of the highly variable genes (n = 6000) for identified cell-types and states.
The clear uniqueness shared by STB groups also reveals clear differences in transcriptome between
the novel vSTBjuv nuclei state and other STB nuclei subgroups. Because traditional characterization
markers (such as CGA, CYP19A1, KISS1) were used to describe STB are fulfilled by all groups, this
suggests that vSTBjuv has additional unknown functions in pregnancy. Expression data of early late
control and preeclampsia samples is shown.
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3.2.4 Cell types/states of maternal and fetal origin

Additionally, the examination of the maternal and fetal origin of cell types and states in both

decidua and villi was conducted through the analysis of chromosome X- and Y-linked gene

expression in cell clusters of samples from male fetuses and their mothers. As anticipated,

the villi clusters originating from male fetuses solely exhibited expression of fetal Y-linked

genes such as TTTY14 and USP9Y. In contrast, X Inactive Specific Transcript (XIST) was

specifically expressed in vPAMM and vTcell in villi of male fetuses, indicating that these cells

are of maternal origin, and either infiltrated into the fetal tissue or attached to the villous

surface from maternal circulation (Figure 3.7). On similar note, the fetal origin of dDSTB was

confirmed by the expression of Y-specific genes and negligible XIST, as shown in Figure 3.7.

Figure 3.7: Cell types and states of maternal and fetal origin.
Dotplot featuring gene expression of key sex-associated genes on male fetus placenta samples only.
Decidual cell groups are the only ones with high expression of XIST, suggesting decidual samples are
of maternal orgin. XIST expression in the villous derived T cell & placenta-associated maternal
macrophage (PAMM) groups suggest these are also maternal in origin and captured in the villi as
invaded or adhered cells.

3.3 Functional heterogeneity of vSTB1 and vSTB2

snRNA-seq analysis demonstrated notable transcriptional heterogeneity among vSTB nuclei

and supported segregating vSTB into three distinct sub-states (vSTB1, vSTB2, vSTBjuv), all

characterized by a pronounced secretory capacity and different gene enrichment profiles

(Figure 3.3b & 3.5a). To investigate functional differences between vSTB1 and vSTB2 sub-

states, a multi-variate Logistic Regression test was conducted (average log2FC >=0.25,

Bonferonni adjusted p-value < 0.01) (Supplementary Table 7). vSTB1 was found to be the

most prevalent nuclear state within the syncytial nuclei and displayed a transcriptomic profile

associated with typical vSTB functions, including hormone secretion (e.g., CSH1, CSHL1,

CSH2), estrogen biosynthesis (CYP19A1), and protein secretion (ADAM12, PAPPA,
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PAPPA2). Notably, robust, and specific expression of KYNU, a gene known for regulating

placental NAD+ synthesis and the supply of fetal tryptophan and kynurenine metabolites [405]

(Figure 3.8a), was observed in vSTB1.

In contrast, lower expression of these markers was observed in vSTB2 nuclei, implicating

partial transcriptional inactivation of traditional vSTB programs. These nuclei were

characterized by higher expression of PDE4D, an enzyme involved in cAMP and cGMP

regulation (Figure 3.8a). Previously, PDE4D was described to induce intra-uterine

inflammation in gestational tissues and preterm labor [406]. Of note, selective inhibitors

against PDE4 are currently in clinical trials for the disease treatment related to inflammatory

disorders [407]. vSTB2 also expresses TENT5A, which is implicated in mRNA stabilization

and potential response to infection [408] (Figure 3.8a). Unique genes upregulated in vSTB2

are associated with pathways related to ubiquitin-mediated proteolysis and suppression of

genes involved in the cell cycle. Additionally, vSTB2 exhibited repression of genes

associated with DNA damage response (e.g., DDX5, DDX17, DDX39B) and cyclin-

dependent kinases (e.g., CDK19), suggesting that vSTB2 might be a senescent STB sub-

state (Figure 3.8a) and possibly represents the terminal fate in the differentiation trajectory.

This could be further supported by the downregulation of fusion genes in STB2, including

LIFR, GCM1, and DYSF (Figure 3.8a; Supplementary Table 7).

To further understand the functional relevance of vSTB1 and vSTB2, Metascape [409]

analysis was performed to identify enriched pathways and signaling programs using the top

100 markers for these two nuclear states (Figure 3.8b). Both vSTB1 and vSTB2 exhibited

enrichment in cell surface interactions at the vascular wall (R-HSA-202733, q-

value<0.000001) and NABA Matrisome Associated (M5885, q-value=0.000007). Additionally,

vSTB1 marker genes were uniquely enriched for processes related to steroid hormone

metabolism (R-HSA-196071, q-value=0.000008), the JAK-STAT signaling pathway

(hsa04630, q-value=0.006642), and the PID integrin A9B1 pathway (M118, q-

value=0.022035). On the other hand, the top 100 marker genes for vSTB2 were uniquely

enriched in estrogen-dependent nuclear events downstream of ESR-membrane signaling (R-

HSA-9634638, q-value=0.009465) and the PID ARF6 pathway (M86, q-value=0.047032), as

detailed in Supplementary Table13. Furthermore, for both vSTB1 and vSTB2, markers

showed enrichment in transcription factors and regulators, including TFAP2A (q-

value=0.00004), ESR1 (q-value=0.006.31), SP1 (q-value=0.015849), and CEBPB (q-

value=0.019953). Presence of these shared transcription factors in both vSTB1 and vSTB2

possibly indicate ongoing hormonal activity in these nuclei states. Of note, TFAP2A is a TF

known to initiate early specification of trophoblast progenitors by placental genes activation
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and by supressing pluripotency regulator OCT4 [410], and further for regulating terminal

differentiation of vSTB [411]. A previous study detected ESR1 protein in the nuclei of cultured

human vSTB cells [412]. In another investigation by O'Neil and colleagues [413], estrogen

was shown to activate the LEP promoter in choriocarcinoma JEG-3 cells through ESR1. This

suggests that the regulation of leptin biosynthesis might rely on the presence of a functional

ESR.

Next, vSTB1 marker genes were found to be uniquely enriched for the transcription factors

CREB1 (q-value=0.001995), MYBL2 (q-value=0.00631), ATF1 (q-value=0.019953), and

NR5A1 (q-value=0.031623). In contrast, the top 100 vSTB2 marker genes did not exhibit

unique enrichment for any transcriptional regulator, as outlined in Supplementary Table 7.
The enriched transcription factors CREB1, MYBL2, ATF1, and NR5A1 in vSTB1 markers are

associated with the EGF/EGFR-pathway. This suggests EGFR signaling, a pathway

commonly linked to vCTB continues to regulate vSTB1. Also, NR5A1 (or, SF1) is known to

regulate steroidogenesis [414]- a process essential for maintaining a supportive hormonal

environment during pregnancy.

Figure 3.8: Functional heterogeneity between vSTB1 and vSTB2 nuclear sub-states.
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(a) Dotplot featuring gene expression of markers characterising the two predominant nuclear states in
the syncytial layer (STB). (b) Enrichment heatmap displaying top shared and unique pathways
comparing vSTB1 and vSTB2 sub-states, using a discrete color-scale to represent statistical
significance (-log10(p)). Gray color indicates a lack of significance.

3.4 Validation of decidua-derived STB sub-state

Decidua-derived dDSTB nuclei of fetal origin were characterized by robust expression of

traditional STB markers such as CGA, CSH1, CYP19A1, and PSG4, but not EVT lineage

marker HLA-G (Figure 3.4). This finding was validated by localizing the dDSTB population in

maternal blood by immunohistochemistry (IHC) in decidual sections (Figure 3.9). Specifically,
IHC robustly stained GDF15, and ꞵ -hCG (encoding CSH1), but was negative for HLA-G.

However, it remains to be elucidated whether dDSTB results from sampling techniques or

are caused by the physiological shedding of STB nuclei, as it is known that STB sheds off its

nuclei into the maternal circulation.

Figure 3.9: Immunohistochemical validation of dDSTB in maternal decidua.
GDF15 expressed in dDSTB is localised by immunohistochemistry in decidual tissue. dDSTB is
identified among maternal erythrocytes in maternal vessels as an HLA-G negative β-hCG positive
GDF15pos fragment (n=3, representative figure shown). Acknowledgment: Lena Neuper & Prof.
Berthold Huppertz at the Division of Cell Biology, Histology and Embryology, Gottfried Schatz
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Research Center, Medical University of Graz, Austria, and is provided as a validation of my
computational finding of dDSTB sub-state in decidua snRNA-seq data (taken with permission).

3.5 Juvenile syncytiotrophoblast state

Among the three distinct vSTB nuclear states, a novel sub-state of vSTB termed as "juvenile

STB" (vSTBjuv) was uncovered. Possibly, this reflects an immature nuclear state of vSTB

that originates before committing to the fully differentiated STB, as discussed later in the

trajectory modelling (refer to Section 2.8). vSTBjuv sub-state displayed relatively higher

expression of hormone encoding genes, including placental lactogen (CSH2), and classical

vSTB markers such as KISS1, CGA, CYP19A1 TFPI, and TFPI2, along with exocytotic

expression signatures such as HSPB1, CD63, FURIN (Figure 3.10a).

A comparison of vSTBjuv with other vSTB types revealed differentially upregulated genes,

including DLK1, ACTB, TMSB10, FSTL1, and SPARC (Logistic Regression, Bonferroni

adjusted p-value < 0.001)- known to be associated with cytoskeletal stability and extracellular

matrix organization, as detailed in Supplementary Table 7. Hence, it is speculated that

vSTBjuv aids in the formation and maintenance of the outer placental wall before acquiring a

traditional STB phenotype (i.e., endocrine, and secretory by nature). This heterogeneity

might reflect a “division of labor” in the STB barrier of the placenta. No significant differences

in the abundance of STBjuv nuclei between eoPE and term controls were observed,

suggesting a gestation-independent role of this state. However, given the low number of

samples in eoPE and term groups, it is recommended to validate this observation in a larger

cohort before drawing conclusions.

To experimentally localize vSTBjuv nuclei within the multinucleated vSTB layer, markers that

technically best distinguished vSTBjuv from vSTB1 and vSTB2 (Supplementary Table 7)
were considered. This included TENM3 (FC= 12.4, BH-corrected p-value adj. < 0.0001),

which promotes homophilic adhesion [415], and DLK1 (FC= 6.2, BH-corrected p-value

adjusted < 0.0001), a paternally imprinted gene correlated with birth weight [416]. Thereafter,

In-situ mRNA hybridization [183, 418] was performed with DLK1 and TENM3 rolling padlock-

probes. Specific high-affinity probes that can distinguish single nucleotide differences in

sequences were used [418]. Moreover, key marker and important pregnancy hormone,

human chorionic gonadotropin β-hCG was added to capture the vSTB layer. Together, this

allowed the precise localization of TENM3pos/DLK1pos nuclei within a β-hCGpos STB

cytoplasm layer in the early and late pregnancy (or, term control) placental villi (Figure
3.10b).
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Figure 3.10: | vSTBjuv sub-state characterized by computationally and experimentally
validated markers.
(a). Dot-plot with markers characterising the novel vSTBjuv nucleus state; computed by Logistic
Regression based Generalized Linear model (Bonferroni adjusted two-sided, P < 0.05 and log2FC cut-
off of ±0.25). Genes are scaled across clusters. (b) Representative images showing the localisation of
the novel vSTB nucleus state vSTBjuv; immunofluorescence staining with vSTB protein marker β-hCG
(green) combined with padlock probe based in situ mRNA hybridisation for vSTBjuv markers DLK1
and TENM3 (arrows). n=3 independent experiments with 2 biological replicates each per gestational
time. CTB, cytotrophoblast; STB, syncytiotrophoblast; p, proliferating; pf, pre-fusion; juv, juvenile state.
Rolling padlock probe experiment and figure generation for (b) was performed at Dr. Muller/Denchend
lab at MDC Berlin, Germany, and used to support my computational findings of novel vSTBjuv sub-
state as shown in (a).

3.5.1 Technical evaluation of novel STBjuv sub-state

To account for possible technical confounders in the snRNA-seq data for diligently identifying

cell type/states, a mitochondrial (MT) read cut-off at 5% was employed as a quality control

threshold. Additionally, the percentage of MT-transcripts per nuclei was used as a continuous

covariate in the scVI data integration model and differential gene expression tests. Hence,

the finding of novel STBjuv sub-state was not driven by artifacts such as %MT-transcripts per

nuclei. Doublet analysis using Scrublet [103] was also performed to flag technical doublets,

that later confirmed that vSTBjuv nuclei were not confounded by doublets (Extended Data
Figure 2).

Furthermore, amortized Latent Dirichlet Allocation (LDA) [417] was performed to investigate

whether any cluster-associated topics were confounded by contradictory marker expression

as demonstrated by Surywanshi et al. in 2018 [146] (see Methods). The presence of genes

from conflicting lineages (such as astrocytes and vascular cells, or STB and EVT) could

indicate biological doublets and hence, introduce contamination in cell type/state annotation.

Conceptually, a distinct cell type should map to a unique topic inferred by LDA as depicted in

Extended Data Figure 3. Cell states or sub-clusters usually share the topics of the mother

cluster (or “cell type”) and additionally may harbor a unique topic. However, LDA analysis

showed that vSTBjuv robustly maps to ‘topic-14’ dominated by vSTB features, and it did not

bear other conflicting topics, i.e., mesenchymal, or immune related topics (Extended Data
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Figure 3). Also, the topics describing vSTBjuv was not dominated by mitochondrial genes. A
full breakdown of topics is also provided in Extended Data Figure 3.

3.6 scVI data harmonization and evaluation of performance

For addressing the complex task of data harmonization, a state-of-the-art data integration

tool, scVI [112], was employed, as demonstrated to be a consistent top performer in Luecken

et al. 2022 [114]. This technique is referred to as 'data harmonization' rather than batch effect

correction to emphasize that the input datasets stemmed from very different sources (e.g.,

library, sampling sites) and from samples from different gestational time-points having

different underlying cell type/state composition.

The individual donor (Donor ID) was considered as the key batch in the variational encoder

model. Furthermore, batch effect owing to sample procurement center (sampling site),

biological (gestational time points), and technical covariates (library chemistry, total UMI

counts, total number of genes detected, percentage of mitochondrial transcripts per

nuclei, %XIST per nuclei) was considered. Performance of the integration was evaluated

using well-established metrics Adjusted Rand Index (ARI), Adjusted Mutual Information (AMI),

and cell-type adjusted silhouette width (ASW) per batch as used in prior integration

benchmarking studies [114, 115].

For this study, a very detailed description of the strategy investigating the batch effect across

four analyses is included:

▪ Case 1: Technical replicates to establish an upper bound of integration quality

▪ Case 2: Different library preparation methods

▪ Case 3: Different sampling sites

▪ Case 4: Different sampling site and library preparation methods

After an exhaustive batch effect analysis, the integration results were compared to other

studies, and it was concluded that majority of the batch effects had been regressed out. Only

results on those cell states for which there was high confidence that integration performed

reliably were presented. Below, details of each of the four groups of analysis are provided. A

multi-panel figure for the four cases is presented as Figure 3.11. A comprehensive table

summarizing the statistics is reported as Supplementary Table 6.
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Case 1: Batch effects evaluation between technical replicates

In the consideration of modeling batch effects in the experimental design, technical replicates

were included for a sample (577_1 and 577_2) to establish an upper bound for the quality of

integration. Comparable numbers of cells (6185 and 6081 cells, respectively), median genes

expressed (788 and 756 genes), and similar cell state compositions characterized both

samples (Figure 3.11 a-d, technical replicates). The relative proportion of cell-states in the

two technical replicates is depicted using a kernel density plot (KDE) reflecting the density of

cells in an embedded space and concordance in cell composition. As anticipated, both the

ARI (0.0037) and AMI (0.003) scores were close to 0, indicating near-perfect integration.

Similarly, the average ASW per batch (0.92) was close to 1, also indicating decent batch

effect removal. Furthermore, the ASW at the cell-state level was investigated, indicating

excellent scores for a larger number of cell states, with intermediate scores for villi myocytes

and slightly lower scores for T-cells. These cell states were not the focus of our study

(Supplementary Table 6, Technical replicate 557).

Case 2: Batch effects evaluation between different library preparation chemistries

Similar to establishing an upper bound for the similarity of samples through the analysis of

technical replicates, a more extreme effect of using different library preparations was also

investigated.

In the case of early (first-trimester pregnancy), samples were processed using 10X V3 (n=7)

and 10X V2 (n=3) chemistries. The groups had 67037 and 12848 cells, with median numbers

of genes expressed being 3088 and 1465 using 10X V3 and 10X V2 chemistries,

respectively. The relative cell state composition was also similar (Figure 3.11 e-h, Library
chemistry) with more vHBCp, vCTBp, vFB, vMC, vHBC, and vPAMM in 10x V3 samples

(Figure 3.11 f-h, Library chemistry). ARI and AMI values (0.002 and 0.009) were close to

zero, suggesting a negligible effect of library chemistry. The average ASW per batch was

0.88, indicating a decent removal of library effects. Furthermore, the ASW at the cell-state

level was investigated, indicating excellent scores (>0.90) for a larger number of cell-states

relevant to the first-trimester pregnancy, such as vCTB, vCTBp, vCTBpf, vCCT, and vSTB1

(Supplementary Table 6, Library chemistry). All late term controls were processed using

10X V2 chemistry. Hence, the library was not considered a confounder. Differences in eoPE

samples are presented in Case 4.
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Case 3: Batch effects evaluation between sampling sites (procurement) in late
samples

Late samples were equally split between both Oslo and Graz sites (n=3 and n=3,

respectively). Both samples had comparable numbers of cells (15733 and 13969 cells,

respectively), median genes expressed (827 and 894 genes), and similar cell state

compositions with some exceptions (Figure 3.11 i-l, Sampling site term controls). The ARI
(0.016) and AMI (0.027) were close to zero, indicating that our cell state labels were not

influenced by the sampling site. The average cell state ASW per batch was 0.88, indicating

appropriate removal of sampling effects within a cell state identity. Cell-state ASW per batch

was very good (> 0.90) for the major cell states such as vCTB, vSTB1/2 & vSTBjuv,

indicating optimal batch-mixing while conserving biological information (Figure 3.11j &
Supplementary Table 6). There were increased proportions of PAMM, vT-cells, vFB, and

vMC in Graz samples (Figure 3.11 j-k). Hence, no key conclusions were drawn from these

cell populations in the thesis. Despite observing slightly more vCTB in Graz samples, they

mixed well between sites as reflected by ASW (Supplementary Table 6, Sampling site late

controls).

Case 4: Batch effects evaluation between sampling site and chemistry in eoPE
samples

Furthermore, eoPE samples were split between both Oslo and Graz sites (n=3 and n=2,

respectively). The numbers of cells were 17604 and 12365 cells, respectively (median ~5900

cells), median genes expressed 790 and 1892 genes, respectively, and similar cell state

compositions (Figure 3.11 m-p, Sampling site eoPE). A higher number of profiled genes

were because the Graz samples were processed using 10X V3 chemistry compared to 10X

V2 used for Oslo samples. Hence, the library was an overlapping confounding factor here.

The ARI (0.004), and AMI (0.028) scores were close to zero, indicating that our cell-state

labels were not majorly influenced by sampling sites and library chemistry. The average

ASW is 0.80, indicating good integration. ASW for major cell states such as vSTB1/2/juv

were very high, which rules out the influence of sampling site (Supplementary Table6).

However, we observed relatively more vFB in Graz eoPE samples that might have lowered

its ASW (Figure 3.11 n). Immune cells such as PAMM & vTcells were slightly depleted in

Graz samples relative to Oslo, which apparently also have lowered their ASW score.

However, no major conclusions were drawn for these cell states at any point in the

manuscript. Even though vSTB2 is relatively more in Oslo, this group is well integrated

(ASW= 0.88) (Supplementary Table 6, eoPE sampling site).
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Figure 3.11: Batch effect assessment from snRNAseq placenta samples in this study.
(a) Violin plots illustrating the detected (log1p per sample) total UMI counts representative of total RNA
transcripts (left) and number of total genes having at least one positive count in a cell (right) for
technical replicates 557_1 and 557_2 (n= 6185 and 6081 nuclei respectively). (b) UMAP embeddings
split by technical replicates 557_1 and 557_2 visualizing distribution and concordance of cell-
types/states. (c) Kernel density estimation revealing similar composition in technical replicates 557_1
and 557_2. Values are scaled from 0-1 for comparison and high-density values suggest strong
contribution of cells to the overall dataset. (d) Stacked bar-plot depicting similar relative composition of
cell types/states in technical replicates 557_1 and 557_2. (e) Violin plots illustrating the detected
(log1p per sample) total UMI counts representative of total RNA transcripts (left) and number of total
genes having at least one positive count in a cell (right) for early (first trimester) pregnancy samples
split by library condition- 10X V2 (n=3; 12848 nuclei) and 10X V3 chemistry (n=7; 67037 nuclei). (f)
UMAP embeddings of early pregnancy samples split by 10X V2 and 10X V3 library samples
visualizing distribution and concordance of cell-types/states. (g) Kernel density estimation reflecting
contribution of cells to overall composition in 10X V2 and 10X V3 library samples (early). Values are
scaled from 0-1 for comparison and high-density values suggest strong contribution of cells to the
overall dataset. (h) Stacked bar-plot depicting similar relative composition of cell types/states in 10X
V2 and 10X V3 library samples (early) with more vHBCp, vCTBp, vFB, vMC, vHBC, and vPAMM in
10x V3 samples. (i) Violin plots illustrating the detected (log1p per sample) total UMI counts
representative of total RNA transcripts (left) and number of total genes having at least one positive
count in a cell (right) for late term controls split by sampling site- Graz (n=3; 13969 nuclei) and Oslo
(n=3, 15733 nuclei). (j) UMAP embeddings of term control samples split by sampling site- Graz and
Oslo visualizing similar distribution and concordance of cell-types/states in the two categories. (k)
Kernel density estimation reflecting contribution of cells to overall composition in Graz and Oslo term
control samples. (l) Stacked bar-plot depicting similar relative composition of cell types/states in Graz
and Oslo term controls showing increased proportions of PAMM, vT-cells, vFB and vMC in Graz
samples. (m) Violin plots illustrating the detected (log1p per sample) total UMI counts representative of
total RNA transcripts (left) and number of total genes having at least one positive count in a cell (right)
for eoPE samples split by sampling site- Graz (n=2; 12365 nuclei) and Oslo (n=3, 17604 nuclei). (n)
UMAP embeddings of eoPE samples split by sampling site- Graz and Oslo visualizing similar
distribution and concordance of cell-types/states in the two categories. (o) Kernel density estimation
reflecting contribution of cells to overall composition in Graz and Oslo eoPE samples. (p) Stacked bar-
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plot depicting similar relative composition of cell types/states in Graz and Oslo eoPE samples showing
slight depletion in immune cells (PAMM & vTcells) in Graz samples relative to Oslo.

3.7 Subcluster analysis of invasive-phenotype cell column cytotrophoblast
cell type

vCCT cells were defined as the 'cell column trophoblast' that has the potential to differentiate

into decidua invading extravillous trophoblast (dEVT) during early placental development

(Figure 3.3 a-b). The formation of this trophoblast sub-state takes place at locations where

placental villi attach to the decidua, and hence, referred to as anchoring villi that can give rise

to structures known as cell columns. However, these cell columns are not uniform. As cells

progress distally within the column, they undergo phenotypic changes and acquire EVT gene

expression patterns. Hence, sub-clustering analysis of vCCT was performed to dissect this

heterogeneity on a transcriptomic level.

The Leiden algorithm (scanpy implementation) with low resolution (=0.3) was applied,

yielding 7 clusters. The subgroups were then merged based on the expression of key

markers to distinguish proximal CCT (pCCT), distal CCT (dCCT/pEVT), and an additional

transition state of CCT (Figure 3.12a). Overall, pCCT is characterized by pronounced levels

of EGFR, TEAD4, TP63, and NOTCH2 that is regarded as the 'EGFR signature group'

(Figure 3.12 b-d). During pCCT formation, EGFR activation likely contributes to acquiring

migration and invasive properties of these cells [419], allowing them to penetrate the

maternal decidua and remodel maternal spiral arteries. On a similar note, Hippo pathway

target, TEAD4 indicates stemness and self-renewing property [420, 421], and possibly

regulate vCCT differentiation together with YAP1 [421]. Moreover, YAP-TEAD4 complexes

were found to suppress markers of vSTB differentiation [412].

The proliferative proximal trophoblasts (pCCT) progress toward the distal end of the column

and transition into non-dividing trophoblasts (dCCT). This transition is marked by increased

expression of EVT-specific marker genes, including HLA-G, NOTUM, and HPGD in the

dCCT or, pEVT (Figure 3.12b). Human Leukocyte Antigen-G or HLA-G is an immune

tolerance molecule. During EVT differentiation, it helps regulate the immune response by

suppressing the activation of maternal immune cells, thus preventing immune rejection of the

developing embryo [402, 403]. Of note, NOTUM encodes an enzyme modulating Wnt

signaling, which is critical for trophoblast invasion and placental development [422-425].

HPGD (15-Hydroxyprostaglandin Dehydrogenase) is an enzyme that plays a role in

prostaglandin metabolism [426]. Specifically, it helps regulate inflammation by breaking down
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prostaglandins, and maybe involved in regulating the inflammatory response in the maternal-

fetal interface during EVT invasion.

Moreover, a significantly increased expression of ECM remodeling genes such as ITGA1,

ITGA5, TIMP2, MMP2, ADAM12 in the dCCT (Figure 3.12b). Integrins are cell surface

receptors that mediate cell adhesion and signaling. ITGA1 and ITGA5 likely facilitate EVT

attachment and invasion by interacting with extracellular matrix components and signaling

pathways in the uterine environment [427]. MMP(s) such as MMP2 are a family of enzymes

that play a crucial role in trophoblast invasion [427-429]. They degrade the extracellular

matrix, allowing EVT cells to penetrate maternal tissues. Specifically, MMP2 was found to be

induced by canonical Wnt and PI3K-AKT pathway [428]. In this regard, TIMP2 (Tissue

Inhibitor of Metalloproteinases 2) is involved in regulating the activity of matrix

metalloproteinases (MMPs). In EVT differentiation, TIMP2 helps control the activity of

MMP(s), which are enzymes that facilitate tissue remodeling and invasion by degrading

extracellular matrix components [429].

Notably, robust expression of TEAD1 (TEA Domain Transcription Factor 1) and WWTR1

(WW Domain Containing Transcription Regulator 1) was also recapitulated, known as critical

players in the regulatory network that governs the invasive properties of EVT (Figure 3.12b)
[420, 421, 430]. These two proteins are part of the Hippo signaling pathway and interact with
each other to control various cellular processes. In conjunction with WWTR1, TEAD1 acts as

a transcriptional co-activator and forms a complex that binds to specific DNA sequences,

known as TEAD-binding sites. By doing so, they regulate the transcription of genes that are

critical for EVT differentiation and invasion. Their downstream targets include genes

responsible for extracellular matrix degradation, cell adhesion such as ITGA1, ITGA5, and

MMP2. Moreover, TEAD1 and WWTR1 are involved in controlling the balance between EVT

proliferation and differentiation. Specifically, they play a role in promoting the differentiation of

CTB(s) into invasive EVTs, which is essential for placental development and the implantation

process. Importantly, the activity of TEAD1 andWWTR1 can be influenced by other signaling

pathways, such as the Wnt and TGF-β pathways. This crosstalk allows for the fine-tuning of

EVT behavior in response to various signals from the uterine microenvironment.

Taken together, the dCCT group robustly expresses the above-mentioned genes which we

regarded as the 'ITGA1 signature group' (Figure 3.12 b-d). After invading the decidua, one

of the primary functions of EVTs is to transform spiral arteries for which the candidate

members of the ITGA1 group are required. This is to establish the uteroplacental blood

circulation necessary for providing essential nutrients and oxygen to the developing baby.
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Figure 3.12: Subcluster analysis of invasive-phenotype cell column cytotrophoblast
cell type.
(a) UMAP embedding visualizing vCCT subclusters based on robust and specific marker profiles. (b)
Dotplot depicting expression of key genes relevant for each subgroup. The fraction of cells per group
expressing a gene is size coded; normalized mean expression is color-coded. (c) Module scores of
two signature sets (derived from computational and curated subcluster markers) revealing relatively
robust expression of Set1 (EGFR, TEAD4, TP63, ITGA2, NOTCH2) in pCCT and that of Set2 (ITGA1-
MMP2). (d) Feature plot showing the signature scores of EGFR-group and ITGA1-group.

3.8 Trophoblast trajectory modelling

In this study, trajectory analysis was conducted using STREAM (see Methods) [149] and

subsequently validated with additional methods such as Diffusion Pseudotime (DPT) [150]

and force-directed graphs to ensure its robustness (Figure 3.13a & Extended Data Figure
4). STREAM predicts cellular trajectories through the utilization of ElPiGraph [153] that is

entirely revamped algorithm for previously known elastic principal graph optimization.

Leveraging existing knowledge on trophoblast development [209, 219], vCTBp was

designated as the root progenitor cell state in downstream analysis (Figure 3.13a).
Importantly, the two divergent lineages of the bipotent trophoblast, namely vSTB and vCCT

were characterized by identifying markers that (i) exhibit dynamic regulation across

pseudotime, referred to as "transition markers," and (ii) display robust expression at the

terminal branches, defining cell-fate commitment, known as "leaf markers" (see Methods).
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Of note, a large overlap was noticed between the leaf and transition markers

(Supplementary Table 16).

Trophoblast differentiation is inherently linked to the spatial organization of its underlying cell

types/states, which is organized in two layers. To validate the vSTB and vCCT transition

markers, a spatial proteomics method adapted from deep visual proteomics [431] was

utilized. Laser microdissection-based proteomics enabled the isolation of single cells or multi-

cellular regions of interest (ROIs) with preserved spatial resolution after microscopic

inspection. In the spatial proteomics approach, vCTB, vSTB, and vCCT cell types were

identified on formalin-fixed, paraffin-embedded (FFPE) sections, laser-microdissected cell

type-specific regions, and performed liquid chromatography-mass spectrometry (LC-MS)

(n=4; Figure 3.13 b-c). The dataset included replicates of the same cell class, demonstrating
high proteome consistency with excellent proteome correlations (Pearson r > 0.9 for cell

types; refer to Supplementary Table 17). The major rationale for using this technique is to

validate snRNA-seq trajectory inferred transition markers on a protein level and identify

markers characterizing the vSTB and vCCT fates. The subset of overlapping markers

essential for both lineages is discussed in subsequent sections.

Figure 3.13: Trajectory modelling of first-trimester trophoblast recapitulates STB and
CCT differentiation.
(a). Stream plot showing the developmental trajectory of early trophoblast and cell density across
pseudotime. Branch length represents pseudotime progression, branch width is directly proportional to
cell numbers at a given pseudotime. (b) Stained using immunofluorescence markers E-Cadherin
(CDH1) and human chorionic gonadotrophin (β-hCG) to discriminate between vCTB, vSTB, and CCT;
(c) set areas were laser micro-dissected, captured and processed for untargeted proteomics using LC-
MS). Acknowledgement: Proteomics figures (b) and (c) were produced by our collaborators- Dr.
Fabian Cosica & Jose Nimo (MDC Berlin) and are included (with permission) to support subsequent
figures associated with sections 2.7.1 & 2.7.3. STB, syncytiotrophoblast; CCT, cell column trophoblast;
CTB, cytotrophoblast; p, proliferative; pf, pre-fusion; juv, juveline.
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3.8.1 vCCT differentiation lineage

The vCCT differentiation path was characterized by the dynamically increasing expression of

key transition markers, namely HLA-G, NOTUM, TEAD1, and FOS (Figure 3.14a), further
validated by proteomics (Figure 3.14b, d). Moreover, the vCCT cell fate was characterized

by the elevated expression of the AP1 signaling pathway (Figure 3.14a), where transition

markers TEAD1 and WWTR1 are key contributors. As already discussed in section 2.6, both

are key regulators of EMT signaling required for decidual invasion, and hence sustaining a

functional maternal-fetal interface during pregnancy [420, 421, 430]. Additionally, vCCT

lineage path exhibited increasing expression of transition markers, including MYCNUT,

TGFB1, LAIR2, ANGPT4, GALNT2, HPGD, HTRA4, ITGA5, MMP12, and ISM2, holding

multi-factorial roles in metabolism, cell adhesion, and migration required for acquiring an

invasive phenotype [404, 426-429] (Figure 3.14c). Importantly, the signatures characterizing
vCCT fate were confirmed through the intersection of markers identified as transition genes,

and those that were also substantially abundant at a protein level (Figure 3.14d).

Next, the spatial distribution of key cell types or states within the villi was investigated by

integrating snRNA-seq data with 10X Visium spatial transcriptomics (Figure 3.14e). For the
analysed sample, number of spots under tissue was 1917; mean reads per spot was 153,206;

median genes per spot was 1429 and median UMI counts per spot was 2375, as reported by

SpaceRanger software [453]. Subsequently, SPOTlight [196] was employed to deconvolute

spatial transcriptomics capture locations, commonly referred to as spots. Each spot is

expected to have ~10 cells. This approach revolves around an initialized seeded non-

negative matrix factorization (NMF) regression using specified cell-type marker genes and

non-negative least squares (NNLS). Subsequently, a vCCT signature score was computed

using the transition gene list visualized in Figure 2.14d, and this module was found to be

robustly expressed across the deconvoluted vCCT region (Figure 3.14f).



Results | Maternal fetal interface in eoPE

79

Figure 3.14: Characterization of vCCT lineage path.
(a) Stream plot displaying scaled expression of critical vCCT lineage signatures, including AP1
pathway and selected transition markers HLA-G, WWTR1, NOTUM, FOS, and TEAD1. Branch length
represents pseudotime progression, branch width is directly proportional to cell numbers at a given
pseudotime. (b) Heatmap depicting scaled (z-scored) protein abundance levels of key markers
characterizing vCCT fate. (c) Selected lineage-specific transition markers significantly correlating to
pseudotime (cell-cell distance) progression for vCCT identity. Lines are polynomial regression fits of
normalized expression data. Cell-type membership is incorporated on the x-axis and ordered by
pseudotime. (d) Heatmap describing mean gene expression changes along the inferred pseudotime
for vCCT lineage. Genes shown are detected as transition marker genes that are also found to be
differentially abundant in spatial proteomics analysis. Cells ordered by pseudotime values (top bar)
and coloured according to (a). Gene expression is scaled row-wise. (e) 10X Visium-based spatial
profiling revealing vSTB and vCCT enriched spots using non-negative least squares (NNLS) and non-
negative matrix factorisation (NMF) based Spotlight deconvolution approach. (f) Module scores of
vCCT developmental drivers derived by intersecting snRNA-seq based trajectory analysis and spatial
proteomics based differentially abundant proteins. Specifically, an intersected list of transition genes
(expression correlates with pseudotime) and key proteins (from proteomics) plotted in (d) were used to
compute a module-score. For the vCCT path, the z-score of protein expression comparing a given
lineage against others was > 1.5 & n = 6 biological replicates.

10X Visium analysis also allowed the identification of spatially variable developmental drivers

crucial for determining cell fate commitment. Notably, candidates like HLA-G, HPGD,

NOTUM, ASCL2 and ISM2 were detected as spatially variable genes that strongly
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contributed to this module score (Figure 3.15). A previous study by Varberg et. al. 2021 [432]

found ASCL2 to be conserved and critical regulator orchestrating deep trophoblast invasion

and maternal spiral arteries remodelling in human, and rat models. In the aforementioned

research [432], ASCL2 transcript expression was observed in the EVT column and junctional

zone, representing tissue sources of invasive trophoblast progenitor cells within human and

rat placentation sites, respectively. This observation aligns with the 10X Visium data that

recapitulated strong ASCL2 expression in vCCT dominated spots. In the same regard, LAIR2

is part of the LAIR family of receptors, and it is known to interact with collagens II/III,

suggesting a potential involvement in ECM interactions [433]. Former investigation by

Founds et. al. 2013 [404] demonstrated that LAIR2 expressing EVT(s) invade the decidua,

participate in maternal spiral arterioles remodelling, and modulate innate immune response

at maternal–fetal interface.

Figure 3.15: Spatially variable genes detected as transition markers for vCCT lineage.
Selected spatially variable genes inferred from 10X Visium analysis that are also vCCT transition
markers are visualized (see Methods).
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3.8.2 BMP signaling blocks spontaneous fusion in vCTBpf

Trajectory inference suggested that dynamic transitional state vCTBpf acts as a vSTB

progenitor (Figure 3.13a). During early placental development, vCTBpf regulates cell-to-cell

fusion as revealed from its transcriptomic profile [401, 434] (as discussed in section 3.1.2)-
hence, it is very likely that mononucleated vCTBpf differentiates to give rise to multinucleated

vSTB.

It is worth noting that the BMP-antagonist GREM2 [435] demonstrated robust expression in

the vCTBpf. Interestingly, the expression of the BMP/Activin receptor dimer

ACVR2A/BMPR1A and BMP7 (a BMP signaling agonist) [436, 437] was identified in the

vCTB branch but was repressed in the vCTBpf section (Figure 3.16). This temporary

inhibition of BMP in vCTBpf could potentially serve as a prerequisite for the fusion and

trophoblast differentiation from vCTB to vSTB. Collectively, these findings indicate that "pre-

fusion vCTB or vCTBpf" represents a vCTB sub-state that undergoes evolution to become

vSTB through a process involving transient downregulation of BMP7 and an increase in

ERVFRD-1 (syncytin-2) expression.

Figure 3.16: vCTBpf characterized by BMP signaling genes.
Stream plot depicting mean gene expression of vCTBpf associated developmental markers that are
members of BMP signaling pathway [435-437]. BMP-inhibitor GREM2 and BMP agonizer BMP7
expression are mutually exclusive. Branch length represents pseudotime progression, branch width is
directly proportional to cell numbers at a given pseudotime.
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3.8.3 vSTB differentiation lineage

A total of 280 transition markers showing dynamic up or downregulation during vSTB

differentiation were detected (Supplementary Table 16). In the vSTB lineage, the increasing

expression of genes such as CGA, KYNU, ARHGAP26, ADAM12, AFF1, PAPPA2, LIFR,

and PSG4 was positively correlated with the pseudotime (Figure 3.17b). CGA is a subunit of

human chorionic gonadotropin (hCG), a hormone produced by vSTB cells. Importantly, hCG

plays a crucial role in early pregnancy, particularly in the maintenance of the corpus luteum,

which continues to produce progesterone to support the uterine lining. CGA also possesses

immunomodulatory properties that help protect the fetus from the maternal immune system.

Pregnancy-specific beta-1-glycoproteins (PSGs) are a family of protein encoding genes

produced by the placenta during pregnancy and known to play a role in immunomodulation

[438-441] and may support a tolerogenic environment [442]. ARHGAP26 is a Rho GTPase-

activating protein involved in controlling cell migration, cytoskeletal dynamics, and cell

adhesion [443]. ADAM12 and PAPPA2 are both secreted metalloproteinase and previously

described as first-trimester markers of healthy trophoblast [444]. ADAM12 is known as a

regulator of cell adhesion, migration, and proteolysis of ECM [444, 445]. Importantly,

ADAM12, PAPPA2, and LIFR genes are regulated by EP300/p300 and hence, governs

placental syncytialization process [434, 446] required to maintain multinucleated vSTB

barrier.

Subsequently, to understand the spatial localization of vSTB developmental drivers, a

module score was computed using the transition markers plotted in Figure 3.17c, and this

signature module was robustly expressed across the deconvoluted vSTB region, as shown in

Figure 3.17e.
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Figure 3.17: Characterization of vSTB lineage path.
(a). Stream plot showing the developmental trajectory of early trophoblast and cell density across
pseudotime. Branch length represents pseudotime progression, branch width is directly proportional to
cell numbers at a given pseudotime. This figure is repetitive of figure 2.13a and added for ease in
understanding rest figures in this panel. b). Selected lineage-specific transition markers significantly
correlating to pseudotime (cell-cell distance) progression for vSTB identity. Lines are polynomial
regression fits of normalized expression data. Cell-type membership is incorporated on the x-axis and
ordered by pseudotime. (d) Heatmap describing mean gene expression changes along the inferred
pseudotime for vSTB lineage. Genes shown are detected as transition marker genes that are also
found to be differentially abundant in spatial proteomics analysis. Cells ordered by pseudotime values
(top bar) and coloured according to (a). Gene expression is scaled row-wise. (e) 10X Visium-based
spatial profiling revealing vSTB and vCCT enriched spots using non-negative least squares (NNLS)
and non-negative matrix factorisation (NMF) based Spotlight deconvolution approach. (f) Module
scores of vSTB developmental drivers derived by intersecting snRNA-seq based trajectory analysis
and spatial proteomics based differentially abundant proteins. Specifically, an intersected list of
transition genes (expression correlates with pseudotime) and key proteins (from proteomics) plotted in
(d) were used to compute a module-score.

Unlike the vCCT lineage, TEAD1, a negative transition marker for the vSTB lineage is

differentially downregulated as trophoblasts transitioned from vCTB to vSTB (previously
depicted in Figure 3.14a, b). This observation aligns with the spatial proteomics analysis,

which validated lower levels of the YAP1 protein in vSTB compared to vCTB (YAP1; Figure
3.18). Taken together, this confirms the repression of YAP/TAZ pathway as vSTB

differentiation progresses- in agreement with prior investigations [421, 447, 448].

Furthermore, few key vSTB lineage markers, including SDC1, CGA, and GDF15 were

validated on a protein level (Figure 3.18). In this regard, SDC1 is a cell surface proteoglycan
that is expressed in the STB, and is known to modulate adhesion, and ECM interactions

required for communication with maternal tissues [449]. On the other hand, GDF15

expressed by vSTB cells is released into the maternal circulation, where it might contribute to
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modulating maternal-fetal communication, immune tolerance, and nutrient transport [450].

LNPEP is an enzyme involved in the metabolism of peptides, including vasopressin and

oxytocin [451]. BMP1 is an enzyme that belongs to the bone morphogenetic protein family

and drives ECM remodelling and tissue development [452]. In the placenta, BMP1 may be

involved in processes such as trophoblast invasion and tissue remodeling, which are

essential for placental development and function (Figure 3.18).

Figure 3.18: Stream plot depicting key vSTB lineage markers.
Lineage markers with decreasing (ELF5, TP63, YAP1) and increasing (CGA, SDC1, GDF15, BMP1,
LNPEP) expression across pseudotime are plotted. Branch length represents pseudotime progression,
branch width is directly proportional to cell numbers at a given pseudotime.

3.9 Comparative investigation of eoPE vs term controls

In this study, a significant computational challenge was encountered in addressing variability

associated with 'preterm' gestational age. This challenge arose due to the collection of eoPE

patient samples around the 34th week, while the term control samples were acquired

between the 38th to 40th week of pregnancy. To tackle this issue, harmonization of an

external scRNA-seq dataset [353] that compared non-pathological preterm and term

pregnancy samples was performed using scVI/scANVI [112, 113]. The integrated preterm

controls were reported to maintain normotensive pregnancies. Only eoPE and term control

samples from this study were considered to understand the relationship among eoPE,

preterm controls, and term controls. Of note, this facilitated the identification of cell

type/state-specific signatures associated with preterm relative to term controls (refer to

Methods). It is important to note that this integration was performed separately for placenta

villi and decidua samples.
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Upon projecting the cells into UMAP embeddings, effective batch mixing of the datasets was

observed, especially for conserved cell types/states like vCTB (Figure 3.19). To quantify the
integration, the adjusted rand index (ARI), adjusted mutual information (AMI), and cell-type-

specific absolute silhouette width (ASW) were computed (see Methods). The ARI and AMI

were 0.051 and 0.117, respectively, indicating satisfactory integration for the placental

clusters (Supplementary Table 9). Additionally, the mean ASW (scaled between 0-1, where

1 signifies perfect integration) per donor was 0.807, with generally high scores per cell type.

In the decidua, the ARI and AMI were 0.03 and 0.12, respectively, while the mean ASW per

donor was 0.826, indicating appropriate integration (Supplementary Table 9).
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Figure 3.19: Integration visualization summary for gestational age correction in
differential gene expression inference.
UMAP visualization of the 10X snRNA-seq from this study integrated with 10X scRNA-seq Pique-Regi
data [353] of (a) placenta villi and (b) decidua respectively colored by (I) dataset of origin, (II) condition
and (III) cell types/states. Data harmonization and label transfer was performed using scANVI. Since
vSTB(s) were not profiled by Regi et al 2019, downstream analysis was restricted to conserved cell
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types/states in both placenta and decidua. Batch-effect investigation using statistics are tabulated in
Supplementary Table 9.

As previously mentioned, performing statistical analysis of cell type or state composition was

difficult due to the limited number of samples (n=5 biological replicates for eoPE). Therefore,

Kernel density estimation (KDE) was employed to visually inspect the abundance or

depletion of cell type/state (see Extended Data Figure 5). An abundance of dNK1 and dNK2
lymphoid sub-states, as well as dMAC1 and dMAC2, was observed in eoPE. However, it is

important to note that this observation should be confirmed in a larger cohort for statistical

validation.

3.10 Immune specific dysregulation in eoPE vs term controls

Maternal characteristics such as BMI, age, coexisting maternal disease (e.g. diabetes

mellitus), and ethnicity could incorporate potential confounders in the downstream analysis

for eoPE relative to term controls. Hence, samples were carefully selected between

conditions to control these effects (refer to Supplementary Table 1). Importantly, no

significant differences in maternal age or BMI were found between late term controls and

eoPE groups using unpaired t-test with Welch’s correction (Extended Data Figure 6).
Additionally, co-occurring diseases were reported for the majority (80%) of the samples,

including one known case of hyperlipidemia, one case of asthma, and one case of mild

allergies. Although ethnicity was not recorded at the time of sampling, samples were derived

from cohorts in Graz (Austria) and Oslo (Norway) where the population is homogeneous

Caucasian. Potential technical effects of sampling site and ethnicity were minimized by

including the procurement center of samples as a categorical variable when performing scVI

data integration (refer to Methods and section 2.5).

Molecular dysregulations per cell type/state were discerned using Logistic Regression (avg

log2FC cut-off of 0.25; Bonferroni corrected p-value < 0.05) after adjusting for covariates

arising from technical factors and preterm signatures (Methods & Supplementary Table 11).
Downstream analysis and interpretations are provided for the cell types/states for which

adequate preterm corrections were possible.

Firstly, the investigation was focused on specific perturbations in the immune populations-

both lymphoid and myeloid lineages present at the maternal-fetal interface. Importantly, the
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examination involved the assessment of transcriptomic changes occurring in analogous cell

types/states – maternal dMAC1/2 sub-states and fetal vHBC. The comparison between

dMAC1/2 and vPAMM as well as dTcell and vTcell were excluded. This is because

integration and composition of vPAMM and vTcell were affected by sampling sites in late

pregnancies (refer to section 3.5).

3.10.1 Dysregulation of dNK and dTcell types

Firstly, Logistic Regression analysis (Supplementary Table 11) comparing eoPE relative to

term controls displayed differentially upregulated candidates such as FKBP5 and SMURF2 in

dNK1 and dNK2 sub-states (Figure 3.20a). SMURF2 (SMAD-specific E3 ubiquitin protein

ligase 2) plays a regulatory role in NK cells by controlling turnover of signaling molecules and

negatively regulating TGF-β signalling [454]. In turn, this could impact NK cell cytotoxicity,

target cell recognition, and the balance between activating and inhibitory signals [455]. A

previous study by Yang et al 2009 suggests that spatio-temporal migration and invasion of

murine trophoblast cells might be regulated by Smurf2, potentially involving downregulation

of the TGF-β type-I receptor [456]. Elevated expression of CCL4, a chemokine previously

associated with PE [457], is also detected in dTcells (Figure 3.20a). Additionally, increased
levels of XAF1 (X-linked inhibitor of apoptosis (XIAP)-associated factor 1), [458] a

proapoptotic protein functioning as an alternative pathway for TNF-α induced apoptosis, was

noted in dTcell.

Secondly, to delineate the transcriptomic regulatory landscape of dNK1, dNK2 and dTcell,

iRegulon [161] was applied on differentially upregulated genes (see Methods). In this regard,

dNK1 was found to be specifically regulated by PRDM2, RUNX1, CBFB, RBBP and FOXP1

(Figure 3.20b). PRDM2 is known to induce apoptosis and G2/M arrest [459], and hence

might cause accelerated apoptosis of dNK cells in eoPE. RUNX1 is a transcription factor

regulating HSCs [460]. In a recent study, Kannan et al. 2023 [461] demonstrated, using a

conditional knockout mouse model, that Runx1 is linked with compromised uterine

angiogenesis, trophoblast differentiation, and dysregulated vascular remodeling. On the

other hand, ZNF513, RREB1, EP300, TCF7L2, NFYA and ACO1 constitute transcriptional

regulators of dNK2 sub-state (Figure 3.20b). dTcell is found to be specifically regulated by

pro-apoptotic factor TGIF1 (Figure 3.20b), a co-repressor in the TGF-β1 pathway. Precisely,
TGIF1 suppresses TGF-β1 signaling by a direct competition with the transcriptional co-

activator p300/CBP for Smad2 interaction, resulting in the repression of genes activated by

TGF-β1 [462]. Beyond its association with Smad signalling, TGIF1 has been identified as a
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crucial component in the TNF-α cytotoxic program [463]. This implies a potential involvement

of TGIF1 in initiating a pro-inflammatory response associated with eoPE. Other dTcell

regulators include CEBPD, ATF4, SRF, KAT2A and NFKB1 (Figure 3.20b). CEBPD is

known to demonstrate a context-dependent role in apoptosis. For instance, it can promote

mitochondrial-mediated apoptosis by inducing CASP3/8 activity [464]. In context of cancer,

CEBPD is pivotal in mediating HMDB-induced apoptosis through activation of p38/CREB

pathway [465]. Another dTcell TF, ATF4 is also known to regulate apoptosis associated

genes, including those involved in the unfolded protein response (UPR), endoplasmic

reticulum (ER) stress and oxidative stress adaptation [466]. During PE, heightened ER stress

was shown to result in increased PERK and IRE1 expression that can further activate ATF

genes linked with abnormal placentation [467]. Also, elevated expression of NFκB was

previously observed in PE, where it stimulates the expression of both pro-inflammatory and

anti-angiogenic proteins, thereby exacerbating oxidative stress, inflammation, and vascular

dysfunction characteristic of PE [468].

Thirdly, Metascape [409] was utilized to perform a differential pathway enrichment analysis

using significantly upregulated genes in dNK1, dNK2, and dTcell types (Figure 3.20c). Here,
the comparison between dTcells and vTcells was avoided as the latter was affected by

sampling site. Both dNK1 and dNK2 sub-states exhibit enrichment of processes like

transcriptional misregulation in cancer, transcriptional regulation by RUNX3, TGF-β and FGF

pathways (Figure 3.20c). As discussed before, TGF-β is a key immunomodulatory cytokine

that plays a crucial role in immune tolerance and vascular remodelling. In the context of dNK

cells, TGF-β signaling can contribute to a tolerogenic maternal-fetal interface, promote

immune tolerance and prevent excessive immune responses against fetal tissues [469]. A

previous study found elevated TGF-β1 expression in the PE decidua as compared to normal

pregnancies [470]. Of note, this was reported to inhibit functional activation of dNK subsets,

and ultimately resulted in impaired decidualization and placentation [470]. dTcell exhibited

enrichment of specific pathways, including the CCR5 pathway, ILK pathway, NFAT pathway,

and cytokine signaling in eoPE condition (Figure 3.20c). Notably, CCR5 signaling was

mediated by candidates such as CALM2, FOS, GNAQ, CCL4, PRKACB, and MAPK1

(Supplementary Table 19) and might be linked to inflammation secondary to endothelial

dysfunction and related vascular disorders occurring during PE. Previous research also

linked CCR5 polymorphisms to PE susceptibility in Caucasians [471]. On the other hand,

exposure to hypoxia elicits an excessive unfolded protein response (UPR) and ER stress,

which might cause elevated levels of HSP90AA1, ILK, RAC1, IQGAP1, IGF1R, MAPK1, and

ARF1, contributing to the Integrin-linked kinase (ILK) pathway. However, specific

associations between ILK and eoPE require more investigation. Importantly, estrogen
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signaling is exhibited by both dTcell and dNK1 (Figure 3.20c). On this note, both preclinical

and clinical studies show a decrease in 2-methoxyestradiol levels in PE, resulting in declined

estrogen levels [472-474]. It might be possible that increased estrogen signaling in decidual

immune sub-states act as a compensatory mechanism to increase 2-Methoxyestradiol levels

that can potentially activate HIF1α and vascular endothelial growth factor receptors (VEGFR-

2) to maintain placental perfusion by increasing angiogenesis [281, 475].

Figure 3.20: Dysregulation of dNK and dTcell in eoPE
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(a) Violin plot depicting normalized expression of selected differentially upregulated genes in dNK1,
dNK2 and dTcell in eoPE vs term controls. (b) Dotplot depicting transcriptional activities based on top-
100 differentially upregulated targets of dNK1, dNK2 and dTcell (Logistic Regression avg_log2FC >
0.25 & Bonferroni adjusted p-value < 0.01) using iRegulon. The number of targets regulated by a
transcription factor is size-coded (see Methods), while the normalized enrichment score (NES) is
color-coded. A higher number of regulated targets generally indicates a higher centrality of a
transcription factor. (c) Heatmap visualizing differentially enriched pathways in dTcell, dNK1, and
dNK2 cell types in eoPE relative to term controls. A discrete color-scale was used to represent
statistical significance. Gray color indicates a lack of significance.

3.10.2 Dysregulation of analogous dMAC and vHBC cell types

Firstly, Logistic Regression analysis revealed important differentially upregulated genes such

as, ANKUB1, DUSP1, IRAK3, C5AR1, MAFB for dMAC1 and CTSZ, DUSP1, FOS, SIGLEC1,

MAF, GLUL for dMAC2 sub-states (Figure 3.21a). In contrast, vHBC displayed dysregulation

of genes such as PAPPA2, MS5A7, RABGEF1, IFNAR2, CABLES1 and SPRED1 (Figure
3.21a). DUSP1 was previously found to reduce levels of p-MAPK1 and ERK1/2 expression to
promote PE [476]. MAFB polymorphisms have been linked to variations in lipid levels,

coronary disease, and atherosclerosis [477, 478]. Also, MAFB gene expression was

previously detect to rise in response to stimuli that encourage the polarization of

macrophages into the M2 state and facilitate cholesterol efflux [479]. On similar note, high

SIGLEC1 expression in pregnant women were associated with increased risk of congenital

heart block [480]. Pregnancy-Associated Plasma Protein-A2 (PAPPA2) is involved in

regulating insulin-like growth factor (IGF) bioavailability by cleaving IGF-binding proteins. In

the context of PE, abnormal levels, or dysregulation of PAPPA2 have been associated with

impaired placental development, altered trophoblast function, and disrupted angiogenesis

[481]. Additionally, PAPPA2 is considered a potential biomarker for preeclampsia due to its

altered expression and activity in affected pregnancies [482, 483].

Secondly, TF and co-regulators acting on differentially upregulated genes in dMono1,

dMAC1, dMAC2, and, notably, vHBC analogous to decidual macrophages was decoded

using iRegulon (see Methods). In this context, the major TF regulators of dMono1 were found

to be constituted by TCF7L2, PAX3, JUND, and BNC1 (Figure 3.21b). Conversely, the
regulators of dMAC1 were identified as GMEB2, TBX21, ARNTL, RORC, PRDM2, and

FOXK1 (Figure 3.21b). In the case of decidual macrophages, GMEB2 might play a role in

responding to glucocorticoid signals and influencing the immune response [484]. Albeit it is

known that glucocorticoids can induce immunomodulation and affect endothelial function

[485], further investigation is warranted to investigate if disrupted glucocorticoid signaling

cause endothelial dysfunction in eoPE. dMAC2 was found to be regulated by POLR2A,
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FOXJ3, FOS, MAF, and BCLAF1 (Figure 3.21b). FOS and MAF, both being members of the

AP-1 (Activator Protein 1) transcription factor complex, are often known to form heterodimers

for the regulation of gene expression. BCLAF1, a paternally imprinted transcription factor

interacting with anti-apoptotic members of the BCL2 family, acts as an inducer of apoptosis

[486, 487]. Another significant transcription factor regulating dMAC2 is identified as SRF,

which has previously been implicated in the migration and phagocytosis of macrophages

[488]. Additionally, SRF maintains mitochondrial dynamics, regulates fatty acid translocation,

and controls the expression of electron transport chain (ETC) complex proteins [489, 490],

thereby influencing cell metabolism. SRF has also been implicated in the apoptosis

regulation by controlling expression of anti-apoptotic molecules like BCL2. [491]

Importantly, differential pathway enrichment analysis performed on differentially upregulated

genes (Logistic Regression, Bonferroni corrected adjusted p-value < 0.05) revealed

conserved and specific signalling programs per cell type (Figure 3.21c). dMAC1/2 and

dMono1 revealed enriched cytokine signaling via upregulated genes, including FOS, DUSP6,

IRAK3, IFIT2, IFNAR2, IFNGR2, IL6ST, MX1, MX2, TNFRSF11A, and ISG15 (Suppl Table).

Both dMAC1 and vHBC are enriched for GPCR signaling. Importantly, dMAC2 exhibited

robust enrichment for vesicle mediated transport, AP1 pathway, Receptor tyrosine-kinase

(RTK) signaling, and Plasma lipoprotein clearance. Of note, RTK signalling is mediated by

dysregulated candidates such as APOE, FOS, FOSB, JUND, DUSP6, and FN1

(Supplementary Table 19). Previously, disruptions in RTK signaling pathways were

implicated in the pathophysiology of PE, affecting processes such as angiogenesis and

endothelial function [492, 493]. Further, DUSP1, FOS, MAF, and MAFB constitute AP1

pathway (Figure 3.21 a,c; Supplementary Table 19). Noteworthy to mention, dysregulated

AP-1 signalling might lead to an imbalance in cytokine production, promoting a pro-

inflammatory environment that has been implicated in the endothelial dysfunction and

vascular damage associated with PE [494, 495].
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Figure 3.21: Dysregulation of analogous dMAC1/2 and vHBC.
(a) Violin plot depicting normalized expression of selected differentially upregulated genes in dMAC1,
dMAC2, dMono1 and vHBC for eoPE vs term controls. (b) Dotplot demonstrating iRegulon inferred
transcriptional activities based on top-100 differentially upregulated targets of vHBC, dMAC1/2, and
Mono1 (Logistic Regression avg_log2FC > 0.25 & Bonferroni adjusted p-value < 0.01). The number of
targets regulated by a transcription factor is size-coded (see Methods), while the normalized
enrichment score (NES) is color-coded. A higher number of regulated targets generally indicates a
higher centrality of a transcription factor (c) Heatmap visualizing differentially enriched pathways in
dMAC1, dMAC2, dMono1 and dHBC1 cell types in eoPE relative to term controls. A discrete color-
scale was used to represent statistical significance. Gray color indicates a lack of significance.
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3.11 vSTB majorly dysregulated in eoPE

Subsequently, eoPE centric dysregulation within the placental vSTB layer was examined.

Despite their shared secretory function and a cytoplasmic surface area in direct

communication with maternal blood (approx.12 m2) [354], distinct and shared dysregulated

profiles were observed among vSTB nuclei sub-states (uniquely dysregulated: 660 out of 980

STB DEGs, 67.3%). Specifically, 59, 289, and 412 unique DEG(s) were identified in STBjuv,

STB1, and STB2 nuclei, respectively (Supplementary Table 12). Albeit shared DEG(s)

represented a smaller fraction of all differentially expressed disease genes (shared: 320 of

980 DEGs, 32.3%), they displayed a predominantly consistent regulation across all nuclear

sub-states (96.25% of 320 genes with concordant regulation between vSTB1, vSTB2, and

vSTBjuv sub-states). Importantly, these shared DEG(s) indicated a core dysregulation within

the vSTB compartment, with only a few exceptions such as FTX, CHODL, and CSH2

(accounting 3.75%, 12 of 320 genes) that were shared across all vSTB sub-states but

exhibited different directions of dysregulation (Supplementary Table 12).

At first, vSTB1 and vSTB2 emerged as the top two most dysregulated cell types/states within

the placenta in terms of the identified number of DEG(s) in eoPE vs term controls. However,

since they are also the most prevalent nucleus types, downsampling was considered based

on the upper quartile (Q3) or 75% of villi cell type cell numbers. Albeit reducing the total

number of DEG(s) per sub-state, this resulted in the confirmation of key drivers of eoPE,

including FLT1, PAPPA2, LEP, SAT1, DUSP1, ENG, and SH3PXD2A.

Transcriptomic profiles uniquely downregulated in the STB1 sub-state were associated with

lipid biosynthetic processes (GO:0008610; q-value = 0.016595869) and the regulation of

RNA splicing (GO:0043484; q-value = 0.046773514) (Supplementary Table 14). In contrast,
the uniquely upregulated genes in STB2 exhibited enrichment for ubiquitin-mediated

proteolysis (hsa04120; q-value = 0.005128614) (Supplementary Table 14), a crucial

mechanism in cellular protein load regulation.

3.11.1 EP300 central to vSTB fusion perturbation

Placental fusion is a fundamental regulator of vCTB differentiation to vSTB (as illustrated in

Figure 3.22a) — hence, disruptions in fusion mechanism is expected to significantly

contribute to the overall eoPE pathogenesis [446]. To understand the molecular mechanisms

behind dysregulated fusion, the transcription factors/co-regulators acting on the differentially
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regulated vSTB targets, previously inferred by Logistic Regression analysis (see Methods),

were decoded. To be precise, iRegulon was applied to dissect the transcriptomic regulatory

landscape of targets perturbed in at least two vSTB sub-states. Notably, the transcriptional

co-activator EP300 (or, p300) emerged as the most enriched regulator acting on n = 133

dysregulated vSTB targets and showing normalized enrichment score = 4.585, FDR < 0.001

(Figure 3.22b; Supplementary Table 15). p300/EP300 is known to be associated with cell

fusion [512] and cell cycle arrest [513] — therefore, enhanced nuclear activity of this

transcriptional co-activator likely causes disruptions in trophoblast fusion processes leading

to aberrant vSTB differentiation. Apart from p300/EP300, a significant enrichment of

transcription factors such as FOXO1, SCRT2, FOXO4, CHD1, FOS, PAX5, UBXN1, and

PAX2 was revealed by iRegulon analysis (Figure 3.22b).

Figure 3.22: p300 is central to STB dysregulation in eoPE.
(a) Schematic representation of syncytial barrier formation in the human placenta. Cells in the
cytotrophoblast monolayer fuse (in red) to generate the outer multinuclear syncytiotrophoblast (STB)
with distinct nuclear transcriptomic states across the lineage differentiation trajectory (denoted by
purple arrow). The STB layer provides the interface for nutrient transport and gas exchange in
pregnancy and is a key endocrine cell type. Figure adapted from Nonn, Debnath & Valdes et al. 2022
[363] (unpublished) and re-sketched using Adobe InDesign software. (b) Predicted transcription
factors and regulators inferred from placental barrier dysregulation, where motifs of dysregulated
shared STB-genes were used to predict its upstream transcription factors (threshold normalized
enrichment score i.e., NES > 3, FDR on motif similarity < 0.001); EP300 is the most dysregulated
candidate with the highest normalized enrichment score (boxed in red).

To investigate the potential perturbation of fusion-associated genes in the vSTB sub-states, a

list of 27 fusogenic genes relevant to syncytium formation (Supplementary Table 15) was
curated. Remarkably, the shared differentially expressed gene(s) across the three vSTB sub-
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states revealed that 18.8% of p300 targets were linked to the fusion process, encompassing

genes such as GCM1, ADAM12, and DYSF (5.6-fold enrichment, hypergeometric p-value =

5.602047e-05, over-enrichment test) (Figure 3.23a). GCM1, a marker for trophoblast fusion,

is crucial for vSTB differentiation [446]. ADAM12 is implicated in cell adhesion and migration

processes within the placenta [444, 445]. On the other hand, DYSF plays a role in membrane

repair- mainly, at sites where syncytial knots are detached from vSTB surface [496].

Additionally, the p300 targets included previously known candidates for PE progression

including ENG, SAT1, FOS, SERPINE1, GADD45G, INHBA, and HTRA1 (Figure 3.23a) that
are perturbed in both vSTB1 and vSTB2 sub-states. Dysregulation of ENG has been

associated with impaired angiogenesis and vascular dysfunction, contributing to the

pathogenesis of preeclampsia [497-499]. SAT1 is involved in polyamine metabolism and may

play a role in cellular growth and differentiation [500]. Of note, FOS is a transcription factor

involved in cell proliferation, differentiation, and apoptosis [501]. As mentioned before, FOS

appeared to be one of the major transcriptional regulators of dysregulated STB genes, as

inferred by iRegulon (Figure 3.22b). Altered SERPINE1 expression contributes to abnormal

coagulation and fibrinolysis observed in PE [502]. Dysregulation of GADD45G may impact

trophoblast cell cycle control and DNA repair mechanisms, given its pro-apoptotic effects

[503]. Importantly, INHBA and SERPINE1 constitute canonical TGF-β/BMP signaling targets

and were previously implicated in the pathogenesis of PE and abnormal placental

development [504-507].

Subsequently, a network analysis [162] was performed to understand the connectivity of the

p300 regulated targets and decomposed into community subgraph structures, from which the

first largest community ‘C1’ is shown (Figure 3.23b). This is grounded on the idea that each

community consists of nodes (targets) that are tightly intra-connected and loosely inter-

connected with the same from other communities [163, 164]. This is influenced by the fact

that members of each community participate in similar signaling pathways and programs. For

instance, ATF3, DUSP1, FOS, FOSB, JUNB, JUND are implicated in AP1 pathway

(Supplementary Table 20) and form a closely knit community subgraph in the network

analysis of dysregulated targets (Figure 3.23b).
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Figure 3.23: p300 regulated vSTB targets perturbed in eoPE.
(a) Heatmap depicting log2 fold changes of p300 related targets dysregulated in the placenta barrier in
eoPE (≥ 2 STB nuclei states), genes involved in fusion marked in purple. Logistic regression was used
for differential testing with a min. log2FC 0.4, genes expressed in at least 30% of nuclei and Bonferroni
adjusted p-val < 0.05. (b) Largest community subgraph (C1) derived from network analysis of EP300
dysregulated targets. Subgraph communities are inferred by Glay algorithm based on Newmann-
Girvan’s edge betweenness [164].

3.11.2 Shared dysregulated targets drive hypoxia in eoPE

Of note, a substantial fraction of vSTB perturbed targets is found to be jointly regulated by

multiple TF/co-regulators inferred by iRegulon. Specifically, a significant overlap of

p300/EP300 targets co-regulated by FOXO1, FOXO4, FOS, and PAX5 is revealed through a

pairwise comparison of TF-targets, using Jaccard’s index (Figure 3.24a). To understand the

functional implications of these common targets in eoPE pathogenesis, a pathway

enrichment analysis of the same regulated by at least 5 TF/co-regulators was performed.

Here, significant enrichment of several signaling cascades comprising of HIF1A, AP1,

Phosphatidylinositol (PI3K-Akt), and TGFβ pathways is observed (Figure 3.24b). For

example, dysregulated candidates like PLIN2, ENG, FOS, LEP, FURIN and NDRG1

(Supplementary Table 20 & Extended Data Figure 7) are found to be cross-regulated by

Hypoxia-inducible factor-1 alpha (HIF-1α) transcription factor. Increased levels of HIF-1α in

PE affected placentas were reported in previous studies [508, 509], leading to the induction

of soluble vascular endothelial growth factor receptor-1 (sFLT-1), a key factor in the

pathogenesis of preeclampsia and intrauterine growth restriction (IUGR).
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Figure 3.24: Shared dysregulated vSTB targets drive hypoxia in eoPE.
(a) Overlap analysis depicting the absolute number of shared targets, and significance of overlap
using Jaccard index among iRegulon inferred transcription factors and regulators- EP300, FOXO1,
SCRT2, FOXO4, CHD1, FOS, PAX5 and UBXN1. The number of targets for each TF or a regulator is
mentioned in a bracket and the overlap of EP300 targets with the rest are boxed in red. (b) Enrichment
heatmap illustrating the enriched signalling pathways and processes of dysregulated vSTB targets that
are regulated by at least 5 TF/regulators as inferred by iRegulon.

3.11.3 vSTB developmental drivers dysregulated in eoPE

One of the important aims of this study was to investigate the impact of eoPE on the cellular

differentiation of vCTB to vSTB, and to decipher the specific stage at which cells affected by

eoPE deviate from their normal developmental trajectory. To accomplish this, an overlap

analysis was conducted, comparing DEG(s) associated with eoPE in all vSTB sub-states and

vSTB transition markers inferred from early trophoblast trajectory. The analysis revealed a

significant enrichment of eoPE DEG signatures in transition genes associated with vSTB

development (enrichment = 29.96-fold, p-value = 0.002, Exact hypergeometric test &

Supplementary Table 16) as depicted in Figure 3.25.
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However, it was acknowledged that the composition of vSTB1 and vSTB2 was significantly

higher than that of vSTBjuv. Therefore, vSTB1 and vSTB2 were randomly downsampled to

match the number of vSTBjuv nuclei, ensuring consistent statistical power for DEG analysis.

Next, the DEG marker identification was repeated for vSTB1 and vSTB2. Of note, the

significant enrichment of vSTB transition genes within eoPE DEG signatures persisted post

downsampling (enrichment = 44.94-fold, p-value = 0.0008, hypergeometric test)

(Supplementary Table 16; transition_eoPE_overlap).

Figure 3.25: vSTB differentiation drivers significantly dysregulated in eoPE.
Relative number of differentially expressed genes (DEGs) per STB nuclei states in eoPE that overlap
with variable genes across the differentiation trajectory (STB transition). Overlap highlighted in blue,
with exact percentage contribution written.

Additionally, a significant overlap was observed between CTB transition genes and eoPE

DEGs in CTB (hypergeometric p-value = 1.32e-12; enriched 15.94-fold compared to

expectations) (Supplementary Table 16). Taken together, these results implicate that

dysregulation arising early in trophoblast development might be involved in the eoPE

pathogenesis, by affecting trophoblast fusion dynamics.

3.12 Dysregulated SASP(s) translates eoPE from fetus to mother

The next major aim of this thesis was to determine whether the localized senescence

observed in eoPE within the trophoblast interface, connecting fetal circulation and maternal

blood, resulted in the release of senescence-associated secretory phenotype (SASP) factors
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into the maternal circulation. Among the shared DEGs in vSTB sub-states, 12.2% were

identified as SASP encoding genes, revealing a significant 1.94-fold enrichment (39/320

genes; hypergeometric p-value 6.02e-05; Figure 3.26a & Supplementary Table 18). Overall,
SASP genes constituted 12% of all dysregulated STB genes (1.91-fold enrichment,

hypergeometric p-value 5.75e-13) (Figure 3.26a & Supplementary Table 18).

3.12.1 p300 significantly regulates perturbed SASP targets in eoPE

iRegulon analysis previously implied that the normal fusion of vCTB is required for vSTB

differentiation that is disrupted by enhanced activity of p300/EP300 in eoPE. Correspondingly,

senescence-associated p300 targets were found to be dysregulated in all three vSTB nuclear

states in eoPE, as depicted in the heatmap (Figure 3.26b). The signatures of senescence

were particularly enhanced in vSTB1 and vSTB2, representing the terminal nuclear states

along the STB differentiation trajectory path. Given the dysregulation of relevant SASP

factors, it is postulated that p300/EP300 likely induces premature senescence in the vSTB

nuclear states, ultimately leading to accelerated placental aging in eoPE.

Prior investigations have demonstrated that two SASP encoding genes, Activin A encoding

INHBA [504-506], and GDF15 [514, 515], hold potential for predicting PE at 36th week. Both

factors belong to the secreted TGFβ superfamily, with GDF15 serving as a recognized

marker for the multinucleated vSTB barrier facing maternal blood. Activin A is a known SASP

target and functions as an activin-pathway ligand.

Figure 3.26: SASP(s) substantially dysregulated in eoPE vSTB sub-states.
(a) Overlap of STB dysregulation (≥2 nuclei states, logistic regression used for differential testing with
a min. log2FC 0.4, genes expressed in ≥30% of nuclei and adjusted p-value <0.05.), human secreted
genes from the human Secretome database (SPRomeDB) [510], senescence-associated genes from
the Molecular Signatures Database (MSigDB) and senescence-associated secretory phenotype atlas
(SASP, Buck Institute) [511]. (b) Heatmap illustrating log2FC of SASP associated genes dysregulated
in the placenta barrier in eoPE (≥ 2 vSTB nuclear states). Logistic regression used for differential
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testing with a min log2FC 0.4, expressed in ≥ 30% of nuclei and Bonferroni adjusted p-value <0.05 per
gene. STB, syncytiotrophoblast; juv, juvenile.

3.12.2 SASP mediated disrupted cellular communication at maternal-fetal
interface

Firstly, the cellular communication between dDSTB and maternal decidua was investigated.

Specifically, ligands secreted by dDSTB that could bind to their corresponding receptors in

the maternal endothelium (dVEC, dSMC) are depicted (Figure 3.27a). It is important to

mention that dDSTB was found only in the eoPE condition (Supplementary Table 2)- hence,
the R-L interactions profiled are very likely disease-centric (Supplementary Table 13;
dDSTB).

Notably, emphasis was placed on modelling cellular communication across the maternal-fetal

interface using receptor-ligand interactions to simulate the transmission of signals from the

fetus to the mother, considering the secretion of SASP encoding ligands (Figure 3.27b &
Supplementary Table 13; vSTB). To accomplish this, dVEC and dSMC cell-types were

utilized as a proxy of maternal vessels from the snRNA-seq decidua data. The aim was to

understand how the dysregulated SASP ligands expressed in STB nuclei sub-states in eoPE

could translate the placental perturbations to affect the maternal decidual endothelium and,

subsequently, the systemic circulation (Figure 3.27b). By employing Connectome [156] and

various databases implemented in LIANA framework [157] for modelling R-L network, the

communication between dysregulated secreted factors originating from vSTB and decidual

vascular cells (dVEC, dSMC) was investigated. This analysis highlighted specific secreted

ligands like LEP, EBI3 and SASPs including TGM2, HSPG2, ADAM9, GDF15 and INHBA

(log2FC > 0.25, with a cut-off of genes detected in at least 10% of diseased cells and an

adjusted p-value < 0.01). Observations revealed that the interactions between vSTB-dVEC

and vSTB-dSMC were predominantly associated with SASP genes (67%, 6 out of 9), which

notably included INHBA and GDF15.
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Figure 3.27: Elevated SASP mediates dysregulated cellular-crosstalk across maternal-
fetal interface.
(a) Receptor-ligand interaction analysis depicting ligands expressed by dDSTB and its potential
interaction partners in decidua endothelium receptors (dVEC, dSMC). Results are restricted to eoPE
condition. (b) Plot demonstrating secreted ligands in vSTB altered in eoPE relative to term controls
with preterm gestational age correction acting on highly expressed decidual endothelial receptors
highlight ligand pressure, i.e., increased ligand expression with unaltered receptor expression, at the
maternal-fetal interface. Receptor-ligand interaction pairs are shown (Wilcoxon rank-sum test, p<0.05;
identified by multiple tools and databases including Connectome [156], and SingleCellSignalR, NATMI,
CellphoneDB, CellChat as implemented in LIANA framework [157]) using arrows from ligands to
receptors. Dot colors represent cell states/types, ligand squares illustrate average log2FC between
conditions (only upregulated candidates are included from logistic regression; log2FC>0.25 and p-
value<0.01 after Bonferroni correction) and receptors squares encode average expression. Figure
style adapted from Nonn, Debnath & Valdes et al. 2022 [363] (unpublished).

Of note, Leptin (LEP) is a central regulator of metabolism and has been linked to endothelial

dysfunction. In PE, elevated levels of LEP are associated with abnormal placental

development and vascular complications, contributing to pathophysiology [516, 517].

Importantly, serum LEP was found to be a prominent biomarker distinguishing eoPE from

late-onset PE [516]. Epstein-barr virus induced 3 (EBI3) is associated with

immunomodulation and inflammatory responses, and a previous study by Guo et. al. 2020
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[518] detected 2X fold increased circulating EBI3 in eoPE relative to late-onset PE.

Furthermore, this study observed a positive correlation between plasma EBI3 levels with

clinical parameters, like uric acid and proteinuria that suggested elevated EBI3 as a highly

sensitive biomarker for eoPE [518]. Perlecan (HSPG2) is a key component of the

extracellular matrix and plays a role in vascular development [519]. Transglutaminase (TGM2)

has multifactorial roles in ECM remodelling, apoptosis, oxidative stress response and

inflammation [520]. Importantly, a previous study based on mouse model [521] described

TGM2 as an essential link between inflammation and hypertension. Elevated GDF15

expression was previously detected in women very likely to develop PE or already with this

disease [515]. This observation was valid in several international cohorts [515, 522] and

related to endothelial dysfunction, inflammation, and overall vascular complications observed

in the disorder. Of note, ADAM9 and ADAM12 are involved in cell adhesion and migration. A

recent study by Liu et al. 2023 [523] proved that ADAM9 upregulation considerably

suppressed proliferation, migration, and EMT progression in trophoblasts via USP22

mediated de-ubiquitination.

To compare the spatial distribution of senescence within the vSTB layer between healthy and

eoPE placentas, a high-resolution spatial transcriptomics method, in-situ sequencing (ISS)

[185], was employed. This analysis was performed to interrogate the implication of elevated

SASP(s) like INHBA on placenta vascular biology (see acknowledgement; Figure 3.28).
The maternal-fetal interface, crucial for nutrient and oxygen exchange, involves the crossing

of molecules from maternal blood through the syncytium and trophoblast wall, comprising

vCTB and vSTB. Spatial regulation in this region is pivotal for effective mother-to-fetus

communication. In the high-resolution approach, an ISS panel detecting 174 genes

characterizing the main villous cell types based on markers identified in the single-nucleus

RNA sequencing (snRNA-seq) was established (see Methods).

Utilizing plankton.py [524], signals were captured, decoded to x and y coordinates, and

assigned to specific cell types or states based on RNA signals. Villi wall location was

detected using protein staining signal intensity, after applying a Gaussian filter to integrate

local signal intensity. Subsequently, all transcripts associated with the villus wall were

identified- precisely, mRNA molecules were differentiated between within and outside villi

regions based on the detected local protein density (see Methods). Thereafter, the

positioning of senescence associated INHBA transcripts within the vSTB layer relative to

markers associated with fetal vessels (CDH5, IDO2, KDR, TEK, ZEB1) was evaluated. Fetal

vessels were localized within a 5 µm radius of the villus wall, near the trophoblast barrier,

facilitating direct nutrient and oxygen exchange. To visually investigate the spatial
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relationship between senescence and vascularization in both term control and eoPE tissue

samples, molecules associated with the 'wall' were plotted on a DAPI stain rendering, color-

coded based on their gene assignments for 'vascularization' and 'senescence,' with other

molecules represented in white (Figure 3.28a). The study found that in the term control

sample, senescence markers (like INHBA) were situated far away from vessel markers (KDR)

as compared to eoPE sample. This finding was statistically analyzed by categorizing gene

molecules based on their proximity to vascular markers and conducting a binomial test to

evaluate gene distributions. Two categories, vessel proximal and vessel distal, were defined

(refer to Methods for details). According to the null hypothesis, gene distribution should be

uniform across both categories. Subsequently, for each gene, a p-value indicating deviation

from the null hypothesis was determined (Figure 3.28c & Methods). Of note, the occurrence
of senescence markers INHBA and MMP11 were found to be considerably lower in the

vicinity of placenta vessel markers in term control samples (both p-values <0.01,

representing the lowest p-values among all genes examined). However, this pattern was lost

in the eoPE sample (Figure 3.28c). In eoPE sample, INHBA in the villi wall appeared to be

closer to fetal vessels compared to term controls (Figure 3.28 a-c). This spatial

disorganization in the villous wall, characterized by increased senescence in areas of

maternal-fetal crosstalk, may disrupt the exchange of nutrients, potentially contributing to

fetal growth restriction (FGR) associated with eoPE.

Figure 3.28: In-situ transcriptomic analysis reveals proximity of SASP associated
INHBA to fetal vessels in eoPE placenta.
(a). Topography of wall molecules in the term control and early-onset pre-eclamptic (eoPE) samples
over a DAPI stain background. n = 2 (1 slide per group). Yellow circles indicate INHBA molecules, red
circles indicate vascular marker molecules, and all other molecules in the wall are rendered in white.
Sensescence-associated INHBA expression is spatially variable in ISS data, and (b). significantly far
from the placenta vessel markers in term controls relative to eoPE. Acknowledgement: Sebastian
Tiesmeyer (Digital Health Center, BIH & Charite) performed the analysis under the supervision of Dr.
Naveed Ishaque. I aided in the cell typing analysis of ISS. Data figures used with permission to
support the significance of SASP on placental vascular biology.
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3.13 Disrupted R-L interactions within decidua and villi

To explore disrupted cellular communication within the decidua and villi, R-L interaction

analysis was leveraged to model dual ligand/receptor increases or decreases, aligning with

edge activation or deactivation, respectively. Specifically, edge activation suggests a robust

association with eoPE, as both receptors and ligands exhibit differential upregulation

compared to term controls. A schematic of potential R-L interactions governing perturbed

cellular crosstalk in both tissues is depicted in Figure 3.29.

Apolipoprotein E (APOE) is strongly secreted by decidual smooth muscle cells (dSMC) and

dMAC2 (log2FC= 1.1656 & 1.0445, Logistic Regression Bonferroni adjusted p-value < 0.05)

that could bind to receptors LRP1 and SORL1 in DSC1 and dMAC1, respectively, exhibiting

a classic case of edge activation (Figure 3.29a). Of note, a multifaceted role for APOE in

endothelial function, inflammation, vascular remodeling, and lipid metabolism is suggested,

all of which are relevant to the PE pathophysiology [525, 526]. A prior study concluded that

ApoE-knockout mice recapitulated pathologic process of PE- possibly mediated by TLF4 and

sFlt-1 [525]. Another study based on untargeted proteomics found increased levels of APOE

in late-onset PE, while it was marginally increased in eoPE [526]. In this regard, it is well

accepted that APOE is involved with oxidative stress and mitochondrial dysfunction, which

are also key factors in PE pathophysiology [527]. FN1 is moderately upregulated in eoPE

that possibly interacts with several receptors in DSC1, dLEC, and dNK1. FN1 serves as a

key player in the interplay between macrophages and the extracellular matrix, influencing

multiple aspects of macrophage function in immune responses, tissue repair, and

homeostasis [528]. FN1 was also reported to mediate autophagy and apoptosis of human

umbilical vessels [529], and hence, might contribute to PE associated maternal systemic

inflammation. On similar note, FN1 ligand is found to be dysregulated in vCTB and vMC

(Figure 3.29b) that could potentially interact with C5AR1 receptor differentially upregulated

in vHBC and vPAMM. FN1 is a glycoprotein that plays a vital role in cell adhesion, migration,

and wound healing, while C5AR1 is a receptor for the complement component C5a, a key

mediator of the immune response. Also, in case of dEVT R-L analysis in eoPE, FN1

emerged as a central ligand binding to multiple decidual receptors such as integrins (ITGA3,

ITGA4, ITGA5, ITGAV) across several cell types/states (Extended Data Figure 8). Previous
data suggested that overexpressed FN1 promotes PE pathogenesis by contributing to

apoptosis and autophagy, associated with the PI3K/AKT/mTOR signaling pathway [529].

While this observation was described in human umbilical vessles, the same might hold for

other cell types like and would be a matter of investigation.
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Importantly, CD36 (log2FC=0.444) is a differentially upregulated receptor in dVEC that could

potentially bind to several elevated COL1A1 and THSB1 ligands (Figure 3.29a). Of note,
CD36 is involved in the recognition and clearance of oxidized low-density lipoprotein (oxLDL)

and is associated with oxidative stress and inflammation [530]. Elevated oxidative stress and

inflammation are key features of PE and can contribute to endothelial dysfunction. CD36 is

further implicated in endothelial cell activation that could lead to impaired vasodilation,

altered vascular permeability, and increased blood pressure in stroke [531]- which might be

relevant for eoPE. Furthermore, CD36 plays a role in fatty acid metabolism, thrombosis, and

coagulation pathways [532]. In PE, there is an increased risk of abnormal blood clotting, and

CD36-mediated processes might influence these hemostatic changes. As CD36 serves as a

receptor for THBS1, numerous studies have illustrated its capability to impede the activation

of the cAMP signaling pathway [533]. Notably, in conditions such as cardiovascular diseases

and cancer, THBS1 hinders the response of vascular smooth muscle cells by modulating

cAMP and cGMP [534]. Additionally, increased collagen signaling via DSC1 may contribute

to vascular changes observed in eoPE, influencing endothelial function and vascular

remodelling [535]. Overall, these alterations in the vascular system can lead to hypertension,

a hallmark of eoPE, and compromise maternal health.

Figure 3.29: Global dysregulation in decidua and villi tissues in early onset
preeclampsia modelled by differential receptor-ligand interactions.
(a,b) Overview of selected receptor-ligand interaction network revealing dysregulation during early
onset pre-eclampsia (eoPE) within immune and vascular matrisome compartments in decidua (a) and
villi (b). Interactions were analyzed using Connectome and differentially expressed receptors/ligands
were profiled using multivariate Logistic Regression (p-values adjusted for multiple testing). Ribbon
color represents the respective source (or, ligand sending) cell types/states, and is proportional to the
edge-weight score (product of normalized LFC of both partners). Networks shown are limited to edges
where both receptor and ligand log2FC ± 0.25 between conditions (positive indicates upregulated in
eoPE and vice-versa). The minimum percentage of cell groups expressing a receptor (or, ligand) is
10%.
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3.14 Extended Data Figures

Extended Data Figure 1: Quality control and characteristics of the single nuclei
samples used for analysis.
(a) Pseudonymised patient-ID of maternal(decidua)-foetal(villi) interface sequenced samples with
information regarding sample gestational age and preeclampsia status. (b) Violin plots illustrating the
detected (log1p per sample) number of total genes having at least one positive count (UMI) in a cell;
total UMI counts representative of total RNA transcripts; and percentage mitochondrial transcript per
nuclei. Note that 577-1-v and 557-2-v are technical replicates. (c) Annotated cell type or state
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composition (%) per individual biological sample in villi illustrated as stacked bar plots. n = 21 villi (10
early, 6 late control, 5 eoPE) (d) Annotated cell type or state composition (%) per individual biological
sample in decidua illustrated as stacked bar plots. n = 12 deciduas (3 early, 4 late control, 5 eoPE). (e)
Violin plots illustrating the detected (log1p) and number of total genes having at least one positive
count (UMI) per nuclei in villi annotated cell types and states. (f) Violin plots illustrating the detected
(log1p) and number of total genes having at least one positive count (UMI) per nuclei in villi annotated
cell types and states. (g) Box plots comparing composition per cell type or state compared between
early and healthy term control (trm.ctrl) pregnancy samples. CTB, villous cytotrophoblast; STB,
syncytiotrophoblast; DSTB, deported STB; CCT, cell column trophoblast; EVT, extravillous trophoblast;
VEC, vascular endotheli-al cell; LEC, lymphatic endothelial cell; LECPprog, LEC progenitor; SMC,
smooth muscle cell; MC, myocyte; FB, fibroblast; EpC, epithelial cell; MSC, mesenchymal stem cell;
DSC, decidual stromal cell; EB, erythroblast; HBC, Hofbauer cell; PAMM, placenta-associated
maternal macrophage; Mono, monocyte; MAC1, M1-like macrophage; MAC2, M2-like macrophage;
NK, natural killer cell; PC, plasma cell; DC, dendritic cell, Granul, granulocyte; v, villous; d, decidual; p,
proliferative; juv, juvenile; pf, pre-fusion.

Extended Data Figure 2: Doublet nuclei inference in villous cell types and states
(a) Violin plot depicting doublet score distribution across villi cell types. Scores ranged from 0 to 1. (b)
UMAP embeddings reflecting cell type/state distribution. (c) Predicted doublets using a threshold of
0.35 from doublet score histogram as predicted by Scrublet. (d-f) Dot plots showing expression of key
marker genes for predicted doublets against singlets for (d) vSTB1, (e) vSTB2, (f) vSTBjuv. Absence
of contradictory lineage specific genes reveals lack of biological doublets in our cell types or states.
CTB, villous cytotrophoblast; STB, syncytiotrophoblast; DSTB, deported STB; CCT, cell column
trophoblast; EVT, extravillous trophoblast; VEC, vascular endothelial cell; MC, myocyte; FB, fibroblast;
EB, erythroblast; HBC, Hofbauer cell; PAMM, placenta-associated maternal macrophage; v, villous; p,
proliferative; juv, juvenile; pf, pre-fusion.
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Extended Data Figure 3: UMAP colored by topic profiles identified using Latent
Dirichlet Allocation (LDA) analysis.

Extended Data Figure 4: Trajectory inference on trophoblast from early samples
(a) STREAM based on elastic principal graph approximation and colored by pseudotime, (b) diffusion
pseudotime based on unsupervised ordering of nuclei based on their global transcriptomic similarity,
and (c) force-directed graph based on Fruchterman-Reingold algorithm.
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Extended Data Figure 5: eoPE mediated molecular and compositional changes.
(a). Venn Diagram showing overlap of eoPE differentially expressed genes identified in trophoblast,
immune and matrisomal compartments of villi, as tabulated in Supplementary Table 12 (excluding
vPAMM and vTcells in the immune group). (b). Detected community subgraph of statistically
significant vSTB hubs (defined as highly connected nodes). Each hub node reflects a DEG and is
colored by log2FC inferred using Logistic Regression (Supplementary Table 11). Node degree is size
coded. The final visualized network was achieved by merging hubs (see Methods). Acknowledgement:
Dr. Olivia Nonn with my contributions. (c). Kernel density estimation (KDE) reflecting the cell type/state
composition change per condition (early, eoPE and term control). KDE values are scaled between 0-1
to enable comparison with the condition.
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Extended Data Figure 6: Comparison of maternal body mass index (BMI) and age for
samples included in the snRNA-seq experiments.
p-values shown derived from unpaired t-test with Welch’s correction. For underlying data, refer to
Supplementary Table-1. Done on GraphPad with assistance from Daniela S. Valdes.
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Extended Data Figure 7: Community network analysis of targets regulated by a
minimum of 5 iRegulon inferred transcription factors/regulators.
Network community detection was conducted using Glay algorithm [164] and depicted using
Cytoscape. Each node represents a differentially upregulated vSTB gene regulated by at least 5 TFs,
as inferred by iRegulon. The degree of a node (the number of incoming and outgoing connections) is
visually indicated through color-coding. Isolated nodes (genes) were removed.
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Extended Data Figure 8: Mechanisms of EVT invasion and eoPE driven cellular
communication in decidua.
(a) Schematic summary of the cell interactions that occur during CCT from the villi onto the vascular
and matrisome cell compartments of the decidua in early pregnancy (See supplementary Table 6 for a
detailed summary of interactions). Schematic created with BioRender.com. n = 4 early control
deciduas, n = 10 early control placentas. (b) Overview of selected receptor-ligand interaction network
revealing dysregulation during early onset pre-eclampsia (eoPE) within immune and vascular
matrisome compartments in decidua. Interactions were analyzed using Connectome and differentially
expressed receptors/ligands were profiled using multivariate Logistic Regression (p-values adjusted
for multiple testing). Ribbon color represents the respective source (or, ligand sending) cell
types/states, and is proportional to the edge-weight score (product of normalized LFC of both partners).
Networks shown are limited to edges where both receptor and ligand log2FC ± 0.25 between
conditions (positive indicates upregulated in eoPE and vice-versa). The minimum percentage of cell
groups expressing a receptor (or, ligand) is 10%. (c) Summary of selective receptor-ligand interactions
for invasive extravillous trophoblasts (dEVT) onto decidual receptors at the maternal-fetal interface
analyzed using Connectome. The interaction edges for whom ligand and receptor z-score > 0.25 were
included. Further edges were filtered using the Diagnostic Odds Ratio of dEVT cut-off of 5, mean
ligand expression > 1.5, edge score > 3, and a minimum percentage of source expressing the ligand:
50%. n = 9 deciduas (4 term control, 5 eoPE). Values are scaled from 0-1 for comparison. CCT, cell
column trophoblast; EVT, extravillous trophoblast; p, proximal; d, distal. Acknowledgement: Figure (a,
b) was created on Adobe Illustrator with the help of Daniela S. Valdes from my analysis results.
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4 Results | Development of human pancreatic islets

• Scientific acknowledgement:

For the second chapter focussed on development and maturation of human beta cells, I have

separately enclosed the published manuscript in Gastroenterology, according to the rule of

Freie Universität Berlin BCP on monograph dissertation. My selected contributions are listed

below. I shall remain grateful to Dr. Luca Tosti, Prof. Dr. Christian Conrad, and Prof. Dr.

Roland Eils for allowing me to contribute to such an important project.

• Publication related to chapter:

Published: Luca Tosti, Yan Hang, Olivia Debnath, Sebastian Tiesmeyer, Timo Trefzer, Katja

Steiger, Foo Wei Ten, Sören Lukassen, Simone Ballke, Anja A. Kühl, Simone Spieckermann,

Rita Bottino, Naveed Ishaque, Wilko Weichert, Seung K. Kim, Roland Eils, Christian Conrad,

Single-Nucleus and In Situ RNA–Sequencing Reveal Cell Topographies in the Human

Pancreas. Gastroenterology, Volume 160, Issue 4, 2021, Pages 1330-1344.e11, ISSN

0016-5085, https://doi.org/10.1053/j.gastro.2020.11.010 .

• Detailed contributions discussed in thesis:

- Investigated the developmental relationships among adult cell types/states using

pseudotime analysis (Figure 4F).

- Modelled the differentiation trajectory of beta cell development integrating neonatal

and adult snRNA-seq data (Figure 6I & Extended Figure 6).

https://doi.org/10.1053/j.gastro.2020.11.010
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5 Results | Unanticipated heterogeneity in high-grade pancreatic
neuroendocrine carcinoma pinpoints cell sub-state specific
therapeutic targets
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Dr. Hilmar Berger performed the pre-processing of raw 10X single nuclei sequencing data
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5.1 Study design and cohort characteristics

Single nuclei were extracted from surgically resected, histologically confirmed fresh frozen

archival specimens of high-grade large cell pancreatic neuroendocrine carcinoma (panNEC)

obtained from five patients as shown in Figure 5.1. Among these patients, four were

treatment-naive, while one (referred to as P1) had received prior treatment with

Cisplatin/Etoposide and FOLFIRINOX. Patient characteristics are tabulated in Table 5.1.
Single nuclei were isolated and sequenced to dissect the molecular landscape of panNECs

and their microenvironment. After removing ambient RNA using SoupX [100] and conducting

quality control analyses [100], approximately 45,015 single nuclei were profiled. Detailed

sample-level statistics and quality control metrics are presented in Extended Data Figure 9a,
b and Supplementary Table 22. Following this, the aim was to elucidate the cell types and

sub-states present within the diverse profiles of panNEC patient samples. The specific

purpose was to decipher the overarching cell types or cellular communities underlying both

tumor and immune niches, with the goal of revealing biological variability, cell-specific roles,

and potential targets for future precision medicine endeavors. To achieve this, a chain

integration technique was employed for data harmonization across patients to mitigate

technical sources of variation (see Methods). Initially, Harmony [110] was employed to adjust

the principal components- hence, accounting for batch-specific effects. Subsequently,

BBKNN [111] was applied using the corrected principal components to adjust the

neighborhood graph, ensuring a balanced representation of contributions from different

batches, and facilitating appropriate cell connections based on biological similarities rather

than batch-specific variations (see Methods for details & parameters used).

Figure 5.1: Overview of study design.
LCNEC patient samples meeting appropriate criteria were selected from the NEN biobank (see Patient
recruitment and ethics approval in the Methods section). Subsequent confirmation of the large cell
morphology and classification as NEC was achieved through H&E staining (for morphology), along
with MIB1 staining for proliferation and synaptophysin (SYP) staining for neuroendocrine markers,



Results | Pancreatic Neuroendocrine Carcinoma

117

illustrating key features of NEC. Thereafter, selected patient samples (n=5) were subjected to 10X
snRNA-sequencing and downstream data analysis.

Table 4: Patient sample characteristics
Sample characteristics table illustrating the stage, Ki-67 (proliferative) index, necrosis status, and
protein expression levels of neuroendocrine markers- chromogranin A (CgA), synaptophysin (SYP),
SSRT2, SOX9 and pancreatic cytokeratin (CK pan). In addition, mutation status of p53 and Rb1 are
shown, which were profiled using panel sequencing by Simon L. April-Monn, Philipp Kirchner, Dr.
Katharina Detjen & Prof. Dr. Aurel Perren at the Bern Center for Precision Medicine, University &
University Hospital of Bern. For immunohistochemistry, refer to the Methods. For panel sequencing
methods using cancer mutational panel genes, refer to April-Monn et al. 2024 [822].

5.2 Cellular landscape of panNEC

Clustering of single-nucleus transcriptomic profiles revealed the tissue composition across 5

panNEC patient samples and identified five distinct cell types: neuroendocrine (NE),

amphicrine, amphicrine progenitor, stromal (normal), and immune populations (Figure 5.2a,
b). Four of the patient samples (P1-P4) primarily clustered together and significantly

contributed to the shared neuroendocrine (NE) cell type (Figure 5.2a, b). In contrast, patient
P5 stood out owing to having two unique clusters with robust expression of key acinar

markers like GP2 and the pancreatic multipotent progenitor marker PDX1, contributing to the

presence of amphicrine acinar and progenitor-like cell types, respectively. (Figure 5.2 a-d).
Composition analysis revealed a relatively higher proportion of shared NE cell type in P2 and

P4 that is majorly depleted in P5 (Figure 5.2c). However, given a small and heterogenous

sample cohort, no statistical analysis was performed to investigate compositional shifts in cell

types. The NE cell type exhibited variable expression levels of established diagnostic

neuroendocrine markers like CHGA, SYP, and NCAM1 at the mRNA level (Figure 5.2d),
which was also validated through immunohistochemical staining at a protein level (Extended
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Data Figure 10). CHGA and SYP [328, 329] are used as routine diagnostic markers for

neuroendocrine neoplasms, including those in the pancreas and particularly useful for

distinguishing NEN from other types of pancreatic tumors, such as adenocarcinomas [536].

SYP is also considered a reliable NE marker in poorly differentiated NEC [537, 538]. NCAM1,

also known as CD56 [331], is a cell adhesion molecule and is used as an

immunohistochemical marker to identify neuroendocrine differentiation in tumor cells.

Moreover, the shared NE cell type also revealed specific expression of differentially

upregulated genes, like RBFOX1, RIMBP2, EYA2, ADARB2 related to neuronal regulation

and novel lncRNA transcripts- LINC01876 and LINC01811 (Wilcoxon rank sum test; average

log2FC >= 0.25 & Benjamini-Hochberg adjusted p-value < 0.01) (Figure 5.3).

The amphicrine cell type was assigned based on the co-expression of pancreatic acinar

marker GP2 [539, 540] and simultaneous expression of neuroendocrine markers- CHGA,

SYP and NCAM1 (Figure 5.2d). Apart from GP2, key markers indicative of acinar lineage

and differentiation, such as RBPJL [72, 540, 541, 544], NR5A2 [541, 542, 544], MECOM

[543, 544] and CEL were found to be robustly upregulated in the amphicrine cell type relative

to the rest (Wilcoxon rank sum test; average log2FC >= 0.25 & Benjamini-Hochberg adjusted

p-value < 0.01) (Figure 5.3). von Figura et al. 2014 [542] reported that Nr5a2 is a pivotal

regulator of acinar plasticity, essential for both maintaining acinar identity and reinstating

acinar fate during regeneration. MECOM is an oncogenic transcription factor required for

acinar cell dedifferentiation [543]. Also, digestive enzyme trypsinogen (PRSS1) was

specifically expressed in this cell type, albeit at a lower level (Figure 5.3). The amphicrine

progenitor-like cell type prominently expressed the early pancreatic progenitor marker PDX1

[545-547] and displayed negligible GP2 expression (Figure 5.2d). Importantly, this cell type
also demonstrated specific expression of pancreatic progenitor marker SOX9 [545, 547-549],

and robust expression of FREM2, ALK and RASGRF1 (Figure 5.3). Of note, FREM2 is an

early endodermal marker [550] which is not typically expressed in the adult pancreatic cell

types [72]. Moreover, Frem2 is known to dynamically modify the ECM to create a conducive

substrate for cell migration and rearrangements throughout embryogenesis [550]. Conversely,

a stromal cell type was identified exhibiting strong and specific expression of VIM but lacked

expression of key NE markers such as SYP (Figure 5.2d). Furthermore, ECM remodelling

genes such as CALD1, COL1A1, COL1A2, and CASC15 were found as markers of this cell

type (Figure 5.3). Additionally, this cell type was observed to be more abundant in P1, which
had undergone previous chemotherapy treatments (Figure 5.2c). Given the absence of NE

marker genes, this cell type was annotated as Stroma (normal)- this classification was later

confirmed through experimental validation using IHC (refer to section 5.4). Immune cell type
was characterized using prominent markers like PTPRC, CD247, THEMIS, ARHGAP15 and



Results | Pancreatic Neuroendocrine Carcinoma

119

DOCK2- having previously established function in immune biology (Figure 4.2d & 4.3).
Stroma (normal) and immune cell types, being non-malignant, are most likely components of

the panNEC tumor microenvironment (TME). Importantly, this acinar-like distinction in P5

was validated by localizing focal trypsin immunohistochemical staining, which was absent in

the other tumors (Extended Data Figure 10).

Figure 5.2: Cellular landscape demonstrating shared and unique cell types underlying
panNEC.
UMAP visualization of the cell type organization in LCNEC samples colored by (a) Patient-ID, and (b)
broad cell types inferred from integrated snRNA-seq data (n=5). Each dot (single nucleus profile)
represents Patient-ID and cell type in (a) and (b) respectively. (c) Proportions (y-axis) of cell types
(color legend, shared with panel b) per patient sample depicted using stacked bar-plot. (d) Dot-plot
depicting key neuroendocrine markers CHGA, SYP and NCAM1 across cell-types. Other
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distinguishing markers characterizing early pancreatic progenitor (PDX1), acinar lineage (GP2),
epithelial (EPCAM, CDH1), mesenchymal (VIM) and immune (PTPRC, CD247, THEMIS) are shown.
Nuclei in P5 clusters exhibited a distinct transcriptomic profile of both acinar- and neuroendocrine-
specific genes. Mean expression within each cluster is color-coded and percentage of nuclei
expressing a marker is size-coded.

Figure 5.3: Neuroendocrine and amphicrine cell types characterized by robust and
specific markers.
Dot-plot depicting robust and specific markers across each cell type inferred using Wilcoxon rank sum
test (average log2FC >= 0.25 & Benjamini-Hochberg adjusted p-value < 0.01). Log2FC of a marker
within a cell type is color-coded and percentage of nuclei expressing a marker is size-coded. The cell
types associated with tumor microenvironment (TME) i.e., stroma (normal) and immune are marked.
PDX1 and SOX9 were manually added to the figure, given their biological relevance [545-549]. Both
depict positive average log2FC in amphicrine progenitor-like relative to other cell types. FC= fold
change.

5.2.1 Shared panNEC sub-states

Subsequently, the cell types were subclustered into sub-states (Figure 5.4a) defined by

robust and specific markers inferred using differential gene expression analysis (average

log2FC >= 0.25 & Bonferroni adjusted p-value < 0.01, multi-variate Logistic Regression)

(Figure 5.5, Extended Data Figure 11, Supplementary Table 23). Relative composition of

sub-states per patient sample is depicted by Figure 5.4b. Given the small number of

heterogeneous samples (n=5), no statistical test is shown to make conclusive remarks about

abundance or depletion of a sub-state. Nevertheless, a kernel density estimation (KDE) was

performed to obtain a qualitative understanding of the composition shift among the patient

samples. For example, a noticeable trend of enrichment was observed for neuroendocrine

proliferating in case of P2 (Figure 5.4b & Extended Data Figure 9c).
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Despite salient variability among patients, common sub-states within the neuroendocrine cell

type were identified, exhibiting enrichment in specific functional pathways and oncogenic

processes (Figure 5.6 & Supplementary Table 24). The shared neuroendocrine sub-state

was characterized by the presence of established NE markers like RIMBP2 and ADARB2,

linked to neuronal system, as well as CACNB2, CACNA1A, and KCNJ3 involved in voltage

gated Ca2+ and K+ channels, respectively [551] (Figure 5.5 & Extended Data Figure 11).

Together, these markers contribute to enriched pre-synaptic depolarization (Figure 5.6 &
Supplementary Table 24). The calcium channel, encoded by the CACNB2 gene, is a

membrane-associated guanylate kinase (MAGUK) protein, which serves as the β2 subunit of

the L-type cardiac calcium channel CACNA1C. Of note, L-type calcium channels facilitate the

entry of Ca2+ into the cytoplasm and control both cardiac excitability and excitation-

contraction coupling (EC coupling) [552].

Additionally, a closely related neuroendocrine proliferating sub-state marked by the

expression of MKI67, DIAPH3, and CENPP (Figure 5.5, Extended Data Figure 11) was
enriched for processes associated with cell-cycle regulation and chromatin remodeling

pathways, including the G2M checkpoint, E2F transcriptional targets, DNA damage response

(DDR), and Aurora kinase activation (Figure 5.6 & Supplementary Table 24). Notably, the
Fanconi anemia (FA) signaling pathway, governed by FANCA, FANCI, tumor suppressor

genes BRCA1/2, and the BRCA interacting protein-encoding gene BRIP1 (Figure 5.5 &
Extended Data Figure 11) were found to be enriched in the NE proliferating sub-state

(Figure 5.6). Mutations or deficiencies in FA genes can lead to impaired DNA repair, and

lead to chromosomal abnormalities and genomic instability, making it a genetic susceptibility

factor for cancer predisposition [553]. Elevated expression of FA genes was previously found

to be correlated with chemotherapy resistance in cisplatin-resistant non-small cell lung

cancer (NSCLC) [554] and ovarian cancer cell lines [555]. In the case of patient P5, a distinct

proliferating sub-state was detected that harboured significantly high expression of acinar

genes, as discussed in subsequent sub-section 5.1.2. This cluster was annotated as

"amphicrine acinar proliferating" sub-state, which shared a clustering pattern with the

amphicrine sub-states on the UMAP.

Furthermore, a shared neuroendocrine sub-state (“NE HSP+ (hypoxic)”) demarcated by high

expression of heat-shock protein-encoding genes, including HSP90AA1, HSP90AB1, HSPE1,

and HSPH1, along with hypoxia-induced genes such as VEGFA, KDM3A, and NDRG1

(Figure 5.5 & Extended Data Figure 11) was unveiled. Importantly, this sub-state showed

notable enrichment in terms related to the heat stress response, along with hypoxia, mTORC

signaling, glycolysis, upregulated MYC targets, and MAPK signaling (Figure 5.6 &
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Supplementary Table 24). Cells encountering environmental stressors such as hypoxia may
activate pathways like mTORC/PI3-AKT and generate heat stress response to adapt and

survive [556, 557]. The overactivation of mTORC signaling promotes cell proliferation,

survival, and metabolism, thereby contributing to tumor growth and progression [558], a

phenomenon frequently observed in pNET [559]. Prior studies have reported frequent

abnormal activation of mTOR, often attributed to inactivating mutations in genes encoding

negative regulators of the pathway or through indirect mechanisms [559]. Clinically, the

overexpression of mTOR and its downstream targets were associated with worse prognosis

in various NETs [560, 561]. In a former study by Shida et al. in 2019 [562], IHC analysis of

tumor tissues revealed elevated mTOR expression in poorly differentiated NENs, with a

reported expression rate of 67% that declined to 27% in well-differentiated counterparts.

Similarly, Catena et al. in 2011 [563] found mTOR expression in 80% of patients with poorly

differentiated NEC, irrespective of tumor origin (including pancreas, colon, lung, and small

intestine), or the rate of proliferation.

Another sub-state, termed "neuroendocrine stromal-like," displays moderate expression of

ROBO2, low expression of NE genes like KCNB2, and stromal genes, such as, COL1A2 and

CALD1. No highly specific genes were found to distinguish neuroendocrine stromal-like

relative to other sub-states, and hence might represent a transitional state between NE and

stromal phenotype. In contrast, "stroma (normal)" sub-state is notably more prevalent in

patient P1 and is characterized by the specific expression of epithelial-mesenchymal

transition (EMT) mediators like COL1A1, COL1A2, CDH11, FN1, and LAMA4 (Figure 5.5 &
Extended Data Figure 11). Interestingly, this sub-state also revealed robust expression of

Hippo signaling members YAP1 andWWTR1 (TAZ) (Figure 5.5), known as critical regulators
of pancreatic tissue regeneration, and neoplastic transformation in both PDAC and

pancreatitis [564, 565]. Also, YAP1 is inactivated following normal endocrine specification

and not expressed in pancreatic islets [566] and rather established as a potential oncogene

in PDAC [567]. This further prompted an inquiry about whether YAP1 originates from the

tumor subpopulation or adjacent stroma in P1, using IHC (refer to section 5.4). CDH11 is

recognized for promoting immunosuppression, extracellular matrix deposition [568], and

development of desmoplastic stroma. Previous CDH11 knockdown (KD) studies have

reported reduced cell migration in PDAC [569]. Albeit the transcriptional profile of stroma

(normal) resembles cancer associated fibroblasts (CAFs), this cell type lacks key CAF

markers like FAP and S100A11 [570]. Analysis of differential pathways revealed biological

processes such as R-mediated phagocytosis and PPI synapse in both stromal sub-states

(refer to Figure 5.6). Stroma (normal) exhibited significant enrichment in specific pathways

related to Focal adhesion, NABA matrisome, ALK, and PDGF signaling (Figure 5.6 &
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Supplementary Table 24). Activation of PDGF signaling is known to promote the

recruitment of endothelial cells and stimulate angiogenesis within the tumor

microenvironment, facilitating tumor growth and metastasis [571, 572]. Also, the signaling

pathways can influence the immune response within the tumor microenvironment. For

example, alterations in ECM composition mediated by focal adhesion and NABA matrisome

signaling can impact immune cell infiltration and function. Additionally, paracrine signaling

through ALK and PDGF pathways may affect the immune cell recruitment and activity within

the tumor stroma [573]. Taken together, the stroma (normal) might function like CAFs and

promote ECM remodelling, cell migration, invasion, and metastasis. To decipher the

biological differences between neuroendocrine stromal-like and stroma (normal) sub-states,

a marker analysis was performed comparing the two that revealed relatively increased levels

of neural genes like RIMS2, PTPRN2, CACNA1A and PLCG2 (average log2FC >= 0.25,

adjusted p-value < 0.01, Logistic Regression analysis) (Supplementary Table 23) in the

former.

The immune cell type was further subdivided into lymphocytes and macrophages (Figure
5.4a) and characterized by well known marker genes (Figure 5.5 & Extended Data Figure
11). Of note, PLXDC2- a LR inferred marker of macrophage was previously reported as a

TME-related signature and highly correlated to CD163 M2 macrophages [574]. A previous

study by Tubau-Juni et al 2020 [575] postulated PLXDC2 to be highly immunomodulatory,

and Plxdc2 deficiency resulted in the production of pro-inflammatory macrophages in their

ex-vivo experimental system. In metastatic populations, tumor-infiltrating macrophages

exhibit strong expression of CTSB, another marker of this sub-state [576]. Lin et al. 2022

[577] discovered that CTSB+ macrophages suppress the anti-tumor immune response

through various immune checkpoints. Another study [578] reported that DOCK8 protein

regulates macrophage migration. Another marker associated with this sub-state, DOCK2,

was identified as regulating macrophage migration, phagocytosis, and ROS production [579].
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Figure 5.4: Cellular landscape underlying panNEC constitute shared and unique sub-
states.
(a) UMAP embedding of single-nucleus profiles (dots) of panNEC samples (n=5) colored by cell sub-
states derived from integrated snRNA-seq, and sub-clustering cell types shown in figure 4.2b. The
unique, shared, and tumor microenvironment (TME) sub-states are labelled. Stroma (normal) is
marked (in asterisk) as it is a shared non-malignant sub-state. (b) Stacked bar-plot revealing relative
composition (y-axis) of inferred cell sub-states per patient sample. The unique sub-states are specific
to P5. Color legend shared with (a).
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Figure 5.5: Shared sub-states characterized by robust and specific markers.
Dot-plot displaying selected key markers for shared sub-states inferred using multi-variate Logistic
Regression framework (avg log2FC > 0.25 & Bonferroni adjusted p-value < 0.01). Mean marker
expression within the cluster is color-coded and percentage of nuclei expressing a marker is size-
coded. The dot-plot comparing all sub-states (unique and shared) is shown in Extended Data Figure
11 and tabulated in Supplementary Table 23.

Figure 5.6: Shared sub-states characterized by differential pathway signaling
programs.
Dot-plot depicting signature scores for differentially expressed signaling pathways and processes for
shared sub-states. Expression is color-coded and percentage of nuclei expressing a pathway module
is size-coded. Pathways were inferred from the top-100 differentially upregulated genes per sub-state
and listed in Supplementary Table 24.

Notably, two genes that direct neuronal development- RBFOX1 [580] and NKX2-2 [581] were

found to be specific to the shared sub-states and were not expressed in the amphicrine sub-

states (Figure 5.7). RBFOX1 was identified as a differentially upregulated gene in both NE

and NE proliferating (average log2FC= 1.4077 & 0.6638, respectively, Bonferroni adjusted p-

value < 0.0001, Logistic Regression), while it was moderately expressed in NE stromal-like

(Figure 5.7). Interestingly, RBFOX1 is not expressed in the embryonic pancreas or the adult
endocrine pancreas under physiological conditions [582]. This was further confirmed by

integrating the adult pancreas snRNA-seq dataset from Tosti et al. 2020 [72], which showed

the absence of RBFOX1 in the native pancreas cell types or states (Figure 5.7). Moreover,
the RNA binding protein RBFOX1 has been shown to regulate splicing and impair the

stability of LSD1 (KDM1A) [583], thereby adjusting the ratio of LSD1 and its neuro-specific

isoform LSD1n, resulting in de-repression of neuroplastic gene expression [584]. Specifically,

RBFOX1 has been linked to calcium signaling, including the expression of calcium channels

[585]. Hence high RBFOX1 expression, in addition to serving as a marker gene, could

provide a tentative mechanistic link to the prominent expression of calcium channels present
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in the shared NE states [585]. Also, NKX2-2 was found to be specific only for the NE and NE

proliferating sub-states (Figure 5.7). Nevertheless, NKX2-2 was not identified as an LR

marker — it might be due to the limited capability of snRNA-seq in detecting transcription

factors as markers when their expression is low [160]. Given that NKX2-2 is of prime

importance in pancreatic islet development [581], its expression was also found in adult

endocrine cell types i.e., alpha, beta, and delta (Figure 5.7). Importantly, amphicrine

progenitor-like sub-state was found to robustly express PROX1 that was considerably

decreased in the other amphicrine sub-states (avg log2FC= 1.0677, Bonferroni adjusted p-

value < 7.02E-179, Logistic Regression) (Figure 5.7). Of note, PROX1 is a transcription

factor known for driving neurogenesis in the adult brain [586], is highly expressed in the

undifferentiated progenitors of mouse pancreas and controls pancreatic morphogenesis [587].

Moreover, PROX1 is known to be highly expressed in the multipotent progenitors of mouse

embryonic pancreas, whereas it is absent in mature acinar cells in the postnatal murine

pancreas [588, 589]. The latter fact was verified as PROX1 expression was negligible in the

Tosti’s acinar sub-states (Figure 5.7).

Figure 5.7: Shared NE and NE proliferating panNEC sub-states distinguished by
classical neurogenesis markers- RBFOX1 and NKX2-2.
Dot-plot illustrating the normalized expression of RBFOX1, NKX2-2 and PROX1 across panNEC and
adult pancreas snRNA-seq dataset from Tosti et al. 2020 [72]. panNEC sub-states are shown in purple.
Average gene expression within a sub-state is color coded and and dot size reflects the percentage of
nuclei expressing a gene, capped at 40% for visualization. Notably, RBFOX1 emerged as differentially
upregulated in NE and NE proliferating sub-states and is highlighted in purple. PROX1 is significantly
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upregulated in amphicrine progenitor-like (multivariate Logistic Regression, see Supplementary Table
23). Neuroendocrine HSP+ (hypoxic) was written as Neuroendocrine HSP+.

5.2.2 Amphicrine sub-states unique to sample P5

In the instance of patient P5, a distinct amphicrine sub-state termed 'Amphicrine progenitor-

like' was identified— characterized by the expression of key markers and transcription factors

that orchestrate differentiation of early pancreas progenitors, including, multipotent pancreas

progenitors (MPP) and tip progenitors [547, 590, 591]. Notable MPP markers PDX1 and

SOX9 [545-549] were jointly expressed in the amphicrine progenitor-like sub-state (Figure
5.8). Of note, several former lineage investigation studies associated PDX1 and SOX9 with

MPP that could differentiate into acinar, ductal, and endocrine lineage paths [545, 547-549,

592-594].

Taken together, the amphicrine progenitor-like sub-state reflected an immature, stem cell-like

phenotype. While amphicrine acinar03 exhibited PDX1 expression at a similar level to

amphicrine progenitor-like cells, the former did not express SOX9 and instead displayed

acinar markers such as GP2 (Figure 5.8 & 5.9a). Furthermore, PTF1A- a major tip

progenitor marker [547, 590, 591], known for maintaining the identity and function of mature

acinar cells was lowly expressed in the amphicrine acinar sub-states, including amphicrine

acinar03 (approximately 5% of nuclei per sub-state express PTF1A; Figure 5.8). It might be
possible that the sparse portion of nuclei expressing PDX1+/PTF1A+ in amphicrine acinar03

indicated the existence of tip progenitors or early acinar progenitors before fully committing to

mature acinar fate. In this context, a noteworthy study by Cogger et al. 2017 [595] postulated

that GP2+/PTF1A+/NKX6-1+ subpopulation might correspond to MPP. However, NKX6-1

was not expressed in the panNEC dataset. Furthermore, the presence of mouse multipotent

progenitor markers PDX1 and ONECUT1 was noted in both amphicrine progenitor-like and

amphicrine acinar03 sub-states [596] (Figure 5.8). On the other hand, other early pancreatic
progenitor markers, including HNF1B [597-599], GATA6 [600-602], ETV4 and MEIS1/2 [603]

were found to be expressed in all the amphicrine sub-states, although HNF1B was relatively

robust for amphicrine acinar sub-states (Figure 5.8).

Moreover, amphicrine progenitor-like and amphicrine acinar01 sub-states showed relatively

higher expression of ONECUT2 and FOXQ1, respectively (Figure 5.8). These two genes

are recognized markers for metaplastic acinar cells undergoing transdifferentiation towards

ductal or other secretory epithelial cell states following injury or oncogene activation in a
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process referred to as acinar to ductal metaplasia (ADM), as described in Schlesinger et al.

2020 [604]. Moreover, the amphicrine acinar sub-states strongly expressed regenerative

protein-encoding gene REG1A, transcription factors ONECUT1 [604, 606], HNF4A [605, 606]

and HNF4G- critical for embryonic and pancreatic development; HNF4A and GATA6 are

known drivers of classical phenotype in PDAC [605] (Figure 5.8). Collectively, this suggested
a functional analogy of the amphicrine acinar sub-states with the acinar-REG+ cell-state

described in Tosti et al. 2020 [72] and Muraro et al. 2016 [294] (Extended Data Figure 12).
In contrast, the shared sub-states showed negligible expression of GATA6, and extremely

low levels of HNF4A/HNF4G (Figure 5.8). This finding aligned with Kawasaki et al. 2020

organoid study [607], indicating that shared panNEC sub-states might have lost of their

original cell identity and were reprogrammed into the neuroendocrine lineage. Overall, based
on the expression of genes relevant for PDAC and pancreatic neoplasia like HNF1B, GATA6,

ONECUT2, HNF4A and HNF4G, the amphicrine sub-states also recapitulated similarities

with MUC5B+ ductal population from Tosti et al. 2020 [72] (Extended Data Figure 12).

Figure 5.8: Amphicrine progenitor-like and amphicrine acinar sub-states characterized
by early pancreatic progenitors and metaplastic acinar signatures.
Dot-plot illustrating key markers and transcription factors pertinent to early pancreas development and
the regulation of pancreatic progenitors (including multipotent pancreatic progenitors, tip and trunk
progenitors) as outlined in the text. Visualized gene-set is curated from several literature references,
as described in the text. PDX1 and SOX9 are well-established regulators of multipotent pancreatic
progenitors [545-549, 592-594] and highlighted for their prime importance in early pancreas
development. ONECUT2 and FOXQ1 are indicative of late metaplastic stage, as reported by
Schlesinger et al. 2020 [604]. HNF4A and GATA6 are known drivers of PDAC classical phenotype
[605]. The presence of MKI67 in the amphicrine acinar proliferating cluster suggests a self-renewing
sub-state. NEUROG3 and FEV were not detected in the dataset, indicating the absence of classical
pancreatic endocrine progenitors. Average gene expression within each cluster is color-coded, while
the percentage of nuclei expressing a marker is indicated by marker size. Gene expression levels are
standardized across columns for comparison. For the comparative analysis with healthy pancreatic
cell types/states from Tosti et al. 2020 [72], refer to Extended Data Figure 12.



Results | Pancreatic Neuroendocrine Carcinoma

129

As previously stated, repression of acinar lineage encoding genes like RBPJL, GP2, and

digestive enzymes such as PRSS1, PRSS2 was observed in amphicrine progenitor-like sub-

state, emphasizing an immature and less differentiated state (Figure 5.9a & Supplementary
Table 23). Consistent with its progenitor characteristics, genes associated with

pancreatoblastoma (PBL) [608], an immature childhood tumor with multilineage features

were prominently expressed in this sub-state. These genes included LEF1, LGR5, BMP4,

ID1, and TCF7 (Figure 5.9a & Supplementary Table 23). Of note, the positive markers for

amphicrine progenitor-like sub-state were also statistically over-enriched in PBL signatures

extracted from [608] (representation factor: 18.0, hypergeometric p-value < 5.507e-08)

(Figure 5.9b, c). This observation suggested the presence of WNT-BMP-NOTCH signaling

pathway, which seemed to be a notable feature of this sub-state, implying a dynamic

interplay of signaling cascades within this unique cell population. Crosstalk among these

pathways is known to be associated with the maintenance of stemness and progenitor cell

properties, in promoting cell survival and inhibiting differentiation in PBL [608]. Importantly,

pathway enrichment analysis using differentially upregulated markers (n=200, avg

log2FC >=0.25 & Bonferroni adjusted p-value < 0.01, Logistic Regression) also suggested

Wnt signaling to be a critical regulator of this sub-state (Figure 5.9d), governed by mediators
such as CTNNB1, AXIN2, LGR5, DKK4, LEF1, BMP4, RNF43 and NOTUM (Figure 5.9a, b
& Supplementary Table 24). Previously inferred, neurogenesis driver PROX1 is known to

be induced by Wnt signaling [609, 610] (Figure 5.7). Owing to the noted resemblances with

early pancreatic progenitors — including, MPP and trunk progenitors (such as,

PDX1+/SOX9+), PBL stemness signatures, and the absence of mature acinar markers, this

sub-state was labeled as "amphicrine progenitor-like." Furthermore, a significant upregulation

of genes linked to invasiveness and cell migration, including NOTUM, RASGRF1, and ALK

(Figure 5.9a) was observed in this progenitor-like sub-state. This heightened expression of

genes associated with cellular mobility suggested a potentially more aggressive and invasive

nature of this sub-state within the tumor. Interestingly, this sub-state also demonstrated

enrichment in transport of ions (Figure 5.9d), influenced by overexpressed markers like

ADCY2, ATP1A1, SLC24A1, SLC7A11, and SLC22A15 (Supplementary Table 24). This
observation implied altered cellular homeostasis and metabolic dynamics in P5. Of note,

amphicrine progenitor-like and shared NE HSP+ (hypoxic) sub-states shared a statistically

significant marker overlap (representation factor: 6.8 & hypergeometric p-value < 2.833e-37).

Performing pathway enrichment using common markers indicated enrichment in processes

such as fluid shear stress, presenilin PS1 pathway, RAC1 pathway, thyroid signaling, and

focal adhesion (Figure 5.9e & Supplementary Table 24).

Apart from this, three distinct amphicrine acinar sub-states, namely Amphicrine acinar01,

Amphicrine acinar02, and Amphicrine acinar03 were detected in the amphicrine acinar cell
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type (Figure 5.4a). These three sub-states were characterized using key acinar progenitor

markers like RBPJL, GP2, NR5A2, MECOM and CEL (Figure 5.9a, Extended Data Figure
11 & Supplementary Table 23). NR5A2 regulates various stages of pancreatic

development over time, which involve regulatory mechanisms pertinent to pancreatic

oncogenesis and the preservation of the exocrine phenotype [611]. During the last phase of

acinar cell maturation, the lack of Nr5a2 was found to influence Ptf1a and Rbpjl expression

that resulted in incomplete differentiation of the limited acinar cells formed [611]. Amphicrine

acinar-01 additionally expressed upregulated trypsinogen (PRSS1 & PRSS2) levels (Figure
5.9a). The amphicrine acinar-01 and -03 sub-states demonstrated significant enrichment of

PDX1-regulated targets [612], with the former exhibiting the highest enrichment. Also,

module score analysis revealed that amphicrine acinar-01 sub-state is statistically enriched

in one of the metaplastic acinar programs previously described in Schlesinger et al. 2020 in a

K-Ras driven mouse model of acinar to ductal metaplasia [604] (Figure 5.9b). Furthermore,
DEG analysis of amphicrine acinar-01 relative to amphicrine acinar-02 and -03 sub-states

revealed differentially upregulated genes like CLPS, CPA1, SERPINI2, CPA2, PDGFD,

CTRB1 and GALNT17 (avg log2FC > 1.5 & Benjamini-Hochberg adjusted p-value < 0.01;

Wilcoxon rank sum test) (Figure 5.10). The concurrent presence of metaplastic signatures

and acinar secreted enzyme encoding genes (like CPA1 and CPA2) suggested an

intermediate phenotype bridging early and late metaplastic states, which is known to be

induced during pancreatic injury and ADM [604]. Of note, Amphicrine acinar02 exhibited

relatively increased expression of serotonin biosynthesis associated gene TPH1 [613] as

compared to other two amphicrine acinar subgroups (Figure 5.9a & Extended Data Figure
11). In the context of small bowel neuroendocrine tumors (SBNETs), cells with TPH1

knockdown generated smaller tumors in vivo, which exhibited reduced vascularity [614].

Additionally, the amphicrine acinar02 sub-state strongly expressed a few ECM remodeling

genes such as ABI3BP, FKBP9, IGFN1 and PROM1 associated with ductal-like features

(Figure 5.9a & 4.10). Taken together, amphicrine substates co-expressed markers of

multiple pancreatic lineages or their progenitors, which have been described in the trans-

differentiation of pancreatic cells in mouse models of pancreatic injury and regeneration,

where they can give rise to sub-states with enteroendocrine or gastric differentiation profiles

[615]. A proliferating amphicrine sub-state called amphicrine acinar proliferating was

detected, having a similar molecular profile to the shared neuroendocrine proliferating sub-

state, and characterized by markers like MKI67, DIAPH3, CENPP, BRCA1 and FANCA

(Figure 5.9a).
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Figure 5.9: Amphicrine progenitor-like characterized by WNT-BMP-NOTCH signaling
pathway.
(a) Dot-plot illustrating key positive markers for amphicrine progenitor-like and other amphicrine acinar
sub-states inferred using multivariate Logistic Regression (avg log2FC >= 0.25 & Bonferroni corrected
p-value < 0.01). Only genes specific to amphicrine sub-states were included for clarity in visualization;
however, the entire plot encompassing all sub-state markers can be referred to in Extended Data
Figure 11. The markers crucial for amphicrine progenitor-like sub-state are highlighted. Mean gene
expression within a sub-state is color-coded, and the percentage of nuclei expressing a marker is size-
coded. (b) Matrix plot displaying module scores computed using signatures of PBL progenitors from
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[608], PDX1 high pancreatic cells from [612], and metaplastic acinar cell state from Schlesinger et al.
2020 [604]. (c) Feature plot demonstrating module scores depicted in (b) per nucleus. The amphicrine
progenitor-like sub-state is circled to emphasize the enrichment of PBL progenitor score for clarity. (d)
Bar graph presenting enriched pathways and processes identified using upregulated markers of the
amphicrine progenitor-like sub-state. (e) Bar graph depicting pathway enrichment analysis using
overlapped markers between amphicrine progenitor-like and Neuroendocrine HSP+ (hypoxic) sub-
states. A discrete color scale is utilized to represent statistical significance, with gray indicating a lack
of significance.

Figure 5.10: Classification of Amphicrine acinar sub-states within panNEC.
Dot-plot illustrating differentially expressed markers per amphicrine acinar sub-states. DEG(s) were
recalculated using only amphicrine acinar sub-states and by using Wilcoxon rank sum test (avg log
fold change or LFC >= 1.5, Benjamini-Hochberg corrected p-value < 0.01). LFC (avg log2FC) per
marker within a sub-state is encoded by the dot color. Fraction of cells in a sub-state (in %) expressing
a marker is size-coded.

5.3 Lineage plasticity and malignant cell state programs in panNEC

5.3.1 Pancreas development

Considering the influence of lineage plasticity on malignant behavior, a module score

analysis was conducted using curated signature lists derived from various studies centered

on pancreatic development, with a focus on acinar [547], ductal [616] and endocrine lineage

differentiation [619, 620]. Further, an over-enrichment test based on the hypergeometric

distribution (see Methods) was performed to determine if the observed enrichment for a

certain signature was also statistically significant. The P5-specific amphicrine progenitor-like

sub-state was found to be enriched for gene-sets for trunk and endocrine progenitors known

to differentiate into ductal and endocrine cell types or states, respectively (Figure 5.11).
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However, this sub-state revealed no enrichment for the tip progenitor- a population typically

located at the tips or edges of developing pancreatic buds and is known to differentiate into

mature acinar cells (Figure 5.11). This can be explained by lack of PTF1A, CEL, RBPJL,

CPA1 and digestive enzymes like PRSS1 in this sub-state as discussed before (Figure 5.9a
& Extended Data Figure 11). On the contrary, the amphicrine acinar sub-states exhibited

variable expression of the tip progenitor module, with the most significant enrichment

observed in amphicrine acinar 01 followed by amphicrine acinar 03 sub-state (Figure 5.11).
This could be explained by the significant expression of key acinar markers including RBPJL,

GP2, and CEL in the amphicrine acinar sub-states (Figure 5.9a).

In a similar vein, another investigation was performed to find resemblance of the inferred

panNEC sub-states to various types of ductal progenitor signatures extracted from Qadir et

al. 2020 [616] (Figure 5.11). While the NE HSP+ (hypoxic) sub-state apparently showed

strong expression for both trunk and migratory ductal progenitor module scores, it was later

found that this observation was driven by few features and lacked statistical significance. On

the other hand, amphicrine acinar01 demonstrated significant enrichment for Ductoacinar 1

and 2 signatures, implying a transition state between acinar and ductal, and plasticity owing

to de-differentiated acinar cells [616]. Additionally, the amphicrine acinar sub-states were

found to be enriched for signatures of centro-acinar cell type that are believed to harbor

pancreatic multipotent progenitors [617] Figure 5.11). Moreover, the centroacinar cells were
suggested to have a direct role in oncogenic transformation through their ductal

transdifferentiation [618].

Subsequently, the transcriptomic resemblances between panNEC sub-states, endocrine

progenitors and cell types of endocrine lineage were explored [619, 620] (Figure 5.11).
Module score analysis showed a mutual exclusivity between the gene-sets indicative of

alpha and beta cell fate programs, with alpha being associated with shared panNEC sub-

states and beta with amphicrine ones. Especially, beta cell program was found to be most

enriched in amphicrine acinar 01 (Figure 5.11). Moreover, amphicrine acinar 01 displayed

enrichment for gamma cell types, while amphicrine progenitor-like sub-state exhibited

enrichment for delta cells (Figure 5.11). It is important to mention that the hypergeometric

test did not reveal any significant enrichment for the alpha cell program in the shared sub-

states and hence, should be carefully interpreted. Notably, none of the key markers

associated with mature endocrine cell fates, such as GCG, INS, and SST were expressed in

any of the sub-states (Figure 5.12). Other critical genes defining the alpha lineage like MAFB
and IRX2 were also not expressed (Figure 5.12). Albeit ARX, a TF known to direct alpha cell

development [620, 621] was very lowly expressed in the shared sub-states— it specifically
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stemmed from P1 sample. On a similar note, prominent beta markers like IAPP and MAFA

were negligibly expressed in the panNEC sub-states (Figure 5.12). Although DLK1, TGFBR3,
and SMAD9 expression contributed partially to the enrichment of the beta program in

amphicrine sub-states (Figure 5.12), their presence does not necessarily signify a typical

beta-like NEC in the absence of INS. For instance, DLK1 is known to be expressed in the

developing pancreas as well as in a large variety of cancers, including well differentiated

NET and SCLC [622, 623]. Furthermore, SST and PPY- characteristic markers for delta and

PP cell types were not expressed in the panNEC sub-states (Figure 5.12). The lack of

characteristic lineage markers such as GCG or INS confirmed that the panNEC sub-states

did not recapitulate the transcriptomic profile of mature islets, unlike their well-differentiated

pNET counterparts that is known to closely resemble the transcriptomic profile of alpha, beta,

gamma, or delta cell types.

Figure 5.11: Transcriptomic similarity of panNEC sub-states with signature modules
indicative of developmental (or, lineage) plasticity.
Matrix plot depicting mean normalized scores of various cell type/state signature modules associated
with pancreatic development. Module scores represent the mean expression of a specified gene-set
subtracted by the average expression of a reference set of genes, with the reference set randomly
sampled from the data for each binned expression value using scanpy. Marker lists for ductal
progenitors were curated from Qadir et al. 2020 [616], a scRNA-seq study profiling variability of major
pancreatic duct progenitor cells; signatures for Endocrine & Islet progenitors were specifically
extracted from Ramond et al. 2018 [619], while alpha and beta cell type signatures were sourced from
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Muraro et al. 2016 [294] and Sean et al. 2022 [620], and later combined during module scoring.
Gamma and Delta markers were taken from Muraro et al. 2016 [294]. Gene lists used for computing
module scores were included in Supplementary Table 25. Sub-states demonstrating statistically
significant over-enrichment for a signature (representation factor > 3 and hypergeometric p-value <
0.01) are boxed in purple. The p-value indicating under- or over-enrichment was calculated using the
cumulative distribution function (CDF) of the hypergeometric distribution. While Neuroendocrine HSP+
(hypoxic) exhibited visibly high expression of trunk progenitors and C1 ductal progenitors, this
observation was driven by two features and was not a statistically significant enrichment. Similarly, the
enrichment of neuroendocrine stromal-like, and stroma (normal) for C1 progenitors and alpha module
were not significant. Therefore, these instances and others not outlined in purple indicate a lack of
notable enrichment.

Figure 5.12: panNEC sub-states lack key endocrine lineage drivers— GCG, INS and
SST
Dot-plot depicting characteristics markers defining mature endocrine cell types comprising alpha, beta,
delta, and pancreatic polypeptide (PP). Markers were curated from Muraro et. al 2016 [294] and
verified from other sources [619, 620]. GCG, INS and SST are established lineage markers for alpha,
beta and gamma cell types respectively. PPY, characteristic marker of PP cell type was not expressed
in the dataset. Average gene expression within a sub-state is color-coded and percentage of cells (or,
nuclei) expressing a marker is size-coded.

5.3.2 Neuroendocrine carcinoma

NE differentiated cancer sub-states are increasingly recognized across the full spectrum of

cancer entities [624, 625], with particularly high frequencies in lung and androgen resistant

prostate cancer [624-627]. Indeed, the clinical management of panNEC largely follows the

experience gathered from trials in NE small cell carcinomas of the lung, which occur at much

higher frequency [628]. Hence, transcriptomic signatures observed in NEC of non-pancreatic

origins were utilized to determine whether their malignant phenotypes were recapitulated by
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the panNEC sub-states. Specifically, module score analysis and an over-enrichment test

(see Methods) were employed to assess the enrichment of signatures within the panNEC

sub-states using publicly available signatures of malignant sub-types and class programs

from lung and prostate NEC datasets (Figure 5.13).

Signatures were initially extracted from the study by George et al. 2018 [340], which focused

on high-grade lung NEC subtypes, including a sizable cohort of LCNEC, which was

considered relevant to the pancreatic LCNEC sample set presented in this thesis. Signatures

derived from exclusive clustering of lung LCNEC samples resulted in a broad segregation of

two subtypes (Type I and II) that were associated with distinct mutational profiles; either with

bi-allelic TP53 and STK11/KEAP1 alterations (Type-I) or bi-allelic inactivation of TP53 and

RB1 (Type-II). It is important to note that the transcriptional profile of Type-I was defined as

ASCL1high/DLL3high/NOTCHlow and reported to possess high neuroendocrine expression.

Based on this observation, Type-I LCNEC transcriptionally mirrors ‘SCLC-like tumors’

despite sharing a mutational profile like NSCLC [652, 653] (as marked in Figure 5.13). In
contrast, Type-II LCNECs demonstrated reduced expression of neuroendocrine genes and

ASCL1low/DLL3low/NOTCHhigh pattern in George et. al 2018 study— hence, it resembles

NSCLC tumors based on transcriptomic pattern [652] (as marked in Figure 5.13).
Additionally, the authors described distinct malignant sub-classes (Class D and E), which

crossed the conventional classification categories of small cell lung carcinoma (SCLC) and

LCNEC. Signatures of these sub-classes were found to broadly separate the NE lung cancer

types from other histotypes of lung cancer.

The Type-I LCNEC signature exhibited variable expression across most panNEC sub-states,

with the highest statistical enrichment specifically observed in amphicrine acinar01 (Figure
5.13). Interestingly, both the proliferative and progenitor sub-states completely lacked

representation of the Type-I signature. Biologically, LCNEC subtype type-I has been linked

to elevated ATP synthesis, oxidative phosphorylation, and electron transport chain activity,

but reduced cell cycle and DNA repair that broadly aligns with the transcriptomic profile of the

amphicrine acinar and shared NE sub-states. Instead, the Type-II lung LCNEC showed

robust over-enrichment for the amphicrine proliferating sub-state (representation factor: 10.1,

hypergeometric p-value < 6.287e-17, over-enrichment test based on hypergeometric

distribution), though lesser- for the shared NE proliferating sub-state (representation factor: 5,

hypergeometric p-value < 0.003) (Figure 5.13). This aligns with the previously described

type-II feature, which has been linked to increased cell activation and proliferation.

Enrichment in NE proliferating was driven by genes like DNMT1, POLA1, FANCC, RNGTT

and TIAM1. Dysregulation of DNMT1 activity can lead to aberrant DNA methylation patterns,
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contributing to cancer development and progression by silencing tumor suppressor genes or

activating oncogenes [629]. Mutations in FANCC and other FA pathway genes can lead to

chromosomal instability and increased susceptibility to cancer, particularly hematologic

malignancies, and solid tumors [553]. TIAM1 is implicated in cancer metastasis by promoting

tumor cell invasion and migration through cytoskeletal rearrangements and changes in cell

adhesion properties [630].

Further signatures from the George et al 2018 [340] study, which represent distinct

transcriptomic sub-classes within neuroendocrine lung cancers also exhibited distinct

enrichment patterns in the panNEC sub-states. Both Class I and II NE lung cancer sub-class

signatures were highly represented in the amphicrine sub-states (Figure 5.13). Also, the
Class I signature that is representative of lung LCNEC with strong NE marker expression

was moderately represented by the shared NE sub-state (representation factor: 3.5,

hypergeometric p-value < 0.008) (Figure 5.13). In contrast, shared panNEC sub-states

generally lacked expression of the class II signature, which in lung cancer denoted

predominantly LCNEC with lower-level NE marker expression. (Figure 5.13). Importantly,
SCLC-like transcriptome features (Class III and IV) were strongly over-enriched in both

shared NE and NE-proliferating sub-states (representation factor: 3.5 respectively,

hypergeometric p-value < 0.008) (Figure 5.13). Taken together, these analyses suggested

that despite their large cell morphology, the shared NE substates in this panNEC cohort

share transcriptomic features with SCLC rather than with LCNEC of the lung.

On the other hand, class D and E signatures were upregulated in both amphicrine and NE

proliferating sub-states (Figure 5.13). This is mainly because of class D and E being

associated with chromatin modifications, DNA repair, and DNA damage response. More

specifically, the class D signature that represented the majority of lung LCNEC was relatively

more enriched in the proliferating amphicrine sub-state (representation factor: 9.2,

hypergeometric p-value < 1e-09), than its shared counterpart (representation factor: 5,

hypergeometric p-value < 0.003). However, the shared NE proliferating revealed stronger

over-enrichment of the class E signature derived predominantly from SCLC samples

(representation factor: 6, hypergeometric p-value < 0.003) relative to LCNEC dominant

Class-D. Considering the clinical relevance of shared NE-proliferating, markers that

contributed to the enrichment of Class D and E signatures were inspected. Again, DNMT1

turned up together with genes such as CCDC14, KNTC1, and RBL1 for Class-D, and LIG1,

NASP, POLA1, CACNA1A, CBFA2T2, and KHDRBS1 for Class-E (Supplementary Table
23). Collectively, these genes are implicated in DNA repair mechanisms, maintenance of

genomic integrity, and neuronal regulation. In a previous study, Naert et al. 2020 [631]
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demonstrated that RBL1 (p107) acts as a tumor suppressor in glioblastoma and small-cell

pancreatic neuroendocrine carcinoma using a Xenopus model. Lazaro et al. 2019 [632]

linked RBL1 inactivation to the differential development of LCNEC, whereas George et al.

validated the involvement of RBL1 in the progression of human SCLC.

Differentially upregulated markers for both NE and NE-proliferating sub-states also

demonstrated a significant over-enrichment of a prostate cancer signature extracted from

Alshalalfa et al. 2019 [341], that was found suitable to distinguish small cell NE prostate

cancer from adenocarcinoma in treatment naïve, early stage specimens (representation

factors of 10.7 and 11.8, respectively, hypergeometric p-value < 1e-07) (Figure 5.13). To be
precise, this observation was driven by markers, including CAMK1D, CHD7, CACNA1A,

KCNB2, NFASC, NRXN1 for both sub-states, and additionally by EZH2, RFX2, LIG1, LMNB1

in NE-proliferating. Similarly, both sub-states exhibited significant enrichment in upregulated

NE markers obtained from a study focused on an SCLC mouse model [633].
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Figure 5.13: Transcriptomic similarity of panNEC sub-states with signature modules
indicative of neuroendocrine lung and prostate cancer subtypes and subclasses.
Matrix plot illustrating the normalized mean score of curated signature modules extracted from lung
and prostate NEC. The module score represents the mean expression of a specified gene-set
subtracted from the average expression of a reference set of genes, with the reference set randomly
sampled from the data for each binned expression value as implemented in scanpy. Signatures
corresponding to LCNEC subtypes (type-I and II), lung NEC sub-classes (I, II, III+IV), and Class-D and
E were sourced from George et al. 2018 [340]. Additionally, signatures upregulated in NE Prostate
Cancer were included from Alshalalfa et al. 2019 [341]. Differentially upregulated NE and non-NE
genes in an SCLC mouse model were extracted from [633]. Gene lists used for performing module
score analysis was included in Supplementary Table 25. Enclosed in purple boxes are sub-states with
statistically significant over-enrichment for a malignant signature (representation factor > 3 and
hypergeometric p-value < 0.01). The p-value denoting under- or over-enrichment was calculated using
the CDF of the hypergeometric distribution. Note: According to previous data [340, 652], type I LCNEC
exhibited a mutational pattern resembling NSCLC, yet displayed transcriptomic profiles characteristic
of SCLC. Conversely, type II LCNEC demonstrated a mutational pattern akin to SCLC but exhibited
low expression of neuroendocrine markers, akin to NSCLC. Hence, type I and II LCNEC(s) were
marked as SCLC-like and NSCLC-like respectively, based on transcriptomic patterns.
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5.3.3 Pancreatic Ductal Adenocarcinoma

Previous literature suggests that panNEC shares the mutation spectrum of PDAC rather than

pancreatic NET [324, 636]. Also, panNEC can co-exist with PDAC in a rare phenomenon

known as mixed or combined neuroendocrine-non-neuroendocrine neoplasm (MiNEN or

MANEC) [637, 638]. These tumors typically exhibit both neuroendocrine and non-

neuroendocrine components within the same lesion [638, 639]. This observation inspired an

investigation into whether any of the panNEC sub-states transcriptomically recapitulate

malignant cell states and lineage programs observed in PDAC. To achieve this objective, a

module score analysis was conducted using disease signatures compiled from Hwang et al.

2022 [342], a snRNA-seq study that characterized PDAC tumor specimens subjected to

either neoadjuvant therapy or from treatment-naïve conditions (Figure 5.14). Of note, the
latter inferred several malignant programs representing either cell state (Cycling-S, Cycling-

G2/M, MYC, Adhesive, Interferon, TNF-NFκB signaling) or lineage (Acinar-like, Classical-like,

Basaloid, Squamoid, Mesenchymal, Neuroendocrine-like, Neural-like progenitor). Next, an

over-enrichment test based on hypergeometric distribution (see Methods) was performed to

assess the significance of enrichment. The signatures of ‘Classical-like’ showed strong

overlap with the previously defined Moffitt's classical signature [342, 634].

As expected, both NE and amphicrine proliferating sub-states revealed significant over-

enrichment for Cycling (S) and Cycling (G2/M) programs associated with cell-cycle regulation

and E2F1 targets (Figure 5.14). Amphicrine acinar-like 01 demonstrated the most significant
enrichment for the 'acinar-like' program. Of note, it also showed intriguing characteristics

concerning the Classical-like subgroup (Figure 5.14). This aligned with the earlier findings in
Figure 5.8, where substantial expression of genes that contribute to the classical phenotype

signature, e.g. GATA6 and HNF4A were demonstrated in the amphicrine sub-states. GATA6,

a transcription factor pivotal for maintaining epithelial identity and promoting acinar cell

differentiation, is known to be notably expressed in the classical PDAC subtype [605]. A

study by Kloesch et al. 2022 [635] revealed that GATA6 loss, accompanied by concurrent

downregulation of HNF4A, is necessary for transitioning to the basal phenotype in PDAC.

Importantly, this loss of Gata6 was also linked to enhanced metastatic potential and hence,

more aggressive phenotype.

The stroma (normal) sub-state demonstrated elevated scores for basaloid and squamoid

signaling programs (Figure 5.14). However, this overexpression was primarily driven by

specific genes such as VIM and WSB1, resulting in an insignificant enrichment

(hypergeometric p-value < 0.461 & < 0.107, respectively). Both basaloid and squamoid
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programs were reported to show substantial overlap with the Moffitt basal-like signature

established for PDAC [634], suggesting that stroma (normal) cannot be directly associated

with PDAC. Mesenchymal program was robustly over-enriched in stroma (normal) sub-state

(Representation factor: 7.8 & hypergeometric p-value= 4.474e-09) (Figure 5.14).
Nevertheless, stromal cells or CAFs are typically anticipated to exhibit upregulated

mesenchymal genes associated with stemness, cell invasion and EMT. Thus, this

observation may not be relevant to specific PDAC biology. Additionally, stroma (normal)

showed significant over-enrichment for adhesive signatures (Representation factor: 4.4 &

hypergeometric p-value < 4.882e-04), Interferon signaling (Representation factor: 7.2,

hypergeometric p-value < 3.871e-08) and TNF-NFkb signaling (Representation factor: 8.3 &

hypergeometric p-value < 4.790e-10). (Figure 5.14) Interestingly, this recapitulated

previously known PDAC biology. While the module score analysis suggested a high

expression of the squamoid program in shared NE and Interferon signaling in NE-

proliferating sub-states, these observations were found to be statistically insignificant when

examined using the over-enrichment test.

Moreover, both the shared NE and NE proliferating sub-states displayed notable over-

enrichment for the 'neuroendocrine-like' module (Figure 5.14). Specifically, the NE sub-state

exhibited relatively higher enrichment score (representation factor: 17.6 & hypergeometric p-

value < 7.215e-24) as compared to NE proliferating (representation factor: 10 &

hypergeometric p-value < 1.810e-14). Of note, the 'neuroendocrine-like' module was

associated with genes regulating nervous system development, neurotransmitter secretion,

vesicle-mediated and cation membrane mediated transport [342]. Conversely, the shared NE

HSP+ (hypoxic) sub-state showed no enrichment for the 'neuroendocrine-like' module,

indicating a departure from the typical functional traits of NE cells such as secretion and

transport (Figure 5.14). Additionally, the shared NE sub-state demonstrated significant over-

enrichment for Neural-like progenitor (NRP) targets (representation factor: 9.9 &

hypergeometric p-value < 2.010e-10), while NE-proliferating also exhibited enrichment for the

same (representation factor: 6.5 & hypergeometric p-value < 1.320e-07) (Figure 5.14). It is
worth mentioning that Hwang et al. [342] characterized the NRP malignant program as 'brain

tissue enhanced,' associating it with axonal guidance, tumor-nerve interactions, and a high

incidence of perineural invasion. Of note, their study demonstrated enriched NRP malignant

program in residual PDAC tumors and patient derived PDAC organoids following treatment

that was associated with poor prognosis [342].
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Figure 5.14: Transcriptomic similarity of panNEC sub-states with malignant cell states
and lineage programs of PDAC.
Matrix plot displaying the normalized mean score of curated PDAC malignant cell-state and lineage
specific signatures sourced from Hwang et al 2022 [342]. The module score represents the mean
expression of a specified gene-set subtracted from the average expression of a reference set of genes,
sampled randomly from the data for each binned expression value using scanpy. Signature lists used
for computing module scores per sub-state were included in Supplementary Table 25. Sub-states
exhibiting statistically significant over-enrichment for a signature (representation factor > 3 and p-value
< 0.01) are enclosed in purple boxes. The p-value indicating under- or over-enrichment was computed
using the cumulative distribution function (CDF) of the hypergeometric distribution. The cases that
showed visible enrichment but lacked statistical significance according to hypergeometric test was not
marked in purple as they should not be used for drawing conclusions. Shared neuroendocrine and
neuroendocrine-proliferating sub-states are highlighted given their substantial enrichment for
“Neuroendocrine-like” and “Neural-like progenitor” programs, also extremely relevant in context of
panNEC.

5.4 Transcriptional regulation and multi-lineage profiles of panNEC sub-states

To dissect the transcriptional regulation within panNEC sub-states, SCENIC [158] and

iRegulon [161] methodologies were employed (see Methods). Hierarchical clustering based

on regulon activity revealed two major subgroups, encompassing the amphicrine sub-states

in patient P5 and the shared neuroendocrine sub-states.

The transcription factors identified using SCENIC in the amphicrine sub-states were

generally also found in healthy pancreas, given their physiological roles in acinar or
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endocrine cells. Inferred tumoral transcription factor activity either surpassed physiological

activity in the corresponding endocrine or exocrine cell populations (such as, SOX13, PDX1,

RUNX1, PBX1, LEF1) or was diminished (SOX9, HNF1B, HNF4G, MECOM, PTF1A) (Figure
5.15a). Of note, the amphicrine progenitor-like sub-state displayed differential regulation by

transcription factors such as SOX9, HNF1B, SOX13, ONECUT1, PDX1, and LEF1 (Figure
5.15a). Further, differential gene expression analysis by comparing respective panNEC sub-

states with healthy adult pancreas cell types sourced from Tosti et al. [72] (see Methods),

revealed that SOX9 and HNF1B were differentially upregulated in the healthy pancreas. This

observation was expected as SOX9 and HNF1B are recognized for their roles in regulating

the differentiation of pancreatic multipotent and trunk progenitors. Increased LEF1 activity in

panNEC might imply a potential role in NEC initiation, likely through maintenance stemness

via transactivation of Wnt/CTNNB1 responsive genes [640, 641]. In addition, both highly

proliferative sub-states shared elevated transcription factor activity for several E2F family

members (Figure 5.15a). Amphicrine acinar 01 and 03 sub-states demonstrate the highest

activity of PTF1A and MECOM (Figure 5.15a), with PTF1A primarily involved in specifying

acinar cell identity, while MECOM is a critical regulator of acinar cell dedifferentiation and

pancreatic tumors [543]. Backx et al. 2021 [543] detected MECOM expression during acinar

development and found it to be reactivated during acute and chronic pancreatitis. Moreover,

both sub-states demonstrate strong HNF4A activity (Figure 5.15a), which is associated with

normal pancreatic development and is necessary for the expression of early pancreatic

progenitor genes [642, 643], particularly within the context of the PDAC classical subtype

[605]. Overall, within the amphicrine cluster, the amphicrine progenitor-like sub-state

showcased the most unique regulatory profile, characterized by lower inferred activity for

acinar-related transcription factors, consistent with earlier marker and pathway analyses.

Shared sub-states, NE and NE-proliferating, exhibited distinctive activities of transcription

factors involved in pancreatic and/or, brain organogenesis, including PAX6, ISL1, SOX5,

ETV1, and TCF3 (Figure 5.15a). Of note, the tumoral activity of these transcription factors in
the NE sub-states were elevated when compared to their physiological activity in the

endocrine pancreas. More specifically, PAX6 and ISL1 are known for their roles in

transcriptionally and epigenetically controlling pancreatic islet differentiation and the

production of functional alpha and beta cells [643-648]. Furthermore, ISL1 and PAX6

regulate survival and differentiation of pancreatic endocrine progenitors [645, 648]. PAX6

also serves as a master regulator of neuronal development [649-651] and was found to be

upregulated in NEC relative to healthy pancreatic cell types in the presented analysis (Figure
5.15a). A notable study by Axelsson et al. 2017 [654] reported that knocking down Sox5

leads to gene expression alterations akin to type 2 diabetes (T2D) and diabetic animals.
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Additionally, Sox5 knock down has been shown to significantly impact insulin secretion,

cause decreased depolarization-evoked calcium influx and β-cell exocytosis [654].

Interestingly, ETV1, known as a master regulator in neuronal-derived gastrointestinal stromal

tumors [655], was found to be increased in the panNEC samples relative to healthy

pancreatic controls. As described before, NKX2-2, a multipotent neuronal progenitor marker

[651, 656], was specifically expressed in shared NE and NE-proliferating sub-states (Figure
5.7), which is also implicated in islet differentiation, together with PAX6 and ISL1.

Thereafter, iRegulon [161] was applied to unravel the transcriptional regulation landscape of

the shared panNEC sub-states based on differentially upregulated targets (average

log2FC >= 0.25 & Bonferroni adjusted p-value < 0.01). The shared NE sub-state was

specifically regulated by REST, SOX10, and RELA (Figure 5.15b). Of note, REST is a

transcriptional repressor and recognized as a master regulator of hypoxia-induced

neuroendocrine differentiation in prostate cancer cells [657]. A previous study on metastatic

castration-resistant prostate cancer by Labrecque et. al 2019 [658] found that loss of REST

repressor activity encourages the emergence of a tumor phenotype marked by the

expression of NE genes in the absence of androgen (AR) activity. As anticipated, the NE-

proliferating sub-state was uniquely regulated by E2F family transcription factors and FOXM1,

both associated with tumor differentiation, proliferation, and metastasis in GEP NENs

(Figure 5.15b). On the other hand, the NE HSP+ (hypoxic) sub-state demonstrated

significantly high activity of HSF1 and HIF1A (Figure 5.15b), with HSF1 being known for

driving cancer cell growth and survival, associated with poor prognosis [659]. On a

physiological level, cross-regulation between HIF1A and HSF1 was previously described

[660] and suggested a link between low oxygen response and the activation of heat-shock

proteins as an adaptive mechanism. Other regulators of NE HSP+ (hypoxic) sub-state

included ATF5 and NKX2-2 (Figure 5.15b). ATF5 expression was found to inversely

correlate with patient survival in diverse cancer types [661]. Moreover, it has been linked to

cancer cell survival and proliferation and can be targeted to induce apoptosis in cancer cells

while sparing normal cells selectively [661]. Moreover, Li et al. 2011 [662] documented that

ATF5 was significantly upregulated during cellular stress, and HSP70-mediated stabilization

enhanced ATF5 activity, resulting in increased transcription of its downstream targets like

BCL2. This highlighted a significant post-translational mechanism through which cancer cells

can dramatically upregulate ATF5 activity by prolonging ATF5 half-life.
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Figure 5.15: Transcriptional regulatory landscape underlying panNEC progression and
pathophysiology.
(a) Differential regulation of transcription factors and regulators across NEC cell sub-states inferred
using pySCENIC. The significance status of a transcription factor in panNEC tumors Tm relative to
healthy pancreatic cell-types from Tosti et al. 2020 [72] is annotated (see Methods). If a transcription
factor is expressed in the healthy pancreas cell types (aggregating exocrine and endocrine cell
types/states), a differential gene analysis was performed to determine if it is upregulated in acinar or
endocrine cell types (see Methods). Expression values are represented as z-scores. (b) Inference of
transcriptional activities based on top-100 differentially expressed targets (upregulated only; Logistic
Regression avg_log2FC > 0.25 & Bonferroni adjusted p-value < 0.01) using iRegulon. The number of
targets regulated by a transcription factor is size-coded (see Methods), while the normalized
enrichment score (NES) is color-coded. A higher number of regulated targets generally indicates a
higher centrality of a transcription factor.

5.4.1 PTF1A regulated brain signatures associated aberrant neuronal
phenotype

Previous investigations, employing DNA methylation and mutational profile analyses of

panNEC, indicate an exocrine cell origin [338] and a mutational spectrum that aligns with

exocrine PDAC, rather than well-differentiated NET [324, 636]. Within this framework, the

neuroendocrine phenotype could develop through acquisition of characteristics resembling
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either neural or neuroendocrine islet cell types. Subsequently, this study sought to determine

if any of the panNEC sub-states exhibited tissue-specific target enrichment for key

developmental factors such as PTF1A, PAX6, and NKX2-2. This analysis was guided by the

distinct regulatory roles these transcription factors play in the pancreas and the brain, each

associated with a distinct set of targets. For instance, PTF1A is indispensable regulating the

proliferation of multipotent pancreatic progenitor cells as well as in specifying and in

sustaining acinar cells [547, 590, 591, 595]. Conversely, PTF1A also regulates brain and

neuronal development — precisely, molecular specification of inhibitory neurons and

generates correctly balanced neuronal circuits [663-665]. However, the brain vs pancreas

specific enrichment of PTF1A was not captured in the SCENIC analysis as this (and similar)

tool(s) does not incorporate tissue-specific target information in its reference database.

Since PTF1A is not expected to be present in non-acinar cells in the fully differentiated adult

state, murine tissue-specific developmental signatures from E12.5 neural tube and E17.5

pancreas could be utilized for analysis. Subsequently, specific targets regulated by PTF1A in

the pancreas and brain (precisely, neural tube) were obtained from Meredith et al. 2013 [666],

which elucidated the tissue-specific functions of Ptf1a by identifying bound genomic regions

during the development of both tissues in vivo. Of note, PTF1A regulated pancreatic target

signature was substantially enriched in the amphicrine acinar 01, and variably expressed in

the other amphicrine sub-states (Figure 5.16a), as previously revealed by SCENIC analysis

(referring to Figure 5.15a). In contrast, the shared NE and NE-proliferating sub-states did not

express the pancreatic targets module. This discrepancy arose because the PTF1A-

regulated pancreatic targets predominantly encompassed genes encoding digestive

enzymes and that with secretory functions associated with the normal and inflammatory

conditions of the exocrine pancreas, such as Chronic Pancreatitis. Instead, this analysis

observed a notable over-enrichment of PTF1A-regulated brain target signatures in the NE

proliferating sub-state, featuring genes like HPIBP3, KHDRBS1, SSBP3, THRAP3, PRRC2B,

ARID1A, LMNB1, and NCAM1 (representation factor of 5.33 & hypergeometric p-value =

0.0001420) as shown in Figure 5.16a, b. HP1BP3 activation of WNT7B through EZH2

interaction mediates drug resistance in glioblastoma cells, with correlated increases in cell

proliferation and temozolomide resistance [667]. Additionally, KHDRBS1, upregulated by c-

Myc, plays roles in various cancers, influencing proliferation, survival, and cancer stem cell

vulnerability via Wnt/β-catenin signaling [668-671]. Meanwhile, SSBP3, associated with

pancreatic β-cell function, affects neuronal morphology and synaptic vesicle biogenesis [672,

673], whereas THRAP3 regulates the DNA Damage response, influencing sensitivity to DNA-

damaging agents [674]. Finally, PRRC2B facilitates protein translation, crucial for cell cycle

progression and proliferation [675], suggesting potential therapeutic avenues for pancreatic
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neuroendocrine carcinoma. In Alshalalfa et al. 2019 [341], LMNB1 and NCAM1 were

identified as differentially upregulated in primary prostatic tumors resembling prostate small

cell neuroendocrine carcinoma. Although the shared NE and NE HSP+ subtypes exhibited a

slight overrepresentation of PTF1A brain signatures (representation factor: 2.8 and 2.3,

respectively), these findings lacked statistical significance (hypergeometric p-values > 0.05,

with observed p-values of 0.1 and 0.07, respectively). Except for NCAM1, none of the PTF1A

brain targets were expressed in adult pancreas cell types or states, suggesting their role in

neuronal dedifferentiation and maintenance of neuronal functions (Extended Data Figure
13).

Amphicrine proliferating cells also showed enrichment for PTF1A brain signatures, although

to a lesser extent compared to their shared counterpart (representation factor of 2.3 &

hypergeometric p-value < 0.022). Further inspection revealed that this enrichment of PTF1A

brain target signature mostly involves distinct targets between both proliferating substates

rather than shared ones. LMNB1 was identified as an LR-inferred marker of amphicrine

proliferating cells, contributing to the overlap similarly to NE-proliferating cells.

Interestingly, ARID1A is one of the major downstream targets of PTF1A involved in

regulating both acinar and islet cell development [676-678]. Previously, ARID1A loss in

pancreas was found to cause islet developmental defect and metabolic disturbance [677].

Importantly, a gene list of the pancreas beta cell hallmark signature, reportedly

downregulated in Arid1a-depleted islets in KPC mice (a PDAC model), was secured [678].

This list of genes was utilized to compute a score for the 'ARID1A Islet target' signature and

was found to be expressed in the shared NE, NE proliferating, and amphicrine acinar 01

during initial analysis (Figure 5.16a). However, no statistical enrichment was noted here

(hypergeometric p-value > 0.05 for both cases). This once again related to the earlier

discussion regarding the absence of typical islet signatures in the panNEC sub-states.

5.4.2 PAX6 and NKX2.2 regulation

As previously mentioned, PAX6 and NKX2-2 are key regulators of endocrine cell

differentiation, particularly in the development of insulin-producing beta cells. In parallel, they

are also key regulators of central nervous system development [649-651, 656]. As no

databases or studies have delineated their specific targets in the pancreas and brain, GTEX

bulk RNA-seq data [679] was leveraged to conduct DEG analysis to identify genes

differentially expressed between these tissues. Subsequently, PAX6 and NKX2-2 target lists
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from MSigDB [727] were intersected with the DEG list to create two distinct tissue-specific

lists (see Methods). Similar to the PTF1A case, the amphicrine sub-state displayed varying

expression levels for pancreatic targets regulated by PAX6 and NKX2-2, reaching its highest

enrichment in Amphicrine acinar-like 01 (Figure 5.16a). Notably, it was found that NE

proliferating sub-state was significantly enriched for PAX6 regulated brain specific targets

(representation factor= 4.4, hypergeometric p-value < 0.013) mediated by NFASC, PKD1,

PRKCE, and STXBP1 genes (Figure 5.16a, b). Also, the shared NE sub-state demonstrated

prominent enrichment for the same (representation factor= 4.7 & hypergeometric p-value <

0.027) (Figure 5.16a). Despite the relatively high PAX6 brain target score observed in the

amphicrine progenitor-like cells (Figure 5.16a), this finding lacked statistical significance

(hypergeometric p-value < 0.145). Additional examination uncovered intriguing PAX6 brain

targets such as SYTL2, DKK4 and NRXN3 to be differentially upregulated within this sub-

state. However, upon repeating the overlap analysis with the top 100 DEGs, this intersection

was determined to be highly significant (representation factor= 7.3 & hypergeometric p-value

< 0.008). Hence, it is suggested to repeat this analysis in a larger cohort for future

investigations, where this sub-state could be recapitulated in a higher number of samples. In

contrast to PTF1A, the PAX6 regulated brain targets were observed to be lowly expressed in

adult pancreas cell types or states (Extended Data Figure 13). PRKCE was the only

overlapped target that was robustly expressed in the alpha cell type.

The significant enrichment of the amphicrine progenitor-like sub-state with the NKX2-2 brain

signature (representation factor= 4.7 & hypergeometric p-value < 7.022e-04) (Figure 5.16a).
indicates a regulatory function of this transcription factor in the context of P5. This could also

be attributed to the WNT regulation of the amphicrine progenitor-like state, as NKX2-2 levels

have been documented to be modulated by TCF4-mediated Wnt signaling in the ventral

neural tubes [680]. However, none of the shared sub-states showed any enrichment for

either pancreas or brain specific NKX2-2 targets (Figure 5.16a).
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Figure 5.16: Enrichment of PTF1A and PAX6 regulated brain specific targets
demonstrating aberrant de-differentiation in the shared panNEC sub-states.
(a) Matrix plot displaying the mean normalized scores of PTF1A, PAX6, and NKX2.2 target genes
specific to the pancreas and brain. PTF1A targets were sourced from Meredith et al. 2013 [666], while
tissue-specific targets for PAX6 and NKX2.2 were identified using bulk RNA-seq data from GTEx [679]
and DESeq2 analysis [728] to identify differentially expressed targets between brain and pancreas
(see Methods). ARID1A targets were obtained from a study that profiled targets following ARID1A
conditional knockout in KPC mice [678]. TF target lists used for performing module score analysis was
included in Supplementary Table 25. The module score represents the mean expression of a specified
gene-set subtracted from the average expression of a reference set of genes, sampled randomly from
the data for each binned expression value using scanpy. Statistically significant observations
according to over-enrichment test were outlined in purple. (b) Dot-plot illustrating the overlapped
genes contributing to PTF1A, and PAX6 brain signature over-enrichment in the NE proliferating sub-
state. Average gene expression within a sub-state is color-coded, and the percentage of cells (or
nuclei) expressing a marker is size-coded. Refer to Extended Data Figure 13 for marker expression
across panNEC sub-states and adult pancreas cell type or states from Tosti et al. 2020 [72].
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5.4.3 EZH2 regulation

EZH2 orchestrates developmental processes in several organs, including both the pancreas

[681, 682] and nervous system [683-686] by modulating gene expression patterns crucial for

cell fate determination and tissue morphogenesis. EZH2 is a well-known transcriptional

repressor within the Polycomb Repressive Complex 2 (PRC2). Through its methyltransferase

activity, EZH2 catalyzes the trimethylation of histone H3 lysine 27 (H3K27me3), leading to

gene silencing and regulation of various cellular processes. Particularly, EZH2 is known to

regulate the proliferation and fate determination of neural stem cells by repressing various

gene sets in the central nervous system [683, 684]. Ezh2 deletion in mouse neural

progenitors inhibits progenitor cell proliferation and leads to premature neuronal

differentiation and impaired neuronal migration [684-686]. Nevertheless, EZH2 can also

function as a transcriptional activator independently of PRC2 and its methyltransferase

activities, as previously demonstrated in prostate cancer [687]. To investigate effects of

EZH2 tissue specific regulation on panNEC sub-states, a strategy similar to PAX6 and

NKX2-2 was employed to derive EZH2 target lists exclusively for brain and pancreas (see

Methods).

The amphicrine sub-states exhibited enrichment for EZH2 pancreas target scores, with the

amphicrine acinar01 revealing the most enrichment (Figure 5.17a). Notably, the shared NE

and NE-proliferating demonstrated substantial over-enrichment for EZH2 brain specific

signatures (Figure 5.17a). The shared NE revealed relatively higher enrichment for the same

(representation factor: 2.4 & hypergeometric p-value < 2.013e-09), as compared to NE

proliferating (representation factor: 1.6 & hypergeometric p-value < 0.001). In contrast, the

pancreas module was not enriched in the shared sub-states (Figure 5.17a). Considering

that EZH2 primarily functions as a repressor, EZH2 pancreas and brain targets expression in

specific panNEC sub-states may suggest a diminished EZH2 repressive activity in a context

specific manner. Previous studies like Zhang et al. 2023 [684] have reported prominently up

and downregulated gene-sets in neural progenitors and post-mitotic neurons using EZH2

conditional knockout models. Hence, additional experimental studies are needed to

determine exact EZH2 regulatory mechanisms in panNEC models i.e., if loss of EZH2 can up

or downregulate selected candidates.

Of note, a significant proportion of brain targets mediated the over-enrichment in both shared

sub-states (representation factor: 421.4 & hypergeometric p-value < 2.173e-83). The

overlapped features included ADARB2, ADGRB3, calcium channel encoding genes

CACNA1A, CACNA1C, CACNA2D3, prominent neurogenesis marker RBFOX1 and other
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neuronal genes NRXN1, NPAS3, RIMBP2 and RIMS2. Overall, these genes function in the

regulation of neuronal system, axon guidance, depolarization, synaptic functions, and neurite

growth. A former study by Luen Yu et al. 2011 [688] showed that repressed EZH2 levels

stimulate the expression of PIP5K1C, leading to the upregulated intracellular calcium

signaling. Afterward, a union of markers that contributed to this over-enrichment in both sub-

states was compiled, and an iRegulon analysis was conducted to deduce additional

transcription factors/regulators influencing the same. REST appeared as the most enriched

TF (NES= 5.609, #targets= 23) (Figure 5.17b), followed by GFI1 (NES= 5.483, #targets= 17),
and TEAD4 (NES= 4.791, #targets= 8) (Supplementary Table 26). Of note, GFI1 is a

transcriptional repressor protein crucial for neuronal cell development [689]. Additionally, Gfi1

acts as an oncogene in SCLC [689, 690]. Another notable transcription factor identified was

NKX2.5 (NES= 3.921, #targets= 7), previously recognized for its role in regulating conduction

and contraction in the perinatal heart through the induction of Ca2+ channels and gap

junctions [691].The downstream targets regulated either uniquely by REST or in combination

with three or at least two other transcription factors/regulators (like GFI1, TEAD4, and

NKX2.5; as predicted by iRegulon) were visually presented in Figure 5.17c. Interestingly, a
moderate portion of REST targets were shared with GFI1 (Jaccard index=0.6 on a scale of 0

to 1) (Supplementary Table 26). Moreover, most of the regulated targets (including

DLGAP1, CALN1, GNG4, CAMTA1, NOS1AP, and RBFOX1) were robustly expressed in the

NE and NE-proliferating sub-states, as compared to adult pancreas cell types/states

(Extended Data Figure 14). These candidates are recognized for their roles in regulating

neuronal development, synaptic transmission, and plasticity, suggesting their potential utility

in discerning panNEC functions relative to healthy islets.

Further, Metascape enrichment analysis using PaGenBase database [692] revealed that

EZH2 brain signatures were enriched in dorsal root ganglion (DRG) cell type and cerebellar

region (Figure 5.17d). Additionally, enrichment analysis conducted with the DisGeNET

database [693] indicated associations with neurodevelopmental disorders and cerebellar

ataxia (Figure 5.17e). In this context, a former study by Feng et al 2016 [694] reported

impaired neurogenesis and profound regulatory dysregulations upon Ezh2 deletion in the

murine embryonic cerebellum. Specifically, a conditional KO mouse model (Ezh2cKO) was

utilized by Feng and colleagues to study the loss of function effects. Considering that my

analysis linked shared NE and NE proliferating targets to the cerebellum, the decision was

made to utilize the EZH2cKO downregulated genes from Feng et al. to compute cerebellar

specific signature score. Of note, this program displayed moderate enrichment in the shared

NE sub-state (representation factor = 4.3, hypergeometric test p-value < 0.033) (Figure
5.17a), while this observation was rendered insignificant in the other shared sub-states.
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Figure 5.17 : EZH2 regulated brain specific targets demonstrating aberrant de-
differentiation in the shared panNEC sub-states.
(a) Matrix plot illustrating the mean normalized scores of EZH2 targets specific to the pancreas and
brain. Additionally, EZH2 targets from the cerebellum were sourced from Feng et al. 2016 [694]. The
module score represents the mean expression of a specified gene-set subtracted from the average
expression of a reference set of genes, sampled randomly from the data for each binned expression
value using scanpy. Cases outlined in pink boxes were significant enrichment according to
hypergeometric test. Cases revealing a visible (highest) enrichment for a signature score but lacking
statistical significance according to over-enrichment test were marked as ‘non-significant’ (NS) to
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prevent confusion. Cases not outlined in pink box were also NS. (b) Network visualization of the
downstream targets of REST, identified as the most enriched TF regulator of EZH2 brain-specific
signatures (NES= 5.609, #targets= 23). The neurogenesis marker RBFOX1 is highlighted for its
relevance to neuronal regulation. (c) Dot-plot depicting the normalized expression of selected EZH2
brain targets jointly regulated by REST, either alone (labeled as REST*) or in combination with at least
three or two other TF(s) (see Supplementary Table 26). Expression is color-coded, and the
percentage of cells (or nuclei) expressing a marker is size-coded. Enrichments of gene lists are
identified across (d) PaGenBase [692], and (e) DisGeNET [693] ontology categories performed using
Metascape. All genes in the genome served as the enrichment background. Terms meeting criteria of
p-value < 0.01, minimum count of 3, and an enrichment factor > 1.5 are collected and clustered based
on membership similarities.

5.5 Intra-patient heterogeneity links to tumoral plasticity and lineage
properties

Immunohistochemistry validations confirmed the presence (or, expression) of sub-state

markers inferred through snRNA-seq analysis at protein level, while highlighting the

substantial variability in individual patients. In the case of Patient P1, Ki-67 staining revealed

a moderate ~40% proliferation rate of tumor cells, mainly at tumor margins. Protein levels of

EZH2 positively correlated with that of Ki-67, depicting strongest staining at the periphery,

but stained negative in the center in case of P1 (Figure 5.18a-c). In contrast, P2

demonstrated higher fractions of MKI67 (Ki-67) and EZH2 positive cells in snRNA-seq data

(Figure 5.18l, m), which corresponded to a more homogenous positivity of the tumor cells for
both markers. Consistent with the presence of cells with lower level EZH2 expression in the

snRNA-seq data, EZH2 was moderately expressed in sample P1 (Figure 5.18a-c). Patient
P2 exhibited a higher abundance of the shared NE proliferating sub-state, possibly because

of RB1 loss (Extended Figure 9 & Table 4.1).

In patient sample P1, there was a notable YAP1 expression confined to the surrounding

stroma (non-tumor) but absent in the tumor cells, as illustrated in Figure 5.18d. This
observation aligned with the previously identified P1 enriched Stroma (normal) sub-state that

was found to significantly express YAP1 (Figure 5.18k). Conversely, YAP1 expression was

weaker in P2 and reflected heterogeneity of individual glands with or without nuclear and

cytoplasmic staining Figure 5.18h, which is in-line with snRNA-seq observation as shown in

Figure 5.18n.
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Figure 5.18: Immunohistochemistry depicting variable expression levels of EZH2 and
YAP1 in two patient samples.
(a-d) Immunohistochemistry on sample P1 (NEC metastasis), shown at 15x magnification: (a) tumor
cell nests at the periphery, single tumor cell infiltrates towards the center of the metastasis (bottom of
panel, HE): (b) Ki-67 staining showing 40%, proliferating rate of tumor cells in the periphery; (c) EZH2
staining positively correlates with Ki-67, strongest staining at the periphery, negative staining in the
center (bottom of panel); (d) YAP1 staining negative in tumor cells, but positive stromal sub-
populations. (e-h) NEC immunohistochemistry for sample P2 (primary tumor), shown at 15x
magnification: (e) tumor cells in pseudo glandular structures (HE); (f) homogenous Ki-67 proliferation
rate of 80%; (g) homogenous weak positivity for EZH2; (h) YAP1 staining shows heterogeneity of
individual glands with or without nuclear and cytoplasmic staining. Endothelial cells (lower right) are
negative (control). (i-n) Feature plots showing EZH2, MKI67, and YAP1 single-nuclei normalized
expression in the patient sample P1 (i-k) and P2 (l-n). Acknowledgement: Dr. Aurel Perren performed
IHC staining that recapitulated my observations from snRNA-seq data.

5.6 panNEC sub-states differentiation recapitulate human small intestinal
signatures

Subsequently, an attempt was made to understand if any of the panNEC sub-states are

enriched for human small intestine-specific cell type/state signatures, such as the

enteroendocrine (EEC), Tuft, Paneth, or Goblet cells [695]. The initial inspiration for

examining these signatures originated from observations in PDAC and injury models, which

indicate trajectories starting from acinar to ductal metaplasia and subsequently progressing

toward endocrine or intestinal de-differentiation, featuring characteristics of intestinal

secretory cell types [615]. This analysis also facilitated the investigation of whether intrinsic

tumor plasticity permits the adoption of programs from non-pancreatic intestinal cell types,

even though these programs still pertain to the secretory lineage. This adaptability enables

tumor cells to exhibit a spectrum of differentiation features.

In this context, the expression of Intestinal Stem Cell (ISC) signatures was predominantly

observed in the amphicrine sub-states (Figure 5.19a). The amphicrine progenitor-like sub-

state displayed relatively strong expression of intestinal Paneth signatures, driven by genes



Results | Pancreatic Neuroendocrine Carcinoma

155

associated with focal adhesion (Figure 5.19a; Supplementary Table 26). As anticipated,

both proliferating sub-states specifically expressed signatures characteristic of transient

amplifying (TA01) cells, consistent with their high proliferative status. Notably, significant

expression of small intestinal Enteroendocrine Cell (EEC) signature patterns was exhibited

by the shared NE sub-state.

It is important to highlight that the NE sub-state specific to patient P3 demonstrated robust

expression levels of the EEC program, along with GIPR and TPH1, distinguishing it from

other patients (Figure 5.19b & Extended Figure 13). Subsequently, a trajectory graph

learning was conducted using STREAM [149], revealing additional intrinsic variability within

the P3 NE sub-state, as illustrated by its subclusters and lineage branches (Figure 5.19c &
Methods). Interestingly, NE01 closely resembled ISC and intestinal EEC, while the NE02

subgroup transcriptomically appeared like Tuft, Goblet, and EEC cell types (Figure 5.19d).
To gain a deeper insight into the molecular mechanisms underlying P3 NE02, an iRegulon

analysis was conducted to deconstruct the transcription factor (TF) regulatory landscape of

the B0B1 and B0B2 branches. To be precise, the transition genes inferred for both branches

were used to predict the TF/regulators.

Notably, the B0B2 branch displayed enrichment for several TF targets, including SRF,

FOXP2, ONECUT2, HOXA7, FOXN4, STAT1, and CTBP2 (Figure 5.19e), implicated in

cancer progression, playing crucial roles in various cellular processes [696-705]. For

example, SRF regulates cell migration and proliferation [696], whereas FOXP2 was shown to

enhance stemness and migration in lung epithelial cells upon enforced expression [701].

ONECUT2 mediates androgen receptor-independent cell growth, driving neuroendocrine

differentiation in prostate cancer and associating with worse clinical outcomes and early

stage PDAC development [702-704]. Moreover, increased HOXA7 expression correlates with

heightened proliferation in liver cancer, suggesting its potential as a molecular target for

diagnosis and treatment [705]. In contrast, B1B0 state revealed enriched SOX, ELF5 and

CREB1 targets (Figure 5.19e). ELF5 has been implicated in various cancers — importantly,

breast cancer, where it acts as an EMT repressor [706]. A pioneering study by Kim et al.

2021 [707] found that effectors of oncogenic KRAS activate CREB1 that further drives PDAC

metastasis via upregulating FOXA1 and WNT/β-catenin signaling. Kim and colleagues also

suggested CREB1 as a potentially therapeutic target for pancreatic cancers [707].
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Figure 5.19: Distinct sub-states of panNEC exhibit differentiation reminiscent of
human small intestinal signatures.
(a) Feature plots showing the signature score per nucleus for human small intestinal (SI) cell
type/state programs, including Intestinal Stem Cell (ISC), transient amplifying (TA01 & TA02),
Enteroendocrine cells (EEC), Paneth, Tuft, and Goblet, sourced from Burclaff et al. 2022 [695].
Expression values are min-max scaled for comparison. (b) Dot-plot illustrating GIPR and TPH1
expression across shared NE and immune sub-states for P3. Expression is color-coded, and the
percentage of cells (or nuclei) expressing a marker is size-coded. (c) STREAM-based trajectory
analysis demonstrating lineage plasticity and class switching among the NE sub-clusters. Branches
are marked. (d) Dot-plot displaying selected SI programs (ISC, TA, Tuft, EEC, and Goblet) of
biological interest for NE sub-clusters. (e) Dot-plot showcasing TF target signatures enriched for B0B1
and B0B2 branches. TF/regulators were inferred from the positive transition markers for the respective
branches using iRegulon (see Methods). No significant enrichment was observed for B0B3, B3B4, and
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B3B5 branches. Average expression of a gene (in b & d) or target score (in e) within a sub-state is
color-coded, and the percentage of cells (or nuclei) expressing the target signature module is size-
coded.

5.7 Therapeutic vulnerability of shared panNEC sub-states

Subsequently, the potential for sub-state directed treatments was addressed by jointly

investigating the enriched pathways and drug activities. Differential pathway analysis

revealed the enrichment of numerous pathways across the common sub-states, suggesting

therapeutic implications. As seen before, the shared NE proliferating sub-state exhibited

heightened expression of cell-cycle checkpoint kinases, E2F targets, and genes involved in

DNA repair mechanisms, which are well targeted by the current first-line treatment with

platinum-based drugs, e.g. Cisplatin (Figure 5.20a). Additionally, elevated expression of

EZH2 suggests the potential application of EZH2 inhibitors [708] (such as Tazemetostat).

Importantly, gene set enrichment analysis (GSEA) [709] was performed using the LR inferred

differentially upregulated genes (average log2FC >= 0.25 & Bonferroni adjusted p-value <

0.01; Supplementary Table 23) and using DrugBank [710] and GLAD4U [711] as underlying

databases. Here, the rationale was to infer possible drugs that would act on the targets

specific to a sub-state. The shared NE proliferating and NE HSP+ (hypoxic) sub-states

demonstrated substantial enrichment in signaling pathways and known drugs (both clinically

approved and under trials). Conversely, no such enrichment was observed for the shared NE

sub-state. Analyzing the NE stromal-like sub-state posed challenges due to the absence of

robust and specific differential genes, which complicated statistical analysis and

interpretation. As anticipated, GSEA significantly associated NE proliferating upregulated

targets with Cisplatin (NES= 2.0493 & FDR= 0.005223) as a prominent pharmacological

inhibitor (Figure 5.20b). Cisplatin, a widely recognized platinum-based chemotherapeutic

agent, induces DNA damage in malignant cells and aligns with current treatment approaches

for panNEC [712-715]. The computation of a signature score using Cisplatin targets reflects

therapeutically vulnerable cells within this sub-state that could be strategically exploited for

combination therapies (Figure 5.20c). Additionally, hydroxyurea (NES= 2.1714 & FDR

<2.2e-16), and mitomycin (NES= 2.0102 & FDR= 0.0063844) were identified, although they

were disregarded as they are not widely recognized as first-line treatments for solid tumors,

including pancreatic cancers.

Furthermore, the shared NE HSP+ (hypoxic) sub-state emerged as a pathological hotspot,

exhibiting enrichment in several pathways with oncogenic potential. Apart from accelerated

induction of heat stress response and hypoxia, this sub-state is marked by glycolysis/PI3K-
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AKT (PFKBP4, ENO1, P4HA1, PGK1), mTORC pathway (ACSL3, ACTR3, PSMD14, RAB1A,

TCEA1) and MAPK signaling (SEPTIN7, FOXO1, MAPK6) — suggesting shared vulnerable

targets across all five patient samples (Figure 5.20b). On a clinical note, this could be

exploited by repurposing of approved drugs specific to these signaling programs, e.g.

Bevacizumab or Alpelisib to specifically target VEGF or PI3K pathway, respectively. In this

context, GSEA identified Geldanamycin (NES= 2.1501 & FDR= 0.0043136) (Figure 5.20d, e)
and Tanespimycin (NES= 2.0704 & FDR= 0.003505) (Figure 5.20f, g) as highly significant
drugs for targeting NE HSP+ (hypoxic). Furthermore, the significant dysregulation of HSP90

levels, encoded by HSP90AA1 and HSP90AB1, indicates the potential repurposing of drugs

such as Pimitespib (TAS-116) [716]. Pimitespib, the first HSP90 inhibitor approved in Japan,

is indicated for the treatment of gastrointestinal stromal tumors (GIST) that have progressed

post-chemotherapy [717, 718]. HSP90 is extremely well known for its distinctive role in

evolution by preserving the activity of mutant proteins and acting as a buffer to mitigate

phenotypic variation and drug resistance in cancer [719-721]. Of note, one HSP90 inhibitor,

17-allylamino, 17-demethoxygeldanamycin (17-AAG), an analog of Geldanamycin, has

undergone phase II clinical trials in various cancers [719-723] (refer to

http://www.clinicaltrials.gov for more information on clinical trials), and demonstrated its

ability to enhance the cytotoxic effects of paclitaxel in lung and breast cancer cells both in

vitro and in vivo [719, 724]. Additionally, Geldanamycin has been shown to inhibit androgen

signaling in neuroendocrine prostate cancer, although it did not induce neuroendocrine

transdifferentiation [725]. Previously iRegulon analysis also decoded transcriptional

regulatory activities by HSF1 and HIF1A that also underscores therapeutic potential (refer to

Figure 5.15b). Of note, HSF1 is a hub transcription factor regulating a multitude of targets in
NE HSP+ (hypoxic), including the major heat stress encoding genes.

Consecutively, the therapeutic implication of P1 derived stroma (normal) was investigated.

Apart from enriched EMT program and Hippo Signaling pathway, snRNA-seq data identified

specific expression of PDGFRA gene in this sub-state (Figure 5.20a). Of note, PDGFRA, is
a marker associated with poor prognosis, and suggests the potential utility of targeted

therapy using clinically available inhibitors such as the multi-kinase inhibitor Lenvatinib [726].

In this way, co-targeting of a tumor supportive stromal niche might complement existing

therapies, in situations of emerging chemotherapy resistance.
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Figure 5.20: Shared NE proliferating and NE HSP+ (hypoxic) sub-states represent
pathological hubs with therapeutic significance.
(a) Dot-plot showing differentially upregulated marker expression associated with druggable pathways
across shared panNEC sub-states for all patients. Average gene expression within a sub-state is
color-coded, and the percentage of cells (or nuclei) expressing a marker is size-coded. GIPR (for



Results | Pancreatic Neuroendocrine Carcinoma

160

shared NE) and YAP1/PDGFRA (for stromal normal) are included due to their therapeutic relevance in
P3 and P1, respectively. Since both of these candidates stem from intra-patient heterogeneity analysis,
they are marked with an asterisk (*). Drugs listed underneath are suggested based on enriched
targets and pathways and require further experimental validations. Gene Set Enrichment Analysis
(GSEA) revealing drug targets: (b) Cisplatin based on enrichment of differentially upregulated genes in
NE proliferating, (d) Geldanamycin, and (f) Tanespimycin based on enrichment of differentially
upregulated genes in NE HSP+ (hypoxic). Feature plots identifying nuclei enriched in (c) Cisplatin
targets in proliferating sub-states, (e) Geldanamycin, and (g) Tanespimycin enriched targets in NE
HSP+ (hypoxic).

5.8 Developmental origins of panNEC sub-states

Following that, an investigation was aimed at examining the developmental resemblances

between panNEC sub-states and adult pancreatic cell types or states, as well as exploring

potential cell of origins. The rationale behind this analysis was to determine whether the

diverse panNEC sub-states originate from a single common pancreatic cell type/state acting

as a progenitor, or if they have multiple origins. In this regard, adult pancreas snRNA-seq

dataset from Tosti et al. [72] was integrated with panNEC dataset presented in this

dissertation (see Methods). No additional QC based filtering was performed for the adult

pancreas data apart from what was defined in the original publication. A chain integration

technique comprising of Harmony [110] and BBKNN [111] was utilized to harmonize two data

modalities and mitigating technical sources of variations across samples.

5.8.1 Integration of panNEC and adult pancreas snRNA-seq data

Both exocrine and endocrine cell types or states originating from a common multipotent

pancreatic progenitor i.e., all acinar, ductal, and endocrine subtypes from Tosti et al. [72]

were incorporated into the data integration process. Given that the combined dataset was

predominantly dominated by exocrine cell types, particularly with Acinar-I being the most

abundant, the initial integration was possibly biased towards cell types with a higher cell

count. Hence, adult pancreatic cell types whose nuclei number exceeded the median of that

of the panNEC sub-state were downsampled (see Methods). Consequently, highly variable

genes (HVG) were identified separately using sample ID as a batch key in both Tosti and

panNEC datasets, and the dataset was concatenated based on outer joining of HVG

(n=5351). An attempt was made to merge the datasets by inner joining of HVG (n= 406);

however, this approach failed to capture any inherent biological patterns or distinctions

among cell types/states. Given that none of the biological truths, such as the separation of

acinar, ductal, and endocrine subtypes, were preserved after data integration, the decision
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was made not to proceed with inner joining and to adhere to the outer joined dataset.

Thereafter, a chain integration step using Harmony and BBKNN was performed (see

Methods). The adult pancreas cell types, particularly the ductal and endocrine subtypes,

were predominantly distinct from the panNEC sub-states, whereas the acinar cells exhibited

proximity to the shared NE cell type (Extended Data Figure 15). A discernible segregation

existed within the shared NE sub-state, with one cluster being proximal with NE stromal-like

cells and another cluster associated with P5 amphicrine sub-states (Extended Data Figure
15). This pattern persisted even after adjusting the number of principal components and

internal parameters of BBKNN and UMAP (refer to Methods). On this note, a Pearson

correlation analysis was conducted using the highly variable genes, revealing that acinar

subtypes (primarily acinar-i) were closely clustered with NE stromal-like cells (Extended
Data Figure 16). The shared NE and NE proliferating sub-states were positioned between

endocrine and ductal subtypes in the hierarchical clustering (Extended Data Figure 16).
While the shared NE sub-state exhibited moderately high positive correlation scores with

acinar and ductal subtypes, it did not particularly resemble any of the adult pancreatic

clusters.

While the transcriptomic resemblance between acinar subtypes and shared panNEC sub-

states (particularly, NE stromal-like) was evident, a re-integration was considered solely with

shared NE sub-states for better comprehension of the developmental mechanisms involved.

The fact that none of the P5 sub-states closely clustered with Tosti's acinar subtypes

prompted an investigation into the HVG(s) and principal component(s) chosen for integration,

questioning whether the data had been over-corrected. It was hypothesized that a re-

computation of HVG(s) followed by principal component(s) within shared sub-states

(comprising P1-P4 data; excluding P5) would lead to a more faithful representation of

developmental trajectory in data integration. Therefore, two separate integrations were

conducted as two case studies: i) P1-P4 data, and ii) P5.

5.8.2 Integration of shared panNEC sub-states and adult pancreas cell types

Data integration of P1-P4 panNEC patient samples with Tosti et al. snRNA-seq data

demonstrated a close association of acinar subtypes with the shared panNEC sub-states —

specifically, shared NE stromal-like (Figure 5.21). Nevertheless, the ductal and endocrine

subtypes remained distinctly separated in the integrated data, indicating that panNEC sub-

states exhibited closer transcriptomic similarities to acinar rather than ductal or endocrine cell

types/states. This observation was confirmed through Diffusion Pseudotime analysis (DPT)

[150], which arranged cells (or nuclei) in an unbiased manner according to their overall

transcriptomic profile similarities, without being biased towards any specific cell type or state.
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Of note, DPT also revealed a close connection of acinar subtypes with panNEC shared sub-

states.

Figure 5.21: Data integration of panNEC and adult pancreas snRNA-seq datasets.
UMAP visualizing integrated datasets encompassing panNEC and adult pancreatic cell types/states
from Tosti et al. 2020 [72]. Each nucleus represents either (a) Sample ID or (b) cell states (or, sub-
states). Integration was performed using Harmony [110] and BBKNN [111] algorithms in a sequential
manner (see Methods). panNEC patient samples and shared sub-states were marked in purple in (a)
and (b) respectively, for convenience in visualization.

Following that, a trajectory analysis was performed using STREAM [149], based on the

elastic principal graph learning approach [153]. Significantly, STREAM identified a branch

linking acinar-I to the shared panNEC sub-states (S0S3 branch; Figure 5.22a). However,
ductal, and endocrine cell types/states were located on a separate branch and did not show

proximity to panNEC sub-states. Of note, the fact that acinar could be a potential origin of

panNEC was previously shown by Yachida et al. [338] based on genomic and epigenomic

features of the carcinoma. The "acinar-type panNEC" described by Yachida and colleagues
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was found to exhibit perturbed WNT signaling (like mutations in APC and CTNNB1), as well

as altered CDKN2A. Moreover, this group exhibited elevated expressions of TF(s) such as

PTF1A, GATA4, NR5A2, and RBPJL. However, these pivotal markers were not detected in

the shared sub-states encompassing P1-P4, being limited to the P5 sample. To interrogate

possible drivers of the acinar to NE differentiation, transition markers were computed for

S0S3 branch and found upregulated elevated expression of genes such as AUTS2,

CACNA1A, RBFOX1 and ZBTB20 (Figure 5.22b & Methods). However, this was not

sufficient to describe molecular factors within adult acinar subtypes that could potentially

initiate this transition towards NE sub-states. In this context, it can be argued that adult

pancreatic snRNA-seq datasets, such as those from Tosti et al., lacked essential cell types

or states, such as multipotent pancreatic progenitors (MPPs), tip and trunk cells, and

endocrine progenitors — either of which could act as potential starting point (‘root node’) of

the trajectory. Additionally, intermediate states crucial for modelling the progression to

panNEC sub-states were not adequately represented. These transitional states were more

comprehensively captured in developing mouse scRNA-seq datasets, such as those by

Bastidas-Ponce et al. 2019 [339].

Figure 5.22: Reconstructed lineage trajectory graph showing probable route of acinar
to panNEC transdifferentiation
(a) STREAM based trajectory analysis of shared panNEC sub-states integrated with adult pancreas
cell types or states revealed an elastic principal graph illustrating possible lineage paths. This includes
a lineage path from the acinar subtype (specifically acinar-I at S0) towards panNEC (branch S0S3), as
well as a normal differentiation path leading towards ductal/endocrine (branch S0S1). (b) Spearman
correlation co-efficient of identified transition markers in branch S0S3 demonstrating (moderately)
positive correlation with pseudotime (proxy of developmental time) (see Methods).
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5.8.3 Global transcriptomic similarities among panNEC sub-states and adult
pancreas cell types

A Pearson correlation analysis was performed using a union of all genes expressed in both

datasets to obtain a comprehensive understanding of the global transcriptomic similarities

between the panNEC sub-states and adult pancreatic subtypes (Figure 5.23). It was

observed that the amphicrine acinar sub-states closely clustered with the acinar-

REG+/acinar-s cell states identified by Tosti et al. [72] study. This strong positive correlation

was influenced by several genes of interest shared between the two cases, including GP2,

RBPJL, NR5A2, and MECOM, which were extensively discussed in sub-section 5.1.2. It is

worth mentioning that Tosti and colleagues associated acinar-REG+ cells with chronic

pancreatitis [72], thus, the proximity of amphicrine acinar sub-states to acinar-REG+ further

supported the metaplastic nature of the latter sub-states. Interestingly, the amphicrine acinar

sub-states did not align with acinar-I, an idle acinar state originally described in Tosti et al.,

primarily due to the relative immaturity and plasticity of acinar-I, which lacked genes

encoding digestive enzymes. Utilizing all expressed genes, as opposed to solely highly

variable genes, allowed for recapitulation of the relationship between P5 and acinar subtypes.

However, the previously observed high correlation score between NE stromal-like and

acinar-I was not retained in this analysis (Figure 5.23). Of note, NE HSP+ (hypoxic)

exhibited a moderately high positive correlation score with adult alpha, beta, and delta cell

types (refer to Figure 5.23). Despite none of the panNEC sub-states displaying expression of

key islet markers, this correlation analysis suggested an overall transcriptomic resemblance

of the NE HSP+ (hypoxic) sub-state to the adult islets. On the other hand, shared NE, NE

proliferating and NE stromal-like sub-states were broadly clustered with ductal subtypes

(Figure 5.23). Although they displayed some degree of transcriptomic similarity with acinar-I

and ductal subtypes, indicated by low to medium positive correlation scores, these shared

sub-states clustered closely together among themselves and did not particularly resemble

any native pancreatic cell types/states. (Figure 5.23). However, it can be contended that

conducting such analysis is more reliable when executed with a carefully chosen sets of key

genes and transcription factors driving pancreatic development and differentiation. This

approach can help mitigate the influence of non-specific genes that do not have roles in

deciding developmental origins.
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Figure 5.23: Pearson correlation analysis revealing global transcriptomic similarities
among panNEC and adult pancreatic cell types or states.
Pearson correlation map depicting the overall transcriptomic similarities between the identified
panNEC sub-states and adult pancreatic cell types/states from Tosti et al. [72]. This analysis involved
computing correlations using the union of all expressed genes between both datasets and was not
restricted to using highly variable gene set. NE= neuroendocrine sub-state; prol= proliferating and
prog-like= progenitor-like.

5.8.4 Developmental origins of patient samples

As dedifferentiated NEC might recapitulate aspects of earlier pancreatic development, a

selected set of key markers and transcription factors pivotal for regulating pancreatic

progenitors (including multipotent pancreatic progenitors), tip, acinar, ductal, and endocrine

lineages, sourced from various previous publications [72, 545-549, 592-594, 620] was

leveraged. P5 was observed to closely align with the adult acinar cell subtypes (Figure 5.24),
consistent with its transcriptomic profile of mature exocrine digestive enzymes. Additionally,

P3 exhibited close clustering with the endocrine cell types, a relationship reinforced by islet

differentiation markers such as NKX2-2, RFX3, RFX6, and SCGN (Figure 5.24). P2 and P4
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closely clustered among themselves and due to EZH2 and DNMT1 expression, and revealed

limited similarities with endocrine cell types, rather than acinar or ductal subtypes. This was

in-line with the observations in Extended Data Figure 18. Lastly, P1 revealed a stronger

association with ductal subtypes, given expression of genes like YAP1 (Figure 5.24).

Figure 5.24: | snRNA-seq data suggests distinct developmental origins for panNEC
patients.
Dot-plot illustrating markers expression of early pancreas progenitors, tip cells, acinar, ductal, and
endocrine cell types. Tip cells are known to differentiate to acinar lineage [547, 590, 591]. Average
gene expression within a sub-state is color-coded, and the percentage of cells (or nuclei) expressing a
marker is size-coded. Sources of markers plotted were enlisted in Supplementary Table 25.
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5.9 Extended Data Figures

Extended Data Figure 9: Quality control analysis of panNEC samples
Illustrative violin plots depicting (a) total UMI counts and (b) the count of features (i.e., expressed
genes) per panNEC sample. (c) Gaussian Kernel density estimation (KDE) analysis showcasing the
distribution of nuclei density in UMAP embedding across panNEC samples. Density values are scaled
between 0 to 1 for comparative analysis within each category.
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Extended Data Figure 10: Immunohistochemical confirmation of poorly differentiated
large cell morphology and neuroendocrine differentiation of panNEC samples.
Representative (a) Hematoxylin and eosin (HE) staining, (b) neuroendocrine diagnostic markers
Synaptophysin (SYN) (c) Chromogranin (CHGA) (d) Insulinoma-associated 1 (INSM1) (e) Ki-67 and (f)
trypsin immunolabeling in the original tumor tissues. >20% proliferative fraction as determined by Ki-
67 immunohistochemical detection determination of proliferating cells. Uniform NE marker expression
and detection of trypsin reactivity in a subpopulation of tumor cells in sample P5 confirm the
amphicrine differentiation and highlight tumor cell heterogeneity in this sample. P7a, P24a, P21a,
P18a and P19a are internal clinical ID(s) and map to P1, P5, P4, P2 and P3 respectively. Only clinical
ID P24a or sample ID P5 was tested trypsin positive that confirm “acinar-like” nature of P5. Original
magnification was 30x. Acknowledgement: Prof. Dr. Aurel Perren performed the IHC at Institute of
Tissue Medicine and Pathology, University of Bern.
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Extended Data Figure 11: panNEC sub-states characterized by robust and specific
markers.
Dot-plot illustrating key markers across unique and shared panNEC sub-states inferred using multi-
variate Logistic Regression (average log2FC >= 0.25 & Bonferroni adjusted p-value < 0.01;
Supplementary Table 23). Average gene expression within each cluster is color-coded, while the
percentage of nuclei expressing a marker is indicated by marker size. Gene expression levels are
standardized across columns for comparison. Hierarchical clustering was computed using all genes
expressed in the concatenated dataset to reflect global transcriptomic similarities.

Extended Data Figure 12: Early pancreatic progenitor and metaplastic markers in
panNEC and adult pancreatic cell types or states.
Dot-plot depicting prominent markers and transcription factors known to regulate early pancreas
development and control differentiation of pancreatic progenitors (including multipotent pancreatic
progenitors, tip, and trunk progenitors) as outlined in main figure 4.8. PDX1 and SOX9 are prime
regulators of multipotent pancreatic progenitors [545-549, 592-594] and marked for their significance
in early pancreas development. ONECUT2 is indicative of late metaplastic stage, as reported by
Schlesinger et al. 2020 [604]. GATA6 and HNF4A are implicated in PDAC classical subtype. The
presence of MKI67 in the amphicrine acinar proliferating cluster suggests a self-renewing sub-state.
NEUROG3 and FEV were not detected in the dataset, indicating the absence of classical pancreatic
endocrine progenitors. Average gene expression within each cluster is color-coded, while the
percentage of nuclei expressing a marker is indicated by marker size. Gene expression levels are
standardized across columns for comparison. Hierarchical clustering was computed using all genes
expressed in the concatenated dataset to reflect global transcriptomic similarities.
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Extended Data Figure 13: PTF1A regulated brain targets mostly specific to shared NE
and NE proliferating sub-states.
Dot-plot illustrating the prominent PTF1A and PAX6 regulated brain targets across panNEC sub-states
and adult pancreas cell types/states integrated from Tosti et al. 2020 [72]. Adult islets (alpha, beta,
and delta) exhibit negligible expression of PTF1A brain targets, while PAX6 brain targets (NFASC to
STXBP1) are expressed at low levels in the islets. P5 amphicrine acinar sub-states were excluded
from the plot. Average gene expression within each cluster is color-coded, and the percentage of
nuclei expressing a marker is represented by marker size. Gene expression levels are standardized
across columns for comparison. Hierarchical clustering was performed using all genes expressed in
the concatenated dataset to illustrate global transcriptomic similarities.
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Extended Data Figure 14: EZH2 and REST targets robustly expressed in shared NE
and NE proliferating sub-states.
Dot-plot demonstrating the expression of selected markers jointly regulated by EZH2 and REST
across panNEC sub-states and adult pancreas cell types/states integrated from Tosti et al. 2020 [72].
EZH2 brain targets were inferred through analysis of the GTEX dataset (see Methods), followed by
iRegulon prediction of REST as a central regulator of the EZH2 brain targets. P5 amphicrine acinar
sub-states were excluded from the plot. Average gene expression within each cluster is color-coded,
while the percentage of nuclei expressing a marker is indicated by marker size. Gene expression
levels are standardized across columns for comparison. Hierarchical clustering was conducted using
all genes expressed in the concatenated dataset to illustrate global transcriptomic similarities.
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Extended Data Figure 15: Data integration of panNEC and adult pancreas snRNA-seq
datasets.
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UMAP visualizing harmonized snRNA-seq datasets encompassing panNEC (n=5) and adult
pancreatic cell types/states from Tosti et al. 2020 [72]. Each nucleus denotes (a) Source label (i.e.,
Tosti or panNEC), (b) Sample ID, (c) Cell types and (b) Cell states (where panNEC sub-states were
visualized). Chain integration was performed using Harmony [110] and BBKNN [111] algorithms in a
sequential manner (see Methods).

Extended Data Figure 16: Pearson correlation analysis revealing transcriptomic
similarities among panNEC and adult pancreatic cell types or states.
Pearson correlation map depicting transcriptomic similarities between the identified panNEC sub-
states and adult pancreatic cell types/states based on highly variable gene expression (see Methods).
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6 Discussion

6.1 Generating a comparative atlas of maternal-fetal interface in healthy and
eoPE pregnancies

Understanding the complex pathological mechanisms of eoPE is challenging due to its

multifactorial origins, constraints in collecting longitudinal samples during pregnancy, and the

necessity for obtaining gestational age-matched healthy controls. This pilot study aimed to

overcome these challenges by utilizing snRNA-seq analytics, enabling the longitudinal

exploration of disease mechanisms. This involved comparing placenta and decidua samples

collected during the first trimester (early), term (late) control, as well as those affected by

eoPE. snRNA-seq profiling was performed instead of scRNA-seq to ensure appropriate

capturing of heterogeneity underlying multinucleated syncytiotrophoblast cells, and to enable

a more comprehensive exploration of the maternal-fetal interface. To maintain a uniform

study population, only cases of eoPE associated with fetal growth restriction (FGR) [272, 343,

344] were investigated. It is to be noted that this choice acknowledges the incomplete

representation of the syndrome, which typically involves maternal organ dysfunctions

associated with PE. Importantly, analysis of placental microarray data did not reveal

significant differences between eoPE with and without FGR, indicating FGR did not introduce

major confounding factors in downstream analysis.

The study utilized separate sampling of placental villi and decidua, enabling the investigation

of tissue-specific cellular landscape of the maternal-fetal interface. To overcome challenges

in harmonizing data, the study leveraged the deep learning framework scVI/scANVI [112,

113], emphasizing its effectiveness in integrating diverse datasets from different sources and

time points during gestation. This variational inference model treated individual donors as the

primary batch and included additional covariates to account for batch effects associated with

sampling sites, as well as biological and technical factors. Through rigorous analysis under

various scenarios, the integration outcomes were compared with those of other studies,

demonstrating successful regression of the majority of batch effects and ensuring reliable

harmonization of the samples presented in the study. Ultimately, this approach followed by

clustering and cell marker analysis successfully deconstructed cellular hierarchies, revealing

various cell types or states within immune, vascular-endothelial, matrisome, and trophoblast

components across both tissues. Nevertheless, the increased proportions of PAMM, vT-cells,

vFB, and vMC in samples from Graz compared to those from Oslo in the term control

condition indicated differences in cellular composition among sampling sites. Similarly, the

slight reduction of PAMM and vT-cells in Graz samples compared to Oslo samples within the
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eoPE group, coupled with the observed reduction in their ASW score, adds complexity to

understanding their contributions to the pathogenesis of eoPE. Therefore, these observations

necessitate further exploration to clarify the significance of these cellular alterations in the

context of eoPE.

The multivariate Logistic regression-based GLM tests utilized in this study provided insight

into characteristic markers of decidual and placental cell types/states. Within the decidua,

distinct populations were identified, including progenitor-like decidual mesenchymal stem

cells (dMSC) and two sub-states of decidua stromal cells (DSC1 and DSC2), each

expressing unique marker genes. Furthermore, the characterization of decidual fibroblasts

(dFB1 and dFB2) revealed their roles in ECM remodeling and structural support provision

[364-367], with dFB2 exhibiting specificity to both eoPE and term conditions. Additionally, the

study delineated the maternal immune landscape, uncovering sub-states of decidual natural

killer cells (dNK1, dNK2, dNKp), decidual T cells (dTcells), decidual macrophages (dMAC1

and dMAC2), and decidual monocytes (dMono1 and dMono2), each exhibiting specific

marker expression indicative of their functional roles in immune regulation, maternal-fetal

tolerance establishment, and tissue remodeling to support fetal development [377, 380-382,

390-393]. Moreover, the identification of decidua-derived dDSTB nuclei expressing traditional

STB markers prompts questions regarding their presence, whether attributed to sampling

techniques or reflecting physiological shedding of STB nuclei into the maternal circulation, as

suggested by IHC staining of GDF15 and β-hCG in decidual sections, while lacking the EVT

lineage marker HLA-G [402, 403]. Together, these findings reveal intricate cellular dynamics

within the decidua and raise intriguing inquiries regarding their implications in maternal-fetal

physiology during eoPE.

Distinct trophoblast cell types/states, including villous cytotrophoblasts (vCTB) expressing

markers such as YAP1, LGR5, TP63, and PARP1, were identified, along with a proliferative

sub-state, vCTBp, representing trophoblast progenitors [146, 209, 394-400]. A pre-fusion

state, vCTBpf, expressing fusiogenic markers, resembled the transcriptomic profile of

ERVFRD-1+ trophoblasts, previously described by Liu et al. 2018 [401]. The study delineated

two major trophoblast lineages- villous syncytiotrophoblasts (vSTB) expressing hormone

secretion markers [231-234] and cell-column trophoblasts (vCCT) expressing markers for

immune modulation and maternal-spiral artery remodeling [402-404, 432]. To date, there

remains no standardized consensus nomenclature for the cell column, and this annotation

was derived from the widely recognized book "Benirschke’s Pathology of the Human

Placenta" [236]. Despite that, it was recognized that the proximal and distal cell columns

located in vCCT serve different functions, and the distal part potentially differentiates into
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decidua-invading extravillous trophoblasts (dEVT) during placental development. This

prompted to conduct subclustering analysis that detected notable heterogeneity within the

vCCT group, revealing distinct subtypes: proximal (pCCT), distal (dCCT/pEVT), and an

intermediate transitional state. The pCCT subtype exhibited an EGFR signature associated

with migration and invasion. The transition from proliferative pCCT to non-dividing dCCT

marked an increase in EVT-specific markers (HLA-G, NOTUM, HPGD), emphasizing their

role in immune tolerance, Wnt signaling, and inflammation regulation during EVT invasion

[402, 403, 422-426]. Additionally, dCCT exhibited elevated expression of extracellular matrix

remodeling genes, like integrins (ITGA1, ITGA5), MMP2, Hippo signaling pathway members

(TEAD1, WWTR1) that are essential for EVT differentiation, invasion, and establishment of

uteroplacental blood circulation [420, 421, 427-429, 430]. Conversely, placental resident

macrophages (vHBC) with pro-angiogenic functions and a proliferative sub-state (vHBCp)

were identified, along with placenta-associated maternal monocytes/macrophages (vPAMM)

[237-240]. Importantly, a comparison between analogous cell types, specifically dMAC and

fetal vHBC, was conducted using differential gene analysis, examination of transcriptomic

regulation, and analysis of biological signaling pathways.

Statistically significant shifts in cell-type compositional abundance were observed in early

samples compared to term controls for all vCTBp, vCTB, vCTBpf, and vCCT. While no

composition shift was observed for vHBC between early and term, vHBCp was uniquely

identified in the early placenta, indicating its physiological importance in the first trimester.

This includes involvement in tissue remodeling processes and the secretion of growth factors

and cytokines essential for fetal growth and development. On this note, the recapitulation of

vHBCp aligns with a previous scRNA-seq study by Thomas et. al. 2020 [238] suggesting that

vHBCs are produced via primitive hematopoiesis and follow a distinct trajectory path through

the cell cycle, without requiring a monocyte intermediate. The prevalence of vSTB

populations was significantly higher in late villi compared to early villi, with seemingly greater

abundance observed in tissues affected by eoPE. Nevertheless, the statistical analysis of

composition shifts between eoPE and term controls was complicated by the small sample

size. In contrast, vCTBp, vCTBpf, and vCCT were extremely sparse in both eoPE and term

control groups for which no eoPE-based analysis was performed for them.

EVT invasion into the decidua is a requirement for sustaining healthy pregnancies, and it has

been previously theorized that inadequate spiral artery remodeling by EVT contributes to PE

[270, 730]. However, this study faced limitations as only a few dEVT(s) were obtained from

the decidua samples despite a specialized sampling procedure involving vacuum suctioning,

and both dEVTs and vCCTs were too sparse for comparative analyses. This aligned with
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prior research, which employed pre-enrichment of HLA-G+ cells to increase the EVT/CCT

yield to compensate for the low EVT abundance [209]. Additionally, a high pulsatility index of

the uterine artery preceding spiral arteries in the decidua has been associated with defective

EVT remodeling. While the predictive sensitivity of this index can range between 12 to 61%

for early gestational PE cases, it demonstrates higher sensitivity for FGR [731, 732] but less

predictive potential for term PE [731, 733]. These prior findings suggested that the

development of PE is likely linked not only to impaired uterine artery flow but also to

multifactorial causes [734, 735].

The study faced a computational challenge in addressing gestational age variabilities,

particularly in preterm eoPE samples collected around the 34th week compared to term

controls obtained between the 38th and 40th week. To compensate for this lack of

gestational age-matched controls, harmonization of an external scRNA-seq dataset [353]

comparing non-pathological, non-hypertensive preterm and term pregnancies was conducted.

The integration demonstrated effective batch mixing, especially for conserved cell types like

vCTB, with satisfactory integration metrics, such as adjusted rand index (ARI) and adjusted

mutual information (AMI), supporting the reliability of the combined placental and decidua

datasets. Subsequently, a preterm signature score specific to each cell type/state was

calculated using differentially expressed genes associated with preterm births relative to term

controls. This score was then modeled as a covariate to account for preterm effects in the

subsequent analysis comparing eoPE versus term samples. Preterm effects could not be

adjusted for during the analysis of eoPE markers in vFB, vMC, and vVEC clusters, as these

clusters had too few cells in the scRNA-seq preterm data, resulting in the inability to identify

a reliable preterm gene set for confounder modeling. Hence, no significant conclusions were

drawn for these cell types during downstream analysis.

Since the aforementioned scRNA-seq data did not profile sufficient numbers of vSTB, a bulk

microarray dataset [345] comparing preterm and term controls was leveraged to account for

vSTB-specific preterm signatures. Given the lack of publicly available single-cell/nucleus

data of pre-term STBs, the fact that STB accounts for the majority (~90% of cells) of cells in

the villi [355-357] was rationalized to justify the use of bulk gene expression data to represent

the transcriptome of STB cells. Subsequently, differentially expressed genes between pre-

term and term controls that were also expressed to varying extents in our STB populations

were identified. A vSTB-specific preterm score was then computed using this gene set and

used as a confounding variable in the Logistic Regression model when identifying eoPE-

specific vSTB genes. While this correction barely affected vSTB1 and vSTB2, larger

differences were observed in the vSTBjuv sub-state that lost STB fusion genes post-
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correction– this is in part due to ERVFRD-1 and ISYNA1 being identified as vSTB pre-term

genes.

Despite extensive computational efforts, the absence of gestational age matching between

pre-eclamptic and control subjects could still be considered a limitation of this study. This

discrepancy arises because women with PE frequently undergo premature delivery as a

primary intervention to mitigate risks to both mother and fetus, given that termination of

pregnancy is a primary intervention for PE management [272, 736]. Premature delivery,

whether by vaginal birth or cesarean section, is not typical in uncomplicated pregnancies but

mainly occurs due to underlying pathology, often related to inflammation or infection [737].

However, such factors might be clinically unreported in the scRNA-seq studies investigating

preterm controls. Therefore, recruiting age-matched premature control pregnancies for utero-

placental tissue samples may be challenging. While adjusting for gestational age in the PE

group was statistically feasible for most cell types/states, and was necessary for diligent

downstream analysis, it might come with biological shortcomings, as women with PE who

deliver prematurely are likely to have more severe disease compared to those who deliver at

term. This highlights an unavoidable challenge inherent in eoPE research.

Ethical considerations precluded the collection of longitudinal biopsies of placenta samples.

Consequently, the study traced the eoPE-centric dysregulation signatures from the first-

trimester trophoblast differentiation trajectory. The hypothesis posited that eoPE has its

origins in early development, characterized by disrupted trophoblast differentiation.

Consequently, the comparison of differentially expressed disease genes and pseudotime

transition markers was employed to trace and identify the dysregulated developmental

drivers underlying this condition. Multi-omics analytics, including spatial proteomics and 10X

Visium spatial transcriptomics [187], were employed for the validation of developmental

drivers inferred from trajectory analysis.

In summary, this comprehensive reference cell atlas will offer valuable insights into the

diverse array of cell types and states, along with their molecular features and shifts in cellular

composition across first-trimester, healthy term, and eoPE pregnancies. With its detailed

information, the atlas is poised to be instrumental in unraveling the molecular intricacies of

eoPE through the identification of differentially expressed disease signatures, transcriptional

landscapes, and changes in cellular interactions compared to term controls. Such

comparative analyses are essential for understanding disease mechanisms, discovering

biomarkers, and devising targeted therapeutic strategies.
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6.1.1 Functional specialization within syncytiotrophoblasts

snRNA-seq analysis revealed notable transcriptional heterogeneity among villous STB nuclei,

leading to the identification of three distinct sub-states, namely vSTB1, vSTB2, and vSTBjuv.

This study elaborated on the observation that these represent different states of nuclei within

the syncytiotrophoblast, rather than distinct cell types. It was noted that each placenta

contains only one syncytiotrophoblast layer, housing nuclei ranging from recently fused with

ongoing transcriptional activity (vSTBjuv) to gradually becoming transcriptionally inactive

(vSTB1) and senescent (vSTB2) nuclei, which are destined to form syncytial knots and enter

the maternal bloodstream. The vSTB1 subset constituted the majority of STB nuclei, while

vSTB2 nuclei represented a smaller subset of aged nuclei requiring shedding, akin to a

stratified epithelium. All three sub-states expressed genes related to the syncytial secretion

of hormones into the maternal circulation required for the maintenance and

immunomodulation of pregnancy. However, it is essential to acknowledge the limitations of

the snRNA-seq data, which solely captured the transcriptomic profiles of vSTB nuclei and

might exhibit reduced complexity compared to in vivo conditions. This limitation includes the

potential oversight of vCTB-to-vSTB RNA transfer, a phenomenon recently unveiled in non-

trophoblastic cells involving syncytin-mediated transfer through tunneling nanotubes [738].

 Functional differences between vSTB1 and vSTB2

The transcriptomic profiles of vSTB1 were indicative of typical syncytiotrophoblast functions,

encompassing hormone secretion, estrogen biosynthesis, and protein secretion. Conversely,

vSTB2 displayed partial transcriptional inactivation of traditional STB programs but exhibited

differential expression of genes associated with senescence. Notably, vSTB1 demonstrated

robust expression of KYNU [405], a gene pivotal in regulating placental NAD+ synthesis and

facilitating the provision of fetal tryptophan and kynurenine metabolites, whereas this feature

was relatively subdued in vSTB2. Additionally, vSTB2 exhibited relatively elevated

expression of the PDE4D gene [406], previously implicated in inducing intra-uterine

inflammation in gestational tissues and preterm labor. Downregulation of DNA damage

response genes such as DDX5 and DDX17, along with cyclin-dependent kinases like CDK19,

was observed in vSTB2 compared to vSTB1, suggesting a potential inclination towards

senescence in STB2 and implying a later occurrence in differentiation. Importantly, key

fusion genes like LIFR, GCM1, and DYSF were significantly downregulated in vSTB2,

suggesting it to be a terminal sub-state of vSTB.
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Functional disparities between vSTB1 and vSTB2 were explored, revealing distinct gene

enrichment profiles, and signaling pathways associated with steroid hormone metabolism,

JAK-STAT signaling, and integrin pathways in vSTB1. Conversely, vSTB2 showed

enrichment in estrogen-dependent nuclear events and the ARF6 pathway. Transcription

factors such as TFAP2A, ESR1, SP1, and CEBPB were identified in both vSTB1 and vSTB2,

indicating ongoing hormonal activity and regulation of key pathways in these sub-states.

Notably, TFAP2A, a renowned transcription factor, is implicated in initiating the early

specification of trophoblast progenitors and regulating the terminal differentiation of vSTB

[410, 411]. Additionally, ESR1 protein presence has been observed in the nuclei of cultured

human vSTB cells, and previous research suggests its involvement in estrogen-mediated

regulation of leptin biosynthesis through the LEP promoter in choriocarcinoma JEG-3 cells,

highlighting the potential regulatory role of ESR1 in leptin biosynthesis [413].

However, thorough experimental validations are required to accurately describe these

nucleus states biologically. As this exceeds the scope of my thesis, the two states have been

conservatively labeled with numbers rather than specific phenotypes.

 Discovery of novel vSTBjuv nuclear sub-state

This study unveiled a novel nuclear sub-state within the vSTB barrier known as juvenile

syncytiotrophoblast (vSTBjuv). The designation of this potentially immature nuclear sub-state

is based on its position immediately after the fusion event (i.e., after vCTBpf transitional

state), as modeled in the trophoblast pseudotime differentiation trajectory. However, the

functional distinctions of STBjuv compared to other vSTB states remain elusive. Before

delving deeper into the biology, additional QC investigations were conducted, including

assessments of doublet scores, the distribution of mitochondrial reads, and conflicting topics

using LDA analysis, to rule out potential artifacts in defining this nuclear sub-state. As seen

before, the overall distribution of doublet scores did not exhibit bimodality, indicating that this

dataset was not systematically affected by potential doublets. This observation aligned with

known expectations for single-"cell" isolation, where a substantial portion of doublets arises

from incomplete tissue dissociation. In the case of single-"nuclei" analysis, the sources of

doublets are either nuclei sticking together, or the chip being overloaded, resulting in multiple

nuclei per droplet. Overall, this reduction in potential causes of doublets should result in a

decrease in the observed doublet rate.

Differential gene expression analysis revealed specific upregulated genes associated with

cytoskeletal stability and extracellular matrix organization in vSTBjuv, hinting at a role in
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forming and maintaining the outer placental wall. The abundance of vSTBjuv nuclei showed

no significant difference between eoPE and term controls, suggesting a gestation-

independent role, although larger cohort studies are needed to confirm this observation.

Reduced expression of senescence markers in vSTBjuv was observed, and it was found that

less senescent regions in the trophoblast layer occur around fetal vessels in healthy

placentas. Hence, it is conceivable that these vSTBjuv nuclei might be positioned in proximity

to regions of maternal-fetal syncytium interaction, potentially playing a role in transplacental

transport.

6.1.2 Early trophoblast trajectory

In this study, trajectory analysis was performed using STREAM [149], and validated with

additional methods like Diffusion Pseudotime [150]. Of note, Diffusion Pseudotime is an

unsupervised non-linear algorithm that orders cells based on global transcriptomic similarity

in a Markovian space and consistently placed vCTBpf and vSTBjuv as transition states

before committing to vSTB path. By considering vCTBp as the root progenitor cell state, two

divergent lineages i.e., vSTB and vCCT, were characterized by dynamic transition and leaf

markers. Spatial proteomics validated vSTB and vCCT transition markers, ensuring

consistency in mRNA and protein levels.

The differentiation branch of vCCT exhibited heightened expression of HLA-G, NOTUM,

TEAD1, and FOS, accompanied by increased AP1 signaling, as corroborated by proteomic

data. This lineage demonstrated the presence of transition markers associated with

metabolic processes, cell adhesion, and migration, a finding validated at the protein level.

AP-1 transcriptional activity, known to stimulate MMP production in human trophoblast cells,

influences key cellular processes such as proliferation, survival, and migration [420, 421,

430]. FOS, notably detected in EVT cells within proximal cell columns of early human

placentae, plays a pivotal role in trophoblast proliferation by regulating cyclin gene

transcription and repressing cyclin-dependent kinase inhibitors [501, 739]. Integration with

10X Visium spatial transcriptomics revealed spatially variable developmental drivers,

including HLA-G, HPGD, NOTUM, ASCL2, LAIR2, and ISM2, contributing to vCCT fate

commitment through their involvement in immunomodulation and maternal spiral arteries

remodeling [402-404, 422-426, 432]. Spatial distribution analysis confirmed robust

expression of vCCT signatures, underscoring the significance of these genes in trophoblast

development and the regulation of deep decidual invasion.
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The differentiation of vSTB was characterized by the expression of transition markers,

including genes like CGA, KYNU, ARHGAP26, ADAM12, AFF1, PAPPA2, LIFR, and PSG4,

which exhibited a positive correlation with pseudotime. These genes play pivotal roles in

various aspects of placental development, such as hormone production, immunomodulation,

and maintenance of a tolerogenic environment [231-234, 438-442]. Notably, ADAM12,

PAPPA2, and LIFR are regulated by EP300/p300, thus influencing the placental

syncytialization [434, 446] process necessary for maintaining the multinucleated vSTB barrier.

Spatial analysis confirmed the robust expression of the vSTB signature module, validating

the spatial localization of vSTB developmental drivers. Additionally, the downregulation of

TEAD1 and repression of the YAP/TAZ pathway during vSTB differentiation was observed,

further supporting the known biology of the vSTB lineage. Key vSTB lineage markers, such

as SDC1, CGA, GDF15, LNPEP1, and BMP1, were validated at the protein level, highlighting

their significance in placental function and development. Importantly, GDF15 is a SASP

ligand that likely contributes to maternal-fetal communication, and immune tolerance [450].

LNPEP1 is an enzyme involved in peptide metabolism, including oxytocin and vasopressin,

and may facilitate peptide exchange and nutrient transport across the vSTB barrier [451].

One question that emerges from these findings is: which of the transition markers identified

are later dysregulated in eoPE, and what are the precise mechanisms underlying the

progression of the disease?

● vCTBpf transitional state regulated by BMP-antagonist GREM2

To trace the differentiation trajectory of mononuclear vCTB to vSTB lineage- two transitional

states, termed as vCTBpf and vSTBjuv, were closely examined. Of note, trajectory analysis

suggests that the dynamic transitional state vCTBpf serves as a progenitor for vSTB and

fuses to juvenile STBs during early placental development, potentially regulating cell-to-cell

fusion. Syncytin-2 (ERVFRD-1), a potent fusion inducer and an EP300/p300 target, was

identified as a specific marker for vCTBpf, aligning with previous data from Liu et al. [401]. In

this regard, similar retroviral encoding genes such as ERVV-1 and ERVV-2 were found to be

specific markers of the vCTBpf state and could regulate gene expression controlling

trophoblast differentiation and syncytialization [401, 740], potentially affecting the formation

of the vSTB layer. Other markers of the vCTBpf nuclear state include OTUB2, which might

impact the ubiquitination of proteins [741] involved in trophoblast differentiation and

syncytialization, influencing the formation and function of the syncytiotrophoblast.

Notably, the BMP-antagonist Gremlin 2 (GREM2) [435] was robustly expressed in vCTBpf,

and the temporary inhibition of BMP in this state, as indicated by the downregulation of
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BMP7, may play a crucial role in the transition from vCTBpf to vSTB. By modulating BMP

signaling, GREM2 might potentially oversee placental angiogenesis, thus influencing its

vascular branching patterns crucial for transporting nutrients and oxygen to the developing

fetus [742]. Also, the functional aspect of vCTBpf in regulating trophoblast fusion was

subsequently confirmed by Arutyunyan et al. 2023 [292], who also generated a

transcriptomic profile of this cell state in first-trimester placental villi. Taken together, these

findings highlighted the significance of vCTBpf as a distinct sub-state undergoing evolution

towards vSTB through specific molecular changes regulated by BMP signaling.

 Experimental validations of vCTBpf (insights from collaborative data)

The computational findings regarding vCTBpf solicited additional experimental validations

beyond the scope of this dissertation. In collaboration with clinical partners, GREM2+ vCTBpf

cells were localized in early villous tissue using immunofluorescence and were found to

express the classical vCTB marker CDH1, indicating their status as mono-nucleated vCTB

subtypes prior to fusion with vSTB. Flow cytometry analysis of primary CDH1+ vCTB cells

isolated from first-trimester placentas confirmed the presence of a GREM2 and ABTB2-

positive vCTBpf cell fraction. Moreover, our collaborators validated that BMP7 inhibited

trophoblast fusion in BeWo cells- a model for trophoblast syncytialization [743, 744]. This

supported the initial hypothesis that temporary inhibition of BMP signaling by GREM2 in

vCTBpf cells is essential for trophoblast fusion and differentiation into vSTB, highlighting the

importance of the "pre-fusion vCTB (vCTBpf)" state in syncytiotrophoblast formation.

6.1.3 Immune dysregulation in eoPE vs. term controls

 Dysregulated lymphoid cell types/states in decidua

The application of Logistic Regression in this study unveiled molecular dysregulations within

lymphoid and myeloid immune populations at the maternal-fetal interface. Differential

upregulation of genes and transcriptional regulators in dNK1 and dNK2 sub-states suggested

potential impact on NK cell cytotoxicity and TGF-β signaling [454-456], while factors

influencing differentially upregulated dTcell genes like XAF1 indicated involvement in pro-

inflammatory responses and apoptosis [458]. These findings shed light on potential

mechanisms underlying the pathogenesis of eoPE, including the role of transcription factors

like ATF4 and NFκB in apoptosis regulation and inflammatory responses, respectively in

dTcells. For instance, ATF4 regulates apoptosis-associated genes, functioning through

regulating unfolded protein response (UPR), endoplasmic reticulum (ER) stress, and

oxidative stress adaptation [466]. During PE, heightened ER stress was shown to result in
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increased PERK and IRE1α expression that could further activate ATF genes and lead to

disrupted vasculature and abnormal placentation [467]. Also, elevated expression NFκB was

previously observed in PE, where it stimulates the expression of both pro-inflammatory and

anti-angiogenic proteins, thereby exacerbating oxidative stress, inflammation, and vascular

dysfunction characteristic of PE [468].

Furthermore, pathway enrichment analysis revealed enrichments in processes such as

transcriptional misregulation in cancer, transcriptional regulation by RUNX3 and TGF-β

pathways in dNK1/2 subtypes. Increased TGF-β signaling in eoPE could contribute to

impaired immune tolerance and inflammation [469]. Previously, increased decidual TGF-β1

levels were found to inhibit the activation of particular subsets of dNK cells, thereby

contributing to the uteroplacental pathology associated with the onset of PE [470]. Also,

Yazaki et al. identified that TGF-β1 induced both ROS generation and Nrf2 activation in

specific cells [745]. Of note, NRF2 is a pivotal regulator of inflammation, cellular oxidative

response, and autophagy [746], and could be potentially induced during ROS imbalance

[747]. Other studies reported that increased Nrf2 expression resulted in decreased levels of

ROS under hypoxic conditions as an adaptive mechanism to oxidative stress [746, 748-750].

These collective findings suggest that TGF-β1 might contribute to the development of PE

through the ROS-Nrf2 signaling pathway [750].

The enrichment of pathways such as CCR5, ILK, NFAT, cytokine signaling, and HSP90

chaperone signaling in dTcells suggested potential involvement in the inflammation linked to

endothelial dysfunction and vascular disorders in eoPE. Chronic hypoxia associated with PE

can lead to heightened ER stress, exacerbating unfolded protein response (UPR) activity

[751] and compromising autophagy [752]. Moreover, ILK signaling, crucial for various cellular

processes including cell migration and angiogenesis, may be influenced by elevated UPR

and hypoxia [753] during eoPE, potentially impacting decidual function. A study by Chou et.

al. 2015 deciphered a regulatory loop between HIF-1α and ILK, promoting hypoxia-induced

expression of HIF-1α and EMT in prostate and breast cancer cells [753]. Further

investigations are needed to elucidate the molecular mechanisms by which hypoxia and the

ILK pathway contribute to the progression of eoPE in the decidua, as well as whether they

induce disturbances in placental function. Notably, increased estrogen signaling observed in

dTcell and dNK1 might serve as a compensatory mechanism to counteract decreased 2-

methoxyestradiol levels in PE [472-474], aiming to activate HIF1α and VEGFR-2 to maintain

placental perfusion through increased angiogenesis [281, 475].
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 Dysregulations in analogous cell types- maternal macrophages and fetal
Hofbauer cells

Significantly, the analysis focused on evaluating transcriptomic alterations in similar cell

types or states, specifically maternal dMAC1/2 sub-states, dMono1 and fetal vHBC. dMono2

was not included in the analysis due to its presence exclusively in samples generated from

the 10X v3 library. Exclusion of the comparison between dMAC1/2 and vPAMM, as well as

dTcell and vTcell, was warranted due to potential sampling site effects observed in late

pregnancies impacting vPAMM and vTcell integration.

Similar to lymphoid group analysis, Logistic regression identified differentially upregulated

genes in decidual macrophages (dMAC1 and dMAC2) and decidual monocytes (dMono1).

DUSP1 found dysregulated in both dMAC1 and dMAC2, is implicated in reducing p-MAPK1

and ERK1/2 expression, potentially contributing to PE [476]. MAFB, associated with dMAC1,

is linked to lipid level variations and atherosclerosis, suggesting a role in macrophage

polarization and cholesterol efflux [477, 478]. PAPPA2, found dysregulated in vHBC, plays a

critical role in regulating insulin-like growth factor (IGF) bioavailability by cleaving IGF-binding

proteins. Dysregulation of PAPPA2 in PE is associated with adverse effects, including

disrupted placental development, impaired angiogenesis, and perturbed trophoblast function

[481]. PAPPA2 is also previously suggested as a potential biomarker for PE, highlighting its

diagnostic and therapeutic significance [482, 483].

Subsequently, iRegulon analysis inferred key transcriptional regulators for each cell type or

state. Significantly, GMEB2 acting on dysregulated targets in dMAC1 could be in response to

glucocorticoid signals [484]. While it is acknowledged that glucocorticoids can induce

immunomodulation and impact endothelial function [485], additional research is needed to

explore whether disrupted glucocorticoid signaling contributes to endothelial dysfunction in

eoPE. The transcriptional landscape of dMAC2 involves key regulators such as FOS, MAF,

BCLAF1, and SRF. Dysregulation of FOS in maternal macrophages could potentially lead to

an imbalance in cytokine production, promoting a pro-inflammatory environment [754, 755].

This inflammatory state is implicated in endothelial dysfunction and vascular damage

associated with eoPE. MAF, another member of the AP-1 complex, often forms heterodimers

with FOS and is an important regulator of M2-like macrophages. Additional investigation is

needed to explore whether transcription factors such as FOS and MAF can disrupt the

regulatory mechanisms controlling the M1/M2 balance, potentially contributing to eoPE, fetal

growth restriction, and preterm delivery. BCLAF1 is a transcription factor that interacts with

anti-apoptotic members of the BCL2 family [486, 487]. Dysregulation of BCLAF1 could

impact the apoptotic balance and cellular turnover [486, 487] in maternal macrophages,
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potentially contributing to altered immune responses and cellular dynamics associated with

eoPE. Another noteworthy transcription factor that regulates dMAC2 is SRF, known for its

broader cellular functions, including the regulation of mitochondrial dynamics that can impact

energy metabolism within maternal macrophages, influencing their overall activity [488-490].

Moreover, SRF controls fatty acid translocation, suggesting a role in lipid metabolism as well

as the expression of electron transport chain (ETC) complex proteins [489, 490]. Of note,

dysregulated lipid metabolism can lead to increased oxidative stress in eoPE. Oxidative

stress contributes to the release of reactive oxygen species (ROS), which further

exacerbates endothelial dysfunction and contributes to the overall pathogenesis of the

condition [756]. Moreover, disruptions in the translocation of fatty acids may contribute to

insulin resistance [757, 758] in maternal tissues, a condition frequently linked to PE [759,

760]. This contributes to both metabolic dysfunction and impairment of endothelial function

and would serve as an interesting line of investigation. Additionally, SRF has been implicated

in the regulation of apoptosis by controlling the expression of anti-apoptotic molecules such

as BCL2 [761]. The dysregulation of these cellular processes, governed by SRF, might

contribute to the pathophysiology of eoPE, affecting maternal macrophage functions and

potentially leading to complications in pregnancy.

Differential pathway enrichment analysis demonstrated enriched cytokine signaling in

dMono1 and dMAC1/2, suggesting an aberrant activation of immune responses that may

contribute to the development of the eoPE pathophysiology. Inflammation is a key

component of PE, affecting endothelial function and vascular integrity [515, 522, 762, 763].

Dysregulated cytokine signaling can contribute to an inflammatory environment, leading to

endothelial dysfunction, vascular damage, and ultimately, the clinical manifestations of PE

[762, 763]. Further understanding of the intricate connections between cytokine signaling and

the immunological aspects of eoPE is required to unravel the underlying mechanisms of the

disorder. It may provide insights into potential therapeutic targets aimed at modulating

immune responses and mitigating the inflammatory processes associated with this condition.

6.1.4 vSTB is majorly dysregulated in eoPE

The molecular pathomechanisms underlying eoPE trophoblast and the identification of at-risk

mothers have remained elusive. This study specifically concentrated on the disease-centric

dysregulation within the placental vSTB, given its direct contact with maternal blood and the

potential to transmit eoPE signals from the fetus to the mother. Distinct and shared perturbed

profiles were observed among the three vSTB nuclei sub-states. The shared profile,
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reflecting a core dysregulation within the vSTB compartment, indicated consistent pattern of

gene regulation across nuclear sub-states.

Generally, single-cell/nuclei RNA sequencing encounters challenges with dropout rates and

low library sizes, hindering the comprehensive capture of transcription factors [160]. Methods

like scCapture-Seq [160] improve TF detection but might overlook markers expressed in

small cell fractions. To overcome this constraint, iRegulon [161] was applied on differentially

expressed vSTB genes for identifying significant transcriptional regulators and co-factors,

enhancing comprehension of the molecular regulation within vSTB.

 Dysregulated p300 mediated trophoblast fusion in eoPE

The disruptions of molecular processes involved in placental fusion, which regulates the

differentiation of vCTB into vSTB, are expected to be a key factor in the development of

eoPE. Transcriptional analysis using iRegulon revealed that the co-activator EP300,

associated with cell cycle arrest [512, 513], emerged as the most enriched regulator acting

on dysregulated vSTB targets, suggesting its involvement in trophoblast fusion disruptions

[764]. To validate this computational finding, my clinical collaborators compared EP300

expression in eoPE and gestational age-matched non-PE preterm pathologies in cohorts

from four other centers. A significantly higher expression of EP300 was observed in eoPE

compared to preterm placentas across these cohorts, confirming the findings predicted from

snRNA-seq data. Importantly, no difference in EP300 expression was found in eoPE with

and without FGR, suggesting that EP300 upregulation in placental tissue is specific to the

pathology of PE.

Notably, fusogenic genes linked to syncytium formation, including GCM1 [446], ADAM12

[444, 445], and DYSF [496], were perturbed in the vSTB sub-states, indicating their potential

role in eoPE. Furthermore, dysregulation of p300 targets included known candidates for PE

progression, such as ENG [497-499], FOS [501], SAT1 [500], SERPINE1 [502, 507],

GADD45G [503], and INHBA [504-506], implicated in angiogenesis, vascular dysfunction,

coagulation, and signaling pathways. Elevated serum ENG (sEng) level is known to impede

TGF-β1 signaling, thereby decreasing activation of vasodilators like nitric oxide synthase

[498, 499]. This interplay between sEng and TGF-β highlights its role in the pathogenesis of

impaired placentation and compromised blood flow due to vaso-constrictions in PE.

Interestingly, FOS happened to be another major transcriptional regulator of dysregulated

STB genes, originally inferred by iRegulon analysis. In essence, FOS, operating as a

constituent of the AP-1 transcription factor complex [501], oversees a range of cellular

processes such as proliferation, differentiation, apoptosis, hypoxia response, angiogenesis
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[765], and steroidogenesis [766]. Previously, transgenic overexpression of SAT1 or its

pharmacological activation resulted in increased mono- or diacetylated spermidine and

spermine levels that ultimately limited cellular proliferation by inducing apoptosis [767, 768].

Importantly, maternal serum levels of diacetylspermine metabolite were found to be

significantly high in PE but not in FGR [769]. SERPINE1, a member of the serine protease

inhibitor (SERPIN) gene family, is upregulated in response to hypoxia and exhibits altered

expression in placentas from preeclamptic pregnancies [507]. Previous research has

demonstrated changes in plasma levels of SERPINE1 in women with PE as compared to

controls [507, 770, 771]. However, SERPINE1 levels in the placenta may not adequately

reflect changes observed in maternal serum, as SERPINE1 is secreted from sources other

than placental villi — for example, in decidual cells [772]. It should be still considered that

SERPINE1 functions as a key regulator in various molecular pathways, including

inflammation, coagulation, fibrinolysis, complement activation, and phagocytosis, all of which

play crucial roles in placental diseases [507, 773]. In a recent study by Yang et al. 2023 [774],

SERPINE1 emerged as one of the seven major diagnostic candidates for PE, along with

FLT1, and operates within the HIF1-signaling pathway. Consecutively, network analysis of

EP300/p300 targets highlighted a closely interconnected community subgraph, including

ATF3, DUSP1, FOS, FOSB, JUNB, and JUND, implicated in the AP1 pathway. In PE,

abnormal levels of DUSP1 might result in impaired placental development via MAPK/ERK

signaling [476].

Collectively, the findings strongly suggested that disrupted EP300 activity impairs normal

fusion and vSTB differentiation during early gestation, resulting in aberrant alterations in

transcriptional signatures across all STB nuclear sub-states later in eoPE.

 Shared dysregulated targets drive hypoxia in eoPE

In the vSTB, a significant subset of disturbed targets was co-regulated by multiple

transcription factors and co-regulators, including master-regulator EP300, FOS, FOXO1,

FOXO4, and PAX5. The functional implications of these shared targets in eoPE

pathogenesis involve the enrichment of signaling cascades such as HIF-1α, AP1, PI3K-Akt,

and TGFβ pathways.

In PE, there is shallow and incomplete placental endovascular invasion caused by

inappropriate changes in adhesion molecules, resulting in placental hypoxia [775, 776].

Increased levels of HIF-1α during hypoxia can boost secretion of various mediators, including

sFlt-1, sEng, and angiotensin II converting enzyme (ACE), into the maternal bloodstream that

can promote eoPE pathogenesis and abnormal placentation [497, 777]. In this regard, prior
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studies had reported that upregulated HIF-1α enhanced sFLT-1 expression levels in PE-

affected placentas [778, 779]. Notably, sFLT-1 is a key factor in both PE and IUGR [780].

Additionally, hypoxia-induced activation of AP-1 has been observed in various cell lines,

where it collaborates with HIF-1α to enhance VEGF gene transcription under hypoxic

conditions [781]. Hypoxia can also amplify TGF-β/Smad signaling through HIF-1α, which

could lead to the upregulation of ECM components, including PAI-1 (encoded by SERPINE1)

and TIMP [782, 783]. Moreover, the TGFβ-SMAD pathway regulates trophoblast

syncytialization and proliferation through GCM1 and cell cycle regulators, influencing

trophoblast fusion and migration [784]. Hence, dysregulated TGFβ signaling has the potential

to drive aberrant trophoblast differentiation and impaired placental development through a

complex interplay with hypoxia during eoPE.

A promising area for investigation involves inducing EP300 or other inferred transcription

factors combinatorially in first-trimester trophoblast organoids or cell lines to examine

whether this induction triggers eoPE phenotypes such as hypoxia and senescence. Utilizing

these models can aid researchers in elucidating the mechanisms underlying eoPE, screening

prospective drugs, and devising personalized medicine strategies.

 vSTB developmental drivers dysregulated in eoPE

Furthermore, this dissertation leveraged the first trimester STB differentiation trajectory for

connecting evidence from eoPE arising later in gestation to the early stages when diagnosis

is not feasible. In simpler terms, the assessment of vSTB differentiation was carried out by

comparing disease signatures and pseudotime markers to identify molecular programs

causing eoPE-affected cells to deviate from their normal developmental trajectory. The

analysis demonstrated a noteworthy enrichment of eoPE differentially expressed signatures

in transition genes associated with vSTB development, indicating a substantial impact on the

vSTB differentiation trajectory. Despite the initial higher composition of vSTB1 and vSTB2

compared to vSTBjuv, a careful downsampling approach was employed to ensure consistent

statistical power for DEG analysis. Remarkably, even after downsampling, the significant

enrichment of vSTB transition genes within eoPE DEG signatures persisted, underscoring

the robust association between eoPE and altered vSTB developmental processes.

An illustrative example involves the dysregulation of pseudotime markers LEP and LNPEP

observed in eoPE. Specifically, LEP was significantly upregulated across all three vSTB sub-

states, while LNPEP1 was downregulated in vSTB1 compared to term controls. Previous

research highlighted elevated maternal LEP levels in both serum and placenta as a PE
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characteristic feature [516, 517, 785]. Also, LEP is well known for its involvement in

endothelial dysfunction, and atherosclerosis considering cardiovascular disorders, often in

conjunction with components of the renin-angiotensin system (RAS) [786]. An interesting

study by Nonn et al. 2021 [787] proposed a mechanism wherein maternal Angiotensin IV

(Ang IV), which increases during pregnancy, acts on trophoblastic LNPEP, leading to a

reduction in basal mitochondrial respiration. This reduction subsequently triggers an increase

in LEP expression, which in turn, negatively regulates LNPEP expression at both mRNA and

protein levels through a negative feed-forward loop. While targeting LEP pharmacologically

may pose challenges due to its central role in cellular metabolism regulation, LNPEP shed

into maternal plasma could be a viable consideration to mitigate detrimental effects

associated with increased maternal LEP levels, which are implicated in the pathogenesis of

eoPE.

6.1.5 vSTB-derived elevated SASPs mediate the transition of eoPE from child
to mother

This dissertation extensively investigated whether localized senescence observed in eoPE

within the trophoblast interface, linking fetal circulation and maternal blood, leads to the

release of senescence-associated secretory phenotype (SASP) factors into the maternal

circulation. Among the DEG(s) shared across various vSTB sub-states, approximately 12.2%

were identified as genes encoding SASP. Dysregulation of senescence-associated EP300

targets was evident in all three nuclear states of vSTB in eoPE, particularly pronounced in

vSTB1 and vSTB2, suggesting a potential role of the transcriptional co-activator EP300 in

inducing premature senescence in these states during eoPE. This association between PE

and defects in villous trophoblast fusion leading to senescence, mediated by EP300, may

represent a fundamental aspect across all PE subtypes, regardless of their multifactorial

origins. Various triggers and clinical risk factors for PE, such as obesity, may converge in

dysfunction of the maternal-fetal barrier, accelerating the turnover of villous trophoblasts and

promoting premature senescence. This hypothesis finds support in similar findings of SASP

profiles observed in the maternal circulation of both late-onset and early-onset PE cohorts.

 vSTB as possible cell-of-origin in eoPE

Notably, the discovery from this dissertation strongly indicated that eoPE majorly

dysregulates vSTB sub-states lining the outer layer of the fetal placenta, characterized by an

elevated SASP profile. Receptor-ligand interaction analysis that profiled perturbed cellular

communication between vSTB and maternal endothelium receptors revealed increased
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secretion of ligands such as GDF15, INHBA, HSPG2, MIF, TGM2, EZR, ADAM12, and

ADAM9. This implied that a heightened ligand pressure originates in vSTB sub-states and

causes accelerated senescence at the fetal side during eoPE (as illustrated in Figure 6.1).
Impressively, these ligands can cross the maternal-fetal interface and can potentially

translate eoPE from the fetal to the maternal side. Therefore, this also implies that eoPE may

potentially arise within the outer layer of vSTB, with the SASP facilitating the transmission of

the disease from the fetal to the maternal side. It would be also noteworthy to explore the

impact of EP300 agonism in an in vitro primary trophoblast model and assess whether it

induces specific SASP expression in a time- or dose-dependent manner, thereby mimicking

eoPE progression.

Collectively, these SASP-mediated changes in vSTB function could potentially disrupt

maternal-fetal interactions, leading to impaired nutrient exchange, hypoxia, and placental

oxidative stress — known hallmarks of eoPE [788, 790]. For instance, GDF-15 responds

robustly to oxidative stress and simulated ischemia/reperfusion injury in cultured

cardiomyocytes [789]. Similarly, the escalation of oxidative and nitrosative stresses in the

placenta is characteristic of PE, along with ischemia/reperfusion events [790]. Moreover,

GDF15 is a stress-responsive cytokine related to TGF-β and is increasingly recognized as a

novel risk indicator in individuals with cardiovascular diseases [791, 792]. A prior study

conducted by Sugulle et al. in 2009 [793] revealed elevated levels of GDF-15 in patients with

PE and superimposed PE in those with diabetes mellitus when compared to control subjects.

INHBA, a subunit of Activin-A and Inhibin-A cytokines belonging to the TGF-β superfamily is

known to regulate cell growth and differentiation and has been implicated in mediating

cellular senescence in various contexts [794, 795]. However, the diverse inputs influencing

the release of activin A likely contribute to its wide-ranging serum values across various

pregnancy pathologies, limiting its efficacy as a standalone biomarker [796]. Therefore,

exploring its clinical utility in conjunction with other biomarkers like GDF15 or HSPG2 is

imperative.

Elevated levels of placental perlecan (HSPG2) expression have been linked to hypoxic-

ischemic placental injury seen in miscarriages and eoPE, regardless of HELLP syndrome

presence [797]. Given its role in vascular malperfusion [797], targeting HSPG2 activity may

offer the potential to mitigate vascular complications associated with PE. Additionally,

ADAM12 and ADAM9 play roles in cell adhesion and migration pertinent to placental function,

making them potential therapeutic targets for addressing PE pathophysiology. Placental

ischemia or hypoxia induces ROS production, disrupting ADAM gene expression and activity,

thereby disturbing the balance between pro and anti-angiogenic factors, and promoting the
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release of inflammatory cytokines, that contribute to the inflammatory response and

endothelial dysfunction characteristic of PE [798]. Of note, a previous study found elevated

ADAM9 expression levels in PE, and its stabilization was facilitated through de-ubiquitination

by USP22 [523]. This stabilization led to the inhibition of trophoblast cell proliferation,

migration, invasion, and EMT progression. These findings suggest a novel pathway involving

the USP10/RUNX1 axis in the pathogenesis of PE.

Simply put, the findings of this thesis proposed that a disrupted cellular communication

between vSTB sub-states and maternal decidua is the key to a dysregulated maternal-fetal

barrier and potentially compromised maternal uterine vessel remodeling in eoPE. Hence, a

potential strategy for the prevention, intervention, and clinical management of eoPE could be

accomplished through the pharmacological inhibition of the SASP ligands, including GDF15,

INHBA, ADAM9, and HSPG2.

Furthermore, ISS-based spatial transcriptomic analysis revealed a significant loss of spatial

exclusivity between the senescent marker INHBA and markers of fetal vessels in eoPE,

providing a potential reason behind impaired nutrient transport and vascular dysfunction

within the placenta. This association was not detected in term controls and possibly,

suggests impaired nutrient transport, and vascular dysfunction within the eoPE-affected

placenta. Taken together, this spatial proximity underscored the role of cellular senescence

in causing tissue level perturbations and altered cellular function, offering a novel insight into

eoPE pathophysiology that warrants further validation in larger cohorts.

Figure 6.1: Illustration depicting elevated SASP expression in maternal blood during
early-onset pre-eclampsia.
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6.1.6 Future Outlook and Precision Medicine in PE

The validation studies, inspired by the computational findings of this thesis, were conducted

through extensive collaborative efforts involving clinicians, scientists, and statisticians across

various centers in Berlin, Graz, Vienna, and Melbourne, thereby significantly advancing

research on PE.

 Diagnostics avenues (taken insights from additional collaborative data)

To assess the predictive potential and pathomechanistic relevance of the computationally

derived SASP markers, experimental validations are planned to be conducted on two

prospective longitudinal cohorts. The first cohort involves women who provided blood

samples at the 36th week preceding delivery and PE diagnosis. Early research revealed

increased levels of PAI-1 (SERPINE1) and GDF-15 in the maternal serum of samples

collected at this stage that were predictive of eoPE development. Multivariable logistic

regression analyses demonstrated that these associations remained significant even after

adjusting for BMI and nulliparity. The role of PAI-1 in predicting eoPE prior to disease onset

indicated its connection to premature vSTB senescence. However, additional markers such

as HSPG2, ADAM9 and ADAM12 await validation.

Of note, validations are scheduled in a subsequent cohort, where maternal (first-trimester)

serum was obtained from participants who enrolled during the first trimester but were later

diagnosed with eoPE during late gestation. Preliminary data indicated that Activin A (INHBA)

served as a notable predictor of the disease during the early stages of pregnancy for women

who later developed PE. In this context, statistical modeling conducted using the Fetal

Maternal Foundation (FMF) algorithm [799] indicated a significant correlation between

elevated levels of circulating Activin A in the first trimester and a heightened estimated risk of

PE development. Nevertheless, further research is required to identify an optimal set of early

diagnostic markers before the eoPE symptoms manifest and cause irreversible harm to both

mother and child.

In summary, it was revealed that placental dysregulation during vCTB to vSTB differentiation

initiates eoPE and culminates in premature SASP. This dysregulation can be detected in

placental tissue and maternal blood as early as the first trimester, and ultimately, this SASP

is responsible for translating the placental differentiation defect into a maternal
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cardiovascular syndrome. These findings also align with observations in cardiovascular

disease beyond pregnancy, where SASP is known to play a role.

 Therapeutic avenues- pinpointing towards TGF-β signaling inhibitors

Targeting SASP components or modulating the senescence process could offer novel

therapeutic strategies for eoPE management. Interventions aimed at reducing SASP-

associated inflammation or promoting senescent cell clearance might mitigate the

progression of eoPE and its associated complications. Importantly, therapies aimed at

reducing senescence or targeting the same early in pregnancy could potentially prevent or

delay the onset of eoPE in at-risk individuals.

Based on snRNA-seq data, it is suggested to consider targeting EP300, as it is believed to

potentially contribute to the exaggerated SASP observed during eoPE. Although directly

targeting EP300 presents significant challenges given its fundamental physiological functions

in the placenta, it might be more feasible to pharmacologically inhibit its downstream targets,

such as FOS, which play significant roles in the progression of eoPE. Previous studies

postulated that targeting the acetyltransferase p300 could be a promising avenue for

developing epigenetic drugs aimed at mitigating accelerated senescence and aging-related

cardiovascular diseases [800]. While various small molecule inhibitors directed against p300

have demonstrated efficacy in preclinical models for alleviating diverse cardiovascular

pathologies, none have progressed to clinical trials. Therefore, further research is warranted

to optimize and evaluate the therapeutic potential of p300 inhibitors in clinical settings,

specifically for pre-eclampsia.

Therapeutically, targeting GDF15 signaling pathways may have the potential in managing

conditions associated with inflammation, oxidative stress, and metabolic disorders [793].

However, challenges persist in understanding the regulatory mechanisms controlling GDF15

expression in response to drugs, hindering the development of effective therapeutic

interventions. Recent research implicates BET proteins, particularly BRD4, in GDF15

regulation [801]. BET proteins, which regulate inflammation-related genes like GDF15-

activating factors NR5A2 and NFkB, play a crucial role in exacerbating cytokine expression

in diseases such as cancer or heart failure [801]. Despite these complexities, numerous

clinical studies have explored BET inhibitors [801], primarily in cancer treatment, indicating

the therapeutic potential of targeting BET proteins in various pathological conditions.

However, extensive research is needed to investigate if GDF15 could be practically targeted

in eoPE.



Discussion

196

On a similar note, interventions directed at HSPG2-mediated pathways hold promise for

tissue repair, angiogenesis, and conditions involving extracellular matrix dysregulation. Like

GDF15 and INHBA, regulation of HSPG2 is also responsive to TGF-β signaling, suggesting

that investigating TGF-β blockades could be a compelling avenue for exploring therapeutic

strategies in eoPE. However, as of now, there are no approved drugs specifically targeting

HSPG2 and other mentioned biomarkers for the treatment of PE. Further research is

solicited to explore their therapeutic potential and develop targeted interventions for PE

management.

 Clinical management of eoPE

Developing "gestational clocks" for diagnosing and managing eoPE would involve integrating

data from snRNA-seq, along with other multi-omics data and clinical information sourced

from databases like the UK Biobank [802]. For instance, monitoring the levels of specific

SASP components (originally inferred using snRNA-seq) in maternal circulation could

provide valuable insights into disease severity and progress. Additionally, combining multi-

omics data, including proteomics and metabolomics, would offer a holistic understanding of

molecular changes linked to eoPE compared to healthy pregnancies.

By analyzing biomarkers encoding hormones, SASP proteins, and genetic markers alongside

clinical data, machine-learning algorithms can be trained to accurately estimate disease risk

before symptoms arise. This approach enhances clinicians' ability to monitor pregnancy

progression effectively and identify deviations from the norm, such as eoPE, enabling earlier

diagnosis and intervention.

The implications of gestational clocks for early eoPE diagnosis are expected to be crucial for

timely medical interventions to prevent complications for both the mother and the fetus. By

identifying patterns in biomarker levels that are indicative of PE development, gestational

clocks can provide warning signs earlier in pregnancy, allowing healthcare providers to

closely monitor at-risk pregnancies and implement preventive measures or treatment

strategies promptly. For example, if GDF-15 remains consistently elevated in maternal serum

post-childbirth, it suggests a heightened risk of cardiovascular disorders and a potential

predisposition to PE in subsequent pregnancies. This correlation stems from the association

between elevated GDF-15 levels in circulation and an augmented risk of cardiovascular

events in non-pregnant individuals [515].
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6.2 Development of human pancreatic islets

At the perinatal stage, beta cells are not fully functional, but their functions, including

glucose-regulated insulin secretion, mature with age [311]. To investigate transcriptomic

changes across the two different age groups (neonatal and adult), the data sets were

combined and diffusion pseudotime analyses were performed to explore age-dependent

development. Pseudotime ordering was found to recapitulate donor age, thereby allowing

gene expression modeling using a generalized additive model and the identification of highly

dynamic genes. Genes depicting increasing or decreasing expression levels across

pseudotime were identified, as discussed in the manuscript. Genes implicated in beta cell

proliferation, such as PDZD2 [803] and IGFBP5 [804], exhibit lower expression levels in adult

samples. PLAG1, a protein known to decline within a few days after birth and known to inhibit

insulin secretion in neonatal murine islets [805], was also detected in neonatal samples. In

contrast, CD99, the expression level of which was previously reported to increase in adult

mouse islets [806], also had increased mRNA levels in adult human beta cells. In human

adults, higher levels of RASD1 and SYT16, genes previously reported to be upregulated in

human islets exposed to relatively high glucose, were detected [807, 808]. In adult beta cells,

there is higher expression of genes that encode members of the secretogranin-chromogranin

family, including SCG2, SCG5, and CHGB, which are recognized for their crucial function

within the insulin secretory granule. Therefore, the utilization of snRNA-seq on tissues

obtained at distinct developmental stages unveiled markers and previously under-recognized

regulators of human beta cell functional maturation, shedding light on age-related restrictions

in beta cell proliferation and the progression of secretory functions.
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6.3 Generating first reference atlas for pancreatic neuroendocrine carcinoma

The study delved into the intricate molecular landscape of high-grade large cell pancreatic

neuroendocrine carcinoma (panNEC) through snRNA-seq based transcriptomic profiling of

surgically resected fresh frozen specimens from five patients, one of whom (P1) had

received prior treatment. By employing advanced computational data analytics,

approximately 45,015 single nuclei were meticulously analyzed. Through unsupervised

clustering, five distinct cell types were identified across the patient samples: neuroendocrine

(NE), amphicrine, amphicrine progenitor, stromal (normal), and immune populations. While

four patients (P1-P4) predominantly exhibited shared neuroendocrine cell types, the fifth

patient (P5) demonstrated unique clusters with pronounced expression of acinar markers

[539, 540]. Notably, NE cell types displayed variable expression of diagnostic markers such

as CHGA, SYP, and NCAM1 [328-331, 536-538], also validated through

immunohistochemical staining. The amphicrine cell type showcased co-expression of

pancreatic acinar [539-544] and neuroendocrine markers, while the amphicrine progenitor-

like cell type expressed early pancreatic progenitor markers, such as PDX1 and SOX9 [545-

549]. Stromal cells, characterized by ECM remodeling genes, were more abundant in P1,

previously treated with chemotherapy. The immune cell type harbored markers indicative of

its immune function. Hence, for the first time, snRNA-seq data analysis uncovered tissue

compostion and distinct cell type classifications, emphasizing the heterogeneity within

panNEC and its tumor microenvironment.

6.3.1 Shared panNEC sub-states reveals diverse functional profiles

Through meticulous subclustering of cell types into sub-states, this dissertation uncovered

distinct functional diversity within high-grade panNEC patients. Despite striking patient-to-

patient variability, common sub-states within the neuroendocrine cell type were discerned,

each characterized by distinct molecular signatures indicative of functional pathways and

oncogenic processes. The shared neuroendocrine (NE) sub-state demonstrated a distinct

molecular profile characterized by the presence of well-established neuroendocrine markers

such as RIMBP2 and ADARB2, associated with neuronal systems, alongside CACNB2,

CACNA1A, and KCNJ3, pivotal in voltage-gated Ca2+ and K+ channel regulation [551]. This

amalgamation of markers contributed significantly to enriched pre-synaptic depolarization,

indicating an active role in neuronal regulatory processes. Of note, the calcium channel

encoded by the CACNB2 gene, a membrane-associated guanylate kinase (MAGUK) protein,

serves as the β2 subunit of the L-type cardiac calcium channel CACNA1C. This discovery

underscores the importance of L-type calcium channels in facilitating Ca2+ influx into the
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cytoplasm, thereby regulating cardiac excitability and excitation-contraction coupling (EC

coupling) [552]. It is well known that ion channel-specific genes play pivotal roles in various

cellular processes, including electrical excitability, cell signaling, and hormone release. In the

context of panNEC, dysregulation of ion channels might influence the tumor

microenvironment, cellular communication, and hormone secretion, all of which are hallmark

features of neuroendocrine cells. Hence, understanding the significance of these genes

could offer insights into the panNEC pathophysiology. Of note, previous studies in

glioblastoma have highlighted the contribution of electrochemical signaling to tumor growth in

preclinical models [803]. Therefore, the neural characteristics of LCNEC may present

potential targets for NEC-specific therapies, distinguishing them from treatments for

pancreatic ductal adenocarcinoma (PDAC) [804]. Notably, neuroendocrine proliferating sub-

state (NE proliferating) is an actively cycling sub-set of shared NE cluster, which exhibited

enrichment in cell-cycle regulation, DNA damage response pathways and BRCA/FANCA

signaling programs [553], with implications for tumor aggressiveness and therapeutic

response. Previously, heightened expression of Fanconi anemia genes has been associated

with resistance to chemotherapy in cisplatin-resistant non-small cell lung cancer (NSCLC)

[554] as well as in ovarian cancer cell lines [555]. In case of P5, another proliferating

amphicrine sub-state was detected, resembling the shared neuroendocrine proliferating sub-

state, but additionally characterized by acinar markers.

Moreover, a hypoxic neuroendocrine sub-state, namely NE HSP+ (hypoxic) displayed

activation of mTOR signaling, glycolysis, and heat stress response pathways, suggesting

adaptations to tumor microenvironmental stresses [556, 557]. The excessive activation of

mTORC signaling is recognized for its role in promoting cell proliferation, survival, and

metabolism, thereby fueling tumor growth and progression [558]. This phenomenon is

frequently observed in pancreatic neuroendocrine tumors (panNET) [559]. Previous studies

have indicated a frequent abnormal activation of mTOR, often attributed to inactivating

mutations in genes encoding negative regulators of the pathway or through indirect

mechanisms [559]. Clinically, overexpression of mTOR and its downstream targets has been

linked to a poorer prognosis in various neuroendocrine tumors [560, 561]. For instance,

Shida et al. 2019 observed elevated mTOR expression in poorly differentiated

neuroendocrine neoplasms (NENs), with a reported expression rate of 67%, contrasting with

a reduced rate of 27% in well-differentiated counterparts [562]. Similarly, Catena et al. 2011

found mTOR expression in 80% of patients with poorly differentiated NEC, regardless of

tumor origin or proliferation rate [563]. These findings underscore the clinical significance of

mTOR dysregulation in the pathogenesis and prognosis of neuroendocrine tumors.

Additionally, Stroma (normal) sub-state exhibited differential expression of genes involved in
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ECM remodeling, immune modulation, and angiogenesis, hinting at their role in tumor

progression and immune evasion. Importantly, the identification of distinct macrophage sub-

states highlighted their immunomodulatory functions and potential as therapeutic targets.

This comprehensive analysis elucidates potential avenues for targeted therapies and

underlined the importance of understanding cellular diversity in advanced pancreatic

neuroendocrine carcinoma patients.

6.3.2 RBFOX1 and NKX2-2 are crucial regulators of shared neuroendocrine
and neuroendocrine proliferating sub-states

The shared panNEC sub-states revealed distinctive transcriptomic signatures indicative of

underlying neuroendocrine characteristics. Specifically, RBFOX1 [580] and NKX2-2 [581]

emerged as notable markers exclusive to NE and NE proliferating sub-states, which were

absent in the amphicrine counterparts. RBFOX1 exhibited statistically significant upregulation

in both NE and NE proliferating sub-states, playing a crucial role in neuroplastic gene

expression regulation through splicing mechanisms [583, 584]. Intriguingly, association of

RBFOX1 with calcium signaling pathways suggests a potential mechanistic link to the

observed prominence of calcium channels within shared NE states [585]. Meanwhile, NKX2-

2, despite not being identified as a computational marker, retained importance in pancreatic

islet development, reflecting its expression in adult endocrine cell types [581]. Conversely,

the amphicrine progenitor-like sub-state displayed robust PROX1 expression, a transcription

factor crucial for neurogenesis and pancreatic morphogenesis [586, 587].

6.3.3 Molecular landscape of P5-specific amphicrine sub-States: Insights into
Early Pancreatic Progenitor signatures

In patient P5, a distinct amphicrine sub-state labeled 'Amphicrine progenitor-like' was

identified, characterized by the expression of key markers and transcription factors

associated with the differentiation of early pancreas progenitors, including multipotent

pancreas progenitors (MPP) and tip progenitors [547, 590, 591]. Noteworthy markers PDX1

and SOX9 were co-expressed in this sub-state, indicating multilineage potential, as

demonstrated in previous lineage investigation studies [545-549, 592, 593]. For example, Gu

et al., 2002 [592] demonstrated that Pdx1 expressing cells could generate all adult

pancreatic cell types. A previous study by Trott et al., 2017 [593], revealed that cultured

pancreatic progenitor cells express PDX1 and SOX9, which, upon exposure to differentiation

signals, differentiate into pancreatic acinar, ductal, and endocrine lineages— thereby,

indicating multilineage potential. SOX9 serves as the primary marker and maintenance factor

for multipotent progenitors during pancreas organogenesis [545, 547-549, 592-594]. In the
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developing pancreas, SOX9 expression is confined to a subset of actively dividing PDX1+

pluripotent progenitors that are responsive to Notch signaling, while it is absent from

committed endocrine precursors or differentiated cells [594].

Conversely, the amphicrine acinar03 sub-state, while expressing PDX1 similar to amphicrine

progenitor-like cells, lacked SOX9 and instead displayed acinar lineage markers such as

GP2 [539, 540], indicating a more committed acinar fate. Additionally, the co-expression of

PDX1 and ONECUT1 in both amphicrine progenitor-like and amphicrine acinar03 sub-states

suggests their potential cooperativity in pancreatic cell differentiation and maturation [596].

Kropp et al 2018 [596] hypothesized that Pdx1 and Onecut1 are co-expressed in mouse

MPPs and their cooperativity in MPP impacts postnatal β-cell maturation and functions.

Moreover, early pancreatic progenitor markers like HNF1B, GATA6, and ETV4, were

expressed across all amphicrine sub-states, with HNF1B being relatively robust in

amphicrine acinar sub-states [597-602]. In this regard, Pinho et al. 2011 [597] observed that

Pdx1/Ptf1a acinar cells in suspension culture dedifferentiate into an embryonic progenitor-

like phenotype when exposed to Hnf1b. Haumaitre et al. 2005 [598] postulated that HNF1B+

cells within the pancreatic trunk epithelium serve as multipotent pancreatic progenitors

involved in both endocrine and exocrine development. Early deletion of Hnf1b results in a

diminished pool of pancreatic MPPs due to reduced proliferation and increased apoptosis

[599]. De Vas et al. 2015 [599] further demonstrated that Hnf1b plays a pivotal role in the

regulatory networks governing pancreatic MPP expansion, maintenance of acinar cell identity,

duct morphogenesis, and the generation of endocrine precursors. Of note, Allen et al. 2011

[600] showed that GATA6 haploinsufficiency is responsible for pancreatic agenesis. Other

studies utilizing genome editing techniques have shown that human pluripotent cell lines

carrying mutations in both alleles of GATA6 failed to differentiate into definitive endoderm,

leading to a developmental block at the primitive streak stage- a defect that was rescued by

re-expressing GATA6 [601]. Also, Carrasco et al. 2012 [602] reported a decrease in PDX1+

multipotent pancreatic progenitors’ population in the Gata6 mutant pancreatic epithelium.

Similarly, earlier studies such as Swift et al. 1998 [603] showed that MEIS subclasses

(MEIS1/2) create a multimeric complex with PDX1, altering its transcriptional activity. In

acinar cell lines, the exocrine activity is facilitated by a complex comprising PDX1, PBX1, and

MEIS2. Hence, the presence of MEIS encoding genes together with PDX1 and SOX9

indicate similarities with early pancreatic progenitors.
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6.3.4 Amphicrine progenitor-like sub-state recapitulates invasive cancer stem
cell like phenotype

P5-specific amphicrine progenitor-like sub-state revealed a unique cellular phenotype

characterized by repression of acinar lineage genes like RBPJL, GP2 and NR5A2, as well as

absence of digestive enzyme encoding genes like PRSS1/2— indicative of an immature and

less differentiated state. This sub-state prominently expressed signatures associated with

pancreatoblastoma (PBL) [608], an immature childhood tumor with multilineage features,

including LEF1, LGR5, BMP4, ID1, and TCF7, suggesting a resemblance to PBL oriented

molecular profile. Moreover, pathway enrichment analysis indicated the activation of WNT-

BMP-NOTCH signaling, which is acknowledged for its role in maintaining stemness and

suppressing differentiation in pancreatoblastoma (PBL) [608]. This finding was further

corroborated by the enrichment of Wnt signaling mediators such as CTNNB1, AXIN2, LGR5,

DKK4, LEF1, BMP4, RNF43, and NOTUM. In this context, it is noteworthy that the

amphicrine progenitor-like sub-state prominently expressed the neurogenesis driver PROX1,

which is known to be induced by Wnt signaling [609, 610]. Additionally, an observed

upregulation of genes linked to invasiveness and cell migration, along with enrichment in ion

transport processes, hints at a potentially aggressive and metabolically dynamic nature of

this sub-state within the tumor microenvironment. Importantly, a significant fraction of

markers overlapped with shared NE HSP+ (hypoxic) sub-state that emphasized the complex

interplay of signaling pathways involved in cellular adaptation and tumor progression,

highlighting the multifaceted nature of panNEC biology.

6.3.5 Amphicrine acinar-like sub-states reminiscent of pancreatic injury and
acinar-to-ductal metaplasia

The amphicrine acinar cell type encompassed three discernible sub-states, identified as

Amphicrine acinar01, Amphicrine acinar02, and Amphicrine acinar03. These sub-states were

delineated based on key acinar progenitor markers such as RBPJL, GP2, NR5A2, MECOM,

and CEL. NR5A2, critical for pancreatic development and exocrine phenotype preservation,

demonstrated varying expression levels across the sub-states, suggesting its regulatory role

in pancreatic oncogenesis [611]. Notably, Amphicrine acinar-01 exhibited elevated

trypsinogen levels and enrichment of PDX1-regulated targets, with significant resemblance to

a metaplastic acinar program observed in K-Ras-driven models of acinar to ductal

metaplasia [604]. Differential gene expression analysis comparing these three sub-states

elucidated specific gene profiles in Amphicrine acinar-01, including CPA1, CPA2, CLPS and

CTRB1, compared to the other sub-states, suggesting an intermediate phenotype bridging

early and late metaplastic states, as described by Schlesinger et al. 2020 [604]. In this
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regard, the amphicrine progenitor-like sub-state showed elevated expression of ONECUT2, a

marker indicative of acinar to ductal metaplasia (ADM), suggesting a transitional state

characterized by lineage dedifferentiation [604]. Similarly, the amphicrine acinar01 sub-state

showed heightened expression of FOXQ1, associated with metaplastic changes in acinar

cells undergoing transdifferentiation [604]. Moreover, both amphicrine progenitor-like and

acinar sub-states displayed strong expression of regenerative genes such as REG1A and

transcription factors including ONECUT1, HNF4A, and HNF4G, reminiscent of classical

PDAC phenotypes [605]. ONECUT1 (HNF6) has been proposed to play a role in the

development of pancreatic metaplasia lesions [604, 606]. HNF4A expression has previously

been observed in a subgroup of pancreatic and duodenal NEN, where it was associated with

poor survival outcomes [606]. Conversely, shared sub-states exhibit negligible expression of

GATA6 and minimal levels of HNF4A/HNF4G, suggesting a neuroendocrine reprogramming

reminiscent of organoid studies [607]. Amphicrine acinar02 notably expressed serotonin

biosynthesis-associated gene TPH1, linked to tumor vascularity in small bowel

neuroendocrine tumors [613, 614]. Moreover, ECM remodeling genes expressed in

Amphicrine acinar02 hinted at ductal-like features.

This dynamic interplay between lineage plasticity and oncogenic reprogramming

underscored the heterogeneous nature of panNEC, with amphicrine sub-states resembling

both metaplastic and ductal-like phenotypes, offering potential insights into therapeutic

targets and further avenues for investigation. Additionally, the expression profiles of key

genes relevant to PDAC and pancreatic neoplasia in amphicrine sub-states mirrored those of

MUC5B+ ductal populations, highlighting shared molecular signatures across distinct

pancreatic tumor phenotypes [72]. These findings collectively suggest a dynamic interplay of

pancreatic lineage markers and metaplastic signatures within amphicrine sub-states,

reminiscent of trans-differentiation events observed in pancreatic injury and regeneration

models.

6.3.6 Developmental programs and malignant cell state programs in panNEC

 Resemblance with pancreatic development

The examination of how lineage plasticity influences the malignant behavior of panNEC

involved conducting module score analyses and over-enrichment tests using carefully

curated signature lists from studies on pancreatic development, encompassing acinar, ductal,

and endocrine lineage signatures [547, 616, 619, 620]. Specifically, the amphicrine

progenitor-like sub-state unique to patient P5 displayed enrichment for trunk and endocrine

progenitor gene sets, implying its potential to differentiate towards ductal and endocrine cell
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lineages [547, 616]. Conversely, amphicrine acinar sub-states exhibited variable expression

of the tip progenitor module, responsible for acinar lineage differentiation, with significant

enrichment observed particularly in amphicrine acinar01 and 03 [547]. Additionally,

amphicrine acinar01 demonstrated significant enrichment for ductal progenitor signatures,

indicating a transitional state between acinar and ductal phenotypes, while also showing

signatures of centro-acinar cells implicated in oncogenic transformation through ductal

transdifferentiation [616, 617]. Furthermore, the exploration of transcriptomic similarities

between panNEC sub-states, endocrine progenitors, and various endocrine lineage cell

types unveiled distinctive patterns [619, 620]. Module score analysis revealed mutual

exclusivity between signatures associated with alpha and beta cell fate programs, with alpha

linked to shared panNEC sub-states and beta to amphicrine ones, prominently enriched in

amphicrine acinar01 [619]. Notably, key markers associated with mature endocrine cell fates

were absent in all sub-states, including GCG, INS, and SST, alongside critical genes defining

the alpha lineage such as MAFB and IRX2 [620]. Furthermore, prominent beta markers like

IAPP and MAFA exhibited negligible expression in the panNEC sub-states [620]. Although

DLK1, TGFBR3, and SMAD9 contributed partially to the enrichment of the beta program in

amphicrine sub-states, their presence did not indicate a typical beta-like NEC in the absence

of INS [620]. Additionally, SST and PPY, characteristic markers for delta and PP cell types,

were not expressed in the panNEC sub-states [620]. The absence of characteristic lineage

markers like GCG or INS confirmed that the panNEC sub-states did not reflect the

transcriptomic profile of mature islets, unlike well-differentiated pNET counterparts, which

closely resemble the transcriptomic profile of various endocrine cell types [620].

 Resemblance with lung and prostate neuroendocrine carcinoma

Neuroendocrine (NE) differentiated cancer sub-states are increasingly acknowledged across

various cancer types, notably in lung and androgen-resistant prostate cancer [624-627]. The

clinical management of panNEC draws heavily from experiences with NE small cell

carcinomas of the lung, which are more prevalent [628]. To evaluate if the malignant

programs observed in non-pancreatic NE carcinomas were recapitulated in panNEC sub-

states, transcriptomic signatures from lung and prostate NEC types and subclasses were

examined using module score analysis and an over-enrichment test. Specifically,

transcriptomic signatures from George et al. 2018 [340] study profiling lung neuroendocrine

carcinoma (LCNEC) subtypes were examined, revealing distinct enrichment patterns across

panNEC sub-states. George and colleagues segregated LCNEC into two subtypes (Type I

and II) with distinct mutational profiles, either involving bi-allelic TP53 and STK11/KEAP1

alterations (Type-I) or bi-allelic inactivation of TP53 and RB1 (Type-II) [340]. Type-I LCNEC
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showed high neuroendocrine expression akin to small cell lung carcinoma (SCLC) despite

sharing a mutational profile with non-small cell lung carcinoma (NSCLC), while Type-II

LCNEC resembled NSCLC based on transcriptomic patterns [652, 653]. Moreover, distinct

malignant sub-classes (Class D and E) were identified, bridging SCLC and LCNEC

categories. The Type-I LCNEC signature was notably enriched in the amphicrine acinar01

panNEC sub-state, aligning with its high neuroendocrine expression and metabolic

characteristics. Conversely, Type-II LCNEC signature exhibited significant enrichment in the

amphicrine proliferating and shared NE proliferating sub-states, indicative of increased cell

activation and proliferation. This enrichment was driven by genes associated with DNA

methylation, chromosomal instability, and cancer metastasis, highlighting the biological

relevance of these sub-states in pancreatic NECs [629, 630]. Additionally, signatures from

George et al.'s 2018 study delineating transcriptomic sub-classes within neuroendocrine lung

cancers demonstrated distinct enrichment patterns in panNEC sub-states. Class I and II

neuroendocrine lung cancer sub-class signatures were prominently represented in

amphicrine sub-states, with Class I moderately represented in the shared neuroendocrine

sub-state. On the other hand, shared panNEC sub-states generally lacked expression of the

Class II signature, associated with LCNEC with lower-level neuroendocrine marker

expression. Notably, SCLC-like transcriptome features (Class III and IV) were strongly over-

enriched in both shared neuroendocrine and neuroendocrine-proliferating sub-states,

suggesting a shared transcriptomic profile with SCLC rather than LCNEC of the lung.

Furthermore, class D and E signatures, linked to chromatin modifications, DNA repair, and

damage response, were upregulated in both amphicrine and neuroendocrine-proliferating

sub-states, with neuroendocrine-proliferating showing stronger enrichment of class E,

derived mainly from SCLC samples, relative to the LCNEC-dominant Class D [340].

Differentially upregulated markers in both NE and NE-proliferating sub-states demonstrated

significant over-enrichment of a prostate cancer (PC) signature identified by Alshalalfa et al.

2019 [341]. This PC signature was reportedly effective in distinguishing small cell

neuroendocrine prostate cancer from adenocarcinoma in early-stage, treatment-naïve

specimens.

Overall, this analysis suggested that there might be common underlying molecular pathways

or mechanisms driving the neuroendocrine phenotype across different cancer types. This

shared molecular signature could potentially be targeted therapeutically, allowing for the

development of novel treatment strategies that could benefit patients with NEC regardless of

the primary tumor site. Additionally, it underscored the importance of considering the

similarities in molecular profiles when designing clinical trials and treatment approaches for
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NEC, as therapies effective in lung or prostate NEC may also hold promise for pancreatic

NEC patients. Moreover, identifying shared molecular signatures may aid in refining

diagnostic and prognostic markers, leading to more accurate classification and personalized

management of NEC patients across different anatomical sites.

 Resemblance with Pancreatic Ductal Adenocarcinoma

Previous molecular characterization of panNEC suggests a closer mutational resemblance to

pancreatic ductal adenocarcinoma (PDAC) rather than pancreatic neuroendocrine tumors

(NET) [324, 636]. Additionally, panNEC can manifest as mixed neuroendocrine-non-

neuroendocrine neoplasms (MiNEN or MANEC), featuring both neuroendocrine and non-

neuroendocrine components within the same lesion [637, 638]. Inspired by these

observations, an investigation was conducted to determine whether any of the panNEC sub-

states transcriptomically mirror malignant cell states and lineage programs observed in

PDAC. Employing module score analysis using disease signatures compiled from Hwang et

al. 2022 [342], it was observed that amphicrine acinar-like 01 exhibited the most pronounced

enrichment for the 'acinar-like' program, with intriguing characteristics observed regarding the

Classical-like subgroup. This observation was driven by genes like GATA6 and HNF4A. Of

note, GATA6, a critical transcription factor for maintaining epithelial identity and facilitating

acinar cell differentiation, is a major marker for classical PDAC subtype [605]. A recent study

by Kloesch et al. 2022 [635] decoded that GATA6 loss, coupled with concurrent

downregulation of HNF4A, is essential for transitioning to the basal phenotype in PDAC.

Importantly, this loss of GATA6 has been associated with increased metastatic potential and

a more aggressive phenotype.

Both shared NE and NE proliferating sub-states displayed notable enrichment for

‘Neuroendocrine-like’ program, associated with nervous system development and

neurotransmitter secretion, while shared NE HSP+ (hypoxic) sub-state exhibited no such

enrichment, suggesting a departure from typical neuroendocrine functional traits.

Furthermore, the shared NE sub-state demonstrated significant over-enrichment for Neural-

like progenitor (NRP) targets, associated with axonal guidance and tumor-nerve interactions,

indicating potential implications for disease progression and prognosis [342]. In this regard,

Hwang and colleagues reported significant enrichment of the NRP malignant program in

residual PDAC tumors and patient derived PDAC organoids post-treatment, which correlated

with an unfavorable prognosis [342]. These findings shed light on the potential similarities in

the underlying molecular mechanisms driving tumorigenesis and progression between these



Discussion

207

two types of pancreatic cancer. Moreover, this emphasized the need for tailored treatment

strategies informed by molecular subtyping.

6.3.7 Transcriptional regulation and lineage plasticity of panNEC

The application of single-cell regulatory network inference and clustering (SCENIC) revealed

that transcription factors identified in amphicrine sub-states are typically present in healthy

pancreas, reflecting their physiological roles in acinar or endocrine cells. The inferred activity

of tumoral transcription factors either exceeded or was reduced compared to their

physiological activity in corresponding cell populations [72]. Notably, the amphicrine

progenitor-like sub-state exhibited differential regulation by transcription factors such as

SOX9, HNF1B, SOX13, ONECUT1, PDX1, and LEF1, suggesting potential roles in

pancreatic cancer initiation and stemness maintenance [640, 641]. Furthermore, highly

proliferative sub-states demonstrated elevated activity of E2F family members, while

amphicrine acinar sub-states displayed notable PTF1A and MECOM activity, which are

pivotal in specifying acinar cell identity and regulating pancreatic tumor progression [543].

Strong HNF4A activity observed in both sub-states is associated with normal pancreatic

development, early pancreatic progenitor gene expression, and PDAC classical subtype,

highlighting its relevance of developmental drivers in pancreatic cancer pathogenesis [642,

643]. Overall, the amphicrine progenitor-like sub-state showcased a unique regulatory profile

with lower inferred activity for acinar-related transcription factors, consistent with its distinct

molecular characteristics within the amphicrine cluster.

The shared sub-states, NE and NE-proliferating displayed distinct activities of transcription

factors linked to pancreatic and/or brain organogenesis, including PAX6, ISL1, SOX5, ETV1,

and TCF3 [643-656]. Notably, the tumoral activity of these transcription factors in the NE

sub-states exceeded their physiological levels in the endocrine pancreas. PAX6 and ISL1,

known for their roles in regulating pancreatic islet differentiation and the production of alpha

and beta cells, also regulate survival and differentiation of pancreatic endocrine progenitors

[643-648]. PAX6, a master regulator of neuronal development, was found to be upregulated

in NEC relative to healthy pancreatic cell types, suggesting a potential role in pancreatic

neuroendocrine tumorigenesis [649-651]. During embryonic development, ISL1 is known to

control motor neuron generation, axon growth and cranial ganglia neurons during brain

development [809]. In addition, ISL1 overexpression was observed in a variety of cancers,

including brain, lung, breast, gastric and rhabdosarcoma [810]. With respect to NEC, an

immunohistochemical study on large cells and small cell NEC from lung or
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gastroenteropancreatic (GEP) origin had reported ISL1 expression in half of the GEP cases

with a trend to higher expression in small cell tumors [811]. The presence of ISL1 in non-

pancreatic NEC including neuroblastomas [812] would likely align with the functional context

of neural specific transcriptional programs rather than a beta islet cell specific context. The

specific expression of NKX2-2, a multipotent neuronal progenitor marker [651, 656], in

shared NE and NE-proliferating sub-states, alongside PAX6 and ISL1, suggested a potential

endocrine origin for these sub-states. However, further investigations are warranted to

elucidate whether NKX2-2 functions analogously to neural or islet cells in the context of

panNEC.

SOX5 belongs to the SOXD family of transcription factors that are strongly involved in cell

fate determination during development and previously described to regulate neuronal

migration, differentiation and projection [813]. Knocking down Sox5 has been associated with

gene expression changes resembling type 2 diabetes (T2D) and compromised insulin

secretion [654]. This was primarily due to diminished mitochondrial activity, reduced

expression of L-type Ca2+ channels, and a decrease in depolarization-evoked Ca2+ influx.

As intracellular Ca2+ plays a pivotal role in regulating various enzymes, including ATP

synthase, the concurrent mitochondrial defect and impaired Ca2+ influx likely synergistically

exacerbated the secretory impairment. In recent studies, SOX5 oncogene has emerged as a

crucial factor in driving the metastasis and advancement of diverse tumors, including breast

cancer, prostate cancer, hepatocellular carcinoma, and nasopharyngeal carcinoma [814].

Previously, it had been implicated in promoting metastasis and EMT programs in human

prostate cancer [814]. Mechanistically, SOX5 exerts its influence by activating Twist1 through

binding to the Twist1 promoter, thereby facilitating the EMT process [814]. In context of

human lung adenocarcinoma (LAD), a previous study delineated the role of SOX5

transactivation in promoting chemoresistance by upregulating FOX-A1 gene [815]. Similar to

LAD and many other cancers, EMT-driven chemoresistance is a major roadblock for pNEC.

Hence, the presented data suggests further investigation of SOX5 in mediating panNEC

malignant programs and repurposing it for therapeutics.

Similarly, the ETS-transcription factor or ETV1 is known for its involvement in EMT during

pancreatic development and was found to be upregulated in mouse pancreatic intraepithelial

neoplasia (PanIN) and PDAC [816]. Moreover, ETV1, implicated as a master regulator in

neuronal-derived gastrointestinal stromal tumors, showed increased expression in panNEC

samples compared to healthy pancreatic controls [655]. Previously implicated in promoting

neuroendocrine prostate cancer (NEPC), ZBTB7A has been associated with a pronounced

dependence on RET kinase activity in NEPC cancer cells exhibiting a high small-cell
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neuroendocrine (SCN) phenotype score, indicating a strong correlation between RET and

ZBTB7A dependencies [817]. Silencing ZBTB7A in a NEPC cell line confirmed its role in

supporting cell growth by inhibiting the G1/S transition in the cell cycle and inducing

apoptosis, highlighting its oncogenic function [817]. Therefore, further investigation is

warranted to explore the potential involvement of ZBTB7A in promoting cell proliferation and

growth in the shared NE sub-states. HOXA9 has been identified as capable of stimulating the

Wnt/β-catenin pathway in pancreatic cancer cells, promoting stemness properties and self-

renewal of cancer cells. Conversely, knockdown of HOXA9 impedes sphere formation and

leads to the downregulation of stemness genes [818]. Another inferred TF in both shared NE

and NE-proliferating sub-states is TCF3, a member of the Wnt/β-catenin signaling pathway

that was previously found to be highly expressed in endocrine progenitors along with

NEUROG3 [620, 819]. In adult human organisms, de novo expression of TCF3 has been

reported in islets from individuals with type II diabetes, suggesting its potential role in

reflecting endocrine cell stress/injury [820].

6.3.8 PTF1A/PAX6 regulated brain targets associated with aberrant neuronal
phenotype

Previous studies, utilizing DNA methylation and mutational profile analyses of panNEC, have

suggested an exocrine cell origin and a mutational spectrum resembling that of exocrine

PDAC, rather than well-differentiated NET [338, 324, 636]. Within this context, the

neuroendocrine phenotype could arise from the acquisition of characteristics resembling

either neural or neuroendocrine islet cell types. Therefore, this study aimed to investigate

whether any of the panNEC sub-states exhibited tissue-specific target enrichment for key

developmental factors such as PTF1A, PAX6, and NKX2-2. These transcription factors play

crucial regulatory roles in both pancreas and brain development, each associated with

distinct sets of targets. For example, PTF1A is essential for regulating the proliferation of

multipotent pancreatic progenitor cells and specifying and sustaining acinar cells [547, 590,

591, 595]. Additionally, PTF1A also governs brain and neuronal development, particularly the

molecular specification of inhibitory neurons and the generation of correctly balanced

neuronal circuits [663-665]. However, it's important to note that the SCENIC analysis used in

this study does not incorporate tissue-specific target information in its reference database,

limiting the assessment of brain versus pancreas-specific enrichment of PTF1A and similar

factors.

This dissertation leveraged murine tissue-specific developmental signatures from E12.5

neural tube and E17.5 pancreas to explore the regulatory role of PTF1A in different cell types.
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Target signatures governed by PTF1A in both pancreas and neural tube were obtained from

Meredith et al. 2013 [666], revealing distinct tissue-specific functions of PTF1A during

development. The pancreatic target signature of PTF1A was notably enriched in the

amphicrine acinar 01 sub-state, aligning with SCENIC analysis results. Conversely, shared

NE and NE-proliferating sub-states did not express the pancreatic targets module due to its

association with genes related to exocrine pancreatic function. Interestingly, the NE

proliferating sub-state exhibited significant enrichment of PTF1A-regulated brain target

signatures, featuring genes implicated in various cellular processes. Notably, HPIBP3, known

for its role in drug resistance and cell proliferation, showed over-enrichment in this sub-state,

along with KHDRBS1, a regulator of cancer stem cell properties. Additionally, SSBP3,

PRRC2B, THRAP3, ARID1A, LMNB1, and NCAM1 were among the genes enriched in this

sub-state, each playing crucial roles in various cellular functions [341, 666-675]. Although the

NE and NE HSP+ (hypoxic) sub-states showed a slight overrepresentation of PTF1A brain

signatures, statistical significance was not reached. Nevertheless, these findings underscore

the potential role of PTF1A-regulated brain target genes in neuronal dedifferentiation and

panNEC progression, emphasizing their functional significance in this context.

Of particular interest, HP1BP3 is known to directly interact with EZH2, and epigenetically

activate WNT7B that promotes drug resistance in glioblastoma cells [667]. HP1BP3

overexpression was also reported to result in significantly increased cell proliferation, self-

renewal, and promotion of temozolomide (TMZ) resistance [667]. Moreover, splicing factor

KHDRBS1 (aka Sam68) is known to be tightly controlled by c-Myc proto-oncogene, and

previously found to be enhanced in several human malignancies, including prostate cancer,

where it influences high proliferation and survival [668]. Importantly, KHDRBS1 is also

recognized to regulate human cancer stem cell (CSC) vulnerability by Wnt/β-catenin

signaling [669, 670]. Notably, Farini and colleagues showed that KHDRBS1 (Sam68)

regulates synaptic connections through controlling dynamic splicing [671]. SSBP3 is a DNA-

binding protein encoding gene that is known to co-regulate the function of pancreatic β-cells,

often in conjunction with ISL1 [672]. Additionally, SSBP3 is recognized for its role in

overseeing the morphology of neurons and the processes involving the biogenesis and

transport of synaptic vesicles [673]. Of note, RNA processing factor THRAP3 is known to

regulate DNA Damage response (DDR), and previously, mass spectrometry-based

proteomics study found that THRAP3 depletion causes cellular hypersensitivity to DNA-

damaging agents [674]. PRRC2B plays a vital role in effectively translating specific proteins

necessary for cell cycle advancement and cellular proliferation [675]
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The regulatory roles of PAX6 and NKX2-2 extend beyond endocrine cell differentiation,

encompassing crucial functions in central nervous system development [649-651, 656].

Leveraging GTEX bulk RNA-seq data [679], differential expression analysis between

pancreatic and brain tissues was conducted, intersecting PAX6 and NKX2-2 target lists from

MSigDB [727]. The amphicrine sub-state exhibited varying expression levels for pancreatic

targets regulated by PAX6 and NKX2-2, with the NE proliferating sub-state significantly

enriched for PAX6-regulated brain-specific targets. However, the shared sub-states did not

demonstrate significant enrichment for pancreas or brain-specific NKX2-2 targets. This might

suggest an autonomous function of NKX2-2 in panNEC development that is tissue agnostic.

6.3.9 Intra-tumor plasticity and role of EZH2 regulation in panNEC

Immunohistochemistry validations confirmed the protein-level expression of sub-state

markers identified through snRNA-seq analysis, underscoring significant variability among

individual patients. In Patient P1, Ki-67 staining indicated a moderate proliferation rate of

approximately 40% of tumor cells, primarily localized at tumor margins. Moreover, EZH2

protein levels positively correlated with Ki-67 expression, exhibiting the strongest staining at

the periphery but negative staining in the center. Conversely, Patient P2 displayed higher

fractions of MKI67 (Ki-67) and EZH2 positive cells, corresponding to a more uniform positivity

among tumor cells. Notably, in Patient P1, YAP1 expression was confined to the surrounding

stroma, while absent in tumor cells, consistent with the enriched stroma sub-state observed

in this patient. Conversely, Patient P2 exhibited heterogeneous YAP1 expression within

individual glands, aligning with the observed heterogeneity in the snRNA-seq data. These

findings highlighted the importance of considering intra-tumoral heterogeneity in

characterizing panNEC sub-states and underscore the utility of combining snRNA-seq with

immunohistochemistry for comprehensive molecular profiling of tumor samples.

EZH2, a crucial orchestrator of cell fate determination and organogenesis in the pancreas

[681, 682] and nervous system [683-686]. Acting predominantly as a transcriptional

repressor within the Polycomb Repressive Complex 2 (PRC2), EZH2 catalyzes histone H3

lysine 27 trimethylation (H3K27me3), thereby silencing genes and regulating diverse cellular

processes. In panNEC sub-states, EZH2 targets showed tissue-specific enrichment, with

amphicrine sub-states displaying heightened EZH2 pancreas target scores, and shared NE

sub-states exhibiting over-enrichment for EZH2 brain-specific signatures. Notably, a

significant proportion of brain targets mediated this over-enrichment, including genes

involved in neuronal system regulation, axon guidance, and synaptic functions. Given that
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EZH2 predominantly serves as a transcriptional repressor, the enriched expression of EZH2

targets within specific panNEC sub-states might indicate a context-dependent attenuation of

EZH2's repressive function. Previous research, exemplified by Zhang et al. in 2023 [684],

has demonstrated profound alterations in gene expression profiles in neural progenitors and

post-mitotic neurons following the use of EZH2 conditional knockout models. Therefore,

further experimental investigations are necessary to elucidate the precise regulatory

mechanisms of EZH2 in panNEC models, particularly in discerning whether the loss of EZH2

can lead to the upregulation or downregulation of specific target genes.

Additionally, computational analyses identified several transcription factors, such as REST,

GFI1, TEAD4, and NKX2.5, as potential regulators of EZH2-mediated gene expression in

panNEC sub-states, with downstream targets implicated in neuronal development and

synaptic transmission [689-691]. Furthermore, enrichment analyses revealed associations of

EZH2 brain signatures with neurodevelopmental disorders and cerebellar ataxia,

corroborating previous findings linking EZH2 dysregulation to impaired neurogenesis [694].

These findings underscore the intricate regulatory roles of EZH2 in panNEC sub-states and

highlight its potential implications in neurodevelopmental disorders and cerebellar functions.

6.3.10 Recapitulation of human small intestinal signatures in pNEC sub-states

The exploration of human small intestine-specific cell type/state signatures in panNEC sub-

states sheds light on tumor plasticity and potential differentiation trajectories [695, 615].

Notably, the amphicrine sub-states predominantly express Intestinal Stem Cell (ISC)

signatures, with the amphicrine progenitor-like sub-state exhibiting strong expression of

intestinal Paneth signatures [695]. Additionally, the shared NE sub-state displayed significant

expression of small intestinal Enteroendocrine Cell (EEC) signatures, with patient-specific

variations observed, particularly in the NE sub-state of patient P3 [695]. Further analysis

using STREAM based trajectory analysis revealed intrinsic variability within the P3 NE sub-

state, with distinct lineage branches showing enrichment for specific transcription factor

targets, such as SRF, FOXP2, ONECUT2, HOXA7, FOXN4, STAT1, and CTBP2 [695]. SRF

has been associated with cell proliferation and migration and is particularly known for its

involvement in the control of cytoskeletal and muscle-related genes [696]. FOXP2 functions

physiologically in organ development, e.g. brain, lung, skeletal system [697], in GI tract

development as well as the enteric nervous system [698]. FOXP2's role can shift between

that of an oncogene or a repressor depending on the context [699, 700]. For example,

FOXP2 acts as an oncogene in multiple myeloma and diffuse large B-cell lymphoma, yet

functions as a tumor suppressor in hepatocellular carcinoma (HCC) and gastric cancer [699,
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700]. In another study conducted by Chen et al. in 2023 [701], it was shown that FOXP2 is a

direct target of PRC2-mediated gene silencing in malignant lung epithelial cells. Chen and

colleagues also observed that the enforced expression of FOXP2 resulted in heightened

stemness and increased migration of lung epithelial cells [701]. ONECUT2 plays a pivotal

role as a mediator in androgen receptor-independent cell growth and acts as a driver for

neuroendocrine differentiation during the transition from adenocarcinoma in castration-

resistant prostate cancer [702-704]. A prior investigation by Schlesinger et. al. 2020 [604]

identified ONECUT2 as a key marker for advanced metaplastic cells, related it to worse

clinical outcomes and implied it as a major driver of early stage PDAC development.

Elevated expression of the HOXA7 gene has been associated with heightened proliferation

in HCC via cyclin E1/CDK2 regulation making it a prospective and significant molecular

target for the diagnosis and treatment of liver cancer [705].

6.3.11 snRNA-seq provided insights into panNEC therapeutics

The investigation into potential treatments tailored to specific panNEC sub-states involved a

comprehensive analysis of enriched pathways and drug activities. Differential pathway

analysis unveiled pathways enriched across common sub-states, suggesting therapeutic

avenues. Notably, the shared NE proliferating sub-state exhibited heightened expression of

cell-cycle checkpoint kinases, E2F targets, and DNA repair genes, indicative of susceptibility

to platinum-based drugs like Cisplatin [712-715]. Moreover, the elevated expression of EZH2

suggested potential application of EZH2 inhibitors such as Tazemetostat, GSK343, and

GSK926 [708]. Importantly, Gene set enrichment analysis (GSEA) also associated NE

proliferating sub-state with Cisplatin, aligning with current treatment strategies.

Of note, the shared NE HSP+ (hypoxic) sub-state emerged as a pathological hotspot,

showcasing enrichment in pathways with oncogenic potential, including heat stress response,

hypoxia, glycolysis/PI3K-AKT, mTORC, and MAPK signaling, suggesting vulnerable targets

across all patient samples. This observation presented an opportunity for repurposing

approved drugs targeting these signaling pathways, such as Bevacizumab or Alpelisib, to

specifically inhibit VEGF or the PI3K pathway, respectively. Geldanamycin and Tanespimycin

emerged as highly significant drugs for targeting NE HSP+ (hypoxic), highlighting therapeutic

potential [732]. Notably, dysregulation of HSP90 levels, encoded by HSP90AA1 and

HSP90AB1, suggested repurposing of drugs like Pimitespib (TAS-116), known for its efficacy

in gastrointestinal stromal tumors post-chemotherapy [716-718]. HSP90 inhibitors like 17-

AAG have shown promise in clinical trials across various cancers, including their ability to

enhance cytotoxic effects of paclitaxel [719-725]. Overall, these findings illuminate potential
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targeted therapeutic strategies for managing panNEC by exploiting specific molecular

vulnerabilities within the NE HSP+ (hypoxic) sub-state.

6.3.12 Possible developmental origins of panNEC

Integration of panNEC patient samples (P1-P4) with Tosti et al.'s snRNA-seq data revealed a

close association of acinar subtypes with shared panNEC sub-states, particularly shared NE

stromal-like, indicating greater transcriptomic similarities to acinar rather than ductal or

endocrine cell types/states [150, 149]. Diffusion Pseudotime analysis confirmed this

observation, revealing a connection between acinar subtypes and panNEC shared sub-

states [150]. Trajectory analysis using STREAM unveiled a branch linking acinar-I to shared

panNEC sub-states, further supporting the potential origin of panNEC from acinar cells [153,

338]. However, markers identified by Yachida et al. for "acinar-type panNEC" were not

detected in the shared sub-states, prompting investigation into potential drivers of acinar to

NE differentiation [338]. Transition markers revealed elevated expressions of genes like

AUTS2, CACNA1A, RBFOX1, and ZBTB20, though these markers alone did not fully explain

the molecular factors driving this transition [338]. Moreover, it was noted that adult pancreatic

snRNA-seq datasets may lack essential cell types or states, such as multipotent pancreatic

progenitors and intermediate states crucial for modeling progression to panNEC sub-states,

which are more comprehensively captured in developing mouse scRNA-seq datasets [339].

These findings underlined the complexity of panNEC development and the need for further

exploration, such as integration of human embryonic or fetal pancreas single cell or nuclei

RNA-seq data to elucidate the precise mechanisms underlying its pathogenesis.
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7 Methods

7.1 Maternal-fetal interface and eoPE study

7.1.1 Patient recruitment

Tissue sampling was conducted within a multicenter framework. Patients were enrolled from

various locations including Berlin (Germany), Graz and Vienna (Austria), Oslo (Norway),

London (UK), and Melbourne (Australia). Approval for the studies was obtained from the

respective regional committees, with each study being individually described and

methodological details outlined. This part was performed in collaboration with Dr. Florian

Herse, Dr. Olivia Nonn and Dr. Martin Gauster, and snRNA-seq experiments at BIH

Genomics Core facility. Method described below is as per [363].

7.1.2 Sample preparation

 First-trimester (or early samples) snRNA-seq

Placental and corresponding decidual tissue were obtained from voluntarily terminated

pregnancies with the informed consent of healthy individuals (gestational age 5 – 11 weeks).

Exclusion criteria included maternal age below 18, maternal BMI exceeding 25, and self-

reported maternal pathologies. Ethical approval was granted by the Medical University of

Graz Ethics Committee (31-019 ex 18/19; 26-132 ex 13/14). Following surgical extraction,

tissue was promptly stored at 4°C in DMEM/F12 culture medium (1:1 ratio, 1 g/dL glucose,

Gibco®, Life Technologies (TM), Thermo Fisher Scientific, Vienna, Austria) and processed

within a maximum of 4 hours. The amnion was excised, and the decidua dissected. Villous

and decidual tissue were individually rinsed twice in cold (4°C) 0.9% NaCl solution to

eliminate blood, then snap-frozen in liquid nitrogen and stored at -80°C until processing.

Patient characteristics are elucidated in Extended Data Table 1.

 Healthy term tissue snRNA-seq

Samples were obtained immediately after delivery from the inpatient clinic of the Department

of Obstetrics and Gynaecology, University Hospital Graz, Austria. The study received

approval from the local Ethics Committee at the Medical University of Graz (approval

numbers: 31-019 ex 18/19; 26-132 ex 13/14), and informed consent was obtained from all
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participating women. Representative tissue samples (1x1x1 cm) were taken from the medial

third of the placenta, specifically from vital cotyledons that exhibited no macroscopic signs of

infarction or other apparent pathologies resulting from delivery. This approach aimed to

minimize the risk of sampling degraded RNA and to ensure a high-quality yield for

subsequent analysis, recognizing the potential bias towards inaccurate phenotypes in both

disease and healthy samples. The amnion was dissected, and residual tissue was rinsed

twice in cold (4°C) 0.9% NaCl solution to remove blood before being snap-frozen in liquid

nitrogen and stored at -80°C until processing. Patient characteristics are provided in

Extended Data Table 1 and Supplementary Table 1.

 Early-onset pre-eclampsia (eoPE) and healthy term pregnancies snRNA-seq

Pregnant women were enrolled at Oslo University Hospital before elective caesarean section

following informed written consent, as previously outlined, from individuals with either eoPE

or normotensive pregnancies. eoPE was defined as the onset of hypertension (blood

pressure ≥140/90 mmHg) and proteinuria (≥1+ on dipstick or ≥30 protein/creatinine ratio)

after 20 weeks of gestation but with delivery occurring before the 34th week. Placental villous

tissue biopsies were obtained from the central, visually normal appearing cotyledons, snap-

frozen in liquid nitrogen, and stored at −80°C until use. The study received approval from the

regional committee for Medical and Health Research Ethics in South-Eastern Norway and

was conducted in accordance with the principles of the Helsinki Declaration. Patient

characteristics are detailed in Extended Data Table 1 and Supplementary Table 1.

7.1.3 From Capture to Sequence: Nuclei Isolation, Library Preparation, and
Sequencing Process

Approximately 100-200 mg of frozen placental tissue and corresponding separately sampled

decidual tissue were processed using an optimized nuclei isolation protocol developed by

Krishnaswami et al. (ref. 6). In brief, the frozen tissue was disrupted using a pre-cooled glass

Dounce in homogenization buffer (1X NIM2 [1X protease inhibitor, 1 µM DDT, 250 mM

sucrose, 25 mM KCl, 5 mM MgCl2, 10 mM pH 8.0 Tris], 0.4 U/µL RNAseIn, 0.2 U/µL

Superasin, 0.1% v/v Triton X-100) and filtered through a flow cytometry tube (BD Falcon)

with a 35 µm cell sieve cap. The homogenate was incubated in the dark on ice for two

minutes with DAPI (5 µg/µL) and then centrifuged for eight minutes at 1,000xg and 4°C. The

resulting pellet was resuspended with staining buffer, transferred to a FACS tube (BD Falcon)

with a 35 µm cell sieve cap, and analyzed using the BD FACS ARIA III flow cytometer with

the BD FACSDiva software (BD Bioscience). Following FACS sorting with a cut-off at 90%
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viable single nuclei, nuclei from the landing buffer (1% BSA, 0.2 U/µL RNAseIn) were

counted using a digital counting chamber (Elvira) to achieve a concentration of 400-500

nuclei/µl and were loaded onto 10x Genomics Chromium chips. Single-index v2 and v3

libraries from 10x Genomics were prepared following the guidelines provided by the

manufacturer (Chromium Single Cell 3’ Kits v2 User Guide – CG00052, Chromium Single

Cell 3’ Kits v3.1 Dual Index User Guide – CG000315). The libraries were sequenced on an

Illumina HiSeq-4000 (paired-ended), aiming for a minimum coverage of 50,000 raw reads per

nucleus.

7.1.4 snRNA-seq data preprocessing

 Matrix pre-processing and quality control

The Cell Ranger software (versions 3.0.2, 6.0.1 & 6.1.2) from 10x Genomics was utilized to

process and identify Unique Molecular Identifiers (UMI) and extract nucleus barcodes from

demultiplexed FASTQs of raw 3’ snRNA-Seq data. Specifically, the SP014 (10X V2 library

chemistry), SP082, and SP136 batches (10X V3 library chemistry) were processed with

versions 3.0.2, 6.0.1, and 6.1.2, respectively. The transcripts were aligned to the pre-built

human reference genome GRCh38 pre-mRNA version 3.0.0, which was derived from the

precompiled GRCh38 reference and tailored for snRNA-Seq data following the protocol

provided by 10x Genomics.

The unfiltered feature-barcode matrix per sample was considered for further removal of

ambient RNA and technical artifacts. Systematic biases and empty droplets were

subsequently addressed by modeling and filtering counts to eliminate contaminated ambient

RNA reads and random barcode swapping. This process performed using the remove-

background function in CellBender v0.2.0 with model= "full," maintained a default target false

positive rate (FPR) of 0.01. The --expected-cells parameter was set to the estimated number

of cells from CellRanger. Following evaluation of the CellRanger rank-ordered UMI plot, a

threshold of 15,000 --total-droplets-included was deemed suitable for modeling ambient RNA.

For three villi samples (18-033-v, 18-098-v, and 20-027-v), --total-droplets-included was set

to the default 25,000, resulting in highly consistent numbers of cells after CellBender filtering

(16,442, 12,922, and 12,839, respectively). The number of cells per sample after CellBender

filtering and corresponding QC metrics were reported in Supplementary Table 3 and 4 for

placenta and decidua, respectively.
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Thereafter, matrices filtered for ambient RNA(s) were loaded into Python v3.7.9 and

processed using scanpy v1.8.2. Post-quantification quality control involved excluding nuclei

with fewer than 200 expressed genes or total mitochondrial transcript expression higher than

5%. Only genes expressed in more than three nuclei were included. Data quality was

assessed by plotting the number of UMIs and total number of genes per sample. After quality

control filtering, samples were log-normalized to 10,000 reads using scanpy. The resulting

number of cells and corresponding QC per sample were reported for both placenta and

decidua in Supplementary Table 3 and 4, respectively. On average, scanpy filtering removed

5.62% of nuclei after quality check for both tissue samples.

 Doublet detection

Detecting doublets using computational algorithms is a challenging task, and there is a lack

of universally effective tools for every dataset. Initially, we employed the Scrublet

scr.scrub_doublets() function to predict neotypic doublets. This function simulates doublets

using observed data and employs a k-nearest-neighbor classifier to compute a continuous

doublet score for each nucleus, ranging from 0 to 1. The overall distribution of doublet scores

did not exhibit a clear bimodal pattern, suggesting that our dataset was not systematically

influenced by potential doublets.

This observation aligned with our expectations, considering that in single "cell" isolation, a

significant portion of doublets may result from incomplete dissociation of tissue. However, in

single "nuclei" isolation, doublets can arise from nuclei sticking together or the chip being

overloaded, leading to multiple nuclei per droplet. This reduction in potential causes of

doublets should result in a decreased observed doublet rate. Nevertheless, identified

doublets were flagged using a threshold of 0.35 based on the doublet score histogram and

were cautiously retained for downstream analysis instead of immediate filtration.

The decision to retain these flagged doublets was motivated by the understanding that

droplets appearing to harbor doublets could arise from various factors, such as cellular

differentiation or insufficient sequencing. By including them in the analysis, potential doublets

could be more comprehensively interpreted in the context of marker expression. Subsequent

to cell typing, the doublet analysis was re-evaluated, considering contradictory marker genes

that characterize ambiguous cells. The findings were further discussed in the "Evaluation of

biological doublets" section.
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7.1.5 snRNA-seq data harmonization and clustering

 Harmonization of data, clustering, and cell annotations for placental analysis

In the context of placenta samples, data harmonization, clustering, and cell annotations were

conducted as follows:

Initially, 6,000 highly variable genes were computed using the scanpy's

highly_variable_genes function, employing the dispersion-based method (flavor='seurat_v3')

with default parameters. The donor identifier served as the key batch to minimize the

selection of batch-specific genes. Subsequently, a Bayesian variational inference model,

scVI v0.14.5, was utilized for sample integration. The scvi.model.SCVI and

get_latent_representation functions in scVI were employed to infer a shared latent space of

15 dimensions for all placental single nuclei. The model specifications included 128 nodes

per hidden layer, 2 hidden layers for both encoder and decoder in variational inference, and

a 0.1 drop-out rate. Gene expression was modeled using a zero-inflated negative binomial

distribution (ZINB). To account for technical variation in cell typing, additional categorical

covariates (10X library chemistry, procurement center of samples, gestational week) and

continuous covariates (total counts, total number of genes with at least one positive count,

percentage of mitochondrial expression, percentage of XIST expression per nucleus) were

incorporated.

The K-nearest neighbor graph was computed on the scVI inferred latent space using the

pp.neighbors function in scanpy with k = 15 and default parameters. For dimensionality

reduction to 2D, Uniform Manifold Approximation and Projection (UMAP) from the umap-

learn v0.5.2 implementation in Python was employed, with 500 iterations for improved

convergence and a random state of 0 for reproducibility.

Cell-typing (annotations) began with the control placenta samples (both early and late

gestation), relying on robust and specific expression of marker genes. Unsupervised

clustering using the Leiden community algorithm in scanpy (with an initial resolution limit of 2)

was followed by annotation using marker genes from literature and top signatures obtained

from Seurat’s FindAllMarkers Logistic Regression (LR) method and Empirical Bayes method

by the model.differential_expression function in scVI. Clusters that did not exhibit robust or

specific biological markers were consolidated. Subsequently, a LR classifier model in

Celltypist v0.2.09, optimized by the stochastic gradient descent algorithm, was trained based

on control cluster labels and used to predict cell annotations in diseased (eoPE) samples.
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The confidence score of the inferred annotation per cell was reported, and a confusion matrix

was utilized for performance evaluation.

Misclassified nuclei were excluded based on specific criteria, including the removal of

fibroblast and erythroblast subpopulations and the exclusion of nuclei tightly clustering with

vCTBp but also expressing high vSTB/dEVT markers. Internal validation of cluster

phenotypes was conducted using module scores computed with known marker lists. Finally,

clusters assigned to a phenotype were evaluated using robust and specific marker genes, as

detailed in the Differential Expression Analysis section, and illustrated in Figure 3.5 &

Supplementary Table 7.

 Harmonization of data, clustering, and cell annotations for decidua analysis

Similar to the approach taken for placenta, the identification of the top 6,000 highly variable

genes in decidua involved utilizing scanpy's highly_variable_genes function with donor_id as

the batch key. Initially, cell typing was conducted on the 10X V2 samples, which were

sequenced earlier, through the annotation of unsupervised Leiden clusters based on robust

and specific marker expression. A shared latent space of 10 dimensions was inferred using

the get_latent_representation function in scVI, maintaining the parameters previously

employed for placenta. Markers were derived from literature and top signatures obtained

from the Bayes-method scVI model's differential_expression function and Seurat's

FindAllMarkers() Logistic Regression method. Clusters uniquely mapped to a donor were

excluded for comparative cell typing. Subsequently, cell labels were transferred to the 10X

V3 samples using scANVI10.

Concurrently, an LR classifier model from Celltypist was trained using annotated cluster

labels to predict cell annotations in 10X V3 samples. A confusion matrix was utilized to

evaluate the performance of the CellTypist classifier and scANVI (predicted labels). Final

decisions for each cluster were made after inspecting them using biological markers

knowledge.

One cluster, initially annotated as stromal due to its proximity to the DSC1/2 and consisting

of 2911 nuclei, was later excluded due to the expression of conflicting markers such as

NOTUM, HPGD, and HLA-G (indicating EVT lineage) and certain macrophage genes,

making classification challenging. The CellTypist LR classifier assigned a very low

confidence score (~0), suggesting likely contamination. Another cluster (initially considered

as NKT cells; 1119 nuclei) was removed due to high macrophage gene expression. The cell
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type/state annotations of decidua were ultimately presented using a set of robust and specific

marker genes, as depicted in Figure 3.4 and Supplementary Table 7.

The resulting number of cells and corresponding QC metrics (total UMI counts and the

number of genes expressing at least one positive count per nucleus) for each placenta and

decidua sample were documented in Supplementary Table 10 and 11, respectively. A total of

5.31% additional nuclei were removed after filtering out donor-specific and ambiguous

clusters in both tissues. The final UMAP embedding illustrating cellular hierarchies for

decidua and villi is shown in Figure 3.3a & b. Importantly, cell type/state level QC was also

evaluated, as presented in Extended Data Figure 1e, f and Supplementary Table 5.

7.1.6 Assessment of clustering robustness

 Evaluation of biological doublets

Scrublet predictions of neotypic doublets in the placenta exhibited a bias towards vSTB1.

Among the total 2443 identified doublets, Scrublet predicted 1656, 136, and 50 doublets for

vSTB1, vSTB2, and vSTBjuv cell states, respectively, accounting for 2.8%, 1.02%, and

1.90% of their respective populations. These predicted doublets were subjected to further

investigation. Specifically, for each cluster, marker gene expression was scrutinized,

distinguishing between predicted doublets and singlets. This analysis aimed to ascertain

whether cross-contamination of marker genes occurred between predicted doublets and non-

doublets for the vSTB states, as illustrated in Extended Data Figure 2. The examination

revealed that no doublet-centric clusters were identified, and there was no evidence of

conflicting marker expression leading to confusion with other cell types/states.

 LDA analysis

To ensure the accurate annotation of cell types/states, amortized Latent Dirichlet Allocation

(LDA) implemented within scVI was employed to derive topic profiles for both placental and

decidual tissues. In essence, each distinct cell type/state was expected to correspond to a

unique topic. Subclusters, while sharing topics with the parent cluster, typically exhibited

additional unique topics. For instance, dNK1 and dNK2 shared certain topics but also

possessed distinct ones. This modeling strategy was not only effective for identifying unique

cell types/states but could also be utilized to detect potential doublets in cases where cells

demonstrated conflicting topics, often attributed to opposing lineage markers. This
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methodology aligns with marker-based approaches utilized in other single-cell studies

focusing on placenta and decidua.

The LDA was executed at various stages, initially employing the number of Leiden clusters

equal to the number of topics and ultimately extending to the number of final cell type labels.

This approach aimed to assess whether the learned topics predominantly influenced cells

located in close proximity in the UMAP space. When a topic proved dominant in multiple

clusters on the UMAP, it indicated a similarity between clusters despite their spatial

separation in the embedding. This occurrence suggested that local relationships were not

preserved beyond a specific threshold. By confirming that problematic clusters did not map to

unique or known topics, they were subsequently excluded from all downstream analyses.

Additionally, this process served as a quality check for the UMAP embedding, and a

breakdown of LDA topics is visualized in Extended Data Figure 3.

7.1.7 Biological validation of cell types/states

 Detection of syncytiotrophoblast sub-clusters

For the first time, a substantial heterogeneity was observed within the vSTB group using

snRNA-seq based approach. Notably, a distinct state, termed juvenile STB, was identified.

This state is characterized by the expression of paternally imprinted DLK1, a regulator of cell

growth and differentiation, along with SPARC, TMSB10, and ACTB, suggesting an

association with extracellular matrix remodeling and the promotion of changes to cell shape.

Intriguingly, the juvenile nuclei exhibited robust expression of the secretory phenotype,

characterized by several PSGs and maternally imprinted TFPI2. Simultaneously, they

displayed a classical STB-like profile, marked by the expression of CGA, CYP19A1, KISS1,

ADAM12, SDC1, and others. Consequently, this unique state was classified under the vSTB

group.

 Other placenta cell types/states

vCTBp was recognized as the trophoblast progenitor due to their active cycling, evidenced

by the expression of genes such as MKI67, TOP2A, STMN1, and CENPK/CENPE. Notably,

these cells exhibited robust expression of YAP1, TEAD1, TP63, CCNA2, and ITGA6, all well-

known for their roles in the progenitor cell phenotype. On the other hand, vCTBpf primarily

displayed a fusogenic profile and was characterized by specific markers including GREM2,
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ERVFRD-1, ERVV-1/2, OTUB2, and DYSF. Placental F13A1+/FGF13+ resident

macrophages, also known as Hofbauer cells (vHBC), uniquely expressed the hyaluronan

receptor LYVE1 in this immune cell subset, suggesting a role in maintaining arterial tone and

possessing pro-angiogenic functions. Additionally, we identified antigen-presenting HLA-

DRA+ placenta-associated maternal monocytes/macrophages (vPAMM), which were villi-

associated and of extra-embryonic or maternal origin. A cycling population of vHBC (vHBCp)

was identified, characterized by traditional HBC genes and the expression of proliferative

genes such as MKI67 and TOP2A. Villi myocytes (vMC) were distinguished by their AGTR1

expression. Other cell types were mapped based on well-known marker genes (refer to

Supplementary Table 7). Appropriate references for markers and associated cell types/states

were provided in the text.

7.1.8 Differential expression analysis for inferring cell type/state markers

Cell-type marker analyses were conducted for both decidua and placenta using a

multivariate logistic regression (LR) generalized linear model, implemented in Seurat's

FindAllMarkers(). Internal validation was further performed using the empirical Bayes method

within the scVI model differential expression function.

In the LR analysis, the number of unique molecular identifiers (UMI), the number of genes,

and the percentage of mitochondrial transcripts per nucleus were utilized as continuous

covariates. Additionally, categorical covariates such as ~disease (indicating whether a

nucleus is from a control or eoPE sample) and library type (10X V2 or V3 chemistry) were

incorporated to minimize the effects of eoPE and library variations. Only genes exhibiting a

log-fold change cut-off of 0.25 and expressed in at least 25% of cells within each cluster

were considered as significant cell markers. An adjusted p-value cut-off of 0.05 was set

following Bonferroni correction for multiple testing of states.

7.1.9 Integration of publicly available placenta scRNA-seq data with our
snRNA-seq data

The 10X single-cell RNA sequencing (scRNA-seq) data from Pique-Regi et al. 2019 [353]

were harmonized with our own 10X single-nucleus RNA sequencing (snRNA-seq) data to

pinpoint differentially expressed preterm gene sets per cell type/state. These gene sets were
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subsequently employed to correct for gestational age or preterm effects in the analysis

comparing early-onset preeclampsia (eoPE) vs term controls.

Data integration was carried out solely on relevant samples: eoPE and late term control

samples from this study and preterm and term samples from the Pique-Regi study,

separately for villi and decidua samples. Due to the absence of pre-processed count

matrices from the Pique-Regi study, raw FASTQ data were obtained from dbGaP accession

phs001886.v4.p1, and feature-barcode count matrices were generated using CellRanger

6.1.2. The results exhibited high concordance with a mean difference of only 43.9 cells

compared to the original study, all with highly similar unique molecular identifier (UMI) and

gene counts (refer to Supplementary Table 8). Subsequently, data harmonization and label

transfer were performed using scVI/scANVI, based on Bayesian variational inference. The

donor_id (each sample) served as the batch key, and additional categorical covariates

(dataset: scRNA-seq vs snRNA-seq, 10X library chemistry: 10X V2 vs 10X V3, procurement

center of samples: Oslo, Graz & Detroit, condition: preterm vs term, fetal sex) and continuous

covariates (total counts, total number of genes with at least one positive count, percentage of

mitochondrial expression, XIST counts per nucleus) were included to minimize the influence

of batches and technical variation in cell typing. Projection of cells into UMAP embeddings

revealed effective batch mixing for conserved cell types/states, such as vCTB, as depicted in

Figure 2.19. Integration was evaluated using adjusted rand index (ARI), adjusted mutual

information (AMI), and cell-type-specific absolute silhouette width (ASW) per batch.

Specifically, ARI and AMI were 0.051 and 0.118, respectively, indicating good integration for

the placental clusters (refer to Supplementary Table 09). Mean ASW (scaled between 0-1,

where 1 signifies perfect integration) per donor was 0.803, with fairly high scores per cell

type (Supplementary Table 9). For the decidua, the ARI and AMI were 0.03 and 0.12,

respectively; mean ASW per donor was 0.826, indicating appropriate integration

(Supplementary Table 9). After data integration, differential gene expression analysis was

conducted while accounting for batch effects. For two cell-state/class populations of interest

(preterm vs term controls), differentially expressed genes were identified using

scvi.model.SCVI.differential_expression() in the 'change' DE mode and adjusted for

covariates specified during integration. The list was filtered using false discovery rate (FDR)

< 0.05 and Bayes factor > 3. Term controls for each cluster were downsampled to match the

cell numbers in preterm controls to avoid composition-specific effects. Subsequently, unique

preterm genes for each conserved cell type/state were identified and reported in

Supplementary Table 10. Preterm genes were not identified in vFB, vMC, and vVEC cell

groups due to extreme sparsity in preterm control groups. For the decidua, the dNK1/2 and

dMAC1/2 subclusters were merged into dNK and dMAC classes for preterm gene calculation.
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Preterm genes were not identified for dVEC, dLEC, and dLECp owing to sparsity of these

populations in the preterm control group. The preterm genes for both placenta and decidua

cell types/states were reported in Supplementary Table 10. After identifying preterm genes,

a preterm score per cell type/state was computed, and ultimately, eoPE-associated genes

were identified as described below.

7.1.10 Differential analysis of eoPE disease markers and gestational age
correction

To identify differentially expressed genes associated with eoPE compared to late controls

within specific cell types/states, the logistic regression (LR) framework was employed,

utilizing Seurat's FindMarkers function. Continuous covariates, including the number of

unique molecular identifiers (UMI), gene counts, percentage of mitochondrial transcripts, and

percentage of sex-specific transcripts per nucleus, were incorporated into the LR model. Of

particular significance, a cell type/state-specific preterm score was computed using the

significant genes differentiating preterm vs term groups (determined through a microarray

approach for vSTB groups and scVI-integrated Pique-Regi et al. data for other cell

types/states, as detailed in the previous section). This preterm score served as a continuous

covariate in the LR model, explicitly designed to mitigate pronounced preterm-specific effects

in the analysis, considering the earlier onset of eoPE by 6-8 weeks prior to healthy term.

Genes with a log2 fold-change cut-off of 0.25 and expressed in at least 10% of cells within

each group were deemed significant, based on an adjusted p-value < 0.05 (Bonferroni

corrected). Both up- and down-regulated genes were determined. Notably, no significant

compositional shifts were observed in cell types/states associated with eoPE relative to term

controls, except for vHBC. Therefore, down-sampling was exclusively performed for vHBC.

For certain cell types, such as vCCT, dEVT, vCTBp, vCTBpf, dDSTB, dPC, and dBcells, no

analysis was conducted due to extreme sparsity in the eoPE group. It's worth mentioning that

none of our samples exhibited confounding effects from major co-occurring diseases.

7.1.11 Reconstruction of developmental trajectories and pseudotime analysis

To deduce the cluster and lineage relationships among various trophoblast cell types/states,

STREAM v1.1 (https://github.com/pinellolab/STREAM) and diffusion pseudotime were

employed. The trajectory inference focused on early controls of trophoblast cell types,
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including vCTBp (progenitor), vCTB, vCTBpf, vSTBjuv, vSTB1/2 and vCCT, considering the

notable discrepancy in the late term controls' cell-type composition. Initially, scVI-harmonized

control data were subsetted for the relevant cell types to learn the trajectory principal graph

using STREAM 1.1. Utilizing previously computed latent variables, cells were clustered in the

reduced UMAP space to recover the main and possibly finer structures of trophoblast

differentiation. The principal graph was then inferred on the manifold learned from the

dimension_reduction function, using the first six components. K-means clustering facilitated

initial graph seeding through seed_elastic_principal_graph(). The resulting elastic principal

graphs, structured data approximators, featured each cell as a vertex interconnected by

edges. The graph's inference relied on a greedy optimization procedure, constructing a

minimum spanning tree (MST) using Kruskal’s algorithm. No branch pruning or shifting of

nodes was performed to obtain the optimal principal graph.

Subsequently, transition and leaf markers were computed for all lineage paths (vSTB, vCTB,

and vCCT), considering MKI67-positive vCTBp as the root node (start of the pseudotime).

Transition genes, dynamic in nature, were calculated based on the fold change in the

average gene expression of the first 20% and the last 80% of cells along an individual branch,

considering the inferred pseudotime. For genes with a log2 fold change cut-off of 0.20,

Spearman’s rank correlation was calculated between pseudotime and gene expression along

individual branches. Genes surpassing a predetermined correlation threshold (set at =0.35)

were identified as transition genes. For leaf gene detection, z-scores of all leaf branches

were calculated based on average normalized gene expressions. Kruskal–Wallis H-test

followed by a post-hoc pairwise Conover’s test was used for multiple comparisons, with a z-

score cut-off of 1 and a p-value cut-off of 0.01. Highly robust cell fate markers along the

pseudotime provided validation for trajectories (refer to Figures 2.14 & 2.15 for vCCT and

Figure 2.17 & 2.18 for vSTB lineages). The lists of leaf and transition genes are provided in

Supplementary Table 16. To further evaluate lineage relationships and global transcriptomic

similarity among different trophoblast cell types, diffusion pseudotime analysis (Haghvardi et

al., 2016) was performed. This analysis orders cells based on their transcriptomic similarity in

a Markovian space, considering each cell as represented by a Gaussian wave function.

Diffusion distances were based on a robust connectivity measure between cells estimated

over all possible paths of a certain length between the cells. The eigenfunctions of the

Markovian transition probability matrix, referred to as diffusion components (DC1 and DC2),

were used to create a low-dimensional representation and visualize trophoblast data

(Extended Figure 4). Additionally, a force-directed graph based on the Fruchterman-Reingold

algorithm was presented (Extended Figure 4).
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7.1.12 Receptor-Ligand Interaction Analysis

 Choice of Databases

The choice of the database significantly influences the outcomes of Receptor-Ligand (R-L)

interaction studies. We utilized two widely recognized databases, CellChatDB and

FANTOM5, enabling the identification of established interactions, such as MIF-

ACKR3/CXCR7 and INHBA-ENG/END, exclusive to CellChatDB and FANTOM5,

respectively.

 Differential Analysis of Receptor-Ligand Interactions between eoPE and term
Controls

Differential analysis of ligand-receptor interactions was conducted using Connectome v1.0.1,

specifically employing the differential connectomics pipeline. In the context of the maternal-

fetal interface, the approach involved using secretory ligands exclusively for vSTB groups.

These ligands, practical in crossing the maternal-fetal barrier and interacting with maternal

blood in the decidua, were selected. Ligands that showed significant upregulation in eoPE

compared to term controls, with a log2 fold change cut-off of 0.25 and detected in at least

10% of diseased cells, were included in the analysis. Assuming that an activated ligand

would bind to a receptor, Multivariate Logistic Regression was employed for differential

calculation, maintaining consistency with the previously described Differentially Expressed

Genes (DEG) test and accounting for covariates. The resulting figure was visualized in

Figure 2.27b.

For within-tissue interaction mapping (decidua and villi interaction) involving immune and

endothelial cell types, LR and Connectome were applied. For both upregulated and

downregulated differential candidates, a log2 fold change cut-off of 0.25 and

ligands/receptors detected in at least 10% of diseased cells were taken into account. The p-

value was adjusted for covariates, as outlined in the eoPE vs late term DEG analysis.

Visualization was achieved through circos plots.

 Analysis of Receptor-Ligand Interactions in eoPE

The analysis focused on decidual Syncytiotrophoblasts (dDSTB) and Extravillous

Trophoblasts (dEVT) ligands in conjunction with maternal Vascular Endothelial Cells (VEC)

and decidual Smooth Muscle Cells (dSMC) specifically within eoPE samples. Interactions



Methods

228

were derived using Connectome, utilizing both FANTOM5 and CellChatDB databases. A

minimum cell count per identification was set at 75, and Diagnostic Odds Ratio (DOR) was

calculated for each interaction pair, with a high DOR indicating high specificity and sensitivity

along with a low rate of false positives and false negatives.

For dDSTB interactions, the interaction list was refined based on sender and receiver

percentages, ligand expression values as well as DOR.source. Stringent criteria were

applied to ensure specificity and sensitivity (Figure 2.27a). In interactions with dEVT, rigorous

criteria, including DOR.source, edge strength, and minimum percentage of ligand-expressing

source, were used to ensure cell-specific communication. The resulting Receptor-Ligand

figure is provided in Extended Data Figure 8.

 Validation of Key Receptor-Ligand Interactions through Computational
Methods

All Connectome results were cross-checked using SingleCellSignalR for interactions

involving vSTB, dDSTB, and dEVT. Subsequently, additional tools (NATMI, logFC Mean,

CellphoneDB, CellChat) within the LIANA framework were employed to recapitulate all R-L

interactions across multiple databases.

7.1.13 Spatial transcriptomics using 10X Visium

Kerim Secener is duly acknowledged for performing the 10X Visium sample preparation and

helping me with data analysis. Visium method is as per [363].

 Sample preparation

The initial trimester tissue was obtained as detailed previously, dissected under a

stereomicroscope, and promptly frozen by immersion in isopentane within a liquid nitrogen

bath. To mitigate potential large batch effects, numerous sections of placental tissue were

incorporated into a 6.5x6.5 mm cryo-mould utilizing OTC cryo-embedding medium

(TissueTek). Subsequently, the samples were stored at -80°C overnight and cryo-sectioned

at -20°C. To assess the morphological integrity of the embedded tissues, standard H&E

staining was conducted. The resulting 10 µm cryo-sections were then transferred onto spatial

transcriptomics slides (Visium, 10x Genomics) and positioned within a single tissue

optimization and gene expression slide capture area.
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 10X Visium data sequencing

After establishing an optimal permeabilization duration of 18 minutes in accordance with the

tissue optimization protocol (10x Genomics – CG000238 Rev A), the gene expression

experiment was conducted following the manufacturer's user guide (10x Genomics –

CG000239 Rev A). The acquired images were then scanned using the Slide Scanner

Pannoramic MIDI (3DHISTECH) with the objective plan-apochromat 20×/0.8× (Zeiss).

Following this, the dual-indexed Visium library was loaded at a concentration of 200 pM and

underwent sequencing on a HiSeq-4000 (Illumina) with the specified configuration: 28-10-10-

90. Please refer to the sequencing requirements for Visium Spatial Gene Expression (refer to

https://support.10x_genomics.com/spatial-gene-expression/sequencing/doc/specifications-

sequencing-requirements-for-visium-spatial-gene-expression).

 Spaceranger count matrix generation

The base call (BCL) files obtained from the Illumina run to FASTQ reads were converted

using bcl2fastq (Illumina). Afterwards, the reads were aligned to the human reference

dataset GRCh38 (build 2020-A; refdata-gex-GRCh38-2020-A) using the spaceranger count

pipeline (Space Ranger v1.1.0), incorporating automatic fiducial alignment and tissue

detection. A total of 1,387 spots were identified within the tissue, yielding an average of

201,176 reads and 3,561 median genes per spot.

● Data processing of Spaceranger count matrix

This step involved reading the 10x output folder using the Load10X_Spatial function

implemented in Seurat (v3). The object was then normalized with the SCTransform function.

Principal Component Analysis (PCA) was performed using RunPCA, computing 50 principal

components and selecting the first 20 for identifying the k-nearest neighbors of each spot

with the FindNeighbors function. Subsequently, clustering was carried out using FindClusters

with a resolution of 0.2.

 Visium data deconvolution using NMF/NNLS

Spotlight-based deconvolution of the Visium data was accomplished by generating a

spotlight object using the spotlight_deconvolution function in SPOTlight (Version 0.1.7), with

the early villi subset (from the placental single-nuclei data) serving as the reference. The

marker table for the nuclei clusters, initially generated based on the Logistic Regression

method implemented in Seurat as discussed earlier, was then filtered to obtain the most

https://support.10x_genomics.com/spatial-gene-expression/sequencing/doc/specifications-sequencing-requirements-for-visium-spatial-gene-expression
https://support.10x_genomics.com/spatial-gene-expression/sequencing/doc/specifications-sequencing-requirements-for-visium-spatial-gene-expression
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representative topic profile for each cell type in the dataset. Non-negative matrix factorization

(NMF - nsNMF) regression, as well as Non-negative Least Squares (NNLS) regression, were

employed for deconvolution in SPOTlight. Spots contributing to less than 1% of the spot

composition were excluded (min_cont = 0.01). The deconvoluted spots were assessed by

examining the topic profiles of the cell type (Extended Data Figure 1f) and the characteristics

of individual topics within a cell type.

7.1.14 In-situ sequencing (ISS)

Dr. Katja Sallinger and Sebastian Tiesmeyer are duly acknowledged for performing ISS

experiments (library preparation, imaging, hybridization & sequencing) and extensive data

analysis respectively. The method summarized here is according to [363].

 Library preparation

Fresh tissue samples from early villi were subjected to formalin-fixed paraffin-embedding

(FFPE) processing and stored at +4°C. A customized gene panel was employed to identify

specific genes associated with cell types and pathways of interest. The in-situ sequencing

method was conducted following the manufacturer's instructions (Cartana, a part of 10x

Genomics). Tissue sections of 5 µm thickness were baked at 60°C for one hour,

deparaffinized in xylene, rehydrated in 100% and 70% ethanol, and permeabilized using

citrate buffer (pH 6) for 45 minutes at >95°C in a steamer. The sections were then

dehydrated in an ethanol series from 70% to 100% and air-dried using Secure Seal (Grace

Biolabs, Bend, United States). Gene-specific chimeric padlock probes were introduced,

directly hybridized to the RNA at 37°C in an RNAse-free humid chamber overnight and

ligated at 37°C for 2 hours. The circular oligonucleotide structures (padlocks) derived from

ligation were amplified overnight at 30°C. To minimize RNA degradation during tissue

processing, 0.1% v/v diethyl pyrocarbonate (DEPC) was added to all buffers and reagents

not provided by the manufacturer.

 Imaging

Imaging was conducted using a digital slide scanner (Olympus SLIDEVIEW VS200)

connected to an external LED source (Excelitas Technologies, X-Cite Xylis). Fluorescence

filter cubes and wheels were outfitted with a pentafilter (AHF) featuring excitation ranges of

352-404 nm, 460-488 nm, 542-566 nm, 626-644 nm, and 721-749 nm, and emission ranges

of 416-452 nm, 500-530 nm, 579-611 nm, 665-705 nm, and 767-849 nm. Additionally, single
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cube filters (Kromnigon) including SpectraSplit 440, SpectraSplit 488, SpectraSplit Cy3, and

SpectraSplit 594 were utilized. Images were captured using an sCMOS camera (2304 ×

2304, ORCA-Fusion C14440-20UP, 16 bit, Hamamatsu) and an Olympus Universal-

Plansuperapochromat 40× objective (0.95 NA/air, UPLXAPO40X). To prevent signal

crosstalk, the pentafilter was utilized to capture DAPI, Cy5, and AF750 signals, while single

cubes were used for AF488 and Cy3 signals. The imaged regions were recorded to facilitate

repetitive cycle imaging. After imaging, the labeling mix was removed from each slide by

adding three rounds of 100% formamide for 1 minute, followed by a washing step.

 ISS Hybridization and Sequencing processes

The ISS steps were iterated six times using six distinct adapter probe pools, each subjected

to imaging in five channels (DAPI, FITC, Cy3, Cy5, AF750). Following the removal of adapter

probes, hybridization of adapter probes was performed at 37°C for 1 hour in an RNAse-free

humid chamber. The sections were then washed, and sequencing probes were allowed to

hybridize at 37°C for 30 minutes in an RNAse-free humid chamber. After washing, the

sections underwent dehydration in an ethanol series, air-drying, and were finally mounted

with SlowFade Gold Antifade Mountant (Thermo Fisher Scientific). Library preparation

protocols were fine-tuned for placental tissue using high (MALAT1) and low (RPLP0) control

probes before the implementation of the final probe panels. To account for autofluorescence,

a background without any adapter probe pool was imaged in six channels for subtraction.

 Spot calling analyses

The imaging data were analyzed using a custom pipeline provided by CARTANA, which

manages image processing and gene calling. All code was developed in MATLAB, and an

additional CellProfiler pipeline (v.2.1.1) was employed, incorporating the ImageJ plugins

MultiStackReg, StackReg, and TurboReg as previously detailed. In summary, TIFF images

from all sequencing cycles were aligned to the general stain of library preparation and

segmented into smaller images. The median intensity of all RCP signals for each channel

was computed using another CellProfiler pipeline (v.4.0.7). This value was utilized to

normalize RCP signal intensities for each channel to a pixel intensity of 10,000. The

multiplication factor value acquired for each channel was incorporated into the CellProfiler

pipeline, and background subtraction was performed for each sequencing cycle to minimize

tissue autofluorescence. A pseudo-anchor was created for each cycle by combining the four

readout detection probe channels into a merged image. This pseudo-anchor aided in a more

accurate secondary alignment. Reusable counting particles (RCPs) from the labeling mix
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were identified, and their x and y coordinates were recorded along with the measured

fluorescence intensities. The maximum intensity value in each sequencing cycle was

designated as a positive event and utilized for decoding in MATLAB. To visualize the signals,

the selected transcripts were plotted onto an image stained with DAPI.

 ISS data handling

The management of in situ sequencing data was executed using the plankton.py v0.1.0

package (https://github.com/HiDiHlabs/planktonpy; acknowledgement: Sebastian Tiesmeyer)

using Python 3.10.4. In the comprehensive analysis procedure, the ISS data was presented

as decoded spots with x and y coordinates of all identified mRNA molecules, each paired

with an associated gene label. A total of three in situ sequencing slide scans were examined

(106KS, 107KS, 156KS). The 156KS (early control) slide included genes from the custom

placenta/cell typing panel designed to identify cell and tissue types. Both the 106KS (late

control) and 107KS (eoPE) slides comprised genes from the custom/pathway panel, which

was tailored to analyze cell state and metabolic activity. The cell typing sample was collected

during the early stage of pregnancy. To visualize the detected mRNA molecules in their

histological context, matching DAPI stains of each sample slide were pre-processed. This

involved transforming them to grayscale, normalizing the color values between 0 and 1, and

enhancing the low-exposure areas by raising all values to the power of 0.4.

 Cell type specific markers in the placenta panel

The analysis of placenta cell typing data aimed to provide context to the major cell types

identified through snRNA-Seq analysis. Genes from the cell typing panel were considered as

markers for specific cell types, particularly vCTB, vSTB, and vHBC. These cell types were

chosen for further spatial analysis and plotting due to their robust marker coverage and their

significance as spatial landmarks in villi anatomy, where vSTB(s) and vCTB(s) form the

layered walls, and vHBC(s) constitute distinct, compact cells in the intra-villous matrix.

To quantify the affinity of each gene to a specific cell type, a gene-cell-type affinity measure

was derived from the molecule counts in the snRNA-Seq dataset for vCTB, vSTB, and vHBC.

This was achieved by contrasting molecule counts in cells belonging to a specific cell type

against an opposing set of cells, utilizing the score_affinity() implemented in plankton.py

framework. For each analysis, three distinct sets of cell types were delineated as follows: (i)

vCTB(s) vs. vSTB(s) for vCTB(s); (ii) vSTB(s) vs. vCTB(s) for vSTB(s); and (iii) vHBC(s) vs.

all other clusters for vHBC(s). To ascertain definitive cell type markers, vCTB(s) and vSTB(s)

https://github.com/HiDiHlabs/planktonpy
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were compared against each other to eliminate potential shared trophoblast marker genes.

The mean molecule counts of each gene in the two contrastive cell type sets were calculated,

and the logarithm of the ratio of these mean count indicators served as a score for a gene's

affinity to a specific cell type. A threshold of 0.5 was applied to assign color labels to each

gene in both analyses for visual clarity during plotting. Genes exceeding this affinity score

threshold were identified as markers for CTBs (ASPM, ATAD2, BRIP1, CD24, CDH1,

CENPE, DIAPH3, FBN2, KANK1, SEMA6D, TIMP3), STBs (ADAMTS20, CGA, CYP19A1,

ENTPD1, KISS1, KLRD1, LEP, LINC00474, PAPPA2, PLAC4, PLXDC2), and HBCs

(CD163L1, CD36, F13A1, FGF13, LYVE1, MEF2C, SPP1), while the remaining genes were

categorized as 'other.'

 Spatial analysis of mRNA molecules

Utilizing the plankton.py's run_umap function, we constructed a weighted neighborhood

graph based on the 800 nearest neighbors of each molecule. The neighbors were weighted

using a Gaussian probability density function (PDF) with a bandwidth of 9 µm, approximately

covering the area of a single cell and its immediate environment. Subsequently, we

generated a model of the local mRNA distribution for all genes by summing the weights of

each gene's molecules. To introduce regularization, each distribution's value for the gene of

its molecule of origin was increased by 1.15. A 2D embedding that reflects recurring spatial

context was obtained by applying the umap-learn v0.5.3 (python implementation of umap

algorithm) to the local distributions. The UMAP algorithm was configured with 24 neighbors,

a minimal distance of 0.2 between points in the embedded representation, and a Euclidean

distance metric. The algorithm was initiated with a random state of 42. The resulting gene-

cell type associations were utilized to create a cell type visualization plot for the early

placenta sample 156KS. All molecules were depicted as a scatter plot overlaid on the

greyscale renderings of the DAPI stain. Molecules with a cell type association affinity score

exceeding 0.5 were colored accordingly, while the remaining molecules were rendered in

grey.

 Detection of villi wall

After establishing the credibility of spatial information in our in-situ sequencing data through

cell-typing analysis, our experimental strategy necessitated a subsequent comparative

examination of pathways between a late control and an eoPE sample. The pathway

categories chosen for this subsequent experiment included (genes IDO2, TEK, CDH5, KDR,

ZEB1), senescence (genes INHBA, MMP11), and trophoblasts (genes LGR5, MET, FGFR2).

Spatial analysis was confined to the densely populated and well-structured villi walls in both
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samples, representing the most organized part of the tissue. Identification of villi walls

involved employing a basic edge detection algorithm on the corresponding DAPI signal. Villi

walls were distinctly marked by dense nucleation. A greyscale rendering of the DAPI stain

underwent smoothing with an optical Gaussian filter with a 2 µm bandwidth. The villi walls

were extracted using Scikit-image's (v0.19.2) feature.canny() implementation of the canny

edge detection algorithm (sigma value of 3.7) on the smoothed image. Molecules within a 5

µm radius of any point on the detected edges were considered part of the villi walls, while

others were excluded from further analysis. The wall filter algorithm was visualized by

plotting the underlying DAPI stain in matplotlib's violet-blue 'magma' color scheme. The

identified edges from the second step of the wall filter algorithm were superimposed on the

stain as orange lines. In the bottom-right half of the plot, the existing mRNA molecules were

plotted, with colors indicating their classification as wall or not-wall members.

 Spatial localization of vascular and senescence markers

To visualize the spatial relationship between senescence and vascularization, all 'wall'

molecules were plotted on a black-and-white rendering of the DAPI stain, color-coded based

on their gene assignments for 'vascularization' (red) and 'senescence' (yellow), while other

molecules were represented in white. A visual examination of the dispersed senescence and

vascularization markers suggested that the topography of senescence markers exhibited

more structure in the control sample compared to the eoPE sample, with reduced

senescence marker expression around vascularization clusters in the tissue.

To statistically assess this observation, villi wall molecules were categorized into two groups

based on their expression locations: (i) a vessel-proximal category containing molecules

within regions of 5 µm of another vessel marker; and (ii) a vessel-distal category containing

the remaining molecules. A null hypothesis was formulated, positing that the gene

distributions should be equal within the two categories. The p-value indicating the deviation

from this null hypothesis was determined for each gene using a binomial test. Scipy's (v1.8.1)

stats.binom.cdf() function was utilized, with parameters 'p' defined as the overall percentage

of 'proximal' molecules, 'k' representing the gene-specific count of proximal molecules, and

'n' indicating the total count of molecules of the respective gene in the sample. The sorted p-

values for all genes in the pathway sample were presented in a vertical bar graph, with bars

colored according to their membership in the categories 'senescence,' 'vascularization,'

'trophoblast,' or 'other' (Figure 3.28). The p-values for senescence, vascularization, and a

control category of 'trophoblasts' were extracted and plotted per sample as scatters on a

vertical line. The scatters for both samples were juxtaposed for visual comparison (Figure
3.28).
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7.1.15 Immunohistochemistry (IHC)

Placenta tissue sections fixed in formalin and embedded in paraffin (FFPE) underwent

deparaffinization using standard procedures. Antigen retrieval (AGR) was carried out in

citrate buffer at pH 6 for 40 minutes using a microwave oven. Following a wash with TBS/T,

sections were treated with Hydrogen Peroxide Block (Epredia, Netherlands) to neutralize

endogenous peroxidase, and subsequently blocked with UltraVision Protein Block (Epredia).

Primary antibodies were appropriately diluted in antibody diluent and applied to the sections

for 45 minutes at room temperature. After washing with TBS/T, the UltraVision LP HRP

Polymer Detection System (Epredia) was employed as per the manufacturer's instructions.

The polymer complex was visualized using AEC (AEC substrate kit, Abcam, UK), and the

sections were counterstained with hematoxylin before being mounted with Kaisers glycerin

gelatine (Merck, Germany). Scanning of the slides was performed using an Olympus VS200

slide scanner. Prof. Berthold Huppertz and Lena Neuper are duly acknowledged for providing

IHC validations for dDSTB sub-state.

Target Clone Species Dilution Company (cat.#)

GDF15 - rabbit
1:1000 (1st Trim)

1:250 (Term)

Sigma-Aldrich,

#HPA011191

HLA-G 4H84 mouse 1:6000
BD Biosciences,

#557577

βhCG - rabbit 1:1000
Thermo Scientific,

#RB-059-A

PAI-1 PR17272-21 rabbit 1:1000
Abcam,

ab182973

7.1.16 Spatial proteomics

Placenta tissue sections (5 μm) fixed in formalin and embedded in paraffin (FFPE) were

affixed to PPS FrameSlides (Leica). After standard deparaffinization, antigen retrieval (AGR)

was performed in the incubator using Pepsin solution for 10 minutes at 37°C. Following this,

sections were washed with PBS/T and treated with Ultra V Block for 10 minutes at room

temperature (RT). For double staining, primary antibodies were combined, diluted in antibody

diluent, and applied to sections overnight at 4°C. Subsequently, slides were washed with

PBS/T and exposed to secondary anti-mouse or anti-rabbit antibodies for 30 minutes at RT.

Finally, slides were washed, and tissue sections were mounted with SlowFade Diamond
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Mounting media containing DAPI (Invitrogen), followed by the acquisition of fluorescence

micrographs.

Target Clone Species Dilution AGR Company
b-CG 5H4-E2 mouse 1:300 Pepsin Abcam #ab9582
E-Cadherin 24E10 rabbit 1:200 Pepsin Cell Signaling, mAb

#3195
anti-rabbit IgG (Alexa Fluor
488)

goat 1:300 Life Technologies

anti-mouse IgG (Alexa in
donkey Cy3)

1:200 Jackson Immuno
Research

Regions of interest were isolated via laser microdissection (LMD) on a Leica LMD7

microscope, utilizing a 20x objective in fluorescence mode. Approximately 50,000 µm² of

each sample was collected into 384-well plates (Eppendorf #0030129547). Following LMD,

tissue samples underwent processing for bottom-up LC-MS-based proteomics, following a

recently described protocol with slight modifications. Specifically, 4 µl of 60 mM

triethylammonium bicarbonate (TEAB, Sigma #T7408) was added to each well, briefly

centrifuged (2,000xg, 1 min), and the plate was heated at 95°C for 60 min in a thermal cycler

(Biorad’s S1000 with 384-well reaction module) at a constant lid temperature of 110°C.

Subsequently, 1 µl of ACN was added to each well (20% final concentration), and the plate

was heated again at 75°C for 60 min in the thermal cycler. Samples were briefly cooled to

room temperature, and 2 µl of pre-diluted LysC (Promega) in ultra-pure water to 2 ng/µl was

added, followed by digestion for 4 h at 37°C in the thermal cycler. Next, 2 µl of pre-diluted

trypsin (Promega Trypsin Gold) in ultra-pure water to 2 ng/µl was added, and incubation

occurred overnight at 37°C in the thermal cycler. The following day, digestion was halted by

adding trifluoroacetic acid (TFA, final concentration 1% v/v), and samples were vacuum-dried

(approx. 60 min at 60°C). Ultimately, 4 µl of MS loading buffer (3% acetonitrile in 0.2% TFA)

was added, followed by vortexing the plate for 10 seconds and centrifuging it for 5 minutes at

2,000xg. Subsequently, samples were stored at -20°C until LC-MS analysis.

 LC-MS analysis

Liquid chromatography mass spectrometry (LC-MS) analysis was conducted using an EASY-

nLC-1200 system (Thermo Fisher Scientific) coupled to a trapped ion mobility spectrometry

quadrupole time-of-flight mass spectrometer (timsTOF SCP, Bruker Daltonik GmbH,

Germany) equipped with a nano-electrospray ion source (Captive spray, Bruker Daltonik

GmbH). The autosampler was configured to pick up samples from 384-well plates. Peptides
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were loaded onto an in-house packed HPLC column measuring 20 cm in length and having a

diameter of 75 µm. The column was packed with 1.9 µm ReproSilPur C18-AQ silica beads

obtained from Dr. Maisch GmbH, Germany. Peptide separation was carried out using a 32-

minute gradient at a flow rate of 250 nL, during which the concentration of buffer B (0.1%

formic acid, 90% ACN in LC-MS grade H2O) increased gradually up to 60%. Buffer A,

comprising 3% ACN, 0.1% formic acid in LC-MS grade H2O, was used as the mobile phase.

The total duration of the gradient was 44 minutes, while the column temperature was

maintained at a constant 40°C.

Mass spectrometric analysis was conducted in data-independent (diaPASEF) mode using

the default method for extended gradients, with a cycle time of 1.8 seconds. Ion

accumulation and ramp times in the dual TIMS analyzer were set to 100 milliseconds each,

and the ion mobility range was examined from 1/K0 = 1.6 Vs cm-2 to 0.6 Vs cm-2. The total

m/z range was configured from 100 to 1,700 m/z. Collision energy was adjusted linearly with

increasing mobility, commencing at 59 eV at 1/K0 = 1.6 Vs cm-2 and decreasing to 20 eV at

1/K0 = 0.6 Vs cm-2. Singly charged precursor ions were filtered out using a polygon filter

(timsControl software, Bruker Daltonik GmbH).

 Proteomics data analysis

Proteomics measurements were analyzed using timsControl software (Bruker Daltonik

GmbH, v. 3.1). For diaPASEF measurements, raw files were processed with DIA-NN (v. 1.8)

in library-free mode, relying on a predicted human spectral library (Uniprot 2021 release).

Default settings were applied with minor adjustments, such as a mass range set to 100 –

1,700 m/z, precursor charge state set at 2 - 4, and a maximum of 2 allowed miscleavages.

MS1 and MS2 mass accuracies were set to 15 ppm, and the match-between-runs option was

activated. The quantification strategy was set to ‘Robust LC’. For subsequent data analysis,

we utilized the protein FDR filtered pg.matrix.tsv and unique.genes.matrix.tsv outputs from

DIA-NN, which were further analyzed using Perseus (v. 1.6.15.0) and the Protigy package

from Broad Institute (v. 1.0.2, https://github.com/broadinstitute/protigy).

Missing values underwent imputation based on a normal distribution (with a width of 0.3 and

a downshift of 1.8) following rigorous data filtering, which necessitated 70% quantified values

across samples. Prior to principal component analysis (PCA), batch effects were rectified

using the proBatch R package (version 1.10.0) employing the ComBat method

(https://doi.org/10.3929/ethz-b-000307772). Pathway enrichment analysis was conducted

with the clusterProfiler R package (version 4.2.2, https://doi.org/10.1089/omi.2011.0118). Dr.

https://doi.org/10.3929/ethz-b-000307772
https://doi.org/10.1089/omi.2011.0118
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Fabian Cosica and Jose Nimo are duly acknowledged for performing the proteomics

experiments and data generation. The method summarized for spatial proteomics is as per

as [363].

7.1.17 Data analysis softwares

The alignment and pre-processing of single-nucleus RNA sequencing (snRNA-Seq) data

were conducted using Cellranger versions 3.0.2, 6.0.1 & 6.1.2. Additionally, ambient RNA

and background noise correction were carried out using CellBender 0.2.0, followed by data

processing using scanpy 1.8.2 in Python 3.7.9. Data harmonization was performed using

scvi-tools 0.14.5, and UMAP computation utilized umap-learn 0.5.2. Trajectory analysis was

executed using stream 1.1 and scanpy 1.8.2, while marker analysis utilized Seurat 4.0. Cell-

cell interaction analyses were conducted with Connectome 1.0.1 and LIANA 0.1.4. Analysis

and visualization of transcription factor regulatory networks were conducted using STRING,

iRegulon, and Cytoscape 3.8.2, with visualization supported by igraph 1.3.2, circlize 0.4.15,

dplyr 1.0.9, ComplexHeatmap 2.10.0, seaborn 0.10.0, and python-igraph 0.7.1. General

operations utilized scikit-learn 1.0.2, statsmodel 0.12.1, scipy 1.5.3, pandas 1.1.4, and

numpy 1.19.4. For the analysis of 10X Visium data, Spotlight 1.0.0 was employed. In situ

sequencing (ISS) analysis utilized Python 3.10.4 and Jupyter 1.0.0, with data handling

facilitated by plankton 0.1.0 (utilizing pandas 1.4.3). Plot generation utilized matplotlib 3.5.2,

and snRNA-Seq data integration was performed using scanpy 1.9.1. Image analysis for villi

wall detection was conducted with Scikit-image 0.19.2, and spatial model building, and

nearest neighbor analysis utilized scikit-learn 1.1.1. All algebraic operations on matrix

representations of the data were executed with numpy 1.22.4, while statistical model building

during pathway analysis utilized scipy 1.8.1. Spatial proteomic analyses were conducted

utilizing timsControl software (version 3.1, Bruker Daltonik GmbH), DIA-NN 1.8, Protigy R

1.0.2, proBatch R 1.10.0, clusterProfiler 4.2.2, and Perseus 1.6.15. Pathway enrichment

analysis was conducted with clusterProfiler R 4.2.2 packages. For conditional regression

model analyses and visualizations, R 4.1.2, magrittr 2.0.2, Matching 4.9-11, tidyr 1.2.0,

survival 3.2-13, and pROC 1.18.0 were utilized. Software versions from ISS analysis and

spatial proteomics were secured from Sebastian Tiesmeyer and Dr. Fabian Cosica,

respectively (with permission).

7.1.18 Data analysis collection

No software or tools were utilized for sample data collection.



Methods

239

7.1.19 Data and code availability

The raw single-nucleus RNA sequencing (snRNA-Seq) data from the 33 villi and decidua

samples generated in this study have been deposited in the European Genome-Phenome

Archive under accession number EGAS00001005681. Due to the sensitive nature of

sequencing data, access to the data would be made available under controlled access.

Interested parties can request access by contacting the appropriate Data Access Committee

listed for each dataset in the study. Access will be granted to both commercial and non-

commercial entities in accordance with patient consent forms and data transfer agreements.

Images of the in-situ sequencing (ISS) data are accessible via Zenodo (doi:

10.5281/zenodo.5243240), while the snRNA-seq and Visium data can be found on Zenodo

(doi: 10.5281/zenodo.8159511) with controlled access. Other data are either included within

the thesis, Extended Data Figures or Tables, or Supplementary Tables. Scripts used for

snRNA-seq and 10X Visium data analysis and figure generation are available at

https://github.com/Olivia117/Maternal_fetal_interface_atlas2022 (with a copy at

https://github.com/HiDiHlabs/preeclamspsia_Nonn_etal/tree/main for the pre-print).

7.2 panNEC snRNA-seq study

7.2.1 Patient cohort and ethics approval

Because of the rarity of the disease, a retrospective study design was employed, allowing for

strict sample inclusion criteria. Inclusion criteria were histopathological confirmation of G3

NEC of large cell morphology, tumor localization in the pancreas and availability of both flash

frozen and FFPE tumor tissue. A cohort comprising six patients diagnosed with high-grade

GEP-NEN was curated from two ENETS Centers of Excellence: the University Hospital

Charité Berlin, Germany, and the University Cancer Institute of the Inselspital and the

University of Bern, Switzerland. Samples were reviewed and (in the case of older samples)

reclassified according to the WHO 2019 criteria by a board-certified pathologist (Prof. Aurel

Perren), as detailed in Table 4. TNM staging information is given (for inferring tumor, nodes,

or metastases) according to the 8th edition UICC/AJCC guidelines. Ethical approval for the

study was obtained from local authorities (Ethics approval EA1/229/17 at Charité and KEK-

BE 105/2015 from Kantonale Ethikkomission Bern), in compliance with the Declaration of

Helsinki. Patient samples were anonymized for the current analysesBoth formalin-fixed

paraffin-embedded (FFPE) and fresh frozen tumor tissues were obtained. FFPE sections

underwent H&E staining and immunohistochemical detection of chromogranin A,

https://github.com/Olivia117/Maternal_fetal_interface_atlas2022
https://github.com/HiDiHlabs/preeclamspsia_Nonn_etal/tree/main
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Synaptophysin, Insulinoma-associated protein 1, Pancytokeratin, Trypsin, Ki67, TP53, Rb1,

and Sox9, utilizing routine clinical diagnostic procedures available at the Institute of

Pathology at Bern University. Sample preparations for snRNA-seq were conducted from

fresh frozen tissues at three different time points: the first run involved P1 as a pilot for

technical feasibility, the second run included samples P2-P5, and the third run consisted of a

repetition of the P5 preparation due to poor quality observed in the initial preparation, which

was performed in two batches (technical replicates).

7.2.2 panNEC sample preparation and snRNA-seq

Tumor tissue preserved by cryopreservation was disrupted using NP-40 lysis buffer (10mM

Tris-HCl at pH 7.4, 10mM NaCl, 3mM MgCl2, 0.01% NP-40, 1mM DTT, 2% BSA, 1U/µl

RNAse inhibitor, and Complete EDTA-free protease inhibitor) in a 1.5ml Eppendorf tube with

a plastic pestle. Following a 5-minute incubation on ice, the suspension underwent filtration

through a 70 µm pre-separation strainer, followed by centrifugation at 4°C and resuspension

in nuclei wash buffer (PBS, 1% BSA, and 0.4U/µl RNAse inhibitor). DAPI (3.5 µl) was added,

and the mixture was filtered through a 40 µm Flowmi cell strainer before sorting on an Aria

Fusion instrument (BD) into an Eppendorf tube containing 200 µL of sort buffer (PBS, 2%

BSA, 1U/µl RNASe inhibitor) using a 100 µm nozzle.

Single-nuclei libraries were prepared following the protocol outlined in the Chromium Next

GEM Single Cell 3ʹ Reagent Kits v3.1 (Dual Index) user guide (CG0003154) from 10x

Genomics. Briefly, individual nuclei were encapsulated alongside gel beads containing

barcoded primers using the Chromium controller. mRNA within the droplets was reverse

transcribed into barcoded cDNA and subsequently amplified. The amplified cDNA underwent

fragmentation, end-repair, A-tailing, adaptor ligation, and sample index PCR. The resulting

library was sequenced using a NovaSeq 6000 system (Illumina) to achieve a depth of 40,000

mean reads per nuclei.

7.2.3 panNEC snRNA-seq data analysis

 Data pre-processing and QC

Single-nucleus RNA reads were aligned to the GRCh38-2020-A reference using CellRanger

v6.0.1 using exonic and intronic (nuclear pre-mRNA) reads. One biological sample was

removed from further downstream analysis as it did not pass basic Cellranger QC criteria. P5

was run as two technical replicates and later merged during analysis. Background reads
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were eliminated using the R package SoupX [100], with parameters set to tfidfMin = 0.6,

soupQuantile = 0.9, and priorRho = 0.1. The resulting expression values, after background

subtraction, were rounded to integer values. Cells were filtered based on criteria such as

having less than 300 or more than 4000 RNA features, exceeding 5% mitochondrial read

content, or genes with fewer than two reads across all samples. MT and ribosomal genes

were removed from further downstream analysis to better adjust for technical noise.

Additionally, for joint analysis with the snRNA data from Tosti et al. 2020 [72], all samples

were downsampled to a median read count of 500 reads for validating major results.

 Data integration and clustering of panNEC patient samples

The SoupX corrected anndata matrices per patient were merged using scanpy [98], followed

by log-normalization for subsequent analysis. Highly variable genes (n=4000) were

determined using sample ID as a batch key for lightweight batch correction and default

parameters in scanpy's highly_variable_genes() function. Subsequently, principal component

analysis (PCA) was performed using tl.pca(), employing svd_solver="arpack" implemented in

scanpy. This function inferred PCA coordinates, loadings, and variance decomposition,

which were then visualized using sc.pl.pca_overview() and heatmaps to display top features

associated with each principal component. The calculation of K-nearest neighbor (KNN)

graph and UMAP visualization using default parameters (by fine-tuning the number of

principal components and number of neighbors) resulted in strongly separated patient

samples or batches.

To attain data harmonization and mitigate batch effects across 5 panNEC samples, a

sequential integration approach (also, known as chain integration) was applied. Initially,

Harmony [110] (implemented within scanpy external’s harmony_integrate function) was run

using sample ID as the batch key. This function utilizes the Python version of Harmony,

called harmonypy, to harmonize single-cell data stored within an AnnData object. Since

Harmony operates by batch correcting the PC(s), it was run after PCA but before computing

the neighbor graph. Harmony adjusted PC1 vs PC2 graph indicated that P5 was distinct from

the other four patients, with this segregation was primarily influenced by acinar lineage-

specific genes such as GP2, encoded by PC1. However, such information is largely

biological and not a technical artifact (as P5’s immunohistochemistry confirmed trypsin

positive and hence, similarities with acinar). Subsequently, BBKNN was employed to

construct a batch-corrected mutual neighbor graph, using sce.pp.bbknn(). The parameters

used were neighbors_within_batch=5, trim=80 and use_rep='X_pca_harmony' to consider

Harmony adjusted PC(s) for constructing further batch balanced mutual neighbor graph. The
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Leiden algorithm was then run with a resolution parameter set to 1 for clustering and inferring

cell sub-states. In cases where robust and specific markers were lacking, clusters were

merged. Also, leiden-12 having n=540 nuclei was removed from further downstream analysis,

given its ambiguous transcriptomic profile.

Of note, case-studies were performed by adjusting the number of PC(s) from n=10 to 50 and

observed changes in data structure were noted. The choice of PC=10 was considered

somewhat suboptimal and yielded a clumsy structure. Importantly, when using a higher

number of PCs (40 & 50), a distinct but ambiguous cluster with contradictory marker profile

(leiden-12 consisting of n= 540 nuclei, originating from P5) was clearly separated on the

UMAP plot. An improvement in batch mixing, especially among patient samples P1-P4, was

noticed, as evidenced by relatively higher ASW scores per cell type/state with an increase in

the number of PCs to 40 or 50. Hence, BBKNN’s default PC=50 was considered for final

analyses. UMAP was computed using specific random_state=0 (for reproducibility) and

maxiter=200 (for better optimization of the embedding layout and ensures convergence of

algorithm). Initially, Leiden cluster 1 was labeled as "Stromal/Mesenchymal" containing 8133

nuclei. However, upon further sub-clustering at a medium resolution (set at 0.4 for Leiden

clustering), it was divided into two distinct groups: Stromal-like NE (n= 5668 nuclei) and

Stromal (normal) (n=2465 nuclei).

Initially, coarse-grained cell types were determined through Leiden clustering at a resolution

of 0.3. However, this initial classification was later fine-tuned by consolidating sub-states that

exhibited distinct markers for amphicrine, neuroendocrine, stromal, and immune cells,

respectively. Although all sub-states specific to P5 were combined under the label

"Amphicrine," the Amphicrine progenitor-like group remained distinct due to its strong and

specific expression of markers linked to pancreatic progenitors, genes associated with

cancer stemness, and other signatures related to Wnt-Notch-BMP signaling. This

observation was verified by re-running Logistic Regression marker analysis and Wilcoxon

rank sum test, implemented in scanpy’s tl.rank_genes_groups() using

corr_method='benjamini-hochberg.'

 Sub-state marker analysis

Markers analysis of panNEC sub-states was conducted using a multivariate logistic

regression (LR) generalized linear model, implemented in Seurat's FindAllMarkers() function.

In the LR analysis, the number of unique molecular identifiers (UMI), the number of genes,

and the percentage of mitochondrial transcripts per nucleus were employed as continuous
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covariates. Significant cell markers were identified among genes showing a log2 fold change

cut-off of 0.25 and expression in at least 25% of cells within each cluster. An adjusted p-

value cut-off of 0.01 was applied following Bonferroni correction for multiple testing of states.

Internal validation was additionally conducted using the Negative binomial method

implemented in Seurat.

For comparative analysis among specific sub-states of amphicrine acinar groups, Wilcoxon

rank sum method implemented in scanpy’s tl.rank_genes_groups() was used and verified

using Logistic Regression. Statistically significant sub-state markers were identified based on

log2 fold change cut-off of 1.5 and expression in at least 25% of cells within each cluster. An

adjusted p-value cut-off of 0.01 was applied using Benjamini-Hochberg adjustment for

multiple testing (default correction method in scanpy).

 Inference of transcriptional regulation

The pySCENIC tool [158] was employed to forecast transcription factor activities on the

downsampled data. The analysis utilized motifs from version 9 of the motif database (moitfs-

v9) and binding sites were identified within the human genome version hg19, with sequences

located 500bp upstream, as well as 5kb and 10kb centered at the transcription start site

(TSS). Differences in transcription factor activity between groups were assessed using the

FindMarkers function from the R package Seurat. This was carried out by integrating

transcription factor marker activities, estimated by pySCENIC, as a new assay, followed by

the application of a Wilcoxon rank sum test.

 GTEX bulk RNA-seq analysis for inferring brain vs pancreas DEG(s)

Bulk RNA-seq count data matrix and sample annotations were acquired from the GTEX

portal (https://gtexportal.org/home/downloads/adult-gtex/bulk_tissue_expression, file version

bulk-gex_v8_rna-seq_GTEx_Analysis_2017-06-

05_v8_RNASeQCv1.1.9_gene_reads.gct.gz). Briefly speaking, DESeqDataSetFromMatrix()

was used to construct a DESeqDataSet object (dds) from count data matrix (expr_mat) and

sample metadata (colData). A comparison of pancreas and brain tissue expression was

performed using a likelihood-ratio test facilitated by the R package DESeq2, specifically

using fitType = "glmGamPoi", full = ~ SMTS, reduced = ~ 1, test = "LRT." The

fitType=glmGamPoi feature in DESeq2 employed a generalized linear model (GLM) with a

gamma-Poisson distribution to analyze count data in RNA-Seq studies. This model is adept

at handling overdispersion often encountered in RNA-Seq experiments. Genes whose
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absolute value of the log2FoldChange column < 500 and where log2FoldChange was not

missing (NA) was tabulated as differentially expressed gene (DEG). Furthermore, a cut-off of

logFC of 2 & adjusted p-value < 0.001 were considered to derive mutually exclusive

pancreas and brain specific DEG lists.

Subsequently, both DEG lists were intersected with PAX6 and NKX2-2 target lists secured

from MsigDB (https://www.gsea-

msigdb.org/gsea/msigdb/human/geneset/PAX6_TARGET_GENES & https://www.gsea-

msigdb.org/gsea/msigdb/human/geneset/NKX2_2_TARGET_GENES respectively) to derive

brain and pancreas target lists. For PTF1A pancreas and brain targets, the signature lists

were secured from Meredith et al. 2013 [666]. EZH2 target list was sourced from ENCODE

transcription factor targets

(https://maayanlab.cloud/Harmonizome/gene_set/EZH2/ENCODE+Transcription+Factor+Tar

gets).

 Module score analysis and hypergeometric test

All module score analysis performed as a part of this study was computed using

sc.tl.score_genes(), as implemented in scanpy. Precisely, the module score was calculated

by subtracting the average expression of a specific set of genes from the average expression

of a reference set of genes. The reference set is randomly selected from the gene_pool for

each expression value bin. All external signature lists used for module score analysis were

tabulated in Supplementary Table 25 (given reviewers’ access).

Furthermore, an over-enrichment test was conducted based on the cumulative distribution

function of the hypergeometric distribution, as explained in

https://systems.crump.ucla.edu/hypergeometric/index.php. Precisely, the overrepresentation

is depicted by the representation factor, calculated as the number of overlapping genes

divided by the expected number of overlapping genes from two independent groups. A

representation factor greater than 1 suggests higher overlap than expected, while a factor

less than 1 suggests less overlap. A representation factor of 1 denotes the expected overlap

for independent gene groups. This representation factor can be calculated using the formula:

k = number of overlapping genes between two groups (also, denoted as number of

successes)

s = number of genes in group 1 (for example, number of transition genes)

M = number of genes in group 2 (for example, number of DEGs)

https://www.gsea-msigdb.org/gsea/msigdb/human/geneset/PAX6_TARGET_GENES
https://www.gsea-msigdb.org/gsea/msigdb/human/geneset/PAX6_TARGET_GENES
https://www.gsea-msigdb.org/gsea/msigdb/human/geneset/NKX2_2_TARGET_GENES
https://www.gsea-msigdb.org/gsea/msigdb/human/geneset/NKX2_2_TARGET_GENES
https://maayanlab.cloud/Harmonizome/gene_set/EZH2/ENCODE+Transcription+Factor+Targets
https://maayanlab.cloud/Harmonizome/gene_set/EZH2/ENCODE+Transcription+Factor+Targets
https://systems.crump.ucla.edu/hypergeometric/index.php
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N = total genes expressed or tested.

C(a,b) is the number of combinations of a things taken b at a time.

The representation factor = x / expected number of genes. Where, expected no of genes =

(s*M) / N

7.2.4 panNEC data integration with adult pancreas snRNA-seq

The first step involved integrating the panNEC snRNA-seq data with Tosti's adult pancreas

snRNA-seq data [72]. The exclusion of stromal (normal) and immune cell types from the

panNEC data was conducted. Importantly, cell types derived from a common multipotent

progenitor during embryonic development, namely, acinar, and ductal cells in the exocrine

compartment and alpha, beta, gamma, and delta cells in the endocrine compartment, were

included from the adult pancreas data. Since the adult pancreas data was dominated by the

acinar-i, acinar-s and ductal cell types (n= 42968, 31570 & 20371 respectively),

downsampling of the data was contemplated to avoid compositional bias during data

integration. In particular, the mentioned cell types were randomly downsampled to n=2444

nuclei (the median value derived from the distribution of panNEC sub-state nuclei numbers).

Next, highly variable genes were computed for each dataset individually, using

sc.pp.highly_variable_genes() in scanpy, with batch_key = 'Sample ID' and default

parameters. Genes deemed variable in at least 3 samples were selected for subsequent

analysis to mitigate sample-specific biases. Following that, panNEC and adult pancreas

anndata(s) were concatenated using join= “outer” to preserve the union of expressed

features in both datasets. Thereafter, PCA was conducted using sc.tl.pca(), followed by an

examination of each principal component (PC) using sc.pl.pca_overview() and the plotting of

heatmaps displaying the top 10 positive and negative features associated with each PC. The

data harmonization was achieved using the previously described chain integration method.

Initially, Harmony was executed using sce.pp.harmony_integrate() with Sample ID serving as

the key batch. Subsequently, the PC(s) adjusted by Harmony were fed into the BBKNN

algorithm, which generated the batch balanced neighbor graph. Precisely, BBKNN was run

using sce.pp.bbknn() and internal parameters batch_key= 'PatientID',

neighbors_within_batch=5. Of note, the number of (corrected) PCs were fine tuned between

10 to 30, but the acinar and NE groups started segregating from PC=20 onwards. This

splitting got severe from PC=25 onwards and was difficult to explain biologically. The result

with PC=10 was shown as Extended Data Figure 15.

As P1-P4 exhibited tight clustering during panNEC integration and clustering analysis,

primarily showing neuroendocrine-like characteristics, we endeavored to integrate these
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shared sub-states with adult pancreas data. Firstly, P5 sample was excluded from the

analysis and the chain integration steps (described above) were rerun. Importantly, the

number of principal components (PCs) was adjusted from n=10 to 30 to ensure the stability

of data structures. Nevertheless, beyond PC=14, both the acinar and NE groups exhibited

division into multiple subparts, indicating a technical rather than biological origin. Moreover,

such partitioning proved challenging to justify using biological markers. Guided by the ranked

variance plot of PCs and UMAP visualization of integrated data, PC=13 was ultimately

selected for the final analysis (Figure 5.21). Also, for the UMAP, min_dist=0.3 and

maxiter=200 was used for better optimization of data structure and convergence of algorithm.

Following that, trajectory analysis was conducted using STREAM, wherein the UMAP

coordinates of integrated data were utilized to learn the elastic principal graph. While seeding

the principal graph using st.seed_elastic_principal_graph(), K-means clustering and

n_cluster was set to 10. Principal graph learning was performed using

st.seed_elastic_principal_graph(). The trajectory was visualized in Figure 5.22a. No

overbranching or pruning of branches were performed by fine-tuning internal parameters.

Transition marker analysis were performed using st.detect_transition_markers() using S0 as

a root node and logFC cut-off was kept at 0.25. The positive markers for S0S3 branch

(increasing as a function of pseudotime) was visualized as Figure 5.22b.

To confirm the close proximity and continuum between the neuroendocrine cell type and

adult acinar states, diffusion pseudotime analysis using sc.tl.diffmap() was employed. This

unsupervised algorithm revealed that the NE group aligns with acinar states, while the adult

endocrine cell types mainly diverged. This behavior was verified by inspecting combinations

of top 6 DC pairs, such as DC1 vs DC2, DC2 vs DC3 or DC1 vs DC5.

7.2.5 panNEC Immunohistochemistry (IHC) validations

All the IHC markers were repeated on freshly cut tissue blocks and re-evaluated by an NEN

expert pathologist (Prof. Aurel Perren). For immunohistochemistry, the paraffin-embedded

material was cut into 2.5-µm-thick serial sections and then deparaffinized, rehydrated, and

antigens were retrieved with an automated immunostainer (Bond RX, Leica Biosystems).

Antigen retrieval was performed in a Tris-EDTA buffer or Citric acid buffer for generally

30 min at 95 °C for selected candidates (please refer to the table below for antibody

description and other details). The primary antibody incubation lasted 30 min at the specified

dilutions. Visualization was carried out using a Bond Polymer Refine Detection Kit (Leica,

#DS9800) (RRID: AB_2891238); DAB (3,3′-Diaminobenzidine) was the chromogen. Slides
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were counterstained with hematoxylin. An automated slide scanner Panoramic 250

(3DHistech) at 20x magnification was utilized to capture scans, and images were acquired

with QuPath software.

Antibody Supplier ID Dilution
Antigen
retrieval Temperature Time

CgA CellMarque

138M-94

LK2H10 1:400 Tris-EDTA 100°C 30 min

Ki-67 Dako M7240 1:200 Tris-EDTA 95°C 30 min

RB1

BD

Pharmingen 554136 G3-245 1:200 Citric buffer 100°C 30 min

SOX9

Cell

Signaling 82630 T D8G8H 1:100 Tris-EDTA 95°C 30 min

SSTR2A BioTrend

SS-8000-RM

UMB-1 1:50 Tris-EDTA 100°C 30 min

Synaptophysin Novocastra 27G12 1:100 Tris-EDTA 100°C 30 min

TP53 Dako M7001 DO-7 1:800 Citric buffer 95°C 20 min

Trypsin 1 Chemicon MAB1482 1:20000

proteinase K

solution 37°C 5 min

EZH2

Cell

Signaling 5246 1:400 Citric buffer 100°C 30 min

INSM1 Santa Cruz Sc-271408 1:200 Tris-EDTA 95°C 40min

Pan-

Cytokeratin DAKO M3515 1:400 Tris-EDTA 95°C 30min

YAP1 Abcam Ab52771 1:200 Tris-EDTA 95°C 30min

7.2.6 panNEC data analysis softwares

The alignment and pre-processing of single-nucleus RNA sequencing (snRNA-Seq) data

were conducted using Cellranger version 6.0.1. Additionally, ambient RNA and background

noise correction were executed using SoupX 1.5.2, followed by data processing using Seurat

4.1.1 on R version 4.1.3 (2022-03-10). Python based analyses were performed using

scanpy 1.8.2 in Python 3.7.9. anndata 0.7.8 & annoy 1.17.0 was used. General python

operations used scikit-learn 1.0.2, statsmodel 0.12.1, scipy 1.5.3, pandas 1.1.4, numpy

1.19.4 and pytables 3.6.1. Data harmonization was performed using harmonypy 0.0.5
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(python portal of Harmnoy), bbknn 1.5.1 and UMAP computation utilized umap-learn 0.5.2.

Trajectory analysis was executed using stream 1.1 and scanpy 1.8.2, while marker analysis

utilized Seurat 4.0.0 & 4.1.1. Conversion of anndata to Seurat was performed using

SeuratObject 4.1.0. pySCENIC 0.11.2 was used for transcription factor inference. Additional

analysis and visualization of transcription factor regulatory networks were conducted using

STRING, iRegulon, and Cytoscape 3.8.2. DESeq2 1.34.0 was used for bulk RNA-seq data

analysis. R-based data visualization was performed using png 0.1-7, pheatmap 1.0.12,

ggplot2 3.3.6, cowplot 1.1.1, and sp 1.4-7. Furthermore, data processing were facilitated by

packages such as dplyr 1.0.9, magrittr 2.0.3, naturalsort 0.1.3, data.table 1.14.2, writexl 1.4.0,

and readxl 1.4.0. iPython 7.31.1 and jupyter-client 7.1.2 were used for notebook based

analysis.

7.2.7 panNEC Data and code availability

The raw single-nucleus RNA sequencing (snRNA-Seq) data from 5 patient samples will be

deposited in the European Genome-Phenome Archive, after submission of manuscript (in

preparation) based on this thesis results. Given the sensitive nature of sequencing data, data

access will be controlled. All raw and processed data files are stored and managed internally

at Eils-HPC, which will be shared with the doctoral committee upon request. Data analysis

scripts will be made available at https://github.com/Olivia117/panNEC_analysis2024.

https://github.com/Olivia117/panNEC_analysis2024
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8 Extended Summary & Conclusion

The advent of single-cell and single-nuclei sequencing technologies has revolutionized our

capacity to explore cellular characteristics in both healthy and diseased states across various

species. Collaborative initiatives, frequently within extensive international consortia such as

the Human Cell Atlas are actively engaged in mapping the multitude of cell types and states

present in human tissues. Analyzing single cells or nuclei in disease contexts yields

comparative insights that hold the potential to deepen our comprehension of

pathophysiological mechanisms.

Both early-onset pre-eclampsia (eoPE) and pancreatic neuroendocrine carcinoma (panNEC)

represent significant clinical challenges necessitating in-depth molecular investigations. In

both cases, single-nuclei sequencing, and advanced informatics analytics were leveraged to

dissect the disease biology at a cellular level. Both studies uncovered aberrant expression of

markers, transcriptional regulators, signaling programs and cellular interactions indicative of

pathogenesis. Interestingly, both diseases exhibit heterogeneity and developmental plasticity,

underscoring the complexity of their biology.

8.1. Summary: Maternal-fetal interface in healthy and eoPE pregnancies

The first results chapter of this dissertation reported the creation of a comprehensive

reference atlas of the maternal-fetal interface, encompassing first-trimester, healthy term,

and early-onset pre-eclamptic pregnancies. Leveraging deep learning models such as

scVI/scANVI, distinct cell types or states comprising the cellular landscape of placenta and

decidua were identified. Also, this study decoded the transcriptional heterogeneity and

functional significance of distinct sub-states within villous syncytiotrophoblast (vSTB) nuclei,

including the novel vSTBjuv state, which offered valuable insights into placental development

and maternal-fetal syncytium interaction. However, further experimental validations are

imperative to fully grasp the biological implications of these sub-states. Despite rigorous

computational efforts to address gestational age disparities between preterm eoPE samples

and term controls, the absence of gestational age matched healthy controls remained a

constraint, highlighting an unavoidable limitation in eoPE research. Another constraint was

the small sample size of the eoPE group, which rendered statistical compositional analysis

between the disease and term groups challenging.

Importantly, this dissertation and associated preprint publication [363] marks the first

comprehensive investigation into the molecular dysregulations within the vSTB layer of the
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placenta, addressing critical inquiries regarding how abnormalities in cell-cell fusion during

vSTB differentiation may expedite vSTB senescence and its implications for maternal

symptoms. By elucidating the trophoblast differentiation trajectory of healthy human

pregnancy and establishing connections between findings from eoPE in later gestational

stage and early pregnancy, this study sheds light on the elusive molecular mechanisms

underlying eoPE and the identification of high-risk mothers. Notably, a novel connection

between eoPE dysregulation and an EP300-dependent defect in villus cytotrophoblast fusion

has been established, alongside the detection of increased senescence associated with

eoPE. This association might represent a fundamental aspect across all pre-eclampsia

subtypes, with various triggers and clinical risk factors potentially converging to accelerate

the turnover of villous trophoblasts and promote premature senescence. Computational

analysis revealed that a subset of p300-regulated perturbed vSTB targets was found to be

co-regulated by multiple transcription factors, including FOS, FOXO1, FOXO4, and PAX5,

with functional implications involving the enrichment of signaling pathways like HIF-1α, AP1,

PI3K-Akt, and TGFβ. Dysregulated HIF-1α and AP-1 pathways, influenced by placental

hypoxia, contribute to abnormal placentation and impaired vascular perfusion, promoting the

secretion of factors like sFlt-1 and sEng into the maternal bloodstream, potentially

exacerbating eoPE pathogenesis [497-499, 777-779, 781]. Investigating induction of inferred

transcription factor activity in first-trimester trophoblast organoids or cell lines might offer a

promising avenue for studying eoPE mechanisms and screening prospective drugs,

facilitating the development of personalized medicine strategies.

Finally, we found that elevated secretion of specific senescence associated secretory

phenotype (SASP) encoding ligands from vSTB sub-states may trigger senescence,

potentially initiating eoPE pathogenesis at the fetal side and transmitting it to the maternal

side. The data suggested that eoPE could originate within the vSTB layer, disrupting

maternal-fetal interactions and lead to complications like impaired nutrient exchange and

oxidative stress. Overall, we propose that eoPE syndrome stems from a defect in vCTB to

vSTB differentiation, influenced by factors like oxidative stress and altered vascular perfusion,

ultimately culminating in placental dysfunction and premature senescence. Notably, SASP

ligands such as GDF15, INHBA, HSPG2, ADAM9, and ADAM12 showed promise as

potential biomarkers for eoPE, emphasizing the importance of exploring their clinical utility in

conjunction with other markers to improve diagnostic accuracy and guide therapeutic

interventions. The development of new pharmacological approaches for treating PE at early

time points in pregnancy is expected to decrease the risk of cardiovascular disease in post-

preeclamptic mothers and their children in the long term.
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8.2. Summary: Pancreatic Neuroendocrine Carcinoma

Pancreatic neuroendocrine carcinoma (panNEC) presents a substantial clinical challenge,

with large cell NEC (LCNEC) being more prevalent than small cell NEC in the pancreas. By

deeply phenotyping the transcriptome of panNEC tissue samples at a single- nucleus level,

this research elucidated shared and distinct cell sub-states associated with oncogenic

programs and lineage plasticity. A novel finding is the identification of amphicrine sub-states

within one patient sample, despite the prototypical morphology of LCNEC. In contrast to all

other tumor samples, these amphicrine clusters demonstrated similarities to the exocrine

pancreas, particularly the acinar cells, and exhibited a progenitor-like sub-state reminiscent

of early pancreatic progenitors. It is worth mentioning that acinar carcinoma often presents

with neuroendocrine differentiated parts, prompting further question on whether this sample

provides more insight into the transitional states between acinar and neuroendocrine

differentiation associated with pancreatic acinar carcinomas rather than prototypical NEC.

Follow-up studies in pancreatic acinar carcinoma are warranted to ascertain the relevance of

the progenitor-like substate concerning the cell of origin in these rare malignancies. Despite

striking variability among patient samples, this study identified shared panNEC sub-states

displaying distinct pathway expressions associated with hallmarks of malignancy.

Identification of distinct cellular subpopulations within patient samples helped us stratify

patients based on molecular profiles, allowing for more targeted and personalized treatment

approaches. If validated on a larger sample size, this stratification of amphicrine vs

neuroendocrine types could lead to more homogeneous patient cohorts in clinical trials,

increasing the likelihood of detecting treatment effects.

Moreover, the shared neuroendocrine and neuroendocrine proliferating sub-states showed

widespread expression of signatures linked to neuronal or islet/endocrine cells, which are

hard to distinguish. Importantly, the shared sub-states lacked key markers like INS, GCG or

SST, indicative of mature islet cell types, unlike its well differentiated panNET counterpart.

Absence of prominent endocrine progenitor markers like Neurog 3 implied that shared

panNEC sub-states do not recapitulate the blueprint of pancreatic endocrine cell

development. This supports emerging concepts that the neuroendocrine signatures defining

NEC reflect an overarching plasticity state transcending organ-specific program. It is known

that islet cells and brain utilize a largely overlapping set of transcription factors with tissue

specific targets likely determined by biological context. On this note, this dissertation

pinpointed that transcriptional regulator such as PTF1A and PAX6, having established

functions in the brain and pancreas, orchestrate the regulatory landscape underlying the

neuroendocrine clusters. Intriguingly, the markers of shared neuroendocrine and
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neuroendocrine proliferating sub-states shared notable overlap with brain-specific targets

rather than pancreas-specific ones, denoting a role of PTF1A/PAX6 in mediating an aberrant

neuronal phenotype in panNEC. This finding is consistent with the notion that the

neuroendocrine phenotype does not mirror bonafide islet cell differentiation programs.

Additionally, the panNEC sub-states were found to variably represent NEC signatures from

non-gastrointestinal tissues, such as lung and prostate, which are distinct from islet cells. Of

note, shared panNEC sub-states exhibited greater transcriptomic similarity to small cell lung

cancer (SCLC) signatures as compared to lung LCNEC signatures. On the other hand, lung

LCNEC signatures appeared more aligned with the amphicrine sub-states. This observation

underlined the complexity of NEC biology and its potential transcriptomic similarities across

different tissue types. Interestingly, the shared neuroendocrine and neuroendocrine

proliferating sub-states exhibited significant over-enrichment of neuroendocrine and neural-

like progenitor programs, formerly associated with worse prognosis in PDAC. Moreover,

trajectory analysis of pancreatic NEC sub-states integrated with adult pancreas snRNA-seq

data suggested a developmental relation between shared NE cluster and acinar-I cells,

supporting the idea of an acinar origin for NEC as has been suggested based on DNA

methylation profiles.

Of note, this dissertation revealed the emergence of two shared sub-states of prime

therapeutic importance — neuroendocrine proliferating and neuroendocrine HSP+ (hypoxic).

Neuroendocrine proliferating demonstrated overexpressed genes linked to E2F/EZH2 targets,

cell-cycle regulation, DNA Damage Response and Fanconi Anemia pathway that could be

targeted by Cisplatin, possibly with EZH2-inhibitors as a combination treatment. Notably, the

association of NE HSP+ (hypoxic) with accelerated induction of heat stress response,

hypoxia and metabolic stress might contribute to the clinical observation of frequent necrotic

areas in pancreatic NEC. Exploiting these vulnerabilities could involve repurposing approved

or under-trials drugs targeting specific signaling programs. In particular, the findings put

forward indicate that utilizing combination therapies involving Geldanamycin, Tanespimycin,

or Pimitespib, which target the dysregulated HSP90, alongside Cisplatin/EZH2 inhibitors,

might lead to enhanced clinical outcomes. Hence, this paradigm shifts from targeting

individual molecules to addressing pathological cell states shows great promise in enhancing

treatment outcomes, particularly for diseases that have proven resistant to conventional

therapies.
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8.3. Summary: Impact of single nuclei sequencing in Precision Medicine

Understanding the cell of origin is crucial for comprehending disease transformation because

it provides insights into the initial cellular events that lead to pathological changes. By

identifying the specific cell type or lineage from which a disease originates, researchers can

elucidate the molecular mechanisms underlying disease initiation and progression. Moreover,

understanding the cell of origin can help identify potential therapeutic targets that are specific

to the diseased cell type, leading to more effective treatment strategies. It is worth

mentioning that we endeavored to delineate the developmental origins of both eoPE and

panNEC utilizing snRNA-seq data analysis methodologies. While there is a possibility that

eoPE emanates from the outer syncytiotrophoblast layer of the placenta and is transmitted to

the maternal endothelium through Senescence-Associated Secretory Phenotype encoding

ligands capable of traversing the maternal-fetal barrier, further experiments are necessary to

confirm the acinar origin of panNEC patients.

Utilizing snRNA-seq data, it becomes feasible to predict significant transcriptional factors or

'master-regulators' associated with specific diseases, a method applied in both the studies on

eoPE and panNEC. Since snRNA-seq has limitations in profiling transcription factor

expression comprehensively due to high dropout rates and low library sizes [160], additional

complementary experiments are required to validate the findings on a larger scale, potentially

at the single-cell level. As an example, the data-driven identification of p300 as a master-

regulator in eoPE was confirmed by my collaborators through qPCR analysis and

examination of maternal serum in additional cohorts (sourced from Graz and Vienna medical

hospitals). For panNEC, we are eagerly awaiting validation to ascertain whether HSF1 and

HIF1A co-express within tumor tissue, elucidating the transcriptional regulation underlying

NE HSP+ (hypoxic) states. Additionally, we are keen on confirming the involvement of ATF5

and NKX2.2 in the interplay between enhanced heat stress and hypoxia.

A prominent role of SASP(s) was decoded in eoPE study, where overexpressed SASP

ligands demonstrated the ability to traverse the maternal-fetal barrier, thereby facilitating the

transmission of the disease from the fetal to maternal side. However, no enrichment of SASP

was observed in panNEC sub-states. Notably, a prior investigation by Raynard et al. 2022

[821] identified role of SASP(s) in promoting neuroendocrine transdifferentiation through

SASP-induced Ca2+ signaling in breast cancer cells. They reported that analyses of human

breast cancer datasets indicate that neuroendocrine differentiation primarily occurs in p53

wild-type tumors and in older patients, aligning with the involvement of senescent cells and
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their secretome, which increase with aging. Consequently, we intend to conduct a more

detailed examination of the effects of SASP on panNEC differentiation in future studies.

The collective findings presented in this dissertation, spanning disparate biological systems,

underscore the importance of adopting a holistic approach to understanding disease biology

and addressing unmet clinical needs. Through the utilization of single-nuclei sequencing

technologies and advanced data-driven approaches, as demonstrated in the study of early-

onset preeclampsia, adult pancreatic islet maturation, and pancreatic neuroendocrine

carcinoma, significant insights into disease mechanisms and potential therapeutic avenues

have been uncovered, thereby propelling precision medicine forward. Embracing such a

comprehensive perspective from the outset is paramount for identifying novel biomarkers

and crafting tailored therapies.
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10.Supplementary notes and list of Supplementary Tables

Supplemental Note 1. (data integration and correction of batch effects)

In the presented multi-centric study design, samples were collected from various sites to

incorporate a diverse set of patients. Confounding by different sampling sites may be

induced, but this factor could be adjusted for. Our strategy involved the investigation of batch

effect correction for our snRNA-seq data across 4 analyses, employing state-of-the-art deep

learning models to regress out any batch effects and the individual, sampling site, gestational

age, and technical covariates for the cell types that were analyzed in detail. Importantly,

near-perfect integration was revealed by our global average silhouette width (ASW) per

batch for our technical replicates (0.92), which was also comparable to our overall integration

using all samples (0.863) (refer to Figure 2.11).

Supplemental Note 2. (modeling gestational age in downstream analysis)

As mentioned previously, difficulties are encountered in studying pre-eclamptic diseases due

to challenges in matching controls. Placentas affected by early-onset pre-eclampsia (eoPE)

typically occur prematurely. While gestational age-matched counterparts without

hypertensive conditions could potentially serve as controls, they often present with other

underlying obstetric pathologies that lead to preterm birth. Therefore, healthy term samples

were included as controls in this thesis, with an additional integration of other preterm

datasets to account for the confounding effects of gestational age. In the explorative pilot-

study setting of this dissertation, efforts were concentrated on developing a model to

longitudinally explore pathomechanisms, hence recruitment focused on the most severe fetal

involvement in the disease, fetal growth restriction (FGR). This approach facilitated the

presentation of a homogeneous study population, albeit at the expense of depicting the full

heterogeneity of the syndrome, such as maternal organ dysfunctions like pulmonary edema

or acute kidney insufficiency associated with preeclampsia. FGR was also considered as a

potential confounder in our corrections, and clinical cohorts were utilized to validate findings

from the adjusted snRNA-seq data. FGR, along with preterm birth, can occur independently

of eoPE, potentially overlaying a specific transcriptional profile. For the first time, the multi-

omics profile of the preeclamptic maternal-fetal interface is demonstrated with

comprehensive adjustment for clinical, biological, and technical confounders.
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All Supplementary Tables are enclosed in the FU Box with controlled access to the reviewers

and doctoral committee. The detailed description of the files are summarized below:

Supplementary Table 1: Detailed snRNAseq and validation pregnancy cohorts’
characteristics
Detailed maternal characteristics from both early and late pregnancy tissue samples of

control and early onset pre-eclampsia, utilized for snRNAseq, are provided, categorized by

sample ID. Additional tabs include summaries of baseline characteristics comparing groups

across our multi-site and large-scale cohorts.

Supplementary Table 2: Cell type or state composition per biological sample
sequenced.
The first tab presents the contribution of nuclei numbers per condition, including early and

term late controls, as well as pregnancies with early onset pre-eclampsia (eoPE). Each

biological replicate was annotated to a specific cell type or state in the maternal-fetal

interface, with contributions provided as both absolute and relative values, categorized by

gestational age, timepoint, and condition. Additionally, the total number of cells per donor,

condition, and cell type/state were reported. The second and third tabs organized the data by

tissue of origin.

Supplementary Table 3: Quality Control metrics for Placenta villi
A comprehensive table detailing placenta quality control (QC) measures at various stages:

CellRanger metrics, including mean reads per cell, reads confidently mapped to the genome,

and fraction of reads in cells; Cellbender filtering outcomes post removal of ambient RNA

and random barcode swapping; Scanpy filtering results; and final downstream filtering

statistics. For each step, the estimated number of cells, median number of unique molecular

identifiers (UMI), and median number of genes per sample were reported at the donor level

in the first tab, while the second tab presents these metrics at the cell level. Additional

metrics included are total UMI counts (total_counts), number of genes with at least one count

(n_genes_by_counts), and the percentage of mitochondrial transcripts per nuclei

(pct_counts_MT_genes).

Supplementary Table 4: Quality Control metrics for Decidua
A detailed table summarizing the quality control (QC) assessments of decidua tissue at

various stages: CellRanger metrics including mean reads per cell, reads confidently mapped

to the genome, and fraction of reads in cells; outcomes of Cellbender filtering post-removal of
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ambient RNA and random barcode swapping; results of Scanpy filtering; and final

downstream filtering outcomes. The estimated number of cells, median number of unique

molecular identifiers (UMI), and median number of genes per sample at each QC step are

reported at the donor level in the first tab, while the second tab provides these metrics at the

cell level. Additional metrics such as total UMI counts (total_counts), number of genes with at

least one count (n_genes_by_counts), and the percentage of mitochondrial transcripts per

nuclei (pct_counts_MT_genes) are also included.

Supplementary Table 5: Quality Control metrics for each cell type/state of placenta
and decidua.
Total number of UMI counts (total_counts), number of genes with at least one count per

nuclei(n_genes_by_counts), %MT-transcripts per nuclei (pct_counts_MT_genes) are

reported for each cell type/state.

Supplementary Table 6: Investigation of batch-effects using technical parameters.
The cell-type/state metrics, including absolute silhouette width (ASW), adjusted rand index

(ARI), and adjusted mutual information (AMI) scores, are organized into a table per batch,

particularly focusing on technical replicates (samples 557_1 and 557_2), late term and early

onset pre-eclampsia (eoPE) pregnancies in the first tab, and early pregnancy in the second

tab. Additionally, comparisons between our study metrics and those from published datasets

are presented in the third tab. ASW values were standardized from 0 to 1, where a score of 1

denotes perfect integration or batch removal. Scores close to zero for ARI/AMI indicate that

the batch and cluster labels are independent of each other.

Supplementary Table 7: Markers identifying annotated cell types and states.
The summary presents significant differential genes identified through logistic regression

analysis, following covariate correction, that characterize each annotated cell type or state as

described in the thesis. These lists were organized based on the tissue of origin (placenta,

decidua). The criteria for inclusion are restricted to Bonferroni-adjusted p-values less than

0.05 and log2 fold-change within ± 0.25. Additionally, significant markers relative to vSTB1/2

compared to vSTBjuv were identified using logistic regression, with the list restricted to

Bonferroni-adjusted p-values less than 0.01 and log2 fold-change within ± 0.25; the top 100

markers were reported. To avoid composition bias, the number of vSTB1/2 was

downsampled to match that of vSTBjuv, as detailed in the third tab.
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Supplementary Table 8: Pique-Regi samples QC.
Quality control (QC) metrics are presented for the integrated Pique-Regi samples,

comprising 16 samples including placental villi and basal plates. For each sample, the

estimated number of cells, median mapped reads per cell, and median number of genes and

unique molecular identifiers (UMI) per cell are reported. These QC metrics are then

compared between the values reported in Regi et al.'s study published in eLife 2019 and

those obtained from our Cellranger run.

Supplementary Table 9: Investigation of batch-effects of harmonized 10X snRNA-seq
with external scRNA-seq data (Pique-Regi et. al 2019).
The table presents the absolute silhouette width (ASW), adjusted rand index (ARI), and

adjusted mutual information (AMI) scores per batch for placenta and decidua. These metrics

are reported for conserved cell types/states that were validated by key markers in both

datasets. ASW values range from 0 to 1, where 1 indicates perfect integration or batch

removal. ARI/AMI scores close to zero suggest that the batch and cluster labels are

independent of each other. Additionally, the composition of conserved cell types/states

between the two integrated datasets is provided in a separate tab.

Supplementary Table 10: Preterm genes per cell annotated cell type or state.
Gene sets associated with preterm birth were identified by comparing preterm versus term

controls for each conserved cell type/state following data harmonization using

snRNA/scRNA-seq data, as outlined in the Methods section. The analysis employed the scVI

(change mode) algorithm. Metrics including proba_de (probability of a gene to be differential),

bayes Factor, LFC (log-fold change), cell-type proportions (non-zeros proportion), and raw

normalized mean counts are reported for both preterm (group 1) and term (group 2) samples.

Consistent with scVI conventions, the mean, median, and standard deviation (std) are

reported for the LFC effect size variable. Results are presented separately for placenta (first

tab) and decidua (second tab).

Supplementary Table 11: eoPE markers per cell type/state.
Differential expression analysis between eoPE and late term pregnancy controls was

conducted using multivariate logistic regression. Bonferroni adjustments were applied to p-

values for various factors, including the number of UMIs, gene counts, % mitochondrial

transcripts, % sex transcripts, and preterm gene scores per nucleus. The resulting list is

limited to Bonferroni adjusted p-values < 0.05 and log2 fold-change within ± 0.25. Tabs

categorize the results based on cell type/state.
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Supplementary Table 12: Differentially expressed genes overlapping in villi
compartments.
Significantly dysregulated genes in early onset pre-eclampsia that overlap between Immune,

Meso/endothelial and Trophoblast villi compartments.

Supplementary Table 13: Receptor ligand interaction analyses
Receptor ligand differentially upregulated interactions of secreted vSTB and highly

expressed dDSTB ligands in eoPE binding to maternal dVEC and dSMC. dEVT ligands

interacting with decidua; vCCT ligands interacting with decidua matrisome; up/downregulated

interactions within villi and within decidua.

Supplementary Table 14: Pathway enrichment analysis of syncytiotrophoblast
functional states- STB1 and STB2.
Metascape enrichment analysis of eoPE genes uniquely dysregulated in vSTB1 (first tab);

vSTB2 (second tab); vSTBjuv (third tab) and iRegulon identified transcription factors for

enriched unique STB targets (fourth tab). eoPE genes were as per Supplementary Table 11.

Supplementary Table 15: List of syncytial fusion genes and p300 targets.
A compilation of fusion genes associated with placental morphogenesis and physiology is

presented in the first tab, while the second tab contains a roster of iRegulon-predicted p300

targets (totaling 133), identified with an enrichment score cutoff of 1.5 and FDR < 0.001.

These targets were selected based on a putative regulatory region centered 20 Kb around

the transcription start site. The third tab features a gene-attribute matrix detailing gene-

transcription factor associations derived from DNA-binding ChIP-seq data obtained from the

ENCODE database.

Supplementary Table 16: Recapitulation of early villi trophoblast development.
The complete catalog of developmental regulators is provided per lineage of early villi

trophoblast trajectory. Genes are categorized by trophoblast cell type and their role in

transitions (dynamic expression across pseudotime) and leaf nodes (characterizing cell-fate

commitment per lineage). Both shared and unique transition or leaf genes per path are

included. Additionally, the hypergeometric test assessing the significance of overlap between

transition markers (positively correlated with pseudotime) and early onset pre-eclampsia

(eoPE) markers listed in Supplementary Table 11 is presented in the fourth tab.
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Supplementary Table 17: Spatial proteomic results from early villi tissues.
The average gene Z-scores derived from the villi spatial proteomics analysis are presented in

the first tab. Proteins that coincide with transition genes in the trophoblast trajectory were

listed in the second and third tabs. A summary of the individual biological replicates (P) and

technical replicate Z-scores, contributing to the mean cell type score, is provided in the last

tab.

Supplementary Table 18: Syncytiotrophoblast dysregulated genes associated with a
senescence secretory phenotype.
The intersection of dysregulated genes within the syncytiotrophoblast nuclei states is

examined. Genes present in one or more of these states are linked to a senescence

phenotype compartment through comparison with the human Senescence Associated

Proteins (SASP) atlas (PMID: 31945054).

Supplementary Table 19: Pathway enrichment analysis of dysregulated eoPE genes
encompassing lymphoid and myeloid cell types or states at maternal-fetal interface.
Enrichment analysis conducted via Metascape revealed pathways and processes associated

with dysregulated eoPE genes in lymphoid cell types, including dNK1, dNK2, and dT cells

(first tab), as well as myeloid cell types, such as dMono1, dMAC1, dMAC2, and vHBC

(second tab). eoPE genes were as per Supplementary Table 11.

Supplementary Table 20: Pathway enrichment analysis of commonly affected vSTB
eoPE genes co-regulated by at least 5 transcription factors/co-regulators.
Metascape enrichment analysis unveiled pathways and processes associated with genes

implicated in early-onset pre-eclampsia (eoPE). These genes were found to be dysregulated

in at least two villous syncytiotrophoblast (vSTB) sub-states and were inferred to be co-

regulated by at least 5 transcription factors/co-regulators, including EP300. Detailed

information regarding the eoPE genes can be found in Supplementary Table 11.

Supplementary Table 21: List of abbreviations for gene names discussed in the
maternal-fetal interface study.

Supplementary Table 22: Quality Control metrics and composition analysis of 5
panNEC samples.
A comprehensive table summarizing the quality control (QC) assessments of panNEC

patient samples (n=5) at various stages, including SoupX and Seurat filtered matrices. The

table presents the estimated number of nuclei, median number of unique molecular
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identifiers (UMI), and median number of genes per sample at each QC step at the donor

level in the first tab. The second tab provides these metrics at the cell level. Additional

metrics such as total UMI counts (total_counts), number of genes with at least one count

(n_genes_by_counts), and the percentage of mitochondrial transcripts per nuclei

(pct_counts_MT_genes) are also included. The third tab displays the distribution of nuclei

numbers across panNEC sub-states for each patient sample.

Supplementary Table 23: Markers annotating panNEC sub-states.
The summary outlines significant differentially expressed genes identified via multi-variate

logistic regression analysis, with covariate correction, delineating each annotated panNEC

sub-state as outlined in the thesis. Inclusion criteria were limited to Bonferroni-adjusted p-

values below 0.01 and log2 fold-change within ± 0.25.

Supplementary Table 24: Differentially expressed pathways associated with shared
panNEC sub-states and amphicrine progenitor-like.
Metascape enrichment analysis revealed pathways and processes linked to differentially

upregulated genes (log2 fold-change >= 0.25 and Bonferroni-adjusted p-values < 0.01)

across shared sub-states, including NE, NE proliferating, NE HSP+ (hypoxic), NE Stromal-

like, and Stromal (normal). Additionally, pathways associated with Amphicrine progenitor-like

cells were documented to corroborate the findings presented in Figure 5.9.

Supplementary Table 25: Signature lists associated with module score analysis.
Gene lists used for computing module scores for analysis presented in Figure 5.11

(pancreatic developmental signatures; first tab), Figure 5.13 (neuroendocrine lung and

prostate cancer subtypes and subclasses signatures; second tab), Figure 5.14 (PDAC; third

tab), Figure 5.16 (PTF1A, PAX6 and NKX2-2 brain and pancreas targets; fourth tab).

Supplementary Table 26: iRegulon inferred transcription factors regulating EZH2 brain
targets.
List of regulated targets controlled by REST, GFI1, TEAD4, and NKX2.5 (first tab) and their

intersection (second tab). The TF/regulators were predicted by applying iRegulon on the list

of EZH2 regulated brain targets.

Supplementary Table 27: List of abbreviations for gene names discussed in the
panNEC study.
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11.Abbreviations

ARI Adjusted rand index
AMI Adjusted mutual information
ASW Absolute silhouette width
Bcell B lymphocyte
BBKNN Batch Balanced k-Nearest Neighbors
CCT Cell column trophoblast
CTB Cytotrophoblast
CTBp Cytotrophoblast proliferating
CTBpf Cytotrophoblast pre-fusion
DC Dendritic Cells
DSTB Deported syncytiotrophoblast
DSC Decidua Stromal Cell
EB Erythroblast
EpC Epithelial Cell
eoPE Early onset pre-eclampsia
EVT Extravillous trophoblast
FB Fibroblast
GEP Gastroentereopancreatic
Granul Granulocyte
HBC Hofbauer cell
HBCp Hofbauer cell proliferating
IHC Immunohistochemistry
ISS In-situ sequencing
LEC Lymphatic endothelial cell
LECp Lymphatic endothelial cell progenitor
MAC1 M1-like macrophage
MAC2 M2-like macrophage
MC Myocyte
Mono Monocyte
MSC Mesenchymal stem cell
NE Neuroendocrine
NEC Neuroendocrine carcinoma
NEN Neuroendocrine neoplasm
NK Natural killer cell
NKp Natural killer cell proliferating
PAMM Placenta-associated maternal macrophage
panNEC Pancreatic NEC
PC Plasma Cell
PE Pre-eclampsia

pySCENIC
Python Single-Cell rEgulatory Network Inference and
Clustering

scRNA-
seq Single cell RNA sequencing
scVI single-cell Variational Inference
scANVI single-cell ANnotation using Variational Inference
snRNA-
seq Single nuclei RNA sequencing



Abbreviations

336

STB Syncytiotrophoblast
STBjuv Syncytiotrophoblast juvenile
SMC Smooth muscle cell
Tcell T lymphocyte
TF Transcription Factor
t-SNE t-distributed stochastic neighbor embedding
UMAP Uniform manifold approximation and projection

Prefix
d Denotes decidua as tissue of origin
v Denotes villi as tissue of origin

*Full gene names are supplied in Supplementary Table 21 (for maternal-fetal interface study)
and Supplementary Table 27 (for panNEC study)
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