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Abstract: Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by the
appearance of painful inflamed nodules, abscesses, and pus-draining sinus tracts in the intertriginous
skin of the groins, buttocks, and perianal and axillary regions. Despite its high prevalence of ~0.4–1%,
therapeutic options for HS are still limited. Over the past 10 years, it has become clear that HS is a
systemic disease, associated with various comorbidities, including metabolic syndrome (MetS) and its
sequelae. Accordingly, the life expectancy of HS patients is significantly reduced. MetS, in particular,
obesity, can support sustained inflammation and thereby exacerbate skin manifestations and the
chronification of HS. However, MetS actually lacks necessary attention in HS therapy, underlining
the high medical need for novel therapeutic options. This review directs attention towards the
relevance of MetS in HS and evaluates the potential of phytomedical drug candidates to alleviate
its components. It starts by describing key facts about HS, the specifics of metabolic alterations
in HS patients, and mechanisms by which obesity may exacerbate HS skin alterations. Then, the
results from the preclinical studies with phytochemicals on MetS parameters are evaluated and the
outcomes of respective randomized controlled clinical trials in healthy people and patients without
HS are presented.

Keywords: acne inversa; metabolic syndrome; obesity; hypertension; dyslipidemia; NAFLD;
hyperglycemia; polyphenol; Olea europea; Withania somnifera; Vitis vinifera; Camellia sinensis

1. Hidradenitis Suppurativa

Hidradenitis suppurativa (HS) is a chronic inflammatory disease affecting the intert-
riginous skin, particularly at the axillary, inguinal, gluteal, and perianal sites [1]. Painful
inflamed nodules, abscesses, and pus-draining sinus tracts recur in these areas of the skin.
In addition, destructive skin remodeling processes in the course of the disease lead to scars
that restrict movement (Figure 1). This debilitating disease usually starts in early adulthood
and shows an estimated worldwide prevalence of about 0.4–1% [1–6].

After the onset of the first symptoms, the diagnosis of HS still takes about 10 years on
average, a fact that is important because the disease duration correlates with the number of
comorbidities of respective patients [7]. Despite the regional differences, men appear to
be as equally affected as women when viewed globally [8–13]. Given the great physical
and mental burden of the disease, it is not surprising that HS patients have been found to
show a considerable reduction in quality of life parameters, and this reduction is even more
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pronounced compared to other chronic inflammatory skin diseases, including psoriasis or
atopic dermatitis [14]. Anxiety, depression, body image impairment, and passive forms
of indirect self-destructiveness together with stigmatization and social exclusion or self-
isolation are additional aspects frequently associated with HS [15–20]. Furthermore, owing
to a reduced employment rate and an increased absenteeism and presenteeism, HS leads to
a significant loss of national gross value added and, therefore, is of great socio-economic
importance [21].
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macrophages are very similar to the effects of IL-10 on these cells [39]. Finally, extensive 

Figure 1. Representative picture of axillary (A) and lower belly/inguinal (B) skin lesions of HS
patients.

Known predisposing factors for HS include genetic as well as lifestyle factors [22].
Among the lifestyle factors, obesity and smoking, frequently met in HS patients, were
linked to the development of skin alterations. However, the mechanism of lesion develop-
ment is still not fully understood, especially the initial events triggering the disease, which
are still unclear. It is assumed that obesity supports a subclinical inflammatory milieu
around the hair follicle in apocrine gland-bearing intertriginous skin [22]. In the early stage
of HS, epidermal hyperplasia, including acanthosis and hyperkeratosis, leads to infundibu-
lar alterations promoting follicular occlusion, whereby secreted inflammatory mediators
(e.g., cytokines) from infiltrated mononuclear immune cells may account for this process.
Nicotine might contribute to these alterations by promoting epidermal hyperplasia and
altering the skin microbiome [23–25]. Resulting retention of sebum within the hair follicle
then leads to its dilatation, propagation of bacteria, and inflammation [26]. Thus, bacterial
components and alarmins released from damaged follicular cells are sensed by local im-
mune cells through pattern recognition receptors, provoking high immune cell infiltration
and the formation of inflamed nodules and abscesses [22,26,27]. The continuous cross-talk
of cutaneous tissue cells with those activated immune cells, in particular, macrophages,
T cells, B/plasma cells, and neutrophilic granulocytes, results in the secretion of further
pro-inflammatory cytokines and matrix-degrading enzymes (matrix metalloproteinases),
which drive skin destruction and allow for the formation of pus-draining sinus tracts in the
chronic stage of HS [27–37]. HS lesions also contain high levels of the anti-inflammatory
cytokine interleukin (IL)-10 [26,38]. Interestingly, the long-term effects of bacterial products
on monocytes and macrophages are very similar to the effects of IL-10 on these cells [39].
Finally, extensive scarring can develop as the result of the ongoing tissue-remodeling pro-
cesses. Immune mediators produced locally in HS lesions can enter the circulatory system
and act in other organs, promoting the occurrence of comorbidities [27,32,34].
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2. Metabolic Alterations in HS

An important clinical aspect associated with HS is the presence of profound metabolic
alterations of those affected, including central obesity, hypertriglyceridemia, hypo-high-
density lipoprotein (HDL) cholesterolemia, hyperglycemia, and hypertension [40]. When
three of these criteria are met, the diagnosis of metabolic syndrome (MetS) can be confirmed.
The number of fulfilled MetS criteria typically increases with age, whereas this observation
does not apply to HS patients. In fact, already in early life (≤34 years of age), 40% of HS
patients are shown to be affected by the MetS compared to 0% in age-matched controls [40].
In addition to MetS, HS is associated with numerous additional comorbidities, including
spondyloarthritis, inflammatory bowel disease, non-alcoholic fatty liver disease (NAFLD),
and cardiovascular disease [41–48].

Among MetS criteria, central obesity is the most frequent found in ~65% of HS
patients (compared to 24% in the healthy controls) and is assumed to play a pathogenetic
role in HS [40]. Adipose tissue is able to adapt to times of varying nutrient availability
through releasing free fatty acids (FFAs) from stored triglycerides during times of nutrient
shortage and through the storing of triglycerides in times of caloric excess [49]. If the
physiological storage is at its limit, adipose hyperplasia (increase in cell numbers) occurs.
This is associated with decreased blood perfusion, local immune cell activation, apoptosis,
and enhanced mechanical stress due to the tightness of cells within the adipose tissue.
In contrast to the so-called metabolically healthy obesity (MHO), where the majority of
adipose tissue is located in subcutaneous depots, metabolically unhealthy obesity (MUHO)
leads to central obesity (visceral adiposity), with triglycerides predominantly deposited
in ectopic sites, including visceral adipose tissue or inner organs (e.g., the liver, skeletal
muscle, and heart) [49].

3. Proinflammatory Mechanisms of Obesity

Obesity might affect HS in four different ways: at the physical, microbial, immunolog-
ical, and metabolic levels [22]. First, obesity leads to enlarged skin folds that may support
lesion development through continued wetness, maceration, increased mechanical friction,
and injury. Second, resulting anaerobic conditions in those skin folds in turn provide the
basis for the altered microbiome pattern observed in HS patients. Third, hypertrophic
adipose tissue mediates low-grade systemic inflammation through pro-inflammatory medi-
ators (e.g., cytokines and chemokines) secreted by immune cells within the adipose tissue
and induces oxidative stress, both of which worsen the skin condition as well as HS comor-
bidities [50,51]. In comparison to normal-weight individuals, hypertrophic adipose tissue
contains increased numbers of neutrophils and macrophages, known to play an important
role in the development of low-grade systemic inflammation [52,53]. From the in vivo
models, it can be deduced that neutrophils, infiltrated into the hypertrophic adipose tissue
in the early stage of obesity, mediate the recruitment and polarization of macrophages
through the increased secretion of proinflammatory as well as macrophage recruiting
chemotactic mediators (e.g., IL-6, tumor necrosis factor (TNF)-α, CCL2) [54,55]. Further-
more, the tight cross-talk of neutrophils and adipocytes was suggested to mediate NLRP3
inflammasome activation, the inflammation of adipose tissue, and biasing of neutrophils
towards a hyperinflammatory state [56,57]. Fourth, adipose tissue is not only an energy
reservoir, but also a major endocrine tissue [49,58]. In HS, the pattern of adipokines, pep-
tide hormones derived from adipose tissue that regulate metabolic processes, e.g., insulin
sensitivity (regulated by adiponectin) and body weight homeostasis (regulated by leptin)
are dysregulated [59–61]. In fact, the serum level of anti-inflammatory adiponectin clearly
decreases, whereas leptin levels increase in HS compared to healthy donors, indicating the
presence of a leptin resistance, which further promotes obesity [59,60]. As immune cells
are also directly targeted by adipokines, the altered adipokine pattern might contribute
to the development of a pathogenetic immune–metabolic circuit in HS patients [58,62].
Interestingly, the metabolism of blood CD4+ T cells appears to also be altered in HS patients.
In fact, it was recently found that the expression of several genes involved in oxidative
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phosphorylation was downregulated in the blood CD4+ T cells of HS patients and a few
transcripts for glycolysis-dependent energy production were increased [63].

It should be noted that obesity is associated with the enhanced systemic level of
FFAs [49]. FFAs negatively impact glucose and lipid metabolism, being risk factors for
developing insulin resistance and dyslipidemia [49]. Dyslipidemia and hyperglycemia,
in turn, are risk factors for developing cardiovascular diseases [49,64–66]. Of note, FFAs
may also promote inflammation by binding to TLR4 on monocytic immune cells and
induce NLRP3-dependent IL-1β production [67–69]. As FFAs are released from visceral
depots directly into the portal circulation, FFAs also affect liver homeostasis and promote
the development of NAFLD [49]. Accordingly, higher prevalences of hyperglycemia,
dyslipidemia, cardiovascular alterations, and NAFLD in HS patients compared to the
controls was reported [40,41,43,44,46]. In fact, ~26% of HS patients were found to suffer
from hyperglycemia compared to 8% in the healthy controls, and the incidence of diabetes
increased at least two-fold in HS patients [40,70]. Aspects of dyslipidemia are found in 50%
(hypo-HDL cholesterolemia) and 38.8% (hypertriglyceridemia) of HS patients, compared to
18% and 22%, respectively, in the healthy controls [40]. Furthermore, ~70% of HS patients
compared to 30% of the controls were also affected by NAFLD [43,46]. The described
mitigating impact of bariatric surgery and weight loss on HS severity supports the concept
of the significant contribution of adipose tissue to the cutaneous inflammation in HS
patients [71,72]. Furthermore, the relevance of inflammation to MetS is supported by the
observation that anti-inflammatory therapy targeting TNF-α may improve MetS severity
in patients with rheumatoid arthritis [73]. However, the respective data for HS patients are
lacking at present. Overall, the strongly increased presence of metabolic alterations and its
sequelae in HS patients are serious risk factors contributing to the substantially reduced life
expectancy [74]. In fact, HS patients lived an average of 14.7 years less than the controls,
with cardiovascular disease being their leading cause of death [74].

4. HS Therapy: Time for a New Perspective?

Therapeutic options for moderate to severe HS include, at present, long-term antibiotic
treatment and the surgical excision of skin lesions, whereby these therapies do not result in
a sustained improvement of the disease-associated reduced quality of life of patients [14,75].
Furthermore, at present, there are only two approved immune therapies for HS:, the TNF-
α-neutralizing antibody adalimumab and the IL-17A-neutralizing antibody secukinumab.
In contrast to psoriasis, only a proportion of HS patients benefits from these biologicals.
The limited treatment options and consideration that a relevant portion of HS patients
refuse single-therapy elements or have relevant contraindications demonstrate the great
need for novel and innovative therapeutics for HS treatment [1,76]. The inclusion of MetS
comorbidities in therapy concepts, in particular, obesity, as a relevant trigger factor for HS
symptoms is also still insufficient. Based on the increased prevalence of mood disorders
among HS patients, lifestyle changes are also difficult to realize for those patients. To
close this gap, phytotherapy appears to be an appropriate complementary therapeutic
approach by targeting MetS elements. In fact, there is a positive perception of alternative
therapeutics among both HS patients and dermatologists [77,78]. In this review, we evaluate
the potential impact of selected phytomedical drugs on MetS parameters. In this way, we
hope to identify candidates that can be tested in future studies on HS patients, applied in
daily practice, and complement HS therapy in the long term.

5. Phytotherapy—A Therapeutic Concept with a Long History

The traditional use of herbal plant-based medicine has a very long tradition that dates
back several thousand years [79]. The first descriptions of the use of herbal medicine
was found on Sumerian clay slabs from Mesopotamia (~3000 BC) and Egyptian papyrus
rolls (~1550 BC) [79]. Medicinal plants are also mentioned in the Bible, another old scrip-
ture. In the traditional medicine of ancient Greece, the use of locally growing herbs
for medical purposes also played an important role and was proposed by Hippocrates
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(460–377 BC) [79]. The Shen Nong Ben Cao Jing is another early written record (date of
origin unclear: 25–220 AD) describing a variety of medical plants and their therapeutic
uses according to traditional Chinese medicine [80]. Later, the monastic medicine (i.a. rep-
resented by Hildegard von Bingen, 1098–1179) led to the widespread distribution of herb
knowledge among the local population. In the 16th century, Paracelsus (1493–1541) laid
the foundation for the concept of spagyric medicine, a term derived from the Greek words
“spien” (separate) and “agera” (unite) [81]. Two-hundred years later, Carl von Linne finally
developed a binary nomenclature for plants that brought the needed system into the plant
kingdom [82]. The term phytotherapy was coined by the French physician Henri Leclerc
(1870–1955) and comprises the topical application or internal medical administration of
plants or herbs. These include their use in the native or processed form as decoctions, extract
preparations, or isolated key substances. To date, the European Medicines Agency (EMA)
database of the Committee on Herbal Medicinal Products (HMPC) already lists 167 com-
pleted monographs for phytomedical plants (https://www.ema.europa.eu/en/medicines,
accessed on 7 August 2023).

6. Potential Phytotherapeutic Options for MetS in HS Patients

Targeting metabolic alterations by phytochemicals might be a complementary ther-
apeutic strategy of HS. Especially, their anti-inflammatory, antioxidative, glucose, lipid
metabolism regulating, and their described cardio- and hepatoprotective properties are
potentially interesting in this regard [83,84]. For this review, phytochemicals were selected
within the field of phytotherapy according to the availability of the preclinical and clinical
data on a single metabolic syndrome parameter. Accordingly, Olea europea, Withania som-
nifera, Vitis vinifera, and Camellia sinensis were found to represent appropriate candidates
for the indication of MetS (Figure 2). As the effects of phytochemicals on primary and
tumor cells are different [85,86], the preclinical data based on primary cells were primarily
evaluated in this review. Furthermore, regarding the available human in vivo data, only
placebo-controlled, blinded, randomized clinical trials (RCTs) were presented in this review.
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6.1. Olea europea

As an important agricultural plant, different parts of the olive tree are used for nutri-
tional and medical purposes, the leaves, olive fruits, and olive oil also being elements of
the so-called Mediterranean diet. The main active constituents of olive oil fruits as well
as of olive leaf extract (OLE) are the polyphenols oleuropein (secoiridoid) and hydroxyty-
rosol (phenylethanoid), which is also generated through the metabolization of oleuropein.
Several preclinical in vitro and in vivo studies investigating the mode of action of these
substances implied the beneficial effect on metabolic dysfunction. In fact, oleuropein and
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hydroxytyrosol were shown to prevent LDL oxidation and strengthen endogenous an-
tioxidative and arteroprotective mechanisms, reducing endoplasmic reticulum stress and
platelet aggregation in vitro [87–94].

In vivo, Olea europea leaf-derived phytochemicals improved dyslipidemia, adipokine
profile, glucose homeostasis, and antioxidative capacity in several diabetes, oxidative
stress, and obesity animal models [91,95–104]. In line with these studies, these phytochem-
icals ameliorated high-fat-diet-induced body weight increase and white adipose tissue
hypertrophy in vivo in rodent models [96,100,102–104]. The reported enhancing effect of
hydroxytyrosol and oleuropein on adipocyte lipolysis in vitro might therefore contribute to
their normalizing effect on lipid metabolism in vivo [105–107]. The data from Vezza et al.
and Wang et al. indicate the normalization of obesity-related dysbiosis and the downregula-
tion of inflammatory cytokines as another mechanism underlying the positive impact of the
MetS parameter on high-fed diet-induced murine obesity [100,101]. Moreover, an increase
in the systemic adiponectin level and upregulation of MAPK, as well as the suppression of
PPARg expression in adipose tissue were suggested by Hadrich et al. and Scoditti et al. to
underly the anti-obesity effects of olive leaf phytochemicals [96,108].

Furthermore, an improvement of cardiovascular parameters by hydroxytyrosol using
an in vivo diabetes rat model was demonstrated [109]. A cardioprotective role was also sug-
gested for olive leaf phytochemicals using in vivo animal models of high-fat-diet-induced
metabolic syndrome, diabetes, arteriosclerosis, and ischemia [104,110–116]. The underlying
mechanism of cardioprotection might involve nitric oxide-mediated vasodilatation and
oxidative stress reduction [104,115,117]. Moreover, according to the in vitro data, olive
leaf phytochemicals were observed to show anticoagulative properties in healthy and
experimentally induced ischemic rodents [87,89,111,118].

For the described hepatoprotective effect of oleuropein and hydroxytyrosol in high-
fat-diet-based in vivo rodent models, an attribution to the normalization of hepatic PPARg,
Nrf2, and NF-kB pathway activity was suggested [101,102,104,119,120].

The available RCTs on the evaluation of olive leaf extract (OLE), oleuropein, or hy-
droxytyrosol indicated an attenuating effect on the parameters of MetS, confirming in part
the preclinical study data (Table 1). As the individual contribution of containing fatty acids
and polyphenols of olive oil to the observed effects in respective RCTs as challenging, only
RCTs using OLE, oleuropein, or hydroxytyrosol were considered for the evaluation and
were discussed here. RTCs evaluating the potential of OLE on glucose metabolism did
not present a consistent picture yet hinted at some beneficial effects contributing to the
normalization of glucose homeostasis. In fact, OLEs were found to reduce the postprandial
plasma glucose level of healthy, obese, pre-hypertensive, or osteoporosis participants after
single or long-term applications in 3 of 4 RCTs evaluating this outcome measure [121–124].
However, fasting glucose levels were not affected by long-term OLE applications [125–127].
A short-term treatment of healthy participants with oleuropein followed by glucose tol-
erance testing in the absence of oleuropein also did not influence the post-prandial blood
glucose level [128]. In contrast, insulin sensitivity and pancreatic β-cell function were
improved in obese participants by OLE [122]. However, in obese or hypertensive partici-
pants, insulin levels postprandially decreased [122] or remained unchanged [125,127] after
long-term OLE treatment; an increase was assessed after a single application in healthy
study cohorts [121,124]. Based on the increase of the hormone GLP-1 that supports insulin
secretion with a concurrent reduction in its inhibitor DPP-4, an antidiabetic property was
suggested for OLE by Carnevale et al. [121]. In contrast to the preclinical studies, the data
from respective RCTs regarding the effects of OLE on the lipid profile were not consistent.
In two out of four studies evaluating lipid parameters, an improvement of dyslipidemia
parameters, including a reduction in total cholesterol (CH), low-density lipoprotein (LDL),
and triglyceride (TG) levels after long-term applications, were reported [126,129]. Whether
Olea europea phytochemicals might be beneficial in body weight management is not yet
clear. The data on the antioxidative capacity of Olea europea phytochemicals from RCTs
are sparse. Only one RCT investigated this parameter and found a decrease in postpran-
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dial oxidative stress in healthy participants after a single oleuropein application [121].
Regarding the cardiovascular measures, no clear influence of OLE on the blood pressure
parameter was found, whereas a slight reduction in systolic and diastolic blood pressure
levels was reported by Lockyer et al. after a 6-week OLE application in pre-hypertensive
participants; no influences on blood pressure was described by Stevens et al. and de Bock
et al. after 8- or 12-week OLE treatments, respectively [122,126,127]. A head-to-head study
investigating the effect of OLE and captopril on blood pressure in hypertensive participants
revealed a comparable effectivity for both substances [130]. However, the lack of a placebo
group and the use of only low-dose captopril were certainly limitations of the study. The
impact of OLE treatment on vascular function was also not clear as the short- and long-term
studies showed inconsistent data [126,131].

Table 1. Characteristics and main study outcomes of placebo-controlled, randomized clinical trials
investigating the effects of Olea europea on metabolic parameters.

Study Medication Study
Type Dose Regimen Cohort Size

(n)
Study Cohort
Criteria

Main Study Results Verum vs.
Control (Increased: ↑;
Decreased: ↓; Unaffected: ≈)

Ref.

500 mg OLE pc, db,
RCT

daily application
(8 weeks)

placebo: 38
verum: 39

overweight participants
age: 56 ± 10 years
BMI: 29 ± 2.7

≈ fasting glucose, insulin
≈ SBP, DBP
≈ lipid profile

[127]

250 mg OLE pc, db,
RCT

daily application
(12 weeks) 30/group

hypertension
participants
age: 23.4 ± 1.4 years
BMI: 22.7 ± 3.0

≈ fasting plasma
glucose, insulin
≈ liver enzymes
↓ inflammatory cytokines
(TNF-α, IL-8, IL-6)

[125]

oleuropein
(20 mg)

pc, db,
RCT, co single application placebo: 20

verum: 20
healthy participants
age: 33.9 ± 6.9
BMI: 20.7 ± 3.7

↓ postprandial plasma glucose
↑ postprandial plasma insulin
↓ postprandial oxidative stress
↑ GLP-1, ↓ DPP-4

[121]

20 mL OLE
(136.2 mg oleuropein;
6.4 mg hydroxytyrosol)

pc, db,
RCT, co

daily application
(6 weeks)

placebo: 60
verum: 60

PHT participants
age: 45.3 ± 12.7 years
BMI: 27.0 ± 3.4

↓ SBP, DBP (slight reduction)
↓ total CH, LDL-C, TG, IL-8
≈ vascular function,
CRP, adiponectin
≈ fasting glucose, insulin,
HOMA-IR, QUICKI, HDL-C

[126]

250 mg OLE
(oleuropein ≥ 100 mg)

pc, db,
RCT

daily application
(12 month)

placebo: 32
verum: 32

OST participants
verum/placebo:
age: 59.72/59.35 years
BMI: 25.90/27.52

↓ total CH, LDL-C, TG
≈ HDL-C [129]

OLE (51.1 mg
oleuropein; 9.7 mg
hydroxytyrosol)

pc, db,
RCT, co

daily application
(12 weeks)

placebo: 46
verum: 46

overweight participants
age: 46.4 ± 5.5 years
BMI: 28.0 ± 2.0

↓ postprandial plasma
glucose, insulin
↑ insulin sensitivity
(Matsuda index)
↑ pancreatic β-cell function
(disposition index)
≈ lipid profile, body fat
proportion, ABP

[122]

RCTs are listed according to the publication date, whereby 6 RCTs sorted for highest cohort size (n) of available
studies are given. Only main metabolic and cardiovascular endpoint measures are presented. pc: placebo-
controlled, db: double-blind, co: crossover design, RCT: randomized clinical trial, PHT: pre-hypertensive, OST:
osteoporosis, SBP: systolic blood pressure, DBP: diastolic blood pressure, CH: total cholesterol, LDL: low-density
lipoprotein, HDL: high-density lipoprotein, TGs: triglycerides, HOMA-IR: homoeostasis model assessment-
estimated insulin resistance, QUICKI: quantitative insulin sensitivity check index, OLE: olive leaf extract.

6.2. Withania somnifera

The winter cherry is a common plant predominantly found in Mediterranean regions,
with a long history of use in ayurvedic medicine. Among withanolides, secondary phyto-
chemicals present in the root of withania somnifera, withaferin A (steroidal lactone), are the
most studied component. Data obtained from the preclinical studies evaluating the effects
of withaferin A in vitro and in vivo suggest the antidiabetic, anti-obesity, anti-oxidative,
and anti-inflammatory potential of this substance.

In vitro, withaferin A caused an improvement of glucose metabolism, enhanced in-
sulin secretion by pancreatic β-cells, and mediated the protection of pancreatic islet cells
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against inflammatory cytokine-induced cell death [132,133]. Moreover, the inhibition of
adipogenesis by withaferin A was also observed in vitro [134]. Furthermore, in a palmitic
acid-induced oxidative stress in vitro model, withaferin A inhibited ROS and inflammatory
cytokine production, whereas it restored the impaired insulin signaling and NO production
in endothelial cells [135].

In line with the in vitro data, withaferin A was also described to show antidiabetic
activity in vivo. In fact, an improvement of insulin resistance, glucose metabolism, and
adiponectin level was observed using respective in vivo murine obesity and diabetes
models [134,136–138]. The suggested underlying mechanisms included the regulation of
genes involved in the insulin and PPARγ pathway [134].

Furthermore, withaferin A ameliorated body and adipose tissue weight gain and
improved the lipid profile in various murine obesity models [134,136,137,139–141]. In
line with these observations, withaferin A was identified to act as a leptin sensitizer and
inhibit the food restriction-based reduction in basic energy expenditure in obese mice [141].
Furthermore, withaferin A-induced browning of white adipose tissue accompanied by
enhanced mitochondrial activity observed in high-fat-diet-fed mice might contribute to
its anti-obesity effects [139,140,142]. Accordingly, sympathetic denervation reduced with-
aferin A-mediated white adipose tissue browning and a decrease in obesity indicated the
important role of the sympathetic nerve/adipose axis involving PRDM16 and FATP1 [139].

Furthermore, the data from in vivo rat models of hypertension, ischemia reperfusion
injury, and cardiac toxicity suggest the cardioprotective properties of Withania somnifera
phytochemicals [143–147]. An enhanced oxidative stress reduction was suggested as one
mechanism underlying these findings. The amelioration of hepatic steatosis and normal-
ization of liver enzymes, hepatic inflammatory markers (IL-6, TNF-α, IL-1β, CRP, MCP-1,
COX2), endogenous antioxidant system molecules, and regulated enzymes involved in
lipid and glucose metabolism in vivo using a high-fat-diet-induced murine obesity model
also implied the hepatoprotective potential of withaferin A [134,136,137]. The withaferin A-
dependent improvement of steatohepatitis in leptin-signaling-deficient ob/ob mice thereby
suggested leptin-independent mechanisms for hepatoprotection [148]. In a further study of
murine diet-induced obesity, the hepatoprotective effect of withaferin A was suggested to be
related to the direct activation of liver X receptor a/farnesoid X receptor (LXRα/FXR) [137].
Additionally, the data from a murine liver toxicity model reveals that withaferin A is
able to reduce liver injury in vivo [149]. This effect was suggested to be attributed to the
induction of Nrf2 and genes of the antioxidative glutathion system [149]. The therapeutic
hepatoprotective potential of withaferin A was also shown using an in vivo hepatitis model
that revealed the effective attenuation of D-galactosamine/LPS-induced liver damage by
this phytochemical [150]. The authors suggested the limitation of macrophage NLRP3
activation and IL-1β secretion as possible mechanisms of action of withaferin A in this
model [150].

To date, there is limited data on the three available placebo-controlled RCTs on the
influence of withania somnifera root extract (WSRE) on the features of metabolic syndrome
(Table 2). In chronic, stressed, overweight participants, the application of WSRE provoked
a reduction in food craving and perceived stress scores as well as serum cortisol level,
whereas the assessed happiness score increased [151]. In line with these data, the body
fat percentage of healthy participants undergoing resistance training was more efficiently
reduced under WSRE treatment [152]. In healthy athletes, WSRE treatment improved the
cardiorespiratory endurance and increased the antioxidative capacity [153]. Moreover,
WSRE showed effectivity in improving hypothyreosis. In fact, WSRE treatment led to
a significant reduction in TSH and a concomitant increase in triiodothyronine (T3) and
thyroxine (T4) levels [154]. The results from three further completed RCTs evaluating the
effect of withania somnifera on weight loss and steatohepatitis are expected in the near
future (clinicaltrials.gov). Furthermore, as WSRE was tested more extensively for other
indications, there were substantial data on pharmacokinetics and safety [151,154–159].

clinicaltrials.gov
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Table 2. Characteristics and main study outcomes of placebo-controlled, randomized, clinical trials
investigating the effects of Withania somnifera on metabolic parameters.

Study Medication Study
Type Dose Regimen Cohort Size

(n) Study Cohort Criteria
Main Study Results Verum vs.
Control (Increased: ↑;
Decreased:↓; Unaffected: ≈)

Ref.

600 mg WSRE pc, db,
RCT

daily application
(8 weeks)

placebo: 25
verum: 25

healthy athletes
age: 18–≤45 years

↑ cardiorespiratory endurance:
(↑ VO2 max outcome; ↑ TQR
score; improved RESTQ score)
↑ anti-oxidative capacity

[153]

600 mg WSRE pc, db,
RCT

daily application
(8 weeks)

placebo: 25
verum: 25

subclinical hypothyroid
participants
verum/placebo:
age: 35.6/35.1 years

↑ T3, T4
↓ TSH [154]

600 mg WSRE
(5% withanolides)

pc, db,
RCT

daily application
(8 weeks)

placebo: 25
verum: 25

chronic stressed,
overweight participants

↓ perceived Stress Scale Score
↓ Food Cravings Questionnaire
scores
↑ Oxford Happiness
Questionnaire scores
↓ serum cortisol level

[151]

600 mg WSRE
(5% withanolides)

pc, db,
RCT

daily application
(8 weeks)

placebo: 25
verum: 25

healthy participants
undergoing resistance
training
verum/placebo:
age: 28 ± 8/29 ± 9 years

↑muscle strength, muscle size
(upper body)
↓ body fat percentage

[152]

RCT, listed according to publication date are given. Only main metabolic and cardiovascular endpoint measures
are presented. pc: placebo-controlled, db: double-blind, co: crossover design, RCT: randomized clinical trial, T3:
triiodothyronine, T4: thyroxine, TSH: thyroid stimulating hormone, WSRE: withania somnifera root extract.

6.3. Vitis vinifera

The beneficial properties of wine grapes on human health are not only appreciated
in Mediterranean regions, and this is displayed by the extensive research on this topic.
Among the range of phytochemicals, resveratrol (phytoalexin) is found in the peel and
pulp, whereas the seeds mainly contain polyphenols (proanthocyanidins and flavonoids).
Especially for grape seed polyphenols, the potential impact on the metabolic features
was described.

In fact, in addition to the anti-inflammatory and antioxidative effects, grape seed ex-
tract (GSE) was found to regulate genes involved in metabolic homeostasis in vitro [160–162].
Moreover, GSE was reported to inhibit adipogenesis and increases lipolysis via targeting
PPARγ in vitro [163,164]. Additionally, using endothelia cells as well as aortic ring cultures,
GSE treatment revealed the eNOS-dependent vasodilatative potential in vitro [165,166].

Accordingly, the data from preclinical in vivo studies confirm the glucose and lipid
metabolism-regulating as well as hepato- and cardioprotective potential of GSE. Indeed,
GSE treatment improved the insulin resistance in in vivo models of obese and fructose-
rich-diet rodents and attenuated pancreatic degeneration in a diabetes model [167–173].
In another study using healthy rats, GSE treatment following glucose intake was found
to modulate glucose metabolism by upregulating the incretin GLP-1 and downregulate
the GLP-1 inactivating enzyme DPP-4 [160,161,174]. Furthermore, GSE might protect
pancreatic b-cell function from lipotoxic stress in vitro and in vivo in Western-diet-fed
rats [175].

Moreover, weight gain, fatty liver, adipokine level, and lipid profile were counteracted
in vivo in obese or fructose-fed rodents by GSE treatment [167–169,176–181]. The influence
of GSE on weight gain might be related to an increase in portal GLP-1, ghrelin, and de-
creased cholecystokinin levels, reducing gastric emptying combined with enhanced satiety
and reduced food intake [182]. The alleviating effect of GSE on cholesterol levels might
be associated with increased bile acid secretion and the upregulation of the cholesterol-
metabolizing enzyme CYP7A1 [183]. Metabolic improvements by GSE in obese mice might
in part also be related to the upregulation of thermogenesis and adipose tissue browning
marker UCP1, BAT and PRDM16 in white adipose tissue, and the improvement of intestinal
GLP-1 and DPP-4 expressions [160,161,174,184]. The attenuation of the obesity-induced up-
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regulation of miR-96 and its target mTOR might also contribute to GSE-mediated metabolic
improvements in obesity [178]. Furthermore, Pascula-Serrano et al. suggested the GSE-
mediated expansion of healthier visceral adipose tissues in obese rats as a mode of action
in this model [177]. The normalization of dysbiosis might be a further mechanism of
GSE-mediated metabolic improvements and attenuated obesity [173,181,184].

In addition to its protective role in obesity and dyslipidemia, GSE was also assumed
to have cardioprotective properties. Indeed, GSE provoked the obesity-related prevention
of cardiac siderosis, improvement of ischemia-related cardiac dysfunction and remod-
eling, attenuation of hypertension-dependent arterial remodeling, as well as protection
against toxicity-induced cardiac damage in respective rodent in vivo models [176,185–187].
Furthermore, the hepatoprotective role of GSE was suggested based on the results from
an in vivo rat NAFLD model, whereby GSE was found to be more effective than met-
formin [180]. The PPARγ-dependent modulation of hepatic lipid metabolism might be one
mechanism underlying the protective effects of GSE on metabolic parameters [188].

To date, a range of RCTs evaluating the clinical potential of GSE on metabolic syndrome
features were performed (Table 3). Three RCTs evaluated the impact of GSE on glucose
metabolism and overall showed a limited effectivity [189–191]. However, in one of these
studies, a GSE-mediated improvement of insulin sensitivity (HOMA-IR) was reported; there
was no impact on fasting glucose levels but a decreased fructosamine level was reported
by another study [189,190]. Furthermore, after long-term GSE treatment, only a tendency
for improved fasting glucose and insulin sensitivity (HOMA-IR) was observed by Park
et al. [191]. According to the preclinical data, GSE was shown to have a positive impact on
the lipid profile parameters of dyslipidemia and overweight participants and heavy smok-
ers [192–195]. In fact, long-term treatment resulted in reduced total cholesterol [192–195],
LDL [192–194] and triglyceride levels [192,195]. Moreover, a GSE-dependent reduction in
the artherogenic index of plasma (AIP) was reported by Yousefi et al. [195]. In contrast, no
influence on the lipid parameters was observed in two additional studies [191,196]. Results
from 4 RCTs suggest the therapeutic use of GSE for body weight management. In one study,
GSE treatment for 3 days reduced the 24 h energy intake in the subgroup with an increased
basal energy requirement of ≥7.5 MJ/day among the healthy participant cohort [197].
Furthermore, greater reductions in body weight and BMI, waist circumference, and waist
to hip ratio of obese participants undergoing a caloric-restriction diet were observed when
concomitantly treated with GSE in the long term [198]. Yousefi et al. also found a reduced
visceral adiposity index (VAI) in GSE compared to placebo-treated overweight participants
on a calorie-restriction diet [195]. Moreover, in postmenopausal women, long-term GSE
treatment resulted in significantly heavier muscle mass [199]. An improved endogenous an-
tioxidative capacity [189,194], reduced inflammatory markers (TNF-α, CRP) [198], as well
as perceived stress [200], anxiety, and depression scores [199] were described in single RCTs
evaluating GSE effects on T2D, healthy smokers, obese, hypertensive, and postmenopausal
participants, respectively. Regarding the cardiac parameters, the available data obtained
from respective RCTs reveal that the long-term GSE treatment of prehypertensive, mild
hypertensive, and postmenopausal participants results in decreased systolic and, in some
studies, diastolic blood pressure levels [191,199–201]. In two further RCTs, improvements
in blood pressure were even measured after a single GSE application in overweight and
prehypertensive participants [202,203]. However, no influence of GSE treatment on blood
pressure in hypercholesteremia and pre/stage-I hypertensive participants was reported
by Ras et al. or Preuss et al. [196,204]. Considering the vascular parameters, no relevant
influence on the vasoactive systemic marker level, endothelial function, and flow-mediated
dilatation (FMD) was observed after the long-term treatment of pre/stage-I hypertensive
and type 2 diabetic participants with GSE [189,191,201,204]. In contrast, an improvement of
the vascular health index of heavy smokers after long-term GSE application was described
by Weseler et al. and suggested to be associated with the induced increase in endoge-
nous antioxidative potential [194]. Furthermore, the overall cardiac output, assessed by
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impedance cardiography, was improved after the application of a single GSE dose in obese,
but not in healthy, participants [202].

Table 3. Characteristics and main study outcomes of randomized clinical trials investigating the
effects of Vitis vinifera on metabolic parameters.

Study Medication Study
Type Dose Regimen Cohort Size

(n) Study Cohort Criteria
Main Study Results Verum
vs. Control (Increased: ↑;
Decreased: ↓; Unaffected: ≈)

Ref.

300 mg GSE pc, db,
RCT

daily application
(16 weeks)

placebo: 38
verum:40

mild hypertension
participants
verum/placebo:
age: 56.4/56.9 years
BMI: 25.2/26.1

↓ SBP, DBP (only in male
participants)
↓ perceived stress score (PSQ)

[200]

200 mg GSE pc, db,
RCT, co

daily application
(8 weeks)

placebo: 45
verum: 45

mild hyperlipidemia
participants
age: 48.22 ± 9.07 years

↓ CH, LDL, ox-LDL [193]

200 mg GSE pc, db,
RCT

daily application
(8 weeks)

placebo: 35
verum: 35

hyperlipidemia
participants
verum/placebo
age: 46.6/47.3 years

↑ ApoA1, HDL
↑ PON activity
↓ CH, TG, LDL

[192]

300 mg GSE pc, db,
RCT

daily application
(8 weeks)

placebo: 35
verum: 34

pre- and stage-I
hypertension participants
verum/placebo:
age: 62.9/64.5 years
BMI: 25.3/25.7

≈ SBP, DBP
≈ vasoactive markers [204]

600 mg GSE pc, db,
RCT, co

daily application
(4 weeks)

placebo: 32
verum: 32

T2D participants
age: 61.8 ± 6.4 years
BMI: 30.2 ± 5.9

↓ fructosamine, CH, CRP
↑ GSH
≈ fasting glucose, HOMA-IR
≈ endothelial function

[189]

900 mg GSE pc, db,
RCT, co

daily application
(3 days)

placebo: 51
verum: 51

healthy participants
age: 48.7 ± 14.3 years
BMI: 25.6 ± 2.6

↓ 24 h energy intake (only in
subjects
with ≥7.5 MJ/day)

[197]

RCTs are listed according to publication date, whereby 6 RCTs for each group, sorted for highest cohort size (n)
of available studies, are provided. Only main metabolic and cardiovascular endpoint measures are presented.
pc: placebo-controlled, db: double-blind, co: crossover design, RCT: randomized clinical trial, SBP: systolic
blood pressure, DBP: diastolic blood pressure, CH: total cholesterol, LDL: low-density lipoprotein, ApoA1:
apolipoprotein A1, PON: paraoxonase, HOMA-IR: homoeostasis model assessment-estimated insulin resistance,
CRP: c-reactive protein, GSH: reduced glutathione, GSE: grape seed extract.

6.4. Camellia sinensis

The tea plant (Camellia sinensis) is found in tropical and subtropical areas with a
long history in agricultural use for tea preparation that spans over 1500 years. The main
polyphenolic constituents of Camellia sinensis are catechins (flavan-3ols) and their deriva-
tives. Among these, epigallocatechine-3-gallate (EGCG) as well as a whole polyphenol
mixture prepared as green tea extract (GTE) are the most studied phytochemicals of Camel-
lia sinensis.

Furthermore, potential antidiabetic properties, including the improvement of blood
glucose level and insulin resistance, were suggested for tea catechins on the basis of several
preclinical in vivo studies [205–211]. Accordingly, EGCG was found to provoke a decrease
in intestinal glucose absorption [205,212]. Regarding its mode of action, it was suggested
that the inhibition of α-amylase α-glucosidase activity as well as the activation of NRF2
signaling and the regulation of glucose transporters might contribute to the antidiabetic
effects of EGCG [205,209,213,214]. Whether EGCG influences the tissue uptake of blood
glucose is not clear, to date, as there are opposing data on this idea [205,212]. Furthermore,
tea catechins might increase blood glucose levels when pre-prandially administered and
when already systemically present at the time of glucose-tolerance testing [212].

In high-fat-diet-induced rodent obesity models, EGCG targeted a further metabolic
syndrome feature, as it ameliorated dyslipidemia in vivo [208,211,215–217]. Furthermore,
a decrease in body weight and body fat mass in response to EGCG treatment was observed
in vivo [207,208,211,215,218–220]. The inhibition of transcriptional activators regulating
the expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), thereby increasing
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hepatic LDL uptake, was discussed as a possible mechanism underlying the LDL lowering
effects of EGCG [221]. The upregulation of adipocyte autophagy and regulation of thermo-
genic and adipogenic genes is a hypothesized mechanism underlying the weight-reduction
properties of EGCG [218,219,222,223].

In addition to its anti-obesity and anti-diabetic potential, cardioprotective proper-
ties have been postulated for EGCG as well. Using hypoxia-reperfusion injury, diabetes,
atherosclerosis, and endothelial dysfunction in vivo rodent models, EGCG was found to
ameliorate cardiovascular parameters and endothelial dysfunction [206,224–226]. Inter-
estingly, the suppression of eNOS uncoupling, a process that is associated with oxidative
stress-induced endothelial dysfunction, by the normalization of BH4 level was identified
as a possible underlying mechanism [227,228]. Additionally, the functional inhibition of
OMA-1, a metalloendopeptidase that negatively affects mitochondrial function, as well as
the inhibition of the mitochondrial apoptosis pathway by EGCG, was suggested to improve
cardiomyocyte function [206,229].

Using a bile duct ligation-based liver injury, combined obesity and hypertension, as
well as NAFLD in vivo models, the hepatoprotective role of tea catechins was further
proposed [217,230–232].

To gain further insights into and to evaluate the clinical potential of polyphenols
from Camellia sinensis, a variety of RCTs focusing on metabolic syndrome parameters were
performed (Table 4). The evaluation of the data obtained from respective RCTs reveal that,
in terms of glucose metabolism, tea polyphenols might play a bivalent role. Where some
studies showed an improvement in glucose level, insulin sensitivity, and HOMA-IR index
in healthy or obese participants [233–238], others did not find a positive influence of tea
catechins on glucose metabolism [239–243]. In a further RCT, a decrease in fasting insulin
after the long-term decaffeinated GTE treatment of obese participants was detected only in
the subgroup showing baseline insulin levels ≥ 10 µIU/mL [244]. Of note, the timing of
the application might account for the catechin-dependent outcome on the glucose level.
In fact, in an open randomized clinical trial, the treatment of healthy participants with
green tea catechins one hour before glucose-tolerance testing resulted in higher plasma
glucose levels, whereas a reduction in glucose levels was observed when catechins and
glucose were concomitantly administered [212]. However, based on the limitation of the
available data on the latter issue, a final assessment could not be performed at this point.
Regarding the influence of tea catechins on the lipid profile, the available data also do
not provide consistent results. In 5 out of 10 evaluated placebo-controlled double-blind
RCTs, an improvement of single, but not all, assessed lipid profile parameters, including
a decrease in total cholesterol, LDLs, and triglycerides by GTE and EGCG in healthy,
obese, and diabetic participants was reported [234,245–248]. In contrast, no impact of
long-term EGCG or GTE treatments on these parameters in obese or postmenopausal
participants was found [239,241–243,249]. Body weight reduction was observed in only one
RTC after the long-term treatment of metabolic syndrome participants [250]. In a further
study, a GTE-dependent increased fat oxidation in a healthy study cohort undergoing
exercise intervention was observed compared to the exercise intervention group taking
a placebo [237]. Moreover, a delayed gastric emptying and increased satiation as well
as adiponectin level were found in healthy participants treated with a single dose of
EGCG [240]. However, no influence on body weight, BMI, body fat mass, fat oxidation,
waist circumference, energy intake, and satiety was reported by GTE and EGCG in obese
participants in the majority of the published RCTs [233,235,239,242,249,251–253]. Regarding
the cardiovascular parameters, reduced arterial stiffness and increased flow mediated
dilatation (FMD) after the long-term treatment of coronary artery disease and diabetic
participants was reported by Widlansky et al. and Quezada-Fernandez et al. [254,255].
Increased FMD in response to the single application of tea catechins was also observed in a
placebo-controlled, but open-label, clinical trial [256]. Furthermore, in obese participants
performing physical exercise, a reduction in the resting heart rate was observed [235].
The data from two further RCTs show a reduction in blood pressure parameters in obese
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participants in response to long-term EGCG treatment [233,239]. In contrast, no clear impact
of GTE and EGCG on cardiovascular parameters, including blood pressure and heart rate
in hypertensive participants after resistance training, was reported by Arazi et al. [257].

Table 4. Characteristics and main study outcomes of randomized clinical trials investigating the
effects of Camellia sinensis on metabolic parameters.

Study
Medication

Study
Type Dose Regimen Cohort Size

(n) Study Cohort Criteria

Main Study Results
Verum vs. Control
(Increased: ↑; Decreased:
↓; Unaffected: ≈)

Ref.

1500 mg GTE
(856.8 mg EGCG)

pc, db,
RCT, co

daily
application
(6 weeks)

placebo: 73
verum: 73

overweight
participants
age: 18–65 years
BMI: ≥27

↓ LDL-C
↑ Leptin
≈ CH, TG, HDL

[247]

500 mg EGCG pc, db,
RCT

daily
application
(until birth)

placebo: 176
verum: 150

GDM participants
verum/placebo:
age: 29.6/28.7 years
BMI: 25.9/26.2

↓ fasting plasma glucose
and insulin
↓ HOMA-IR/HOMA-ß
scores
↑ QUICK-I index

[238]

green
tea/GTE/EGCG)
(200 mg EGCG
each)

pc,
RCT, co

single
application

placebo: 50
verum: 50

healthy participants
age: 33.9 ± 7.6 years
BMI: 23.7 ± 2.5

↑ FMD (only in the green
tea group)
≈ NMD

[256]

GTE
(843 mg EGCG;
decaffeinated)

pc, db,
RCT

daily
application
(12 month)

placebo: 473
verum: 463

healthy participants
verum/placebo:
age: 60.02/59.65 years
BMI: 25.16/25.01

↓ CH, LDL
↑ TG (mainly obese, statin
users)

[248]

1500 mg GTE
(856.8 mg EGCG)

pc, db,
RCT

daily
application
(12 weeks)

placebo: 38
verum: 39

obese participants
verum/placebo:
age: 44.1/44.9 years
BMI: 31/30

↓ CH, LDL [246]

1060 mg GTE
(431.5 mg EGCG)

pc, db,
RCT, co

daily
application
(6 weeks)

placebo: 65
verum: 63

obese participants
verum/placebo:
age: 49.5/49.4 years
BMI: 31.7/31.4

≈ blood pressure
≈ body weight (only slight
reduction during
intervention period 1)

[251]

RCTs are listed according to the publication date, whereby 6 RCTs for each group, sorted for highest cohort
size (n) in available studies, are provided. Only the main metabolic and cardiovascular endpoint measures are
presented. pc: placebo-controlled, db: double-blind, co: crossover design, RCT: randomized clinical trial, GDM:
gestational diabetes mellitus, CH: total cholesterol, LDL: low-density lipoprotein, TGs: triglycerides, HOMA-IR:
homoeostasis model assessment-estimated insulin resistance, QUICKI: quantitative insulin sensitivity check index,
FMD: flow-mediated dilation, NMD: nitro-mediated dilation, GTE: green tea extract, EGCG: epigallocatechin
3-gallate.

7. General Aspects of the Future Use of Phytochemicals in HS Patients

Metabolic alterations, in particular, obesity, can support sustained inflammation and
thereby exacerbate skin manifestations and the chronification of HS. However, they lack
the necessary attention in HS therapy. Considering the data from the evaluated preclinical
and clinical studies suggest that phytochemicals from Olea europea, Withania somnifera,
Camellia sinensis, and Vitis vinifera represent potent candidates for targeting metabolic
dysfunction. As the phytochemicals evaluated here have partly overlapping properties,
different phytotherapeutic options for the treatment of single metabolic syndrome features
central obesity, insulin resistance, triglyceridemia, hypo-high-density lipoprotein (HDL)-
cholesterolemia, and hypertension exist. Furthermore, when considering an integrative HS
therapy using phytochemicals, the following aspects should be taken into account. First, the
priority of MetS parameter(s) that need the relevant improvements should be determined.
Second, considering the present concomitant medication of the patient, the relevant poten-
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tial drug interactions with the phytochemical candidates should be carefully estimated and
taken into account for the decision. Third, the decision for the appropriate phytochemical
should also depend on the safety profile of the phytochemical of choice, analyzed in regard
of the individual clinical condition of the patient. In general, strict medical supervision and
monitoring should be prerequisites for performing integrative therapy using phytochemi-
cals. Before and consecutively during therapy with the selected phytochemicals, it is highly
recommended to perform a detailed analysis of the relevant physical (e.g., cardiovascular)
and laboratory parameters (including indicators of lipid/glucose metabolism, coagulation
status, and liver enzymes), as well as HS (e.g., IHS4; [258]) and QoL scoring to enable the
careful monitoring of safety, drug interaction, and therapeutic effectivity.

8. Safety and Drug Interaction

Phytochemicals derived from Olea europea, Withania somnifera, and Vitis vinifera showed an
overall good tolerability and safety profile during clinical use [122,151,154–157,159,200,259–266].
Phytochemicals derived from Camellia sinensis were extensively studied in regard of their
pharmacokinetics and safety, and for the clinical use of EGCG, an upper safe-dosage limit
(338 mg for extracts; 704 mg for beverages) was recommended [267]. This recommendation
was based on the described liver toxicity as a possible rare adverse reaction resulting from
a high bolus-dose application. In contrast, these safety concerns were not raised for the use
of beverages produced from the whole leaves or extract of Camellia sinensis [267]. However,
therapy with Camellia sinensis phytochemicals should be avoided for patients with known
hepatic dysfunctions.

The main described potential drug interactions of the phytochemicals evaluated here
were those related to cytochrome P450-metabolizing/detoxifying enzymes. In fact, for
Olea europea-, Camellia sinensis-, and Vitis vinifera-derived phytochemicals, an interaction
with cytochrome P450-detoxifying enzymes was reported [268–272]. As this may influence
the pharmacokinetics of concomitantly administered P450-metabolized drugs, the efficacy
of concomitant medication and, respectively, associated clinical parameters should be
monitored during the treatment with these phytochemicals. Whether WSRE from With-
ania somnifera interacted with cytochrome P450 enzymes was not clarified; however, the
precautionary monitoring of the efficacy of concurrent drug medication was also recom-
mended [273–275].

Furthermore, phytochemicals from Camellia sinensis were found to be inhibitors of the
enzyme catechol-o-methyltransferase (COMT), and might therefore modify the detoxifica-
tion and metabolization of xenobiotics, catecholamines, and catechol estrogens [276]. For
patients carrying the low-activity COMT genotype receiving, e.g., levodopa, apomorphine,
isoprenaline, catecholamines, micafungin, or estrogen derivates, or those suffering from
estrogen dominance, an awareness for potential drug interactions is needed. For patients
with known prediabetes/diabetes, the risk-benefit ratio should also be carefully weighted
using this medication based on the possible influence on glucose metabolism [205,212].
Whether the epigenetic modifying potential of EGCG has a clinical relevance for patients
remains to be investigated. Of note, Withania somnifera phytochemicals were observed to im-
prove thyroid function, indicated from a decrease in TSH and increase in triiodothyronine
(T3) and thyroxine (T4) levels in subclinical hypothyroid patients [154]. The monitoring of
thyroid parameters is therefore recommended for hyperthyroid patients as well as patients
receiving L-thyroxin supplementation. For Olea europea phytochemicals, the inhibitory
property of enzymes that played a role in Alzheimer’s disease progression in vitro was
described; however, the clinical relevance of these data remains to be investigated [277].
More detailed information regarding safety and drug interactions are summarized in an
previously published review [83].
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9. Recommendations for Integrated Phytotherapy Targeting MetS Parameters in
HS Patients

For the improvement of glucose metabolism, in principle, OLE (Olea europea) was
shown to be eligible (Table 5). A daily dose of 20–160 mg of oleuropein or 250–500 mg of
OLE is recommended (Figure 3).

Table 5. Summary of main study outcomes of double-blind, placebo-controlled RCTs evaluating
the effects of Olea europea, Withania somnifera, Vitis vinifera, and Camellia sinensis phytochemicals on
metabolic syndrome parameters.

MetS Parameter Olea europea Withania somnifera Vitis vinifera Camellia sinensis

glucose metabolism
improvement of

postprandial plasma
glucose

only preclinical data
available no clear impact improvement of

glucose metabolism

dyslipidemia improvement of single
lipid parameters

only preclinical data
available

improvement of single
lipid parameters

improvement of single
lipid parameters

improvement of
vascular functioncardiovascular

alterations no clear impact on
blood pressure

improved
cardiorespiratory

endurance

improvement of blood
pressure parameters

improvement of
cardiovascular

parameters

obesity/
weight management no clear impact

reduced perceived
stress;

reduced food craving;
enhanced body weight

reduction during
reistance training

enhanced body weight
reduction during
caloric restriction

no clear impact

NAFLD only preclinical data
available

only preclinical data
available

only preclinical data
available

only preclinical data
available

RCT quantity n = 11 n = 4 n = 21 n = 28

1 

 

                          No RCTs or only 1 RCT available for this parameter.

1 

 

                          <50% of available RCTs show the effectivity of study
medication on the respective parameter.

1 

 

                          =50% of available RCTs show the effectivity of study medication
on the respective parameter.

1 

 

                          ≥50% of available RCTs show the effectivity of study medication on the
respective parameter.

In case of dyslipidemia, GSE (Vitis vinifera) was reported to be eligible (Table 5),
doses ranging from 200–300 mg (GSE) daily were recommended (Figure 3). Protective
effects regarding the cardiovascular parameters were described for GSE (Vitis vinifera)
and EGCG/GTE (Camellia sinensis) (Table 5), whereby more RCTs were available for the
latter drug. A daily dosage of 100–400 mg (GSE) or 75–300 mg (EGCG) or 400–1060 mg
(EGCG/GTE) were recommended (Figure 3).

The evaluated RCTs reveal that, for weight management, WSRE (Withania somnifera)
and GSE (Vitis vinifera) might represent eligible phytochemical drugs (Table 5). There are
more data on GSE than for WSRE; however, the data on additional, already completed
RCTs evaluating the effect of Withania somnifera on weight loss are awaited in the near
future (clinicaltrials.gov). A daily dosage of 600 mg (WSRE) or 100–900 mg (GSE) was
recommended (Figure 3).

To date, no RCTs are available evaluating the possible hepatoprotective effects of OLE,
WSRE, GSE, and EGCG/GTE (Table 5). Nevertheless, for all these drugs, an improvement
of hepatic parameters in various in vivo animal models was reported. However, as de-
scribed in the above section (Safety and Drug Interaction), EGCG/GTE application is not
recommended for patients with hepatic dysfunctions as a safety precaution.

clinicaltrials.gov
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