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Abstract

Over the past decade, technological progress has facilitated profiling single cell and single
nuclei transcriptomes through innovative next-generation sequencing approaches that
empowered the exploration of cellular phenotypes in healthy and diseased tissues with
unprecedented precision. This dissertation aimed to unravel a deep understanding of human
development and disease biology by studying the underlying cellular architecture and
molecular mechanisms using single nuclei RNA sequencing (snRNA-seq). Specifically, two
distinct systems were investigated, namely, a) maternal-fetal interface in healthy and early-
onset pre-eclamptic pregnancies that comprised of human decidua and placenta and b)
pancreatic neuroendocrine carcinoma and its comparison with healthy adult pancreatic cell

types or states.

Pre-eclampsia (PE) stands out as one of the most severe pregnancy disorders,
characterized by hypertension, proteinuria, cardio-metabolic dysfunctions, and various multi-
organ complications, ultimately leading to preterm delivery, maternal mortality, and
associated morbidities. Early-onset pre-eclampsia (eoPE) is particularly formidable, typically
necessitating delivery before the 34th week of gestation and leading to approximately 80,000
maternal and 500,000 fetal deaths annually. Importantly, eoPE currently lacks adequate
biomarkers for early screening and clinical management. Diagnosis relies solely on clinical
and biomarker signs in late pregnancy, where maternal and fetal morbidity is often
irreversible. This dissertation presents a comprehensive cell atlas of the human maternal-
fetal interface, comprising of around 225,000 nuclei from the maternal decidua and fetal
placenta obtained during the first trimester, healthy term and eoPE pregnancies, utilizing
complex snRNA-seq data harmonization. A novel nuclear state termed juvenile
syncytiotrophoblast (STBjuv) was identified, demonstrating previously unexplored
transcriptomic diversity and a division of labor within the placental syncytiotrophoblast.
Notably, the comparative analysis of decidua and placenta samples from term controls and
eoPE revealed differences in composition, differential gene expression and transcriptional
regulation patterns, along with changes in signaling pathways. These findings provide
mechanistic insights into cell type or state-specific dysregulations occurring in eoPE.
Moreover, employing advanced spatial transcriptomics techniques such as In-situ RNA
sequencing (ISS) and 10X Visium sequencing facilitated the spatial delineation of cell types
and states within the human placenta and established a connection between spatial and
transcriptomic heterogeneity, presenting a novel discovery in this evolving field of pregnancy

research.
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The computational analysis identified a dysregulated syncytiotrophoblast development to
serve as an initiation point for eoPE that is characterized by perturbations in transcriptional
factors/co-activators, specifically the master-regulator EP300, FOX0O1, SCRT2, FOX04, FOS,
and PAXS. Significantly, the enriched transcriptional regulators exhibited a noteworthy
overlap in their downstream targets, imparting functional implications across various
signaling pathways, including HIF1, AP1, TGFb, Wnt, PI3K-Akt signaling, and vesicle-
mediated transport. Of note, a significant proportion of the perturbed syncytiotrophoblast
differentiation drivers included EP300 (or, p300) regulated fusogenic targets that suggest
impaired trophoblast syncytialization as a significant contributing factor in the development of
eoPE.

Significantly, the discoveries from this work indicate that eoPE possibly originates in the
outer syncytiotrophoblast sub-states in the fetal placenta and is marked by an augmented
senescence-associated secretory phenotype (SASP) profile. The heightened senescence
resulted from elevated ligand pressure, facilitated by the secretion of GDF15, INHBA,
HSPG2, MIF, TGM2, ADAM9, and ADAM12 that could potentially traverse the maternal-fetal
interface, and translate the disease from the fetal to the maternal side. Of note, In-situ RNA
sequencing (ISS) analysis unveiled a statistically significant proximity between the senescent
marker (INHBA) and markers of fetal vessels in eoPE. This association is not detected in
term controls. Consequently, the findings of this thesis emphasize that a disrupted
communication between syncytiotrophoblast sub-states and maternal decidua is the key to a
dysregulated maternal-fetal barrier and potentially compromised maternal uterine vessel
remodeling in eoPE. Remarkably, the presented data suggest a potential strategy for the
prevention, intervention, and clinical management of eoPE through the pharmacological
inhibition of these ligands associated with the senescence-associated secretory phenotype
(SASP), including GDF15, HSPG2 and INHBA.

The subsequent chapter of this dissertation delved into the molecular intricacies guiding the
development of healthy pancreatic islets— specifically, the beta cell type, and next assessed
the role of these differentiation drivers in the context of pancreatic cancer. Specifically, this
thesis focused on high-grade pancreatic neuroendocrine carcinoma (panNEC) with large cell
morphology, a subtype presenting challenges in classification and treatment. While
advancements in molecular genetics have progressively uncovered significant inter-tumor
heterogeneity, there remains an unexplored realm regarding the extent of intra-tumoral
heterogeneity and lineage plasticity. Like the pre-eclampsia study, a snRNA-seq approach

was utilized to deconstruct the cellular landscape of panNEC that delineated both shared and
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unique malignant sub-states associated with specific signaling pathways and transcriptomic

regulatory programs driving tumor pathophysiology and heterogeneous clinical behavior.

Notably, this work identified a shared neuroendocrine sub-state characterized by robust
induction of heat shock protein encoding mRNA (HSP+), exhibiting signatures indicative of
activation of the unfolded protein response, hypoxia, mTORC/PI3K-AKT signaling, and
glycolytic shift. In one patient sample, a unique stromal sub-state depicted enriched
YAP/TAZ-associated Hippo signaling alongside mesenchymal and basaloid programs
expression, reflecting transcriptomic similarities with pancreatic ductal-adenocarcinoma
(PDAC). Furthermore, one of the shared neuroendocrine sub-states was highly proliferative
and was characterized by overexpressed E2F targets, including Enhancer of Zeste homolog
2 (EZH2). Notably, this sub-state demonstrated significant enrichment for PTF1A-regulated
targets specific to the brain while repressing the pancreas-specific targets. This observation
suggests a shift from a pancreatic lineage program in the cell of origin towards a more
generic neuronal phenotype and a concomitant enrichment of signatures related to the DNA
damage response, vulnerabilities in cancer stem cells, and chemotherapeutic resistance. Of
note, this de-differentiated neuronal program could be exploited as the achilles heel of

panNEC for devising therapeutic strategies.

Hence, the presented data unmasked considerable heterogeneity and therapeutic
vulnerabilities in high-grade panNEC, emphasizing the importance of tumor profiling for
personalized treatment approaches. Of note, it highlights the prospect of clinical intervention
to target two shared neuroendocrine sub-states suggesting the feasibility of personalized

combination therapies in clinical settings.

In a nutshell, this dissertation extensively explored two distinct but critical systems at a
cellular resolution in the context of disease development and progression. The snRNA-seq
approach presented an unbiased and deep understanding of disease biology that
demonstrated significant translational potential. Notably, in both systems, specific cell (or,
nuclear) sub-states were ascribed to the disease origin that added to our understanding on
how a disease evolves on a molecular level and suggested potential avenues for therapeutic
development. This transition from concentrating on a single molecular target to addressing
the underlying cellular dysfunction presents novel opportunities for the clinical targeting of

cellular signatures for complex diseases and for developing a new generation of therapeutics.
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Zusammenfassung

In den letzten zehn Jahren hat der technologische Fortschritt die Erstellung von Profilen der
Transkriptome einzelner Zellen und Zellkerne durch innovative Sequenzierungsansatze der
nachsten Generation erleichtert, die die Erforschung zellularer Phanotypen in gesunden und
kranken Geweben mit bisher unerreichter Prazision erméglichen. Ziel dieser Dissertation war
es, durch die Untersuchung der zugrundeliegenden zellularen Architektur und molekularen
Mechanismen mit Hilfe der Einzelkern-RNA-Sequenzierung (snRNA-seq) ein tieferes
Verstandnis der menschlichen Entwicklung und Krankheitsbiologie zu erlangen. Konkret
wurden zwei verschiedene Systeme untersucht, namlich a) die matterlich-fotale Schnittstelle
in gesunden und frih einsetzenden praeklampsischen Schwangerschaften, die aus
menschlicher Dezidua und Plazenta besteht, und b) das neuroendokrine Pankreaskarzinom

und sein Vergleich mit gesunden erwachsenen Pankreaszelltypen oder -zustanden.

Praeklampsie (PE) ist eine der schwersten Schwangerschaftserkrankungen und ist durch
Bluthochdruck, Proteinurie, kardio-metabolische Stérungen und verschiedene Multiorgan-
Komplikationen gekennzeichnet.Letztlich flhrt sie zu Frihgeburten, Muttersterblichkeit und
damit verbundenen Krankheiten. Besonders bedrohlich ist die frih einsetzende
Praeklampsie (eoPE), die in der Regel eine Entbindung vor der 34. Schwangerschaftswoche
erforderlich macht und jahrlich zu etwa 80 000 mutterlichen und 500 000 fétalen Todesfallen
fuhrt. Wichtig ist, dass es bei eoPE derzeit keine geeigneten Biomarker fir ein frihzeitiges
Screening und klinisches Management gibt. Die Diagnose stitzt sich ausschlie8lich auf
klinische Anzeichen und Biomarker in der Spatschwangerschaft, wo die mitterliche und
fetale Morbiditat oft irreversibel ist. In dieser Dissertation wird zum ersten Mal ein
umfassender Zellatlas der menschlichen mitterlich-fetalen Schnittstelle vorgestellt, der
225.000 Zellkerne aus der miutterlichen Dezidua und der fetalen Plazenta umfasst, die
wahrend des ersten Trimesters, gesunder Terminschwangerschaften und eoPE-
Schwangerschaften  gewonnen  wurden, wobei eine komplexe snRNA-seg-
Datenharmonisierung eingesetzt wurde. Es wurde ein neuartiger Kernzustand identifiziert,
der als juveniler Synzytiotrophoblast (STBjuv) bezeichnet wird und eine bisher unerforschte
transkriptomische Vielfalt sowie eine Arbeitsteilung innerhalb des plazentaren
Synzytiotrophoblasten  aufzeigt. Die vergleichende Analyse von Dezidua- und
Plazentaproben von Terminkontrollen und eoPE ergab Unterschiede in der
Zusammensetzung, der differentiellen Genexpression und den Mustern der
Transkriptionsregulierung sowie Veranderungen in den SignalUbertragungswegen. Diese

Ergebnisse liefern mechanistische Einblicke in zelltyp- oder zustandsspezifische
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Dysregulationen, die bei eoPE auftreten. Darlber hinaus erleichterte der Einsatz
fortschrittlicher rdumlicher Transkriptomik-Techniken wie In-situ-RNA-Sequenzierung (ISS)
und 10-fache Visium-Sequenzierung die raumliche Abgrenzung von Zelltypen und -
zustanden innerhalb der menschlichen Plazenta und stellte eine Verbindung zwischen
raumlicher und transkriptomischer Heterogenitat her, was eine neue Entdeckung in diesem

sich entwickelnden Bereich der Schwangerschaftsforschung darstellit.

Die computergestitzte Analyse identifizierte eine dysregulierte Synzytiotrophoblasten-
Entwicklung, die als Initiationspunkt flr eoPE dient und durch Stérungen bei
Transkriptionsfaktoren/Co-Aktivatoren gekennzeichnet ist, insbesondere dem Master-
Regulator EP300, FOXO1, SCRT2, FOX04, FOS und PAX5. Es ist bezeichnend, dass die
angereicherten Transkriptionsregulatoren eine bemerkenswerte Uberschneidung bei ihren
nachgeschalteten Zielen aufweisen, was funktionelle Auswirkungen auf verschiedene
Signalwege hat, darunter HIF1, AP1, TGFb, Wnt, PI3K-Akt-Signalisierung und Vesikel-
vermittelter Transport. Bemerkenswert ist, dass ein signifikanter Anteil der gestorten
Synzytiotrophoblasten-Differenzierungstreiber  EP300/p300-regulierte  fusogene  Ziele
umfasste, was darauf hindeutet, dass eine gestorte Trophoblasten-Synzytialisierung ein

wesentlicher Faktor fiir die Entwicklung von eoPE ist.

Die Entdeckungen dieser Arbeit deuten stark darauf hin, dass eoPE in den &ufleren
Synzytiotrophoblasten-Substadien der fetalen Plazenta entsteht und durch ein erhdhtes
Profil des Seneszenz-assoziierten sekretorischen Phanotyps (SASP) gekennzeichnet ist. Die
erhdhte Seneszenz resultiert aus einem erhéhten Ligandendruck, der durch die Sekretion
von GDF15, INHBA, HSPG2, MIF, TGM2, ADAMY, und ADAM12 beglnstigt wird, die
potenziell die mutterlich-fetale Schnittstelle passieren und die Krankheit von der fetalen auf
die mutterliche Seite Ubertragen koénnten. Bemerkenswert ist, dass die In-situ-RNA-
Sequenzierungsanalyse (ISS) eine statistisch signifikante Ahnlichkeit zwischen dem
Seneszenzmarker (INHBA) und Markern der fetalen Gefalie bei eoPE aufdeckte. Diese
Assoziation wurde bei Terminkontrollen nicht festgestellt. Folglich unterstreichen die
Ergebnisse  dieser Arbeit, dass eine gestdorte = Kommunikation  zwischen
Synzytiotrophoblasten-Subzustanden und der mitterlichen Dezidua der Schllissel zu einer
dysregulierten mtterlich-fetalen Barriere und einem potenziell beeintrachtigten mitterlichen
UterusgefaBumbau bei eoPE ist. Bemerkenswerterweise legen die vorgestellten Daten eine
potenzielle Strategie zur Pravention, Intervention und klinischen Behandlung von eoPE durch
die pharmakologische Hemmung dieser Liganden nahe, die mit dem seneszenzassoziierten
sekretorischen Phanotyp (SASP) assoziiert sind, einschliellich GDF15, HSPGZ2 und INHBA.
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Das folgende Kapitel dieser Dissertation befasste sich mit den molekularen Feinheiten der
Entwicklung gesunder Pankreasinseln, einschlief3lich der Beta- und Alphazelltypen, und
bewertete anschlieBend die Rolle dieser Differenzierungsfaktoren im Zusammenhang mit
Pankreaskrebs. Im Mittelpunkt dieser Arbeit stand das hochgradige neuroendokrine
Karzinom der Bauchspeicheldrise (panNEC) mit grof3zelliger Morphologie, ein Subtyp, der
eine Herausforderung bei der Klassifizierung und Behandlung darstellt. Wahrend Fortschritte
in der Molekulargenetik nach und nach eine erhebliche Heterogenitat zwischen den Tumoren
aufgedeckt haben, bleibt das Ausmal der intra-tumoralen Heterogenitat und die Plastizitat
der Abstammung unerforscht. Wie bei der Praeklampsie-Studie wurde ein snRNA-seq-
Ansatz verwendet, um die zelluldre Landschaft von panNEC zu dekonstruieren. Dabei
wurden sowohl gemeinsame als auch einzigartige maligne Unterzustande beschrieben, die
mit spezifischen Signalwegen und transkriptomischen Regulationsprogrammen verbunden
sind, die die Pathophysiologie und das heterogene klinische Verhalten des Tumors

bestimmen.

In dieser Arbeit wurde ein gemeinsamer neuroendokriner Substatus identifiziert, der durch
eine starke Induktion von Hitzeschockprotein-mRNA (HSP+) gekennzeichnet ist und
Signaturen aufweist, die auf eine Aktivierung der "Unfolded Protein Response”, Hypoxie,
mTORC/PI3K-AKT-Signalisierung und eine glykolytische Verschiebung hinweisen. In einer
Patientenprobe zeigte sich ein einzigartiger stromalahnlicher Sub-Status mit angereicherter
YAP/TAZ-assoziierter Hippo-Signalisierung neben der Expression mesenchymaler und
basaloider Programme, was transkriptomische Ahnlichkeiten mit dem duktalen Pankreas-
Adenokarzinom (PDAC) widerspiegelt. Dariber hinaus war einer der gemeinsamen
neuroendokrinen  Substadien hochgradig proliferativ. und zeichnete sich durch
Uberexprimierte E2F-Ziele aus, darunter Enhancer of Zeste homolog 2 (EZH2).
Bemerkenswerterweise zeigte dieser Subtype eine signifikante Anreicherung von PTF1A-
Zielgenen, die gewebespezifisch im Gehirn exprimiert werden, wahrend die Pankreas-
spezifische Zielgene unterdriickt wurden. Diese Beobachtung deutet auf eine Verschiebung
der =zellularen Identitdt von einem pankreatischen Abstammungsprogramm in der
Ursprungszelle hin zu einem allgemeineren neuronalen Phanotyp hin, und einer damit
einhergehenden Anreicherung von Signaturen mit Bezug zu DNA-Reparaturprogrammen,
Krebsstammzellen und Chemotherapieresistenz. Méglicherweise konnte dieses gegenlber
dem Organgewebe dedifferenzierte neuronale Programm als Achillesferse von panNEC flr

die Entwicklung therapeutischer Strategien genutzt werden.

Die vorgestellten Daten haben also eine betrachtliche Heterogenitdt und therapeutische

Schwachstellen bei hochgradigen panNEC aufgedeckt, was die Bedeutung der
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Tumorprofilierung fir personalisierte Behandlungsansatze unterstreicht. Bemerkenswert ist
auch die Aussicht auf klinische Interventionen, die auf zwei gemeinsame neuroendokrine
Substadien abzielen und die Machbarkeit personalisierter Kombinationstherapien im

klinischen Umfeld nahelegen.

Zusammenfassend lasst sich sagen, dass in dieser Dissertation zwei unterschiedliche, aber
kritische Systeme auf zellularer Ebene im Zusammenhang mit der Entstehung und dem
Fortschreiten von Krankheiten eingehend untersucht wurden. Der snRNA-seqg-Ansatz
ermOglichte ein unvoreingenommenes und tiefes Verstédndnis der Krankheitsbiologie,
welches ein erhebliches translationales Potenzial aufweist. Insbesondere wurden in beiden
Systemen spezifische Zell- (oder Kern-) Unterzustinde dem Krankheitsursprung
zugeschrieben, die zu unserem Verstandnis der Krankheitsentwicklung auf molekularer
Ebene beitrugen und mdégliche Wege fir die therapeutische Entwicklung aufzeigten. Dieser
Ubergang von der Konzentration auf ein einzelnes molekulares Ziel zur Behandlung der
zugrundeliegenden zellularen Dysfunktion bietet neue Madoglichkeiten flr die Kklinische
Ausrichtung auf zellulare Signaturen fiir komplexe Krankheiten und fir die Entwicklung einer

neuen Generation von Therapeutika.
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Introduction

1 Introduction

Cells are the most fundamental unit of life on earth, and every multicellular organism critically
depends on the intricate interplay of a multitude of cells that contribute to the formation of
intricate tissues. The genesis of most multicellular organisms commences from a single cell,
involving a series of events encompassing cell division, differentiation, and specialization.
Through these processes, cells organize into distinct tissues, and organs assume specific

functions.

Despite sharing the same genetic code, these cells manifest remarkably diverse phenotypes.
The transcriptome serves as a pivotal mediator orchestrating distinct cell types and states
within functional tissues [1]. The foundational concept of cells serving as the fundamental
building blocks of organisms traces its roots to seminal works like the 'Cell Theory,
propounded by Rudolf Virchow and his contemporaries during the 19th century [2]. These
insights were forged through a culmination of two centuries of scientific exploration,
beginning with Robert Hooke's inaugural depiction of a cell in 1665, made possible by Antoni
van Leeuwenhoek's pioneering microscope [3]. After these pivotal revelations, investigators
have endeavored to categorize cells into distinct types characterized by their unique
responses and interactions with their surroundings, thereby influencing formation of tissues
and ultimately, entire organisms. The initial taxonomy was grounded in morphological
distinctions among cells. However, as our comprehension of the molecular mechanisms
governing cellular phenotypes has deepened, the classifications have evolved to encompass

the diverse molecular strata comprising DNA, RNA, and proteins.

Cellular organelles, including the nucleus, mitochondria, endoplasmic reticulum, and others,
play specialized roles in maintaining the structural and functional integrity of cells. Among
these organelles, the nucleus holds particular significance within the context of this
dissertation. It houses genetic material in the form of DNA, enclosed by a nuclear membrane
with pores that regulate molecular movement between the nucleus and cytoplasm. A
standard cell typically contains about 6 pg of DNA, 50,000-300,000 mRNA molecules (5-30
pg), and millions of proteins (20-200 pg) [4-6]. The nucleus assumes a crucial role in

governing gene expression and safeguarding the integrity of DNA.
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1.1 Central Dogma of life — from DNA to protein

Biological systems inherently exhibit a natural flow of information. Within cells, this
information flow entails the transfer of genetic information from DNA to RNA and, ultimately,
to proteins (Figure 1.1). In the initial step, transcription occurs within the nucleus, where a
segment of DNA is transcribed into RNA [7-9]. The resulting messenger RNA molecule
(mRNA) is then transported out of the nucleus to a ribosome, where the mRNA is decoded in
the translation process, giving rise to proteins that perform specific functions within or outside
the cell. The regulation of this information flow is a sophisticated and tightly controlled
process crucial for cellular functionality. Understanding the underlying mechanisms is
essential for advancing our comprehension of molecular cell biology and developing new

therapeutic strategies.

1.1.1 Decoding life's blueprint — DNA and the genome

The genome serves as the intricate blueprint that choreographs the complexity of life within
organisms, encapsulating the complete set of genetic instructions essential for their growth,
development, and functioning. At the heart of this genetic blueprint lies the remarkable

interplay of genes, DNA, and the fundamental process of replication.

Human genetic information is comprised of DNA molecules organized into condensed
structures known as chromosomes. Somatic cells, found in most tissues, possess two sets of
chromosomes totalling 46 (44 autosomal and two sex chromosomes), while cells in the
human reproductive system carry only half, or 23 chromosomes (22 autosomal and one sex
chromosome), facilitating their fusion during fertilization to generate a new organism with a
distinct combination of genetic material from both parents [10-12]. The DNA molecule
exhibits a double helix structure, consisting of pairs of four bases- cytosine (C), guanine (G),
adenine (A), and thymine (T). Each base is linked to a 2-deoxyribose sugar molecule and
three phosphate groups, forming the basic building block of DNA, a nucleotide. Adhering to
specific base-pairing rules, A pairs with T, and C pairs with G, establishing hydrogen bonds
that maintain the structural integrity of the DNA. The sequence of these bases along the DNA

strands forms the genetic code, akin to the language that directs the synthesis of proteins.

Replication, a fundamental biological process, ensures the faithful transmission of genetic
information from one generation of cells to the next. Replication involves the unwinding of the
DNA double helix, followed by the synthesis of complementary strands facilitated by the DNA
polymerase enzyme [13, 14]. This meticulous process guarantees that each daughter cell
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inherits a complete and accurate copy of the genetic material, maintaining the continuity and

integrity of the genomic information.

1.1.2 RNA Symphony- gene expression dynamics and the transcriptome

Ribonucleic Acid (RNA) stands as a versatile and dynamic macromolecule crucial for various
cellular functions. Derived from DNA through the process of transcription, RNA comes in
different forms, each serving specific roles within the cell. Contrasting with DNA, the
nucleotides found in RNA molecules contain ribose sugar (as opposed to 2-deoxyribose),
three phosphate groups, and feature uracil (U) in lieu of thymine (T). RNA can be
categorized into two major groups: coding and non-coding [15, 16]. Transfer RNA (tRNA)
assists in assembling amino acids during protein synthesis, and ribosomal RNA (rRNA)
forms an integral part of the cellular machinery responsible for protein production. Both tRNA
and rRNA represent non-coding RNA. Given that the research presented in this thesis
centres on analysing expression of protein-coding genes, the subsequent section will

exclusively concentrate on coding RNA.

Messenger RNA (mRNA) [15] carries the genetic instructions from DNA to the ribosomes,
where proteins are synthesized. mRNA synthesis is accomplished through the process of
transcription that begins with an initiation phase, where an enzyme called DNA-dependent
RNA polymerase binds to a specific region of DNA known as the promoter. The promoter
region acts as a signal for the start of transcription and provides a binding site for RNA
polymerase. Once bound to the promoter, RNA polymerase unwinds the DNA double helix,
exposing a segment of the DNA template. This exposed DNA strand serves as the template
for the synthesis of a complementary RNA molecule. As RNA polymerase moves along the
template, it catalyzes the addition of nucleotides to the growing RNA chain, following the
base-pairing rules: adenine (A) pairs with uracil (U), guanine (G) pairs with cytosine (C). The
elongation phase continues until RNA polymerase reaches a termination signal in the DNA
sequence. At this point, the newly synthesized RNA molecule is released, and RNA
polymerase detaches from the DNA template. The transcribed RNA molecule, often referred
to as pre-mRNA, undergoes further post-transcriptional processing steps, including splicing,
5 end capping and 3’ end polyadenylation. Of note, splicing indicates the removal of non-
coding regions (introns) and the joining together of coding regions (exons). On the other
hand, a modified guanine nucleotide is added at the 5' end of the pre-mature mRNA. This
cap structure not only protects the RNA from degradation but also facilitates its transport out
of the nucleus and aids in translation initiation during protein synthesis. At the 3' end of the

pre-mature mRNA, a poly-A tail composed of adenine nucleotides is added. This
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polyadenylation contributes to mRNA stability, enhances mRNA export from the nucleus, and
influences translation efficiency. Hence, these post-transcriptional modifications contribute to
the complexity and diversity of the transcriptome, allowing cells to fine-tune gene expression
in response to internal and external signals. Subsequently, the final mature mRNA is then
transported out of the nucleus and into the cytoplasm, where it serves as a template for

protein synthesis during the process of translation [17].

The transcriptome, in essence, represents the complete set of RNA molecules present in a
cell at any given moment. It provides a dynamic snapshot of the cellular activity, reflecting
not only the genes expressed but also the complex regulatory networks underlying cellular
functions. Understanding the transcriptome is akin to deciphering the symphony of genetic
expression that underlies the diverse cellular phenotypes observed in different physiological

states or environmental conditions.

However, in 1970, the concept of reverse transcription, a reversal of the flow of genetic
information, was first elucidated in viruses [18]. This phenomenon involves the conversion of
RNA into a DNA molecule and is facilitated by the enzyme RNA-dependent DNA polymerase,
commonly known as reverse transcriptase. This enzymatic process enables the virus to
integrate its genetic material into the host cell's genome, effectively co-opting the cellular
machinery to synthesize viral proteins and assemble new viral particles. The revelation of
reverse transcription marked a groundbreaking moment in molecular biology, giving rise to
the ability to generate complementary DNA (cDNA) from RNA molecules [18]. This technique
has since become a pivotal tool in research, particularly for quantifying mRNA levels in cells
and tissue samples to investigate gene expression. Additionally, it has found widespread

utility in various applications such as cloning and vaccine development.

1.1.3 Probing the proteome — decoding protein function and diversity

Proteins are complex macromolecules essential for the structure, function, and regulation of
cells. Composed of amino acid chains folded into unique three-dimensional structures,
proteins carry out diverse biological functions. They serve as enzymes catalyzing
biochemical reactions, structural components providing cellular support, transporters
facilitating the movement of molecules, and signalling molecules regulating various cellular

processes.

Translation [17] is a central process in molecular biology where the genetic information
encoded in mMRNA (messenger RNA) is used to synthesize proteins. It is achieved with the
4
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help of ribosomes, which read the mRNA codons and recruit corresponding amino acids. A
complex interplay of transfer RNA (tRNA) molecules ensures the accurate alignment of
amino acids, forming a polypeptide chain. As the ribosome moves along the mRNA, the
amino acids are sequentially added, ultimately resulting in the synthesis of a functional
protein. In the translation process, proteins are constructed using a set of up to 20 amino
acids. The specific order of these amino acids is dictated by the sequence of nucleotides in
mRNA molecules. Each group of three consecutive nucleotides forms a codon, which serves

as either the starting or stopping point for translation, or codes for a single amino acid.

The proteome [19] encompasses the entire set of proteins expressed by an organism, tissue,
or cell at a specific time under defined conditions. The proteome is influenced by factors such
as genetics, environment, and cell state, making it a dynamic and informative reflection of the

cellular landscape [20, 21].

1.2 Cellular phenotypes — What is a cell type/state?

A cellular phenotype refers to a cell's observable characteristics or traits resulting from the
interactions between its genetic makeup and environment [1, 22]. These characteristics
include a cell's shape, size, behavior, and function. The phenotype of a cell is determined by
its genotype (the genetic information encoded in its DNA) and its environment (which can
include factors such as nutrients, chemical signals, temperature, and physical forces).
Changes in either the genotype or the environment can alter the phenotype of a cell [24].
Hence, the cell phenotype can provide important information about its health, developmental
stage, and function [23-25]. For example, abnormal cellular phenotypes are often associated
with several metabolic, hematology, oncology, and developmental diseases [26-32].
Investigating the changes in how cells behave can provide valuable insights into an
organism's underlying biology and disease mechanisms, and hence can help identify

markers for diseases and develop treatment strategies.

Our cells can be classified into different types based on structure, function, and molecular
markers. For example, humans have various types of cells, such as neurons, muscle cells,
skin cells, blood cells, and many more, each with unique structures and functions. In contrast,
cell states refer to the different states or stages that a cell can be in, which can be influenced
by various factors such as environmental conditions, developmental stage, and disease state.
For instance, differentiation during embryonic development starts with pluripotent stem cells
(PSCs), which exhibit the capability to differentiate into all cell types within an organism.

These cells possess the dual capacity to self-renew and generate daughter cells that retain
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their original state, and under specific conditions, can undergo differentiation into specialized
cell types. A mature cell may be in a more specialized and differentiated state with limited
potential change. Understanding cell types and states is critical to understanding how the
body works and how diseases develop, as well as developing therapies and treatments for

various diseases [33-35].

Traditionally, the classification of phenotypes at the individual cell level has predominantly
concentrated on protein identification through microscopy techniques, such as
immunofluorescence light microscopy. Over time, with continuous advancements in these
methodologies, the classification of cells based on imaging has evolved to include the
quantitative characterization of molecular features. This expanded scope encompasses the
assessment of RNA molecules through techniques like fluorescence in-situ hybridization
(RNA-FISH) and the examination of structural attributes of DNA using diverse fluorescent
dyes [36-38]. Nevertheless, it is important to note that these approaches necessitate a
prerequisite understanding of the target, such as knowledge of protein structure for epitope
detection via antibodies or awareness of RNA molecules for hybridization to a consensus

sequence.

1.2.1 Analysis of gene expression with next-generation sequencing

The initial stride toward an impartial approach for exploring the molecular makeup of cells
began with microarray technology. Microarrays operate on the principle of hybridization
between labeled target nucleic acids (e.g., DNA or RNA) from a sample and complementary
probe immobilized on a solid support [39]. The detection of hybridized targets allows the
simultaneous analysis of gene expression levels, genetic variations, or other genomic
features across thousands of genes. While this enabled profiling of many genes, the first
unbiased technique materialized with the capability to reconstruct the sequence of an
unidentified DNA molecule [40].

Presently, a diverse array of technologies, collectively termed next-generation sequencing
(NGS), empowers the precise determination of the sequence of any given DNA or RNA
molecule [41-43]. The Human Genome Project (HGP) played a pivotal role in revolutionizing
NGS technology by setting the stage for large-scale sequencing endeavors [44]. The HGP,
completed in 2003, provided a foundational reference genome, stimulating advancements in
sequencing techniques, reducing costs, and enhancing the accuracy and throughput of NGS.
This synergy between the Human Genome Project and NGS has facilitated groundbreaking

discoveries in genomics and propelled the field of personalized medicine. While the HGP
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incurred a staggering cost of up to $3 billion, the advent of new sequencing technologies has
revolutionized the landscape, allowing for the complete sequencing of a human genome
within a few days at a mere cost of a few thousand US dollars. This dramatic reduction in
both time and expense renders it practical to address scientific inquiries swiftly and

comprehensively on a large scale [44].

NGS is a high-throughput DNA sequencing technology that allows for the rapid and parallel
sequencing of millions of DNA fragments [41, 45]. lllumina, being a marker leader
revolutionized NGS, particularly in terms of throughput and cost-effectiveness, making it
highly accessible and one of the most widely utilized platforms [46]. Their method employs
sequencing-by-synthesis on a solid surface, involving repetitive cycling of fluorescently
labelled nucleotides that integrate into growing DNA strands. At the end of each cycle, a
high-resolution image is captured to determine the sequences of immobilized molecules.
This iterative process is replicated numerous times, producing millions to billions reads per
run (depending on the system used) that are subsequently assembled into a complete
sequence [47]. This transformative approach has significantly increased the speed and
efficiency of DNA sequencing, alongside a simultaneous reduction in the cost per sequenced
base. This shift facilitated comprehensive genomic analysis and development of bench-top

technologies for both research and diagnostic applications [48, 49].

1.2.2 RNA-sequencing — from bulk to single cell

While proteins traditionally serve as the ultimate effectors of cellular functions, RNA has
emerged as a valuable tool for studying cellular phenotypes. The choice of RNA over
proteins is grounded in the dynamic nature of the transcriptome. Since RNA levels are more
dynamic and responsive to cellular changes than proteins, RNA analyses provide a real-time
assessment of cellular responses, offering a more nuanced and temporally precise
perspective compared to protein-based approaches. The higher abundance of RNA relative
to proteins allows for the detection of a broader range of genes and their expression levels.
Additionally, studying RNA allows researchers to gain insights into post-transcriptional
modifications, alternative splicing events, and non-coding RNA molecules, offering a more
comprehensive understanding of cellular dynamics. Furthermore, the use of RNA in cellular
studies often overcomes challenges associated with the stability and turnover rates of

proteins.

The advent of reverse transcription and NGS has broadened the spectrum of possibilities for

advancing novel approaches in studying gene expression. Since then, bulk RNA sequencing
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(bulk RNA-seq) has emerged and expanded its use in both basic research and clinical
applications [42, 43, 50-52]. In this methodology, total RNA is extracted from a cell
population or tissue, converted into cDNA, and subsequently sequenced on NGS platforms.
Consequently, this yields aggregated data from a large number of cells, encompassing
various distinct cell types. Bulk RNA-seq boasts several advantages, such as the detection of

low-abundant transcripts, identification of novel transcripts, and are relatively high throughput.

However, it presents a limitation by offering only an averaged snapshot of gene expression
for the entire sample, thereby masking variations in gene expression levels among individual
cells [53]. Even when individual cell types were isolated through sorting techniques, both bulk
RNA-seq and microarray analyses provide averaged measurements across a population of
cells. As a result, these techniques most likely overlook cellular heterogeneity, missing

variations in gene expression that exist among individual cells within a sample [54, 55].

The transcriptomic signature of individual cells mirrors their respective states and is
influenced by both systematic and local stimuli. The growing fascination with exploring cell
diversity and heterogeneity has propelled advancements in technology, particularly in the
realm of single-cell RNA sequencing (scRNA-seq) [56-59]. Over the last couple of years,
scRNA-seq technologies have emerged to address the limitations of bulk RNA-seq by
providing a more granular and precise understanding of gene expression at the individual cell
level [60, 61]. Even cells that belong to the same cell type and reside in the same tissue can
exhibit variable gene expression owing to cellular microenvironment or stochastic fluctuations
in gene regulation [60-64]. By identifying the sources of variability within a cell population,
researchers can better understand how cells respond to their environment and maintain their

identity and function.

While scRNA-seq emerged as the current state-of-the-art technique for transcriptome
profiling, it presents several drawbacks when compared to bulk RNA-seq. The higher cost of
scRNA-seq, stemming from specialized reagents and the requirement for deeper sequencing,
can be a limiting factor for large-scale studies. Technical variability is amplified in scRNA-seq
due to the need for single-cell isolation protocols and the associated challenges of low RNA
input, leading to increased technical noise [65], dropout events and high data sparsity [66, 67]
that are detailed in subsequent sections. The limited range and transcript coverage in
scRNA-seq may affect the accuracy of quantitative measurements, especially for low-
abundance transcripts. Despite its revolutionary impact, careful consideration of these
downsides is crucial for researchers selecting the most suitable sequencing approach for

their specific biological questions.
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1.3 Single cell or nucleus RNA sequencing

Single-cell RNA-seq [56-59] is a technique that allows the measurement of gene expression
at a cellular resolution. It involves isolating and capturing the RNA content of individual cells,
followed by cDNA synthesis, library preparation, and high-throughput sequencing. Presently,
widely adopted scRNA-seq techniques typically involve hybridizing the polyA tails of mMRNA

molecules to barcoded polyT primers, prior to library preparation and sequencing [68].

On the other hand, single nucleus RNA sequencing (snRNA-seq) is a technique that allows
the measurement of gene expression from the nuclei of individual cells [69]. snRNA-seq
involves isolating and capturing individual nuclei, amplifying, and sequencing their
transcriptome. This technique is particularly useful for analyzing samples that are difficult to
isolate, or cells that have undergone significant degradation, exhibit high ribonuclease
activity such as pancreatic acinar cells and for fresh-frozen biobanked samples [70-73]. In
addition, the size of nuclei varies less than cells, therefore snRNAseq cell proportions are
more representative than that of scRNAseq. Although snRNA-seq can function as an
alternative to scRNA-seq, it is important to recognize that the former selectively captures
mRNA within the nucleus. Exclusion of cytoplasmic mRNA can result in a limited ability to

capture certain biological processes [74].

Both techniques provide notable insights into cellular heterogeneity and diversity, allowing
the identification of known and rare cell types/states and characterization of gene expression
patterns at a cellular level. This can also help classify cells into groups based on their
functional properties and developmental origins, providing insights into how cells differentiate
and specialize over time [75, 76]. Overall, both techniques are powerful for studying cellular
variability and can help uncover the underlying mechanisms that drive cellular phenotypes in
health and disease. The choice between these techniques depends on the biological
question being addressed, the type of tissue or cells being analyzed, and the experimental

constraints.

1.3.1 Brief history of single cell/nuclei RNA-seq technology

In recent years, single cell transcriptomics has played a pivotal role in advancing precision
medicine, offering unprecedented insights into the molecular and genetic heterogeneity at
the individual cell level. The previous limitations of NGS for single-cell sequencing primarily
revolved around the challenges associated with the amount of material required and the

absence of technologies for capturing and amplifying nucleic acids at single-cell resolution.
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That former means the material requirements of NGS technologies far surpassed the typical

quantities of DNA or RNA present in a single cell.

The first scRNA-seq technology was developed in 2009 by Tang et al. [57], who described a
single-cell digital gene expression profiling assay that enabled the amplification and
sequencing of full-length mRNA transcripts from individual cells. However, it was limited in
throughput and could only sequence several cells simultaneously. Among the initial
techniques for single-cell analysis, Single-Cell Tagged Reverse Transcription Sequencing
(STRT-seq) developed by Islam et. al. [77] stands out as a method that relies on 5' tag
counting of transcripts. When conducted on the microfluidics Fluidigm C1 platform, STRT-
seq [78] emerged as a versatile scRNA-seq, offering precise, sensitive, and crucially,
molecular counting of transcripts at the individual cell level. In 2015, Macosko et al. [79]
developed the Drop-seq method that leveraged microfluidic droplets to isolate and barcode
individual cells for high-throughput sequencing that allowed the analysis of thousands of cells
in a single experiment and enabled the identification of known and rare cell types and
subpopulations. Since then, various other scRNA-seq technologies have been developed,
including SMART-Seq [58], SMART-Seq2 [80, 81], CEL-Seq [82], CEL-Seqg2 [83], inDrop [84]
and MARS-Seq [85]. Importantly, SMART-Seq (Switching Mechanism At 5' end of RNA
Template) and its successor SMART-Seq2 protocols were developed to capture and amplify
full-length transcripts from individual cells. SMART-Seq was initially introduced by Ramskold
et. al. 2012 [58]. This method utilized template-switching reverse transcription to capture the
entire transcript, providing a comprehensive view of the transcriptome from single cells.
SMART-Seq2 incorporated improvements such as reduced amplification bias, increased
sensitivity, and lower input requirements, making it a powerful tool for profiling the
transcriptomes of individual cells with high resolution. Taken together, these technologies
have improved sensitivity, accuracy, and throughput and have enabled the analysis of large

numbers of cells at a lower cost [86-88].

Of note, 10X Genomics, a biotechnology company, introduced its GemCode technology [89]
in 2015, marking a milestone in single-cell genomics. GemCode utilized a microfluidic system
to encapsulate single cells with unique barcoded gel beads, each containing a unique
molecular identifier (UMI). Subsequently, 10X Genomics released the Chromium scRNA-seq
Solution, an upgraded version of GemCode, providing a robust platform for high-throughput
single-cell transcriptomics that enabled the simultaneous analysis of thousands to millions of
cells. The Chromium system utilizes barcoded gel beads to uniquely label RNA molecules
within each cell. This barcoding strategy enables the distinction of transcripts originating from

the same cell, overcoming challenges related to amplification biases. Importantly, Cell

10



Introduction

hashing [90] is a technique that involves labeling cells with unique oligonucleotide barcodes
during sample preparation. This allows for the multiplexing of samples, enabling the
simultaneous analysis of multiple samples in a single experiment. To increase the scalability
and cost-effectiveness, 10X Genomics introduced Cell Hashing, allowing multiplexing of
samples, by using oligo-tagged antibodies to uniquely label cells before pooling them,

facilitating the analysis of multiple samples in a single experiment.

The 10X single cell or nuclei RNA-seq platform found widespread applications in various

biological fields, including immunology, hematology, oncology, and neuroscience [91-93].

1.3.2 10X single nuclei isolation, library construction and sequencing

The sequential steps of a typical 10X snRNA-seq experiment include the nuclei isolation,
GEM generation and barcoding, cDNA QC and quantification, 3’ gene expression library
construction and sequencing followed by CellRanger mapping and downstream analysis [72-
74].

Initially, nuclei isolation is a critical step, achieved through specialized buffers and enzymatic
or mechanical dissociation techniques. The isolated nuclei are then individually encapsulated
into droplets or wells using microfluidic devices, ensuring the preservation of cellular
heterogeneity within complex tissues. During encapsulation, each poly-A tailed RNA
molecule is captured and labelled with unique barcodes, and subsequently are reverse
transcribed to yield cDNA. The cDNA is then processed and amplified using the 10X
Genomics Single Cell 3' Solution protocol, which includes fragmentation, tagging, and
amplification of the cDNA. Barcoding is a crucial step in 10X Genomics-based protocols.
Here, unique barcode sequences are introduced during PCR amplification to enable the
pooling of samples for parallel sequencing while still distinguishing between individual nuclei.

For optimal experimental results, it is crucial to utilize high-quality tissue samples.

Quality control steps may include checking the size distribution of the library fragments [94,
95]. In this context RNA integrity is typically assessed by the RNA Integrity Number (RIN)
[96]. Typically, an RIN score exceeding 8 is deemed satisfactory for advancing to

subsequent downstream experiments.

For single nuclei experiments, it is imperative to generate pre-mRNA reference files [97] in
order to distinguish between reads that align to exonic (mature mRNA) and intronic regions,

aiding in the quantification of transcriptional activity within the cell.
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1.3.3 Technical differences between scRNA and snRNA-seq

Single-nucleus RNA-seq is specifically designed to analyze gene expression at a cellular
resolution while circumventing the challenges associated with traditional scRNA-seq
methodologies. For instance, cells in certain tissues like skeletal muscle, adipose tissue or
pancreas are difficult to dissociate or isolate without causing major damage to their integrity
[70-74]. In another case, some cell types are challenging to isolate intact, and the isolation
process may lead to biased representation or loss of specific cell populations in a scRNA-seq
[73, 74]. Also, snRNA-seq is useful for analyzing both fresh and frozen (or archived) tissues-
so, this eliminates the requirement of immediate sample processing and helps reduce any
changes caused by the stress response to enzymatic treatment [70-74]. Moreover, earlier
investigations indicate that snRNA-seq consistently demonstrated satisfactory sensitivity — a
measure of the identified UMIs or genes counts per cell in datasets sampled with an equal

number of reads per cell [74]

Given the loss of cytoplasm, nuclei typically exhibit lower mRNA levels compared to whole
cells, resulting in a reduced total number of detected genes and unique molecular identifiers
(UMIs) per cell [74]. Ultimately, the variations in sensitivity between single-nucleus and
single-cell RNA sequencing depend largely on the sample specific characteristics. Generally,
the quality control (QC) cut-off(s) can be decided by investigating the relationship among

number of UMI, genes and %MT-transcripts per nuclei [98, 99].

In a snRNA-seq experiment, the cytoplasmic proteins released during the extraction process
includes RNAses that could potentially destroy the transcripts after encapsulation and lysis of
the nuclei. All procedural steps are required to be conducted in a cold environment to prevent
unwanted artefactual transcriptional changes, taking advantage of the stabilizing effect of the

cool milieu.

1.4 snRNA-seq data analysis

The computational analysis of both single cell or nuclei RNA-seq data involves several steps:
read alignment, gene expression quantification, QC, normalization, dimensionality reduction,
and identification of differentially expressed genes to identify cell type or states [98, 99].
There are several challenges in the downstream single cell or nuclei RNA-seq analysis,
starting from quality control and data harmonization to ensure appropriate data interpretation.

A few major points are summarized below:
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1.4.1 Handling technical noise and quality control

snRNA-seq data can be noisy due to various technical factors such as cellular barcoding and
indexing errors, amplification bias, sequencing depth, dropout events, and other batch effects.
These technical factors [65-67] can introduce unavoidable variability in downstream data
analyses, such as cell type identification and differential gene expression analysis. Quality
control measures, such as assessing the percentage of reads with valid barcodes, can help
identify and filter out cells affected by barcoding errors. On the other hand, using unique
molecular identifiers (UMIs) to tag individual RNA molecules, and optimizing PCR conditions

can help reduce amplification-related noise.

Also, contamination from ambient RNA or from adjacent cells during tissue dissociation can
introduce extraneous RNA- often, leading to misinterpretation of cell type composition and
gene expression profiles [100, 101]. To computationally mitigate these artifacts, state-of-the-
art tools like Cellbender employ a statistical approach to distinguish ambient RNA from true
cellular RNA and correct for this contamination [101]. Also, single cell/nuclei profiling is prone
to dropout events where certain transcripts fail to be detected due to technical limitations,

leading to false negatives in gene expression analysis [66, 67, 102].

Technical doublets in snRNA-seq data refer to instances where two or more nuclei are
mistakenly captured and sequenced as a single unit [103-105]. These artifacts can arise
during the nuclei isolation process and lead to misinterpretation of the true biological
heterogeneity. Tools like Scrublet [103] specifically for the identification and removal of
technical doublets. Scrublet operates by creating a nearest-neighbor classifier for each
nucleus based on its transcriptomic similarity to other nuclei in the dataset. It then assesses
the observed and expected rates of doublets, assigning a doublet score to each nucleus.
Nuclei with higher doublet scores are considered more likely to be technical doublets.
Researchers can use these scores to confidently flag and if required, exclude potential
doublets from downstream analyses [103-105]. Nonetheless, there is a lack of gold standard
tools for flagging biological doublets that can be optimally labelled by investigating

expression of conflicting cell type/state markers and is detailed in sub-section 1.4.3.

In addition, single nuclei isolation can be challenging, and some nuclei could be damaged or
incomplete, resulting in incomplete transcripts and lower sequencing quality [106]. Often,
such nuclei exhibit relatively low UMI counts but a high percentage mitochondrial transcripts
per nucleus- possibly, derived from the ‘soup’ of the single-nuclear isolation preparation.

Hence, both the number of UMI and %mitochondrial transcripts per nucleus should be
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modelled as technical covariates in downstream analysis. Also, some nuclei have a high
number of UMI(s) but only a few numbers of genes that could be explained by nuclei
undergoing apoptosis or necrosis. Such populations can represent low complexity cell types.
Hence, the number of UMI or genes per nuclei alone might not be a reliable proxy of a good
sample quality in isolation. In this regard, it is recommended to investigate sample complexity
that is defined as the number of genes detected per UMI [107]. For example, a higher
number of genes detected per UMI indicates higher complexity or high sample quality.

Usually, a score > 0.8 suggests a good sample quality [107].

snRNA-seq data normalization is a critical step in data analysis to correct differences in
sequencing depth and technical factors that can bias gene expression measurements
between cells or nuclei [98, 99, 108]. However, selecting the appropriate normalization

method can be challenging as different methods may perform better in different scenarios.

1.4.2 Challenges in snRNA-seq data harmonization

Harmonizing snRNA-seq data from different experiments or platforms is challenging due to
several technical variations underlying the data. For instance, processing samples in different
batches or at different sequencing runs can induce sample specific effects that potentially
introduce technical variation unrelated to biological differences. Additional complexities might
arise from variability in tissue dissociation protocols, nuclei isolation methods, and library
preparation techniques- hence, modelling appropriate covariates is required depending on
the experimental set-up. Hence, to ensure robust downstream analyses, appropriate batch
effect removal and data harmonization methodologies are required to optimally align data
stemming from different sources [99, 109-116]. Moreover, to achieve effective data
harmonization, one has to struggle with the trade-off between two scenarios — (1) properly
mixing datasets to prevent separation by biological or technical replicates and (2) retaining

the original data structure, as illustrated in Figure 1.1.

Several algorithms require dimensional reduction methods before data integration which is

described below.

¢ Linear and non-linear dimension reduction techniques

Linear and non-linear dimension reduction techniques are commonly used in shnRNA-seq
analysis for cellular phenotyping. These techniques reduce the high-dimensional gene

expression data into lower-dimensional representations that can be analyzed and visualized.
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Linear dimension reduction techniques, such as principal component analysis (PCA),
independent component analysis (ICA), and factor analysis (FA) are based on linear
transformations of the data. PCA [117, 118] is a general-purpose linear dimensionality
reduction technique that aims to capture the maximum variance in the data by projecting it
onto a new set of orthogonal axes, called principal components. PCA, in its traditional form,
is not explicitly designed for batch correction and generally used for capturing variance within
a single dataset. In contrast to many other methods, principal components (PC) are easier to
select for and interpret as they are ranked by variance i.e., the first PC accounts for the most
variance, followed by the second PC (orthogonal to the first) and so on [117, 118]. In contrast,
Independent Components (IC) [119, 120] and Factors [121] are not naturally ordered like

PC(s) that complicates their interpretation without further analysis.

Several software tools leverage linear dimension reduction strategies for the snRNA-seq
data harmonization. A popular tool, Harmony [110] is grounded on adjusting PC(s) to
effectively reduce batch effect during data harmonization. In the transformed PC space,
Harmony employs k-means clustering to delineate clusters having maximum diversity. The
diversity of each cluster is evaluated based on whether it includes balanced proportions of
cells from each batch (such as donor or condition) intended for integration. Once diverse
clusters are defined, Harmony assesses the impact of a cell’'s batch identity on its PC
coordinates and applies a correction to 'shift' the cell toward the centroid of its respective
cluster. Subsequently, cells are projected again using these corrected PCs, and the iterative

repetition of this process continues until convergence is achieved [110].

On the other hand, BBKNN (Batch Balanced k-Nearest Neighbors) [111] aims to adjust the
shared neighbor graph of the cells. Firstly, the algorithm identifies k-nearest neighbors for
each cell (or, nucleus), and iteratively correcting for batch effects by applying correction
vectors based on the differences in expression profiles between cells and their neighbors
across different batches. This approach ensures a balanced representation of cells from
various batches, ultimately harmonizing the data and facilitating effective integration for
downstream analyses such as clustering and visualization. Moreover, it is technically feasible
to employ a sequential integration approach, firstly adjusting the principal component(s) with
Harmony, and subsequently using the corrected principal component(s) to build an adjusted
k-nearest neighbors (KNN) graph through BBKNN.

Furthermore, Seurat utilizes another linear dimension reduction method, called Canonical
Correlation Analysis (CCA) [116] that is designed to uncover linear relationships between two

or more sets of variables. It aims to find linear combinations of variables (canonical variables)
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in each set such that their correlation is maximized. CCA is commonly used in multivariate
statistics and data integration tasks where there are two sets of related variables [116]. In
biology, this means integrating datasets having common anchors i.e., common cell
types/states. Also, the Reciprocal PCA [122] approach implemented in Seurat involves
computing the PCs separately for each batch and then adjusting the PCs to minimize
differences between batches, providing a corrected representation of the data that is more
amenable to integration and downstream analyses. The reciprocal nature of the approach
ensures mutual correction between batches, enhancing the harmonization of diverse

datasets in a reciprocal manner.

In contrast, non-linear dimension reduction techniques, such as t-distributed stochastic
neighbor embedding (t-SNE) [123, 124] and uniform manifold approximation and projection
(UMAP) [125, 126], are based on non-linear transformations of the data. These techniques
aim to preserve the local structure of the data while reducing the dimensionality. t-SNE
models the high-dimensional data as a probability distribution of pairwise similarities and
maps it to a low-dimensional space. UMAP is a relatively newer technique developed by
Mclnnes et. al 2018 [125] that also preserves the local structure of the data but uses a
different optimization approach compared to t-SNE. However, t-SNE and UMAP are widely
used for data visualization rather than dimension reduction for sc/sn RNA-seq datasets [124,
126].

Hence, various tools for data harmonization have been developed to address batch effects,
each with its specific strengths and limitations. However, recent methodological progress has
propelled the adoption of deep-learning frameworks because of their previously

demonstrated efficacy in handling complex integration tasks.

e Deep learning techniques

Deep learning algorithms based on artificial neural networks (ANNs) can be leveraged for
various tasks in single-cell analysis, such as cell type classification, gene expression
imputation, and data integration. These algorithms can learn patterns and relationships from
the data without explicit feature engineering or manual annotation, making them highly
adaptable and flexible [127-129]. For example, convolutional neural networks (CNNs) have
been used for image-based analyses of spatial transcriptomics data [130]. In contrast,

recurrent neural networks (RNNs) have been used for time-series analyses [131, 132].
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Deep learning-based data integration tools have gained prominence in the analysis of single-
cell or nuclei RNA sequencing data due to their ability to capture complex non-linear
relationships and extract high-level features from large-scale datasets [112-115]. They often
provide a more nuanced representation of biological variability compared to linear methods
like PCA. Two popular methods for deep learning-based data integration are autoencoder-
based approaches and Deep Generative Models, including Variational autoencoders (VAE)
[133, 134].

Autoencoders can be employed to integrate sc/sn RNA-seq data from multiple conditions or
technologies. By training on diverse datasets, the autoencoder learns a low-dimensional
representation capturing the shared features and variability across datasets. VAE is a type of
deep generative model that incorporates a probabilistic framework, wherein they map input
data to a probability distribution within the latent space [112, 113, 135-138]. VAE(s) are
trained to generate a latent space that follows a specific probability distribution and allows
more nuanced uncertainty modelling. Several recent studies [139-141] have delved into the
challenge of incorporating bias and uncertainty into the modeling of single-cell data. A
prevalent approach in these studies involves treating each data point (representing cell-gene

pairs) as a random variable and fitting a probabilistic model accordingly.

Deep generative techniques, such as scVI (single-cell Variational Inference) [112], extend
the VAE framework to sc/sn RNA-seq data. scVI utilizes variational inference to estimate
gene expression variability across cells, reducing noise in sc/sn RNA-seq data, and captures
both the global structure of the data and the variability specific to individual cells, facilitating
data integration and batch correction. scVI adopts a probabilistic approach and models the
underlying gene expression distribution using a Zero-inflated negative binomial model (ZINB)
that enhances its ability to capture the variability present in sc/sn RNA-seq data compared to
traditional methods. It is known that nuclei have lower RNA content compared to whole cells,
leading to increased dropout rates and decreased sensitivity in detecting low-abundance
transcripts, potentially influencing downstream analyses in snRNA-seq. Hence, scVI's
probabilistic modelling coupled with its ability to impute missing data seem to reliably account
for the uncertainty associated with low expression levels and high dropouts in individual

nuclei in snRNA-seq data [112].

On a similar note, single-cell ANnotation using Variational Inference (scANVI) [113] can be
applied on semi-annotated data or label transfer from reference to perturbed/disease
datasets. Both scVI/scANVI frameworks [112, 113] allow encoding different categorical and

continuous covariates besides the key batch to remove technical artifacts from downstream
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analysis effectively. Notably, scVI/scANVI were top performing tools for complex data
harmonization tasks that balanced both batch effect removal and preserving biological
heterogeneity in an extensive benchmarking study by Luecken et. al 2021 [114]. Furthermore,
in addition to scVI/scANVI, numerous other studies have shown the effectiveness of ANN(s)

and VAE(s) in integrating scRNA-seq datasets in a scalable fashion [135-138].

Hence, by applying generative models like scVI/scANVI, researchers can gain new insights
into the complexity of cellular heterogeneity and the underlying biological processes. These
techniques provide relatively more efficient ways to analyze large-scale scRNA-seq datasets,
enabling researchers to identify new cell types, understand cell states and transitions, and

unravel the mechanisms driving disease and development.

Data Harmonization
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Figure 1.1: Challenges of single cell or single nuclei RNA-seq data harmonization.
Schematic illustrating uncorrected, over-corrected and optimally batch corrected data harmonization. A
challenge in performing optimal data harmonization comes with achieving two goals- (1) mixing
datasets properly to avoid separation by biological/technical replicates and (2) retaining the original
structure of datasets. In the first scenario (No Correction), the datasets are not mixed and hence,
strongly separated into batches. In the second scenario (Over Correction), the first goal is improved,
but the second goal becomes worse. The third scenario (Optimal Correction) reflects balancing two
goals to achieve adequate data harmonization needed for downstream analysis.
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1.4.3 Cell type/state identification

After adequate batch effect removal and data harmonization, the task is to identify cell type
or cell states, which is typically done through clustering gene expression profiles obtained
from single cells/nuclei. Louvain [142] and Leiden [143] clustering are community detection
algorithms commonly applied in snRNA-seq data analysis to identify distinct cell populations
or clusters. The Louvain algorithm, based on modularity optimization, iteratively refines
partitions of cells into communities to maximize the density of connections within
communities compared to between them [142]. Leiden clustering, an extension of the
Louvain method, introduces a resolution parameter that modulates the size and granularity of
identified clusters, allowing for a more flexible adjustment of cluster boundaries [143]. Both
algorithms are widely used for their efficiency and effectiveness in uncovering meaningful cell
populations in heterogeneous datasets. On a technical note, they both are relatively robust to
noise and outlier than traditional methods like K-means clustering that can improve cell-type

or -state identification.

It is also important to evaluate cluster quality using metrics like adjusted silhouette score or
adjusted Rand index [114, 115] before finalizing annotation. Additionally, visually inspect
clustering results to ensure biological relevance and coherence. If large clusters contain
multiple cell types, sub-clustering is considered to further dissect cell type heterogeneity

within major groups [144, 145].

Apart from filtering out technically low-quality cells in QC step, it is critical to investigate
biological doublets i.e., nuclei confounded by looking into the expression of conflicting
lineage markers after initial annotation of clusters [146-148]. For example, if a cluster
expresses marker for both astrocytes and vascular cells- it indicates potentially confounded

cells, and thus should be removed from downstream analysis [147].

1.4.4 Data visualization

Non-linear techniques like t-SNE [123, 124] and UMAP [125, 126] were developed for
effective visualization of sc/snRNA-seq data. Although linear methods such as PCA [117,
118] can capture and visualize the main sources of variations in the data, it is usually unable

to capture subtle and complex relationships among the clusters.
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While t-SNE is still a useful tool for visualizing and analyzing single-cell data, UMAP offers
several advantages that make it a more attractive option for many researchers in the field
[125, 126].

o Scalability and speed: UMAP is generally faster and more scalable than t-SNE,
making it advantageous for larger datasets. Also, UMAP can handle larger datasets
than t-SNE. While t-SNE can struggle with datasets containing more than 50,000
cells, UMAP can efficiently process datasets with hundreds of thousands of cells.

e Better preservation of data structure: UMAP tends to better preserve the global
structure of the data compared to t-SNE. It maintains the relationships between
distant points in the high-dimensional space more accurately when projecting them
into lower-dimensional space. This means that the overall layout of clusters or cell
populations is better maintained in UMAP, reflecting the broader relationships
between different groups of cells. Also, UMAP is known for its ability to maintain more
faithful representations of local neighborhoods and distances between neighboring
data points. This results in improved preservation of local relationships among cells,
capturing both fine-scale and coarse-scale structures within clusters.

o Flexibility in _parameter tuning: UMAP offers greater flexibility in adjusting
parameters, such as the number of neighbors and the minimum distance, allowing
users to fine-tune the trade-off between global and local structure preservation based
on the characteristics of their data.

o Parameter independence: UMAP's performance is less dependent on the choice of
hyperparameters compared to t-SNE. While t-SNE's perplexity parameter requires
careful tuning, UMAP is less sensitive to variations in its parameters, making it more
user-friendly.

¢ Interpretability: UMAP provides more consistent embeddings across different runs
or subsamples of the same dataset. This stability is crucial for obtaining reliable and
reproducible results, especially when exploring the same dataset under different
conditions or at different time points.

1.4.5 Trajectory analysis

It is to be noted that cell differentiation and maturation are inherently dynamic and might not
be adequately captured by discrete analytical approaches like clustering. Hence, trajectory
inference and estimation of pseudotime (proxy of developmental time) has surfaced that
allow researchers to reconstruct developmental trajectories and capture dynamic transitions
among cell populations within complex tissues [149-152]. This approach unveils the nuanced
dynamics of cellular differentiation and maturation by modelling critical decision points, often

referred to as branch points of a lineage trajectory. Through this analysis, crucial insights into
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key regulatory genes and signalling pathways are revealed, providing a comprehensive

understanding of the intricate nature of cellular development.

Several state-of-the-art tools have been developed for inferring trajectory analysis. For
example, STREAM [149] grounded on inferring Elastic Principal Graph optimization [153] is a
popular tool for disentangling complex trajectories, with multiple lineage differentiation paths
and subsequently, visualizing them. Another well-known method is Diffusion Pseudotime
(DPT) [150] that infers the progression of cells along developmental trajectories by modelling

the diffusion of cellular states according to global transcriptomic similarities.

1.4.6 Receptor-ligand interaction analysis

Receptor-ligand interaction analysis using snRNA-seq data provides a system-level
understanding of cell communication within tissues [154-157]. It helps identify potential
signalling networks that contribute to cellular function, development, and disease. This
approach is particularly powerful in capturing the nuanced and cell type/state-specific nature
of intercellular communication within complex tissues. Differential expression analysis such
as, Wilcoxon rank sum or multivariate Logistic Regression test may be performed to identify
significant changes in receptors or ligands expression between different conditions or cell
types [156].

1.4.7 Transcription regulation and network modelling

PySCENIC (Python Single-Cell rEgulatory Network Inference and Clustering) [158, 159] is a
powerful tool used for transcription factor (TF) inference analysis in shnRNA-seq data. This
computational framework aims to uncover regulatory networks by identifying potential
transcriptional regulators and their target genes within individual nuclei. PySCENIC employs
the GENIES3 algorithm to predict regulatory interactions based on gene expression patterns,
capturing both direct and indirect relationships between TFs and their targets. By integrating
these predictions with known cis-regulatory motifs, PySCENIC infers TF activity in single
nuclei, providing insights into the transcriptional landscape of individual nuclei. The resulting
information aids in understanding the regulatory dynamics of cellular states, offering a
valuable resource for deciphering the intricacies of gene regulatory networks in complex

tissues at a single-cell resolution.

In general, sc/snRNA sequencing exhibit high drop-out events and low library sizes, posing

challenges in detecting differentially expressed TFs and co-regulators [160]. Previously,
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methods like scCapture-Seq [160] were developed for the targeted sequencing of TFs. The
authors observed a 36-fold enrichment for TF reads compared to pre-capture scRNA-seq
data, leading to an increased detection of total TFs in the sample. Moreover, each cell was
shown to express a broader range of TFs based on log-fold change thresholds. Hence, it is
possible to utilize a list of differentially expressed genes (such as cell or disease markers)
and reverse-engineer the enriched TF or co-regulators acting on distinct target sets. In this
regard, iRegulon [161] combines motif enrichment analysis, motif scanning, and a genome-
wide ranking-and-recovery method to assign an enrichment score to each TF or co-regulator,
reflecting the likelihood that the TF regulates an optimal set of direct targets. In this way,
tools such as PySCENIC and iRegulon can unveil the transcriptional regulatory network

associated with a cell type/state or in disease vs healthy conditions [158, 159, 161].

On other hand, network analysis of differentially expressed genes (DEGs) inferred from
snRNA-seq data involves the construction and exploration of biological networks to uncover
interactions and functional relationships among genes. Nodes in the network represent
genes, and edges represent interactions or correlations between them [162, 163]. Various
types of networks can be constructed, such as co-expression networks (based on expression
patterns), protein-protein interaction networks, or regulatory networks. Importantly, clustering
algorithms, such as Glay [164] or MCODE [165] are often applied to identify modules or
groups of genes that are tightly interconnected within the network. These modules may
represent functional units or pathways, and hence are required for organization and
coordination of cellular activities. Of note, most of the biological networks are scale free i.e.,
where a few nodes (hubs) have a disproportionately high number of connections (degree)
compared to most nodes. This topology follows a power-law distribution and contributes to
the robustness and resilience of biological networks [163, 166-168]. ldentifying the hub
nodes using tools like NetworkAnalyzer [169] aids in uncovering central regulators of the
network and is crucial for understanding the hierarchical organization and control points

within biological systems.
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1.5 Spatial transcriptomics

Recent advancements in single cell and nuclei RNA sequencing techniques and Human Cell
Atlas (HCA) initiative [170], enabled researchers to highlight the diversity within cell
populations. Complementing this insight by showing where specific cell types or states are
located within tissues contributes to a more detailed understanding of cellular heterogeneity
and functions. The recognition of the need to incorporate information into a spatial context
has driven the development of novel techniques collectively known as spatially resolved
transcriptomics (SRT). Spatially resolved transcriptomics [171, 172] serves as an umbrella
term encompassing various methods employed to associate gene expression information
with its spatial location. In recent years, the efficacy of these approaches has been
demonstrated across diverse tissues and systems, ranging from oncology research to
studies on organ development [173-179]. In context cancer, understanding the spatial
distribution of gene expression can shed light into tumor heterogeneity and tumor
microenvironment [173, 177]. This knowledge could be translated into developing targeted
therapies and precision medicine approaches. In case of embryonic development [178] or
tissue regeneration [179], spatial transcriptomics helps map the precise gene expression
patterns in different regions. This adds to the understanding of how cells differentiate and

organize themselves spatially to form functional tissues and organs.

1.5.1 In-situ sequencing

Efforts to gauge gene expressions in a spatial context have been established through
techniques such as multiplexed fluorescence in situ hybridization (FISH) [180-182] and in
situ/intact tissue sequencing [183-188]. These methods enable the simultaneous
measurement of mMRNA localization in a spatial context. Like FISH, in-situ sequencing (ISS)
[183-185] employs fluorescence microscopy to visualize individual transcripts with subcellular
precision. In contrast to sequential imaging of barcoded FISH probes, ISS is a technique that
allows for the direct imaging and sequencing of RNA molecules within intact cells or tissues.
To be precise, this method involves the use of sequence (or, gene) specific padlock probes,
which hybridize to target RNA sequences, and rolling-circle amplification (RCA) to generate
localized signals [185]. These signals are then read using sequential imaging and
sequencing steps, providing spatial information about the distribution of specific RNA
molecules within their native cellular context. ISS offers a powerful approach to studying
gene expression patterns at the single-cell level, enabling researchers to analyze the spatial

organization of RNA in complex biological samples.
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1.5.2 10X Visium

Sequencing-based technologies, constituting the second group of SRT methods, involve the
utilization of a solid surface with spatially indexed locations for the capture of RNA molecules.
A technique introduced by Stahl et al. in 2016 [187], referred to as spatial transcriptomics
(ST), utilizes glass slides featuring microarrays comprised of capture regions arranged in a
spot pattern. In this configuration, each spot incorporates millions of oligonucleotides that
bear a spatial barcode designating the spot's position, a unique molecular identifier (UMI),
and a polyT sequence designed for capturing polyadenylated transcripts. Subsequent
refinements by 10x Genomics enhanced the method's resolution by reducing the spot
diameter from 100 ym to 55 ym. Additionally, the total number of spots per capture area
increased from ~1,000 to ~5,000 and ~14,000 spots [189]. This modified technique was
subsequently commercialized as the Visium spatial gene expression assay. 10X Visium
technique was originally designed to work on fresh frozen samples but was later expanded to
FFPE samples [190]. Upon placing fresh-frozen tissue sections onto the Visium capture
areas, the samples are fixed using methanol and then stained, commonly with
immunostaining or Hematoxylin and Eosin, to acquire histological images. The Visium assay
offers a significant advantage by combining histological images with transcriptomics data,
enabling the integration of gene expression and histological information. This integration
provides a spatial perspective to transcriptome profiling. Following the imaging step, tissue
sections undergo enzymatic permeabilization to open the plasma membrane, facilitating the
diffusion of RNA out of the cells toward the array surface. Given that each tissue possesses
a unique cell composition with distinct properties, it is crucial to optimize the permeabilization
time for each tissue type to achieve uniform permeabilization across the entire section. After
RNA hybridization to the array surface, a reverse transcription reaction extends the surface
probes. This merging of the RNA sequence with its spatial position barcode enables the
simultaneous readout of both transcript and location information. The subsequent stage
involves synthesizing complementary strands from cDNA, which are then collected for the

final library preparation and subsequent sequencing.

1.5.3 Advantages and limitations of ISS and 10X Visium

Identifying the project goals accurately is crucial for informed decision-making in choosing
between targeted ISS and untargeted 10X Visium approaches and determining the requisite
resolution to address raised questions and hypotheses. While imaging-based ISS offers
subcellular resolution, it struggles with the optical crowding effect, limiting the number of
imaged molecules. Partial mitigation involves serial staining rounds or molecule separation
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via sample expansion, but both methods increase imaging time, a notable bottleneck. Tissue
expansion diminishes the area captured per field of view, restricting imaging throughput. ISS
is known to have a higher precision for the identification of individual cells, given targeted
sequencing of RNA molecules [185]. In contrast, sequencing based 10X Visium ensures
faster sample processing and higher throughput while targeting the entire transcriptome at a
lower resolution. Hence, it is difficult to capture extremely fine details of cellular interactions
due to the size of tissue spots [53, 187-191]. In this regard, emerging methodologies such as
the Xenium in-situ technique [192] have demonstrated significant enhancements in
throughput and sensitivity compared to other in ISS methods. It has garnered attention for its

capability to map hundreds of transcripts in situ with subcellular resolution.

Generally, for analyzing a selected gene set, targeted approaches with subcellular resolution
are preferable, while untargeted methods are common in exploratory research. Untargeted
methods serve as a starting point to identify genes of interest for subsequent targeted

analysis, offering higher resolution measurements and further validation of findings.

1.5.4 Building an atlas- integrating snRNA-seq with spatial transcriptomics

A pivotal technology employed in constructing cell atlases is single cell and single nuclei
RNA seq. As described before, this approach facilitates the exploration of cellular
heterogeneity at the transcriptomic level, enabling the categorization of cells based on their
gene expression profiles and the discovery of previously unidentified cell types/states [192-
194]. Despite the merits of single cell or nuclei RNA-seq, the overall tissue organization is not
investigated that creates a knowledge gap in linking transcriptomic heterogeneity with the
spatial organization of the tissue. While imaging can offer insights into the histological-level
spatial organization of cells within each tissue, the advent of SRT methods has been

instrumental in studying in situ gene expression, cell types/states, their spatial relationships.

¢ Integration of snRNA-seq data with 10X Visium

snRNA-seq provides gene expression data at the individual nuclei level but does not profile
the spatial organization of cells. 10X Visium [187] gene expression retains spatial information,
but the resolution of each spot is constrained, as each spot encompasses multiple cells,
typically ranging from 1 to 10 cells. Hence, this integration allows researchers to leverage the
complementary strengths of each technology. For instance, deconvolution methods strive to
discern the cell types/states and their respective proportions contributing to a spot, while

mapping methods aim to assign the most probable dominant cell type to a spot [195-197].
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Deconvolution approach-based tools such as RCTD [195] and Spotlight [196] employ
probabilistic models based on references to identify cell types within a single spot, which may
contain a mixture of cell types. It utilizes a maximum-likelihood estimation to infer the
proportions of different cell types and subsequently projects this information onto a spatial

map of cell types.

¢ Integration of snRNA-seq data with ISS

Aligning the spatial information from ISS data with snRNA-seq inferred gene expression
profiles can be challenging. This involves mapping the spatial coordinates of in situ data to
the corresponding cell identities in snRNA-seq data [198]. Mostly, snRNA-seq and ISS are
performed on separate samples of a tissue- so, highly specific, and robust cell type or
condition specific markers can be used as a proxy to integrate two data modalities and
investigate spatial relationships between clusters. Unlike 10X Visium but like FISH, ISS
utilizes pre-designed probes for labelling target transcripts. Hence, differential gene
expression analysis using snRNA-seq can be used to pre-determine marker genes for the
targeted ISS probe panels. This predefined repertoire of target genes results in a biased
detection of transcriptomes. Often, a correlation analysis is used between the snRNA-seq
derived signatures, and the observed mRNA counts within the cells of segmented spatial

data.

A meticulously constructed cell atlas functions as a valuable resource for the scientific
community, bearing substantial implications for comprehending physiological processes.
Furthermore, it establishes a benchmark for investigating the underlying mechanisms of
diseases. Cell atlases play a pivotal role in the identification of novel therapeutic targets or
biomarkers. By offering a comprehensive understanding of cell identity and function, they

contribute significantly to the development of innovative medical approaches.

1.6 Single nuclei profiling in advancing Precision Medicine

The development of snRNA-seq revolutionized the field of Precision Medicine. It allowed
researchers to examine the transcriptomes of individual cells, providing insights into the
diversity of cell types, gene expression patterns, and regulatory networks in both healthy and
diseased tissues. In summary, the history of snRNA-seq in precision medicine has evolved
from uncovering genetic variations to providing detailed insights into cellular functions and
interactions [199-202]. Its integration into clinical practice holds great promise for tailoring

medical treatments to individual patients based on the specific characteristics of their cells.
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Like single cell profiling, snRNA-seq has made significant contributions to precision medicine

across various fields, providing high-resolution insights into gene expression profiles at the

cellular resolution. Here are some notable advancements of snRNA-seq in precision

medicine:

Heterogeneity Analysis: snRNA-seq allows for the profiling of individual cell nuclei,
providing a detailed understanding of cellular heterogeneity within tissues. This level
of resolution is crucial for identifying rare cell populations, understanding cellular
diversity, and characterizing subtypes within complex tissues or tumors.

Clinical Biomarker Discovery: In diseases such as cancer, neurodegenerative
disorders, and autoimmune conditions, snRNA-seq has been instrumental in
discovering molecular subtypes based on gene expression profiles. These subtypes
may have distinct clinical outcomes and responses to treatments, allowing for more
precise disease stratification and personalized therapeutic strategies.

Identification of rare cell types: In tissues where certain cell types are rare but
functionally critical, such as stem cells or specific immune cell subsets, snRNA-seq
facilitates their identification and characterization. This is particularly relevant in the
context of diseases where these rare populations may play a crucial role.

Inferring developmental trajectories: In the context of Precision Medicine,
trajectory analysis offers valuable insights into the heterogeneity of cellular responses
in various disease states or during therapeutic interventions. In diseases such as
cancer, understanding the trajectories of malignant cells can aid in identifying specific
driver genes and potential therapeutic targets. Moreover, trajectory analysis can
inform the development of targeted interventions tailored to individual patient profiles.
Leveraging the information derived from snRNA-seq data, Precision Medicine
strategies can be refined, allowing for the design of personalized therapeutic
approaches that consider the specific developmental trajectories and molecular
signatures of patient-derived cells.

Mapping Tissue Architecture: Integrating spatial information with gene expression
data is essential for understanding tissue architecture. Techniques like 10X Visium
and spatial transcriptomics combined with shRNA-seq enable the mapping of gene
expression within the spatial context of tissues, providing insights into how cells
interact and organize in their native environments.

Drug Response Prediction: By characterizing the transcriptomic profiles of
individual cells, snRNA-seq contributes to the identification of potential drug targets
and predicts responses to specific treatments. This can inform the development of
personalized treatment plans tailored to the molecular characteristics of a patient's
disease.
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o Longitudinal Studies: snRNA-seq enables the study of how gene expression
profiles change over time. This longitudinal approach is valuable for understanding
disease progression, identifying early markers of pathology, and monitoring the
effects of interventions over time.

¢ Integration with Multi-Omics Data: Integrating snRNA-seq data with other omics
data, such as genomics, epigenomics, and proteomics, allows for a more
comprehensive understanding of cellular function. This holistic approach is essential
for unravelling the complexity of diseases and identifying multi-faceted therapeutic
targets.

As technology matures, snRNA-seq is moving toward clinical translation. Its potential for
diagnosing diseases, predicting disease progression, and guiding treatment decisions
underscores its role in advancing precision medicine into clinical practice [199-202]. In
summary, snRNA-seq has significantly advanced precision medicine by providing
unparalleled insights into the cellular and molecular landscapes of tissues and diseases. The
integration of differentiation trajectory analysis with Precision Medicine holds great promise
for advancing our understanding of disease mechanisms, optimizing treatment strategies,
and ultimately improving patient outcomes by tailoring interventions to the individual cellular

and molecular characteristics of each patient.

1.7 Human pregnancy and maternal-fetal interface

Human pregnancy is a complex and dynamic process that involves the growth and
development of a fertilized egg into a fully formed fetus, culminating in the birth of a new life.
The pregnancy is divided into three trimesters, each lasting approximately 12-13 weeks [203].
During the first trimester, the fertilized egg lodges itself in the uterus, initiating the formation
of an embryo enveloped by a structure known as the gestational sac, supplying nutrients and
support for its growth [204, 205]. As the embryo grows, it forms placenta, a temporary organ
which connects to the mother's uterine wall and facilitates nutrients and oxygen exchange
between the mother and the developing fetus [206-208]. During the second trimester, the
fetus considerably develops, and its underlying organs start to mature. The placenta keeps
growing and expanding, providing increased nourishment to the developing fetus. The fetus
undergoes its final development during the third trimester and prepares for birth. The
mother's body also undergoes significant changes, including producing hormones that help

relax the uterus muscles and prepare for labor and delivery.

The maternal-fetal interface is the bridge between the maternal and fetal tissues [146, 209-

211]. This interface is formed by the placenta (fetal tissue) and decidua (maternal tissue) and
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acts as a protective barrier between the two, as illustrated in Figure 1.2. In this regard, the
placenta serves as a shield that prevents the mother's immune system from attacking the
developing baby. This point of contact is a complex and dynamic system orchestrated by
various cells and signaling molecules, including immune cells, cytokines, and hormones.
Disruptions to this interface can lead to serious complications during pregnancy, including
preterm labor, pre-eclampsia, and fetal growth restriction [212, 213]. Elucidating the
pathophysiological mechanisms that regulate the maternal-fetal interface is a growing area of

research that has significant implications for the mother and her child.

Previous major single-cell studies, such as those by Rosa Vento Tormo et al. in 2018 [209]
and Surywavanshi et al. in 2018 [146], were focused solely on the first trimester of pregnancy.
These studies comprehensively characterized the cell types and states at the maternal-fetal
interface, providing insights into trophoblasts (the outer layer of the developing placenta),
fetal vessels, and distinct decidual cell types, encompassing stromal, endothelial, immune,

and epithelial cells (Figure 1.2).

The development of the human placental trophoblast is a complex and dynamic process that
begins shortly after fertilization and continues throughout pregnancy. Trophoblast cells are
the first cells to differentiate from the fertilized egg and are responsible for the formation and
function of the placenta [146, 209-211, 214]. In this regard, major trophoblasts subtypes were
identified, including invasive extra-villous trophoblasts (EVT) that help to anchor the placenta
to the uterine wall and ultimately, invade the maternal decidua to drive uterine vessel
remodelling [215-218]. Syncytiotrophoblasts (STB) are relatively homogenous and are in
contact with the maternal blood [209-212]. Hence, STB cell type is involved with the gas and
nutrient exchange alongside hormone production required to sustain healthy pregnancies.
Importantly, cytotrophoblasts (CTB) play a crucial role in the early stages of pregnancy by
serving as proliferative and undifferentiated cells that give rise to EVT and STB [209, 219],
thereby contributing to placental development and establishing the maternal-fetal interface
(Figure 1.2).

The maternal decidua constitutes the specialized lining of the uterus that forms during
pregnancy under the influence of progesterone. Former scRNA-seq studies [146, 209]
profiling decidua decoded major subtypes of stromal cells (DSCs), fibroblasts (FB), pericytes,
endothelial cells (EC) epithelial cells (EpC) and different subsets of immune cells (Figure
1.2). Importantly, maternal decidua is an immunologically fertile site, where several types of

immune cells intermingle, including natural killer (NK) cells, macrophages, and T-cells.
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Overall, the placental and decidual cells cooperate to support fetal growth and development

and protect it from external injuries. Hence, understanding the physiological roles of these

cells in healthy and diseased pregnancies is an important area of research that has important

implications for maternal and fetal health.

1.7.1 Cell types/states of human decidua

Several cell types have been identified within the decidua, which are detailed as follows:

Decidual stromal cells: Decidual stromal cells (DSC) [146, 209, 220, 221] play a
pivotal role in pregnancy by contributing to the formation and maintenance of the
decidua, the specialized uterine lining essential for successful implantation and
embryo development. These cells undergo dynamic changes, exhibiting
immunomodulatory properties that regulate maternal-fetal immune tolerance,
ensuring a supportive environment for embryonic growth. Additionally, decidua
stromal cells participate in tissue remodeling and angiogenesis, crucial processes for
establishing a functional placenta and sustaining a healthy pregnancy.

Immune cells: The decidua is an immunologically active site [222] that harbors
native immune cells such as macrophages (MAC), dendritic cells (DC), natural killer
(NK) cells, and T cells. These cells play central roles in regulating maternal immune
responses throughout gestation and protecting the developing fetus from pathogens
[146, 209, 222-225].

Decidual endothelial cells: Major endothelial cell types (EC) [146, 209, 226-229]
include the vascular and lymphatic endothelial cells. Vascular endothelial cells (VEC)
form the inner lining of blood vessels within the decidua, playing a crucial role in
facilitating nutrient and oxygen exchange between the maternal blood and the
developing fetus. On the other hand, lymphatic endothelial cells (LEC) are involved in
the formation and maintenance of lymphatic vessels in the decidua. These vessels
are essential for draining excess fluids and immune cells from the tissue, contributing
to the regulation of the local immune response and tissue homeostasis during
pregnancy. Both types of EC(s) are integral components of the complex
microenvironment in the decidua, supporting the physiological processes associated
with pregnancy.

Decidual epithelial cells: This cell type or EpC line the surfaces of the maternal and
fetal tissues and play an important role in maintaining the integrity of the barrier
between the two tissues. A subset of EpC also forms the lining of the uterine cavity
and those that make up the chorion (a membrane that surrounds the developing fetus)
[146, 209, 230].

Extravillous trophoblasts: These specialized cells are originally derived from the
placenta and invade the maternal tissues of the decidua, where they play important
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roles in establishing and maintaining the maternal-fetal interface [215-218].

1.7.2 Cell types/states of human placenta

As mentioned before, the human placenta is a pivotal organ supporting fetal growth and

development during pregnancy. It comprises several different cell types that are detailed

below:

Syncytiotrophoblasts: These are the outermost cells of the placenta and are
involved in the nutrient and gas exchange between the mother and fetus. Importantly,
STB is endocrine in nature i.e., they produce placental hormones critical for
maintaining pregnancy, such as human chorionic gonadotropin (hCG), placental
lactogen CSH1 and CSH2 [231, 232]. CGA is a subunit of hCG and is integral to STB
functions, including implantation, corpus luteum support, and immunomodulation [233,
234].

Cytotrophoblasts: These cells are located beneath the STB and are involved in the
development of the placenta, including the formation of new blood vessels [146, 209-
212].

Cell column trophoblasts: The placental part of EVT (pre-invasion) is also called as
cell column trophoblasts (CCT) that play a crucial role in invasion and remodeling of
maternal tissues, facilitating the establishment of the maternal-fetal interface and
ensuring proper nutrient and oxygen exchange between the mother and the
developing fetus. Their invasive properties are essential for processes such as
implantation, uterine spiral artery modification, and the formation of a functional
placental bed to support a healthy pregnancy [235, 236].

Hofbauer cells: Hofbauer cells (HBC) [237-240], also known as fetal macrophages,
are specialized immune cells found within the placenta. These macrophages hold
multifactorial roles, including immune modulation, phagocytosis, and the regulation of
inflammation, contributing to the dynamic interactions at the maternal-fetal interface.
Their presence in the placenta suggests a role in both immune defense and the
maintenance of a tolerogenic environment to support fetal development.

Placenta associated maternal macrophages: Apart from the fetal-originating HBC,
a group of maternal macrophages linked to the placenta (PAMM) [238] has recently
been identified, and these can be observed attached to the surface of placental villi.
In contrast to HBC, PAMM(s) are HLA-DRA positive and FOLRZ2 negative cells [238].
PAMM is suggested to play a role in inhibiting microbe transmission at areas where
the syncytium is damaged. Conversely, they could potentially serve as a pathway for
infection by allowing the survival and replication of microbes within macrophages.

Fibroblasts: These connective tissue cells are involved in tissue development,
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wound healing, and the synthesis of extracellular matrix components (ECM),
contributing to the structural and functional integrity of during embryonic development
[146, 241].

o Endothelial cells: Placental EC(s) mainly constitute the vascular endothelial cells
(VEC) that line the blood vessels and regulate blood flow to the developing fetus [195,
196].
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Figure 1.2: lllustration of maternal-fetal interface and underlying cell type/state atlas.
Cell types derived from the early embryo include villous cytotrophoblast (CTB) cells, which line

placental structures called Vvilli, syncytiotrophoblast (STB) cells covering the villus surface, and
extravillous trophoblast (EVT) cells lining maternal blood vessels and intermingling with maternal cells
in the decidua. Previous studies identified various maternal immune cell types, including T-cells and
decidual natural killer (dNK) cells, along with stromal cells providing structural and functional support
to the decidua throughout the pregnancy. Figure adapted from Rajagopalan et. al 2018 [242] and
digitally painted from scratch using InDesign software.

1.7.3 Development of human placental trophoblast

During the first week of development, the fertilized egg undergoes several cell divisions to
form a blastocyst structure. The genesis of all trophoblast lineages originates from the

trophectoderm (TE) cells, the outer layer of blastocyst (Figure 1.3). Placental trophoblast
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stem (TS) cells are a population of precursor cells that give rise to the various subtypes of
placental trophoblast cells. These progenitors are believed to be present in the early stages
of placental development and are responsible for initiating the process of trophoblast
differentiation [219].

TS cells exhibit the ability for self-renewal, maintaining an undifferentiated state through cell
division facilitated by signalling pathways, including the fibroblast growth factor (FGF) and
bone morphogenetic protein (BMP) [219]. Also, placental TS cells are considered pluripotent
and express markers associated with pluripotency, such as transcription factors Oct4
(Octamer-binding transcription factor 4), Sox2 (SRY-Box 2), and Nanog [243-247]. CDX2
and EOMES are two key transcription factors that orchestrate the differentiation and function
of TS cells [219, 247, 248]. CDX2 plays a crucial role in the early specification of
trophectoderm and the maintenance of trophoblast identity, while EOMES is also involved in
the differentiation of mouse and human trophoblast progenitors [247, 248]. After implantation

into the uterine wall, the TS cells differentiate into major trophoblast subtypes.

Biologically, the CTB is known to harbor TS progenitors that can further differentiate into two
divergent lineage paths- STB and EVT [209, 219] (Figure 1.3). The process begins with the
proliferation of mononuclear CTB cells that initially populate the chorionic villi. Further, CTB(s)
undergo fusion to form multinucleated STB(s), which create a syncytial layer crucial for
nutrient exchange and hormonal production. STB forms a layer on the surface of the
chorionic villi, which are finger-like projections of the placenta that extend into the maternal

blood supply.

Of note, a previous scRNA-seq study focussed on TS cells derived from cultured human
blastocysts and were able to recapitulate emergence of two lineages, including STB and
migratory trophoblasts transcriptomically same as EVT [249]. The synchronized processes of
proliferation and differentiation among these lineages play a crucial role in ensuring the
success of a pregnancy. Disruptions in trophoblast development and function are believed to
be associated with diverse pregnancy complications, encompassing miscarriage, pre-
eclampsia, and intrauterine growth restriction [212, 213, 250]. Hence, unravelling the
molecular mechanisms governing early placental development have potential implications for

reproductive medicine and understanding pregnancy-related disorders.
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Figure 1.3: Schematic illustrating trophoblast development.

Blastocyst derived trophoblast stem cells differentiating into two divergent lineages,
syncytiotrophoblast (STB) cells and cell-column trophoblasts (CCT). Biologically, cytotrophoblast (CTB)
act as progenitors and are known to harbor trophoblast stem cells. Figure adapted from Okae et al
2018 [219] and created using InDesign software.

1.8 Early onset Pre-eclampsia

Pre-eclampsia (PE) is a pregnancy-specific disorder characterized by elevated blood
pressure and proteinuria (protein in the urine) occurring after 20 weeks of gestation [251-254].
PE and associated hypertensive disorders are reported to contribute to ~14% of annual
maternal deaths worldwide, ranking second only to hemorrhage [255, 256], and incur an
approximate healthcare cost of nearly 2 billion USD within the first year following delivery
[257].

The condition is classified into early-onset pre-eclampsia (eoPE) [258], which manifests
before 34 weeks of gestation, and late-onset pre-eclampsia, with onset after 34 weeks. eoPE
is typically considered more severe and is linked to higher risks of adverse maternal and fetal
outcomes, including preterm delivery, abnormal maternal spiral arteries remodelling,
intrauterine growth restriction (IUGR), and fetal distress [259-261]. Despite causing
approximately 80,000 maternal and 500,000 fetal deaths annually [262], eoPE remains an
under-investigated area of research. In contrast, late-onset pre-eclampsia generally presents

milder symptoms, and a lower risk of adverse outcomes [263]. This thesis focuses on eoPE
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due to its strong association with placental dysfunction, abnormal fetal development, and
maternal factors such as chronic hypertension, autoimmune diseases, and genetic
predisposition [264-267].

Generally, it is acknowledged that eoPE unfolds in two stages: irregular placentation during
early pregnancy, succeeded by systemic endothelial dysfunction [268, 269]. In normal
pregnancy, invading trophoblast cells (EVT) undergo a process of remodelling maternal
spiral arteries to ensure proper blood flow to the developing placenta [215-218]. However, in
eoPE, inadequate remodelling of these uterine vessels leads to impaired perfusion, hypoxia,
and enhanced oxidative stress, contributing to the development of the condition [270, 271].
Additionally, dysregulated interactions between invading EVT and maternal immune cells
(like, dNK cells) further exacerbate the inflammatory response, leading to the characteristic
features of eoPE, including endothelial dysfunction and maternal vascular complications, as

illustrated in Figure 1.4.

If untreated, eoPE can lead to lifelong cardiovascular and metabolic complications for the
mother and child, that could potentially lead to stroke, liver and kidney failure, and even end-
organ damage [264-267]. In terms of clinical management and treatment, eoPE often
requires earlier delivery of the baby and more intensive monitoring and medical management
of maternal and fetal health. Significantly, once eoPE is established, delivery becomes the
sole recourse to address the maternal crisis [259, 272]. The placenta plays a pivotal role in
the genesis of eoPE, which is evident in the alleviation of symptoms upon placental delivery
[268-270, 273]. Nevertheless, the early pathological mechanisms within the placenta that

culminate in the clinical manifestations of PE remain a mystery.
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Figure 1.4: Physiological adaptations in pre-eclampsia relative to non-pregnancy and
normal pregnancy conditions.

Schematic illustrating maternal spiral artery (uterine vessels) in non-pregnant individuals, and how the
same is remodelled during healthy and preeclamptic pregnancies. Early-onset pre-eclampsia (eoPE)
is distinguished by aberrant trophoblastic invasion, stemming from shallow and constricted
transformation of spiral arteries. This condition results in placental ischemia and heightens oxidative
stress. Figure created using InDesign software, and partly adapted from Dimitriadis E et al 2023 [293]

1.8.1 Genomics and bulk transcriptomics of early onset pre-eclampsia

Pre-eclampsia is known to result from intricate interactions involving multiple maternal and
fetal genes, and demonstrate evident heritability, estimated to range between 31% and 54%
[274, 275]. Past Whole Genome/Exome Sequencing studies examining pre-eclampsia
provided valuable insights into the genetic landscape of the disorder that further illuminated
the dysregulation of molecular pathways associated with trophoblast function, vascular
remodelling, and immune regulation [274-278]. Former studies found specific genetic
variants in or proximal to genes such as RAS, AGT, ACE, CTLA4, ENG, F5, F2, FV, APOE,
GST, LPL, NOX1 and SERPINE1 [274, 278]. Significantly, several of these variants are also
recognized as risk factors for cardiovascular disease via the renin—angiotensin system,
fibrinolysis and coagulation regulation, oxidative stress, and lipid metabolism- indicating

shared genetic predispositions between pre-eclampsia and cardiovascular conditions.
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Prominent diagnostic biomarkers identified in the context of pre-eclampsia, include sFlt-1
(Soluble Fms-Like Tyrosine Kinase-1) [279] and PIGF (Placental Growth Factor) [281] that
offer valuable insights into the pathophysiology for the condition. A previous study analyzed
over 7 million genetic variants in 2,658 offspring from preeclamptic individuals and 308,292
controls from the general population pinpointed a singular association with the FLT1 (Fms-
like tyrosine kinase 1) gene on chromosome 13 [279]. The FLT1 gene encodes sFLT1, a
splice variant of the vascular endothelial growth factor (VEGF) receptor renowned for its
antiangiogenic properties, achieved through the inhibition of proangiogenic factor signaling
[279, 280]. Importantly, pre-eclampsia is characterized by elevated levels of sFlf-1, which
hinders PIGF and VEGF, contributing to endothelial dysfunction and hypertension [279].

Major advances over the last decade explored the diagnostic and prognostic value of RNA-
based markers in maternal blood or placental tissues, using bulk RNA-seq and microarray
approaches [282-284]. Of note, previous studies identified potential biomarkers, such as
SFLT1, PGF, PAPPA2, and INHBA, and linked altered placental gene expression to impaired
trophoblast invasion, abnormal vascular remodelling, and compromised maternal-fetal
exchange. A previous study based on bulk RNA-seq, and weighted gene correlation network
analysis (WGCNA) postulated eoPEtFGR samples were consistently distinguished by
glycolysis/gluconeogenesis metabolic pathway [285]. This could be related to placental

metabolic reprogramming under oxidative stress and hypoxia during eoPE.

Having said that, traditional bulk RNA-seq and microarray methods mask the heterogeneity
of individual cell populations, limiting our understanding of the specific cell types and states
involved in the pathogenesis of eoPE. Hence, single cell profiling of maternal-fetal interface
can enhance our knowledge regarding the intricate biology of eoPE by unravelling key
dysregulated pathways, novel biomarkers, and offers potential targets at a cellular resolution
for therapeutic intervention. Although two previous studies [286, 287] performed scRNA-seq
of PE-affected placenta- they were very limited in terms of sample size, number of cells
profiled and lacked a comprehensive overview of molecular dysregulations across maternal-

fetal interface.
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1.8.2 scRNA-seq of early onset pre-eclampsia

In a recent scRNA-seq study conducted by Admati et al. in 2023 [288], significant
dysregulation of major placental cell types was identified in eoPE, but not in late-onset PE.
The study further highlighted heightened cellular stress and pre-apoptotic states specific to
the placental vasculature in eoPE, a distinction not observed in late-onset PE [288]. Also,
eoPE was found to exhibit relatively higher prevalence of inflammatory cell types, and
increased expression of pro-inflammatory cytokines in various myeloid cell types as
compared to late PE. Taken together, these observations indicated that eoPE severely

affects the underlying maternal-fetal cell types/states relative to late PE.

However, the investigation did not uncover detailed molecular dysregulations in STB beyond
cell-autonomous transcriptional regulation of FLT1/PGF [288]. Of note, it is known that STB
nuclei undergo senescence as part of the differentiation process, ultimately shedding into the
maternal bloodstream [236, 289, 290]. Along with their secreted factors and cellular debris,
STB nuclei contribute to the release of up to 3 grams of fetal-origin protein mass daily into
the maternal circulation [236]. Prior research has indicated that factors shed from the pre-
eclamptic placenta are implicated in the development of cardiovascular and hypertensive
symptoms in the mother, subsequently categorized as the clinical syndrome recognized as
the “maternal pre-eclampsia syndrome” [291]. Hence, a detailed understanding of STB
specific markers and its dysregulated secreted factors are required to be profiled to
understand the disease pathogenesis. Moreover, no sc/snRNA-seq studies delved into
understanding the role of abnormal trophoblast development in eoPE- mainly, how molecular
disruptions in STB can potentially lead to exacerbated maternal and fetal outcomes.
Importantly, no studies so far clearly identified the cell-of-origin of eoPE and how the disease

is translated between placenta and decidua.

1.8.3 Spatial transcriptomics of early onset pre-eclampsia

A recent study by Arutyunyan, Roberts et. al 2023 [292] constructed a spatially detailed
multi-omics single-cell atlas encompassing the first-trimester human maternal—fetal interface,
inclusive of the myometrium. Leveraging this cellular map, the authors inferred potential
transcription factors orchestrating EVT differentiation, invasion, demonstrating their
conservation in in-vitro models derived from primary trophoblast organoids and trophoblast
stem cells. However, no former studies spatially profiled the maternal-fetal interface in

healthy term and eoPE affected pregnancies.
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Hence, integration of spatial transcriptomics with snRNA-seq can significantly advance eoPE
research by building a comprehensive disease atlas. For example, it would enable the
identification and localization of dysregulated genes associated with eoPE, shedding light on
the molecular mechanisms underlying the disorder. Mapping the spatial relationships
between the placental cell types/states can elucidate how communication is disrupted in
eoPE. Moreover, the approach will facilitate the characterization of vascular remodeling
patterns associated with eoPE. Overall, integration of spatial transcriptomic data may unveil
targetable biomarkers, enhance our understanding of disease progression, and open

avenues for personalized therapeutic strategies in eoPE.

1.9 Human pancreatic islet development

In the early stages of development, the endoderm is responsible for generating the epithelial
lining of the digestive tract. The dorsal pancreatic bud emerges from the posterior foregut,
and simultaneously, the ventral pancreatic bud originates from the hepatic diverticulum.

Eventually, these buds merge to constitute the pancreas.

The pancreas is a dual-function organ with endocrine and exocrine functions [72, 294, 295].
The endocrine portion, called the islets of Langerhans, produces hormones such as insulin
and glucagon, regulating blood sugar levels. The exocrine part secretes digestive enzymes
into the small intestine to aid in the digestion of food. The details of pancreatic cell types are

discussed below:

o Exocrine cells: These cells are organized into small clusters called acinar cells that
produce a mixture of enzymes that help to break down carbohydrates, proteins, and
fats in food. The two main types of exocrine cells are:

= Acinar cells: These cells produce digestive enzymes and other substances
that are released into the ducts.

* Duct cells: line the ducts that carry digestive enzymes from the acini to the
small intestine. Additionally, multipotent progenitors can differentiate into
ductal progenitors, which play a crucial role in pancreas homeostasis and
regeneration. The dynamic interplay of these cell types orchestrates the
complex functions of the mature pancreas.

o Endocrine cells: These cells are responsible for producing and releasing hormones
directly into the bloodstream. The endocrine cells of the pancreas are clustered
together in groups called islets of Langerhans. The islets contain several different
types of endocrine cells, including glucagon secreting alpha cells, insulin producing
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beta cells, somatostatin producing delta cells, gamma cells, and pancreatic
polypeptide secreting PP cells which helps to regulate digestion. These cell types
form the islets of Langerhans and regulate hormonal balance.

The pancreatic microenvironment plays a role in influencing cell fate decisions and
differentiation. Previous studies have explored how the cellular context and
microenvironment affect alpha and B cell differentiation and regeneration [296-299]. In this
regard, both in vivo animal models and in vitro cell culture systems have been employed to
explore islet regeneration mechanisms in the adult pancreas. Moreover, various approaches
have been utilized to stimulate the regeneration of B cells, encompassing pancreatectomy,
partial duct ligation, and inducing massive [ cell loss through chemicals [300-303].
Comprehending the factors underlying the reduced proliferation observed in aging human
pancreatic islet B cells can provide significant insights in type 1 diabetes treatment, where

there is a deficiency of insulin-producing beta cells.

Previous scRNA-seq studies of human islet cells have unveiled signatures linked to both type
1 (T1D) and type 2 (T2D) diabetes [304-307], markers associated with islet maturation, islet
dedifferentiation, aging, and islet transdifferentiation [308-310]. However, these former
studies mostly investigated sorted human fetal pancreatic cells and transplanted insulin-
secreting B cells that closely resemble adult islets. It is known that beta cells are incompletely
functional at the neonatal stage; however, their roles, such as glucose-regulated insulin
secretion, develop and mature over time [311]. Nevertheless, no former studies extensively
investigated age-dependent transcriptomic changes in healthy islets by performing

comparative studies using neonatal and adult pancreas.

1.10 Pancreatic neuroendocrine carcinoma

Neuroendocrine neoplasms (NEN) [312-314], marked by neuroendocrine differentiation, can
develop in various epithelial organs throughout the body. Neuroendocrine cells [315] exhibit
features of both nerve cells (neurons) and endocrine cells, which release hormones into the
bloodstream. These cells play crucial roles in regulating various physiological processes,
including the control of hormone secretion, response to stress, and modulation of the
nervous system. In the context of diseases like cancer, understanding the neuroendocrine

cell state is essential for unravelling the complexities of tumor heterogeneity and behavior.

The gastrointestinal (Gl) system is the predominant site, representing two-thirds of NEN(s),
with the pancreas being a major primary location [316, 317]. These neoplasms encompass

several distinct entities with diverse etiologies, clinical features, morphological and genomic
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characteristics. In this regard, the World Health Organization (WHO) classification of
Digestive System Tumour categorized NEN into three groups: well-differentiated
neuroendocrine tumors (NETs), poorly differentiated neuroendocrine carcinomas (NECs),
and mixed neuroendocrine-non-neuroendocrine neoplasms (MiNEN) [316, 318]. High-grade
gastroenteropancreatic NENs (GEP-NENSs), including poorly differentiated GEP-NECs and
high-grade well-differentiated GEP-NETs, constitute a group of highly aggressive and
clinically diverse cancers. Clinical treatment currently utilized for GEP-NENs have been
adapted from those employed for small-cell lung cancers (SCLC) owing to their evident
clinical and histomorphological resemblances [316, 322]. Taken together, there is a pressing
demand for effective therapeutic interventions to address these challenging malignancies
[319-322].

Pancreatic neuroendocrine carcinoma (panNEC) is a rare yet highly aggressive cancer
among GEP-NECs, comprising only 1-5% of all pancreatic neoplasms [323, 324]. Molecular
studies have identified genetic alterations associated with panNEC, including mutations in
TP53, RB1, KRAS, and alterations in chromatin remodeling genes [323, 324]. However, the
defining characteristic of panNEC lies in its undifferentiated morphology that distinguishes it
from well-differentiated panNET. This differentiation status is determined by assessing
proliferation activity, indicated by a mitotic rate and Ki-67 proliferation index exceeding 20%.
The Ki-67 index, a measure of cell proliferation, is determined based on the percentage of
actively dividing tumor cells. panNETs exhibit histologically low-grade nuclear characteristics
and are classified as G1, G2, or G3 based on their Ki-67 index [318, 319]. In contrast,
panNECs exhibit a very high Ki-67 index and carcinoma-like nuclear features, indicating
aggressive clinical behavior, frequent metastases, chemotherapeutic resistance, and worse
survival outcomes. Although G1 panNETs reportedly demonstrate an overall survival of > 10
years, G2 panNETs typically exhibit the same of around 6 years [319]. Conversely, high-
grade panNENs present poorer survival outcomes, with patients diagnosed with NECs
surviving less than 10 months [325]. Notably, panNECs exhibit distinct morphological and
genetic features compared to well-differentiated tumors [323, 338]. Additionally, panNECs
carry a higher mutational burden compared to NET and share genomic traits with
adenocarcinomas of the same anatomical sites, such as frequent KRAS mutations in
panNEC and pancreatic ductal adenocarcinoma (PDAC) [324]. Patient-derived (PD)
xenografts of GEP-NENs provide insufficient insights into the functional and mechanistic
aspects of drug responses [326, 327]. Additionally, the restricted availability of NEN cell lines
fails to accurately represent panNEC biology [326, 327]- thereby, posing considerable
challenges in developing novel treatments and combination therapies for GEP-NEN patients,

including panNEC.
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Routine diagnostic markers for panNEC include Chromogranin A (CgA) and Synaptophysin
(SYP) [328, 329]. CgA is a protein found in the secretory granules of neuroendocrine cells,
and elevated levels in the blood or detected by immunohistochemistry in tissue samples can
indicate the presence of NE tumors or carcinoma. The presence of SYP is an indicator of
neuroendocrine differentiation. CD56, or NCAM1 (neural cell adhesion molecule) [330], is a
cell surface protein that is often expressed in neuroendocrine tumors. In combination with
CgA and SYP, it can be used as an immunohistochemical marker to confirm the

neuroendocrine nature of the carcinoma [331].

panNECs can manifest as either large cell or small cell forms, though this difference lacks a
clear molecular basis and clinical implications. panNEC(s) are typically diagnosed at an
advanced, metastatic stage, precluding curative surgical intervention. Palliative treatments
mainly involve platinum-based chemotherapy, particularly Cisplatin in combination with
Etoposide. Also, Temozolomide-based chemotherapy is presently employed in clinical
settings for high-grade GEP-NET [332] due to observed lower response rates with platinum-
based therapies [325]. Despite these aggressive treatments, the median overall survival for
patients with metastatic GEP-NECs remained less than one year [319-321]. The
complications in therapeutic response and emergence of multi-drug resistance in panNEC
majorly likely stem from the substantial intra-tumoral heterogeneity and plasticity within a
tumor that is not properly investigated yet. One of the primary challenges in developing
therapeutic strategies for panNEC is the lack of a clear understanding of the fundamental
mechanisms that drive tumor biology. This is further complicated by limited access to tumor
tissue and the absence of suitable in-vitro and in-vivo experimental models. Also, patients
with panNEC frequently exhibit vague symptoms, posing a challenge for early diagnosis.
Therefore, there is a pressing need to create a detailed cellular map of panNEC, aiming to
unravel its tumor biology, identify early diagnostic and novel therapeutic targets, and broaden

the horizons of precision medicine in panNEC treatment.

A recent scRNA-seq investigation [333] has offered valuable insights into the anatomical
subtypes and molecular heterogeneity of well-differentiated GEP-NET, along with its
interaction with the immune microenvironment. While the study extensively explored the
heterogeneity of lymphoid and myeloid immune cell types or states, there is limited
information about the subtyping of neuroendocrine (NE) tumor [333]. Importantly, this study
did not profile poorly differentiated NEC. Hence, the cause and consequences of the
significant clinical heterogeneity observed in panNEC are still in the early stages of
understanding, necessitating further single-cell research. While scRNA-seq has previously

been instrumental in characterizing shared and distinct cellular phenotypes in several solid
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tumors, applying it to the pancreas is reported to be challenging due to its high intrinsic
nuclease activity [72]. Instead, shRNA-seq emerged as a promising alternative that can be
utilized with frozen samples, facilitating high-resolution profiling of the tumor and immune

microenvironments.

Of note, a recent study conducted by Domenico et al. in 2020 [334] proposed that panNETs
has at least two origins- either from a- or B-cells within the islets of Langerhans, based on
epigenetic data. Furthermore, this study revealed that relapses and metastases most
frequently occurred within an intermediate group, which was found to have closer
associations with a-cells rather than B-cells. Interestingly, other studies based on gene
expression and enhancer analysis have also suggested the panNET origin from the same
[335, 336]. Conversely, Sadanandam et al. 2015 [337] found that a subset of aggressive
panNETs, referred to as "metastasis-like primary," exhibit a stemness associated phenotype
demarcated by the expression of pancreatic progenitor-specific genes, in comparison to well-
differentiated tumors. This suggests a potential shared origin for high-grade pancreatic NENs,
whether from immature multipotent pancreatic progenitors or specialized tip, trunk, or
endocrine progenitors [308]. Another seminal study by Yachida et al 2022 [338] postulated
that panNEC could be categorized into two subgroups, namely "ductal-type" and "acinar-
type," distinguished by their genomic and epigenomic characteristics. In the "ductal-type
panNEC," transcription factors such as SOX2, ASCL1, NKX2-1, EZH2, and E2F1 were
consistently overexpressed, with most exhibiting loss of RB1 protein and TP53 mutations
[338]. Conversely, the "acinar-type panNEC" displayed alterations in WNT signaling
(including mutations in APC and CTNNB1 genes), alongside with overexpression of
transcription factors like PTF1A, GATA4, NR5A2, and RBPJL dedicated for acinar lineage.
However, it was observed that phenotypically distinct cells shared a common origin only
when they exhibited specific genomic abnormalities. Previously, no deep phenotyping
approaches utilizing single-cell or nuclei RNA-seq were conducted to systematically examine
developmental trajectories and investigate transcriptomic resemblances among panNEC

samples or specific sub-states, aiming to explore potential common or multiple origins.
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Figure 1.5: Schematic illustrating possible origins of well differentiated pancreatic
neuroendocrine tumors (PanNET) and carcinoma (PanNEC).

Adapted from Domenico et. al. 2020 [334] and Yachida et. al. 2022 [338]. lllustration created
using InDesign software.
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2. Aims and objectives:

Within healthy tissues, a diverse array of specialized cells exists, each capable of adopting
specific functional states to execute distinct functions in a coordinated fashion. The
transcriptome of individual cells plays a crucial role in translating genetic and epigenetic
information into observable phenotypic traits, facilitating cellular communication with the
surrounding environment. Consequently, the transcriptome serves as a surrogate indicator
for cellular identity in both health and perturbed situations, including diseases and upon drug
treatment. The human placenta and pancreas are two strikingly different organs of
endodermal origin, serving vastly different functions in the body. Nonetheless, the
development of both organs involves intricate and complex processes of cellular
differentiation, migration, and cellular communication that can be investigated using
approaches like single cell or nuclei RNA sequencing. An explicit focus of this dissertation is
on the snRNA-seq based deep phenotyping approach that was deliberately applied to
different biological systems, having unconnected translational needs, and have remained

unsolved in prior research works.

Recent investigations utilizing single-cell sequencing techniques have yielded valuable
insights into the maternal-fetal interface, trophoblast subtypes, and endometrium within
healthy female reproductive tissues, both in non-pregnant states and during the first trimester
of pregnancy [146, 209]. A significant gestational time gap is unavoidable for studies
comparing maternal-fetal tissues in healthy term pregnancies and those affected by eoPE.
Early diagnosis of eoPE before the 12th gestational week is currently impractical, and
delayed diagnosis in later stages of pregnancy results in irreversible health consequences.
Therefore, a comprehensive understanding of the early patho-mechanisms underlying eoPE
is crucial for timely diagnosis and improved clinical management. The challenge lies in
obtaining uteroplacental tissue samples for eoPE studies, as this is associated with an

elevated risk of preterm miscarriage.

The primary objective of the first segment of this thesis was to establish a reference cellular
atlas of early (first-trimester) pregnancies, healthy term controls, and eoPE affected
pregnancies using snRNA-seq. A key goal was to delineate cell type/state specific differential
gene and transcriptomic dysregulation in eoPE in comparison to term controls to get
mechanistic insights into disease pathomechanisms. For comparative analysis, term controls
were selected instead of preterm controls, given that the latter group is often confounded by

clinical factors such as respiratory distress syndrome, developmental delays, and long-term
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cardio-metabolic complications [264-267]. Subsequently, the study aimed to investigate if a
significant fraction of trophoblast development drivers were dysregulated during eoPE, by
leveraging trajectory analysis. Since conducting longitudinal studies on placental tissue from
the same pregnancy during pregnancy poses challenges, it is proposed that computational
trajectory modelling of snRNA-seq data can partially overcome this limitation. Here, an
integration of snRNA-seq data analysis with a multi-omics framework encompassing 10X
Visium spatial transcriptomics and proteomics was considered to validate differentiation
markers characterizing the divergent trophoblast lineages. On this note, the trophoblast
syncytium was a major focus, with an emphasis on uncovering how perturbed syncytium
fusion could impact the development of eoPE. Importantly, this work majorly aimed to
understand how dysregulated senescence associated secretory phenotype (SASP) in
placenta could possibly associate with exaggerated hallmarks of eoPE, including placental
dysfunction, oxidative stress, apoptosis, and autophagy. Additionally, ISS was applied to
study the localization of specific SASP mRNA(s) in eoPE relative to term controls placenta.
In parallel, this thesis investigated the molecular and signalling level perturbations in the
analogous immune cell types/states in decidua and villi, using snRNA-seq data. Notably, this
dissertation sought to identify the potential cell(s) of origin for eoPE and specifically
examined whether the disease originates autonomously in both maternal and fetal tissues or
if it is translated from one to the other. Taken together, this extensive multi-omics
investigation is anticipated to uncover additional biomarkers crucial to understanding the

pathogenesis of eoPE and potentially pave the way for innovative treatments.

The second segment of this dissertation delved into understanding the developmental
progression and maturation of healthy islets (emphasized on beta cells) by comparing
neonatal and adult pancreas. To be precise, trajectory modelling of snRNA-seq data and
statistical frameworks such as Generalized Additive Models (GAM) were applied to find
significant gene expression changes as the neonatal cells differentiate towards adult. This
approach provided insights into the previously unexplored age-dependent developmental
trajectory of islets. The analyses relate to physiological processes and represent a different
use-case for snRNA-seq for otherwise unresolvable knowledge gaps in developmental
biology. Overall, integrating snRNA-seq data from neonatal and adult pancreases would
facilitate a comprehensive understanding of age-dependent changes in human islets- mainly,
the maturation of B cells and the establishment of glucose homeostasis during postnatal
development. In terms of translation, the results are expected to be relevant to diabetes

research and possibly to well differentiated panNET(s).
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Subsequently, the primary objective of the last segment of this thesis was to
comprehensively elucidate the cellular landscape of large cell pancreatic neuroendocrine
carcinoma (panNEC) by addressing the gaps in understanding the fundamental mechanisms
driving tumor biology. The rationale was to identify distinct malignant sub-states, and how
their signatures associate with tumor growth, progression, and clinical variability. Also, this
research aimed to overcome some of the challenges posed by limited access to tumor tissue
and the absence of suitable experimental models, by establishing the first reference snRNA-
seq based atlas for panNEC. To gain insights into lineage plasticity and possible
developmental origins of panNEC sub-states, single cell and nuclei RNA-seq data from both
healthy mouse and adult pancreas cell atlas were utilized [72, 339]. Specifically, adult
pancreas snRNA-seq data [72] was computationally integrated. It was assumed that
juxtaposing inferred panNEC sub-states with key cell markers and transcription factors
specific to various healthy pancreas cell types would shed light on their molecular origins.
Similarly, this thesis sought to explore the transcriptomic similarities between panNEC and
NEC in the lungs [340] and prostate [341], as well as with previously decoded oncogenic
programs found in PDAC [342]. A major focus was to investigate if any of the oncogenic sub-
state(s) demonstrate therapeutic vulnerabilities and could be exploited to develop treatment
strategies for panNEC. Through this endeavor, this work attempted to unravel novel
therapeutic targets, and advance precision medicine approaches for the treatment of
panNEC.
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3 Results | Maternal-fetal interface in eoPE
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3.1 Cohort establishment and data generation

The adopted study design involved separate sampling of 34 decidua and placenta villi
samples followed by performing snRNA-seq, comprehensive computational data analytics,
and multi-level validation of major data-driven findings, as illustrated in Figure 3.1. The study
population was carefully selected (see Methods; Supplementary Table 1), ensuring
homogeneity of recruited samples by excluding pre-eclamptic patients confounded with other
maternal disease conditions. Specifically, samples associated with acute kidney injury, liver
dysfunction, neurological symptoms, hemolysis, and thrombocytopenia [272] were removed.
Instead, the recruitment focused exclusively on one diagnostic criterion Fetal Growth
Restriction (FGR) that serves as the sole indicator for diagnosing severe fetal outcomes
associated with severe eoPE. In this way, the heterogeneous confounders associated with
this multi-factorial disease were reduced by solely focusing on PE placenta(s) with FGR. This
aligns with the International Society for the Study of Hypertension in Pregnancy (ISSHP)
[272], which considers FGR as one of the criteria for diagnosing PE in a patient who
develops high blood pressure after 20 weeks of pregnancy. This is because both conditions
often coexist and share underlying pathophysiological mechanisms linked to impaired
placental function [343, 344]. Subsequent investigation aimed to determine whether FGR is
independently linked to the PE signature or if it is characterized by an overlap with it.
Analysis of placental microarray data [345] from cases of eoPE with FGR (n=18) and eoPE
without FGR (n=19) did not reveal significant differences. This indicated that FGR did not

introduce major confounding factors independent of eoPE (Supplementary Table 1).

The temporal progression of eoPE was examined using uteroplacental tissue samples i.e.,
decidua and placenta villi stemming from early controls (n=13), healthy term controls (n=10),
and eoPE pregnancies (n=11) (Figure 3.1, Supplementary Table 1). Due to limitations in
longitudinal sampling, all snRNA-seq samples were obtained after elective surgical
termination in early pregnancy (at 5-10 weeks of gestation i.e., first-trimester), and during a
cesarean section in term pregnancy. In cases of eoPE, cesarean delivery occurred at 27-33
weeks of gestation. Labor-related confounding factors were mitigated by recruiting cesarean
section deliveries for both healthy term and eoPE groups. A concise cohort description table

is shown in Table 1.
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First-trimester Term control | eoPE (diseased)
healthy (healthy)
Early Early Term | Term eoPE villi | eoPE
villi decidua villi decidua decidua
Gestational age at delivery | 59 43 273.5 | 277.5 214 192
(in days)
Maternal age (in years) 29.5 31 36 36 33 32
Maternal BMI (in kg/m? 21.007 | 21.8299522 | 24.5 24.05 26.1 23.2
Total Samples (N=34) 10 3 6 4 6 5
Male (fetal sex) 3 1 5 3 6 4
Female (fetal sex) 7 2 1 1 0 1
FGR/SGA*
No FGR 10 3 6 4 2 (status | O
unknown)
YES FGR 0 0 0 0 4 5
* Fetal growth restriction / small for gestational age

Table 1: Cohort characteristics table

Table presenting an overview of the cohort characteristics, encompassing samples from the first
trimester (early), term controls, and eoPE Vvilli and decidua. Median values for gestational age at
delivery (in days), maternal age (in years), and BMI (Body mass index; in kg/m?) are reported. The
total number of samples for early, term, and eoPE villi and decidua is summarized (N=34). Additionally,
the distribution of male and female samples, based on fetal sex, is provided. Samples identified as
male fetuses are categorized accordingly. Furthermore, the presence or absence of FGR/SGA status
in an eoPE patient sample is indicated. FGR was determined based on pathological fetal doppler
results and/or a baby percentile below 3, while the absence of FGR was defined according to the
consensus set by DRT, 20190114. For detailed references, please refer to Supplementary Table 1. To
address potential confounding factors related to labor, cesarean section deliveries were included for
both the healthy term and eoPE groups- hence, this is not separately tabulated.

As securing placental biopsies is not feasible in ongoing healthy pregnancies, term instead of
preterm controls were utilized in this study. As mentioned in previous section 1.11, healthy
term was considered as a preferred control group, given that preterm deliveries are at higher
risk of developing certain diseases and often confounded by super-imposed clinical
conditions [272, 293, 346-352]. Hence, there exists a gap of around 6-8 gestational weeks in
eoPE, as compared to term controls. To address this temporal gap and compensate for the
lack of gestation age matched controls, an external scRNA-seq data from Regi et al. 2019
[353] (n=16; Supplementary Table 1) that profiled uteroplacental samples of non-
preeclamptic, non-hypertensive preterm deliveries (before 34th week) were utilized. This
integration adjusted for major cell type/state-specific signatures that could introduce bias in
gene expression owing to preterm birth. (Figure 3.1; also, section 3.7 & Methods).
Potential confounder related to labor was eliminated by only including samples from births

delivered by cesarean section prior to labor.
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However, the above scRNA-seq study did not profile vSTB, the largest cell type constituting
the placenta. These cells have numerous nuclei but share a common cytoplasm, posing
challenges for isolating individual nuclei for sequencing. Additionally, the high level of RNA
degradation and the loss of nuclear integrity during cell isolation further complicate the
accurate profiling of gene expression in multinucleated cells using scRNA-seq techniques. In
this regard, a bulk microarray dataset [345] obtained from placental preterm and term
deliveries was leveraged to account for vSTB specific preterm signatures (see Methods &
Supplementary Table 1). This is because vSTB comprises of most cells in term villi,
specifically, the surface area of vSTB measures approximately 12 square meters at term,
compared to only 5 square meters at the 28th week of gestation [354]. More precisely, earlier
studies indicated that the number of vSTB nuclei reaches approximately 58 billion at term,
representing approximately 90% of the total villi [355-357]. Samples most suitable for
gestational age correction were identified from that study by matching the characteristics of
this study cohort: age (18 — 40), BMI (18.5 — 35, WHO normal to obese), delivery mode
(caesarean section), and the absence of FGR and chronic hypertension. After excluding
individuals with chronic hypertension (Supplementary Table 1), 10 preterm (<34 weeks) and
16 term (>37 weeks) samples were retained respectively and were considered for

downstream analysis.

Subsequently, a multi-omics analytics framework encompassing spatial proteomics and 10X
Visium [187] based spatial transcriptomic profiling were included for validating snRNA-seq
based findings w.r.t early control placenta (Figure 3.1). Also, for the first time, ISS technique
[185] was applied to spatially resolve and compare eoPE and term placenta samples to gain
mechanistic insights about disease biology (Figure 3.1). In a nutshell, multi-omics with a
major focus on snRNA-seq analysis was utilized to understand the longitudinal pathogenesis
of eoPE.
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Figure 3.1: Clinical and multi-omics study design with patient cohorts.

Schematic illustration of experimental design across stages of gestation - early control or first-trimester
pregnancy (e.ctrl), early onset pre-eclampsia (eoPE) versus late term control pregnancies (trm.ctrl).
Uteroplacental tissues were surgically procured and separately sampled to collect villi and decidua
from mostly same patients for snRNA-seq. Early controls (e.ctrl) corresponds to gestational age
ranging between 5-10 weeks, early onset pre-eclampsia (eoPE) induces delivery before 34 weeks
(ranged between 27-33 gestational weeks), and healthy term control (trm.ctrl]) at 39 weeks (ranged
between 38-40 gestational weeks). The gestational age difference between healthy term controls
(trm.ctrl) and diseased pre-term eoPE were adjusted by using additional scRNA-seq data from preterm
delivered non-hypertensive obstetric pathologies.

3.2 A snRNA-seq atlas of the healthy and eoPE maternal-fetal interface

In this study, a separate sampling of placental villi (fetal part) and decidua (maternal part)
was performed to delineate the cellular architecture of the maternal-fetal interface, as
illustrated in Figure 3.2. Also, the cellular origin could be distinguished through distinct
sampling and processing of villous and decidual tissues (Figure 3.2 & Figure 3.3). It is to be
noted that the multinucleated STB layer covering the surface of placental villi posed a
challenge during the fluorescence-activated cell sorting (FACS) step for preparation in the
scRNA-seq analysis pipeline, potentially causing fragmentation. It is known that
multinucleated cells like vSTB are tedious to isolate and may exhibit functional or
transcriptional heterogeneity among their nuclei [357, 358]. Thus, traditional scRNA-seq,

designed for single-cell analysis, may not faithfully capture vSTB heterogeneity, as it tends to
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provide an average representation of gene expression across all nuclei within a
multinucleated cell. In contrast, a more comprehensive exploration of the maternal-fetal
interface in contact with maternal circulation and the depiction of the diverse nuclear content
of this multinucleated cell layer were facilitated by employing snRNA-seq profiling (Figure
3.2). Subsequently, the cellular landscape underlying the maternal-fetal interface was

deciphered using 10X snRNA-seq bioinformatic analysis (conceptualized in Figure 3.2).

early pregnancy late pregnancy

[ healthy controls (wk 7 -10) | [ healthy term controls | [ early onsetPE |
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villi decidua

dNK 1/2/p
dMAC 122 4pc
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m™ "
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Figure 3.2:Schematic illustration of experimental design and histological changes

across gestation in healthy and early onset preeclamptic (PE) pregnancies.

Placental tissue was separately sampled to collect villi and decidua from mostly the same patients for
10X single-nuclei RNA sequencing (snRNA-seq). Early tissues correspond to gestational ages
between 7-10 weeks. Late pregnancy included healthy term controls between 39-40 weeks and early
onset pre-eclampsia (early onset PE) to < 34 weeks. Figure adapted from Nonn, Debnath & Valdes et
al. 2022 [363] (unpublished) and re-sketched using Adobe InDesign software.

In total, there were 10 early villous samples, 6 term control samples, and 5 eoPE villi
samples profiled. Regarding decidua, there were 3 early samples, 4 term control samples,
and 5 eoPE samples collected. Firstly, Cellranger detected a median of 50,659 sequenced
reads (52,833 in villi, and 43,473 in decidua), with 91.15% median mapped reads (91.35% in
villi, and 90.25% in decidua). Secondly, QC measures included the removal of cell barcodes
confounded with ambient RNA(s) and random barcode swapping using CellBender [101],
followed by traditional QC analysis using scanpy toolkit [98], and subsequent elimination of
ambiguous clusters expressing conflicting cell type markers (see Methods). A concise
summary tabulating quantitative QC metrics at these three levels of analysis is depicted in
Table 2. Extensive QC per nuclei and per cell type/state were visualized and tabulated

(Extended Data Figure 1e, f; Supplementary Table 3-5).
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Number of nuclei

Number of UMI per

Number of genes

recovered nuclei detected per nuclei
CellBender level QC | 6134.5 (6211 in villi, | 1418.25 (1469.5 in | 984.5 (1026 in villi,
statistics (before | and 5534 in decidua) villi, and 1058 in | and 834 in decidua)
filtering cells) decidua)
Scanpy level QC | 5786.5 (6032.5 in villi, | 1521 (1633 in villi, and | 1128 (1224.5 in villi,
statistics and 5470.5 in decidua) | 1113.5 in decidua) and 882.5 in decidua)

Downstream filtering

5729.5 (6026 in villi,
and 5470.5 in decidua)

1516 (1669.5 in villi,
and 1112.25 in
decidua)

1125.25 (1254.25 in
villi, and 880.75 in
decidua)

Table 2: QC statistics summarizing number of nuclei recovered, number of UMI per
nuclei and number of genes detected per nuclei across major levels of analysis.

QC summarized across three levels of computational analysis- i) CellBender [101] (denotes QC after
adjusting for ambient RNA expression and random barcode swapping, but before downstream filtering
of nuclei), ii) Scanpy [98] (filtering high quality nuclei, after filtering for %mtRNA, #UMI, #Genes) and iii)
Downstream filtering (after removing donor-specific and ambiguous clusters). Only median values are
tabulated.

Additionally, a detailed breakdown of QC across different gestational conditions and library

chemistry (10X V3 or V2) is summarized in Table 3.

Gestational condition | 10X V3 samples 10X V2 samples
Early villi n=7 n=3
TC=7035 TC= 1867
#genes= 3088 #genes= 1465
N= 67037 N= 12848
Early decidua Not added n=3
TC= 1661
#genes= 1248
N=15582
Late term control villi Not added n=6
TC=1157
#genes= 851
N= 29702
Late term  control | n=1 n=3
decidua TC= 3374 TC= 801
#genes= 1942 #genes= 661
N= 6554 N= 14649
eoPE villi n=2 n=3
TC= 4707 TC=1123
#genes= 1892 #genes= 790
N= 12365 N= 23685
eoPE decidua n=2 n=3
TC= 3233 TC=898
#genes= 1887 #genes= 731
N= 15405 N= 13910

Table 3: Quantitative QC analysis presenting nuclei recovery, UMI, and gene detection
metrics across early, late term, and eoPE villi/decidua, stratified by 10X V3 and 10X V2
library chemistry.

Only median values are tabulated. TC= total UMI counts per nuclei; #genes= the number of genes
with at least 1 count in a nucleus. and N= #nuclei per condition; n sample size. The median
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values for TC and #genes are noted. 10X V3 detected a substantially higher number of UMI and
genes than 10X V2 for which ‘library chemistry’ was considered as a covariate during data integration
and downstream cell type/state markers analysis (see Methods).

Ultimately, snRNA-seq data analysis unveiled 24 and 15 cell types/states in the decidua and
villi, respectively encompassing immune, vascular-endothelial, matrisome, and trophoblast
compartments (Figure 3.3 a-b). This attributed to a total of 210,618 sequenced nuclei in both
tissues, after removing low-quality and confounded cells. Precisely, 95,253 nuclei originated
from the early controls (e.ctrl), 64,850 from late term controls (trm.ctrl) and 50,515 from
severe eoPE pregnancies (Figure 3.3 c-d; Supplementary Table 2-4). For data
harmonization of samples stemming from different gestational time points (i.e., early, term
controls, and severe eoPE), scVI/scANVI [112, 113] deep generative model-based tool was
applied. Individual donor ID served as a key batch, and additional covariates such as
sampling site (procurement center of the sample) and gestational condition were encoded in
the VAE model to minimize technical and batch-specific effects in the downstream analysis
(see Methods). The aim was to achieve optimal clusters, i.e., cell types or states segregated
by biological variability, as extensively discussed in “Section 3.6 scVI data harmonization
and evaluation of performance.” Of note, this complex integration and clustering was
separately performed for decidua and villi to delineate tissue specific cell types or states (see
Methods). Robust and specific markers characterizing decidual and villi cell types/states
were computed using the Logistic Regression framework [360, 361], out of which a few key
markers were visualized (Figure 3.4, Figure 3.5, Supplementary Table 8), which are further

elaborated in sub-sections 3.2.1 & 3.2.2, respectively.

Variations in cell composition within the immune, vascular-endothelial, matrisome, and
trophoblast compartments were observed at different gestational time points, reflecting
specific physiological and functional adaptations at different stages of pregnancy (Figure 3.3
c-d; Extended Data Figure 1c, d & g; Supplementary Table 2). Statistically significant
shifts in cell type/state composition were noted between early and term control pregnancies
(Extended Data Figure 1g). For instance, in early placenta samples, there were statistically
higher levels of vCTB and vCTBp (FDR < 0.01, two-tailed Wilcoxon rank sum test [362]
corrected for multiple states testing). This agrees with the known biology of first-trimester villi
[146, 209] where vCTBp represents mitotically active trophoblast progenitors whose active
proliferation is required for the expansion and growth of a functional placenta [214, 219,359].
Additionally, various cell types/states in villi, such as vFB and vHBC also showed differential
abundance in early samples compared to term controls (FDR < 0.01, two-tailed Wilcoxon

rank sum test [362] corrected for multiple states testing) (see Extended Data Figure 1g).
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Nevertheless, the limited number of samples in the late term and eoPE groups posed

challenges for statistical analysis of cell type/state composition.

In the villi, the syncytiotrophoblast (vSTB) was found to exist in various sub-states, namely
vSTB1, vSTB2 and vSTBjuv (illustrated in Figure 3.3b) and constituted the predominant cell
type of villi. Of note, 69.4% of villous nuclei in early pregnancy, 89.2% in healthy term
pregnancies, and 92.7% in severe eoPE belonged to trophoblast cell-types forming a barrier
separating maternal and fetal circulation (Figure 3.3d). Importantly, both vSTB1 and vSTB2
were found to be differentially abundant in term controls relative to early (FDR < 0.01, two-
tailed Wilcoxon rank sum test [362] corrected for multiple states testing) (Extended Data
Figure 1g). This is to support the continuous growth and maturation of the placenta to
accommodate the increasing needs of the developing fetus and to ensure efficient maternal-
fetal exchange of nutrients and gases [355-357]. Importantly, nuclei of fetal origin expressing
STB and extravillous trophoblasts (EVT) profiles were identified in decidua and termed as
dDSTB and dEVT, respectively (Figure 3.3a).
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Figure 3.3: Cellular landscape of maternal-fetal interface in healthy controls and early-

onset pre-eclampsia.
a) Decidual (maternal; n=12 samples) and b) placenta villi (fetal;, n=22 samples) cell types/states

visualized using UMAP. Each dot represents a nuclear transcriptome of decidua and villi in (a) and (b)
respectively, colored by the cell type or state. The samples within decidua and placenta were
separately integrated using scVI/scANVI (single-cell variational inference) across all gestational time-
points to allow comparative analysis. (c,d) Cell composition (%) distribution per cell type of state,
numbers under bars indicate the sample size of sequenced nuclei. Compositions presented across
gestational time points (e.ctrl, trm.ctrl) and additionally for a disease state (eoPE) in late pregnancy for
(c) decidua and (d) placenta villi. e). Cell name abbreviations for annotated cell types and states
presented in this study. CCT, cell column trophoblast; CTB, villous cytotrophoblast; CTBpf,
cytotrophoblast post-fusion;, STB, syncytiotrophoblast; DSTB, deported STB; VEC, vascular

57



Results | Maternal fetal interface in eoPE

endothelial cell; LEC, lymphatic endothelial cell; LECP, LEC progenitor; SMC, smooth muscle cell; MC,
myocyte; FB, fibroblast; EpC, epithelial cell; MSC, mesenchymal stem cell; DSC, decidual stromal cell;
EB, erythroblast, HBC, Hofbauer cell, PAMM, placenta-associated maternal macrophage; Mono,
monocyte; MAC1, M1-like macrophage; MAC2, M2-like macrophage; NK, natural Killer cell; PC,
plasma cell; DC, dendritic cell, Granul, granulocyte; v, villous/placental; d, decidual; p, proliferative; juv,
Juvenile.

3.2.1 Identification of decidual cell types and states

The decidual cell types/states were deconstructed using key markers extracted from Logistic
Regression based GLM test [360, 361] (Figure 3.4; Supplementary Table 7). Additionally,
the cell type or state associated markers were also verified using the Negative Binomial
framework. In the mesenchymal compartment, progenitor-like dMSC and two sub-states of
decidua stromal cell, namely, DSC1 and DSC2 were detected. dDSC1 exhibited high
expression of markers such as ABI3BP, SYT1, SCARA5, RGCC, and SIPA1L2, whereas
dDSC2 expressed robust IGFBP1, IGFBP2, LUM and classical decidual marker prolactin
(PRL) genes (Figure 3.4). A previous scRNA-seq study by Vento-Tormo et. al. 2018 [209]
revealed that decidua compacta, a site of initial EVT invasion, is significantly enriched in
IGFBP1+ stromal cells. Also, two distinct sets of decidual fibroblasts- dFB1 and dFB2 were
identified that share key markers such as COL1A7, COL1A2 and COL3A1 (Figure 3.4).
Additionally, dFB2 noted specific expressions of genes such as EDIL3, TNC, SLIT2, and
SULF1 (Figure 3.4) associated with cell adhesion, migration, and ECM remodelling [364-
367]. Interestingly, dFB2 was detected only in eoPE and term conditions, not in early
samples (Figure 3.3c, Extended Figure 1d & Supplementary Table 2). Of note, dSMC
showed robust expression of GUCY1A2, ADGRL3, ACTA2, and specific RGS5 expression
(Figure 3.4). Activation of GUCY1A2 (guanylate cyclase) and subsequent cGMP production
contribute to vasodilation and relaxation of smooth muscle cells [368]. In smooth muscle,
RGS5 has been implicated in regulating vasoconstriction and blood vessel tone by

modulating signaling pathways involved in the response to vasoactive agents [369, 370].

Importantly, the cell types/states underlying decidual lymphoid and myeloid immune lineage
were characterized using previously demonstrated mutually exclusive key markers (Figure
3.4). Decidual Natural Killer cell type (dNK) was found to exist in three sub-states, namely,
dNK1, dNK2 and dNKp (Figure 3.3a & 3.4). As expected, all these three states exhibited
prominent expression of CD96 - an immune checkpoint cell surface receptor contributing to
NK cell activation and cytotoxicity [371, 372] (Figure 3.4). Another marker, NCAM1, or CD56

[373], is a neural cell adhesion molecule having an established role in NK cell activation and
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cell adhesion. Moreover, NCAM1 or CD56 expression is known to be associated with
different uterine NK cell subsets, where CD56bright NK cells are considered more
immunoregulatory and CD56dim NK cells are more cytotoxic [223, 374-376]. Two other
marker genes included KLRD1 (also known as CD94) and KLRC1 (also known as NKG2A)
that are known cell surface receptors playing crucial roles regulating functions of dNK, such
as, immune tolerance and immune surveillance [377]. In contrast to dNK1, the dNK2 sub-
state exhibited low but specific expression of CD160 and ITGAE (dNK2; Figure 3.4). CD160
is a glycoprotein expressed on the surface of NK cells that can act as both co-stimulatory
and co-inhibitory receptor, depending on the context and the ligands it interacts with [378,
379]. ITGAE (or, CD103) is known to be involved in promoting the retention of NK cells within
epithelial tissues, where it interacts with E-cadherin and facilitates local immune surveillance
and responses to infections or tumors [380-382]. On this note, dNKp is a proliferating sub-
state expressing MKI67, TOP2A, POLQ and CENPF, while sharing other dNK1/2 markers
(dNKp; Figure 3.4). dTcells were characterized using key expressions of THEMIS, CD3D,
CD2, CD8A, IL7R, CCL5 and CAMK4 (dTcells; Figure 3.4). THEMIS is known for its role in
T-cell development and activation [383, 384]. CD3D is a component of the T-cell receptor
(TCR) complex and plays a central role in signal transduction during T-cell activation [385].
CD2 is a cell adhesion molecule and co-stimulatory receptor involved in T-cell activation,
adhesion to antigen-presenting cells, and the formation of immunological synapses [386].
Previous literature suggests that CD8+ dTcells exhibit atypical cytokine profile that is possibly
linked to the local effects of progesterone [387]. Also, maternal—fetal tolerance may be
favored by CD8+ dTcells, and the decidual microenvironment promotes the residency of

CD8+ T cells to balance between tolerance and defense.

Furthermore, dMono1 and dMono2 constituted decidual monocyte sub-states characterized
by distinct set of markers. dMono1 exhibited specific expressions of CTSS, CD300E, FCN1,
LYZ, PRAM1, relatively robust LST7 while also expressing CD14 and MS4A6A (dMono1;
Figure 3.4). This might indicate the presence of classical monocytes [388]. On the other
hand, expression of S100A9, S100A8, AQPY9, CSF3R, FCGR3B, and TNFRSF10C in
dMono2 indicate it to be neutrophil-like monocytes [389] (dMono2; Figure 3.4). Of note,
neutrophil-like monocytes might contribute to the immune surveillance within the decidua,
actively patrolling the tissue to detect and eliminate potentially harmful microorganisms or
abnormal cells [390]. Also, they are expected to play a role in regulating local inflammatory
responses, and tissue remodelling. Of note, AQP9 (Aquaporin 9) [391] encodes a water
channel protein whose expression might indicate metabolic adaptations required to adjust
with decidual immune responses. A former study by Shi et al 2022 [392] showed

compromised monocyte chemotaxis in AQP9”~ mice. Importantly, dMAC1 sub-state was
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characterized using key markers such as CD14, MRC1 (or, CD206), SPP1, CD163, F13A1,
RBPJ, and SELENOP (dMAC1; Figure 3.4). A previous study by Vondra et al 2023 [393]
performed flow cytometry of CD14+ dMAC cells and found two subpopulations-
CD163+CD206+ macrophage-like and CD7163-CD206- monocyte-like. Of note, dMAC1
closely resembled their CD14+ CD163+ CD206+ cells. Next, dDC was characterized using
well-known dendritic cell markers, like HLA-DRA, HLA-DRB1 that encode major
histocompatibility complex class 1l (MHC-II) molecules, IRF8 and XCR1 and absence of other
immune lineage genes (dDC; Figure 3.4). A small subgroup of cells (n=203) expressing
MS4A1, BANK1, BACH2, and FCRL2 were found and annotated as dBcells (dBcells;
Figure 3.4).
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Figure 3.4: Known and novel cell types and states of maternal decidua characterised
by discrete and functionally relevant markers.
Dot-plots featuring known and specific novel markers characterising each cell type or state in decidua

as computed by Logistic Regression based Generalized Linear model (Bonferroni adjusted two-sided,
P < 0.05 and log2FC cut-off of +0.25). Genes are scaled across clusters. dDSTB, deported STB; EVT,
extravillous trophoblast; VEC, vascular endothelial cell; LEC, lymphatic endothelial cell; LECP, LEC
progenitor; SMC, smooth muscle cell, MC, myocyte; FB, fibroblast; EpC, epithelial cell, MSC,
mesenchymal stem cell; DSC, decidual stromal cell; EB, erythroblast; Mono, monocyte; MAC1, M1-
like macrophage; MAC2, M2-like macrophage; NK, natural killer cell; PC, plasma cell;, DC, dendritic
cell, Granul, granulocyte; d, decidual; p, proliferative.

3.2.2 Identification of placental cell types and states

Known and novel cell types/states underlying the human placenta were annotated using
literature resources and Logistic Regression-inferred markers [360, 361] (Figure 3.5;
Supplementary Table 7). On a computational note, the cell type or state associated markers

were also verified using the Negative Binomial framework.

vCTB cell type exhibited robust expression markers, including YAP1, LGRS, TP63, PEG10,
PARP1, and FRAS1, aligning with the known biology of vCTB [146, 209]. YAP1 [394], a
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transcriptional co-activator, plays a crucial role in regulating cell proliferation and apoptosis in
CTB(s). LGRS [292, 395, 396] may be involved in regulating the balance between self-
renewal and differentiation, contributing to the dynamic process of CTB differentiation. TP63
is also indicative of vCTB stemness [395] and is a member of the p53 family of transcription
factors, likely contributes to cell fate decisions, differentiation, and the establishment of
epithelial integrity [397]. On the other hand, PEG10 is a well-known CTB marker that is an
imprinted gene involved in cell proliferation and differentiation [398]. PARP1 is an enzyme
involved in DNA repair and likely contributes to the maintenance of genomic integrity,
ensuring proper cell function and response to stressors during trophoblast differentiation
[399]. FRAST is a component of the extracellular matrix [400] and might be involved in the
regulation of cell adhesion, migration, and tissue architecture during trophoblast
differentiation. Importantly, an actively proliferating sub-state of CTB, termed as vCTBp,
which is believed to represent trophoblast progenitors, was detected. vCTBp expresses
markers associated with cell-cycle regulation and G2M checkpoint kinases such as MKI67,
TOP2A, POLQ, CENPE, and CENPK (vCTBp; Figure 3.5). Apart from this, vCTBp

expresses major characteristic markers of vCTB, as mentioned above.

An intermediate trophoblast sub-state specifically expressing fusiogenic markers such as
GREM2, ERVFRD-1, ERVV-1/2, OTUB2, ABTB2, and DYSF, that recapitulated the
transcriptomic profile previously described by Liu et al. 2018 [401] as ERVFRD-1 positive
CTB cells was identified. This sub-state was regarded as vCTB pre-fusion (vCTBpf) (vCTBpf;
Figure 3.5). During early human placentation, the mononuclear layer of cytotrophoblasts
fuses to establish multinucleated syncytia responsible for hormonal production and nutrient
exchange between the mother and the child. Furthermore, all three vSTB states express
markers related to hormone secretion, such as CSH71, CSH2, and CGA [231-234], into the
maternal circulation, playing a crucial role in maintaining and modulating pregnancy
(vSTBjuv/1/2; Figure 3.5).

Also, a cell-column trophoblast (CCT) cell type was detected using well-known markers like
HLA-G, MYCNUT, NOTUM, DIO2, LAIR2, and ASCL2 (vCCT; Figure 3.5). HLA-G and
LAIR2 are both implicated in immune tolerance, contributing to the immunosuppressive
environment at the maternal-fetal interface, facilitating successful pregnancy [402-404].
MYCN upstream transcript (MYCNUT) and Achaete-scute homolog 2 (ASCL2) are
transcription factors known for regulating trophoblast differentiation and invasion. A detailed
description of vCCT and the role of different markers in regulating its functional heterogeneity
is provided in “Section 2.6 Subcluster analysis of invasive-phenotype cell column
cytotrophoblast cell type.”
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In terms of immune cell states, placental F13A1+/FGF13+ resident macrophages, known as
Hofbauer cells (vHBC), which uniquely express the hyaluronan receptor LYVE1 in the
immune cell subset, were identified [237-240]. These cells are suggested to maintain arterial
tone and possess pro-angiogenic functions. They are HLA-DR (-) but express markers such
as MRC1, SPP1, VSIG4, CD36, RBPJ, and MAF, revealing their transcriptomic similarity to
decidual macrophages [238] (vHBC; Figure 3.5). Interestingly, a highly proliferative sub-
state of vHBC characterized by MKI67, TOP2A, CENPE, and potentially denoting progenitors
of this immune cell type was detected (Figure 3.5; Supplementary Table 7). Together with
vHBC cells, vHBCp possibly contributes to maintaining immune tolerance, production of
various cytokines and growth factors, angiogenesis, and interaction with trophoblasts [237-
240]. Additionally, antigen-presenting HLA-DRA+ placenta-associated maternal
monocytes/macrophages (VPAMM), which are villi-associated and of extra-embryonic or
maternal origin, were identified. The annotation and transcriptomic profile of this sub-state
agrees with Thomas et al 2020 that characterized PAMMs using flow cytometry [238]. Villi
fibroblast (vFB) was characterized using key fibroblast markers, such as COL1A71, COL1A2,
COL3A1, CDH11, DCN, and SOX5 (vFB; Figure 3.5). Villi myocyte (vMC) was identified
based on their GUCY1A2, AGTR1 expression (vVMC; Figure 3.5). Importantly, vWEC was
characterized using key vascular endothelial cell markers, including CD34, MEOX2,
PECAM1, LDB2 and DACH1 (vVEC; Figure 3.5).
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Figure 3.5: Known and novel cell types and states of placenta villi characterised by
discrete and functionally relevant markers.
Dot-plots featuring known and specific novel markers characterising each cell type or state in the villi

computed by Logistic Regression based Generalized Linear model (Bonferroni adjusted two-sided, P
< 0.05 and log2FC cut-off of £0.25). Genes are scaled across clusters. Placental F13A1+/FGF13+
resident macrophages (Hofbauer cells, vHBC) uniquely express hyaluronan receptor LYVET in the
immune cell subset, suggested to maintain arterial tone and have pro-angiogenic functions [].
Additionally, antigen presenting HLA-DRA+ placenta associated maternal monocytes/macrophages
(vPAMM) were identified as villi-associated and of extra-embryonic (or maternal) origin, respectively [].
Villi myocytes were identified through their expression of AGTR1. CTB, villous cytotrophoblast; STB,
syncytiotrophoblast; DSTB, deported STB; CCT, cell column trophoblast; EVT, extravillous trophoblast;
VEC, vascular endothelial cell; MC, myocyte; FB, fibroblast; HBC, Hofbauer cell, PAMM, placenta-
associated maternal macrophage; v, villous; d, decidual; p, proliferative; juv, juvenile; pf, pre-fusion.
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3.2.3 Global transcriptomic similarity among clusters

A hierarchical clustering of cell types/states and Pearson correlation analysis was conducted
to infer the similarities in the global transcriptomic profile among the clusters identified in the
decidua and villi (Figure 3.6). As anticipated, vSTB1, vSTB2, and dDSTB were clustered
together, reflecting their conserved expression of key STB signatures and overall STB
phenotype. Additionally, vPAMM closely clustered with decidual macrophages, i.e., dMAC1
and dMAC2, as the former represents maternal-origin macrophages infiltrated into villi to
support the growing placenta. vHBC- being functionally analogous to decidual macrophages

also revealed high positive Pearson correlation scores between dMAC1 and dMAC2.
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Figure 3.6: Global transcriptomic similarities among decidua and villi clusters.
Pearson correlation map of the highly variable genes (n = 6000) for identified cell-types and states.

The clear uniqueness shared by STB groups also reveals clear differences in transcriptome between
the novel vSTBjuv nuclei state and other STB nuclei subgroups. Because traditional characterization
markers (such as CGA, CYP19A1, KISS1) were used to describe STB are fulfilled by all groups, this
suggests that vSTBjuv has additional unknown functions in pregnancy. Expression data of early late
control and preeclampsia samples is shown.
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3.2.4 Cell types/states of maternal and fetal origin

Additionally, the examination of the maternal and fetal origin of cell types and states in both
decidua and villi was conducted through the analysis of chromosome X- and Y-linked gene
expression in cell clusters of samples from male fetuses and their mothers. As anticipated,
the villi clusters originating from male fetuses solely exhibited expression of fetal Y-linked
genes such as TTTY14 and USP9IY. In contrast, X Inactive Specific Transcript (XIST) was
specifically expressed in vPAMM and vTcell in villi of male fetuses, indicating that these cells
are of maternal origin, and either infilirated into the fetal tissue or attached to the villous
surface from maternal circulation (Figure 3.7). On similar note, the fetal origin of dDSTB was

confirmed by the expression of Y-specific genes and negligible XIST, as shown in Figure 3.7.
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Figure 3.7: Cell types and states of maternal and fetal origin.

Dotplot featuring gene expression of key sex-associated genes on male fetus placenta samples only.
Decidual cell groups are the only ones with high expression of XIST, suggesting decidual samples are
of maternal orgin. XIST expression in the villous derived T cell & placenta-associated maternal
macrophage (PAMM) groups suggest these are also maternal in origin and captured in the villi as
invaded or adhered cells.

3.3 Functional heterogeneity of vSTB1 and vSTB2

snRNA-seq analysis demonstrated notable transcriptional heterogeneity among vSTB nuclei
and supported segregating vSTB into three distinct sub-states (vSTB1, vSTB2, vSTBjuv), all
characterized by a pronounced secretory capacity and different gene enrichment profiles
(Figure 3.3b & 3.5a). To investigate functional differences between vSTB1 and vSTB2 sub-
states, a multi-variate Logistic Regression test was conducted (average log2FC >=0.25,
Bonferonni adjusted p-value < 0.01) (Supplementary Table 7). vSTB1 was found to be the
most prevalent nuclear state within the syncytial nuclei and displayed a transcriptomic profile
associated with typical vSTB functions, including hormone secretion (e.g., CSH1, CSHL1,

CSH?2), estrogen biosynthesis (CYP19A17), and protein secretion (ADAM12, PAPPA,
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PAPPA?2). Notably, robust, and specific expression of KYNU, a gene known for regulating
placental NAD+ synthesis and the supply of fetal tryptophan and kynurenine metabolites [405]
(Figure 3.8a), was observed in vSTB1.

In contrast, lower expression of these markers was observed in vSTB2 nuclei, implicating
partial transcriptional inactivation of traditional vSTB programs. These nuclei were
characterized by higher expression of PDE4D, an enzyme involved in cAMP and cGMP
regulation (Figure 3.8a). Previously, PDE4D was described to induce intra-uterine
inflammation in gestational tissues and preterm labor [406]. Of note, selective inhibitors
against PDE4 are currently in clinical trials for the disease treatment related to inflammatory
disorders [407]. vSTB2 also expresses TENT5A, which is implicated in mRNA stabilization
and potential response to infection [408] (Figure 3.8a). Unique genes upregulated in vSTB2
are associated with pathways related to ubiquitin-mediated proteolysis and suppression of
genes involved in the cell cycle. Additionally, vSTB2 exhibited repression of genes
associated with DNA damage response (e.g., DDX5, DDX17, DDX39B) and cyclin-
dependent kinases (e.g., CDK19), suggesting that vSTB2 might be a senescent STB sub-
state (Figure 3.8a) and possibly represents the terminal fate in the differentiation trajectory.
This could be further supported by the downregulation of fusion genes in STB2, including
LIFR, GCM1, and DYSF (Figure 3.8a; Supplementary Table 7).

To further understand the functional relevance of vSTB1 and vSTB2, Metascape [409]
analysis was performed to identify enriched pathways and signaling programs using the top
100 markers for these two nuclear states (Figure 3.8b). Both vSTB1 and vSTB2 exhibited
enrichment in cell surface interactions at the vascular wall (R-HSA-202733, g-
value<0.000001) and NABA Matrisome Associated (M5885, g-value=0.000007). Additionally,
vSTB1 marker genes were uniquely enriched for processes related to steroid hormone
metabolism (R-HSA-196071, g-value=0.000008), the JAK-STAT signaling pathway
(hsa04630, g-value=0.006642), and the PID integrin A9B1 pathway (M118, ¢-
value=0.022035). On the other hand, the top 100 marker genes for vSTB2 were uniquely
enriched in estrogen-dependent nuclear events downstream of ESR-membrane signaling (R-
HSA-9634638, g-value=0.009465) and the PID ARF6 pathway (M86, g-value=0.047032), as
detailed in Supplementary Table13. Furthermore, for both vSTB1 and vSTB2, markers
showed enrichment in transcription factors and regulators, including TFAP2A (g-
value=0.00004), ESR1 (g-value=0.006.31), SP1 (g-value=0.015849), and CEBPB (g-
value=0.019953). Presence of these shared transcription factors in both vSTB1 and vSTB2
possibly indicate ongoing hormonal activity in these nuclei states. Of note, TFAP2A is a TF

known to initiate early specification of trophoblast progenitors by placental genes activation
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and by supressing pluripotency regulator OCT4 [410], and further for regulating terminal
differentiation of vSTB [411]. A previous study detected ESR17 protein in the nuclei of cultured
human vSTB cells [412]. In another investigation by O'Neil and colleagues [413], estrogen
was shown to activate the LEP promoter in choriocarcinoma JEG-3 cells through ESR1. This
suggests that the regulation of leptin biosynthesis might rely on the presence of a functional
ESR.

Next, vSTB1 marker genes were found to be uniquely enriched for the transcription factors
CREB1 (g-value=0.001995), MYBL2 (qg-value=0.00631), ATF1 (qg-value=0.019953), and
NR5A1 (g-value=0.031623). In contrast, the top 100 vSTB2 marker genes did not exhibit
unique enrichment for any transcriptional regulator, as outlined in Supplementary Table 7.
The enriched transcription factors CREB1, MYBL2, ATF1, and NR5A1 in vSTB1 markers are
associated with the EGF/EGFR-pathway. This suggests EGFR signaling, a pathway
commonly linked to vCTB continues to regulate vSTB1. Also, NR5A1 (or, SF1) is known to
regulate steroidogenesis [414]- a process essential for maintaining a supportive hormonal

environment during pregnancy.

a % cells Mean .
In group expression
VSTB1{ © - Q0 0 0 0 0 000000000 0090000 ;20 1.0
vSTB21 ®© - @@ o c C o O O O o o O o o O .4618 os
T80 Ee 80800 r UEESEPRECSREE e ||
PEAEPESFLERETA32<B388585%2 @00 ||
0°FTo<38* Zf& o =“aocozxs 00
= az < z T
< 5 ) o
03
O
-logo(p)

02346 10 20
R-HSA-202733: Cell surface interactions at the vascular wall
M5885L: NABA matrisome associated
hsa04630: JAK-STAT signaling pathway
R-HSA-196071: Metabolism of steroid hormones
_ hsa04925: Aldosterone sysnthesis and secretion
hsa04066: HIF-1 signaling pathway
hsa00380: Tryptophan metabolism
hsa04933: AGE-RAGE signaling in diabetic complications
R-HSA-5083635: Defective B3GALTL causes PpS
M86: PID ARF6 pathway
R-HSA-9616222L Transcriptional regulaiton of granulopoiesis
M166: PID ATF2 pathway
R-HSA-5683057: MAPK family signaling cascades
R-HSA-1474228: Degradation of the extracellular matrix
R-HSA-9634638: Estrogen-dependent nuclear events downstream

of ESR-membrane signaling

]

vSTB1
vSTB2

Figure 3.8: Functional heterogeneity between vSTB1 and vSTB2 nuclear sub-states.
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(a) Dotplot featuring gene expression of markers characterising the two predominant nuclear states in
the syncytial layer (STB). (b) Enrichment heatmap displaying top shared and unique pathways
comparing vSTB1 and vSTB2 sub-states, using a discrete color-scale to represent statistical
significance (-log1o(p)). Gray color indicates a lack of significance.

3.4 \Validation of decidua-derived STB sub-state

Decidua-derived dDSTB nuclei of fetal origin were characterized by robust expression of
traditional STB markers such as CGA, CSH1, CYP19A1, and PSG4, but not EVT lineage
marker HLA-G (Figure 3.4). This finding was validated by localizing the dDSTB population in
maternal blood by immunohistochemistry (IHC) in decidual sections (Figure 3.9). Specifically,
IHC robustly stained GDF15, and B -hCG (encoding CSH1), but was negative for HLA-G.
However, it remains to be elucidated whether dDSTB results from sampling techniques or
are caused by the physiological shedding of STB nuclei, as it is known that STB sheds off its

nuclei into the maternal circulation.
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Figure 3.9: Immunohistochemical validation of dDSTB in maternal decidua.
GDF15 expressed in dDSTB is localised by immunohistochemistry in decidual tissue. dDSTB is

identified among maternal erythrocytes in maternal vessels as an HLA-G negative 3-hCG positive
GDF15pos fragment (n=3, representative figure shown). Acknowledgment. Lena Neuper & Prof.
Berthold Huppertz at the Division of Cell Biology, Histology and Embryology, Gottfried Schatz
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Research Center, Medical University of Graz, Austria, and is provided as a validation of my
computational finding of dDSTB sub-state in decidua snRNA-seq data (taken with permission).

3.5 Juvenile syncytiotrophoblast state

Among the three distinct vSTB nuclear states, a novel sub-state of vSTB termed as "juvenile
STB" (vSTBjuv) was uncovered. Possibly, this reflects an immature nuclear state of vSTB
that originates before committing to the fully differentiated STB, as discussed later in the
trajectory modelling (refer to Section 2.8). vSTBjuv sub-state displayed relatively higher
expression of hormone encoding genes, including placental lactogen (CSHZ2), and classical
vSTB markers such as KISS1, CGA, CYP19A1 TFPI, and TFPI2, along with exocytotic
expression signatures such as HSPB1, CD63, FURIN (Figure 3.10a).

A comparison of vSTBjuv with other vSTB types revealed differentially upregulated genes,
including DLK1, ACTB, TMSB10, FSTL1, and SPARC (Logistic Regression, Bonferroni
adjusted p-value < 0.001)- known to be associated with cytoskeletal stability and extracellular
matrix organization, as detailed in Supplementary Table 7. Hence, it is speculated that
vSTBjuv aids in the formation and maintenance of the outer placental wall before acquiring a
traditional STB phenotype (i.e., endocrine, and secretory by nature). This heterogeneity
might reflect a “division of labor” in the STB barrier of the placenta. No significant differences
in the abundance of STBjuv nuclei between eoPE and term controls were observed,
suggesting a gestation-independent role of this state. However, given the low number of
samples in eoPE and term groups, it is recommended to validate this observation in a larger

cohort before drawing conclusions.

To experimentally localize vSTBjuv nuclei within the multinucleated vSTB layer, markers that
technically best distinguished vSTBjuv from vSTB1 and vSTB2 (Supplementary Table 7)
were considered. This included TENM3 (FC= 12.4, BH-corrected p-value adj. < 0.0001),
which promotes homophilic adhesion [415], and DLK1 (FC= 6.2, BH-corrected p-value
adjusted < 0.0001), a paternally imprinted gene correlated with birth weight [416]. Thereafter,
In-situ mMRNA hybridization [183, 418] was performed with DLK7 and TENM3 rolling padlock-
probes. Specific high-affinity probes that can distinguish single nucleotide differences in
sequences were used [418]. Moreover, key marker and important pregnancy hormone,
human chorionic gonadotropin B-hCG was added to capture the vSTB layer. Together, this
allowed the precise localization of TENM3PS/DLK1P°S nuclei within a p-hCGPes STB
cytoplasm layer in the early and late pregnancy (or, term control) placental villi (Figure

3.10b).
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Figure 3.10: | vSTBjuv sub-state characterized by computationally and experimentally
validated markers.
(a). Dot-plot with markers characterising the novel vSTBjuv nucleus state; computed by Logistic

Regression based Generalized Linear model (Bonferroni adjusted two-sided, P < 0.05 and log2FC cut-
off of £0.25). Genes are scaled across clusters. (b) Representative images showing the localisation of
the novel vSTB nucleus state vSTBjuv; immunofluorescence staining with vSTB protein marker 3-hCG
(green) combined with padlock probe based in situ mRNA hybridisation for vSTBjuv markers DLK1
and TENM3 (arrows). n=3 independent experiments with 2 biological replicates each per gestational
time. CTB, cytotrophoblast; STB, syncytiotrophoblast; p, proliferating; pf, pre-fusion; juv, juvenile state.
Rolling padlock probe experiment and figure generation for (b) was performed at Dr. Muller/Denchend
lab at MDC Berlin, Germany, and used to support my computational findings of novel vSTBjuv sub-
state as shown in (a).

3.5.1 Technical evaluation of novel STBjuv sub-state

To account for possible technical confounders in the snRNA-seq data for diligently identifying
cell type/states, a mitochondrial (MT) read cut-off at 5% was employed as a quality control
threshold. Additionally, the percentage of MT-transcripts per nuclei was used as a continuous
covariate in the scVI data integration model and differential gene expression tests. Hence,
the finding of novel STBjuv sub-state was not driven by artifacts such as %MT-transcripts per
nuclei. Doublet analysis using Scrublet [103] was also performed to flag technical doublets,
that later confirmed that vSTBjuv nuclei were not confounded by doublets (Extended Data

Figure 2).

Furthermore, amortized Latent Dirichlet Allocation (LDA) [417] was performed to investigate
whether any cluster-associated topics were confounded by contradictory marker expression
as demonstrated by Surywanshi et al. in 2018 [146] (see Methods). The presence of genes
from conflicting lineages (such as astrocytes and vascular cells, or STB and EVT) could
indicate biological doublets and hence, introduce contamination in cell type/state annotation.
Conceptually, a distinct cell type should map to a unique topic inferred by LDA as depicted in
Extended Data Figure 3. Cell states or sub-clusters usually share the topics of the mother
cluster (or “cell type”) and additionally may harbor a unique topic. However, LDA analysis
showed that vSTBjuv robustly maps to ‘topic-14’ dominated by vSTB features, and it did not

bear other conflicting topics, i.e., mesenchymal, or immune related topics (Extended Data
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Figure 3). Also, the topics describing vSTBjuv was not dominated by mitochondrial genes. A

full breakdown of topics is also provided in Extended Data Figure 3.

3.6 scVI data harmonization and evaluation of performance

For addressing the complex task of data harmonization, a state-of-the-art data integration
tool, scVI [112], was employed, as demonstrated to be a consistent top performer in Luecken
et al. 2022 [114]. This technique is referred to as 'data harmonization' rather than batch effect
correction to emphasize that the input datasets stemmed from very different sources (e.g.,
library, sampling sites) and from samples from different gestational time-points having

different underlying cell type/state composition.

The individual donor (Donor ID) was considered as the key batch in the variational encoder
model. Furthermore, batch effect owing to sample procurement center (sampling site),
biological (gestational time points), and technical covariates (library chemistry, total UMI
counts, total number of genes detected, percentage of mitochondrial transcripts per
nuclei, %XIST per nuclei) was considered. Performance of the integration was evaluated
using well-established metrics Adjusted Rand Index (ARI), Adjusted Mutual Information (AMI),
and cell-type adjusted silhouette width (ASW) per batch as used in prior integration
benchmarking studies [114, 115].

For this study, a very detailed description of the strategy investigating the batch effect across

four analyses is included:

= Case 1: Technical replicates to establish an upper bound of integration quality
= Case 2: Different library preparation methods
= Case 3: Different sampling sites

= Case 4: Different sampling site and library preparation methods

After an exhaustive batch effect analysis, the integration results were compared to other
studies, and it was concluded that majority of the batch effects had been regressed out. Only
results on those cell states for which there was high confidence that integration performed
reliably were presented. Below, details of each of the four groups of analysis are provided. A
multi-panel figure for the four cases is presented as Figure 3.11. A comprehensive table

summarizing the statistics is reported as Supplementary Table 6.
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Case 1: Batch effects evaluation between technical replicates

In the consideration of modeling batch effects in the experimental design, technical replicates
were included for a sample (577_1 and 577_2) to establish an upper bound for the quality of
integration. Comparable numbers of cells (6185 and 6081 cells, respectively), median genes
expressed (788 and 756 genes), and similar cell state compositions characterized both
samples (Figure 3.11 a-d, technical replicates). The relative proportion of cell-states in the
two technical replicates is depicted using a kernel density plot (KDE) reflecting the density of
cells in an embedded space and concordance in cell composition. As anticipated, both the
ARI (0.0037) and AMI (0.003) scores were close to 0, indicating near-perfect integration.
Similarly, the average ASW per batch (0.92) was close to 1, also indicating decent batch
effect removal. Furthermore, the ASW at the cell-state level was investigated, indicating
excellent scores for a larger number of cell states, with intermediate scores for villi myocytes
and slightly lower scores for T-cells. These cell states were not the focus of our study

(Supplementary Table 6, Technical replicate 557).

Case 2: Batch effects evaluation between different library preparation chemistries

Similar to establishing an upper bound for the similarity of samples through the analysis of
technical replicates, a more extreme effect of using different library preparations was also

investigated.

In the case of early (first-trimester pregnancy), samples were processed using 10X V3 (n=7)
and 10X V2 (n=3) chemistries. The groups had 67037 and 12848 cells, with median numbers
of genes expressed being 3088 and 1465 using 10X V3 and 10X V2 chemistries,
respectively. The relative cell state composition was also similar (Figure 3.11 e-h, Library
chemistry) with more vHBCp, vCTBp, vFB, vMC, vHBC, and vPAMM in 10x V3 samples
(Figure 3.11 f-h, Library chemistry). ARl and AMI values (0.002 and 0.009) were close to
zero, suggesting a negligible effect of library chemistry. The average ASW per batch was
0.88, indicating a decent removal of library effects. Furthermore, the ASW at the cell-state
level was investigated, indicating excellent scores (>0.90) for a larger number of cell-states
relevant to the first-trimester pregnancy, such as vCTB, vCTBp, vCTBpf, vCCT, and vSTB1
(Supplementary Table 6, Library chemistry). All late term controls were processed using
10X V2 chemistry. Hence, the library was not considered a confounder. Differences in eoPE

samples are presented in Case 4.
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Case 3: Batch effects evaluation between sampling sites (procurement) in late

samples

Late samples were equally split between both Oslo and Graz sites (n=3 and n=3,
respectively). Both samples had comparable numbers of cells (15733 and 13969 cells,
respectively), median genes expressed (827 and 894 genes), and similar cell state
compositions with some exceptions (Figure 3.11 i-l, Sampling site term controls). The ARI
(0.016) and AMI (0.027) were close to zero, indicating that our cell state labels were not
influenced by the sampling site. The average cell state ASW per batch was 0.88, indicating
appropriate removal of sampling effects within a cell state identity. Cell-state ASW per batch
was very good (> 0.90) for the major cell states such as vCTB, vSTB1/2 & vSTBjuv,
indicating optimal batch-mixing while conserving biological information (Figure 3.11j &
Supplementary Table 6). There were increased proportions of PAMM, vT-cells, vFB, and
vMC in Graz samples (Figure 3.11 j-k). Hence, no key conclusions were drawn from these
cell populations in the thesis. Despite observing slightly more vCTB in Graz samples, they
mixed well between sites as reflected by ASW (Supplementary Table 6, Sampling site late

controls).

Case 4: Batch effects evaluation between sampling site and chemistry in eoPE

samples

Furthermore, eoPE samples were split between both Oslo and Graz sites (n=3 and n=2,
respectively). The numbers of cells were 17604 and 12365 cells, respectively (median ~5900
cells), median genes expressed 790 and 1892 genes, respectively, and similar cell state
compositions (Figure 3.11 m-p, Sampling site eoPE). A higher number of profiled genes
were because the Graz samples were processed using 10X V3 chemistry compared to 10X
V2 used for Oslo samples. Hence, the library was an overlapping confounding factor here.
The ARI (0.004), and AMI (0.028) scores were close to zero, indicating that our cell-state
labels were not majorly influenced by sampling sites and library chemistry. The average
ASW is 0.80, indicating good integration. ASW for major cell states such as vSTB1/2/juv
were very high, which rules out the influence of sampling site (Supplementary Table6).
However, we observed relatively more vFB in Graz eoPE samples that might have lowered
its ASW (Figure 3.11 n). Immune cells such as PAMM & vTcells were slightly depleted in
Graz samples relative to Oslo, which apparently also have lowered their ASW score.
However, no major conclusions were drawn for these cell states at any point in the
manuscript. Even though vSTB2 is relatively more in Oslo, this group is well integrated

(ASW=0.88) (Supplementary Table 6, eoPE sampling site).
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Figure 3.11: Batch effect assessment from snRNAseq placenta samples in this study.
(a) Violin plots illustrating the detected (log1p per sample) total UMI counts representative of total RNA

transcripts (left) and number of total genes having at least one positive count in a cell (right) for
technical replicates 557 _1 and 557 _2 (n= 6185 and 6081 nuclei respectively). (b) UMAP embeddings
split by technical replicates 557 1 and 557 2 visualizing distribution and concordance of cell-
types/states. (c) Kernel density estimation revealing similar composition in technical replicates 557 1
and 557 2. Values are scaled from 0-1 for comparison and high-density values suggest strong
contribution of cells to the overall dataset. (d) Stacked bar-plot depicting similar relative composition of
cell types/states in technical replicates 557 1 and 557 2. (e) Violin plots illustrating the detected
(log1p per sample) total UMI counts representative of total RNA transcripts (left) and number of total
genes having at least one positive count in a cell (right) for early (first trimester) pregnancy samples
split by library condition- 10X V2 (n=3; 12848 nuclei) and 10X V3 chemistry (n=7; 67037 nuclei). (f)
UMAP embeddings of early pregnancy samples split by 10X V2 and 10X V3 library samples
visualizing distribution and concordance of cell-types/states. (g) Kernel density estimation reflecting
contribution of cells to overall composition in 10X V2 and 10X V3 library samples (early). Values are
scaled from 0-1 for comparison and high-density values suggest strong contribution of cells to the
overall dataset. (h) Stacked bar-plot depicting similar relative composition of cell types/states in 10X
V2 and 10X V3 library samples (early) with more vHBCp, vCTBp, vFB, vMC, vHBC, and vPAMM in
10x V3 samples. (i) Violin plots illustrating the detected (log1p per sample) total UMI counts
representative of total RNA transcripts (leff) and number of total genes having at least one positive
count in a cell (right) for late term controls split by sampling site- Graz (n=3; 13969 nuclei) and Oslo
(n=3, 15733 nuclei). (j) UMAP embeddings of term control samples split by sampling site- Graz and
Oslo visualizing similar distribution and concordance of cell-types/states in the two categories. (k)
Kernel density estimation reflecting contribution of cells to overall composition in Graz and Oslo term
control samples. () Stacked bar-plot depicting similar relative composition of cell types/states in Graz
and Oslo term controls showing increased proportions of PAMM, vT-cells, vFB and vMC in Graz
samples. (m) Violin plots illustrating the detected (log1p per sample) total UMI counts representative of
total RNA transcripts (left) and number of total genes having at least one positive count in a cell (right)
for eoPE samples split by sampling site- Graz (n=2; 12365 nuclei) and Oslo (n=3, 17604 nuclei). (n)
UMAP embeddings of eoPE samples split by sampling site- Graz and Oslo visualizing similar
distribution and concordance of cell-types/states in the two categories. (0) Kernel density estimation
reflecting contribution of cells to overall composition in Graz and Oslo eoPE samples. (p) Stacked bar-
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plot depicting similar relative composition of cell types/states in Graz and Oslo eoPE samples showing
slight depletion in immune cells (PAMM & vTcells) in Graz samples relative to Oslo.

3.7 Subcluster analysis of invasive-phenotype cell column cytotrophoblast

cell type

vCCT cells were defined as the 'cell column trophoblast' that has the potential to differentiate
into decidua invading extravillous trophoblast (dEVT) during early placental development
(Figure 3.3 a-b). The formation of this trophoblast sub-state takes place at locations where
placental villi attach to the decidua, and hence, referred to as anchoring villi that can give rise
to structures known as cell columns. However, these cell columns are not uniform. As cells
progress distally within the column, they undergo phenotypic changes and acquire EVT gene
expression patterns. Hence, sub-clustering analysis of vCCT was performed to dissect this

heterogeneity on a transcriptomic level.

The Leiden algorithm (scanpy implementation) with low resolution (=0.3) was applied,
yielding 7 clusters. The subgroups were then merged based on the expression of key
markers to distinguish proximal CCT (pCCT), distal CCT (dCCT/pEVT), and an additional
transition state of CCT (Figure 3.12a). Overall, pCCT is characterized by pronounced levels
of EGFR, TEAD4, TP63, and NOTCH?2 that is regarded as the 'EGFR signature group'
(Figure 3.12 b-d). During pCCT formation, EGFR activation likely contributes to acquiring
migration and invasive properties of these cells [419], allowing them to penetrate the
maternal decidua and remodel maternal spiral arteries. On a similar note, Hippo pathway
target, TEAD4 indicates stemness and self-renewing property [420, 421], and possibly
regulate vCCT differentiation together with YAP7 [421]. Moreover, YAP-TEAD4 complexes

were found to suppress markers of vSTB differentiation [412].

The proliferative proximal trophoblasts (pCCT) progress toward the distal end of the column
and transition into non-dividing trophoblasts (dCCT). This transition is marked by increased
expression of EVT-specific marker genes, including HLA-G, NOTUM, and HPGD in the
dCCT or, pEVT (Figure 3.12b). Human Leukocyte Antigen-G or HLA-G is an immune
tolerance molecule. During EVT differentiation, it helps regulate the immune response by
suppressing the activation of maternal immune cells, thus preventing immune rejection of the
developing embryo [402, 403]. Of note, NOTUM encodes an enzyme modulating Wnt
signaling, which is critical for trophoblast invasion and placental development [422-425].
HPGD (15-Hydroxyprostaglandin Dehydrogenase) is an enzyme that plays a role in

prostaglandin metabolism [426]. Specifically, it helps regulate inflammation by breaking down
74



Results | Maternal fetal interface in eoPE

prostaglandins, and maybe involved in regulating the inflammatory response in the maternal-

fetal interface during EVT invasion.

Moreover, a significantly increased expression of ECM remodeling genes such as ITGAT,
ITGAS, TIMP2, MMP2, ADAM12 in the dCCT (Figure 3.12b). Integrins are cell surface
receptors that mediate cell adhesion and signaling. ITGA71 and ITGAS likely facilitate EVT
attachment and invasion by interacting with extracellular matrix components and signaling
pathways in the uterine environment [427]. MMP(s) such as MMP2 are a family of enzymes
that play a crucial role in trophoblast invasion [427-429]. They degrade the extracellular
matrix, allowing EVT cells to penetrate maternal tissues. Specifically, MMP2 was found to be
induced by canonical Wnt and PI3K-AKT pathway [428]. In this regard, TIMP2 (Tissue
Inhibitor of Metalloproteinases 2) is involved in regulating the activity of matrix
metalloproteinases (MMPs). In EVT differentiation, TIMP2 helps control the activity of
MMP(s), which are enzymes that facilitate tissue remodeling and invasion by degrading

extracellular matrix components [429].

Notably, robust expression of TEAD1 (TEA Domain Transcription Factor 1) and WWTR1
(WW Domain Containing Transcription Regulator 1) was also recapitulated, known as critical
players in the regulatory network that governs the invasive properties of EVT (Figure 3.12b)
[420, 421, 430]. These two proteins are part of the Hippo signaling pathway and interact with
each other to control various cellular processes. In conjunction with WWTR1, TEAD1 acts as
a transcriptional co-activator and forms a complex that binds to specific DNA sequences,
known as TEAD-binding sites. By doing so, they regulate the transcription of genes that are
critical for EVT differentiation and invasion. Their downstream targets include genes
responsible for extracellular matrix degradation, cell adhesion such as ITGA1, ITGAS, and
MMP2. Moreover, TEAD1 and WWTRT1 are involved in controlling the balance between EVT
proliferation and differentiation. Specifically, they play a role in promoting the differentiation of
CTB(s) into invasive EVTs, which is essential for placental development and the implantation
process. Importantly, the activity of TEAD1 and WWTR1 can be influenced by other signaling
pathways, such as the Wnt and TGF-3 pathways. This crosstalk allows for the fine-tuning of

EVT behavior in response to various signals from the uterine microenvironment.

Taken together, the dCCT group robustly expresses the above-mentioned genes which we
regarded as the 'I'TGA1 signature group' (Figure 3.12 b-d). After invading the decidua, one
of the primary functions of EVTs is to transform spiral arteries for which the candidate
members of the ITGA1 group are required. This is to establish the uteroplacental blood

circulation necessary for providing essential nutrients and oxygen to the developing baby.
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Figure 3.12: Subcluster analysis of invasive-phenotype cell column cytotrophoblast
cell type.

(a) UMAP embedding visualizing vCCT subclusters based on robust and specific marker profiles. (b)
Dotplot depicting expression of key genes relevant for each subgroup. The fraction of cells per group
expressing a gene is size coded; normalized mean expression is color-coded. (c) Module scores of
two signature sets (derived from computational and curated subcluster markers) revealing relatively
robust expression of Set1 (EGFR, TEAD4, TP63, ITGA2, NOTCH2) in pCCT and that of Set2 (ITGA1-
MMP?2). (d) Feature plot showing the signature scores of EGFR-group and ITGA1-group.

3.8 Trophoblast trajectory modelling

In this study, trajectory analysis was conducted using STREAM (see Methods) [149] and
subsequently validated with additional methods such as Diffusion Pseudotime (DPT) [150]
and force-directed graphs to ensure its robustness (Figure 3.13a & Extended Data Figure
4). STREAM predicts cellular trajectories through the utilization of EIPiGraph [153] that is

entirely revamped algorithm for previously known elastic principal graph optimization.

Leveraging existing knowledge on trophoblast development [209, 219], vCTBp was
designated as the root progenitor cell state in downstream analysis (Figure 3.13a).
Importantly, the two divergent lineages of the bipotent trophoblast, namely vSTB and vCCT
were characterized by identifying markers that (i) exhibit dynamic regulation across
pseudotime, referred to as "transition markers," and (ii) display robust expression at the

terminal branches, defining cell-fate commitment, known as "leaf markers" (see Methods).
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Of note, a large overlap was noticed between the leaf and transition markers

(Supplementary Table 16).

Trophoblast differentiation is inherently linked to the spatial organization of its underlying cell
types/states, which is organized in two layers. To validate the vSTB and vCCT transition
markers, a spatial proteomics method adapted from deep visual proteomics [431] was
utilized. Laser microdissection-based proteomics enabled the isolation of single cells or multi-
cellular regions of interest (ROIs) with preserved spatial resolution after microscopic
inspection. In the spatial proteomics approach, vCTB, vSTB, and vCCT cell types were
identified on formalin-fixed, paraffin-embedded (FFPE) sections, laser-microdissected cell
type-specific regions, and performed liquid chromatography-mass spectrometry (LC-MS)
(n=4; Figure 3.13 b-c). The dataset included replicates of the same cell class, demonstrating
high proteome consistency with excellent proteome correlations (Pearson r > 0.9 for cell
types; refer to Supplementary Table 17). The major rationale for using this technique is to
validate snRNA-seq trajectory inferred transition markers on a protein level and identify
markers characterizing the vSTB and vCCT fates. The subset of overlapping markers

essential for both lineages is discussed in subsequent sections.
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Figure 3.13: Trajectory modelling of first-trimester trophoblast recapitulates STB and
CCT differentiation.
(a). Stream plot showing the developmental trajectory of early trophoblast and cell density across
pseudotime. Branch length represents pseudotime progression, branch width is directly proportional to
cell numbers at a given pseudotime. (b) Stained using immunofluorescence markers E-Cadherin
(CDH1) and human chorionic gonadotrophin (8-hCG) to discriminate between vCTB, vSTB, and CCT;
(c) set areas were laser micro-dissected, captured and processed for untargeted proteomics using LC-
MS). Acknowledgement: Proteomics figures (b) and (c) were produced by our collaborators- Dr.
Fabian Cosica & Jose Nimo (MDC Berlin) and are included (with permission) to support subsequent
figures associated with sections 2.7.1 & 2.7.3. STB, syncytiotrophoblast; CCT, cell column trophoblast;
CTB, cytotrophoblast; p, proliferative; pf, pre-fusion; juv, juveline.
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3.8.1 vCCT differentiation lineage

The vCCT differentiation path was characterized by the dynamically increasing expression of
key transition markers, namely HLA-G, NOTUM, TEAD1, and FOS (Figure 3.14a), further
validated by proteomics (Figure 3.14b, d). Moreover, the vCCT cell fate was characterized
by the elevated expression of the AP1 signaling pathway (Figure 3.14a), where transition
markers TEAD1 and WWTR1 are key contributors. As already discussed in section 2.6, both
are key regulators of EMT signaling required for decidual invasion, and hence sustaining a
functional maternal-fetal interface during pregnancy [420, 421, 430]. Additionally, vCCT
lineage path exhibited increasing expression of transition markers, including MYCNUT,
TGFB1, LAIR2, ANGPT4, GALNT2, HPGD, HTRA4, ITGA5 MMP12, and ISM2, holding
multi-factorial roles in metabolism, cell adhesion, and migration required for acquiring an
invasive phenotype [404, 426-429] (Figure 3.14c). Importantly, the signatures characterizing
vCCT fate were confirmed through the intersection of markers identified as transition genes,

and those that were also substantially abundant at a protein level (Figure 3.14d).

Next, the spatial distribution of key cell types or states within the villi was investigated by
integrating snRNA-seq data with 10X Visium spatial transcriptomics (Figure 3.14e). For the
analysed sample, number of spots under tissue was 1917; mean reads per spot was 153,206;
median genes per spot was 1429 and median UMI counts per spot was 2375, as reported by
SpaceRanger software [453]. Subsequently, SPOTlight [196] was employed to deconvolute
spatial transcriptomics capture locations, commonly referred to as spots. Each spot is
expected to have ~10 cells. This approach revolves around an initialized seeded non-
negative matrix factorization (NMF) regression using specified cell-type marker genes and
non-negative least squares (NNLS). Subsequently, a vCCT signature score was computed
using the transition gene list visualized in Figure 2.14d, and this module was found to be

robustly expressed across the deconvoluted vCCT region (Figure 3.14f).
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Figure 3.14: Characterization of vCCT lineage path.
(a) Stream plot displaying scaled expression of critical vCCT lineage signatures, including AP1

pathway and selected transition markers HLA-G, WWTR1, NOTUM, FOS, and TEAD1. Branch length
represents pseudotime progression, branch width is directly proportional to cell numbers at a given
pseudotime. (b) Heatmap depicting scaled (z-scored) protein abundance levels of key markers
characterizing vCCT fate. (c) Selected lineage-specific transition markers significantly correlating to
pseudotime (cell-cell distance) progression for vCCT identity. Lines are polynomial regression fits of
normalized expression data. Cell-type membership is incorporated on the x-axis and ordered by
pseudotime. (d) Heatmap describing mean gene expression changes along the inferred pseudotime
for vCCT lineage. Genes shown are detected as transition marker genes that are also found to be
differentially abundant in spatial proteomics analysis. Cells ordered by pseudotime values (top bar)
and coloured according to (a). Gene expression is scaled row-wise. (e) 10X Visium-based spatial
profiling revealing vSTB and vCCT enriched spots using non-negative least squares (NNLS) and non-
negative matrix factorisation (NMF) based Spotlight deconvolution approach. (f) Module scores of
vCCT developmental drivers derived by intersecting snRNA-seq based trajectory analysis and spatial
proteomics based differentially abundant proteins. Specifically, an intersected list of transition genes
(expression correlates with pseudotime) and key proteins (from proteomics) plotted in (d) were used to
compute a module-score. For the vCCT path, the z-score of protein expression comparing a given
lineage against others was > 1.5 & n = 6 biological replicates.

10X Visium analysis also allowed the identification of spatially variable developmental drivers
crucial for determining cell fate commitment. Notably, candidates like HLA-G, HPGD,
NOTUM, ASCL2 and ISM2 were detected as spatially variable genes that strongly
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contributed to this module score (Figure 3.15). A previous study by Varberg et. al. 2021 [432]
found ASCL2 to be conserved and critical regulator orchestrating deep trophoblast invasion
and maternal spiral arteries remodelling in human, and rat models. In the aforementioned
research [432], ASCL2 transcript expression was observed in the EVT column and junctional
zone, representing tissue sources of invasive trophoblast progenitor cells within human and
rat placentation sites, respectively. This observation aligns with the 10X Visium data that
recapitulated strong ASCL2 expression in vCCT dominated spots. In the same regard, LAIR2
is part of the LAIR family of receptors, and it is known to interact with collagens Il/Il,
suggesting a potential involvement in ECM interactions [433]. Former investigation by
Founds et. al. 2013 [404] demonstrated that LAIR2 expressing EVT(s) invade the decidua,
participate in maternal spiral arterioles remodelling, and modulate innate immune response

at maternal—fetal interface.

Figure 3.15: Spatially variable genes detected as transition markers for vCCT lineage.
Selected spatially variable genes inferred from 10X Visium analysis that are also vCCT transition

markers are visualized (see Methods).
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3.8.2 BMP signaling blocks spontaneous fusion in vCTBpf

Trajectory inference suggested that dynamic transitional state vCTBpf acts as a vSTB
progenitor (Figure 3.13a). During early placental development, vCTBpf regulates cell-to-cell
fusion as revealed from its transcriptomic profile [401, 434] (as discussed in section 3.1.2)-
hence, it is very likely that mononucleated vCTBpf differentiates to give rise to multinucleated
vSTB.

It is worth noting that the BMP-antagonist GREM2 [435] demonstrated robust expression in
the vCTBpf. Interestingly, the expression of the BMP/Activin receptor dimer
ACVR2A/BMPR1A and BMP7 (a BMP signaling agonist) [436, 437] was identified in the
vCTB branch but was repressed in the vCTBpf section (Figure 3.16). This temporary
inhibition of BMP in vCTBpf could potentially serve as a prerequisite for the fusion and
trophoblast differentiation from vCTB to vSTB. Collectively, these findings indicate that "pre-
fusion vCTB or vCTBpf" represents a vCTB sub-state that undergoes evolution to become
vSTB through a process involving transient downregulation of BMP7 and an increase in
ERVFRD-1 (syncytin-2) expression.
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Figure 3.16: vCTBpf characterized by BMP signaling genes.

Stream plot depicting mean gene expression of vCTBpf associated developmental markers that are
members of BMP signaling pathway [435-437]. BMP-inhibitor GREMZ2 and BMP agonizer BMP7
expression are mutually exclusive. Branch length represents pseudotime progression, branch width is
directly proportional to cell numbers at a given pseudotime.
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3.8.3 vSTB differentiation lineage

A total of 280 transition markers showing dynamic up or downregulation during vSTB
differentiation were detected (Supplementary Table 16). In the vSTB lineage, the increasing
expression of genes such as CGA, KYNU, ARHGAP26, ADAM12, AFF1, PAPPA2, LIFR,
and PSG4 was positively correlated with the pseudotime (Figure 3.17b). CGA is a subunit of
human chorionic gonadotropin (hCG), a hormone produced by vSTB cells. Importantly, hCG
plays a crucial role in early pregnancy, particularly in the maintenance of the corpus luteum,
which continues to produce progesterone to support the uterine lining. CGA also possesses
immunomodulatory properties that help protect the fetus from the maternal immune system.
Pregnancy-specific beta-1-glycoproteins (PSGs) are a family of protein encoding genes
produced by the placenta during pregnancy and known to play a role in immunomodulation
[438-441] and may support a tolerogenic environment [442]. ARHGAP26 is a Rho GTPase-
activating protein involved in controlling cell migration, cytoskeletal dynamics, and cell
adhesion [443]. ADAM12 and PAPPAZ2 are both secreted metalloproteinase and previously
described as first-trimester markers of healthy trophoblast [444]. ADAM12 is known as a
regulator of cell adhesion, migration, and proteolysis of ECM [444, 445]. Importantly,
ADAM12, PAPPA2, and LIFR genes are regulated by EP300/p300 and hence, governs
placental syncytialization process [434, 446] required to maintain multinucleated vSTB

barrier.

Subsequently, to understand the spatial localization of vSTB developmental drivers, a
module score was computed using the transition markers plotted in Figure 3.17¢, and this
signature module was robustly expressed across the deconvoluted vSTB region, as shown in

Figure 3.17e.
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Figure 3.17: Characterization of vSTB lineage path.

(a). Stream plot showing the developmental trajectory of early trophoblast and cell density across
pseudotime. Branch length represents pseudotime progression, branch width is directly proportional to
cell numbers at a given pseudotime. This figure is repetitive of figure 2.13a and added for ease in
understanding rest figures in this panel. b). Selected lineage-specific transition markers significantly
correlating to pseudotime (cell-cell distance) progression for vSTB identity. Lines are polynomial
regression fits of normalized expression data. Cell-type membership is incorporated on the x-axis and
ordered by pseudotime. (d) Heatmap describing mean gene expression changes along the inferred
pseudotime for vSTB lineage. Genes shown are detected as transition marker genes that are also
found to be differentially abundant in spatial proteomics analysis. Cells ordered by pseudotime values
(top bar) and coloured according to (a). Gene expression is scaled row-wise. (e) 10X Visium-based
spatial profiling revealing vSTB and vCCT enriched spots using non-negative least squares (NNLS)
and non-negative matrix factorisation (NMF) based Spotlight deconvolution approach. (f) Module
scores of vSTB developmental drivers derived by intersecting snRNA-seq based trajectory analysis
and spatial proteomics based differentially abundant proteins. Specifically, an intersected list of
transition genes (expression correlates with pseudotime) and key proteins (from proteomics) plotted in
(d) were used to compute a module-score.

Unlike the vCCT lineage, TEAD1, a negative transition marker for the vSTB lineage is
differentially downregulated as trophoblasts transitioned from vCTB to vSTB (previously
depicted in Figure 3.14a, b). This observation aligns with the spatial proteomics analysis,
which validated lower levels of the YAP1 protein in vSTB compared to vCTB (YAP1; Figure
3.18). Taken together, this confirms the repression of YAP/TAZ pathway as vSTB
differentiation progresses- in agreement with prior investigations [421, 447, 448].
Furthermore, few key vSTB lineage markers, including SDC1, CGA, and GDF15 were
validated on a protein level (Figure 3.18). In this regard, SDC1 is a cell surface proteoglycan
that is expressed in the STB, and is known to modulate adhesion, and ECM interactions
required for communication with maternal tissues [449]. On the other hand, GDF15

expressed by vSTB cells is released into the maternal circulation, where it might contribute to
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modulating maternal-fetal communication, immune tolerance, and nutrient transport [450].
LNPEP is an enzyme involved in the metabolism of peptides, including vasopressin and
oxytocin [451]. BMP1 is an enzyme that belongs to the bone morphogenetic protein family
and drives ECM remodelling and tissue development [452]. In the placenta, BMP1 may be
involved in processes such as trophoblast invasion and tissue remodeling, which are

essential for placental development and function (Figure 3.18).
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Figure 3.18: Stream plot depicting key vSTB lineage markers.
Lineage markers with decreasing (ELF5, TP63, YAP1) and increasing (CGA, SDC1, GDF15, BMP1,

LNPEP) expression across pseudotime are plotted. Branch length represents pseudotime progression,
branch width is directly proportional to cell numbers at a given pseudotime.

3.9 Comparative investigation of eoPE vs term controls

In this study, a significant computational challenge was encountered in addressing variability
associated with 'preterm' gestational age. This challenge arose due to the collection of eoPE
patient samples around the 34th week, while the term control samples were acquired
between the 38th to 40th week of pregnancy. To tackle this issue, harmonization of an
external scRNA-seq dataset [353] that compared non-pathological preterm and term
pregnancy samples was performed using scVI/scANVI [112, 113]. The integrated preterm
controls were reported to maintain normotensive pregnancies. Only eoPE and term control
samples from this study were considered to understand the relationship among eoPE,
preterm controls, and term controls. Of note, this facilitated the identification of cell
type/state-specific signatures associated with preterm relative to term controls (refer to
Methods). It is important to note that this integration was performed separately for placenta

villi and decidua samples.
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Upon projecting the cells into UMAP embeddings, effective batch mixing of the datasets was
observed, especially for conserved cell types/states like vCTB (Figure 3.19). To quantify the
integration, the adjusted rand index (ARI), adjusted mutual information (AMI), and cell-type-
specific absolute silhouette width (ASW) were comp<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>