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Preface

Contributions and Publications

This dissertation is based on a project that had the aim of investigating machine learning for
cancer survival prediction. Based on extensive experimentation and fruitful discussions, two
different aspects of machine learning for cancer survival prediction were explored. The first
aspect was to develop a machine learning approach based on XGBoost tree ensemble learning
and network propagation to predict cancer survival and to derive the biological plausibility
of the survival prediction method by using network propagation. The idea for this approach
arose from valuable discussions with my supervisor Ralf Herwig. The approach, in particu-
lar single-cohort and pan-cancer survival prediction trained on gene expression data and the
identification and analysis of a pan-cancer survival network, was published in iScience '7° and
a corresponding protocol detailing the steps necessary to reproduce the results from the first
publication was published in STAR Protocols'*’. In this dissertation, the approach was fur-
ther extended beyond the published version, in particular by integrating additional molecular
data types and by considering the tumor status of patients as additional information. The sec-
ond aspect of this work was the exploration of transfer learning for cancer survival prediction,
where we explored the transferability of knowledge learned by neural networks for different
tasks to cancer survival prediction. The idea for this part of the work developed through
discussions with my second reviewer and thesis advisory committee (TAC) member Tobias
Schefter and my supervisor Ralf Herwig. This part of the dissertation is unpublished.

In the first part of this work, network propagation was used to add biological plausibility
to the cancer survival prediction method. Network propagation leverages prior knowledge
from a network, commonly a protein-protein interaction network, to gain insights into un-
derlying biological mechanisms** and has been successfully used on a variety of biological
problems. Recently, I performed network propagation on time-resolved gene expression pro-
files of Leishmania major infected bone marrow-derived macrophages from mice that were
susceptible or resistant to the disease. This contributed to a publication, which investigated
how host M-CSF-induced gene expression affects the immune response to Lezshmania ma-
jor infection and was published in Frontiers in Immunology*°. In addition, I contributed to
a paper thatis currently in revision at Nature Communications by performing network prop-
agation. In this paper, the time-resolved insulin-regulated phosphoproteome was analyzed to
gain a better understanding of insulin intracellular signaling.

iii



Furthermore, I participated in the collaborative ML-Med project, which had the goal of devel-
oping a machine learning approach for drug sensitivity prediction. Results from this project
were published in NAR Genomics and Bioinformatics** and Cancers'**. The first publi-
cation"** proposed a drug sensitivity prediction method that uses a ranking loss to identify
the most effective anti-cancer drugs for unseen cancer cell lines or the most sensitive cancer
cell lines for new drugs, whereas the second publication *** introduced an approach that uses
transfer learning to transfer knowledge learned from cancer drug sensitivity prediction on
in vitro data to patient-derived data, such as patient-derived cell cultures, xenografts, and
organoids.
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Introduction

This chapter aims to motivate the work and to explain the research objective of this disserta-
tion. In addition, a brief outline of the following chapters of this dissertation is given.

1.1 Motivation

With approximately 10 million deaths in 2020, cancer is one of the leading causes of death
worldwide’S. In Germany alone, 231,533 people have died from cancer in 2022, accounting
for 22.4% of all deaths and making it the second leading cause of death'®* in the country. To
reduce these numbers and improve the survival of cancer patients is the primary goal of cancer
therapy. However, therapies with the aim of complete remission are often relatively aggres-
sive and can be accompanied by severe side effects. When a patient has a poor prognosis and
complete remission is not possible or at least highly unlikely, therapy can also have the goal of
merely prolonging life or improving life quality for the remainder of the patient’s life*”. Ac-
cordingly, the choice of therapy is heavily influenced by patient prognosis. Computational
models for cancer survival prediction can help estimate prognosis and quantify individual pa-
tient risk to guide therapy decisions. These models are typically based on either clinical data
such as age or tumor stage, molecular data such as mutations or gene expression, or imaging
data such as hematoxylin and eosin (H&E, where hematoxylin stains cell nuclei in the tissue
slide blue and eosin stains the extracellular matrix and cytoplasm pink**) stained whole slide
images (WSIs) or magnetic resonance images (MRI) of the tumor and use machine learn-
ing to detect relationships between these data and the survival of the corresponding cancer
patients.
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1.2 Research Objective

The research objective of this dissertation is twofold. The first goal is the development of
a machine learning approach for cancer survival prediction based on molecular patient data
and the investigation of the approach’s biological plausibility. The second goal is to answer
the question of whether cancer survival prediction can be improved by transferring knowl-
edge from pre-trained machine learning models through transfer learning.

To achieve the first goal, we propose a survival prediction method that applies XGBoost tree
ensemble learning on molecular data such as gene expression to predict cancer survival for 2.5
cancer types from The Cancer Genome Atlas (TCGA). The survival prediction method is
evaluated for cancer-type-specific training, where a separate prediction model is trained for
each cancer type, and pan-cancer training, where molecular data from patients of all 25 can-
cer types is combined to train a shared survival prediction model. We show that pan-cancer
training yields improved prediction performance over cancer-type-specific training and gene
expression is the most informative of the evaluated molecular datatypes, which include mu-
tation, copy number variation, gene expression, and protein expression data. The biological
plausibility of the proposed approach is investigated by applying network propagation on fea-
ture importance scores learned by the pan-cancer survival prediction model trained on gene
expression data. This way, a pan-cancer survival network is inferred and further analyzed
with respect to biological pathways and mechanisms.

To answer the second research question, we explore transfer learning, where a machine learn-
ing model is pre-trained on a source domain and then knowledge from the pre-trained model
is transferred to a target domain to improve prediction performance on this target domain.
We use neural networks as the machine learning model of choice for most transfer learning
tasks and investigate two different settings of transfer learning: In the first setting, a neural
network for pan-cancer survival prediction is pre-trained on 2 different cancer types from
TCGA and knowledge learned by this model is transferred to survival prediction on smaller,
independent cancer datasets. In the second setting, neural networks are trained on data from
the Genotype-Tissue Expression (GTEx) project for auxiliary tasks like tissue type classifi-
cation and age prediction. Knowledge from the pre-trained models is then transferred to
the task of cancer survival prediction on the TCGA dataset and the effect of this knowledge
transfer is evaluated.

1.3 Outline of This Dissertation

This dissertation is structured as follows:

In Chapter 2, the biological terminology and concepts necessary to understand this disserta-
tion are outlined.
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Chapter 3 describes the fundamental mathematical principles and key methodology under-
lying the work of this dissertation.

Chapter 4 briefly introduces existing work within the thematic scope of this dissertation and
explains its relevance for this dissertation. The literature introduced in this chapter includes
work from the field of cancer survival prediction as well as relevant publications related to
XGBoost, which is a key machine learning method of this dissertation (cf. Chapter s), and
applications of transfer learning, which is further explored with regard to cancer survival pre-
diction in Chapter 6.

In Chapter s, we introduce our approach for the identification of a pan-cancer survival net-
work with gradient tree boosting and network propagation. The approach has two key steps:
In the first step, an XGBoost machine learning method is trained to predict cancer survival
from patient molecular data. In the second step, the biological plausibility of this survival
prediction method is investigated by applying network propagation to the genes identified as
important survival features in the first step. This way, a pan-cancer survival prediction net-
work is identified, which is then further analyzed with respect to biological mechanisms and
molecular pathways.

In Chapter 6, transfer learning as a means to improve cancer survival prediction is explored.
To this end, different transfer learning scenarios are evaluated, in which neural networks are
pre-trained on different tasks, and then knowledge from these pre-trained models is trans-
ferred to the task of cancer survival prediction to improve prediction performance.

The final Chapter 7 summarizes the results of this dissertation and gives an outlook on how
challenges of cancer survival prediction on currently available cancer datasets could be re-
solved and how cancer survival prediction could be further advanced in the future if more
comprehensive data becomes available. In addition, a brief conclusion is provided.






Biological Background

This chapter introduces the biological background knowledge that is fundamental for under-
standing the following chapters.

2.1 Cancer

Cancer describes a group of diseases that can affect any body part and is characterized by the
rapid creation of abnormally growing cells**5. These abnormal cells can also spread to other

body parts and initiate new tumors, a process called metastasis**5*.

2.1.1 The Hallmarks of Cancer

Despite cancer being a heterogeneous group of diseases rather than a single disease with uni-
form phenotype, several characteristics are shared between cancer types. Hanahan and Wein-
berg®” summarized these characteristics as “The Hallmarks of Cancer”, which originally com-
prised six and were later updated to eight*® functional capabilities shared between all types of
cancer cells (Figure 2.1). These hallmarks are acquired by the cells during their development
from a healthy normal cell to a cancer cell and encompass the following capabilities: Sustain-
ing proliferative signaling, evading growth suppressors, resisting cell death, enabling replica-
tive immortality, inducing angiogenesis, activating invasion and metastasis, reprogramming
cellular metabolism, and avoiding immune destruction. In the following paragraphs, these
eight hallmark capabilities will be explained in more detail.
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Activating invasion Sustaining
& metastasis proliferative signalling

Inducing Evading growth
angiogenesis suppressors
Avoiding immune Resisting cell
destruction death

Reprogramming Enabling replicative
cellular metabolism immortality

Figure 2.1: Hallmarks of cancer. The eight hallmarks of cancer proposed by Hanahan and Weinberg in 2011 % summa-
rize the functional characteristics shared by all cancer cells. Inspired by ®® and created with BioRender . com.

Sustaining Proliferative Signaling

While normal, non-cancerous tissues preserve homeostasis of cell number and thus main-
tain tissue function and architecture by controlling the production and release of growth-
promoting signals, cancer cells deregulate these signals and can thus sustain proliferation *®.

Evading Growth Suppressors

In addition to sustaining proliferative signaling, cancer cells can also evade growth suppres-
sors, which in normal tissues limit cell growth and proliferation®®. Many of the genes encod-
ing proteins involved in the negative regulation of cell proliferation, such as 7°Ps 3, have been
identified as tumor suppressors that are frequently inactivated in human cancers.
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Resisting Cell Death

Furthermore, cancer cells can resist cell death by limiting or circumventing apoptosis®®. In
normal cells, apoptosis is triggered by extracellular and intracellular signals as a response to
physiologic stress such as abnormal signaling or DNA damage. Cancer cells however can
evade apoptosis, for instance by loss of TPs3 tumor suppressor function, an increase of the
expression of antiapoptotic regulators or survival signals, or by downregulation of proapop-
totic factors.

Enabling Replicative Immortality

Another hallmark of cancer is the enabling of replicative immortality ®*. To form tumors, can-
cer cells need the ability to replicate without the normal limitations that restrict the number
of growth and division cycles a cell can go through. Once the cell reaches this limit, senes-
cence, which is a viable but nonproliferative state of the cell, or apoptosis, which leads to the
death of the cell, is induced. Cancer cells can reach a state of immortalization with unlim-
ited replicative potential by maintaining long telomeres that protect the chromosome ends,
while in normal cells, the telomeres shorten with every cell cycle and eventually become so
short that they lose their protective function and senescence or apoptosis is triggered.

Reprogramming Cellular Metabolism

To fuel cell growth and replication, the cancer cells also adjust their energy metabolism ®.
Normal cells under aerobic conditions use glycolysis in the cytosol to convert glucose to
pyruvate and then transmit the pyruvate to the mitochondria, which use oxidative phospho-
rylation to produce adenosine triphosphate (ATP), thereby consuming oxygen and produc-
ing carbon dioxide. Under anaerobic conditions, normal cells limit their energy metabolism
largely to glycolysis to produce more lactate via fermentation and only transmit little pyru-
vate to the mitochondria. In contrast to normal cells, cancer cells reprogram their energy
metabolism and favor producing lactate over transmitting pyruvate to the mitochondria and
producing ATP even under aerobic conditions, a phenomenon that is called the “Warburg
effect” after its discoverer Otto Warburg. One hypothesis that could explain the Warburg ef-
fect is that increased glycolysis facilitates the incorporation of nutrients into biomass, which
is needed to assemble new cells during replication, because when glycolysis is increased and
only a little pyruvate is transmitted to the mitochondria, the glycolytic intermediates can be
used for the biosynthesis of macromolecules like nucleotides, amino acids, and lipids that are
required for cell proliferation and replication, instead of mainly producing ATP**%".

Avoiding Immune Destruction

Tumors can only grow if the cancer cells are able to avoid destruction through the immune
system“®. According to the well-established theory of immune surveillance, the immune sys-
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tem constantly monitors tissues and cells and eliminates most cancer cells. Thus, the immune
system functions as a barrier to tumor formation and progression. However, some cancer
cells can evade being detected by the immune system or limit immune destruction and ulti-
mately form tumors.

Inducing Angiogenesis

When a tumor forms by replication of cancer cells, it needs to be supplied with nutrients
and oxygen. Moreover, the metabolic waste and carbon dioxide produced by the cancer cells
must be transported away from the tumor®. To this end, the tumor induces a process called
angiogenesis. During angiogenesis, tumor-associated neovasculature that helps to sustain tu-
mor growth is generated by the formation of new blood vessels from existing ones. However,
this newly formed vasculature is typically aberrant with distorted and enlarged vessels, vessels
branching in a convoluted and excessive manner, capillary sprouting prematurely, leakiness
of vessels, erratic blood flow, and more.

Activating Invasion and Metastasis

Carcinomas, cancers arising from epithelial tissues, can, as they progress, invade tissue in
the vicinity of the tumor or metastasize to distant tissues®®. Invasion and metastasis can be
viewed as a multi-step process, starting with the local invasion of cancer cells, which then also
invade nearby blood and lymphatic vessels and transit through the lymphatic and hemato-
geneous systems to distant tissues, where they escape from the lumina of the vessels into the
parenchyma of the tissue and form small nodules of cancer cells called micrometastases. As
a last step of this invasion-metastasis cascade, these micrometastases then grow into macro-
scopic tumors, a process that is called colonization.

2.1.2 Cancer Survival

Metastasis is a common cause of cancer death'®s. For instance, two-thirds (66.7%) of deaths
from solid tumor cancers registered in the Cancer Registry of Norway in 2015 had metastases
as a contributing cause of death’*. However, there was substantial variation between differ-
ent cancer types: While for nose sinus and testicular cancers, metastasis was present in 100%
of registered cancer deaths, only 9.3% of central nervous system cancer deaths were associated
with metastasis.

This heterogeneity between different cancer types is also reflected in the overall death rates in
different cancers. While the s-year relative survival across all cancer types was 68% for patients
diagnosed between 2012 and 2018 in the United States of America, it was substantially lower
in pancreas (12%), liver (21%), and esophagus (21%) cancers. For other cancer types such as
melanoma, testis, prostate, and thyroid cancers, on the other hand, only a small proportion
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of patients died from the disease within the first five years after diagnosis and s-year relative

survival rates were as high as 94%, 95%, 97% and 98%, respectively '5°.

Worldwide, cancer is one of the leading causes of premature death, i.e. death between ages
30 to 69, according to the World Cancer Report 202057 In 134 of 183 countries, it is either
the first or second leading cause of premature death. In 2016, 40.5 million people worldwide
died from noncommunicable diseases, accounting for 72% of global deaths and 15.2 million
of these deaths were premature. Of these 15.2 million premature deaths from noncommuni-
cable diseases, 4.5 million (29.8%) were attributed to cancer, making cancer the second lead-
ing cause of premature death worldwide.

2.2 Omics—Different Aspects of Molecular Biology

Cancer cells and tumors have abnormal function and structure compared to normal cells
and tissues, as reflected in “The Hallmarks of Cancer”**. To identify, quantify, and char-
acterize the biological molecules involved in the function and structure of cells, tissues, and
organisms is the objective of a scientific field called omics'7°. The term omics summarizes
different aspects of molecular biology that end with the sufhix -omics, including genomics,
transcriptomics, and proteomics, among others.

In this section, different types of omics thatare relevant to this work will be introduced. How-
ever, this section does not intend to give a comprehensive list of all omics types, but focuses
only on the omics modalities used in this work for cancer survival prediction.

2.2.1 Genomics

Genomics is concerned with the study of the genome, that is, the entirety of deoxyribonu-
cleic acid (DNA) in an organism '75. Its aim is to identify genetic variants'7>'**, such as short
insertions and deletions (indels), single nucleotide variants (SN'Vs) or single nucleotide poly-
morphisms (SNPs), which are SNVs with an abundance of at least 1% in the population*4,
but also more complex structural variants (SVs), which are DNA variations larger than so
base pairs and are thought to account for 50-95% of the sequence variation between human
samples and the reference genome**. To identify genetic variants in the DNA, the genome
or parts of it are sequenced. The development of next-generation sequencing (NGS) tech-
nologies has made it possible to sequence entire genomes and thus detect genetic variants
on a genome-wide scale, which was previously not possible in a reasonable amount of time
using the Sanger sequencing technology #. In NGS, millions of small DNA fragments are
sequenced in parallel and then mapped to a reference genome (Figure 2.2). In this way, NGS
can identify different types of mutations and other genetic variations, such as base substi-
tutions, and indels, but also more complex variations like large genomic deletions, genome
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Figure 2.2: Next-generation DNA-sequencing. lllustration of a typical NGS workflow for DNA-sequencing. First, DNA
is extracted and fragmented. Next, a sequencing library is prepared by ligating sequencing adapters to both ends of the
DNA fragments and the DNA library is sequenced. Finally, the sequenced reads are aligned to a reference genome and
genomic variants are called. Created with BioRender . com.

rearrangements, and translocations, while Sanger sequencing is only able to identify substi-
tutions and indels.

Genetic variants are typically stored in the variant call format (VCF)'*®, in which each vari-
ant is represented by, at minimum, the chromosome it is located on, the exact base position,
a reference allele sequence, and at least one alternative allele. Optionally, the variant entry
can also contain additional information such as a quality score, for known SNPs a dbSNP
identifier, or any other additional information about the variant.

2.2.2 Transcriptomics

Transcriptomics is the study of the transcriptome, which is the total ribonucleic acid (RNA)
expressed in a cell type or tissue'7>>. The transcriptome comprises different types of RNA,
including for example messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA
(rRNA), and long non-coding RNA (IncRNA). According to the central dogma of molecu-
lar biology, which was first formulated by Francis Crick in 1958+ and further explained in
1970%, the genetic information of a cell is carried by DNA and can be transferred into RNA,
which serves as a template for protein (Figure 2.3). However, Crick **¢ emphasizes that while
genetic information can be transferred from nucleic acid (i.e., DNA or RNA) to nucleic acid
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or from nucleic acid to protein, the transfer of genetic information between proteins or from
protein to nucleic acid is not possible74°.
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Figure 2.3: The central dogma of molecular biology. According to the central dogma of molecular biology */*¢, DNA
contains the genetic information of the cell and can be transcribed into mRNA, which in turn can be translated into an
amino acid sequence that constitutes a protein. Created with BioRender . com.

However, since then many more types of RNA besides the protein-coding mRNA have been
discovered. In fact, while the vast majority (more than 90%) of the human genome is tran-
scribed into RNA7?, only a small fraction (less than 3%) of this RNA is translated into pro-
tein"'°. While some types of non-coding RNA, such as tRNA and rRNA, fulfill infrastruc-
tural roles, others like IncRNA have gene regulatory functions’*°. RNA microarrays and
the NGS technology RNA-sequencing (RNA-seq) are the two principal methods for the
quantification of gene expression''?. The microarray technology is based on probes—short
nucleotide oligomers complementary to the RNA transcripts—that are fixed to a solid sub-
strate such as a glass array. Gene expression is quantified by measuring the abundance of
fluorescently labeled transcripts to the microarray, which can be detected by the intensities
of fluorescence at the individual probe locations on the microarray. RNA-seq, on the other
hand, uses high-throughput sequencing to quantify gene expression, whereby complemen-
tary DNA (cDNA) synthesized from the RNA transcripts is sequenced and gene expression
is quantified by counting the number of reads from each transcript (Figure 2.4). More pre-
cisely, in RNA-seq, after they have been isolated from tissue, long RNAs are either frag-
mented into short segments and then converted into cDNA (steps 2 and 3 in Figure 2.4)
or first converted into cDNA, which is then fragmented**'. Next, sequencing adaptors are
ligated to each cDNA fragment and the cDNA fragments are sequenced. After sequencing,
the resulting sequence reads are mapped to a reference genome or reference transcriptome
and the number of reads mapping to each gene are counted. RNA-seq, which has replaced
microarrays as the predominant gene expression quantification method by now, has some
advantages over microarrays: Firstly, to perform a microarray experiment, it is necessary to
know the sequences of the transcripts in advance in order to be able to generate the set of com-

plementary probes, while for RNA-seq, such prior knowledge is not required. Additionally,
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RNA-seq has a much larger dynamic range than microarrays, which can suffer from signal
saturation for highly abundant transcripts®s, and the amount of RNA required as input is
much higher for microarrays than for RNA-seq (micrograms vs. nanograms).

(D RNAisolation from tissue (@ RNA fragmentation (3 Conversion of RNA into cDNA

(@) Ligation of sequencing (5) NGS sequencing (®) Read mapping
adapters to cDNA
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Figure 2.4: RNA-sequencing. lllustration of a typical RNA-seq workflow. RNA is first isolated from tissue and then
fragmented into short segments. Next, cDNA is synthesized from the short RNA segments and sequencing adapters are
ligated to each cDNA fragment. The cDNA fragments are then sequenced by NGS and the resulting sequence reads are
mapped to a reference genome or transcriptome. Created with BioRender . com.

2.2.3 Proteomics

Proteomics focuses on studying the proteome, the set of all proteins in a cell, tissue, or or-
gan at a certain point in time 7. The aim of proteomics is to identify and quantify proteins
and to resolve protein structure and function®. Protein expression levels are not only depen-
dent on the expression of their corresponding mRNA, but also on translational regulation
and are thus more informative for the characterization of a biological system than genomics
and transcriptomics. Methods for the quantification of protein expression include the high-
throughput techniques mass spectrometry and protein microarrays. In mass spectrometry,
the proteins are first transformed into gas-phase ions and then separated in a mass analyzer by
an electric or magnetic field based on their mass-to-charge ratios. To quantify protein expres-
sion, the amount of ions with a protein-specific charge ratio is measured”. The reverse-phase
protein array (RPPA) is a type of protein microarray®. In the RPPA method, cell lysates,
which contain proteins, are in the first step placed on a slide coated with nitrocellulose. Then
the slide is probed with antibodies that are targeted against specific proteins and protein levels
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are quantified by first using fluorescent, chemiluminescent, and colorimetric assays to detect
the antibodies and then comparing the antibody levels with those of a microarray with refer-
ence peptides.

2.3 Protein-Protein Interaction Networks

Proteins are essential for cells to function and are involved in key cellular processes such as
metabolism, cell signaling, transport, cellular decision making, and cellular organization**.
These protein functions are mediated by molecular interactions, including protein-protein
interactions (PPIs), where proteins physically interact with each other and thus perform func-
tions like environmental sensing, signal transduction, regulation of metabolic and signaling
enzymes, conversion of energy into motion, or maintenance of the cell’s structural organiza-
tion. Two common high-throughput methods for identifying protein-protein interactions
are yeast two-hybrid (Y2H) and affinity purification mass spectrometry (AP-MS) '“* (Figure

2.5).

In the yeast two-hybrid method, the DNA-binding domain of a transcription factor is at-
tached to a protein of interest, called bait, and the activation domain of the same transcrip-
tion factor is attached to another protein, called prey, that is potentially interacting with the
first protein. To detect whether there is a protein-protein interaction between bait and prey,
both proteins are expressed in a yeast cell. If both proteins bind to each other, the two at-
tached transcription factor components form a functional transcription factor, which then
activates a reporter gene.

The afhinity purification mass spectrometry method, on the other hand, does not use a bait
protein paired with a single prey protein, but can simultaneously detect multiple prey pro-
teins interacting with a bait protein. To this end, the bait protein is isolated in a matrix by
affinity capture, and a protein mixture containing multiple prey proteins that potentially in-
teract with the bait protein is passed through the matrix. During this passage, proteins that
interact with the bait protein are retained in the matrix because they bind to the bait, while
other proteins that do not interact with the bait can pass through the matrix. The prey pro-
teins that have bound to the bait and have thus been retained in the matrix can then be iden-
tified from their peptide signatures by mass spectrometry.

The entirety of detected PPIs, involving a plethora of different proteins, can be assembled
into a PPI network. Commonly, PPI networks are formulated as undirected graphs, in which
proteins are represented by nodes and PPIs are represented by edges that connect the nodes
of interacting proteins'*. There are multiple databases providing PPI networks of differ-
ent completeness and size, some of which extend the experimentally identified PPIs by in-
teractions that are for instance predicted computationally or inferred from homology with
other species'+*. Examples of widely used PPI databases are BioGRID "** and STRING ',
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Figure 2.5: Protein-protein interaction detection methods. (a) In the yeast two-hybrid (Y2H) method, the bait protein

is attached to the DNA-binding domain (BD) of a transcription factor and the prey protein is attached to the activation
domain (AD) of the same transcription factor. The BD binds to the upstream activating sequence (UAS) and if the bait
and prey proteins interact, the AD localizes the reporter gene and activates gene expression. Thus, gene expression

of the reporter gene serves as a measure of protein-protein interaction between the bait protein and the prey protein.
Created with BioRender . com (b) In affinity purification mass spectrometry (AP-MS), the bait protein is bound to a
matrix by affinity capture and a protein mixture is passed through the matrix. Interacting prey proteins bind to the bait
protein and are retained in the matrix, while other proteins pass through. The protein complex of proteins bound to the
bait protein is then eluted and the prey proteins are identified by mass spectrometry. Created with BioRender . com.

but also the meta-database ConsensusPathDB (CPDB)**%3, which combines PPI data from
multiple resources.

2.3.1 ConsensusPathDB

ConsensusPathDB (CPDB)*>* is a meta-database containing data on PPIs as well as other
types of molecular interactions, such as drug-target and biochemical interactions, for human,
mouse, and yeast obtained from over 30 difterent public interaction databases, including PPI
databases such as BioGRID "**. In addition to molecular interaction data, CPDB also pro-
vides molecular pathway gene sets from well-known databases such as the Kyoto Encyclope-
dia of Genes and Genomes (KEGG)?*. The 2016 version of the CPDB database contained
261,085 human protein interactions, including both binary PPIs and protein complexes, and
4,593 pathway gene sets®*, which increased to 616,304 protein interactions and 5,578 path-
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way gene sets in the most recent CPDB version from 2022, Binary PPIs in the CPDB
database are annotated with a score, which is in the range [0, 1] and indicates the confidence
associated with the respective interaction.

2.4 Molecular Pathways

Cellular functions are rarely conferred by single molecules, but rather by sets or pathways
of interacting molecules and their respective genes’+*. Hartwell et al.”* define such path-
ways, which they call “modules”, as discrete functional entities, composed of many molecule
types, whose function is separable from that of other modules and arises from interactions be-
tween the module’s components. The molecules comprising a module can be DNA, RNA,
proteins, and other small molecules, which in isolation cannot confer the same function as
the module they are members of. Rather than defining pathways merely as sets of interact-
ing molecules without further specifying the exact nature of the interactions involved, an-
other definition of molecular pathways comes from a network perspective, where a pathway is
viewed as a network of molecular interactions connected by the molecules taking partin these
interactions'*’. In this pathway definition, there are different types of interactions, includ-
ing gene regulation, which comprises transcription and translation, transport of molecules,
also known as translocation, reactions involving the conversion of small molecules, PPIs,
as well as so-called macroprocesses, whose internal organization is unknown. Furthermore,
whole pathways of interacting molecules can be part of other, often more generalized path-
ways. However, while the network-based definition of a pathway is arguably more biologi-
cally precise than the gene set-based definition, for many downstream analyses such as over-
representation analysis (ORA), the simpler view of a pathway as a set or functional entity
of interacting molecules is usually sufficient. There are several public databases providing
comprehensive information on molecular pathways. Some of the most prominent pathway
databases include KEGG %, a database of manually curated pathways, Reactome®”, which be-
sides the molecules constituting a pathway also contains information about the relations be-
tween these molecules, and Wikipathways '**, a community-driven pathway database project
to which experts from different sub-fields of biology can contribute their knowledge.
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Mathematical Principles and
Methodological Background

This chapter introduces some basic mathematical principles that lay the foundation for this
dissertation as well as the key statistical methods and algorithms that are used in this work.

3.1 Mathematical Notation

Firstly, we will introduce some basic mathematical notation used throughout this disserta-
tion. Natural numbers are denoted by N = 0,1, 2, ... and include 0, while natural numbers
excluding 0 are denoted by N*. Real numbers are denoted by R. The notation (xi, x5, ..., x,,)
denotes a row vector with 7 elements and the superscript T indicates the transpose of a ma-
trix or vector, such that (x;,x,, ..., x,) " would be the corresponding column vector. The
notation |4, b] is used for closed intervals, indicating that 2 and & are both included in the
interval, while (2, &) denotes an open interval excluding 2 and 4. The capital letter P denotes
probability with P(A4) being the probability of an event 4 and P(A|B) being the conditional
probability of event 4, given another event B. A binomial coefficient for two integers 7 and
kwith 0 < £ < 7 is denoted by (Z) = Wik)! and describes the number of ways to choose
an unordered subset of £ elements from a set of # elements.

3.2 Machine Learning

The term machine learning was coined by Arthur L. Samuel, who in 1959 described the con-
cept of machine learning as “the programming of a digital computer to behave in a way which,
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if done by human beings or animals, would be described as involving the process of learn-
ing”'#7. More specifically, machine learning refers to the capability of a system to acquire
knowledge by extracting patterns from raw data rather than relying on hard-coded rules or

knowledge 63,

There are two major categories of machine learning—supervised learning and unsupervised
learning—and most machine learning algorithms fall into one of these two categories®’. In
supervised learning, each sample or data point in the input data is associated with an output
label or target and the goal of the machine learning algorithm is to predict this target from
the features of the input data®75. One can think of supervised learning as a student-teacher
relationship, where the machine learning algorithm as the student tries to learn from the in-
put data and is provided with the correct result or target by a teacher who functions as a
supervisor and teaches the student what to learn®. In unsupervised learning, on the other
hand, there is no teacher supervising the student’s learning process and there are no target
variables that the machine learning algorithm should learn to predict. Instead, the goal of
unsupervised learning is to infer properties of the input’s probability distribution from the
input data samples alone 7.

Classification and regression are common tasks from the category of supervised learning,
while a typical example of unsupervised learning is clustering®®. The goal of classification is
to predict to which of a predefined number £ of categories or classes an input sample belongs
to®. To this end, the classifier typically either tries to learn a function £ : R* — {1, ..., 4}
that for an input sample x € R” with z input features outputs the number of the class y the
sample belongs to, i.e. flx) = y, or a function /' : R — R*, which outputs a probability
distribution over the 4 different classes®>. In the latter case, the predicted class y for input
sample x is the class with the highest probability in the predicted output probability distri-
bution. In regression, in contrast to classification, the target variable is numerical rather than
categorical, and the machine learning algorithm thus tries to learn a function /' : R” — R,
which outputs a real number y € R for each input sample x € R” 3.

In order to be able to learn anything, supervised machine learning algorithms rely on a perfor-
mance measure. This performance measure is usually specific to the task the machine learning
algorithm is trying to learn and quantitatively measures how well the algorithm performs in
predicting target variables from input data®. Performance measures are used in supervised
learning in two different ways: During training and after training. During training, a loss
function is used to compute the prediction error on the training data. The machine learning
algorithm then tries to minimize this training error by iteratively adapting the algorithm’s
learnable parameters. After the training phase, a performance metric is typically used to eval-
uate the algorithm’s performance on a test dataset that was not used for training in order
to determine how well the algorithm generalizes to new data. In classification tasks, for in-
stance, prediction accuracy is a commonly used performance metric to measure how well the
machine learning algorithm has learned its classification task. How well a machine learning
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model generalizes to new data is closely related to the two concepts of underfitting and over-
fitting. If the model is not complex enough and its capacity to fit different functions is low,
underfitting occurs and the model is not able to fit the training data sufficiently, resulting in
a high training error®. On the other hand, if the model’s capacity to fit different functions
is too high, it may overfit the training data, resulting in a small training error, but a high test
error®’. Hence, a good machine learning model is characterized by a capacity that allows it to
neither underfit nor overfit the training data and achieve a small training error while keeping
the gap between training and test error small as well **.

3.2.1 Tree Boosting

One widely used and effective type of machine learning is tree boosting*'. The basic idea
underlying the concept of boosting is that multiple weak predictors can together constitute
a strong predictor *>75. In this context, a weak predictor can have an error rate that is only
marginally better than random, but by sequentially applying and then combining multiple
weak predictors, it is possible to compose a stronger predictor. In tree boosting, decision trees
are used as weak predictors. Decision trees are named after their tree-like structure, where a
sample is passed to the root node at the top of the tree and is then moved down through the
tree according to a sequence of decisions or splits’®. Each node in the decision tree except
for the leaf nodes has an associated splitting attribute, which is usually an input feature, and
when the sample passes through the node, it is forwarded to one of the child nodes through
the branch that corresponds to a certain value of this attribute, i.e., that is either below or
above a threshold value. In contrast to the inner nodes of the tree, the childless leaf nodes
do not have splitting attributes associated with them. Instead, each leaf node;j = 1,2,..../
corresponds to a constant leaf score w;, and the decision tree will output that score as a pre-
diction for all samples reaching that specific leaf node’®75. From a feature space perspective,
a decision tree can also be viewed as a method that partitions the input feature space into /
disjoint regions R,/ = 1,2, ..., /, corresponding to the J leaf nodes of the decision tree, and
then assigns a leaf score @; to each region”. Figure 3.1 illustrates a decision tree with two
features and six leaf nodes and shows the corresponding feature space partition.

Mathematically, a decision tree with parameters © = {R,, a)j}f:l can be formulated as

J
T(x;0) = Za)jl(x € Rj) , (3.1)
=1

where x = (1, %2, ..., x,) is an input sample with 7 features and /() refers to the indicator
function, which outputs 1 if its input term evaluates to f7x#e and 0 otherwise”s.
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Figure 3.1: Decision tree. (a) Decision tree with two features (X and X5) and six leaf nodes, which partition the feature
space into regions Ry, ..., Rs. Each inner node corresponds to one decision threshold #1, ..., 5 on one of the features.
(b) Partition of the feature space by the decision tree from (a). Each rectangle corresponds to one leaf node 7 of the
decision tree and the corresponding region of the feature space R;. Adapted from 8,

A boosted tree is an additive combination of M such simple decision trees, that is,

F%) =D fulx), (3.2)

with f,,(x) = T'(x; ©,,). Ineach tree constructionstepm € {1, ..., M}, anewtree T'(x; ©,,)
is added to the model and its parameters ©,, = {ij, Djm ]jﬁl, where /,, is the number of
leaves of the tree, R;,, are the regions of the corresponding feature space, and wj,, are the leaf
scores, are optimized based on the previous model £~ (x) with £(%)(x) = 0 by solving the
following optimization problem:

N
©,, = arg min l()/l-,f(”‘_l) (%) + T (x5 ©,,)) (3.3)
On i=1

Here, ©,, are the optimal parameters for the m-th tree, y; is the target output for sample
i € {1,..,N},and/ : R* — Ris a task-specific differentiable loss function. Accordingly,
the objective that the model attempts to minimize in the 7-th training iteration then becomes

N
E (m) — Zl (),”f(mfl) (xl) +fm<xl)) . (3_4)
=1
Notably, the leaf scores w of boosted trees are continuous®’, that is w; € R forallj =
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1,2,....].

Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) is a scalable tree boosting method **. Asa tree boosting
method, it uses a tree ensemble of additive functions to predict an output given an input
sample (cf. Equation 3.2). However, in contrast to the objective from Equation 3.4, which
the model tries to minimize, XGBoost uses a regularized objective

L£om = Z; (3o f ") + fiu()) + Q () (35)

. 2 o . :
with Q(f) = 3/+ 32 ||@||” as a regularization term that penalizes model complexity to reduce
overfitting. /is the number of leaves in the tree f; w are the associated leaf scores, and  and A
are model hyperparameters. The objective is optimized by second-order approximation:

£ ~ Z {1 (e f "7 (%)) + @) + %lolf,ﬁ(x,-) + Q(fn), (3.6)

where g; = Oponn )/ (9:,f " D(«;)) is the first order derivative of the loss function / and
h; = ﬁfzw,l) (xi)l (y,-, FimD (x,)) is the second order derivative of the loss function. This
approximation can be derived from Taylor’s theorem, which states that for a function fthat
is (7 + 1) times differentiable in the interval 7and x, x, € I:

()
) =S L e )t 4 Ry ) ()
k=0

A7)
(1) (v

with remainder R, (x — xo) = — % )" for a & between x and x,73.

When removing the constant terms from the approximation in Equation 3.6, a simplified
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model objective £ at training iteration »2 can be derived as
) g

N -
N 1
Lr =" |gfnlx) + szfi(xf) + Q(f) (3.8)
=1 " -
N - 1 - 1 Im
=D |eful) + b | +odn+ 52D g, (3.9)
=1 - - j=1
| 1
= Zgl. Wi+ 5 Z h; + A a)j‘fn + Yons (3.10)
j=1 i€Ljm 1€Ljm

where [, = {7|g,x(x;) = j }is theinstance set of leaf,, of tree f,,, which contains the indices
of the samples assigned to leaf /,,, and g, is the tree structure of f,,, which maps samples to

leaf indices. For a fixed tree structure g,, (x), the optimal score w, of leaf j,,, which minimizes

w,
the objective, can be computed as

wt = ——Zie]jmgi . (3.11)
7 Zl'ef}'m bl’ + l

By substituting w;,, by w},, in Equation 3.10, the corresponding objective term L7 (g,,) be-
comes

) — LN A

This objective term £ ”(g,,) can be used to evaluate how good the tree structure ¢, is for the
prediction task. Because this optimization strategy uses the gradient of the tree functions,
this type of tree boosting is called gradient tree boosting.

Since it is computationally infeasible to test all possible tree structures g and compute their
corresponding objective, XGBoost uses a greedy algorithm to construct a tree structure g,
starting from a single leaf and growing the tree by iteratively adding new split nodes and
their corresponding branches and leaves. To this end, candidate splits on all features are con-
structed and each candidate split is evaluated in terms of the loss reduction by the split:

AL :l (ZZ'EILgl')Z + (Zz'elkgi>2 o (Zz'efgl')z o (3 13)
split 2 ZZ'EIL bi + /‘l ZZ'GIR hi + 2 Ziel hl' —+ l v .

where /7 and I with I = I U I are the instance sets of left and right child nodes after the
split and the candidate split with the largest AL;; is selected.
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3.2.2 Neural Networks

A neural network is a type of machine learning architecture that tries to simulate the learn-
ing mechanism in the brain of biological organisms*. It consists of multiple computational
units, which are called neurons and are interconnected by edges, each of which is associated
with a weight that is used to scale the input passing through the edge*. The neural network
then computes a function of the inputs by propagating them through the network from the
input neurons to the output neuron(s)*. More specifically, the neural network computes
the function f(x; §) = y with inputs x, learnable parameters ¢, which in a neural network are
weights and biases, and output y**. Learning occurs by adapting the parameters ¢ such that
the function /' computed by the neural network becomes as similar as possible to the target
function /*(x) = y, where y is the true outcome associated with x°*.

If the neurons of a neural network are arranged in a layer-wise fashion with one layer of input
neurons, one or multiple intermediate layers, which are called hidden layers, and one output
layer, the neural network is called a feedforward neural network, or sometimes also multilayer
perceptron (MLP)*+% (Figure 3.2).

Input Layer Hidden Layers Output Layer

Figure 3.2: Feedforward neural network. General architecture of a feedforward neural network with one input layer, one
or multiple hidden layers, and one output layer. In a feedforward neural network, each neuron in one layer is connected
to all neurons in the next layer and information is propagated in a forward direction from the input layer through the
hidden layers to the output layer. Created with https://www.yworks.com/yed-1live/.
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The name ‘feedforward neural network’ originates from the characteristic of this type of neu-
ral network that each node in one layer is connected to all nodes in the next layer by weighted
edges and each layer ‘feeds’ its computed activation values to the next layer in a forward direc-
tion from input layer to output layer*. That s, the first layer of a feedforward neural network
computes activation values by the following function:

-
HW :g(l) (W(l) X+ b(l)) , (3.14)

where x is a vector of inputs, 17 is a layer-specific weight matrix, & is a bias vector, and g is a
nonlinear activation function. Each subsequent layer 7 then computes the function

. . NT ;
b0>::go>(;¢4o ;gz1>4_b<>>’ (3.15)

based on the activations »“~ of the previous layer“. While in early neural network archi-
tectures, the activation function g was usually the sigmoid or tanh function*, in modern
feedforward neural networks it is often recommended to use the rectified linear unit (ReLU)

instead, which is defined as g(z) = max{0, z} .

Asin other machine learning architectures, learning in neural networks relies on a task-specific
loss function, which measures the prediction error made by the model on the training data
(cf. Section 3.2). The training algorithm is usually based on using the gradient to descend
the loss function by iteratively adjusting the weight and bias parameters, driving the loss to
a very low value®. To compute the gradient, the backpropagation algorithm is normally
used. During backpropagation, the error computed by the loss function is propagated back-
ward through the network from the output layer to the input layer to compute V/(¢), which
is the gradient of the loss function with respect to the parameters §°. In this context, & are
the weights and biases of the neural network. Basically, backpropagation computes the chain
rule of calculus, which can be used to calculate the derivatives of functions composed of other
functions, given that the derivatives of the other functions are known . The chain rule of
calculus states the following®*: Given x € R and two functions f: R — Randg: R — R

with y = g(x) and z = flg(x)) = fly), then
do _dedy

dx  dydx (3.16)

In the non-scalar case, if x € R”,y € R”, ¢ : R” — R”,and f: R” — Rwithy = ¢(x) and
z = f(y), the chain rule generalizes to

0z Oy,
Z 0y, (3.17)

axl
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. . . . . . .9
Equation 3.17 can also be rewritten in vector notation using the 7z X 7 Jacobian matrix a—i

of g, which is a matrix containing all partial derivatives of g:

Voo (& Tv (3.18)
2= O yZ 3.1

with V, z being the gradient of z with respect to y and V, z being the gradient of z with
respect to x. Hence, backpropagation becomes the recursive computation of such a product
of the Jacobian matrix and the gradient for each operation in the computational graph of the
neural network ®’.

Once the gradient of the loss function with respect to the model’s parameters has been com-
puted using backpropagation, this gradient can be used for learning by adapting the net-
work’s weights and biases using a gradient descent algorithm such as stochastic gradient de-
scent®’. Gradient descent is based on the notion that the derivative /' (x) of a univariate func-
tion f'(x) provides the slope of the function at point x and thus indicates how a small change
in the input x affects the output of the function®*. Thus, () can be reduced by moving x in
small steps into the opposite direction of the derivative®. If f(x) is a multivariate function
withx = (x1, ..., x,), 7 € NT, asis usually the case in neural networks, its gradient is a vector
that contains all partial derivatives of /, where element 7 of the gradient is the partial derivative
of f with respect to x;, and the negative gradient points into the direction of steepest descent
of £ . Thus, by moving into the direction of the negative gradient of / by a small step, /() is
decreased®’. The step size is specified by the learning rate ¢, which is a positive scalar®*. Given
an initial point x and a learning rate ¢, a new point x’ can be determined, which reduces /()
compared to f(x) and is defined as follows *:

¥ =x— eV fx). (3.19)

If £is the loss function of a neural network and x are the weights and biases that should be
learned, this equation instructs the neural network how to change these weights and biases
in order to reduce the prediction error. This step of adjusting weights and biases according
to the gradient and learning rate is repeated multiple times during gradient descent and the
procedure converges when all elements of the gradient are zero, or in practice rather very close
to zero 3.

3.2.3 Transfer Learning

Transfer learning is a concept based on the idea that the performance of a machine learn-
ing model on a target domain—often with a limited number of labeled samples—can be im-
proved by leveraging knowledge from a related source domain *** (Figure 3.3).

A domain D = {X, P(X)} consists of a feature space X" and a marginal distribution P(X)
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Source Domain |

Figure 3.3: Transfer Learning. In transfer learning, knowledge learned on a source domain is transferred to a target
domain to improve the performance of the target model. Created with https://www.yworks.com/yed-1live/.

with instance set X = {x;]x; € X,7 = 1,...,2} """, This means that every input in-
stance «; in the instance set X is contained in the domain’s feature space X and P(X) captures
the distribution of the instance set. In practice, a domain is usually observed by a set of in-
stances that belong to the domain and can either be labeled or unlabeled ***. If two domains
are different, this means that they can have different feature spaces or different marginal dis-
tributions*®. In supervised machine learning, the goal usually is to learn a task 7 given
some labeled training data from a domain D. 7 = {Y, f} has two components: the la-
bel space ) and a decision or prediction function /: X — ), which is an implicit function
that is learned from the training data and can then be used to make predictions on unseen
instances """, With these definitions in mind, transfer learning can be defined more for-
mally: Given a set of g instance-label pairs { (x;, y;)|x; € Xs,9; € Vs, i = 1, ..., ng} from
a source domain Dy with feature space X and label space Vs and a set of 77 instance-label
pairs {(x;, 9:)|x; € Xr,9; € VYr,i =1, ..., ny} from a target domain D7 with feature space
X and label space V7, and Ds # Dy or Tg # Tr (i.c., the source and target domains are
different or the source and target tasks are different), transfer learning uses knowledge from
the source domain Dy and task 7T to improve the learning and performance of the prediction
function 7 : X7 — Y7 on the target domain'*"'7>**¢. This two-domain scenario, where
knowledge is transferred from one source domain to one target domain, is the most common
transfer learning scenario '**. However, it is also possible to extend the definition of transfer
learning to multiple source and target domains and tasks. In this case, transfer learning uses
knowledge learned from s € N* source domains and tasks {(Ds,, Ts,)|j = 1, ..., ms} to
improve the prediction functions ij, j=1,...,mp onmy € N different target domains

and tasks { (D, Tr))[j =1, ..., mp} .

Transfer learning can be categorized based on different criteria: For instance, transfer learn-
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ing can be divided into homogeneous transfer learning and heterogeneous transfer learning
based on the similarity of the source and target domains**"***. While in homogeneous trans-
fer learning, the label spaces must be the same and the domains must have the same feature
space, in heterogeneous transfer learning, the label spaces can be different and the domains
can have different feature spaces, making it necessary to adapt the feature space during trans-
fer learning and thus making heterogeneous transfer learning more complex than homoge-
neous transfer learning '?*. Another criterion by which transfer learning can be categorized is
the availability of label information. In inductive transfer learning, label information is avail-
able for the target domain, while in transductive transfer learning, label information is only
available for the source domain, but not for the target domain, and in unsupervised transfer
learning, label information is available for neither domain***. The two types of transfer learn-
ing categorization described so far are based on the type of transfer learning problem at hand,
but it is also possible to categorize transfer learning based on how knowledge is transferred.
Instance-based, feature-based, parameter-based, and relation-based are four categories related
to the question of “how to transfer” ?»"**. Instance-based approaches are usually based on
an instance weighting strategy ', where source-domain instances are weighted and the trans-
ferred knowledge consists of the instances with large weights'*®. Feature-based approaches
try to learn a good feature representation—either by transforming the source features to
match the target features or by learning a common latent feature space for the source and
target domains—such that the source domain data can be used for training on the target do-
9188 Parameter-based approaches—also termed model-based approaches—transfer
knowledge from the source domain to the target domain through the learned parameters of
amodel that was trained on the source domain *****. The motivation behind this type of ap-
proach is the assumption that a model that has been well trained on the source domain will
have captured much useful general structure, which can be transferred to the target domain,
thereby benefiting target model performance **®. Lastly, relation-based approaches are based
on the idea that at least some relationships between instances are similar in the source and tar-
get domains and that rules regarding these relationships between entities can be transferred
between domains 0%,

main

In the context of neural networks and deep learning, pre-training approaches from the para-
meter- or model-based category are widely used"**: To transfer knowledge from the source
domain to the target domain, a (deep) neural network is first trained to solve a source task
on the source domain. Once training is completed, the parameters of the pre-trained neural
network are transferred to the target domain and task, for example by freezing some layers of
the pre-trained neural network and fine-tuning the parameters of the last few layers based on
labeled instances from the target domain """,

Transfer learning has been shown to be successful in many cases. For instance, Zoph et al. *?

pre-trained a neural machine translation model on a large bilingual dataset and used the
trained model to translate between languages with little bilingual data available, Phan et al.
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used transfer learning for automatic sleep staging by pre-training a neural network on a large
source dataset and fine-tuning it on smaller target datasets"*°, and Maqsood et al."** trans-
ferred knowledge from the AlexNet'*S image classification method to detect Alzheimers’s
disease from MRI images. However, transfer learning does not always positively affect the
prediction performance on new tasks™". Instead, transferring knowledge from a source do-
main to the target domain can even negatively impact model performance on the target do-
main and task'?*. This phenomenon is called negative transfer and can happen, for example,
if the source and target domains are not related to each other closely enough or if the model is
not able to find the part of the knowledge that is transferable to the target domain and would

benefit performance 7",

3.2.4 Feature Selection

If machine learning methods are trained on high-dimensional data—as in the case of most
omics data such as gene expression—a phenomenon termed the “curse of dimensionality”
can make training difficult and cause overfitting. The term “curse of dimensionality” was
first introduced by Richard Bellman ** and refers to the circumstance that the number of ob-
servations required to specify a function in an z-dimensional space grows exponentially with
the number of dimensions 7 and thus in higher dimensions data becomes more sparse*"".
Possible approaches for alleviating the overfitting problem caused by high data dimensional-
ity are the application of dimensionality reduction techniques such as principal component
analysis (PCA) "> to the data before training or the use of feature selection techniques to
select a subset of features to train the machine learning model on. While dimensionality re-
duction techniques alter the original representation of the features, potentially exacerbating
interpretability, feature selection methods select a subset of the original features, leaving fea-
ture representations intact and thus allowing for better interpretability '+°.

Feature selection methods applied to supervised learning problems can be categorized into
filter methods, wrapper methods, and embedded methods*#°. Filter methods have in com-
mon that they select features based on intrinsic properties of the data, such as the correla-
tion between features or the ;(2 test'*°. In contrast to filter methods, which do not consider
dependencies between the features and the target variable, wrapper methods do take such
dependencies into account by evaluating the same machine learning method as used for the
prediction task on different subsets of features and selecting the feature subset that yields the
best performance '*°. However, wrapper methods are computationally expensive, especially
for datasets with many features, because the number of feature subsets that need to be eval-
uated by the machine learning method grows exponentially with the number of features 146
Embedded methods, on the other hand, also take relations between the features and the target
into consideration and use the same machine learning method as used for the prediction task
to evaluate features, but in contrast to wrapper methods, the evaluation is not done on differ-
ent subsets of features, but by leveraging built-in feature importance measures of the selected
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machine learning method '#°. While embedded feature selection methods are thus only fea-

sible with machine learning methods implementing such feature importance measures, they

146

are computationally far less expensive than wrapper methods*#® because they don’t rely on

evaluating different feature combinations separately.

3.2.5 Hyperparameter Optimization

In addition to learnable parameters, which are estimated from training data, many machine

learning models also have parameters that cannot be directly learned from the data'**. These

parameters are called hyperparameters, also referred to as tuning parameters 106,89 Hyperpa-

rameters control many important properties of the machine learning model such as model

complexity and poorly adapted hyperparameters can negatively impact the prediction perfor-
106

mance '°°. Therefore, for most machine learning models, it is crucial to optimize the model’s
hyperparameters.

Grid Search

Grid search is the most basic hyperparameter optimization method*°. Given a finite set of
discrete values for each hyperparameter, grid search evaluates the machine learning model
for every possible combination (the Cartesian product) of these sets of hyperparameter val-
ues >, usually on a set of validation samples that are neither used for estimating the model’s
learnable parameters nor for evaluating the performance of the final model. Afterwards, the
combination of hyperparameters that yielded the best model performance can be selected for
training a final machine learning model. However, the main disadvantage of grid search is
that the number of model evaluations grows exponentially with the number of optimized
hyperparameters and the number of candidate values per hyperparameter*®. Thus, for ma-
chine learning models with many hyperparameters or fine-grained hyperparameter configu-
ration spaces, grid search becomes computationally expensive and sometimes infeasible due
to its high time complexity.

Random Search

Random search is a less runtime-intensive, yet simple alternative to grid search. In contrast
to grid search, which evaluates all possible hyperparameter configurations from a finite set of
hyperparameter values, random search only evaluates a pre-defined number of randomly sam-
pled hyperparameter configurations*“. Importantly and as opposed to grid search, random
search does not need to be supplied with a set of discrete candidate values for each hyperpa-
rameter, but can also sample hyperparameter values from a continuous distribution, allowing
it to evaluate more different values of a hyperparameter than grid search typically does.

29



Chapter 3

Bayesian Optimization

Instead of treating the evaluated hyperparameter configurations independently from each
other, as grid search and random search do, Bayesian optimization iteratively selects new hy-
perparameter configurations to evaluate based on the results of previously evaluated hyper-
parameter configurations. In each iteration, a probabilistic surrogate model, which can for
example be a Gaussian process or a Tree-structured Parzen Estimator (TPE), is fitted to the re-
sults of all hyperparameter configurations that have been evaluated up to this point*®. Then,
an acquisition function is used to determine the utility of different hyperparameter configura-
tions based on the predictive distribution of the surrogate model, balancing exploration and
exploitation’®. In this context, exploration means selecting hyperparameter configurations
in yet relatively unexplored regions of the hyperparameter space, while exploitation means se-
lecting hyperparameters in regions that are most likely to yield a good performance according
to the current surrogate model.

3.3 Survival Analysis

Survival analysis refers to a set of problems where individuals from one or more groups may
experience a defined event, often called failure, that occurs after a certain period of time, often
called failure time*S. The failure event must occur at a discrete time point and each individ-
ual can experience the event only once®. Furthermore, the time origin must be defined for
each individual and the different individuals should be as comparable as possible at their time
origin®. The time to the event or failure time of each individual is then measured with re-
spect to the individual’s time origin*. Examples of survival analysis tasks are survival times
of patients enrolled in a clinical study, but also lifetimes of machines or machine components
in industry settings, or duration of unemployment or strikes in economics*. In the first case
of patient survival in a clinical study, for instance, the time origin could be the entry date at
which an individual was enrolled in the clinical study and the failure that an individual might
experience would be death in general or death from a certain cause like lung cancer. Failure
time would then accordingly be measured as time from study enrollment to death.

3.3.1  Censoring

A peculiarity of survival data is that some individuals may not have been observed until they
experienced the event of failure®. In the case of a clinical study, some patients might have
survived until the end of the study or some patients might have dropped out of the study at
some point and might thus have been lost to follow-up. Alternatively, if the failure event is
not death in general, but death from a certain cause such as lung cancer, a patient who has
died from another cause (e.g. cardiovascular disease), would not experience the event of in-
terest either. If failure cannot be observed in a patient, the patient is called censored and the
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event that made it impossible to observe failure is called censoring**. Like failure, censoring
also occurs at a discrete time point and the time period until censoring occurs is called cen-
soring time* . Figure 3.4 illustrates the survival times of ten different patients, of which five
experience failure and the other five are censored at different time points, in real time (Figure
3.4a) and in time relative to entry into the study as the time origin (Figure 3.4b). For an indi-

Patient 1 4 —_— Patient 1 +———@ X Death
Patient 2 4 R Patient 2 /X ¢ (Censoring
Patient 3 4 —_—X Patient 3 +——X%
Patient 4 4 _— patient 4 +——m——@
Patient 5 4 _— Patient 5 +—————X
Patient 6 4 _—X patient 6 T——————— X
Patient 7 4 Patient 7
Patient 8 4 Patient 8
Patient 9 1 Patient 9
Patient 10 - Patient 10
2014 2015 2016 2017 2018 2019 0 1 2 3 4 5
Real time (year) Time from entry into study (years)

(a) (b)

Figure 3.4: Survival time. (a) Real survival times of ten patients. Lines start at the year of entry into the study of the
respective patient and end at the year of death (failure) or censoring. (b) Time to failure or time to censoring for the
same ten patients in years with study entry as the time origin. Events are indicated with % for death (failure) and @ for
censoring. Adapted from .

vidual 7, the observation can be formalized in terms of its failure time #; and the time period
of observation ¢;, which is the censoring time if the individual has not experienced failure by
that time*. Then, the observation for individual 7 consists of the time y; = min(;, ¢;) and
an indicator variable 9, € {0, 1}, which indicates the censoring status of the individual with
0; = 0ift; > ¢;({is censored) and 9; = 1ifz; < ¢; (7 is uncensored)*’.

3.3.2 Cox Regression

In conventional regression, the task is to learn a function / : R” — R and predicta numerical
target value from a given input®. In survival analysis problems, however, where some of
the samples are censored before they experience failure, conventional regression is not suited
to predict survival in terms of failure time, because the failure time of censored patients is
unknown. To resolve this problem, David Cox developed a novel type of regression that can
handle censored samples** and is also known as Cox regression. Cox regression considers
the following problem setting: Given a population of 7, individuals for # of which failure
time and for the rest censoring time is observed, the failure time is represented by a random
variable T, which can be either discrete or continuous, with # < 7 different failure times

tqy <ty < ... < tg) and k = 7 in the continuous case. Then, the age-specific failure rate
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or hazard is defined as

P<T<t+Adt<T)

At—04 At

(3.20)

That is, A(¢) is a function of time, which for a given time ¢ yields the rate of failure in the
infinitesimal time interval [#, 74-A¢). Furthermore, A(#) A¢ can be regarded as the approximate
probability that an individual that has survived until time ¢ fails in the next instant*°.

If for each individual 7 € {1, ..., 70}, m covariates x are available and the 7th individual is
associated with the covariate values x; = (xy;, ..., %,,,), the hazard function can be expressed
as a function of time # and covariates x and becomes:

At %) = exp(xB) do(2), (3.21)

where Ao (2) is an unknown baseline hazard function under the standard conditions x = 0
and Bisa m X 1 vector of unknown parameters*. Cox** allows A¢(#) to be arbitrary with
the reasoning that the main interest of survival analysis is in the regression parameters 8 and
if 2o(#) is left arbitrary, usually only little information about 4 is lost.

In the case of continuous failure times, the conditional probability that an individual ; dies
or fails at time point ¢, given that 7 — 1 individuals /i, ..., ;1 have failed before #; and one in-
dividual from the remaining population that has not experienced failure or censoring before
t, fails at #; can be computed as*’

_ opxhe®) (22)
ZMZ@ (eXp(xl (@M”O(tl)) '
S (3.23)
Zl:z;gr,- exp(xg (8> 7 )

with x; being the covariate set of individual 7. According to the chain rule for conditional
probabilities, the joint probability distribution for all failures i, ..., j, can be computed as*

P(jlj. nfi)

p(]'h 7]n) = HPZ'(]'Z'Vla -~;]‘z‘71) (32'4)

_ exp(x: §)
i=1 ZZZUZZ,' exp(xl ﬂ)

(3.25)
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and the corresponding partial log-likelihood is 5+

n

Leo (B) = Z x; B8 — log Z exp(x; 8) |- (3.26)

=1 L:t;>t;

For machine learning-based survival prediction, the negative partial log-likelihood is com-
monly used as a loss function*+>'*7, which takes the form:

n

low= =D | halw) —log D explls(x) |. (3.27)

=1 18747

where [cox denotes the loss function and the predicted log-risk 4(x) is the output of the
machine learning model given an input x. To make the loss independent of the size of the
analyzed dataset, it is often averaged over the number of uncensored samples 7°>'°” and thus
becomes:

Leow = —% Z /;ﬁ(xi) — log Z exp(};[g(x;)) (3.28)

Lty >t

= —% Z lgﬂ(x,-) — log Z eXp(iﬂ/z(xz)) ) (3.29)

i:0,=1 Lty >t

where J; indicates the censoring status of individual 7 with J; = 1if7is uncensored and 9, = 0
otherwise.

3.3.3 Concordance Index

The concordance index or C-Index”" is a performance metric commonly used to evaluate the
performance of survival prediction methods. Itis suited for populations of individuals where
part of the individuals experience failure and the other part of individuals are censored. The
C-Index calculates the ratio of the number of pairs of individuals whose failure times and pre-
dictions are concordant with the number of comparable pairs. In this context, a concordant
pair denotes a pair of individuals where the individual with the shorter failure time has the
smaller predicted failure time or the larger predicted risk score, and a comparable pair is a pair
of individuals where either both individuals are uncensored or one individual is censored and
its censoring time is larger than the failure time of the other individual, thus allowing to de-
termine which of the two individuals survived longer. Therefore, the C-Index can be viewed

as a type of rank correlation between observed failure times and predicted failure times or
risks7".
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For this work, the C-Index implementation of Dereli et al.>" was adapted as follows to the
prediction of risk instead of failure time:

N [— . y PR, Y .
C-Index = 2 Zj#Z'AZJJ(Oli }’]) ()/] yl) - O) (3.30)

N
Ez’:l Zj;ﬁ; Al]
with A = {1 if (9; = 1and 9; = 1) or (§; = 1and J; = O and y; < y;)

31
0 otherwise, (3:31)

where y; is the failure time of individual 7, y; is the corresponding predicted risk score, 9; €
{0, 1} denotes the censoring status with J; = 1if 7 is uncensored and d; = 0 if 7 is censored,
A;; indicates whether the pair of individuals 7 and 7 is comparable, and /(-) is the indicator
function.

3.4 Network Propagation

As described in Section 2.3, the entirety of PPIs can be formulated as an undirected graph,
where nodes represent proteins and edges represent interactions between proteins. Network
propagation is a type of method in which information is diffused or propagated over a graph
or network to amplify biological signal and at the same time reduce noise**. This concept can
be imagined as fluid flowing through the graph or network, where each node is filled with a
node-specific amount of fluid that is proportional to its initial importance and this fluid then
flows from one node to the neighbors of this node, and then in the next step from the neigh-
bors to the neighbors’ neighbors and so on, until either the diffusion process is halted after a
few steps or an equilibrium is reached, where all liquid is evenly distributed over all nodes**.
In the first case, where the liquid diffusion or network propagation process is stopped after a
few steps, some nodes in the neighborhood of nodes that were initialized with a large amount
of fluid will have received more fluid than other nodes, which is proportional to their impor-
tance in the network after network propagation and can be used to prioritize nodes. However,
the other case, where the liquid is evenly distributed over all nodes of the network at the end
of the network propagation, is not informative, because all nodes have the same amount of
liquid at the end and no prioritization of nodes is not possible anymore. Another approach
to gain information from network propagation and prioritize nodes besides halting the net-
work propagation after a certain number of steps is the concept of random walk with restart
(RWR)#. In contrast to the approach described before, where each node is initialized once
with a certain amount of fluid and this fluid is then diffused over the network, RWR returns
the liquid to the initial nodes at each step with a certain probability**. This way, the fluid is
keptsomewhat close to the initial nodes and propagation to distant nodes through long paths
becomes less likely, thus making it possible for the network propagation to continue for many
steps and reach a steady state, where the amount of fluid in each node at each step changes
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only marginally, while the fluid is still largely confined to the local node neighborhoods of
the initial nodes*3.

More formally, the amount of fluid or weight associated with each node after step £ of RWR
can be computed as

P =apo+ (1 —a) Wpy_i, (3.32)

where py is a weight vector, which assigns an initial weight to each node of the network, p_,
are the node weights in step £ — 1 of the network propagation, /¥ is a normalized version
of the adjacency matrix 4 of the network, where A4 represents which nodes are connected to
which other nodes in the network, and « is a restart probability, specifying with which prob-
ability the node weight or fluid is returned to the respective initial node at each step**. 2 can
also be viewed as a network smoothing parameter, where a larger value of « corresponds to
less network smoothing**. Thus, the network propagation over £ steps can be computed it-
eratively starting from po. A common normalization for the adjacency matrix 4 is the degree
normalization, where 4 is normalized by the diagonal degree matrix D, which on the diago-
nal contains the degree, that is the number of neighbors, of each node, and the normalized
adjacency matrix is computed as 17 = AD Y or W= D V24D71/24,

If the eigenvalues of the normalized adjacency matrix /7 are less than or equal to one and
the network is connected, meaning each node can be reached from each other node in the
network by traversing the edges, RWR converges to a steady-state distribution p, which can
be calculated as

p=a(l—(1—a) W) " po, (333)

with / being the identity matrix**. Figure 3.5 illustrates RWR on a small graph.

high
weight

medium
weight

low
weight

Figure 3.5: Random walk with restart (RWR). lllustration of RWR on a small graph with nine nodes. In 0) two nodes (5
and 7) are initialized with a high weight, while all other nodes are initialized with zero weight. During the subsequent
network propagation steps 1)-3), the weight is propagated over the network, until a steady-state s) is reached. Created
with BioRender . com.

In the biological context, network propagation is often used to propagate information over
PPI networks, which were introduced in Section 2.3. Here, the underlying assumption is
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that proteins encoded by genes that give rise to similar phenotypes have a tendency to inter-
act with each other and this tendency can be exploited by network propagation to identify
proteins (and their encoding genes) that are associated with a phenotype of interest but were
not initially known to be associated with this phenotype by leveraging prior information on
genes with a known association to this phenotype.

3.4.1 NetCore

NetCore " is a network propagation method, which is based on RWR, but in contrast to
normalizing the adjacency matrix of the underlying graph by the node degree as described
above, NetCore applies a normalization based on node core to the adjacency matrix.

PPI networks are believed to be scale-free**. That is, they follow a power-law distribution,
where a small number of nodes, the so-called hubs, have a high degree and are connected to
a large number of interaction partners, while most nodes only participate in a small number
of interactions. A possible biological explanation for the scale-free nature of PPI networks is
gene duplication'*: When a gene is duplicated during cell division, resulting in two identical
genes and consequently two identical proteins in the daughter cells, the proteins interacting
with the protein that is being duplicated will also interact with the duplication of this pro-
tein and thus each gain an interaction partner. If gene duplication is equally likely for each
protein-coding gene, proteins with many interaction partners are more likely to be connected
to a duplicated protein than proteins with few interaction partners and will therefore gain
interactions through duplication events at a higher probability. This concept is called pref-
erential attachment and promotes the scale-free characteristic of PPI networks when these
networks are growing. However, besides this biological explanation for the power-law distri-
bution that is observed in PPI networks, there are also experimental reasons for this obser-
vation. As described in Section 2.3, PPIs are commonly detected by experimental methods
like Y2H or AP-MS, where one protein of interest is used as bait protein and interactions
of other proteins with this bait protein are measured. The selection of the bait proteins is
done by the investigator and hence is biased towards certain proteins of interest, which are
thus heavily studied and have many detected PPIs, while other proteins are studied less and
thus have fewer known interactions®>. Additionally, the selection of a protein as bait can
introduce further experimental bias stemming from proteins behaving differently in Y2H

experiments if they are used as bait as compared to being used as prey 164,

NetCore tries to reduce this degree bias by using a normalization strategy based on node core
during network propagation instead of the commonly used degree normalization™. The
core value of a node can be computed from node degree in an iterative process and reflects the
influence of a node on the spreading of information in the network. More precisely, the node
core measures how central a node is in the network, where a high node core indicates that the
node is located in a densely connected part of the network, while nodes in the periphery of
the network have a low core value, even if they have a high degree. To compute the core
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value of a node, the k-shell decomposition method*? can be used. In the first step, all nodes
with degree # = 1are recursively removed from the network such that only nodes with degree
k > 2 remain in the network. Recursive removal of nodes with degree # means that removing
nodes with degree £ from the network is repeated until no nodes with degree £ are left in the
network after the removal step. A core value of 1is assigned to all nodes that could be removed
from the network in this first step. In the second step of the k-shell decomposition, all nodes
with degree ¥ = 2 are recursively removed from the network until only nodes with degree
k > 3 remain and a core value of 2 is assigned to the removed nodes. This node removal
step is repeated iteratively with increasing values of £ until all nodes in the network have been
assigned a core value. The node core values are used by NetCore to normalize the adjacency
matrix 4 of the PPI network as follows:
k;’
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where £; is the core value of node 7 in the network ">. Thus, during the network propagation,
neighbors of a node that have a high core value will get more weight than neighbors with
a low core value that are located in the network’s periphery. Network propagation is then
performed by computing the steady-state distribution of an RWR according to Equation
3.33 with W = A "3,

In addition to re-weighting nodes by network propagation, NetCore implements semi-su-
pervised module identification, where network propagation results are combined with a set
of seed genes, which can be either user-defined or inferred from the initial node weights of
the network propagation input, to extract a biologically relevant sub-network and network
modules from the PPI network ™. To this end, initially, only seed genes are included in
the sub-network and the sub-network is then extended by intermediate nodes that are di-
rect neighbors of at least one seed node, have a weight that is above a pre-defined minimum
weight after network propagation and have been identified as significant according to a per-
mutation test"’. If the user does not define a list of seed genes, the top 100 genes with the
highest initial weights before network propagation are used as seed genes**. After construct-
ing the sub-network, the sub-network is split into connected components, which are called
modules*?.

3.5 Hypothesis Testing

Hypothesis testing is a statistical concept used to decide if a statistical hypothesis about a
population should be either accepted or rejected based on experimental sample values from
this population *7. In hypothesis testing, there are two types of hypotheses, which are com-
plementary to each other. The first type of hypothesis is the null hypothesis Hy, also called
the statement of “no difference”, which is the hypothesis the researcher wants to investigate
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through the experiment. The second hypothesis type is the alternative hypothesis H;, which
states the opposite of the null hypothesis.

For instance, the researcher might have a coin and would like to find out whether this coin is
fair or biased. In this case, the null hypothesis could be “The coin is fair” and the alternative
hypothesis could be formulated as “The coin is biased”.

To decide whether to accept or reject the null hypothesis, a test statistic is necessary **”. The
test statistic is a function of the experimental sample values and follows a distribution that
depends on a parameter § with § = &, under the null hypothesis’. The distribution of
possible outcomes of the test statistic is divided into two disjoint regions, the non-rejection
region (sometimes also called acceptance region**”), which includes all outcomes that are
consistent with the null hypothesis at a predefined level of confidence and thus do not lead
to a rejection of the null hypothesis, and the rejection region, which is also called critical
region and comprises all outcomes that lead to the rejection of the null hypothesis”. The
boundary values dividing non-rejection and rejection regions are called critical values and
can be computed based on the probability distribution of the test statistic given a significance
level 27°. Thus, the significance level 2 controls when the null hypothesis is rejected, which
is the case when, under the null hypothesis, the probability that a sample comes from the
hypothesized probability distribution is less than or equal to 27°. In practice, « is typically
set to a small value of 0.01, 0.05, or 0.107°. If the null hypothesis is rejected despite being
true, this is called a Type I Error and the probability for committing a Type I Error is 27°.
Conversely, not rejecting the null hypothesis even though the alternative hypothesis is true is
called Type II Error”°.

0
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(a) Two-sided hypothesis test (b) One-sided hypothesis test

Figure 3.6: Hypothesis test. (a) In a two-sided hypothesis test, the rejection region consists of two parts and is separated
from the non-rejection region by two critical values ¢, and Cupper- The total area of the rejection region is equal to

the significance level «. (b) In a one-sided hypothesis test, only one critical value ¢ separates non-rejection and rejection
regions. Here, a right-sided test is shown for illustration.

There are two types of test statistics, two-sided tests and one-sided tests: In two-sided tests,

the rejection region consists of two parts on both sides of the non-rejection region, which are
defined by the two critical values ¢, and €5, and outcomes that fall either below ¢y, or
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above ¢, lead to the rejection of the null hypothesis” (Figure 3.6a). On the other hand,
in one-sided tests, there is only one critical value that separates non-rejection and rejection
regions’®. If the rejection region lies on the left side of the non-rejection region and the re-
searcher is interested in outcomes smaller than the critical value, this is called a left-sided test,
while in a right-sided test, the rejection region lies on the right side of the non-rejection region
and values larger than the critical value are of interest” (Figure 3.6b).

3.5.1 P-Value

The p-value is the probability of obtaining an outcome by chance that is as extreme or more
extreme than the observed outcome under the assumption that the null hypothesis is true *°'.
To determine if the p-value of an observed outcome is statistically significant, it can be com-
pared to the significance level «. If the p-value is smaller than or equal to «, this means that
the corresponding test statistic value falls within the rejection region of the test statistic and
thus the null hypothesis can be rejected”°. Conversely, if the p-value is larger than «, this is
reflective of the test statistic value falling within the non-rejection region and hence the null
hypothesis is not rejected.

3.5.2 Multiple Hypothesis Testing

Multiple hypothesis testing refers to the setting where two or more statistical hypotheses are
tested simultaneously '5*
lates in proportion to the number of tested hypotheses

. In that case, the probability of committing a Type I Error accumu-

I52

This can be illustrated by an example: Consider the setting where ten different hypotheses
are tested simultaneously at a significance level of 0.05. Then, the probability of obtaining at
least one significant result purely by chance would be approximately 40%, as shown by the
following calculation:

P(at least one significant result) = 1 — P(no significant result)
=1—(1-0.05)"
~ 0.401

This probability of committing at least one Type I Error is called the family-wise error rate
(FWER)®:. If not only 10, but so hypotheses were tested simultaneously at the same signif-
icance level of 0.05, the FWER would rise from 40% when testing 10 hypotheses to above
90% when testing so hypotheses. Thus, when multiple hypotheses are tested simultaneously
on the same data, all of the obtained p-values need to be adjusted for multiple testing, for in-
stance with the Bonferroni method or the less conservative Benjamini-Hochberg method for
multiple testing correction.
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Bonferroni Method

The Bonferroni method is a multiple testing correction method that controls the FWER by
adjusting the significance level « proportionally to the number of tested observations””. That
is, instead of comparing the p-value of an observation to the significance level &, it is compared
to a/n, where 7 is the number of tested observations and the null hypothesis is rejected only
if the p-value is smaller than /7.

Benjamini-Hochberg Method

Instead of directly controlling the FWER like the Bonferroni method, the Benjamini-Hoch-
berg method controls the false discovery rate (FDR ), which is the likelihood that an incorrect
rejection of the null hypothesis occurs”®. Controlling for the FDR instead of the FWER
is less conservative, allowing for the rejection of more null hypotheses in a family of tested

hypotheses.

In the Benjamini-Hochberg multiple testing correction method ™, the 7 tested hypotheses

are sorted by their p-values p;) in ascending order such that p;y < po) < ... < pm). Then
k is determined, which is the largest index 7 for which

ES

;
L <
JAGIRS mq )

where g* is the desired FDR. Once £ has been determined, the null hypotheses corresponding

to p-values p(;) with7 = 1,2, ..., k are rejected.

3.5.3 Wilcoxon Rank Sum Test

The Wilcoxon rank sum test is a nonparametric test that is used to assess whether the dif-
ference between two groups of samples is significant”®. To this end, the samples from both
groups are sorted by magnitude and a rank is assigned to each sample based on this sorting,
where the sample with the largest magnitude gets a rank of 1. If two or more samples have
the same magnitude, the average rank of these samples in the sorted magnitude list is assigned
to these samples (e.g., if three samples have the same magnitude and are located at ranks 2, 3,
and 4 in the sorted magnitude list, all of the three samples are assigned a rank of 3). Then, for
each of the two sample groups that should be compared, the sum of ranks is computed over
all samples belonging to the respective group and the rank sum value of the smaller sample
group is compared to a rank sum score-associated p-value table to assess statistical significance.

The Wilcoxon rank sum test is related to the Student’s #test in that both tests are used to
compare two sample groups and assess whether both groups are significantly different from
each other, but in contrast to the parametric Student’s #-test, which requires the two sample
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groups to be normally distributed and to have approximately equal variance, the Wilcoxon
rank sum test is nonparametric and does not have these requirements”*7?.

3.6 Over-Representation Analysis

Over-representation analysis (ORA) is a type of pathway analysis that can be used for the
functional interpretation of genes associated with a phenotype of interest **. More precisely,
given a collection of gene sets or biological pathways and a list containing genes of interest
(e.g., genes that are associated with a phenotype of interest), ORA can be used to identify
those gene sets or pathways that are significantly over-represented or enriched for the genes
of interest'®. To this end, OR A uses the hypergeometric distribution to calculate a p-value,
which reflects the probability that at least as many genes of interest as observed are contained
in a given gene set or pathway by chance, and can be calculated as follows*'

1—:% (3-35)

where /N is the number of genes in the background distribution (e.g., all genes measured in
an experiment), M is the size of the input list of genes (e.g., genes that are associated with a
phenotype of interest), 7 is the size of the gene set or pathway, and £ is the number of genes
from the input list that are contained in the gene set or pathway (Figure 3.7).
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Figure 3.7: Over-representation analysis (ORA). Given a list containing genes of interest from a background distribution
(e.g., all genes measured in an experiment) and a database of gene sets or pathways, ORA uses the hypergeometric
distribution to identify gene sets or pathways significantly enriched for genes of interest. The Venn diagram represents
the ORA parameters from Equation 3.35. Created with BioRender . com.

This type of test to compute the p-value is also known as right-tailed Fisher’s exact test™*’.

Since this p-value is typically calculated for each of multiple gene sets or pathways separately,
multiple testing correction is commonly applied to the computed p-values.

41


BioRender.com




Related Work

This chapter aims to place this dissertation in context with existing work in the field by high-
lighting selected publications related to different aspects of this dissertation.

4.1 Cancer Survival Prediction

The focus of this dissertation is cancer survival prediction. Cancer survival prediction is a
challenging task that has been addressed in several works. In this section we will introduce a
selection of these works. Most publications in the field of cancer survival prediction address
the task of single-cancer survival prediction, where the aim is to predict the survival of patients
suffering from a specific type of cancer. Relevant examples of single-cancer survival predic-
tion methods will be explained in Subsection 4.1.1. However, there are also some works ad-
dressing pan-cancer survival prediction, where survival models are trained on patients from
multiple cancer types simultaneously. This pan-cancer training allows the models to leverage
knowledge from a larger number of samples from the different cancer types instead of being
limited to the samples available for only one specific cancer type. Two methods representing
this category of cancer survival prediction will be introduced in Subsection 4.1.2.

4.1.1  Single-Cancer Survival Prediction

Random survival forests® are a well-known and widely used survival prediction method.
They are based on the popular random forest (RF) method** and extend it by the ability to
handle right-censored survival data. This is achieved by introducing splitting rules adapted to
survival data when growing trees and modifying the random forest to predict the ensemble
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cumulative hazard function, which is computed by first calculating a cumulative hazard func-
tion for each tree of the survival random forest and then averaging over all trees. The cumula-
tive hazard function, in turn, is estimated by the Nelson—Aalen estimator, which computes
the cumulative proportion of deaths among individuals at risk summed over time. Random
survival forests are commonly applied to predict cancer survival. For instance, Zhangetal. "
compared random survival forests and Cox regression trained on clinical data of spindle cell
carcinoma patients and identified survival prognostic features, while Dereli et al.>* used ran-
dom survival forests to predict cancer survival for different cancer types based on gene expres-
sion data and compared the results to their proposed cancer survival prediction method.

Survival support vector machines **¢ are another established survival prediction method that
can be used for single-cancer survival prediction. They extend classic support vector ma-
chines by regression on censored targets. To incorporate censored samples into the model,
survival support vector machines disregard predicted survival times of censored samples that
are larger than the respective censoring times when computing the loss during model train-

ing.

Dereli et al.’" applied both random survival forests and survival support vector machines
to compare their proposed Path2Surv survival prediction method. To this end, they trained
and evaluated all three methods on gene expression data from 20 different cancer types. Their
proposed cancer survival prediction method Path2Surv is a multiple-kernel learning method
that is based on the aforementioned survival support vector machines. The main novelty of
Path2Surv, which distinguishes it from survival support vector machines, is that it combines
multiple kernels, each representing a molecular pathway or gene set, to predict cancer survival,
thus incorporating prior biological knowledge into the learning process.

Another single-cancer survival prediction approach that incorporates prior knowledge into
the learning process is the reweighted random survival forest**. This prior knowledge comes
in the form of gene interaction information and is incorporated into the model by reweight-
ing genes according to their topological importance. More specifically, reweighted random
survival forests are trained on gene expression data, where topologically important genes re-
ceive high weights, thus biasing the model to select them as predictors with higher probability
than topologically less important genes. According to the authors of reweighted random sur-
vival forests, the underlying assumption behind prioritizing topologically important genes
in this way is that these genes often have important functions in disease development and
show consistent gene expression variations across patients'*. In the original publication in-
troducing reweighted random survival forests **°, the method was applied to two cancer types,
namely glioblastoma multiforme and esophageal squamous cell carcinoma, and topological
importance values were derived from a global pathway network based on the KEGG** path-
way database and a co-expression network based on the training gene expression data, respec-
tively.
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In 2016, Lieta proposed a somewhat different approach to survival prediction, where
they formulated survival prediction as a multitask learning problem and tried to estimate the
patients’ survival times by predicting their survival status at predefined time intervals. This
way, the survival prediction task is reformulated from a regression problem to a combination
of multiple binary classification problems and the corresponding regularized optimization
problem is solved to obtain survival coefficients. In the original publication’"*, the multitask
learning approach was applied to seven different cancer datasets, where each dataset com-
prised gene expression data of patients from one cancer type.

In addition to modifying traditional machine learning methods such as support vector ma-
chines or random forests to handle right-censored survival data, some works have also ap-
proached the problem of single-cancer survival prediction by applying neural networks. Three
prominent examples of neural network-based cancer survival prediction methods are Cox-
nnet, DeepSurv, and Cox-PASNet.

Cox-nnet** is a neural network consisting of two layers—one hidden layer with 143 nodes
and one output layer with a single node—with the output layer implementing Cox regression.
Thus, the output layer computes the relative risk compared to a non-parametric baseline for
each patient. Cox-nnet uses the partial log-likelihood (cf. Chapter 3, Equation 3.26) to com-
pute the loss and incorporates dropout to prevent overfitting. In the original publication **,
the method was applied for survival prediction on gene expression data of ten different cancer

types from the TCGA.

DeepSurv?s is a Cox proportional hazards deep feed-forward neural network, which, similar
to Cox-nnet, implements Cox regression in its output layer and uses the negative partial log-
likelihood with regularization as a loss function. In contrast to Cox-nnet, which has only one
hidden layer, DeepSurv has up to three hidden layers depending on the dataset it is trained
on and uses dropout in combination with L,-regularization to prevent overfitting. Addition-
ally, DeepSurv implements a treatment recommender system, where initially each patient is
assigned to one treatment group and each treatment group is assumed to have an indepen-
dent risk function. Then, after the model is trained, each patient can be passed through the
network once in a treatment group 7 and again in a treatment group 7, and the difference of
log hazards for the different treatment options is computed. If this difference is positive, this
means that treatment option 7 has a higher predicted risk of death than treatment option ;
and treatment 7 is recommended for the patient. Otherwise, if the difference is negative, treat-
ment option 7 is recommended. DeepSurv was evaluated on simulated and real survival and
treatment data”’, where the real survival data stemmed from three different studies: a study
on heart attack survival and a study on survival of seriously ill hospitalized adults, both com-
prising clinical features, and one study on breast cancer survival with both clinical and gene
expression features. However, from the last dataset, only a subset of four gene indicators was
used as gene expression features and the remaining gene expression data was disregarded.
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Cox-PASNet® combines neural networks with a priori biological information. More pre-
cisely, prior knowledge about biological pathways is explicitly incorporated into the architec-
ture of the neural network by introducing sparse layers that represent genes and pathways.
Thus, Cox-PASNet consists of an input gene layer, where each node corresponds to a gene
and only genes belonging to at least one pathway are considered. The second layer of Cox-
PASNet is the pathway layer, where each node represents a specific biological pathway and is
only connected to nodes from the input layer that correspond with genes belonging to that
pathway. The pathway layer is followed by multiple sparse hidden layers, whose output is
combined with the output of a clinical layer that introduces clinical features into the model
and forwarded to a single-node output layer, which—similar to DeepSurv—implements Cox
regression with L,-regularization. The sparsity in the hidden layers is achieved by initializing
them to be fully connected in each training epoch, then using a dropout technique to ran-
domly select and train a small sub-network, and applying sparse coding on the trained sub-
network, where connections with an absolute weight that is below a layer-specific threshold
are removed. To evaluate Cox-PASNet for cancer survival prediction, the method was applied
to gene expression and clinical data from glioblastoma multiforme®, which is an aggressive
type of brain cancer.

4.1.2  Pan-Cancer Survival Prediction

In 2019, Cheerla and Gevaert introduced a multimodal neural network-based model for pan-
cancer survival prediction®. Their method incorporates clinical data, gene and microRNA
expression data, as well as histopathology whole slide images. A separate neural network per
data modality is first used to extract feature vectors of length 512 for each modality. These
modality-specific neural networks are trained using a representation learning framework. In
this representation learning framework, a similarity loss is used to make the feature vectors ex-
tracted from the same patient but different data modalities similar, while driving the feature
vectors corresponding to different patients apart. To predict cancer survival, the feature vec-
tors extracted from the different data modalities are aggregated into a single representation
vector of length s12, which is then fed to a prediction layer implementing Cox regression.
The sum of similarity loss and Cox loss—computed as the negative partial log-likelihood—
is used as an overall loss to train the model. During training, multimodal dropout is ap-
plied to make the model robust to missing data modalities. Multimodal dropout is a vari-
ation of the dropout technique where instead of dropping single neurons, whole feature vec-
tors corresponding to one of the data modalities are randomly dropped with a pre-defined
probability and the weights of the remaining modalities are scaled up accordingly. Cheerla
and Gevaert evaluated their multimodal survival prediction model on single-cancer and pan-
cancer data comprising 20 cancer types from TCGA and different combinations of data
modalities, which always included clinical data. They found microRNA expression to be
the most and gene expression to be the least informative data modality for pan-cancer survival
prediction integrating all modalities. For single-cancer survival prediction, they found difter-
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ent combinations of data modalities to yield the best performance: for eight cancer types,
the combination of all four considered data modalities was the most informative for survival,
while for six cancer types, the combination of clinical data, microRNA, and histopathol-
ogy whole slide images, excluding gene expression data, showed the best results. For all but
one (KIRC) cancer type, they additionally found that pan-cancer training including all data
modalities yielded superior results compared to single-cancer training on the same modalities.

In 2020, Vale-Silva and Rohr proposed MultiSurv'7¢, another multimodal deep learning

method for pan-cancer survival prediction. MultiSurv integrates a pan-cancer dataset con-
sisting of 33 different cancer types and multiple data modalities, including clinical data, his-
topathology microscopy slides, and difterent types of molecular data such as gene expression,
microRNA expression, DNA methylation, and CNV data. Similar to the method proposed
by Cheerla and Gevaert in 2019*, the different data modalities are first individually fed
to modality-specific sub-models, which are used for feature extraction. The outputs of all
sub-models are then fused into a compact representation vector using a multimodal fusion
procedure that is based on a multimodal keyless attention mechanism. Using this attention
mechanism, the model can learn how much to focus on each of the modalities when fus-
ing them into the representation vector. The representation vector is then fed to a six-layer
fully connected neural network with one output node, which implements Cox regression
and is optimized using the average negative partial log-likelihood as loss function, similar to
the single-cancer neural network-based survival prediction methods. Analogously to Cheerla
and Gevaert’s multimodal survival prediction model*?, MultiSurv is also trained with mul-
timodal input data dropout, where for every patient, each data modality is dropped with
a certain probability during training and the values of the fused representation vector are
scaled up to compensate for the missing data modality, allowing the model to handle miss-
ing data modalities. Vale-Silva and Rohr evaluated their proposed MultiSurv method on 33
cancer types from TCGA and different combinations of data modalities and found the com-
bination of clinical, gene expression, and DNA methylation data to yield the best pan-cancer
survival prediction results. Interestingly, and in stark contrast to Cheerla and Gevaert, who
found gene expression to be the least informative modality >, Vale-Silva and Rohr found gene

expression to be the most predictive single data modality, followed by DNA methylation 176

4.2 XGBoost

Our work is subdivided into two main parts: the identification of a pan-cancer survival net-
work with gradient tree boosting and network propagation, and transfer learning for cancer
survival prediction. In the first part, XGBoost®' (cf. Section 3.2.1) is used to predict survival
in individual cancer types and for a pan-cancer dataset from the TCGA database, followed by
network propagation on the pan-cancer prediction results to identify a pan-cancer survival
network. The XGBoost framework?®" has been successfully applied in a number of different
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biomedical prediction tasks. Here we introduce three interesting examples, namely the appli-
cation of XGBoost in the diagnosis of chronic kidney disease "**, epilepsy detection based on
language patterns identified from cerebral activity using XGBoost'7#, and the prediction of
the biological activity of molecular compounds™’.

Chronic kidney disease is characterized by a gradual loss of kidney function, including its abil-
ity to filter the bloodstream and dispose of metabolic waste **'. It affects more than 10% of
the population worldwide and 1 5% of the South African population ***. Ogunleye and Wang
from the University of Johannesburg, South Africa propose the use of XGBoost to diagnose
chronic kidney disease from clinical features "**. The prediction task is formulated as a binary
classification problem, where patients can be classified as either healthy or ill. To solve this
prediction task, Ogunleye and Wang considered different machine learning frameworks, in-
cluding logistic regression, linear discriminant analysis (LDA), classification and regression
tree (CART), support vector machine (SVM), k-nearest neighbor (KNN), and XGBoost,
and found that without hyperparameter tuning, XGBoost showed the best prediction perfor-
mance. Based on these results, they selected XGBoost for the disease diagnosis task and tuned
its hyperparameters using grid search. To evaluate the model for diagnosing chronic kidney
disease, a 10-fold cross-validation scheme was used. In addition to one XGBoost model using
the full set of available features, Ogunleye and Wang trained and evaluated a second XGBoost
model using only a subset of features, which had roughly half the size of the original feature
set. To select the features from the full feature set, they applied three different feature selec-
tion methods, namely recursive feature elimination (RFE), extra tree classifier (ETC), and
univariate selection (US), and retained features selected by at least two of the three methods.
The evaluation of both models showed that the reduced model only using the subset of se-
lected features matched the performance of the full model using the original feature set.

Another application of XGBoost in the biomedical field is the detection of epilepsy from
language patterns based on cerebral activity. In 2017, Torlay et al. proposed the applica-
tion of an XGBoost model on functional MRI (fMRI) data to identify atypical language
patterns and classify subjects as healthy or patients with epilepsy '7*. The symptoms of focal
epilepsy are caused by the lesion or dysfunction of a specific cerebral region, which is often
located in the vicinity of language networks'7#. Additionally, brain networks involved in
cognitive functions such as language show reorganization or plasticity in patients with focal
epilepsy, leading to atypical language patterns, which can be mapped with fMRI*7#. Tor-
lay et al. leveraged this characteristic and applied an XGBoost binary classification model to
fMRI mappings of language networks to distinguish healthy individuals, who show typical
language patterns, from epilepsy patients, who show atypical language patterns'7*. The XG-
Boost model was trained and evaluated using a random subsampling scheme, where in each
of 12 replications, patients were randomly split into training and test sets and an inner s-fold
cross-validation for feature selection was performed on the training data to select the most
predictive combination of 20 features derived from fMRI activation signal.
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XGBoost has also been successfully applied in the field of drug discovery. This application
was proposed by Mustapha and Saeed, who used XGBoost for bioactive molecule predic-
tion'" and showed that the method could outperform other machine learning methods like
random forest, support vector machines, radial basis function neural network, and Naive
Bayes on the majority of evaluated datasets. They formulated the prediction of the biological
activity of molecular compounds as a binary classification problem, where compounds were
classified as either active or inactive. The prediction was based on quantitative descriptors
of the compound’s molecular structure, called molecular fingerprints, and was evaluated on
seven datasets that had previously been used to validate molecular fingerprint-based molecule
classification and activity prediction, showing very good validation accuracy of up to 98%.

4.3 Transfer Learning

In the second main part of this work, we seek to improve cancer survival prediction by the
use of transfer learning. Transfer learning is based on the idea that knowledge from one do-
main with abundant data can be transferred to a different, but related domain to improve
performance "' (cf. Section 3.2.3). Here, we introduce three exemplary works that use the
concept of transfer learning, either to build a general machine learning framework, such as in-
corporating transfer learning into the XGBoost algorithm *“°, or to solve a specific prediction
task, such as predicting drug sensitivity for anti-cancer compounds**® or predicting cancer
survival based on gene expression data”®.

TransBoost '%°

is an extension of the XGBoost framework’' implementing transfer learning
for binary classification tasks with XGBoost boosting trees. For transfer learning, it combines
a parallel tree structure with an instance weighting strategy. More precisely, TransBoost con-
sists of two parallel XGBoost classification models, which are trained conjointly. They are
constrained to share the same tree structure and split values, but can have different node
weights. One of the two models, termed main boosting tree, is optimized on the combina-
tion of target domain and weighted source domain instances, while the other model, called
ancillary boosting tree, is optimized on source domain instances only. To this end, the main
model, which is also the final model that can be used to make predictions on the target do-
main, is trained using the sum of the loss on the target domain instances, a weighted loss on
the re-weighted source domain instances, and a regularization term as the objective. The an-
cillary model, on the other hand, is trained to optimize a regularized loss on the unweighted
source domain instances. The weights used for re-weighting the source domain instances in
the main model are defined as the ratio between the joint distribution of the target domain
and the joint distribution of the source domain and can be computed for each source domain
instance at each training iteration based on the predictions of the main model and the ancil-
lary model for the respective instance. Source domain instances that resemble the distribution
of the target domain will receive high weights, while instances that differ more from the tar-
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get domain distribution receive low weights. This way, the distribution discrepancy between
source domain and target domain is minimized and knowledge from the source domain can
be eftectively transferred to improve model performance on the target domain. Thus, Trans-
Boost implements an instance-based transfer learning approach (cf. Section 3.2.3).

Transfer learning has been successfully applied to several biomedical tasks, including drug
sensitivity prediction and cancer survival prediction. Recently, Prasse et al. used a parameter-
based (cf. Section 3.2.3) transfer learning approach for drug sensitivity prediction, where
they first pre-trained a neural network on in vitro gene expression data and then fine-tuned
the model on patient-derived gene expression data™*?. Large-scale drug sensitivity screening
data, such as that provided by the Genomics of Drug Sensitivity in Cancer Database (GDSC),
are typically generated by exposing cultured cancer cell lines to a variety of drug candidates **°.
However, these cancer cell lines have often been cultured for years or even decades under selec-
tive pressure in culture conditions and without interaction with other cell types, so they may
no longer represent the molecular characteristics of the primary tumor well *°. On the other
hand, there are patient-derived model systems for assessing drug sensitivity, such as ex vivo
cell cultures, patient-derived xenografts, or patient-derived organoids, which more closely re-
semble clinical tumors than cultured cell lines **°. However, drug sensitivity screening is more
complex in these model systems, resulting in a much lower availability of drug sensitivity data
compared to cultured cell lines, which is not sufficient for training high-capacity machine
learning models**. To address this problem, Prasse et al. > proposed a transfer learning ap-
proach, where first a neural network model was trained on gene expression data from the
GDSC database to predict drug sensitivity, and then the pre-trained model was fine-tuned
on a patient-derived drug sensitivity dataset. Three different neural network models were in-
vestigated for pre-training and fine-tuning: PaccMann, a state-of-the-art drug sensitivity pre-
diction method, which uses prior knowledge of drug targets and network propagation on a
PPI network for feature selection on the gene expression data and attention-based network
modules to encode gene expression and drug information, tDNN, which is based on approx-
imately 1,900 biologically relevant genes and uses two separate fully connected sub-networks
for processing gene expression and drug information, respectively, before concatenating the
output of both sub-networks and passing it through some additional fully connected layers,
and a convolutional neural network, consisting of a single-layer gene expression sub-network
and a convolutional drug sub-network, respectively, whose outputs are then concatenated
and passed through some additional fully connected layers with batch normalization. The
transfer learning approach was evaluated on four different target datasets used for fine-tuning,
including cultured cell lines from the Cancer Cell Line Encyclopedia (CCLE), ex vivo cell
lines from the Beat Acute Myeloid Leukemia program, a lung cancer xenograft dataset, and
the Pancreatic Cancer Patient-derived Organoid dataset. For each model and each target
dataset, two different settings were evaluated: the precision oncology setting, where the aim
was to predict drug sensitivity of known drugs for new, previously unseen tumor cases, and
the drug development setting, where drug sensitivity of known tumor cases to a new drug
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was predicted. Additionally, for each target dataset, it was investigated how the number of
training samples would impact model performance by fine-tuning the pre-trained model on
data subsets of different sizes. In the precision oncology setting, pre-training consistently im-
proved prediction performance when up to 1,000 training samples from the target dataset
were used for fine-tuning, while in most cases there was no significant improvement when
more than 1,000 training samples were used. In the drug development setting, however, the
benefit of pre-training was less dependent on the number of training samples from the target
domain and improvements from pre-training were observed across the full range of sample
sizes.

VAECox? is another parameter-based (cf. Section 3.2.3) transfer learning approach that is
based on a neural network. It was introduced in 2020 by Kim et al. and uses transfer learn-
ing to transfer knowledge from pan-cancer RNA-seq gene expression data to predict survival
in a specific cancer type. The training of VAECox consists of two steps: In the first step, a
variational autoencoder (VAE) is trained on a pan-cancer gene expression dataset and in the
second step, the trained weights from the encoder part of the VAE are transferred to a sur-
vival prediction model and fine-tuned to predict cancer survival for a single cancer type. The
encoder consists of an input layer, one hidden layer, and a latent layer comprising a mean
encoding component and a variance encoding component. Once trained on the pan-cancer
pre-training dataset, the input layer, hidden layer, and mean encoding layer are combined
with an additional hidden layer and a Cox-PH output layer for survival prediction, while the
variance encoding layer is not transferred. The complete model is then trained on a single
cancer type, using the negative partial log-likelihood as a loss function and fine-tuning the
weights of the encoder layers. In the original publication, VAECox was evaluated on 10 dif-
ferent TCGA cancer types, while the gene expression VAE was pre-trained on a pan-cancer
dataset comprising 20 TCGA cancer types. In addition to evaluating the survival prediction
performance on the 10 cancer types, Kim et al. analyzed the hidden nodes of the VAECox
model fine-tuned for breast cancer (BRCA) to find genes that were important for survival
prediction. To this end, they extracted the hidden nodes with the highest variance from the
second and third hidden layers of the model and computed the Pearson correlation between
the extracted nodes and the expression of each gene across all breast cancer patients, deeming
the genes with a high absolute correlation with the extracted hidden nodes as important.
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Identification of a Pan-Cancer Survival
Network with Gradient Tree Boosting and
Network Propagation

This chapter introduces our approach for the identification of a pan-cancer survival network
with gradient tree boosting and network propagation”.

5.1 Motivation

The prediction of cancer survival is an important computational task in biomedical research
and can be used to quantify patient risks and estimate prognoses. In fact, survival statistics
are the most commonly used measure to estimate the prognosis of cancer patients'*#, which
has important implications for the choice of treatment. For instance, patients with a good
prognosis might receive more aggressive therapies with the goal of remission, thereby accept-
ing the occurrence of side effects, while patients with a poor prognosis might decide against
aggressive therapies and favor palliative treatment to improve life quality instead*”. Early
methods for predicting survival include the Cox proportional hazards model*, which can
account for censored samples that often occur in survival data (cf. Section 3.3.2). However,
the Cox proportional hazards model can only account for linear effects of covariates on the

* A major part of the work and results described in this chapter were published in'7° and **. This concerns
in particular the single-cohort and pan-cancer survival prediction methods trained on gene expression data and
the identification and analysis of the pan-cancer survival network. When describing this published work, we
will refrain from repeatedly citing the aforementioned publications for the sake of readability.
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log hazard function”s**%. Nonlinear effects and interactions between covariates can only
be considered if terms describing them are explicitly integrated into the model '**. To over-
come this limitation, we used the XGBoost machine learning framework in combination
with the negative partial log-likelihood from the Cox proportional hazards model as a loss
function to predict cancer survival. XGBoost*' is a popular gradient tree boosting method
(cf. Section 3.2.1) that has demonstrated good performance in various types of applications,
including biomedical prediction tasks such as diagnosing chronic kidney disease "** and iden-
tifying patients with epilepsy based on cerebral activity '7# (cf. Section 4.2). To the best of our
knowledge, however, we were the first to apply XGBoost with negative partial log-likelihood
to pan-cancer survival prediction based on gene expression data.

Modern machine learning methods like XGBoost or neural networks often show much bet-
ter prediction performance than traditional machine learning methods like linear models

2,115

or decision trees™'*>. However, this improved prediction performance can often only be
achieved by increased model complexity, which makes the model’s decisions harder to under-
stand and the predictions more difficult to interpret 5. While several of the existing survival
prediction methods introduced in Chapter 4 have addressed the issue of model interpretabil-
ity either by analyzing the trained model with respect to important features or by directly
integrating prior knowledge into the model, there are some shortcomings. For example, the
authors of VAECox”® (cf. Section 4.3) investigated their trained neural network by comput-
ing the correlation between hidden nodes and gene expression features, considering genes
with high correlation to highly variable hidden nodes as important. However, hidden nodes
can reflect more or less complex interactions between multiple features, where sometimes
multiple hidden nodes together represent the same interaction or different interactions in-
volve the same feature. In these cases, the correlation between a feature and any single hidden
node might be rather moderate, even if this feature is highly important for the output of
the neural network and contributes to several hidden nodes. On the other hand, another
feature might be less important for the prediction of the neural network, but highly corre-
lated to a single hidden node. In the model interpretation strategy applied to VAECox, the
first feature would be considered less important than the second feature due to its smaller
correlation with any single hidden node, even though it has a larger effect on the model’s
prediction. Instead of analyzing the trained model post hoc, other cancer survival predic-
tion methods like Path2Surv’”, reweighted random survival forests**°, or Cox-PASNet® (cf.
Section 4.1) directly incorporate prior biological knowledge to enable interpretation. While
models following this approach are inherently more easily interpretable because their archi-
tecture directly reflects biological concepts such as pathways, this architecture might also lead
to a loss of potentially valuable information: On the one hand, the model typically only con-
tains features for which prior knowledge, e.g. in the form of pathway membership, is available
and will completely disregard potentially informative features that are not contained in the
respective dataset used as the source of prior knowledge. For instance, the KEGG pathway
database used by reweighted random survival forest and Cox-PASNet contains only ~8,000
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unique genes and the Hallmark gene sets used by PathaSurv contain ~4,000 unique genes,
which is only a fraction of the total number of genes for which gene expression data is avail-
able in databases like TCGA. On the other hand, not only the number of features used by the
model, but also the modeled interactions between features can be limited by integrating prior
knowledge into the model architecture. For example, Path2Surv’s®" architecture is based on
multiple kernels, each representing a separate pathway or gene set, preventing the model from
learning interactions between genes that do not share a common pathway or gene set, even if
they are actually interacting through another type of interaction not reflected in the pathway
membership information, such as a protein-protein interaction.

To show the biological plausibility of our cancer survival prediction method without a priori
restricting the features to those contained in, for example, a specific pathway database, we
combined the XGBoost model with post hoc network propagation on a comprehensive PPI
network. More specifically, after training for cancer survival prediction, we extracted feature
importance scores produced by the XGBoost model and used them as input to the NetCore "
network propagation method. In this way, we hoped to identify a subnetwork of the PPI
network with a high association with cancer survival and to gain a better understanding of
the underlying biological mechanisms.

5.2 Methods

In this section, we describe the methodology used to predict cancer survival and to identify
a pan-cancer survival network using network propagation based on the important features
identified during survival prediction.

s.2.1 Data and Preprocessing

The survival prediction and network identification described in this chapter are based on
molecular and clinical data from the TCGA consortium (https://www.cancer.gov/tcga).
TCGA comprises molecular and clinical data from more than 10,000 cancer patients and for
33 different types of cancer, which originate from a wide variety of organ systems'**. The
data used in this work was retrieved from the Genomic Data Commons (GDC) data por-
tal (https://portal.gdc.cancer.gov/). For the single-cohort and pan-cancer survival
prediction and the identification of the pan-cancer survival network, RNA-seq gene expres-
sion data normalized as fragments per kilobase of transcript per million fragments mapped
(FPKM) and corresponding clinical data, including survival or censoring time for each pa-
tient, was used (see Supplementary Table B.1 for more details on the used TCGA cancer
cohorts). We decided to use FPKM-normalized gene expression data to ensure comparabil-
ity between our survival prediction method, random survival forest, survival support vec-
tor machine, and the Path2Surv multiple-kernel learning (MKL) method, which is based on
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FPKM-normalized gene expression data. For each cancer type, all HTSeq-FPKM files and
corresponding clinical files were downloaded from the GDC data portal. For the cohorts
TCGA-COAD, TCGA-LAML, TCGA-LUAD, and TCGA-LUSC, all data was obtained
from GDC datarelease v22.0 (released January 16, 2020) and for the 29 remaining cohorts, all
files were retrieved from GDC data release v24.0 (released May 7, 2020). For further analyses,
which included evaluating the integration of additional data modalities like mutation, copy
number variation, and protein expression data and the inclusion of information on tumor
status into the survival prediction, we used gene expression data normalized as transcripts
per million (TPM) instead of FPKM-normalized gene expression data. In TPM-normalized
expression data, the sum of gene expression values over all genes is equal in each sample or pa-
tient and thus patients should—at least in theory—be more comparable in TPM-normalized
data. Since the GDC database underwent a major update in 2022, in which gene expression
files processed by HTSeq were replaced with files processed by STAR, STAR-TPM gene ex-
pression and corresponding clinical data from the GDC data release v32.0 (released March
29, 2022, downloaded with TCGAbiolinks R package*>'**'5?) were used for further anal-
yses. For the evaluation of mutation, copy number variation, and protein expression data
as additional data modalities for cancer survival prediction, all corresponding data for the
analyzed cancer types was downloaded with the TCGAbiolinks R package from GDC data
release v.32.0, analogously to the STAR-TPM gene expression data. Mutation data consisted
of simple somatic nucleotide variations such as point mutations, missense mutations, non-
sense mutations, and insertions and deletions (indels) and was downloaded from GDC as
mutation annotation format (MAF) files containing masked somatic mutations, which are
a filtered subset of somatic mutations with potential germline and lower quality variants re-
moved (cf. https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/). Copy
number variation data contained integer gene level copy numbers computed as the weighted
median of copy number values of all copy number segments overlapping with a gene (cf.
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/CNV_Pipeline/)
and protein expression data was measured by RPPA (cf. Section 2.2.3 and https://docs.g
dc.cancer.gov/Data/Bioinformatics_Pipelines/RPPA_intro/).

For training the survival prediction models in each of the evaluated setups, we only used
TCGA cohorts with atleast 20 uncensored patients, leaving 25 (ACC, BLCA, BRCA, CESC,
COAD, ESCA, GBM, HNSC, KIRC, KIRP, LAML, LGG, LIHC, LUAD, LUSC, MESO,
OV, PAAD, READ, SARC, STAD, SKCM, UCEC, UCS, and UVM) of the 33 TCGA
cancer cohorts. We decided to exclude cohorts with less than 20 uncensored patients from
model training since splitting these cohorts into 80% training and 20% test data would result
in evaluating model performance on test data with no more than four uncensored patients,
limiting the meaningfulness of the evaluation. The eight TCGA cohorts with less than 20
uncensored patients (CHOL, DLBC, KICH, PCPG, PRAD, TGCT, THCA, and THYM)
were not used for survival model training, but only for evaluating the transferability of the
pan-cancer XGBoost survival prediction model to new cancer types not seen during training.
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For all analyses, we only used primary tumor and primary blood-derived cancer samples and
excluded samples derived from normal tissues and metastatic tumors since these sample types
are expected to have different molecular characteristics compared to primary cancer samples.
In the case of multiple tumor samples from the same patient, we selected the sample with
the lexicographically highest sample ID, assuming that this sample ID corresponded to the
most recent sample and reasoning that there might have been reasons to re-sample from the
same patient, making the most recent sample the most reliable. Furthermore, we excluded
all patients for whom the molecular data modality of interest (e.g., gene expression) was not
measured or for whom key clinical data like vital status, age, gender, or time to either death
or censoring was missing or inconsistent. For the HT'Seq FPKM-normalized gene expression
data used in the first part of this work, this resulted in a total of 8,024 patients from the 25
different cancer cohorts that were used for model training and an additional 1,571 patients
from the eight remaining cohorts that were not used for model training due to small numbers
of uncensored patients. The gene expression data comprised 60,483 RNA molecules mea-
sured in TCGA for all cohorts—including protein-coding genes, processed pseudogenes*,
and IncRNAs ', among others. From here on we will use the term ‘gene’ for all of these
molecule types and not only for protein-coding genes. In the GDC update from 2022 (GDC
data release v32.0), patient and gene numbers for the STAR TPM-normalized gene expres-
sion data increased slightly to 8,045 patients and 60,616 genes from the 25 cancer cohorts.
Mutation data from GDC data release v32.0 comprised 17,975 genes mutated in a total of
7,975 patients. For copy number variation (CNV) data, in addition to the filtering steps de-
scribed above, we removed CNVs located on the Y chromosome prior to survival prediction
training, resulting in CNVs affecting 59,754 genes in 8,955 patients. Lastly, for protein ex-
pression data, TCGA data comprised 487 proteins measured in 6,256 patients from 24 of
the 25 TCGA cohorts (there was no protein expression data available for TCGA-LAML),
making protein expression the sparsest of the investigated data modalities.

s.2.2  Single-Cohort and Pan-Cancer Survival Prediction with XGBoost

We applied the XGBoost gradient tree boosting framework*" to predict cancer survival in the
form of Cox proportional hazards risk scores (cf. Section 3.3.2) from gene expression data in
asingle-cohort setting, where a separate model was trained for each of the 25 analyzed TCGA
cancer cohorts, and in a pan-cancer setting, where the XGBoost model was trained on gene
expression data from all 25 TCGA cancer cohorts jointly '7°. To this end, we used the Python
XGBoost package (https://xgboost.readthedocs.io) with the learning objective set to
Cox proportional hazards regression with negative partial log-likelihood (cf. Section 3.3.2).
In both settings—single-cohort and pan-cancer—we repeated model training and evaluation
100 times with different splits of patients into training and test data to ensure a robust and
reliable assessment of prediction performance in the respective setting. In each of these 100
replications, we randomly split the patients and their corresponding gene expression and sur-
vival data into 80% training and 20% test data using a stratified splitting strategy to ensure
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that the percentage of censored and uncensored patients in the training and test data was ap-
proximately the same in all replications. In the pan-cancer setting, we additionally ensured
that the cohort composition of training and test data remained the same across replications
by assigning 80% of patients from each cohort to the training data and 20% to the test data
in each replication.

Then, in each replication, a survival prediction model was constructed and trained on the
training data and evaluated on the test data. The training procedure (visualized in Figure
5.1) comprised three main steps: feature selection, hyperparameter tuning, and training of
the XGBoost model.

Genes

Gene expression data .
0

T LI LT R ST AT

ACC BLCA BRCA CESC COAD ESCA GBM HNSC KIRC KIRP LAML LGG LIHC LUAD LUSCMESO OV PAAD READ SARC SKCM STAD UCEC UCS UVM

|
1 [Cirain [ "train [train | test |— Remove —  — \
Feature selection 2 N IRETSIN et TR wih 0 _’T;a#aﬁo — x%ggg;t \feca?t',l]:sl::pao\far:g:s_. sz':tﬁtréipw??ho
* IR T IGINEI — s5scito — mogse. —imporinces ~ “sshiodels  hrestoverage
4 e
|
+ [Cr@in [ train [ train | test |— Train 500 — AN Select
Hyperparameter tuning 2 [[irain T train ] test ] train | ch%%?? — e — cﬂﬁiiﬂif.?{n
» B T o4, — R~ e
4 parame!ers_, C-Index
Survival Prediction XGBoost

Geneg_ -
o W lSurvwaI
5 _— éﬁ % % % risk scores

Figure 5.1: Method outline of the XGBoost training procedure. The XGBoost training procedure is based on a patient X
gene expression matrix comprising patients from either one cancer cohort (single-cohort approach) or multiple cancer co-
horts (pan-cancer approach). From this gene expression matrix, a subset of 500 genes is selected in a feature selection
step that includes a 4-fold cross-validation on the training data, in which small XGBoost models are trained on the com-
plete set of features and the features with the highest average feature importance scores across models are selected.
Next, another 4-fold cross-validation on the training data with reduced features is performed to tune the model hyper-
parameters and finally, a survival prediction model is trained on the reduced gene expression matrix of 500 genes and
with the optimized model hyperparameters. This figure was published in7°.

In the feature selection step, an embedded feature selection approach (cf. Section 3.2.4) was
implemented to reduce the number of gene expression features used to train the XGBoost
survival prediction model in each training replication from 60,483 genes measured in TCGA
to 500 genes that are informative for survival. Embedded feature selection uses the same ma-
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chine learning method as chosen to solve the prediction task (XGBoost in this case) to evalu-
ate and select features from a set of candidate features based on built-in feature importance
measures ' *°. To identify genes that are informative for survival more generally and not only
for a specific training set composition, we integrated a stratified 4-fold cross-validation on the
training data into the feature selection step. To this end, the training data was first split into
four subsets or folds in a stratified manner such that the percentages of censored and uncen-
sored patients were approximately equal in all folds. In each of the four cross-validation steps,
three folds were used for training, while one fold was held out. Then, genes with zero mean
absolute deviation (MAD) in the three training folds were removed because these genes are
not informative for cancer survival. Next, 20 XGBoost survival prediction models with lim-
ited model size (maximum number of trees between 5 and 20, maximum tree depth between
1 and 3) and different sets of model hyperparameters were trained on the three training folds
and feature importance was measured in terms of ‘gain’, which is the average improvement
the respective feature adds to the evaluation metric across all decision tree splits in which it
is used (cf. https://xgboost.readthedocs.io/en/latest/python/python_api.html)
and hence measures the relative importance of this feature for the model’s prediction. We
limited model size in order to reduce runtime, which increases proportionally to the num-
ber of features and model size, to avoid overfitting on the large number of features of the
training data, and to force each model to select only the most informative genes as features.
Furthermore, we trained models with 20 different sets of randomly selected hyperparameter
configurations in each cross-validation step to identify genes whose feature importance does
not depend on the yet untuned model hyperparameters, but which have high feature impor-
tance under different sets of hyperparameters. Finally, we calculated a feature importance
score for each candidate gene by averaging the computed feature importance scores across all
20 models per cross-validation step and across all four cross-validation steps and selected the
top soo genes with the highest average feature importance as features for training the final
survival prediction model.

In the subsequent hyperparameter tuning step, the goal was to find XGBoost model hyperpa-
rameters—including the maximum tree depth, number of trees, and regularization parame-
ters—that optimized the survival prediction performance. To this end, we first randomly gen-
erated soo combinations of hyperparameters and introduced another 4-fold cross-validation
scheme—analogous to the cross-validation in the feature selection step—on the training data
to evaluate each hyperparameter combination. In each step of the 4-fold cross-validation, we
trained one XGBoost model per hyperparameter combination on the three training folds us-
ing the soo genes selected in the feature selection step as input features and evaluated the
survival prediction performance of the model on the remaining fold in terms of concordance
index (C-Index, cf. Section 3.3.3). To select the best hyperparameter combination, we then
averaged the C-Indices obtained for each hyperparameter combination across the four cross-
validation steps and selected the hyperparameter combination that showed the best average
concordance index.
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In the last step of the training procedure, the whole training data (80% of patients) was used
to train a final XGBoost survival prediction model with the hyperparameters identified in
the hyperparameter tuning step and based only on the soo features selected in the feature
selection step. The fully trained survival prediction model was evaluated on the held-out
test data (20% of patients) by computing the C-Index on the test patients from each TCGA
cancer cohort.

Thus, across the 100 model replications, we trained 100 independent models with training-
data-specific sets of gene features and hyperparameters and obtained 100 C-Indices for each
of the 25 analyzed TCGA cancer cohorts.

5.2.3 Comparison of the XGBoost Survival Prediction Method with
Other Methods

In order to evaluate the survival prediction performance of our XGBoost-based method not
only inisolation in terms of the C-Index, butalso in comparison to other established methods,
we compared the single-cohort XGBoost method against random survival forest*, survival
support vector machine®”'5¢, and the MKL method Path2Surv’'.

Random Survival Forest

Random survival forest* is a widely used random forest (RF) method specifically designed
to handle right-censored survival data (cf. Section 4.1.1). RFs are ensemble tree methods,
where a model consists of multiple decision trees and a prediction is generated by averaging
over the trees®®. Each tree is built based on a randomly drawn bootstrap sample of the data
and for each tree node, a randomly drawn subset of features or covariates is selected as candi-
date variables to split samples on. To be able to handle right-censored survival data, random
survival forest incorporates two key mechanisms into the RF method**: Firstly, when grow-
ing a tree, in each node, the covariate that maximizes the survival difference between the child
nodes is selected as split variable, and tree growth is constrained in that each terminal node
must contain at least dy > 0 unique deaths from the bootstrap sample of the data on which
the tree is grown. Secondly, random survival forest calculates an ensemble cumulative hazard
function (CHF) as the prediction output. The ensemble CHF is the average of the CHFs of
all terminal nodes 7, where the CHF of a terminal node » € 7T can be estimated by the
Nelson-Aalen estimator. The Nelson-Aalen estimator represents the cumulative rate of ex-
pected deaths up to a time point #and for a terminal node » € T takes the form**:

]:[;](t) = Z @ (5.1)

Y
1 p<t L
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with / indexing time points #;, that correspond to terminal node / and are smaller than or
equal to the reference time point ¢, d; ;, being the number of deaths at 7, and Y}, being the
number of individuals at risk at ;..

For the comparison between our XGBoost-based survival prediction method and random
survival forest, we used the R implementation from Dereli et al.’", which trains and eval-
uates the random survival forest and is based on the randomForestSRC package. Using this
implementation, we evaluated the performance of random survival forests in 100 model repli-
cations for each TCGA cancer cohort. In each replication, the data of the respective cancer
cohort (comprising all 60,483 genes measured in TCGA) was loga-transformed, genes with
astandard deviation of zero were removed and the data was randomly split into 80% training
and 20% test data. Next, the training data was normalized to zero mean and unit standard
deviation, with the test data being normalized accordingly and the number of trees was tuned
in a 4-fold cross-validation on the training data (range between soo and 2,500 trees), while
all other hyperparameters were kept as default. Then, the final survival prediction model was
trained with the optimal number of trees and evaluated on the held-out test data using the
C-Index.

Survival Support Vector Machine

Survival support vector machine '*° is a survival prediction method based on support vector
machines (SVMs). SVMs are linear models that use mathematical kernel functions mapping
input data to a higher-dimensional feature space to model not only linear, but also nonlinear
relationships between input features and a target variable by encapsulating any nonlinearities
in the kernel functions and thus transforming the nonlinear prediction problem to a linear
problem”. In support vector regression, the SVM tries to learn the relationship between
input features x € R? and a continuous target variable y € R?7™*:

fle) =w'g(x) + b, (52)

where f{xv) is the function that best fits the training data, k(x,%’) = ¢(x) "¢ («’) is a kernel
function with ¢ : R? — R”, w € R” is a weight vector, and 4 € R is a bias. To find the
optimal w and &, the following optimization problem is solved 7*:

min >l + Y+ (5.3
subject to l

yi— (w'glx) +b) <e+§ (5-4)

(w'p(x) +6) =y e+ & (5:5)

E.EF>0, i=1,...n (5.6)
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with 7 being the number of training samples, £ and & being so-called slack variables for
each data point 7 = 1, ..., # that allow for model constraints to be violated and thus make it
possible to solve otherwise unsolvable optimization problems, C > 0 being a regularization
parameter that determines the trade-off between the minimization of the training error and
the control for model complexity, and ¢ > 0 being a margin parameter that defines a thresh-
old below which the prediction error is considered insignificant and thus influences model
complexity.

To enable survival prediction with SVMs, this optimization problem can be modified to be
able to handle censored patients 15651 To this end, a censoring indicator d; is introduced into
Equation (5.3) of the optimization problem, with 9; = 1 indicating that patient 7 is censored
and J; = 0 meaning the patient is uncensored. This way, the model does not consider pre-
dicted survival times that are larger than the censoring times as errors for censored patients
and the optimization problem becomes:

min Sllwl* + €Y (6 + (1= 3)87) (57)

=1

subject to
yi— (W' plw) +b) <e+§ (5-8)
(ngb(xl') + b) — )< e+ fz'* (5-9)
EE >0, i=1,..,n (5.10)

For comparing our XGBoost-based survival prediction method with survival support vector
machines, we adapted the R implementation from Dereli et al.>*. Since the CPLEX opti-
mization algorithm% used in the original implementation is not openly accessible, we used
the R Optimization Infrastructure (ROI)*7" instead to solve the survival SVM optimization
problem. According to the implementation of Dereli et al., we evaluated the performance of
survival SVM in 100 model replications for each TCGA cancer cohort. In each replication,
the data of the respective cancer cohort (comprising all 60,483 genes measured in TCGA) was
loga-transformed, genes with a standard deviation of zero were removed and the data was ran-
domly split into 80% training and 20% test data’'. Then, the training data was normalized
to zero mean and unit standard deviation, and the test data was normalized accordingly. The
regularization parameter C was tuned in a 4-fold cross-validation on the training data (range
between 1 x 10% and 1 x 10°), £ was kept at 0 and the Gaussian kernel defined as

u—vﬁu—xv

202

kg(x,x") = exp (— (s.11)

with kernel width parameter o set to the mean of pairwise Euclidean distances between train-
ing samples was used as kernel function. At the end of each replication, the final survival
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prediction model was trained with the optimal C and evaluated on the test data using the
C-Index.

Path2Surv

Dereli etal.’" developed the Path2Surv MKL method for survival prediction, which is based
on survival support vector machines. However, instead of using a single kernel function
like in survival support vector machines, Path2Surv combines multiple kernels in a weighted
sum to learn the relationship between input features and the survival outcome. Each ker-
nel k,(x,%'),p = 1, ..., P (with P being the total number of kernels) represents a molecular
pathway or gene set and comprises all genes constituting that pathway or gene set as features.
Path2Surv tries to learn a non-negative kernel weight 7 , for each of these kernels, where the
sum of all kernel weights is required to sum up to one and kernels can have a weight of zero
to exclude pathways or gene sets that are not informative for survival from the prediction.
This way, Path2Surv uses fewer gene expression features for survival prediction than random
survival forest or survival support vector machine and also offers interpretability in terms of
which pathways or gene sets are most relevant for survival prediction. Learning the kernel
weights 7 € R” is considered as an outer optimization problem, while learning the weights
and biases for each kernel as in the survival support vector machine formulation in Equations
(5.7)—(s.10) is regarded as an inner optimization problem /. Accordingly, during model train-
ing, the following outer optimization problem is solved:

min /(7) (5.12)

7
subject to

P

> 7,=1 (5-13)
=1
7,20 p=1..P, (5-14)

, e . P
where /() represents the inner optimization problem with ) |

1] p/e],(x, «') replacing the
kernel function £(x, x').

In the publication of Path2Surv’', the authors report results on two different gene sets and
pathway databases, namely the Hallmark gene sets***> and the Pathway Interaction Database
(PID)*#. We compared both versions of the Path2Surv method with our XGBoost-based
survival prediction method. The comparison is analogous to comparing our XGBoost-based
method with random survival forest and survival support vector machine. As for survival
SVM, we replaced the CPLEX optimization algorithm % in the original implementation of
Path2Surv by ROI'”* and evaluated the performance of Path2Surv in roo model replications
for each TCGA cancer cohort. In each replication, the data of the respective cancer cohort
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(comprising all 60,483 genes measured in TCGA) was logz-transformed, genes with a stan-
dard deviation of zero were removed and the data was randomly split into 80% training and
20% test data’'. Then, the training data was normalized to zero mean and unit standard de-
viation, and the test data was normalized accordingly. The regularization parameter C was
tuned in a 4-fold cross-validation on the training data (range between 1 x 10% and 1 x 10°),
¢ was kept at 0 and the Gaussian kernel defined in Equation (5.11) with kernel width param-
eter o set to the mean of pairwise Euclidean distances between training samples was used as
kernel function for each gene set or pathway. At the end of each replication, the final sur-
vival prediction model was trained with the optimal C and evaluated on the test data using

the C-Index.

s.2.4 Computation of Gene Weights for the Analysis of Important Fea-
tures

To identify and analyze genes that are informative for cancer prognosis, we computed gene
weights, which summarize the importance of genes for cancer survival prediction with XG-
Boost across model replications. To this end, feature importance scores, which reflect the rel-
ative importance of a gene for the prediction of cancer survival, were extracted in each repli-
cation of single-cohort or pan-cancer model training from the respective XGBoost model.
These feature importance scores are directly provided by the XGBoost implementation and
measure the ‘gain’ of each feature used by the trained XGBoost model, which is the aver-
age improvement the feature adds to the evaluation metric across all decision tree splits in
which it is used. Using these gene-specific feature importance scores, we then computed a
gene weight for each gene used in at least one model replication as the sum of feature impor-
tance scores over all oo model replications, where a feature importance of zero is assumed for
model replications in which the respective gene was not used in the model to predict survival.

5.2.5 Entropy Measurement for Cancer Type Specificity Analysis of
Genes

In information theory, entropy measures the uncertainty or information content of arandom
variable *. It is often also referred to as Shannon entropy after Claude E. Shannon, who in
1948 introduced the following definition of entropy "5*:

H(X) = - Z P(x;) log, (P(x;)), (s-15)

where P(x;) is the probability of outcome x; of a random variable X with possible outcomes
X1, ..., %, and the logarithm has basis 2 for information measured in bits. That is, the entropy
is maximal when all outcomes occur with the same probability, while it is minimal when only
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one of the outcomes occurs with certainty and all other possible outcomes have a probability
of zero.

We have adopted the concept of entropy to evaluate how well genes identified as important
features in our XGBoost approach generalize as features for predicting survival in different
cancer types. In the XGBoost approach, we calculated gene weights by summing over feature
importance scores from the 100 model replications for every gene. In the single-cohort XG-
Boost approach, this was done for each of the 25 TCGA cancer cohorts separately, such that
each gene received one weight per cancer cohort, while in the pan-cancer approach, where
all cancer types were combined for model training, only one weight per gene was computed.
To compute the entropy of genes across cancer types, we constructed a gene weight matrix
containing gene weights computed from the single-cohort approach for all genes and all 25
cancer cohorts and converted this gene weight matrix into a probability matrix by dividing
each weight value by the sum of scores for this gene over all 25 cohorts. Then, we computed
the entropy of each gene across cohorts according to Equation s.15 by using the computed
probability score. Thus, genes identified as important features for survival prediction with
similar gene weights across all 25 cancer cohorts would have high entropy, while genes that
were only predictive for cancer survival in one of the 25 cohorts would have a minimal en-
tropy of zero. Therefore, the entropy of a gene with respect to the single-cohort XGBoost
feature importance scores can be used to assess how well a gene generalizes as a survival pre-
diction feature across cancer cohorts, in that genes with high entropy can be considered as
predictive of cancer survival across different cancer types, while a low entropy means that a
gene is likely to be cancer-type-specific.

5.2.6 Pan-Cancer Survival Network Identification

To further assess the biological plausibility of the important features identified in the pan-
cancer XGBoost survival prediction approach, we used network propagation to infer a pan-
cancer survival network (method outline shown in Figure 5.2). To this end, we applied the
NetCore'* network propagation method (cf. Section 3.4.1) over the high-confidence CPDB
(version 34) PPI network *»”?, which we initialized with gene weights derived from the pan-
cancer XGBoost approach. To map the gene weights onto the PPI network, we downloaded
the high-confidence CPDB PPI network, which contained 114, 341 binary PPIs with inter-
action confidence > 0.95 and proteins mapped to 10, 586 Hugo Gene Symbols, from the
NetCore GitHub repository (https://github.molgen.mpg.de/barel/NetCore) and
converted Ensembl Gene Identifiers of the gene weights to Hugo Gene Symbols using the
MyGene Python package (version 3.1, http://mygene.info)***7, removing gene enti-
ties that did not map to a Hugo Gene Symbol. Then, network propagation based on RWR
was performed on the gene weight-initialized PPI network using NetCore with the default
restart probability of 0.8. In addition to network propagation, NetCore also implements
a subsequent semi-supervised module identification step, where phenotype-associated net-
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1) Training of XGBoost survival prediction model (100 replications for different train-test splits)
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2) Calculation of gene weights as feature importance sum over all replications

gene 1
gene 2

gene weights = gene 3
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3) Network propagation with NetCore

i

4) Module identification with NetCore

© seed node
Q© inferred node

Figure 5.2: Outline of the survival network identification. After 1) training 100 replications of the pan-cancer XGBoost
survival prediction method on different train-test splits of the patients, 2) feature importance scores for each gene were
extracted from each trained model and gene weights were computed as the sum of feature importance scores over the
model replications. These gene weights were then used to 3) initialize a high-confidence PPI network and NetCore 8
was used to perform network propagation on the PPI network and 4) to identify network modules.

work modules are identified. These modules are sub-networks of the PPI network compris-
ing seed nodes, which in this case are the top 100 genes with the highest initial gene weights
represented in the PPI network, and inferred nodes, which are genes that function as links
between seed nodes and have been identified as significant in the network propagation step.
Taken together, all of the network modules identified by NetCore based on the XGBoost-
derived pan-cancer gene weights form a pan-cancer survival network, i.e., a sub-network of
the PPI network that is presumably associated with patient survival across different cancer

tprS .

66



Chapter s

5.2.7 Over-Representation Analysis of the Pan-Cancer Survival Net-
work

To further analyze the pan-cancer survival network identified by NetCore’s network propa-
gation and module identification with respect to biological function, we performed an ORA
(cf. Section 3.6) using QUIAGEN’s Ingenuity Pathway Analysis (IPA) software '*+.

5.2.8 Implementation

Our cancer survival prediction method is based on the Python XGBoost package (https:
//github.com/dmlc/xgboost/tree/master/python-package). All steps of the method,
including feature selection, hyperparameter tuning, and training of the final survival predic-
tion model, were implemented in Python (release 3.7). Based on gene weights derived from
the pan-cancer XGBoost survival prediction method trained on gene expression data, we
conducted network propagation using NetCore * to identify a pan-cancer survival network.
All experiments, including model training for survival prediction and network propagation,
were performed on Linux servers. All corresponding code for the survival prediction based
on gene expression data and the processing of the results to use with NetCore is available in
the following GitHub repository: https://github.molgen.mpg.de/thedinga/xgb_sur
vival_network. A protocol detailing all steps necessary to train the XGBoost pan-cancer
survival prediction approach on gene expression data and to derive the pan-cancer survival
network through network propagation was published in STAR Protocols®.

5.3 Results

This section describes the results that were obtained for survival prediction with XGBoost in
different settings and the pan-cancer survival network identified through network propaga-
tion based on the important features of the XGBoost method.

5.3.1 XGBoost Gradient Tree Boosting Predicts Cancer Survival in Dif-
ferent Cancer Types

As described in Section s5.2.3, we compared our single-cohort XGBoost survival prediction
method, in which XGBoost survival prediction models were trained for each of the 25 ana-
lyzed TCGA cancer cohorts (cf. Section §.2.1) separately, against three other survival predic-
tion methods, which were also trained on one cancer cohort at a time, to assess the perfor-
mance of our method in predicting cancer patient survival from gene expression data. Fig-
ure 5.3 shows the performances of the different survival prediction methods measured by C-
Index (cf. Section 3.3.3). The evaluated methods are random survival forest (RF)*®, survival
support vector machine (SVM) "5, the multiple-kernel learning (MKL) method Path2Surv s’
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trained on the Hallmark gene sets "> (MKL[H]), Path2Surv trained on the Pathway Interac-
tion Database '** (MKL[P]), and our proposed single-cohort XGBoost method '7° (XGB[SIN-
GLE]). Our single-cohort XGBoost approach showed the best median C-Index of all evalu-
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Figure 5.3: Single-cohort prediction performance. C-Index boxplots over 100 replications of model training for random

survival forest (RF), survival support vector machine (SVM), the Path2Surv multiple-kernel learning on the Hallmark gene
sets (MKL[H]) and the Pathway Interaction Database (MKL[P]), and the single-cohort XGBoost method (XGB[SINGLE])
on 25 different TCGA cancer cohorts. Mean C-Indices were compared with Wilcoxon’s unpaired rank-sum test and
significance levels are definedasns: p > 0.05,* : p < 0.05,%% : p < 0.01, % % x : p < 0.001, % * % : p <
0.0001. This figure was published in 7.

ated survival prediction methods for 10 of the 25 TCGA cohorts (BLCA, BRCA, CESC,
COAD, HNSC, LGG, OV, PAAD, SARC, and STAD), while random survival forest was
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the best-performing method for 7 cohorts (ACC, KIRC, KIRP, LAML, READ, UCS, and
UVM). PathaSurv outperformed the other methods in 4 cohorts (LIHC, LUAD, LUSC,
and MESQO) when it was trained on the PID and in 3 cohorts (ESCA, GBM, and SKCM)
when it was trained on the Hallmark gene sets, while survival support vector machine showed
the best median C-Index in only 1 of the TCGA cohorts (UCEC). In comparison with each
of the other survival prediction methods individually, our single-cohort XGBoost method
significantly outperformed random survival forest for 13, Path2Surv trained on the PID for
10, Path2Surv trained on the Hallmark gene sets for 9 and survival support vector machine for
17 of the 25 TCGA cohorts, where significance was evaluated by comparing mean C-Indices
with Wilcoxon’s unpaired rank-sum test and p-values < 0.05 were considered significant.

For bladder urothelial carcinoma (TCGA-BLCA) and uveal melanoma (TCGA-UVM) as
two example cancer types, we also assessed the Spearman correlation between the predictions
of the different methods to investigate whether the different survival prediction methods
make similar predictions for the same sets of cancer patients. To this end, we first split the
patients of each cohort into 80% training and 20% test data and then trained each of the sur-
vival prediction models on the training data of the respective cohort. Then, we applied each
of the trained methods to the TCGA-BLCA and TCGA-UVM test data, respectively, to
predict the survival outcome of each test patient. The predicted survival outcome was either
survival time (in survival support vector machine and Path2Surv) or a risk score (in random
survival forest and single-cohort XGBoost), where a higher risk corresponded to shorter sur-
vival. Hence, survival predictions of survival support vector machine (SVM) and PathaSurv
(MKL[H] and MKLP) were expected to be negatively correlated to the predictions of ran-
dom survival forest (RF) and the single-cohort XGBoost method (XGB[SINGLE]). Accord-
ing to this expectation, predictions of different methods using the same output type (either
survival time or risk score) were positively correlated, while survival time predictions were
negatively correlated to risk predictions in both of the analyzed cancer cohorts (Figure 5.4a).
However, the strength of correlation varied among cancer cohorts and between compared
methods: In TCGA-UVM, Spearman correlations between the different methods were gen-
erally higher than in TCGA-BLCA. Furthermore, the predictions of MKL[P] and RF and
of RF and XGB[SINGLE] were most highly correlated in TCGA-UVM, while in TCGA-
BLCA, the correlation between XGB[SINGLE] and SVM was the highest and correlations
between other methods were relatively weak (R > —0.5 or R < 0.5).

The likelihood of developing cancer is age-dependent with a probability below 6% (male
3.4%; female 5.5%) to develop cancer under the age of 5o, but a probability over 25% (male
32.2%, 26% female) to develop cancer in the time span above an age of 70 years'>7. Therefore,
age is an important indicator of tumor development. Indeed, we observed that the survival
prediction performance of our single-cohort XGBoost method was at least to some degree
dependent on the age distribution of the studied cohort. For instance, TCGA-ACC and
TCGA-LGG—the two cohorts for which the single-cohort XGBoost method showed the
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Figure 5.4: Correlation analyses of single-cohort results. (a) Spearman correlations between predictions of the differ-
ent methods for test patients from the cohorts TCGA-BLCA (left) and TCGA-UVM (right). Larger circles correspond to
a greater correlation, blue indicates a positive correlation and red indicates a negative correlation. (b) Spearman cor-
relation (R) between median C-Indices of single-cohort XGBoost predictions and median ages for 25 different TCGA

cohorts. The blue line shows the linear regression fit to the data and the gray area indicates the 95% confidence interval.

This figure was published in *°.

best performance with a median C-Index above 0.8—comprised relatively young patients
with median ages of 49 and 41 years, respectively, while for TCGA-KIRP and TCGA-UVM,
which had higher median ages of 61 and 61.5 years, respectively, the median survival predic-
tion performance dropped below a C-Index of 0.8 and for TCGA-UCS—a cohort with a
particularly high median age of 68.5 years—prediction performance was low at a median C-
Index of ~0.5, not only with the single-cohort XGBoost method, but with all other evaluated
survival prediction methods as well. Considering all cohorts jointly, we observed that for can-
cer types that are more prevalent in younger patients, survival prediction performance tended
to be better than for cancers of older patients. In fact, the median C-Indices of the single-
cohort XGBoost predictions in different cancer cohorts were negatively correlated (Spear-
man R = —0.55, p = 0.004, Figure 5.4b) with the median age of the respective cohort.
This suggests the presence of age-specific gene expression signatures in the cancer cohorts un-
der study that are resolvable more easily in younger patients by machine learning methods.

5.3.2 Important Features from Single-Cohort Survival Prediction Vary
across Cancer Types

In addition to the quality of single-cohort XGBoost survival predictions, we were also inter-
ested in the features on which these predictions were based. To this end, we analyzed the
feature importance of the gene expression features used by the single-cohort method to pre-
dict survival in the different TCGA cancer cohorts. XGBoost implements built-in feature
importance metrics such as ‘gain’, ‘weight’, or ‘cover’, which are computed during model
training and measure the relative importance of each feature (cf. https://xgboost.readth
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edocs.io/en/latest/python/python_api.html). Among these metrics, we chose ‘gain’ as
the feature importance metric that was best suited for identifying genes relevant to survival.
While ‘weight’ counts how often a feature is used as a split variable by the XGBoost model,
it does not take into account where in a tree a feature is used and thus disregards how much
the feature affects the prediction, since splits close to the root of the tree will generally have
a higher impact on the prediction than splits more distant from the root. The metric ‘cover’,
on the other hand, only considers the number of samples affected by a split in which a feature
is involved, but does not consider how often the feature is used or how it affects the predic-
tion. In contrast, the ‘gain’ metric measures the average improvement a feature adds to the
prediction and thus better reflects the relative importance of a feature in the XGBoost model.
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Fraction of genes
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Figure 5.5: Fractions of genes shared over different cohorts for predicting survival in the single-cohort XGBoost ap-
proach. The histogram depicts the fractions of gene features that are shared for single-cohort survival prediction over

different numbers of training cohorts (x-axis: number of TCGA cohorts a gene feature is shared over; y-axis: fraction of

all 46,642 genes used in at least one single-cohort model). This figure was published in *°.

For each of the 25 TCGA cohorts under study, we extracted the ‘gain’ feature importance
scores for all genes in each of the roo model replications of the single-cohort XGBoost method
for further analysis. Across all 25 cohorts and all 100 model replications per cohort, there
were a total of 46,642 different genes ( 77% of all genes available in TCGA) that were used for
cancer survival prediction in at least one of the 2,500 single-cohort XGBoost models. How-
ever, most genes were only used for prediction in a small number of cohorts (< 10) and only
avery small number of genes were among the important features in a larger proportion of the
studied cohorts (> 15 cohorts, Figure 5.5). This heterogeneity between cohorts and model
replications in terms of important features is likely a reflection of cancer type differences and
tissue specificity of some features, but also of inter-patient heterogeneity.

5.3.3 Pan-Cancer Training Improves Survival Prediction

To identify gene features with more general importance to cancer survival prediction and
overcome the feature heterogeneity between cancer types, we also trained the XGBoost method
on a combined dataset comprising all 25 studied TCGA cohorts (pan-cancer XGBoost ap-
proach, cf. Section 5.2.2) instead of training XGBoost models on each cohort separately.
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When comparing the prediction performances for each of the 25 cohorts between the single-
cohort and pan-cancer XGBoost approaches by means of C-Index over 100 replications of
model training, we observed that for 15 (BLCA, COAD, HNSC, KIRC, KIRP, LIHC,
LUAD, LUSC, MESO, PAAD, READ, SARC, STAD, UCEC, and UCS) out of the 25
cancer cohorts under study, pan-cancer training significantly improved over single-cohort
training (p < 0.05 in Wilcoxon’s unpaired rank-sum test comparing mean C-Indices, Figure
5.6). For nine additional cohorts (ACC, BRCA, CESC, ESCA, GBM, LGG, OV, SKCM,
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Figure 5.6: Pan-cancer prediction performance. This figure compares the prediction performances of the single-cohort
XGBoost method (XGB[SINGLE]) and the pan-cancer XGBoost method (XGB[PAN]) on 25 different TCGA cancer co-
horts, depicted as C-Index boxplots over 100 replications of model training. Mean C-Indices were compared with

Wilcoxon’s unpaired rank-sum test and significance levels are defined asns: p > 0.05, x : p < 0.05,*x* : p < 0.01,
sk 1 p < 0.001, % % %% : p < 0.000L This figure was published in""°.

and UVM), the C-Indices obtained with single-cohort and pan-cancer training were com-
parable (p > 0.05), and only in acute myeloid leukemia (LAML), which is a cancer of the
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blood and the bone marrow and the only studied cancer type that is not a solid tumor can-
cer, the pan-cancer XGBoost approach performed significantly worse (p < 0.05) than the
single-cohort approach.

5.3.4 Important Features from Pan-Cancer Survival Prediction Gener-
alize over Cancer Types

We compared the gene features used for predicting survival in the pan-cancer XGBoost ap-
proach with the features used by the single-cohort approach and found that the vast majority
(98.6%) of genes used for pan-cancer survival prediction in at least one of the 100 model repli-
cations were also among the important features of single-cohort training in atleast one cohort
and replication (Figure 5.7a). Furthermore, the total number of genes used as features for can-
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Figure 5.7: Single-cohort vs. pan-cancer survival prediction. (a) Venn diagram comparing features used for prediction in
the single-cohort XGBoost method (pink) with those selected in the pan-cancer XGBoost method (blue). (b) Prediction
performances (C-Indices) of single-cohort XGBoost (pink) and pan-cancer XGBoost (blue) for eight new cancer cohorts
(not used in model training). For the single-cohort method, the mean C-Index over all 25 models trained on different
TCGA cohorts is shown. This figure was published in 170,

cer survival prediction in at least one of the 100 replications was reduced from 46,642 in the
single-cohort XGBoost approach to 12,082 in pan-cancer training—a reduction of 74%—
and the feature composition changed from 40.4% protein-coding genes, 25.0% IncRNA:s,
and 15.8% processed pseudogenes in single-cohort training (Figure 5.8a) to 56.5% protein-
coding genes, 20.7% IncRNAs, and 11.9% processed pseudogenes in pan-cancer training (Fig-
ure 5.8b). This shift towards a larger fraction of protein-coding genes and a smaller fraction
of IncRNAs and processed pseudogenes among the important features in pan-cancer sur-
vival prediction might be driven by tissue specificity of IncRNAs and patient-specific mRNA

retrotransposition.
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Figure 5.8: Single-cohort and pan-cancer gene types. This figure shows the types of important features identified in
single-cohort and pan-cancer training. RNA types were obtained using the MyGene Python package (version 3.1,
http:/mygene.info) %17  (a) Percentages of different types of RNAs identified as important features in the single-

cohort XGBoost approach. (b) Percentages of different types of RNAs identified as important features in the pan-cancer

XGBoost approach. This figure was published in 170,

The gene features selected in the pan-cancer XGBoost approach were not specific to a par-
ticular type of cancer, but tended to generalize over multiple cancer types. This advantage
can be used to extrapolate survival prediction to yet unseen cancer types that were not repre-
sented in the training data. To test this claim, we additionally trained a single-cohort model
on each of the 25 TCGA cohorts under study, using all available patients without holding
out any test data, and a pan-cancer model, again using all available patients from all 25 co-
horts, but this time combining all 25 cohorts to one pan-cancer dataset. Then, to evaluate
the transferability of the trained models to new cancer types, we tested each of the trained
models on eight additional TCGA cancer cohorts (CHOL, DLBC, KICH, PCPG, PRAD,
TGCT, THCA, and THYM), which had previously been excluded due to small numbers of
uncensored patients (cf. Section s5.2.1). For the 25 single-cohort models—each trained on
the data of one TCGA cancer cohort—we summarized the survival prediction performance
on each new cancer cohort as the mean of C-Indices, while testing the pan-cancer model only
resulted in one C-Index per new cancer cohort and no aggregation of results was necessary.
For all of the eight new cohorts, the C-Index of the prediction computed by the pan-cancer
XGBoost model was better than the mean C-Index of predictions made by single-cohort XG-
Boost models and for seven of the eight cohorts, the pan-cancer model yielded a C-Index
above o.5 even though none of the eight cancer cohorts was represented in model training.
This supports the hypothesis that genes identified in the pan-cancer XGBoost approach are
more predictive of patient survival in previously unseen cancer types than genes identified by
the single-cohort approach.
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5.3.5 Important Features from Pan-Cancer Survival Prediction Are Bi-
ologically Plausible

To explore the biological plausibility of the genes identified as important features by the pan-
cancer XGBoost method and to gain more insights into the underlying biology of cancer
survival, we analyzed the distribution of gene weights, which were computed as the sum of
feature importance scores per gene across all 1oo replications of pan-cancer training. Fig-
ure 5.9 shows the top oo genes with the highest weights. Ensembl gene identifiers were
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Figure 5.9: Pan-cancer feature importance. This figure shows the weight distribution for the 100 genes with the highest
feature importance (sums of feature importance scores over 100 model replications) for pan-cancer XGBoost training
(gene identifiers that did not map to a Hugo symbol are named with their Ensembl identifiers). The different colors indi-
cate gene types (blue: protein coding, orange: IncRNA, green: processed pseudogenes, purple: transcribed unprocessed
pseudogene, red: gene type unknown). These gene types were obtained using the MyGene Python package (version 3.1,
http:/mygene.info) 1887 This figure was published in *’°.

converted to HUGO gene symbols using the MyGene"*®"*” Python package (version 3.1;
http://mygene.info) if a gene symbol was available. In cases where the Ensembl gene identi-
fier could not be mapped to a HUGO symbol, Ensembl identifiers were used as gene names.
Noticeably, a few genes, and especially /GF2BP3 (insulin-like growth factor 2 mRNA bind-
ing protein 3), have much higher gene weights than all other genes identified as important fea-
tures by the pan-cancer XGBoost approach, indicating a particularly high prognostic poten-
tial for cancer survival. Indeed, /GF2BP3 is overexpressed in many tumor types and has been
associated with tumor progression, metastasis, and poor prognosis in multiple cancers **, in-
cluding colon cancer''7, oral squamous cell carcinoma''#, and melanoma '>s.

To further analyze the prognostic potential of the genes attributed with the highest feature
importance by the pan-cancer XGBoost approach, we queried OncoLnc®—an online tool
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providing Cox regression analyses and Kaplan-Meier survival plots on TCGA gene expres-
sion data of different cancer types—with the top four protein-coding genes with the high-
est gene weights (/GFz2BP3, IL1RAP, PIK3R3, and CISH). Figure 5.10 shows one Kaplan-
Meier plot for each of these four genes, where for each gene the cancer type with the lowest
FDR-corrected p-value in the OncoLnc Cox regression was selected for display. /GFzBP3 is
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Figure 5.10: Kaplan-Meier plots for the four most important gene features from pan-cancer XGBoost. For each gene, we
selected the cancer type with the lowest FDR-corrected p-value in Cox regression, respectively. As a cutoff for gene ex-
pression, the 50th percentile was selected. Cox regression data and Kaplan-Meier plots were retrieved from OncolLnc®.
(a) Survival of brain lower grade glioma (LGG) patients, split by expression of IGF2BP3. (b) Survival of kidney renal papil-
lary cell carcinoma (KIRP) patients, split by expression of IL1RAP. (c) Survival of kidney renal clear cell carcinoma (KIRC)
patients, split by expression of PIK3R3. (d) Survival of brain lower grade glioma (LGG) patients, split by expression of
CISH. This figure was published in*’°.

most predictive for survival in brain lower grade glioma (LGG, FDR = 3.59 x 10’ in Cox re-
gression), while /L1 RAP, PIK3 R3, and CISH have the highest predictive potential in kidney
renal papillary cell carcinoma (KIRP, FDR =1.65 X 10%in Cox regression), kidney renal clear
cell carcinoma (KIRC, FDR = 4.16 X 10° in Cox regression), and LGG (FDR = 1.51 x 10°
in Cox regression), respectively. Furthermore, /GF2BP3, IL1 RAP, PIK3R3, and CISH have
significant prognostic value (FDR < 0.05 in Cox regression) for four (KIRP, KIRC, LUAD,
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and PAAD), two (LGG and PAAD), two (LGG and HNSC), and four (LUAD, LIHC,
KIRP, and KIRC) additional TCGA cohorts, respectively. Kaplan-Meier plots for these
gene-cohort pairs are shown in Supplementary Figure A.3. For generating the Kaplan-Meier
plots for each gene-cohort pair, the soth percentile was selected as a cutoft in OncoLnc, such
that patients belonging to the respective cohort were split into two groups of equal size based
on the gene expression value of the corresponding gene. We selected the soth percentile as a
cutoft to ensure that all patients from the respective cohort were included in the analysis and
the two groups (low expression and high expression) the patients were split into had approx-
imately equal size. OncoLnc uses the logrank test to assess if there is a significant difference
in survival times between the low-expression and high-expression groups. According to this
test, there is a significant survival difference (p < 0.05) between the low-expression and
high-expression groups for all gene-cohort pairs with a significant FDR-corrected p-value in
OncoLnc’s Cox regression except for the gene CISH in the liver hepatocellular carcinoma
(LIHC). This indicates that the top four genes with the highest feature importance in the
pan-cancer XGBoost survival prediction method are indeed predictive for cancer survival in
different cancer types.

To further evaluate whether the genes attributed with high feature importance values in the
pan-cancer XGBoost approach generalize over cancer types and are prognostic for survival
across multiple types of cancer, we additionally computed the entropy of the top roo genes
with the highest gene weights from the pan-cancer XGBoost approach with respect to the
gene weights derived from the single-cohort approach and compared the resulting entropy
distribution with the entropy distribution obtained by computing the entropies of the top
100 genes with the highest sum of gene weights across all 25 cohorts from the single-cohort
XGBoost approach (cf. Section s.2.5). In our case, where feature importance in 25 different
cancer cohorts is analyzed, the entropy falls into a range between 0 and ~4.64 and measures
to what extent each gene’s prognostic value generalizes across cancer types. Thatis, a high en-
tropy score indicates that the respective gene has similar gene weights in many or all of the 25
analyzed cancer types, while genes that are only predictive for survival in one or a few cohorts
will have a low entropy. The comparison between the entropy distributions of the roo most
important pan-cancer survival prediction genes and the 100 most important single-cohort
survival prediction genes shows that the pan-cancer prognostic genes have significantly higher
entropy than the single-cohort genes (p = 1.145 x 10" in a one-sided Wilcoxon unpaired
rank-sum test, Figure s.11), implying that the pan-cancer XGBoost survival prediction ap-
proach indeed generalizes better over different cancer types than the single-cohort XGBoost

approach.

5.3.6 Network Propagation Identifies a Pan-Cancer Survival Network

As described in the previous Sections 5.3.4 and 5.3.5, the pan-cancer XGBoost approach uses
substantially (74%) fewer genes for predicting cancer survival than the single-cohort XGBoost
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Figure 5.11: Single-cohort and pan-cancer feature entropy. The entropy distributions between the top 100 genes with
the highest feature importance (feature importance is measured as sums of feature importance scores over 100 model
replications) from the single-cohort approach and the pan-cancer approach are compared (mean entropies are indicated

as dashed lines). The entropy measure (x-axis) is based on the genes used in the single-cohort approach (cf. Section

5.2.5). The density of the entropy distribution is displayed on the y-axis. This figure was published in*”°.

approach and the genes with the highest feature importance are biologically highly plausible.
However, there is still a total of 12,082 genes that are used for survival prediction in at least
one of the 100 replications of pan-cancer training. This large number of features is not biolog-
ically focused and exacerbates the inference of mechanistic information. Furthermore, many
of the genes are only identified as important features in a small number of replications, imply-
ing that their selection as survival features is highly dependent on the training set composition
and they might not generally have high relevance for cancer prognosis. In fact, the distribu-
tion of pan-cancer gene weights—computed for each gene as the sum of feature importance
scores over all model replications—resembles a “long-tail” distribution (Figure 5.12), a distri-
bution that is also often visible with cancer-associated SNPs”. Nonetheless, genes with rela-
tively lower gene weights might still be prognostic for cancer survival in a subset of patients
and simply omitting genes that fall below some weight threshold would be rather arbitrary
and could potentially lead to a loss of relevant information.

It has been suggested that domain-specific prior knowledge, such as that from biological net-
works, can improve the performance of machine learning methods and help to understand
the underlying biological mechanisms*. One way to incorporate such prior knowledge is
network propagation. Network propagation is a popular technique that leverages the prior
knowledge from a network, such as a PPI network, to amplify biological signal and can help
to gain insights into underlying biological mechanisms* (cf. Section 3.4). The technique
has for example been used for the identification of genes that are associated with specific
diseases '°>'°>»'% and recently, we have applied network propagation to time-resolved gene
expression profiles of Leishmania major infected bone marrow-derived macrophages from
mice with different responses to the infection (disease susceptible or resistant) and identi-
fied network modules of interacting proteins in the PPI network that aggregated infection
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Figure 5.12: Distribution of pan-cancer gene weights. The pan-cancer gene weights resemble a “long-tail” distribution.
The x-axis displays the 12,082 genes identified as important features in the 100 model replications of the pan-cancer

XGBoost method and the y-axis shows the corresponding gene weights, computed as sums of feature importance

scores across the 100 replications. A version of this figure was published in17°.

response signals for the susceptible and resistant mouse strains*°.

In this work, we applied the NetCore"* network propagation method to the gene weights
extracted from the roo replications of the pan-cancer XGBoost survival prediction approach
(cf. Section 5.2.6). To this end, the high-confidence CPDB PPI network*>?* was initialized
with the pan-cancer gene weights and the weights were then propagated over the network in a
RWR until a steady state distribution was reached '*. Based on this re-weighted PPI network,
NetCore then identified network modules—connected subgraphs of the network that con-
nect genes with initially high gene weights with genes that gained significantly high weights
during network propagation. Figure 5.13 displays the largest network module identified by
NetCore based on the pan-cancer gene weights. In total, NetCore could identify 13 different
modules, each containing between 2 and 79 genes. Taken together, these modules compose
a pan-cancer survival network comprising a total of 103 different genes, of which 76 are seed
genes with high initial gene weights before network propagation and 277 genes were inferred
during network propagation. All 103 genes, including their initial and propagated weights,
are listed in Supplementary Table B.2.

The identified pan-cancer survival network is indeed informative for survival in different can-
cer types. For the 25 TCGA cancer types under study, an average of 41.48 genes of the 103
survival network genes were among the important features of the respective cohort in the
single-cohort XGBoost survival prediction approach. For instance, in the single-cohort train-
ing of lung squamous cell carcinoma (TCGA-LUSC), 59 of the 103 survival network genes
were among the important features, followed by head and neck squamous cell carcinoma
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Figure 5.13: Largest network module. Network modules were identified by NetCore ** network propagation and mod-
ule identification based on pan-cancer gene weights, which were computed from XGBoost feature importance scores

over 100 model replications. Orange nodes correspond to seed genes, while genes that were inferred during network

propagation are colored in gray. This figure was published in 70,

(TCGA-HNSC) and ovarian serous cystadenocarcinoma (TCGA-OV) with 54 genes each
(Figure 5.14). However, the gene weights of the 103 survival network genes, which were
computed from their pan-cancer XGBoost feature importance scores, were highly variable
between cohorts. For instance, while the sum of gene weights over the 103 genes was rela-
tively high in some cohorts, including TCGA-LUAD, TCGA-KIRC, TCGA-LUSC, and
TCGA-HNSC, the gene weight of the same genes was much lower in other cohorts like
TCGA-SKCM, TCGA-READ, and TCGA-UVM (Figure s5.14). The low gene weights in
the latter cohorts might partly be attributed to the comparatively small sizes of these cohorts
(<200 patients, cf. Supplementary Table B.1), possibly leading to a proportionally smaller
contribution of these cohorts to pan-cancer XGBoost training and the associated feature im-
portance scores.

Approximately a quarter of the genes in the pan-cancer survival network (27 of the 103 genes)
are annotated cancer genes, which have been manually curated in NCG (version 6.0) '+, In-
terestingly, 16 of these 27 genes were inferred by network propagation (Supplementary Table
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Figure 5.14: Feature importance of the 103 pan-cancer survival network genes in single-cohort training. Gene weights
were computed based on feature importance scores from 100 replications of single-cohort XGBoost training. Top: Sum
of gene weights of the survival network genes per cohort. Bottom: Number of genes (of the 103 survival network

genes) per cohort that are among the important features in single-cohort training (gene weight > 0). A version of this

figure was published in*7°.

B.2), meaning that they had relatively little or no feature importance in the XGBoost pan-
cancer survival prediction, but received significantly high weights during network propaga-
tion due to their high connectivity with highly important gene features in the PPI network.

5s.3.7 The Pan-Cancer Survival Network Is Strongly Associated with
the Tumor Microenvironment

To further characterize the genes contained in the pan-cancer survival network, we performed
an ORA using the QIAGEN IPA software'* on a set of canonical pathways defined by
IPA (Supplementary Table B.3) and additionally retrieved upstream regulators of the survival
network genes (Supplementary Table B.4). The 103 pan-cancer survival network genes are
most significantly enriched for the tumor microenvironment (TME) pathway (p = 4.57 x
10710 overlapping genes: FGFz, IDO1, IGF2, JAKz2, MMPr, MMPr4, MMDP3, PIK3R3,
PLAU, SPP1, TGFBr; Supplementary Table B.3). The TME is implicated in tumor initia-
tion, growth, invasion, metastasis, and response to therapies**'4°. It comprises non-malignant
host cells, blood vessels, nerves, lymph nodes, and lymphoid organs, as well as intercellular
components and metabolites and forms in close vicinity of the tumor. It strongly interacts
with the cancer cells, assisting the development of Hallmark capabilities (cf. Section 2.1) and
supporting the cancer cells’ survival and migration. The TME can be subdivided into several
specialized microenvironments with distinct functions, such as the hypoxic, the acid, and
the innervated niches, and the immune, metabolism, and mechanical microenvironments.
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Figure 5.15: Over-represented pathways identified with QIAGEN Ingenuity Pathway Analysis (IPA). Pathways over-
represented with p < 0.001 in the 103 survival network genes are displayed on the x-axis and the y-axis shows over-
representation p-values (negative log-scale). The bubble sizes represent the numbers of survival network genes that
overlap with the respective pathway and the dashed line indicates a significance threshold of 0.05. All shown pathways
are still significantly over-represented (p < 0.05) after controlling the FDR according to Benjamini-Hochberg (see
Supplementary Table B.3, Section 3.5.2). Inspired by https://digitalinsights.qiagen.com/wp-content/upload
s/2016/12/1-for-akhil.png, accessed on May 9th, 2023.

Besides the TME as a whole, some of these specialized microenvironments, such as hypoxia-
inducible factor 1A (HIF1A) signaling (p = 4.27 X 107% overlapping genes: FGFz, IGFz,
MMPr, MMPry4, MMP3, PIK3R3, SERPINE1, TGFBr), are also enriched by the pan-
cancer survival network. Hypoxia is a known property of cancer and promotes angiogene-
sis through the upregulation of vascular endothelial growth factor (VEGF)?>#. It has been
linked to cancer progression, therapeutic resistance, and poor prognosis°*, as well as metasta-
sis ™3,

Furthermore, there is significant enrichment for immune-related pathways in the pan-cancer
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survival network. For instance, glucocorticoid receptor (GR) signaling has been found to reg-
ulate CD8+ T cell differentiation, where increased GR signaling is associated with dysfunc-
tional CD8+ tumor-infiltrating lymphocytes (TILs)?, and is significantly enriched by the
103 survival network genes (p = 2.51 X 1077, overlapping genes: A2M, CAV1, ESR1,JAKz,
MMPr, MMP3;, PGR, PIK3 R3, PLA2G4A, PLA2Gs, PLAU, RPS6KAs, SERPINET, TGF-
Bi1, TGFBRz). While high levels of TILs are linked to improved patient survival in colorectal
cancer”” and some breast cancer subtypes*’, dysfunctional CD8+ TILs contribute to im-
munosuppression in the TME’, potentially interfering with the positive effect of functional
TILs on survival. Another significantly enriched pathway related to the immune system is
the 7" Cell Exhaustion Signaling Pathway (p = 1.44 X 107% overlapping genes: BTLA, JAKz,
PIK3R3, TGFB1, TGFBRz, TNFRSF14). T cell exhaustion is a phenomenon observed in
chronic viral infection and cancer in response to chronic antigen stimulation *>* and is char-
acterized by increased expression of inhibitory receptors, decreased production of effector
cytokines, and reduced cytotoxicity”*. Most T cells in the TME are exhausted and lose the
competence to eliminate cancer, thus allowing the cancer to evade immune response””.

Another pathway associated with the TME and significantly enriched for genes from the pan-
cancer survival network is inhibition of matrix metalloproteases (MMPs) (p = 1.28 x 107,
overlapping genes: A2M, MMPr, MMPr14, MMP3, TIMP4). MMPs are a proteinase fam-
ily that mediates molecular communication between tumor and stroma and can modulate the
TME?*. MMPs regulate signaling pathways that control cell growth, inflammation, and an-
giogenesis, play an important role in extracellular matrix turnover and cancer cell migration,
and are thus tightly linked to tumorigenesis.

In addition to TME- and immune-related pathways, the pan-cancer survival network is also
enriched by other signaling pathways that have been linked to cancer survival, such as the
mechanistic target of rapamycin (mTOR) signaling pathway (p = 2.86 x 10~2, overlap-
ping genes: E[F4G3, FKBP1A, INS, PIK3R3, RPS6KA3, RPS6KAs), which regulates es-
sential cell processes like protein synthesis and autophagy, and, if deregulated, promotes
cancer progression'**'7?. Notably, mTOR signaling is activated by PI3K/AKT in response
to insulin (INS)"* and the /NS and PI3KR3 genes were among the top 1oo genes with
the highest gene weights in the pan-cancer prediction approach. Another pathway closely
linked to cancer and enriched by the pan-cancer survival network is ERK/MAPK signaling
(p = 3.47 x 1072, overlapping genes: ESR1, FYN, ITGA3, PIK3R3, PLA2G4A, PLA2Gy,
RPS6KAs). ERK/MAPK signaling is involved in the regulation of cell proliferation, difter-
entiation, apoptosis, and stress responses®S and is targeted by many cancer drugs*®'.

Thorsson et al.'”* have divided TCGA cancer patients into six distinct immune subtypes
based on immune expression signatures. The six immune subtypes are wound healing, IFN-
y dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-3 domi-
nant and are characterized by differences in somatic aberrations, tumor microenvironments,
and patient prognosis. Since we found a strong association between the pan-cancer survival
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network and TME- and immune-related molecular pathways, we asked to what extent the
gene expression signals of the 103 survival network genes reflect the six immune subtypes
identified by Thorsson et al.'7*. For 7,475 of the 8,024 TCGA patients used for survival pre-
diction, one of the six immune subtypes could be assigned according to Thorsson et al.
PCA of these patients with respect to the 103 pan-cancer survival network genes showed a

partial discrimination between immune subtypes (Figure 5.16).
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Figure 5.16: Association of the pan-cancer survival network with immune subtypes. PCA of the patients that can be
assigned to an immune subtype according to Thorsson et al., 2018%72. The PCA is based on the 103 pan-cancer survival
network genes and patients are colored by their assigned immune subtype. The PCA was generated with the R library

ggplot2 *82. This figure was published in*7°.
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In particular, patients belonging to immune subtype Cs (immunologically quiet), which
predominantly comprised brain lower-grade gliomas (LGG), were separated from patients
associated with other immune subtypes in the first two principal components of the PCA.
This indicates that the pan-cancer survival network indeed contains gene expression signal
that is informative for the patients’ immune subtypes.

In addition to the OR A of the pan-cancer survival network and the analysis of immune sub-
types, we also explored potential upstream regulators of the survival network genes that are
frequently mutated in cancer and are annotated as cancer drivers or candidate cancer drivers
in the Network of Cancer Genes (NCG)'#*. To this end, we used QIAGEN IPA *** again
to perform enrichment analysis on the annotation sets of “upstream regulators” and identi-
fied 47 significantly enriched upstream regulators (p < 1 x 107>, Supplementary Table B.4).
The top ten most significantly enriched upstream regulators are JUN (20 target genes in the
pan-cancer survival network), TINF (34 target genes), /L1B (25 target genes), TPs3 (33 tar-
get genes), /L 1.4 (13 target genes), FGFz (15 target genes), MAP3 K1 (7 target genes), EGFR
(15 target genes), STAT3 (16 target genes), and HRAS (16 target genes). Notably, several of
these upstream regulators are associated with the TME. For instance, 7INF (tumor necrosis
factor alpha) is a multifunctional cytokine that regulates the tumor microenvironment and
is involved in apoptosis, angiogenesis, inflammation, and immunity '77°°. Another upstream
regulator, STA T3 (signal transducer and activator of transcription 3), is hyperactivated in can-
cer and normal cells in the tumor ecosystem and is a key regulator of the anti-tumor immune
response ', Itis involved in the inhibition of essential immune activation regulators and the
production of immunosuppressive factors and is thus a promising target for immunotherapy.
T'Ps3 is the most frequently mutated gene in human cancers and encodes for the ps3 tumor
suppressor protein, which is associated with the control of cell cycle progression, DNA re-
pair, apoptosis, and cell survival and thus acts as a suppressor of tumorigenesis®. Addition-
ally, ps3 promotes an anti-tumor microenvironment, in part through secreted factors that

120

modulate macrophage function '*°. Mutations of ps3 can have non-cell autonomous effects,
modulating the TME and impairing its tumor-suppressing function, thus allowing for cancer

development 8,

Taken together, our results emphasize the strong association of the pan-cancer survival net-
work with the TME, which is closely linked to cancer immune response and has an integral
role in cancer progression and metastasis.

5.3.8 Gene Expression Is the Most Informative Data Modality

Cancer survival prediction based on gene expression data of TCGA cancer patients from
multiple cancer types yielded good results (cf. Sections 5.3.1 and 5.3.3). However, we were
also interested in whether the integration of additional molecular data modalities would fur-
ther improve survival prediction performance. To this end, we applied the pan-cancer XG-
Boost approach (cf. Section 5.2.2) to mutation, copy number variation, and protein ex-
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pression data (cf. Section s.2.1) alone and in combination with TPM-normalized RNA-
seq gene expression data. As described in Section s.2.1, for this part of the work we used
TPM-normalized gene expression data from the more recent GDC release v32.0 instead of
the FPKM-normalized gene expression data from releases v22.0 and v24.0 that was used in
the first part of the work described above. However, despite the different processing and
normalization strategies applied to the two types of gene expression data, pan-cancer survival
prediction with XGBoost yielded similar performances on both gene expression types (Sup-
plementary Figure A.4).

Integration of Mutation Data

The genomic landscapes and mutation patterns of tumors vary between tissues and cell types,
but also between tumors originating from the same tissue and cell type. In fact, the vast
majority of mutations occurring in tumors of a particular tissue type are only found in less
than 5-10% of patients*> and even when the same gene is mutated in different patients, the
specific mutations occurring in that gene often differ between tumors’”®. Because of this
large diversity and low prevalence of most mutations across tumors, it is not feasible to use
the raw mutation data with locus-specific mutation information directly as input for our sur-
vival prediction method. The machine learning algorithm would likely not be able to extract
much meaningful information from a very large number of low-prevalence mutations, some
of which do not even affect protein function. To address this problem, we implemented
different strategies, first selecting only high-impact mutations and then summarizing mu-
tations at the gene or pathway level, or extracting other potentially affected genes through
network propagation. More specifically, we first filtered simple nucleotide variations for
their impact and for each TCGA patient only kept mutations annotated with “high” im-
pact in the respective MAF file. The different “impact” categories are defined by Ensembl’s
variant effect predictor (VEP) *® and reflect the impact of a mutation on the encoded pro-
tein. “High” impact means that the variant is assumed to have a disruptive impact like pro-
tein truncation or loss of function on the protein or may trigger nonsense-mediated decay,
while “moderate” impact means the variant is not disruptive and might only change pro-
tein effectiveness and “low” impact mutations do likely not change protein behavior at all
(cf. https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/). Then, we
binarized the high-impact mutations at the gene level, where for each patient, a gene was
considered mutated if it contained at least one high-impact mutation. As an alternative to
binarizing mutations at the gene level, we also computed pathway-level mutations or applied
network propagation to mutations to identify genes that were not mutated themselves, but
were likely affected by other mutated genes. For the computation of pathway-level muta-
tions, high-impact mutations were also first mapped to genes, but instead of computing a
binary mutation value for each gene, we counted the high-impact mutations per gene and
for each CPDB®**?* pathway computed the sum over all genes belonging to that pathway.
Then, we normalized each pathway-level mutation value with the pathway size by dividing
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Figure 5.17: Pan-cancer survival prediction performance on mutation data. Comparison of the prediction performance
of the pan-cancer XGBoost method on 25 different TCGA cancer cohorts, trained on gene expression data (XGB[RNA]),
gene-level mutation data (XGB[mutations(gene)]), gene expression and gene-level mutation data (XGB[RNA&mutations-
(gene)], pathway-level mutation data (XGB[mutations(pathway)]), gene expression and pathway-level mutation data
(XGB[RNA&mutations(pathway)]), mutations processed with network propagation (XGB[mutations(network_propaga-
tion)]), and gene expression data in combination with mutations processed with network propagation (XGB[RNA&mu-
tations(network_propagation)]). Performance is depicted by C-Index boxplots over 100 replications of model training.
Mean C-Indices were compared with Wilcoxon’s unpaired rank-sum test and significance levels are defined as ns: p >
0.05,% : p < 0.05, %% : p < 0.01, % * % : p < 0.001, % %% : p < 0.0001

it by the number of genes belonging to the pathway. For the application of network prop-
agation to mutations, on the other hand, the binarized gene-level mutations were mapped
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to the CPDB®»%* (release 3 5) high-confidence (confidence > 0.9) PPI network and network
propagation according to the NetCore > RWR (cf. Section 3.4.1; restart probability 0.8) was
performed on the network. The re-weighted gene values computed during network propa-
gation were then used as input for the pan-cancer XGBoost approach.

Figure 5.17 shows the performance (measured as C-Index) of pan-cancer XGBoost survival
prediction in different settings that used either gene expression data (XGB[RNA]) or the
processed mutation data (gene-level mutations: XGB[mutations(gene)], pathway-level muta-
tions: XGB[mutations(pathway)], or mutations processed with network propagation: XG-
B[mutations(network_propagation)]) alone or in combination with gene expression data (X-
GB[RNA&mutations(gene)], XGB[RNA&mutations(pathway)], and XGB[RNA&muta-
tions(network_propagation)]) as input. Analogously to pan-cancer survival prediction on
gene expression data only (cf. Section 5.3.3), we repeated model training roo times on difter-
ent train-test splits and in each replication selected the 500 most predictive features per data
modality as described in Section 5.2.2. In almost all (23) of the 25 TCGA cancer cohorts,
survival prediction performance was significantly worse for all three types of processed muta-
tion data when compared to survival prediction based on TPM-normalized RNA-seq gene
expression data. When the processed mutation data modalities were combined with gene
expression data to predict pan-cancer survival and compared to survival prediction on gene
expression data alone, no significant performance differences were observed in most TCGA
cohorts. Only in TCGA-BLCA, pathway-level mutations in combination with gene expres-
sion and mutations processed by network propagation in combination with gene expression
yielded significantly (p < 0.05) better performance than gene expression alone, indicating
that for most cancer types, mutations did not contain additional survival information that
is complementary to the information contained in gene expression data and would improve
survival prediction.

Integration of Copy Number Variation Data

Copy number variations (CNVs) are a type of SV#*. They refer to genomic regions that vary
in copy number either through amplification or deletion of DNA and can drive adaptive evo-
lution and progression of genetic diseases like cancer**. By incorporating copy number vari-
ation data from TCGA into pan-cancer survival prediction with XGBoost, we sought to in-
vestigate whether and to what extent copy number variations provide information on patient
survival and can complement gene expression data in survival prediction. To this end, we con-
ducted pan-cancer survival prediction on copy number variation data only (XGB[CNV]),
and copy number variation data in combination with gene expression data (XGB[RNA&C-
NV])and compared these two settings with survival prediction based on gene expression data
alone (XGB[RNA]). We repeated model training 100 times per setting on different train-test
splits and in each replication selected the top soo most predictive genes per data modality as
features (cf. Section 5.2.2).
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Figure 5.18: Pan-cancer survival prediction performance on copy number variation (CNV) data. Comparison of the
prediction performance of the pan-cancer XGBoost method on 25 different TCGA cancer cohorts, trained on gene
expression data (XGB[RNA]), copy number variation data (XGB[CNV]), and gene expression data in combination with
copy number variation data (XGB[RNA&CNYV]). Performance is depicted by C-Index boxplots over 100 replications
of model training. Mean C-Indices were compared with Wilcoxon's unpaired rank-sum test and significance levels are
definedasns: p > 0.05, % : p < 0.05, %% : p < 0.0L, % * x : p < 0.00L, * * % : p < 0.0001.

Figure 5.18 shows the survival prediction performance of the pan-cancer XGBoost survival
prediction model in all three settings. Although copy number variations seemed to be predic-
tive for survival at least to some extent (C-Index > 0.5) in many of the investigated TCGA
cohorts, they were significantly less predictive for patient survival than gene expression in
the majority of cancer types (22 of 25 TCGA cohorts). When copy number variations were
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combined with gene expression data, this conferred a significant improvement over survival
prediction on gene expression data alone in only one cohort (TCGA-BLCA), while in 23
cohorts, the difference in C-Index was insignificant and one cohort (TCGA-LIHC) even
showed a drop in performance when both gene expression and copy number variation data
were incorporated into survival prediction. These results suggest that copy number variation
data does contain information on cancer patient survival, but this information does not ap-
pear to be complementary to the information contained in gene expression data and could
thus not significantly improve prediction performance in most cancer types.

Integration of Protein Expression Data

With 6,256 patients and 487 proteins, protein expression measured by RPPA is the sparsest
of the data modalities on which we evaluated our pan-cancer XGBoost survival prediction
approach. For a fair comparison between survival prediction on the more comprehensive
TPM-normalized gene expression data with 8,045 patients and survival prediction on pro-
tein expression data, we thus evaluated our pan-cancer survival prediction approach on dif-
ferent patient (sub-)sets from one of the two data modalities alone or from the combination
of both modalities. More precisely, we evaluated pan-cancer survival prediction on gene ex-
pression data and all patients with measured gene expression (XGB[RNA_all_patients]), on
gene expression data and only patients for which protein expression data was also available
(XGB[RNA_patient_subset]), on protein expression data and all patients for whom protein
expression measurements were available (XGB[protein_patient_subset]), and on the combi-
nation of gene expression and protein expression data and either only the patients with both
gene expression and protein expression data available (XGB[RNA&protein_patient_sub-
set]) or all patients with measured gene expression data (XGB[RNA&protein_all_patients]),
where for patients with only gene expression data available protein expression was treated as
missing data.

Figure 5.19 shows the performance (measured as C-Index) of our pan-cancer XGBoost model
in the 25 different TCGA cohorts, comparing the different patient sets and data settings
trained for 1oo replications each. When comparing survival prediction based on gene expres-
sion data and protein expression data on the same set of patients (XGB[RNA_patient_sub-
set] vs. XGB[protein_patient_subset]), gene expression yielded significantly better results
than protein expression in 1o of 24 TCGA cohorts (there was no protein expression data avail-
able for TCGA-LAML), survival prediction based on protein expression data outperformed
survival prediction based on gene expression data in 5 cohorts and both modalities yielded
similar performances (no significant differences) in 9 cohorts. However, only for one cohort
(TCGA-COAD), the combination of gene expression and protein expression yielded signifi-
cantly better survival prediction results than gene expression data alone, indicating that gene
expression and protein expression data likely contain similar information on patient survival,
with gene expression being slightly more informative than protein expression. When com-
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Figure 5.19: Pan-cancer survival prediction performance on protein expression data. Comparison of pan-cancer XG-
Boost trained on gene expression data and all patients with measured gene expression (XGB[RNA_all_patients]), gene

expression and only patients with both gene and protein expression data available (XGB[RNA_patient_subset]), protein

expression and all patients with protein expression data available (XGB|[protein_patient_subset]), gene expression and

protein expression and only patients with both gene expression and protein expression data available (XGB[RNA&pro-

tein_patient_subset]), and gene expression and protein expression and all patients with measured gene expression data

(XGB[RNA&protein_all_patients]; unavailable protein expression is treated as missing data). Performance is measured by
C-Index over training 100 replications. Mean C-Indices were compared with Wilcoxon'’s unpaired rank-sum test and sig-
nificance levels are definedasns: p > 0.05, % : p < 0.05, *x p < 0.01, * * * 1p < 0.001, * * %% ip < 0.0001.

paring survival prediction performance including all patients with measured gene expression
rather than just those with both gene and protein expression available, the picture is similar:
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For most (21 of 24) cohorts, adding protein expression for patients wherever this data type
is available does not improve prediction performance over using gene expression alone, with
TCGA-ESCA, TCGA-LIHC, and TCGA-UCS being the only three cohorts for which the
combination of protein expression and gene expression improves survival prediction signifi-
cantly.

5.3.9 Tumor Status Impacts Survival Prediction

The tumor status of a cancer patient refers to “the condition or state of the tumor at a partic-
ular time” (NCI Thesaurus version 23.05¢; code C96643) and can assume the values “with
tumor”, “tumor free”, or “unknown tumor status”. For the TCGA data, information on
tumor status is recorded for most cancer types in the clinical supplement data of the GDC
database (the according files were retrieved from GDC data release v31.0). We hypothesized
that patients who were tumor-free at a follow-up at some point after their initial cancer diag-

nosis should have a better prognosis than patients with tumor at the time of follow-up. To ver-
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Figure 5.20: Kaplan-Meier plot by tumor status. The Kaplan-Meier plot shows the survival rate (fraction of patients still
alive at a given time point) over time of tumor-free TCGA patients according to their tumor status compared with TCGA
patients with tumor. Only TCGA patients with known tumor status “tumor free” or “with tumor” were included.

ify this assumption, we first split all patients with known tumor status from the 2.5 analyzed
TCGA cohorts into two groups of tumor-free patients and patients with tumor, respectively.
Then, based on this partition, we generated a Kaplan-Meier plot (Figure 5.20), which for each
of the two groups visualizes the respective group’s survival rate (i.e., the fraction of patients
that are still alive after the respective time) over time. As expected, tumor-free patients have
significantly better survival times compared to patients with tumor (logrank p < 0.005).
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Figure 5.21: Median ages of TCGA patients according to cancer type and tumor status. For each of the 25 evaluated
TCGA cohorts, the median age of all patients belonging to that cohort is compared with the median age of all dead
patients, all dead tumor-free patients, and all dead patients with tumor. For the latter two categories, only patients with
known tumor status (“tumor free” or “with tumor”) were considered. If no patients with the respective tumor status
were available for a cohort, no median age was computed.

When stratifying the TCGA patients by censoring status and tumor status and comparing
the median ages of the different groups, it becomes apparent that the group of tumor-free
patients that have died during the study period has a larger median age than dead patients
with tumor in 19 of 23 TCGA cohorts with recorded tumor status (Figure s.21). Further-
more, in 16 of these cohorts, the median age of the dead tumor-free patients is also larger
than the median age of all patients of the respective cohort and all patients of the cohort that
have died during the study period (Figure 5.21). A possible explanation for the overall older
age of dead tumor-free patients compared to other patient groups could be that at least part
of the tumor-free patients might not have died directly from their cancer, but rather from
old age or other age-related co-morbidities. This would be a case of competing risks, where
other types of events (e.g., death due to age-related causes) may forestall the event of inter-
est (e.g., cancer-related death) '*. Since the risk of dying from age-related causes rather than
cancer can be expected to be especially high in older, tumor-free patients, we hypothesized
that this could be a confounding factor for cancer survival prediction and by not considering
the death of tumor-free patients as a death from cancer, we would be able to at least partly re-
move this confounding factor and might be able to improve our survival prediction model’s
performance.

To test this hypothesis with our gene expression-based pan-cancer XGBoost approach, we
inverted the censoring status of all dead patients with recorded “tumor free” status, thus
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Figure 5.22: Pan-cancer survival prediction performance under consideration of the tumor status. Comparison of the
prediction performance of the pan-cancer XGBoost method trained on gene expression data of 25 different TCGA can-
cer cohorts, either not taking the patients’ tumor status into consideration (XGB[RNA]) or taking the tumor status into
consideration and regarding the survival times of dead tumor-free patients as censored (XGB[RNA_tumor_free_to_cen-
sored]). Performance is depicted by C-Index boxplots over 100 replications of model training. Mean C-Indices were
compared with Wilcoxon’s unpaired rank-sum test and significance levels are definedasns: p > 0.05,% : p < 0.05,
w1 p < 0.0L * %% p < 0.00L % x % : p < 0.0001.

considering these patients as censored when training and evaluating the XGBoost survival
prediction method. Figure 5.22 shows the survival prediction performance (measured as C-
Index) of the pan-cancer XGBoost approach on the 25 analyzed TCGA cohorts evaluated
in the setting where dead tumor-free patients are considered as censored (XGB[RNA _tu-
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mor_free_to_censored]) compared to the original setting where these patients were consid-
ered as uncensored (XGB[RNA]). In agreement with our hypothesis, regarding dead tumor-
free patients as censored instead of uncensored improves the survival prediction performance
of our pan-cancer XGBoost model significantly (p < 0.05) in 13 (BLCA, COAD, ESCA,
HNSC, KIRC, KIRP, LUAD, LUSC, PAAD, READ, SKCM, UCEC, and UVM) of the
25 TCGA cohorts. Interestingly however, it has the opposite effect in three other cohorts
(LGG, LIHC, and UCS), where keeping the original censoring status for dead tumor-free
patients leads to a significantly better survival prediction performance.

5.4 Discussion

Cancer is a leading cause of premature death worldwide’”. To inform treatment decisions
and ultimately reduce cancer mortality, it is critical to be able to quantify a patient’s risk and
estimate prognosis. Therefore, cancer survival prediction is an important computational task.
Our goal was to develop a cancer survival prediction method with high biological plausibility.
We achieved this by combining a gradient tree boosting approach for survival prediction with
network propagation on a comprehensive high-confidence PPI network for the identification
of a biologically plausible pan-cancer survival network.

More precisely, we applied XGBoost®' tree ensemble learning to gene expression data from
each of 25 cancer cohorts from TCGA and showed competitive performance of this single-
cohort XGBoost approach with established survival prediction methods. To address the
problem of low sample numbers in the single-cohort training approach, where a separate XG-
Boost survival prediction model is trained for each cohort, and to enable the identification of
cross-cohort survival features, we then implemented pan-cancer training, where all 25 TCGA
cancer cohorts were used jointly to train an XGBoost model, and showed improved perfor-
mance of the pan-cancer approach over the single-cohort approach. We believe that a large
part of this improvement is likely due to the larger sample numbers in pan-cancer training
compared to single-cohort training. This assessment is consistent with findings from other
prediction tasks like drug sensitivity prediction '
results from pan-cancer XGBoost training—including feature selection and hyperparameter
tuning—on randomly sampled patient subsets of different sizes (Supplementary Figure A.2).
In these additional experiments, survival prediction performance deteriorated for many of

and is supported by survival prediction

the evaluated cancer types when the sample size of the training data was reduced. Interest-
ingly, we also observed that pan-cancer features generalized well across different cancer types,
whereas features from the single-cohort approach tended to be more cancer-type-specific.
There were also notable differences in the types of features used in single-cohort and pan-
cancer survival prediction. While 40.4% of the features used in the single-cohort approach
were protein-coding genes, this proportion increased to 56.5% in the pan-cancer approach,
and correspondingly, the proportion of other—possibly more tissue-specific—feature types
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such as IncRNAs and processed pseudogenes decreased in pan-cancer training compared to
single-cohort training.

To provide biological plausibility for our pan-cancer survival prediction approach, we then
applied the NetCore" network propagation method to the feature importance scores ex-
tracted from the pan-cancer XGBoost models of 100 training replications and identified a
pan-cancer survival network comprising 103 genes. This survival network is strongly associ-
ated with the TME, as we showed by OR A and correlation with patient immune status. The
TME has been found to play important roles in tumor initiation, growth, invasion, metasta-
sis, as well as response to therapies?>*#°, making the association we found between the TME
and cancer survival highly plausible. Furthermore, our findings highlighted the particular
importance of the hypoxic and immune-related aspects of the TME for cancer survival and
identified a moderately negative correlation (R = —0.55) between survival prediction perfor-
mance and age, suggesting that the aging TME may be more difficult to interpret by machine
learning approaches than younger and presumably more intact states of the TME and sup-
porting the notion that the aging TME could influence cancer progression and survival+.
Survival prediction can potentially benefit from these findings by taking age-specific eftects
into account, for example by considering age when splitting the patients into training and
test data.

In addition to applying our pan-cancer survival prediction method to gene expression data,
we also evaluated the method on additional omics data modalities, including mutation, copy
number variation, and protein expression data. DNA methylation was not evaluated as a
data modality because the DNA methylation data available through the GDC data portal
was not consistent across patients with respect to the measurement platform, thus making it
difficult to compare patients. More specifically, the DNA methylation data available for the
analyzed cancer patients was measured by either only one or both of two different generations
of Illumina DNA methylation arrays (Human Methylation 27 and HumanMethylation 450),
which are not directly comparable. Even when considering only the intersection of methy-
lation sites measured by both arrays, substantial batch effects were observable between the
DNA methylation beta values obtained from Human Methylation 27 and HumanMethyla-
tion 450 arrays, respectively (exemplarily shown for TCGA-COAD in Supplementary Fig-
ure A.s), making it difficult to compare patients with methylation beta values measured by
Illumina Human Methylation 277 to patients with beta values measured by Illumina Human
Methylation 450. Of all evaluated omics data modalities, gene expression showed to be the
most informative, which is consistent with previous findings from different biomedical pre-
diction tasks, including the results of Costello et al. ' on drug sensitivity prediction and the
results of Vale-Silva and Rohr 7 on pan-cancer survival prediction, but interestingly in con-
trast to the findings of Cheerla and Gevaert* on the same task. After gene expression, pro-
tein expression was the second most predictive datatype for cancer survival, outperforming
survival prediction based on gene expression data for 5 of the 25 evaluated cancer cohorts.
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Notably, protein expression data was the sparsest of the evaluated data modalities, both in
terms of patient numbers and the number of measured features (i.c., proteins). Therefore,
the relatively good performance of survival prediction based on protein expression data is
noteworthy and it can be speculated that the predictive power of protein expression data for
cancer survival prediction might be underestimated from our results. Hence, the survival pre-
diction performance of the pan-cancer XGBoost model trained on protein expression data
might be further improved with a more comprehensive protein expression dataset providing
measurements for more patients and more proteins. Recalling the central dogma of molecu-
lar biology, genetic information can be transcribed from DNA to RNA and translated from
RNA to protein*”#°. Accordingly, proteins are usually the functional molecules that link
genotype to phenotype®® and we can speculate that protein expression should therefore be
the data modality that is most immediately related to the phenotype of cancer survival, fol-
lowed by gene expression and the genomic data modalities that measure mutations and copy
number variations. Indeed, our results are largely consistent with these considerations, in that
protein expression and gene expression yield better survival prediction performances than
mutation and copy number variation data and the superior performance of gene expression
over protein expression data for most cancer types might be explained by the greater sparsity
of protein expression data compared to gene expression data, for which more patients and
substantially more features are measured than for protein expression data.

Some TCGA patients with reported death during the respective study period have a recorded
“tumor free” status, meaning they did not have any remaining tumor at some point after their
initial diagnosis. For these patients, we speculated that they might have died from other—
potentially age-related—causes rather than their cancer and hypothesized that by regarding
these patients as censored rather than uncensored during survival prediction, we might be
able to improve the prediction performance of our pan-cancer XGBoost model on gene ex-
pression data as the most predictive data modality. Indeed, we could show that considering
the tumor status as described above significantly improved survival prediction performance
for 13 of the 25 evaluated cohorts, supporting this hypothesis. Surprisingly, however, for
three other cohorts, regarding dead tumor-free patients as censored significantly deteriorated
performance instead. A possible explanation for this result could be that at least some of the
tumor-free patients, especially in these three cohorts, were tumor-free at some point, but the
cancer might have recurred later on, ultimately leading to death. For these patients, consid-
ering their survival time as censored might have led to losing important information on their
survival, negatively impacting the survival prediction performance.

In summary, we have introduced a cancer survival prediction approach based on XGBoost
tree ensemble learning and have shown that single-cohort training on gene expression data
demonstrates highly competitive performance with established survival prediction methods,
pan-cancer training significantly improves survival prediction performance compared to single-
cohort training, and gene expression is the most informative data modality for cancer survival,
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closely followed by the more sparse protein expression data. Additionally, we found that tak-
ing patient tumor status into account can further improve survival prediction performance,
suggesting that cancer and other—possibly age-related—causes of death may act as compet-
ing risks. Furthermore, we combined the gene expression-based pan-cancer survival predic-
tion approach with network propagation to gain biological plausibility for the survival pre-
diction step and identified a pan-cancer survival network, which highlighted the importance
of the aging tumor microenvironment for cancer survival.

5.4.1 Limitations

Our survival prediction method is based on cancer patient data made available by the TCGA
consortium. Although TCGA includes a relatively large number of patients from a wide
variety of cancer types, all TCGA data has been processed according to uniform protocols.
As a result, the TCGA data can be assumed to be at least somewhat consistent. When data
from a new, non-TCGA domain that was processed according to different protocols should
be used instead for survival prediction with the method trained on TCGA domain data, dif-
ferent marginal distributions of the source domain used for training and the target domain
that should be used for survival prediction can be a problem. As described in Section 3.2.3, a
possible solution to this type of problem is transfer learning. However, while transfer learn-
ing approaches such as pre-training the model on the source domain and then transferring
it to the target domain, where it is fine-tuned, have been successfully applied and are widely
used with neural networks**®, transfer learning is not as easily and widely applicable to other
machine learning frameworks like XGBoost. Although with TransBoost'“® (cf. Section 4.3),
there is a transfer learning approach building on XGBoost, it cannot be applied to already
trained XGBoost models. Instead, TransBoost modifies the XGBoost implementation to
allow transfer learning by co-learning two parallel models with shared tree structures but dif-
ferent node weights on the source domain instances and a combination of target domain
instances and weighted source domain instances, respectively. This way, the method at the
same time adjusts for different distributions of the source and target domains and trains a
prediction model applicable to the target domain. However, TransBoost is implemented for
classification problems only and is not readily applicable for regression or survival prediction
problems.
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Transfer Learning in Cancer Survival
Prediction

In this chapter, different transfer learning scenarios for improving cancer survival prediction
are explored and evaluated.

6.1 Motivation

Knowledge learned on a task with abundant data can be used to improve the performance
of machine learning models on related tasks with less data through transfer learning (cf. Sec-
tion 3.2.3). This can be especially useful in biomedical prediction tasks like cancer survival
prediction, where large quantities of training data are usually not available. Transfer learning
can be applied to cancer survival prediction in one of two ways: Either a machine learning
model can be trained on a large dataset for an auxiliary prediction task that is in some way
related to cancer survival, or the model can be directly trained for cancer survival prediction
on a medium-sized cancer survival dataset such as the The Cancer Genome Atlas (TCGA)
pan-cancer dataset and then transferred to another independent small cancer survival dataset
obtained from a different clinical study or database. However, while transfer learning can
potentially improve the performance of cancer survival prediction models, it is not compat-
ible with every machine learning framework and prediction task. For instance, while with
TransBoost '*° (cf. Section 4.3) there has been an attempt to combine XGBoost and transfer
learning, the method can only be applied to classification tasks. To the best of our knowl-
edge, there is no method implementing transfer learning for XGBoost that can be applied to
survival prediction. Thus, despite XGBoost showing compelling results in cancer survival
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prediction, it cannot easily be combined with transfer learning to transfer knowledge from
medium-sized to independent small cancer survival datasets or to leverage knowledge from
other prediction tasks for cancer survival prediction. Therefore, in addition to pan-cancer
survival prediction with XGBoost, we also investigated the application of neural networks, a
machine learning methodology that can be conveniently combined with transfer learning, for
transfer learning in cancer survival prediction. To this end, we developed two application sce-
narios of transfer learning in cancer survival prediction, which are described in this chapter:
In the first scenario, we pre-trained a survival prediction neural network on the TCGA pan-
cancer gene expression dataset and then fine-tuned it on smaller cancer survival datasets from
different independent studies, and in the second scenario, we pre-trained neural networks on
the tasks of tissue type classification and age prediction from gene expression data and trans-
ferred the trained networks to cancer survival prediction on the TCGA pan-cancer dataset.
While the prediction of tissue type and age is not specific to cancer and indeed we pre-trained
the tissue type and age prediction models on gene expression data from deceased donors with
various non-cancer-related causes of death, both tasks are to some extent related to cancer sur-
vival prediction in that there are tissue- and cell-type-specific differences in tumorigenesis and
in the organization of oncogenic signaling pathways '>', and aging is correlated with cancer in-
cidence’>"3° and shares some of its hallmarks with cancer’*’. Therefore we think that tissue
type and age prediction are promising candidate tasks for transfer learning.

6.2 Methods

In this section, the methodology used to pre-train survival prediction as well as tissue type
and age prediction models is introduced and the investigated transfer learning strategies for
cancer survival prediction are explained.

6.2.1 Dataand Preprocessing

All transfer learning experiments described in this chapter are based on RN A-seq gene expres-
sion data.

For the first scenario, where a neural network was pre-trained and fine-tuned on gene expres-
sion data for the task of cancer survival prediction, TPM-normalized RNA-seq gene expres-
sion data and the corresponding clinical data were obtained from the GDC data portal and
downloaded with the TCGAbiolinks R package*>****5?. More specifically, for pre-training,
the TCGA dataset (GDC data release v32.0) was used, which comprised 60,616 gene expres-
sion values and 8,045 patients from 25 cancer types after excluding patients with incomplete
data or inconsistent survival information. For fine-tuning the pre-trained model, datasets
from three different cancer studies (CPTAC-3, CDDP_EAGLE-1, and CGCI-BLGSP were
evaluated, which were all downloaded from GDC release v36.0 and comprised TPM-norma-
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lized RNA-seq gene expression data and corresponding clinical data. The Clinical Proteomic
Tumor Analysis Consortium (CPTAC) is an effort by the National Cancer Institute (NCI)
to explore the molecular basis of cancer through large-scale proteome and genome analysis.
In the framework of CPTAC, the CPTAC-3 study investigated molecular and clinical data of
endometrial, lung, kidney, brain, head and neck, and pancreatic cancers and provides both
gene expression and survival data for primary cancers of 763 patients. Unlike TCGA and
CPTAC-3, which are both pan-cancer studies, the other two studies, CDDP_EAGLE-1 and
CGCI-BLGSP, each only investigated a specific cancer type. More specifically, the CDDP
Integrative Analysis of Lung Adenocarcinoma (CDDP_EAGLE-1) project provides data for
bronchus and lung adenomas and adenocarcinomas for so cases, 44 of which could be used
in our transfer learning experiments because both primary-tumor gene expression and sur-
vival data were available. The goal of the Cancer Genome Characterization Initiative (CGCI)
on the other hand, is to catalog genomic alterations in rare adult and pediatric cancers. In
the framework of the CGCI, the CGCI Burkitt Lymphoma Genome Sequencing Project
(CGCI-BLGSP), which we used in our transfer learning experiments, provides primary can-
cer gene expression and survival data for 29 patients with mature B-cell lymphoma, which is
a type of non-Hodgkin lymphoma that is most prevalent in children and young adults. For
pre-training and transfer learning, the 60,616 genes common to all cancer datasets were se-
lected and gene expression data was log-transformed by log, (TPM +-1) to reduce the impact
of extremely large values and data skewness'?>.

For the second transfer learning scenario, where a neural network was pre-trained for tissue
type or age prediction or both and then transferred to the cancer survival prediction task,
TPM-normalized RNA-seq gene expression data from the GTEx project'™® was used for
pre-training. The GTEx data was retrieved from the GTEx Portal on August 17 and 18,
2021 and included gene expression data for 56,156 genes and 17,382 samples from 30 tissue
types and 948 deceased donors with tissue type information and donor age information in
the form of 10-year age brackets. For transfer learning on cancer survival prediction, we used
TPM-normalized gene expression and clinical data of 2.5 cancer types from TCGA, provided
through the GDC data portal (GDC data release v32.0) and downloaded with the TCGAbi-
olinks R package*>"**'5?. The TCGA survival data comprised 60,616 gene expression val-
ues and 8,045 patients from 25 cancer types after excluding patients with incomplete data
or inconsistent survival information. For pre-training and transfer learning, we only used
the 55,617 genes common to the GTEx and TCGA datasets and log-transformed all gene
expression values by log, (TPM + 1).

For both transfer learning scenarios, we used the same 25 cancer types from TCGA as previ-
ously used for survival prediction with XGBoost (cf. Section 5.2.1), excluding TCGA cancer
cohorts with less than 20 uncensored patients. Analogously to what we described in Section
5.2.1, in the case of multiple tumor samples from the same patient, the sample with the lexi-
cographically highest sample ID was selected in all investigated cancer datasets.

I01



Chapter 6

6.2.2 Transferring Survival Information from TCGA to Smaller Can-
cer Datasets

The goal of the first transfer learning scenario was to transfer knowledge within the same task
of cancer survival prediction, but from one dataset to other independent datasets generated
by different studies. To this end, we pre-trained a fully connected feed-forward neural net-
work with a Cox regression output layer for cancer survival prediction on a TCGA pan-cancer
dataset comprising 25 cancer types and then transferred the knowledge learned by this net-
work to survival prediction on independent, substantially smaller cancer datasets. The sur-
vival prediction neural network had a single-neuron output layer with linear activation and
without bias and was trained using negative partial log-likelihood (cf. Section 3.3.2, Equation
3.29) as a loss function and the C-Index (cf. Section 3.3.3) as a performance metric. For pre-
training, the TCGA data was first split into 80% training and 20% test data, while keeping
similar distributions of censored and uncensored patients and similar cancer type distribu-
tions in both the training and the test data. The training data was then further split into 80%
training and 20% validation data under consideration of the censoring status and cancer type
distributions, with the training data being used for model training and the validation data be-
ing used for hyperparameter optimization and early stopping. Then, the gene expression data
was scaled between o and 1 based on the training data using scikit-learn’s**> MinMaxScaler,
and the validation and test data were scaled accordingly. To find the combination of hyperpa-
rameters yielding the best model performance, we used the Optuna framework’® with TPE,
which is a Bayesian optimization method. The optimized hyperparameters included network
architecture, such as the number and sizes of hidden layers, as well as other hyperparameters
such as batch size, learning rate, regularization parameters, and dropout (the selected hyperpa-
rameters and tested parameter ranges are displayed in Supplementary Table B.s5). We used the
adaptive moment estimation (Adam) optimizer** for training and selected the micro-average
C-Index on the TCGA validation data as the optimization objective. The micro-average C-
Index was computed as the weighted average over C-Indices of the 25 cancer types contained
in the validation data, weighted by the number of patients from each cancer type. More for-
mally, it is defined as

T
Zl‘:l nl‘c‘l‘
T )
Zl‘:l nl’
where T'is the number of evaluated cancer types, #; is the number of patients from the cancer
type with index 7, and ¢; is the C-Index computed from the patients of the same cancer type®®.

C[avg = (6.1)

For transfer learning, we then extracted all weights and biases from the neural network trained
with the best hyperparameter combination (i.e., the combination of hyperparameters that
yielded the best micro-average C-Index on the validation data during hyperparameter tun-
ing) for survival prediction on the TCGA data and fine-tuned them on different independent
smaller cancer datasets (fine-tuning model type), which comprised data from the CPTAC-3,
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the CDDP_EAGLE-1 or the CGCI-BLGSP study. Before fine-tuning, however, we first
scaled the gene expression data from all datasets using the MinMaxScaler that we had fitted
on the TCGA training data before pre-training to ensure comparability between datasets.
Because the CPTAC-3 study is a pan-cancer study reporting gene expression and survival
data for seven different cancer types (glioma, bronchus and lung adenomas and adenocar-
cinomas, kidney adenomas and adenocarcinomas, uterus adenomas and adenocarcinomas,
pancreas ductal and lobular neoplasms, lung and bronchus squamous cell neoplasms, and
squamous cell neoplasms of other and ill-defined sites), we evaluated separate fine-tuning on
each of the cancer types as well as fine-tuning on the pan-cancer CPTAC-3 dataset as a whole.
For the other two studies (CDDP_EAGLE-1 and CGCI-BLGSP), we only conducted one
fine-tuning experiment each since these two studies only report gene expression and survival
data of a single cancer type (bronchus and lung adenomas and adenocarcinomas and mature
B-cell lymphomas, respectively). In each fine-tuning experiment, we conducted s-fold cross-
validation on the respective small cancer dataset using the scikit-learn library *5 to obtain a
reliable assessment of prediction performance for this dataset. In &-fold cross-validation, a set
of observations if first randomly divided into £ groups, called folds, of approximately equal
size®. Then the model is trained on the last £ — 1 folds, while the first fold is held back as test
data, which is then used to evaluate the performance of the trained model **. This procedure
of training the model on £ — 1 folds while withholding the remaining fold is repeated £ times
for the different folds, until each of the £ folds has been used once to evaluate model perfor-
mance®. This results in # different evaluations of prediction performance, which in com-
bination gives a more reliable estimation of model performance than evaluating the model
only on one set of observations™. In each iteration of the s-fold cross-validation on one of
the small cancer datasets, we first split the four training folds further into 80% training and
20% validation data. Using these training and validation data, we then fine-tuned the weights
and biases extracted from the pre-trained neural network using the Adam optimizer®® with a
learning rate of 0.1 times the learning rate used for pre-training on TCGA data. During fine-
tuning, we applied early stopping with patience s on the validation data to prevent overfit-
ting of the model on the training data. Finally, we used the respective test fold to evaluate the
fine-tuned cancer survival prediction model. To this end, we computed the C-Index on the
test fold if the respective test data contained only a single cancer type and the micro-average
C-Index on the test fold in the case of the CPTAC-3 pan-cancer dataset.

To be able to assess the effect of transfer learning on survival prediction performance, we
additionally trained survival prediction models ‘from scratch’ as a negative control for each
of the evaluated datasets (scratch model type). To this end, we conducted another s-fold cross-
validation on each of the target cancer datasets. All steps of these control experiments were
analogous to the fine-tuning experiments, except that the weights and biases of the trained
neural networks were randomly initialized instead of initializing them with the pre-trained
weights and biases and the same learning rate as used for pre-training on TCGA data was used
to train the model (instead of using the reduced fine-tuning learning rate). All other model
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hyperparameters were also selected to be the same as for pre-training to ensure comparability
between fine-tuned models and models trained from scratch.

Furthermore, to assess how well the pre-trained model was already adapted to predicting sur-
vival on the independent small cancer datasets, we also directly applied the pre-trained model
to the target datasets without further fine-tuning (pre-training model type). To this end, we
performed a s-fold cross-validation, where in each iteration, we only evaluated the pre-trained
model on the respective test split, such thatall three model types (fine-tuning, scratch, and pre-
training) were evaluated on the same patients and results were therefore directly comparable.

6.2.3 Transferring Knowledge from Tissue Type Classification and Age
Prediction to Cancer Survival Prediction

In contrast to the first transfer learning scenario, where we investigated the transferability
of knowledge learned for cancer survival prediction from a larger cancer survival dataset to
smaller cancer survival datasets, the second transfer learning scenario explored the transfer-
ability of knowledge not only between different datasets, but also between different predic-
tion tasks. More specifically, the transferability of knowledge learned from tissue type classi-
fication and age prediction to cancer survival prediction was investigated. To this end, three
neural networks were first trained on GTEx gene expression data to predict tissue type, age,
and both tissue type and age. For pre-training on all three prediction tasks, only genes mea-
sured in both the GTEx and the TCGA datasets were used to enable the transfer of the model
from one dataset to the other.

In the first step of pre-training, the GTEx gene expression data was randomly split into 80%
training and 20% test data, and the training data was further split into 80% training and 20%
validation data. The splitting procedure took into account the donor of each sample so that
all samples from the same donor were assigned to the same data split (training, validation,
or test) to avoid data leakage and potentially inflated model performance. In addition, it ac-
counted for the distribution of the target variable(s) such that according to the task at hand, ei-
ther the tissue type distribution, the age distribution, or both distributions were similar across
training, validation, and test splits. In the second step, gene expression was scaled between
o and 1 by fitting a MinMaxScaler implemented by the scikit-learn library '*5 to the training
data and then applying it to training, validation, and test data. Next, class imbalances in the
training data were addressed: Tissue types and 10-year age brackets are highly imbalanced in
the GTEx dataset, where some tissue types and age brackets are vastly over-represented com-
pared to others (Supplementary Figure A.6). This can bias the model towards predicting the
majority classes over the minority classes, while still showing relatively good accuracy, and
may lead to poor prediction performance, especially for under-represented classes. There
are different strategies to counter this problem, including undersampling, where for over-
represented classes only a subset of samples is selected, such that the new class size resembles
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the size of the smallest class, oversampling, where minority classes are supplemented with
multiple copies of samples from the respective class to match the size of the largest class, or
weighting strategies, where classes or samples are weighted according to class sizes. Class or
sample weighting can compensate for class imbalances by assigning higher weights to minor-
ity classes or samples from minority classes than to majority classes when computing the loss.
For pre-training our neural networks, we decided to use sample weighting because it doesn’t
have the disadvantages of undersampling, where some samples from the majority classes are
disregarded, potentially leading to loss of information, or oversampling, where the size of the
datasetis artificially increased, slowing down model training without adding further informa-
tion. For the tissue type classification task, we used scikit-learn’s>5 compute_sample weight
function with the dass_weight parameter set to ‘balanced’ to compute sample weights for
all GTEx samples, while for the age prediction task, we directly implemented class weight-
ing into the loss function. For all pre-training tasks of predicting tissue type, age, and both
tissue type and age, we used the Adam optimizer®” and tuned model hyperparameters on
the training and validation data using the Optuna framework’ with TPE for hyperparame-
ter sampling. Among the optimized hyperparameters were the number of hidden layers of
the respective neural network, layer sizes, activation function, regularization, and dropout
parameters, but also training-related parameters like learning rate, batch size, and optimizer-
specific parameters like weight decay and beta parameters of the Adam optimizer (a full list
of optimized hyperparameters and their optimal values for each of the pre-training tasks can
be found in Supplementary Tables B.6, B.7, and B.8). Additionally, we used early stopping
with patience 5 on the validation data in all pre-training settings to avoid overfitting. The
three different pre-training settings are explained in more detail in the following subsections.

Pre-Training for Tissue Type Classification

The first evaluated pre-training task was tissue type classification on GTEx gene expression
data. In this pre-training task, the goal was to predict which of 30 tissue types a sample was
from. To this end, a fully connected neural network with 30 output units and softmax acti-
vation in the output layer was trained using categorical cross-entropy as a loss function. The
remaining architecture, such as the number and sizes of hidden layers, and other model hy-
perparameters were optimized using the Optuna hyperparameter tuning framework’, as de-
scribed in the previous section. To assess the performance of each hyperparameter combina-
tion, the respective models were evaluated on the validation data with the multi-class version
of Matthew’s Correlation Coefficient (MCC), which is based on the confusion matrix C and
is defined as
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where K is the number of classes, ¢ = Zle Cyy is the number of correctly predicted samples,
s=8 Zszl Cj; is the total number of samples, p, = S K | G is the column total of
the confusion matrix, which indicates the number of times each class £ was predicted, and
t, = Zz[il Cy is the row total of the confusion matrix, indicating the number of times each
class £ truly occurred *. Compared to using accuracy as a performance metric, Matthew’s
Correlation Coefficient has the advantage that it can be applied to unbalanced prediction
problems without the majority class or classes dominating its value as would happen with
accuracy("*’” .

Pre-Training for Age Prediction

The second pre-training task we evaluated was age prediction, where we trained a neural net-
work to predict sample donor ages by classifying samples into 10-year age brackets based on
gene expression. However, predicting age brackets is not a typical classification task, where
the different classes are independent from each other. For instance, when the true age of an
individual is between 6o and 69, predicting the age bracket 50-59 would be closer to the true
age and thus better than predicting for example the age bracket 20-29. Typical classification
models that use loss functions such as the categorical cross-entropy cannot take this type of
dependency between classes into account. However, the age prediction task can instead be
formulated as an ordinal regression problem, where the distance between classes is consid-
ered in the loss function. For this formulation, the age classes must be encoded in a way that
reflects the similarity between classes, and the loss function must penalize predictions that
are further away from the true age class more than predictions that are closer to the true age
class. To this end, the ordinal regression problem is converted into multiple binary classifica-
tion problems, which is inspired by Cheng et al.>*. Given K classes ¥ = 1, ..., K, an ordinal
relation between the classes with 1 < 2 < ... < Kis assumed and each class £ is encoded as
a (K — 1)-dimensional vector o*) = (oik), ogk), e ogf)_l) with

(k) 1, ifi<k

0 . =
' 0, else.
That is, considering for instance six age brackets with the age bracket 20-29 corresponding
to class 1, age bracket 30-39 corresponding to class 2, and so on, class 1 will be encoded as
(0,0,0,0,0),class2as (1,0,0,0,0),and class 3as (1,1, 0, 0, 0), while class 6 will be encoded
as (1,1,1,1,1).

According to this formulation, the neural network trained for predicting age had K —1 nodes
in the output layer and each of these output nodes used the sigmoid function as activation.
Thus, the output of the kth output node can be interpreted as the probability that the age of
a given individual is higher than the age bracket represented by class £. The network was then
trained using a loss function that is based on binary cross-entropy. More precisely, the loss
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of each sample was computed as the mean over the K — 1 output nodes, for each of which
a weighted version of the binary cross-entropy was calculated. Using just the standard bi-
nary cross-entropy without introducing any weights would bias the neural network towards
overpredicting classes in the middle range, while underpredicting classes with small or high
numbers, even for class-balanced training data. The reason for this phenomenon lies in the
encoding of the ordinal classes: The target value of the first position of the output encoding
is 0 only for class 1 and 1 for all other classes, while the target value of the last position only
becomes 1 for class K and 0 for all other classes, introducing a form of class imbalance with
the same effects on model training. Hence, the model might learn to always predict 1 for the
first position, while always predicting 0 for the last position. On the other hand, the num-
bers of zeros and ones in the target output become more and more balanced when moving
towards classes in the middle range, making it easier for the model to learn the correct classes.
A second source of bias comes from inherent class imbalances in the training data, which can
influence the model towards overpredicting majority classes while underpredicting minority
classes. To mitigate both sources of bias caused by the two different forms of class imbalance,
we computed two weights for zeros and ones, respectively, for each output node based on the
numbers of zeros and ones at this position in the target output encodings of the training data.
Based on these weights, a weighted binary cross-entropy for each sample 7 and each output
node k can be computed as

Crossentropy,, = — (w/(el)y,-/e log(y4) + w,(eo)(l — ya) log(1 —j/[/e)> , (6.3)

where y; is the target value at the kth position of the output encoding of sample 7, y is
the prediction of the kth output node for sample 7, and w©® and w® are weight vectors of
length K — 1 containing the weights that should be given to zeros and ones, respectlvely, in
each of the K — 1 output nodes. These weight vectors are computed as w® =

max(no7 )

and w® L where 7y € N ¥ 1and n; € NX1 are the numbers of zeros and ones

max(7q,1
respectively at e:flclh of the K — 1 output encoding positions in the target y. For example, if the
input data contained ten samples and four different classes with two samples from class 1, five
samples from class 2, and three samples from class 4, then there would be 8 ones (from the
samples of classes 2 and 4) and 2 zeros (from the samples of class 1) in the first position of the
output encoding, 3 ones (from the samples of class 4) and 7 zeros (from the samples of classes
1 and 2) in the second position, and 3 ones and 7 zeros in the third position. Accordingly, the

weight vectors would then become w(®) = (5.3,%)and w) = (5 é, ;)

The complete loss function for the ordinal regression task can then be computed as the mean
of weighted binary cross-entropies across the K — 1 output encoding positions, averaged over
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the NV input samples:

N K—1
1 1 . N
lordinal = _X] Z ﬁ Z wél)_yﬂe log(}’z’k) + w/(eO) (1 - yz/e) log(l - _yz'k) (64)
=1 k=1
1 N K-1

= _N—(K— 1 Z Z w/(el)yl'/e log(jfi/e) + w/(eo)(l —yl-k) log(l — ) (6.5)

=1 k=1

The class prediction for a sample 7 can be derived from the predicted output encoding as
the first position in the encoding that has a predicted value smaller than 0.5. For instance,
the predicted output encoding (0.9, 0.8, 0.6, 0.2, 0.1) would correspond with the predicted
class 4.

The hyperparameters of the age prediction neural network, including the number and sizes
of hidden layers, learning rate, and other model hyperparameters, were optimized using the
Optuna hyperparameter tuning framework’®. To this end, the weighted Cohen’s x with
quadratic weights was used as a performance metric to evaluate the different hyperparameter
combinations, and the hyperparameter combination that yielded the best weighted Cohen’s
x score on the validation data was selected for pre-training the final age prediction model. Co-
hen’s x was first proposed by Jacob Cohen in 1960°° to quantify the level of agreement be-
tween two judges or annotators on a classification problem with independent classes. Since a
certain amount of the agreement between annotators is expected by chance, Cohen proposed
to include this proportion of expected chance agreement into his x score. More precisely, Co-
hen’s x is defined as

x = 71;]) (6.6)

— ».

where p, is the proportion of units where the annotators agree and p, is the proportion of
units for which agreement is expected by chance. That is, the numerator p, — p, reflects the
proportion of cases in which the annotators agree beyond chance and the denominator 1 — p,
represents the proportion of cases for which disagreement between the annotators would be
expected by chance. Hence, « is the proportion of agreement between the annotators after
removing chance agreement and positive values of x indicate more agreement between anno-
tators than expected by chance, while negative values of x indicate less than chance agreement.

In ordinal regression, classes are not independent from each other, but have an ordinal rela-
tionship, and misclassification in a more distant class is worse than misclassification in a more
proximate class. However, Cohen’s « as described above treats all disagreements between
annotators equally. In 1968, Jacob Cohen proposed a generalization to his ¥ metric, the
weighted Cohen’s «,,, which incorporates weights to account for different degrees of agree-
ment or disagreement between the K classes*”. The weighted Cohen’s x,, with agreement
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weights is defined as
B ZZ.J. wl-jpgij — Ziz/' wl-jpfl.j
Kw - 9 (6'7)
Winax — Zz‘ J wz’jpclj
where w;; is the agreement weight between class 7 and class 7, w,,4, is the maximum agreement
score for complete agreement (7 = ), p,, is the proportion of joint annotations observed
in the cell 77 of the K x K contingency table, and Pey 18 the proportion of joint annotations

expected by chance in the same cell. To compute the agreement weights w;; between class 7
and class 7, different weighting schemes can be applied. For example, linear weights, which
are inversely proportional to the distance between classes, can be computed as™*?

P
with K being the total number of classes. Quadratic weights, which are quadratically decreas-
ing for classes that are further away, can be computed with the following formula '’

(1 —j)°

(K_17 (6.9)

For the age prediction pre-training task, we used quadratic weights for computing the weighted
Cohen’s x,,.

Pre-Training for Tissue Type Classification and Age Prediction

In the third pre-training setting, we trained a neural network to predict tissue type and age si-
multaneously from the gene expression data of GTEx samples. To this end, we trained a mul-
titask model with shared hidden layers, followed by task-specific layers for each task. Similar
to the pre-training on tissue type classification or age prediction alone, the model architecture
(including the number of shared and task-specific layers) and other hyperparameters were op-
timized using Optuna’® with multivariate TPE (see Supplementary Table B.8 for the selected
hyperparameters). In addition to the prediction performance in tissue type classification and
age prediction, we also optimized the size of the last shared layer (latent size) to be as small
as possible without compromising the performance of the other two prediction tasks to pre-
vent the model from simply selecting one large and very general shared layer and then shifting
the learning of the actual prediction tasks to task-specific layers that would not be transferred
to the survival prediction model. During hyperparameter tuning, we used Matthew’s Cor-
relation Coefficient to evaluate the tissue classification performance of the model, while the
weighted Cohen’s x,, with quadratic weights was used for assessing the age prediction perfor-
mance. The hyperparameter combination used for the final pre-training was then selected
by manual inspection of the Pareto front of the optimization objectives (Figure 6.2), i.e. the
set of all Pareto efficient solutions where none of the optimization objectives can be further
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improved without deteriorating another®”.

Transfering the Pre-Trained Model to Survival Prediction

Once training the neural network in one of the three described pre-training settings was
complete, the knowledge learned by that model in the form of weights and biases could be
transferred to the cancer survival prediction task. To this end, the first #z hidden layers of
the tissue type classification or the age prediction neural network, or the first 7 shared lay-
ers of the multitask neural network trained for both tissue type and age prediction (with
1 < n < total number of hidden/task-specific layers) were transferred to a new neural net-
work with the same model architecture (i.e., the same number and sizes of hidden layers) as
the respective pre-trained model. While in this way, the first #z hidden layers of each new
neural network were initialized with the learned weights of the respective pre-trained neural
network, the remaining hidden layers were randomly initialized. Additionally, to adapt each
new neural network for survival prediction, the output layer was replaced by a Cox regression
output layer with linear activation and no bias term.

Each new neural network was then further trained for cancer survival prediction on the TCGA
pan-cancer dataset in one of two different transfer learning settings: In the first setting, only
the randomly initialized last layer(s) of the neural network were trained while freezing the 7
pre-trained layers (¢7ansfer setting), meaning that weights and biases of the pre-trained layers
were not updated during training. In the second setting, on the other hand, both the ran-
domly initialized last layer(s) and the pre-trained layers were further trained for the survival
prediction task (fine-tuning setting). In addition to these two transfer learning settings, we
evaluated another setting (scrazch setting), where corresponding to each pre-trained model,
another randomly initialized survival prediction neural network with the same model archi-
tecture and hyperparameters as the pre-trained model (except for the task-specific output
layer) was trained from scratch and without transferring any pre-trained weights and biases.
This neural network trained from scratch served as a negative control to assess the effect of
transfer learning on survival prediction performance. In all three settings, the respective neu-
ral network was trained for survival prediction using the Adam algorithm®” as the optimizer,
the negative partial log-likelihood (cf. Section 3.3.2, Equation 3.29) as a loss function, and
the C-Index (cf. Section 3.3.3) as a performance metric. In the z7ansfer setting, the weights
and biases of the transferred pre-trained layers were frozen and only the randomly initialized
layers were trained using the same learning rate as used in the respective pre-trained model.
In the fine-tuning setting, in contrast, two different learning rates were used for training the
model, where the transferred pre-trained layers were fine-tuned with a learning rate of 0.1
times the learning rate of the pre-trained model, and the randomly initialized non-transferred
layers were trained with the same learning rate as the respective pre-trained model. Lastly, in
the scratch setting, all layers of the neural network were trained using the learning rate of the
respective pre-trained model. In all three settings, all other model hyperparameters except for
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the learning rate were kept the same as for the respective pre-trained model to allow for a fair
comparison between the settings.

To obtain a reliable assessment of the survival prediction performance in the different pre-
training and transfer learning settings, we applied a stratified s-fold cross-validation scheme
using the scikit-learn library "*5. In this scheme, the TCGA data was first split into five parts
(folds) of equal size and equal distributions of cancer types. Then, in each iteration of the
cross-validation, one of the folds was used as test data for model evaluation, while the remain-
ing four folds were further split into 80% training and 20% validation data used for model
training and early stopping (with patience s), respectively. For model training and evalua-
tion in each iteration, the TCGA training, validation, and test data were scaled using the
MinMaxScaler fitted to the respective GTEx pre-training data. Next, transfer learning for
survival prediction was performed on the training data according to one of the transfer learn-
ing settings described above with early stopping based on the validation data. Finally, after
transfer learning was completed, the trained model was evaluated on the test data.

6.2.4 Implementation

All transfer learning experiments were implemented in Python (release 3.10) and based on
the Keras*® and TensorFlow' machine learning libraries. For hyperparameter tuning, the
Optuna framework’ was used. Pre-training and transfer learning of all models and all evalu-
ated settings was conducted on a Tesla Vioo-PCIE-32GB GPU using the NVIDIA CUDA
platform (version 11.6).

6.3 Results

This section describes the results obtained in the two scenarios exploring the potential of
transfer learning for cancer survival prediction. The first scenario investigated the transfer-
ability of knowledge learned for cancer survival prediction on the TCGA dataset to smaller,
independent cancer datasets from different studies. In the second scenario, transfer learning
was used to extract knowledge from tissue type classification and age prediction and explore
the potential benefits of this knowledge for cancer survival prediction.

6.3.1  Survival Information Can Be Partially Transferred between Can-
cer Studies

As described in Section 6.2.2, we first explored transfer learning from a survival prediction
model pre-trained on 25 cancer cohorts from TCGA to survival prediction on smaller, inde-
pendent cancer datasets, including CPTAC-3, CDDP_EAGLE-1, and CGCI-BLGSP. To
this end, we pre-trained a feed-forward neural network on 5,148 patients (training data) from
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25 TCGA cohorts and during training applied early stopping with patience 5 based on the
validation performance to avoid overfitting. On the TCGA test data (1,609 patients), the
pre-trained model achieved a micro-average C-Index of 0.6595, which was calculated by com-
puting the C-Indices for every cancer cohort in the test data separately and then computing
the mean of these C-Indices weighted by the number of test patients from each cohort. On
a per-cohort level, the survival prediction performance of the pre-trained model appears to
be largely on par with the average performance of the XGBoost pan-cancer model described
in Chapter s over 100 training replications with different training and test splits (Figure 6.1).
However, because we only evaluated the pre-trained model on a single training and test split
of the TCGA data, its performance on the test data may provide aless accurate and less robust
estimate of model quality than the averaged results of the XGBoost models.

1.0 i
[ Pre-trained neural network

[ XGBoost

C-Index

TCGA-ACC
TCGA-BLCA
TCGA-BRCA
TCGA-CESC

TCGA-COAD
TCGA-ESCA
TCGA-GBM
TCGA-HNSC

TCGA-KIRC

TCGA-KIRP
TCGA-LAML

TCGA-LGG

TCGA-LIHC
TCGA-LUAD
TCGA-LUSC
TCGA-MESO

TCGA-OV
TCGA-PAAD
TCGA-READ
TCGA-SARC
TCGA-SKCM
TCGA-STAD
TCGA-UCEC

TCGA-UCS

TCGA-UVM

Figure 6.1: Performance of pre-trained survival prediction model. This figure shows the test performance (measured

as C-Index) of the pre-trained survival prediction neural network (darker blue) on the 25 TCGA cancer cohorts. The
performance for each cohort is compared with the average test survival prediction performance of the pan-cancer
XGBoost method (lighter blue) described in Chapter 5, which was trained and evaluated on 100 different train-test splits.
Error bars represent the standard deviation of C-Indices over the 100 replications of XGBoost.

After pre-training the survival prediction model on TCGA data, the weights and biases of
the pre-trained neural network were transferred to predict survival on smaller, independent
cancer datasets, including CPTAC-3 as a pan-cancer dataset and all cancer types contained in
CPTAC-3 separately, the lung adenocarcinoma dataset from the CDDP_EAGLE-1 study
and the CGCI-BLGSP mature B-cell lymphoma dataset. For each dataset, we compared
the s-fold cross-validated survival prediction performances from pre-training, where the pre-
trained model was directly applied to the respective small cancer dataset without further fine-
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tuning of weights and biases, fine-tuning, where the transferred weights and biases of the
pre-trained model were further fine-tuned on the small cancer dataset with a small learning
rate (0.1 times the original learning rate), and training from scratch, where a randomly initial-
ized neural network with the same model architecture and the same hyperparameters as the
pre-trained model was trained without prior transfer of weights and biases.

For seven out of ten evaluated datasets (CPTAC-3 pan-cancer, CPTAC-3 Bronchus and
lung — Adenomas and Adenocarcinomas, CPTAC-3 Bronchus and lung — Squamous Cell
Neoplasms, CPTAC-3 Kidney — Adenomas and Adenocarcinomas, CPTAC-3 Other and
ill-defined sites — Squamous Cell Neoplasms, CDDP_EAGLE-1 Bronchus and lung — Ade-
nomas and Adenocarcinomas, and CGCI-BLGSP Mature B-Cell Lymphomas), applying
the pre-trained survival prediction model directly to the respective dataset without further
fine-tuning of weights and biases yielded the best average performance in terms of C-index
(or micro-average C-index in case of the CPTAC-3 pan-cancer dataset) of all three evalu-
ated model types (Table 6.1). For the remaining three datasets (CPTAC-3 Brain — Gliomas,
CPTAC-3 Pancreas — Ductal and Lobular Neoplasms, and CPTAC-3 Uterus, NOS — Adeno-
mas and Adenocarcinomas), the models trained from scratch without any transfer learning
showed the best average performance in s-fold cross-validation. Interestingly, fine-tuning
the transferred weights and biases on the small datasets did not yield the best average sur-
vival prediction performance for any of the evaluated datasets. However, for six of the seven
datasets where pre-training without any further fine-tuning yielded the best performance of
all model types, the models with fine-tuning still outperformed the models that were trained
from scratch, further confirming that for these datasets transfer learning provides an advan-
tage over training from scratch.

6.3.2 Transfer of Knowledge from Auxiliary Tasks Can Improve Sur-
vival Prediction Performance

In addition to the first transfer learning scenario, where we explored the effect of transfer-
ring knowledge from one cancer survival dataset to different independent, smaller cancer
survival datasets, we also investigated a second scenario for transfer learning (described in
Section 6.2.3). In this second scenario, we pre-trained neural networks for different auxiliary
tasks, including tissue type classification, age prediction, and joint tissue type and age pre-
diction, on gene expression data from the GTEx project and tried to transfer the knowledge
learned from these tasks to cancer survival prediction on a pan-cancer dataset from TCGA,
which comprised gene expression and survival data from 2.5 different cancer types.

The hyperparameters of each of the pre-trained neural networks were optimized using the
Optuna framework’® with TPE. For the tissue type classification and age prediction models,
the hyperparameters were optimized according to only one metric (Matthew’s correlation
in the case of tissue type classification and weighted Cohen’s x,, in the case of age predic-
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Table 6.1: Transfer learning results on independent small cancer datasets. Study contains the source cancer study of each dataset, Cancer type describes the cancer type(s)
contained in the dataset (‘Pan-cancer (micro-averaged)’ in case of the CPTAC-3 pan-cancer dataset), and # Patients (uncensored) contains the number of total and uncen-
sored patients in each dataset. The three columns Scratch, Pre-training, and Fine-tuning contain the survival prediction performance of each dataset measured as mean
C-Index (mean micro-average C-Index over the different cancer types for the CPTAC-3 pan-cancer dataset) over test folds of the 5-fold cross-validation = standard error

of the mean (SEM). The best average survival prediction performance for each dataset is marked in bold.

Chapter 6

Study Cancer type # Patients (uncensored) Scratch Pre-training Fine-tuning
Pan-cancer (micro-averaged) 763 (214) 0.5867 + 0.0141 0.6219 + 0.0295 | 0.6202 + 0.0144
Brain - Gliomas 71(52) 0.5869 £ 0.0549 0.5848 + 0.0350 0.5556 1 0.0568
Bronchus and lung — Adenomas and Adenocarcinomas 157 (26) 0.5999 + 0.0654 | 0.6917 £ 0.0223 | 0.6437 £ 0.0731
CPTAC- Bronchus and lung - Squamous Cell Neoplasms 84(15) 0.5365 + 0.1056 0.6315 + 0.0833 | 0.5691 £ o0.1522
Kidney — Adenomas and Adenocarcinomas 174 (27) 0.6026 + 0.0534 0.7442 + 0.0410 | 0.7380 £ 0.0185
Pancreas — Ductal and Lobular Neoplasms 93 (67) 0.6029 + 0.0388 0.5260 + 0.0357 0.5638 1+ 0.0259
Uterus, NOS — Adenomas and Adenocarcinomas 96 (11) 0.8188 + 0.0698 0.5885 + 0.0766 0.6192 1 0.0850
Other and ill-defined sites — Squamous Cell Neoplasms 88 (16) 0.3870 + 0.0415 0.5670 + 0.0532 | o.5572 £ 0.0277
CDDP_EAGLE-1 | Bronchusand lung - Adenomas and Adenocarcinomas 44 (28) 0.5744 T 0.0527 0.6997 + 0.0337 | 0.6865 + 0.0710
CGCI-BLGSP Mature B-Cell Lymphomas 29 (29) 0.5667 1 0.0596 0.6200 + 0.1052 | 0.5533 £ 0.0629
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Pareto-front Plot

Pareto-front Plot

e Trial
® Best Trial
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Tissue Matthew's Correlation

® Trial
® Best Trial
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Age Weighted Cohen's Kappa

(a) (b)

Figure 6.2: Results of hyperparameter optimization for joint tissue type and age prediction. Dots represent trials of the
Optuna® hyperparameter optimization procedure and mark the achieved prediction performance on the GTEXx valida-
tion data with respect to the optimized performance metrics. Each trial is associated with a distinct configuration of
model hyperparameters. For the tissue type and age prediction multi-task model, three metrics, including the weighted
Cohen’s x,, for age prediction, Matthew’s correlation for tissue type classification, and the size of the last layer shared
between both tasks (latent size), were jointly optimized. Pareto-efficient solutions, which are solutions where none of
the optimization objectives can be further improved without compromising another®’, are marked in red. (a) Plot of the
pareto front including all three optimized metrics. (b) Plot of the two Pareto-front dimensions representing tissue type
and age prediction performance. The black arrow marks the trial whose hyperparameters were selected to train the
tissue type and age prediction model that was then used for transfer learning for cancer survival prediction.

tion), resulting in a single hyperparameter combination that produced the best results on the
validation data. In contrast, for the tissue type and age prediction multi-task model, hyperpa-
rameters needed to be optimized according to both metrics simultaneously. In addition to
the two metrics for tissue type classification and age prediction, we also optimized the hyper-
parameters of the multi-task model to minimize the size of the last layer shared between tasks
to prevent the model from just sharing one large, very general layer between tasks, while shift-
ing most of the task-specific knowledge to the remaining, task-specific layers, whose weights
and biases would not be used in transfer learning. When optimizing hyperparameters simul-
taneously, it is not always possible to find a solution (i.e., a set of hyperparameters) that is
optimal according to all metrics (optimization objectives) at the same time. Instead, a solu-
tion is selected that lies on the Pareto front of the optimization problem, which is an image of
the set of all Pareto optimal solutions of the optimization problem*”. A solution is said to be
Pareto optimal if there is no other solution that improves one of the optimization objectives
without compromising another. For our tissue type and age prediction multi-task model, we
selected a hyperparameter combination from the set of Pareto optimal solutions by manual
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inspection of the Pareto front (Figure 6.2) and pre-trained the tissue type and age prediction
model used for transfer learning based on this hyperparameter combination.
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Figure 6.3: Tissue type and age prediction performance of pre-trained models. Shown are the row-normalized confusion
matrices for (a) tissue type prediction of the model trained for tissue type classification (c) tissue type prediction of the
model trained for tissue type and age prediction (b) age prediction of the model trained for age prediction, and (d) age
prediction of the model trained for tissue type and age prediction. The rows of the confusion matrices represent ground

truth tissue types and age ranges and columns represent predicted tissue types and age ranges, respectively.

Figure 6.3 visualizes the prediction performances of all pre-trained neural networks on GTEx
test data that was withheld during training. Prediction performances are presented in the

form of row-normalized confusion matrices of true (rows) versus predicted (columns) classes.
Subfigure 6.3a compares the true and predicted tissue types of test samples predicted with
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the model pre-trained for tissue type prediction only, while subfigure 6.3b shows true and
predicted tissue types of the model pre-trained for tissue type and age prediction simultane-
ously. Both models yield almost perfect classification accuracy (0.9956 for the tissue type
classification model and 0.9883 for the tissue type and age prediction model) and Matthew’s
correlation scores of 0.9953 and 0.9874, respectively, on the test data. Donor age predic-
tion from gene expression data, however, seems to be a more challenging task. Both models
trained for this task show suboptimal prediction accuracy of 0.3707 for the model trained on
age prediction only and 0.4492 for the multi-task model trained on both age prediction and
tissue type prediction simultaneously. However, the 1o-year age brackets predicted in this
task are not independent from each other, but have an ordinal relationship. Therefore, con-
sidering only prediction accuracy to assess model performance may be somewhat misleading
because it fails to reflect the ordinal relationship between classes and treats a false prediction
that deviates from the true age of the tissue donor by only one age bracket in the same way asa
false prediction that deviates from the true class by multiple age brackets, which is arguably a
larger error. To circumvent this problem and account for the relationship between age brack-
ets, we also evaluated the test performance based on the weighted Cohen’s x,, with quadratic
weights, which has values in the range [—1,1], with 1 indicating a perfect prediction. This
way, prediction errors were weighted according to the distance between the true class and
the predicted class, providing a more complete picture of model quality than accuracy alone.
The model trained for age prediction alone yielded a weighted Cohen’s «,, score of 0.5225
on the GTEx test data, while the model trained on both age and tissue type prediction had
a weighted Cohen’s «,, score of 0.6706. Looking at the respective confusion matrices of the
two models (Figure 6.3 ¢ and d), it is noticeable that while many predictions do not lie on
the diagonal of correctly predicted age brackets, there is a distinctive accumulation of predic-
tions close to the diagonal, meaning that for many samples, the predicted age was not exactly
correct, but at least close to the true age bracket.

Using the three pre-trained models for tissue type classification, age prediction, and joint tis-
sue type and age prediction, we explored two different modes of transfer learning for each
of the models and additionally compared the results achieved in these two modes with sur-
vival prediction models that had the same model architecture as the respective pre-trained
model, but were trained on the TCGA data from scratch and without any knowledge trans-
ter (scratch mode). In the first transfer learning mode (t7ansfer), weights and biases of the
first 7 layers of the network were initialized with the weights and biases of the respective pre-
trained model. The remaining, randomly initialized, layers were then trained for survival pre-
diction, while the transferred layers were frozen and not trained further. In the second trans-
fer learning mode (fine-tune), on the other hand, the first z layers of the neural network were
also initialized with the weights and biases of the respective pre-trained model, but instead of
training only the remaining, randomly initialized layers, all layers were trained further for sur-
vival prediction, using a lower learning rate for the transferred layers than for the randomly
initialized layers to prevent the neural network from ‘forgetting’ the pre-learned knowledge
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Table 6.2: Transfer learning results of models pre-trained on tissue type and age prediction. All models were trained for
cancer survival prediction on TCGA pan-cancer data and had the same model architecture as the pre-trained model of
the respective Pre-training task. In the “Transfer” and “Fine-tune” modes (Mode), weights and biases of the first 7 neural
network layers (Transferred layers) were initialized with values transferred from models pre-trained on GTEXx data for
either tissue type classification, age prediction, or joint tissue type and age prediction. In “Transfer” mode, transferred
layers were frozen and only the remaining, randomly initialized layers were trained and in “Fine-tune” mode, transferred
and randomly initialized layers were trained with different learning rates. In “Scratch” mode, all layers were randomly
initialized (no transfer learning) and trained for survival prediction. The last column (Micro-average C-Index (4= SEM))
displays the average survival prediction performance (measured as micro-average C-Index across cancer cohorts) +
standard error of the mean (SEM) of 5-fold cross-validation on the TCGA data. The best average survival prediction
performance for each pre-training task is marked in bold and the overall best performance is additionally marked with ]L

Pre-training task Mode Transferred layers | Micro-average C-Index (+ SEM)

3 0.6028 £ 0.0057

Transfer 2 0.6170 + 0.0042
I 0.6295 + 0.0071

Tissue type classification 3 0.6481 £ 0.00897
Fine-tune 2 0.6451 + 0.0022

1 0.6362 + 0.0082

Scratch o 0.6295 =+ 0.0087

2 0.5482 + 0.0068
Transfer 1 0.6011 + 0.0061

Age prediction Fine-tune 2 0.6430 %+ 0.0056

I 0.6457 £ 0.0006

Scratch o 0.6326 £ 0.0046
3 0.5467 £ 0.0058
Transfer 2 0.5812 £ 0.0075

I 0.6100 =+ 0.0086

Tissue type & age prediction 3 0.6287 + 0.0054
Fine-tune 2 0.6282 + 0.0050

1 0.6322 £ 0.0048
Scratch o 0.6013 £ 0.0058

again by changing the transferred layers to much based on the survival data. For both trans-
ter learning modes (t7ansfer and fine-tune), we evaluated models with different numbers of
transferred layers # with 7 between 1 and the number of hidden layers (or shared layers in the
case of the tissue type and age prediction multi-task model).

Overall, a survival prediction model with three transferred layers that were pre-trained on the
tissue classification task and were further trained for survival prediction in fine-tune mode
showed the best mean micro-average C-index in a 5-fold cross-validation on the TCGA data
(Table 6.2). The micro-average C-index was computed by calculating the C-Indices for every
cancer cohort based on the test data of the respective iteration of the cross-validation sepa-
rately and then computing the mean of these C-Indices weighted by the number of test pa-
tients from each cohort. Notably, also for the other two evaluated pre-training tasks of age
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prediction and joint tissue type and age prediction, a survival prediction model trained in fzre-
tune mode showed the best prediction performance, respectively, in terms of mean micro-
average C-index, indicating that cancer survival prediction can benefit from transfer learning
on auxiliary tasks such as tissue type classification and age prediction. However, while for
the models pre-trained on tissue type classification, the fine-tuned model with the maximal
number of transferred layers (3) yielded the best survival prediction performance, the best-
performing models pre-trained on one of the other two tasks (age prediction or joint tissue
type and age prediction) only used one transferred layer each, while all consecutive layers
were randomly initialized. Moreover, the improved performance of the best-performing fine-
tuned models of all three pre-training tasks over the respective models trained from scratch
was observable for many, but not all 25 cohorts of the TCGA pan-cancer dataset (Supple-
mentary Figures A.7, A.8, and A.9). This emphasizes the heterogeneity of the different can-
cer types and their different relationships to the pre-training tasks, which can have more or
less relevance for patient survival in a certain cancer type. For example, for bladder urothe-
lial carcinoma (TCGA-BLCA), the neural networks pre-trained for tissue type classification
and fine-tuned for survival prediction on TCGA pan-cancer data performed worse than the
corresponding model that was trained from scratch (Supplementary Figure A.7), while the
fine-tuned models outperformed the scratch model for the same cancer type when the pre-
training task was age prediction or joint tissue type and age prediction (Supplementary Fig-
ures A.8 and A.9, respectively). We speculate that the lack of benefit from transfer learning
from tissue type classification for this cancer type might be caused by the composition of the
pre-training data, which contained only 21 bladder tissue samples (~ 0.12% of all samples,
cf. Supplementary Figure A.6a) and might thus not represent the molecular characteristics
of bladder cancer comprehensively enough. On the other hand, bladder cancer is a cancer
of old age (median age at diagnosis 73 and median age at death 79 in the U.S."*?), which
might explain why survival prediction in this cancer type benefited from pre-training on age
prediction and joint age and tissue type prediction.

Models that were initialized with transferred layers that were not further fine-tuned for cancer
survival prediction (¢7ansfer mode) showed an overall worse performance (measured as micro-
average C-Index averaged over s-fold cross-validation) than the fine-tuned models (fine-tune
mode), which was also consistently worse than the model trained from scratch when more
than one layer was transferred.

Overall, these results suggest that transfer learning from auxiliary tasks such as tissue type
classification or age prediction can be beneficial for the training of cancer survival prediction
models. However, while the pre-training tasks explored in this work are to some extent related
to cancer survival, this relationship is not particularly close for all cancer types, such that the
weights and biases learned for the tasks of tissue type classification or age prediction appear to
require further fine-tuning on cancer survival data for the model to unfold its full predictive
capacity for most cancer types.
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6.4 Discussion

Transfer learning is a concept used in machine learning to leverage knowledge learned from
one task to improve the prediction performance of a machine learning model on a different
but related task (cf. 3.2.3). Here, we explored the potential of transfer learning for cancer sur-
vival prediction by pre-training neural networks on different tasks and then transferring the
learned knowledge to predict patient survival. In contrast to the first part of our work, where
we applied the tree ensemble learning method XGBoost*' to predict survival for pan-cancer
patients from TCGA, we switched to neural networks in this part of the work because neu-
ral networks allow for easier knowledge transfer between models than XGBoost, for which
further training on data not seen during initial training is not straightforward because it has
a fixed tree structure and split variables once trained. Neural networks, on the other hand,
have weights (and often biases) associated with each of their layers, which can be trained on
one dataset, and then either all or a subset of the trained layers can be transferred to a new
dataset and optionally be fine-tuned for a new task. In this work, we investigated two differ-
ent transfer learning scenarios for cancer survival prediction.

In the first scenario, we pre-trained a neural network for cancer survival prediction on gene ex-
pression data from TCGA and transferred the learned knowledge to different independent,
smaller single- and pan-cancer datasets. Since in this scenario, both the source and the tar-
get task were to predict cancer survival from gene expression data, we transferred all layers
from the pre-trained neural network to the survival prediction models for the target datasets
and found that for seven of the ten evaluated target cancer datasets, applying the pre-trained
model directly to the target data without fine-tuning the weights and biases of the respective
model further yielded a better prediction performance than fine-tuning the model on the
target dataset or training a model from scratch on the target dataset only. For six out of the
seven datasets in which the pre-trained model yielded the best performance, the fine-tuned
model still performed better than the corresponding model trained from scratch, but worse
than the pre-trained model without fine-tuning. We speculate that a reason for this outcome
mightbe that the evaluated target datasets are relatively small with only 28 to 174 patients per
cancer type (with 11-52 uncensored patients for the cancer types in which the pre-trained
model showed the best performance) and further fine-tuning the pre-trained model on these
small datasets can easily lead to overfitting on the training data, thus deteriorating the test per-
formance. On the other hand, training from scratch without the involvement of any transfer
learning showed the best performance for only three of the ten evaluated datasets, suggesting
that pre-training survival prediction models on larger (pan-)cancer datasets can be beneficial
for survival prediction on smaller datasets and that the learned knowledge can indeed be suc-
cessfully transferred to other cancer studies in many cases. Nevertheless, we also note that
due to the small size of the explored target datasets, the evaluated patients might not always
be entirely representative of the respective cancer type and the observed results might not be
very robust in some cases. Hence, we think that the results obtained in this transfer learn-
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ing scenario (Table 6.1) should be interpreted with caution and are an indication rather than
proof that survival prediction on small cancer datasets can benefit from transfer learning.

In the second transfer learning scenario, we investigated the effects of transfer learning when
knowledge was transferred between different but related tasks. More specifically, in this sce-
nario, we pre-trained three different neural networks on gene expression data from the GTEx
project, which is not associated with cancer and comprises 17,382 samples and correspond-
ing meta-data collected from multiple tissue types of 948 deceased donors, and transferred the
learned knowledge to predict survival for pan-cancer patients from TCGA. The pre-training
tasks of the three neural networks were the prediction of donor age, the classification of tissue
types, or joint age prediction and tissue type classification, respectively. Both age prediction
and tissue type classification are to some extent related to cancer survival prediction and are
thus promising pre-training tasks. On the one hand, aging and cancer are tightly connected
with each other and share some common biological mechanisms'”. For instance, the inci-
dence of many cancer types is positively correlated with age’>">° and cancer survival is higher
in younger patients than in older patients**'. Additionally, cancer and aging share some key
biological characteristics, including genomic instability, epigenetic alterations, chronic in-
flammation, and dysbiosis, which is characterized by the disruption of bacteria-host commu-
nication of the gut microbiome and can contribute to aging and aging-associated diseases like
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cancer '*'. On the other hand, there are tissue- and cell-type-specific differences in tumorigen-
esis and in the organization of oncogenic signaling pathways, such that the signaling output
of oncogenic drivers may vary considerably between tissue types'*’, suggesting tissue type
classification as another suitable pre-training task. In addition to the two neural networks
trained for age prediction and tissue type classification, respectively, we also trained a third,
multi-task neural network that combined both pre-training tasks and thus learned both types
of knowledge simultaneously, which we thought could potentially be even more beneficial
for transfer learning for cancer survival prediction than learning either task alone. For all
three pre-training tasks, transferring one or multiple layers of the pre-trained neural network
to a new neural network and then further fine-tuning all layers of the new neural network for
survival prediction on pan-cancer TCGA data resulted in improved performance over train-
ing a neural network with the same model architecture from scratch, while without further
fine-tuning the weights and biases of the transferred layers, the model trained from scratch
outperformed the model with transferred layers in most cases.

At first glance, these results seem to conflict with the findings from the first transfer learn-
ing scenario, where knowledge was transferred between different cancer survival datasets and
pre-training without further fine-tuning on the target dataset produced the best results in
most cases. However, we do not believe that this is actually a contradiction, because the two
transfer learning scenarios are different from each other in many aspects. For instance, in
the first scenario, where knowledge learned from survival prediction on one cancer dataset
was transferred to other cancer datasets from different studies, the evaluated target datasets
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were relatively small, making fine-tuning on the target datasets more difficult because mod-
els trained with small sample sizes can easily overfit on the training data, while in the second
transfer learning scenario, where knowledge from auxiliary tasks such as tissue type classi-
fication and age prediction was transferred to cancer survival prediction, the target dataset
was substantially larger, allowing for successful fine-tuning. Furthermore, while in the first
scenario, knowledge was transferred for the same task of predicting cancer survival, making
further fine-tuning less relevant, in the second scenario, knowledge was transferred between
different prediction tasks, making further fine-tuning on the target task of cancer survival
prediction more important.

In summary, we have investigated the effects of transfer learning on cancer survival prediction
and have found that cancer survival prediction models can benefit from knowledge transfer,
both between domains with datasets from different cancer studies and the same task of pre-
dicting cancer survival, but also between different tasks such as tissue type and age predic-
tion and cancer survival prediction. Depending on the similarity of the source and target
tasks (i.e., same task vs. different tasks), but also on the size and other characteristics (e.g., the
cancer type) of the target data, the effects of transfer learning were different. For example,
we observed positive transfer with improved prediction performance between TCGA can-
cer survival prediction and cancer survival prediction on seven out of ten evaluated datasets
(Table 6.1) in the first transfer learning scenario and between all three pre-trained models and
TCGA pan-cancer survival prediction in terms of micro-average C-Index in the second trans-
fer learning scenario (Table 6.2), but negative transfer with reduced prediction performance
for the remaining three datasets of the first scenario (Table 6.1) and for some individual cancer
types and pre-training tasks (e.g., bladder urothelial carcinoma with tissue type classification
pre-training; Supplementary Figure A.7) in the second scenario.

6.4.1 Limitations

Although our transfer learning experiments showed some promising results, there are a few
limitations to transfer learning for cancer survival prediction. In contrast to some popular
pre-trained models such as ResNetso®, VGG16 1% or Xception®®, which are commonly
used in transfer learning for image classification and are typically pre-trained on extremely
large datasets with more than a million samples, our pre-training datasets were much smaller,
with sample sizes in the thousands (pre-training on TCGA for cancer survival prediction)
or tens of thousands (pre-training on GTEx for tissue type and age prediction). Therefore,
the potential of the investigated pre-training tasks for transfer learning on cancer survival pre-
diction might not have been fully exploited and models pre-trained on larger datasets might
yield even better performance on the pre-training tasks and thus provide more comprehen-
sive knowledge that can be transferred. In addition to the size of the source dataset used for
pre-training, the size of the target dataset can be another limiting factor for transfer learn-
ing. In the first transfer learning scenario, where knowledge was transferred between datasets
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from different studies, but on the same task of cancer survival prediction, the target datasets
had very small sample sizes and the few test samples for each dataset might not have been
entirely representative of the respective cancer type, such that the robustness of the obtained
results might be somewhat limited. This problem of limited robustness of performance esti-
mation due to small sample sizes can be especially pronounced in cancer survival prediction
with Cox loss and C-Index as a performance metric, where prediction performance is judged
by comparing predicted risks and true survival times between samples and for small sample
sizes, outliers can substantially influence the performance estimate. Lastly, the relationship
between the source and target domains can be a limiting factor for the success of transfer
learning. In the first transfer learning scenario, where knowledge was transferred between
different cancer datasets, but for the same task of cancer survival prediction, this relationship
was naturally fairly close. However, in the second transfer learning scenario, knowledge was
transferred between more distinct tasks. Although the two pre-training tasks of tissue type
classification and age prediction are related to the task of cancer survival prediction in that
there are tissue- and cell-type-specific differences in tumorigenesis and in the organization of
oncogenic signaling pathways>', and aging shares some of its hallmarks with cancer'** and
is correlated with cancer incidence’>"*°, this relationship is not extremely close, limiting the
amount of knowledge that can be effectively transferred between the tasks. Nevertheless, the
observed improvement in prediction performance through both pre-training tasks suggests
that their relationship to cancer survival was still close enough for transfer learning to be suc-
cessful.
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Outlook and Conclusion

In this chapter, the results of this dissertation are summarized. Furthermore, an outlook is
given on how challenges of cancer survival prediction on currently available cancer datasets
could be resolved and how cancer survival prediction could be further advanced in the future
if more comprehensive data becomes available. Finally, a brief conclusion is given.

7.1 Summary of the Work

Cancer is one of the leading causes of death worldwide’>57 and the second leading cause
of death in Germany'**. Reducing cancer mortality and improving patient survival are the
primary goals of cancer therapy. However, therapy choices are usually influenced by patient
prognosis, thus making cancer survival prediction an important computational task, which
can help to estimate prognosis and quantify individual risk.

The first goal of this dissertation was to develop a machine learning method for cancer survival
prediction based on molecular patient data and to derive the biological plausibility of this
method. Furthermore, we tried to answer the question of whether cancer survival prediction
can be improved by transferring knowledge from machine learning models that were trained
on different datasets and tasks.

To achieve the first objective, we developed a survival prediction method that applied XG-
Boost tree ensemble learning to gene expression data of patients from 25 different cancer
types from TCGA. We investigated two versions of this survival prediction approach, a single-
cohort version in which we trained separate survival prediction models for each cancer type,
and a pan-cancer version in which we combined patients from all 2 5 cancer types into one pan-
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cancer training dataset to overcome the small sample sizes as an observable shortcoming of
the single-cohort approach and to enable the identification of cross-cohort survival features.
Indeed, pan-cancer training showed improved performance over single-cohort training, sug-
gesting that biological mechanisms affecting survival can be shared across different cancer
types and the machine learning model could benefit from the increased sample size of the
pan-cancer dataset. In addition to gene expression, we also evaluated our pan-cancer survival
prediction approach on other molecular data types, including mutation, copy number vari-
ation, and protein expression data. The results indicated that gene expression was the most
informative data modality, consistent with previous findings on other biomedical prediction
tasks*"'7¢, closely followed by protein expression as the modality that is most directly related
to the phenotype according to the central dogma of molecular biology. The biological plau-
sibility of the gene expression-based approach was investigated by applying network propa-
gation on gene weights derived from the pan-cancer XGBoost survival prediction method.
This way, we inferred a pan-cancer survival network and further analyzed it with respect to
biological pathways and mechanisms, revealing a strong association with the tumor microen-
vironment, which has been linked to several molecular processes affecting cancer survival.

The second objective of this dissertation was to explore whether cancer survival prediction
can be improved through transfer learning, where knowledge learned from training a ma-
chine learning model on a source domain is transferred to a prediction task on a target do-
main. For this objective, we decided to switch machine learning frameworks from XGBoost
to neural networks. The reason for this change was that, to the best of our knowledge, there
is no method implementing transfer learning for XGBoost that is suited for survival predic-
tion. On the other hand, neural networks are well-suited for transfer learning due to their
multi-layered architecture. To understand the effect of transfer learning on cancer survival
prediction, we investigated two different transfer learning scenarios based on neural networks.
In the first scenario, we pre-trained a neural network on pan-cancer gene expression data from
TCGA and transferred the learned weights and biases to predict cancer survival on smaller, in-
dependent datasets. Applying the pre-trained neural network directly to the respective target
dataset yielded the best performance for seven out of ten evaluated small cancer datasets. Con-
versely, training from scratch without any transfer learning performed better for only three
of the small cancer datasets, confirming that pre-training can have a positive effect on cancer
survival prediction. In the second transfer learning scenario, we took the transfer of knowl-
edge a step further and investigated whether survival prediction performance can also benefit
from knowledge learned in different but related prediction tasks. We pre-trained three differ-
ent neural networks on gene expression data from the GTEx project, which contains samples
from multiple tissues of deceased donors. More specifically, we trained one of the neural net-
works on the task of tissue type classification, one on age prediction, and one on the dual task
of simultaneous tissue type classification and age prediction. Our results showed that knowl-
edge from all three models could be successfully transferred to cancer survival prediction,
with neural networks initialized with pre-trained weights and biases and further fine-tuned
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for cancer survival prediction consistently performing the best.

7.2 Outlook

Both aspects of cancer survival prediction investigated in this dissertation showed encour-
aging results. However, there are still some unresolved challenges regarding cancer survival
prediction and room for further advancement.

First and foremost, machine learning approaches like the ones applied in this work to pre-
dict cancer survival rely on abundant data to learn from. However, currently available can-
cer survival datasets like the TCGA dataset have limited numbers of patients (ranging from
less than 100 to ~ 1,000 patients per cancer type and less than 10,000 patients in total). We
suspect that this relatively small number of patients available for most cancer types is a lim-
iting factor for model performance and that our proposed survival prediction approaches
would benefit from more training data. This hypothesis is supported by our findings from
survival prediction with XGBoost, where we observed that the increased number of training
samples in the pan-cancer approach as compared to single-cohort training could improve sur-
vival prediction performance for most cancer types (Figure 5.6) and pan-cancer prediction
performance generally deteriorated when model training was conducted on randomly sam-
pled subsets of the data (Supplementary Figure A.2). Additionally, a larger number of train-
ing samples could mitigate the “curse of dimensionality , a phenomenon commonly
encountered in machine learning and often responsible for overfitting caused by a surplus
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of features over samples (e.g., <10,000 patients, but ~60,000 gene expression values per pa-
tient in TCGA). Therefore, if either the TCGA dataset is expanded with additional patients
or larger similar datasets become available in the future, it would be worthwhile to re-evaluate
our proposed cancer survival prediction approaches incorporating this additional data.

Undoubtedly, cancer treatment has a major effect on patient survival. However, treatment
information is incomplete for all 25 analyzed TCGA cancer cohorts and is available for only
a small proportion of patients in many cohorts (Supplementary Figure A.1). Overall, treat-
ment information (for either drug treatment, radiation treatment, or both) is available for
only 48.6% of TCGA patients (3,911 of 8,045 patients with available survival and gene ex-
pression data for GDC data release v.32.0). This lack of comprehensive treatment data and
the diversity of treatment regimens (e.g. in terms of radiation therapy administration, admin-
istered drugs or drug combinations, drug or radiation doses, and frequency and duration of
drug or radiation therapy) makes it extremely difficult to include treatment information into
any survival prediction model that is trained on this data. In fact, if treatment information
was to be considered in the survival prediction model, one would have to discard more than
half of the cancer patients due to lack of this information. However, less training data would
likely result in degraded model performance, as discussed above and observed for example in
Supplementary Figure A.2. In addition, the diversity of treatment regimens and lack of drug

127



Chapter 7

naming conventions (some drugs are named by their molecule names, while others are named
by their commercial names, and additionally some of the drug names in the TCGA data con-
tain misspellings*”) would make it extremely difficult for any machine learning model to
extract meaningful information from the treatment data, given the relatively small number
of available patients, and would require elaborate manual feature engineering to standardize
drug names and make treatments comparable across patients. Taking all of this into consid-
eration, we believe that more complete and consistent treatment data is needed and has the
potential to further improve cancer survival prediction. For future cancer studies, we suggest
that standardized treatment information should be routinely recorded and made available in
addition to clinical and molecular data. If such data becomes available to a greater extent
in the future, it would also be worth exploring the incorporation of auxiliary knowledge on
drug sensitivity, for example learned from abundant drug response datasets such as GDSC
or CCLE, in addition to the treatment information. This could enable the machine learning
method to better model the effects of different drugs on cancer survival, which would likely
further improve prediction performance.

In addition, competing risks can pose a challenge to cancer survival prediction. Competing
risks are death events that preclude the event of interest '°, which is death from cancer in our
case. Cancer studies such as TCGA often record the overall survival of cancer patients, mean-
ing the time from entry of the patient into the study until their death. However, especially for
older patients, it is often questionable if the recorded death is due to the diagnosed cancer or
due to a competing risk such as another co-morbidity or simply old age. Nevertheless, infor-
mation on death causes is often not recorded. When a machine learning model is now trained
for survival prediction with overall survival as the target variable, the training procedure can-
not distinguish between causes of death and may, for example, penalize a low predicted risk
for a patient who does not have an aggressive cancer but has died of another cause unrelated
to the cancer in the same way as an incorrect prediction, where a patient with an aggressive
cancer is predicted to have a low risk or a patient with a less aggressive cancer has a high pre-
dicted risk. This, in turn, makes it more difficult for the model to learn patterns that are truly
related to cancer survival and can degrade the overall prediction performance of the trained
model, as we also found when we compared the performance of our XGBoost pan-cancer
survival prediction model including all recorded survival times with a model where we con-
sidered dead patients with recorded “tumor free” tumor status as censored instead of dead
(Figure 5.22). In this analysis, we observed that regarding tumor-free patients as censored
significantly improved prediction performance for 13 of the 25 TCGA cohorts. However, a
“tumor free” tumor status does not guarantee that a patient has died from a competing risk
rather than from cancer, since the cancer may have recurred at a later time. Thus, considering
the survival times of all tumor-free patients as censored is not a satisfactory solution to the
problem of competing risks and may also result in the loss of valuable survival information.
Instead, if in the future the cause of death would be recorded in addition to the overall sur-
vival time for all or most deceased patients, we think that explicitly modeling these competing
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risks in the survival prediction model could reduce the confounding effect of competing risks
and would be beneficial for the prediction performance.

All three challenges described above are related to different aspects of the training data that
is used for cancer survival prediction. Therefore, they are not easily resolved by improving
the machine learning methods used for survival prediction, but could be overcome through
more comprehensive and complete data, which might become available in the future.

Lastly, as briefly mentioned in Chapter 6, the effect and success of transfer learning depends at
least partly on the similarity between the source and target domains. Therefore, we suggest
that in future works, in addition to tissue type classification and age prediction, other pre-
training tasks and datasets that are potentially even more closely related to cancer survival
prediction could be evaluated for transfer learning.

7.3 Conclusion

To summarize, this dissertation has investigated two different aspects of cancer survival pre-
diction, with the first part focusing on biological plausibility with respect to the underlying
molecular mechanisms, and the second part highlighting avenues for further improvement
of cancer survival prediction through transfer learning. In the first part, we have introduced
a machine learning approach for pan-cancer survival prediction that combines XGBoost tree
ensemble learning with network propagation to derive a pan-cancer survival network. This
pan-cancer survival network is significantly enriched for the TME, confirming the biologi-
cal plausibility of our approach and highlighting the important role of the TME in cancer
prognosis. In addition, we have investigated whether transfer learning can improve the per-
formance of survival prediction neural networks and found that cancer survival prediction
can indeed benefit from the transfer of knowledge, not only between datasets from different
cancer studies, but also from pre-training on different auxiliary tasks such as tissue type or
age prediction. However, we have also observed that the beneficial effect of transfer learning
may depend on the size and characteristics of the target data, as well as the similarity between
the source and target tasks.
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Figure A.1: TCGA patient treatment data. Number of TCGA patients per cancer cohort with available drug and radiation
treatment information, only drug treatment information, only radiation treatment information, or no treatment informa-
tion. Only patients with available survival and gene expression data for GDC data release v.32.0 were considered.
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Figure A.2: Pan-cancer prediction performance on random patient subsets. The results obtained from 100 replications
of pan-cancer model training on FPKM-normalized gene expression data are compared between training on all pan-
cancer patients (N = 6,419) contained in the training data of the respective replication (blue) and training on patient sub-
sets of different sizes. For training on the patient subsets, in each replication a pre-defined number of patients (either
1,000, 500, or 50) was randomly selected from the training data of the respective replication, where each subset con-
tained approximately the same number of patients from each of the 25 TCGA cohorts. This random patient subsampling
was performed before the feature selection step, such that feature selection as well as hyperparameter tuning and the
training of the final survival prediction model were performed on this patient subset only. Model evaluation was then
done on all patients belonging to the test data of the respective replication and no subsampling was performed. Perfor-
mance is depicted by C-Index boxplots over 100 replications of model training. Mean C-Indices were compared with
Wilcoxon’s unpaired rank-sum test and significance levels are defined as ns: p > 0.05, % : p < 0.05, %* : p < 0.01,
* k% 1 p < 0.00L % % k% : p < 0.0001. This figure was published in 170
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Figure A.3: Additional Kaplan-Meier plots for IGF2BP3, IL1RAP, PIK3R3, and CISH. The Kaplan-Meier plots shown here
were obtained from OncolLnc® and correspond to the four (KIRP, KIRC, LUAD, and PAAD), two (LGG and PAAD), two
(LGG and HNSC), and four (LUAD, LIHC, KIRP, and KIRC) additional cohorts that were not shown in Figure 5.10, but also
show significant survival performance (FDR < 0.05 in Cox regression) in the OncolLnc analyses for IGF2BP3, IL1RAP,
PIK3R3, and CISH, respectively. For grouping the patients into two groups the 50th percentile of gene expression was
selected as a cutoff in all cases. This figure was published in*°.

134



Supplementary Figures

ns
1
0.9-
0.7-
Ll
L]
05— ------
(]
TCGA-ACC
ns
|
0.70- o
0.65-
0.60-
0.55-
x 0501 8- L.
[}
T TCGA-HNSC
T
© ns
0.65-
0.60-
0.55- I
0.50—-|- - -| -
TCGA-LUSC
0.7~
ns
0.6-
05— -f---| -
QU
TCGA-STAD

ns
0.70-
0.65-
0.60-
0.55-
0.50— - = ==~ -
TCGA-BLCA
ns
0.8- i
07-
0.6-
05— ------
TCGA-KIRC
1.0-
ns
1
08-
06-
0.4- .
TCGA-MESO
ns
[ —
08-
07-
06-
L
05~
TCGA-UCEC

0.8- ns
0.7~
0.6-
0.5 i S S
)
TCGA-BRCA
1.0-
ns
—
0.9-
0.8-
0.7-
0.6- .
A °
05— ==~~~
TCGA-KIRP
0.70- ns
—
0.65 -
0.60-
0.55-
050~ |- - - -
TCGA-OV
ns
—
0.8~
0.6-
0.4-
02- o
TCGA-UCS

° 05— ------

0.9-
ns
— 0.8-
0.8-
0.7-
0.7-
06- 0.6-
05— -f---|-
RO §
TCGA-CESC
0.8- ns
0.9-
0.7-
0.8-
0.6-
0.7-
05— ~|- -~} -
0.6-
0.4-
TCGA-LAML
ns
—
0.7- 0.8-
0.6- 0.6-
0.4-
05— -f---| -
TCGA-PAAD
ns
1.0-
0.8-
0.6-
TCGA-UVM

TCGA-LGG

TCGA-READ

0.8- ns
0.6-
0.4-
0.2- e
TCGA-ESCA
0.8- ns
0.7-
0.6-
L]
05—=------
TCGA-LIHC
ns
|
0.8-
0.7-
0.6-
05— -g - -k~
L]
04- ®
TCGA-SARC

ns
1

0.7-

TCGA-GBM

ns
°

0.7-

0.6- l

05— ------
TCGA-LUAD

10- DS

TCGA-SKCM

Method
ES XGBIFPKM_RNA]
ES XGBITPM_RNA]

Figure A.4: FPKM vs. TPM survival prediction performance. Comparison of the prediction performance of the pan-
cancer XGBoost method trained on FPKM-normalized gene expression data (XGB[FPKM_RNA]) and TPM-normalized
gene expression data (XGB[TPM_RNA]). Performance is depicted by C-Index boxplots over 100 replications of model

training. Mean C-Indices were compared with Wilcoxon'’s unpaired rank-sum test and significance levels are defined as
ns:p > 0.05, % : p < 0.05, %% : p < 0.0L, %% x: p < 0.00L, % % *x : p < 0.0001.
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Figure A.5: Batch effects in methylation data. UMAP of methylation beta values for TCGA-COAD. Blue marks show
samples measured by Human Methylation 27 array and red marks show samples measured by HumanMethylation 450
array. For generating the UMAP, only methylation sites measured by both arrays were considered and methylation
sites with missing values were dropped. Methylation beta values were standardized to zero mean and unit variance,
and principal component analysis (PCA) was performed to reduce the dimensionality to 50 dimensions before applying
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Figure A.8: Survival prediction performance of the neural network pre-trained for age prediction. Performance is de-
picted by C-Index boxplots for 5-fold cross-validation on TCGA.
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Figure A.9: Survival prediction performance of the neural network pre-trained for tissue type and age prediction. Perfor-
mance is depicted by C-Index boxplots for 5-fold cross-validation on TCGA.
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Table B.1: Summary of TCGA cohorts used for pan-cancer survival prediction and survival network identification (from
GDC data releases v22.0 and v24.0). Number of Pan-Cancer Features refers to the number of pan-cancer gene expression
features that were also among the important features in single-cohort training for the respective cohort in XGBoost
survival prediction. IQR indicates the interquartile range, which measures how much the data is spread. Information on
the organ system of each cancer cohort was obtained from 133 More detailed information on the different cancer types
can be found at https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/t

cga/studied-cancers. This table was published in

Cohort Cohort Organ Sys- Number Number Number Median Gender
Abbre- Name of Age
viation Uncen- (IQR)
sored
Pa-
tients
TCGA- Adreno- 28 49.0 48
ACC cortical (24.50) female,
carcinoma 31
male
TCGA- Bladder uro- 176 68.0 104
BLCA  thelial carci- (16.00) female,
noma 297

male



https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/studied-cancers
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/studied-cancers
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TCGA- Breast Gyneco- 4864 1068 149 58.0 1056
BRCA invasive logic (18.25) female,
carcinoma 12
male
TCGA- Cervical Gyneco- 4359 291 72 46.0 291 fe-
CESC  squamous logic (18.00) male
cell car-
cinoma
and endo-
cervical
adenocarci-
noma
TCGA- Colon Gastrointes- 4719 433 95 68.0 200
COAD adenocarci-  tinal (19.00) female,
noma 233
male
TCGA- Esophageal  Gastrointes- 4048 160 63 60.0 23
ESCA  carcinoma  tinal (19.00) female,
137
male
TCGA- Glioblas- Central ner- 4351 IsI 122 60.0 54
GBM  toma vous system (18.00) female,
multiforme 97
male
TCGA- Head and Head and 5157 498 217 61.0 132
HNSC neck squa- neck (16.00) female,
mous  cell 366
carcinoma male
TCGA- Kidney re- Urologic 4605 526 171 60.0 183
KIRC  nal clear cell (17.00) female,
carcinoma 343
male
TCGA- Kidney Urologic 3540 283 44 61.0 75
KIRP  renal pap- (17.00) female,
illary  cell 208
carcinoma male

142



Supplementary Tables

TCGA- Acute Hemato- 3827 130 78 55.5 60
LAML myeloid logic  and (24.75) female,
leukemia lymphatic 70
malignan- male
cies
TCGA- Brain Central ner- 3999 505 125 41.0 226
LGG lower grade vous system (20.00) female,
glioma 279
male
TCGA- Liver hepa- Gastrointes- 4678 364 130 61.0 119
LIHC  tocellular tinal (17.25) female,
carcinoma 245
male
TCGA- Lungadeno- Thoracic 4984 490 179 66.0 266
LUAD carcinoma (13.00) female,
224
male
TCGA- Lung squa- Thoracic 5391 488 211 68.0 127
LUSC mous cell (11.00) female,
carcinoma 361
male
TCGA- Mesothe- Thoracic 3731 84 72 64.0 IS
MESO lioma (12.00) female,
69
male
TCGA- Ovarian Gyneco- 4696 372 229 59.0 372 fe-
ov serous logic (17.00) male
cystadeno-
carcinoma
TCGA- Pancreatic Gastrointes- 4489 176 92 65.0 8o
PAAD adenocarci-  tinal (16.00) female,
noma 96
male
TCGA- Rectum Gastrointes- 3137 156 26 65.0 68
READ adenocarci-  tinal (15.00) female,
noma 88
male

143



Supplementary Tables

TCGA- Sarcoma Soft tissue 4503 256 98 60.5 139
SARC (17.25) female,
117
male
TCGA- Skin cu- Melanocytic 3116 98 28 63.5 40
SKCM taneous (18.75) female,
melanoma 58
male
TCGA- Stomach Gastrointes- 4864 344 143 67.0 123
STAD adenocarci- tinal (14.00) female,
noma 221
male
TCGA- Uterine Gyneco- 4723 537 90 64.0 537 fe-
UCEC  corpus logic (14.00) male
endometrial
carcinoma
TCGA- Uterine Soft tissue 3436 54 33 68.5 54
UCS carcinosar- (13.50) female
coma
TCGA- Uveal mela- Melanocytic 2062 80 23 61.5 35
UVM  noma (23.25) female,
45
male
TCGA- Cholangio-  Gastrointes- N/A 36 18 66.5 20
CHOL carcinoma  tinal (15.50) female,
16
male
TCGA- Lymphoid  Hemato- N/A 47 9 58.0 26
DLBC neoplasm logic  and (21.00) female,
diffuse lymphatic 21
large B-cell malignan- male
lymphoma  cies
TCGA- Kidney Urologic N/A 64 9 50.0 26
KICH chromo- (19.25) female,
phobe 38
male
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TCGA- Pheochro- Neuralcrest

N/A 178 6 46.0 101
PCPG mocytoma  derived (23.50) female,
and paragan- 77
glioma male
TCGA- Prostate Urologic N/A 493 10 61.0 493
PRAD  adenocarci- (r0.00) male
noma
TCGA- Testicular Urologic N/A 134 4 31.0 134
TGCT germ  cell (11.00) male
tumors
TCGA- Thyroid car- Endocrine N/A 501 16 46.0 366
THCA cinoma (23.00) female,
135
male
TCGA- Thymoma  Hemato- N/A 118 9 59.5 56
THYM logic  and (20.50) female,
lymphatic 62
malignan- male
cies

Table B.2: The 103 survival network genes. Each of the 103 module genes identified in the network propagation and

module identification steps is annotated with its original feature importance weight derived from pan-cancer XGBoost

training, the weight and corresponding p-value after network propagation, and the type of the gene (seed gene, other

pan-cancer feature, or inferred during network propagation). T after a gene name indicates known cancer genes and

indicates candidate cancer genes according to NCG 6.0 1**. This table was published in

Gene Original Network Network Type of Gene

Feature Propagation = Propagation

Importance ~ Weight P-value
BCHE 282.92 227.86 0.01 Seed gene
TMEM30B 272.23 221.27 0.01 Seed gene
INS 235.63 206.38 0.01 Seed gene
TREM1 231.79 185.75 0.01 Seed gene
ADRA1D 210.45 168.53 0.01 Seed gene
SEMA7A 190.95 154.80 0.01 Seed gene
CDHiof 177.00 143.35 0.01 Seed gene
SPPr 164.45 136.74 0.01 Seed gene
APP 50.89 135.16 0.01 Pan-cancer feature
BTLA* 158.03 127.95 0.01 Seed gene
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SCGys 153.32 123.76 0.01 Seed gene

PLAU 112.53 95.14 0.01 Pan-cancer feature
NCAM 0.00 77.62 0.01 Inferred gene
RBL: 0.00 72.48 0.01 Inferred gene
TEADr 10.50 71.72 0.01 Pan-cancer feature
PLAUR 2.27 65.34 0.0I Pan-cancer feature
FYN* 1.53 56.14 0.01 Pan-cancer feature
FBLN1 0.00 54.58 0.01 Inferred gene
A2M 0.00 52.55 0.01 Inferred gene
COLQ 0.00 45.69 0.01 Inferred gene
CDK5 4.38 43.72 0.01 Pan-cancer feature
SGCD 53.26 43.37 0.01 Pan-cancer feature
PLA2G4A 5.90 42.16 0.01 Pan-cancer feature
CAVr1 0.00 40.55 0.0I Inferred gene
TP63" 0.00 40.54 0.01 Inferred gene
TMEM:zs 42.74 38.56 0.01 Pan-cancer feature
ITGA3 39.06 33.29 0.01 Pan-cancer feature
PLG 0.00 32.80 0.01 Inferred gene
SFN 0.00 32.00 0.01 Inferred gene
TLR4 0.00 31.18 0.01 Inferred gene
ATP8Bz2* 0.00 29.59 0.01 Inferred gene
FKBP1A 15.99 29.09 0.01 Pan-cancer feature
EPHA2? 7.48 28.90 0.01 Pan-cancer feature
DCTN:' 0.00 28.64 0.01 Inferred gene
MMPr4 7.40 28.13 0.01 Pan-cancer feature
PCSK> 1.78 27.47 0.0I Pan-cancer feature
ERBB4T 0.00 26.77 0.01 Inferred gene
MMP3 4.19 26.65 0.01 Pan-cancer feature
TNFRSF14' 0.00 23.19 0.01 Inferred gene
FGF2? I1.5I 23.13 0.01 Pan-cancer feature
LUZPr 0.00 22.71 0.01 Inferred gene
CDH¢ 8.46 22.23 0.01 Pan-cancer feature
AGL 0.00 22.13 0.01 Inferred gene
PRMT6 0.00 21.52 0.01 Inferred gene
IGSF21 18.58 21.05 0.01 Pan-cancer feature
GLYR:' 0.00 20.84 0.01 Inferred gene
MMPr 13.14 20.74 0.01 Pan-cancer feature
TGFBRz' 0.00 20.68 0.01 Inferred gene
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JAKzT 0.00 20.39 0.01 Inferred gene
LRP2* 8.62 19.98 0.01 Pan-cancer feature
PICALM" 0.00 19.34 0.01 Inferred gene
RAB278B 19.94 19.27 0.01 Pan-cancer feature
ADRA1A* 0.00 18.64 0.01 Inferred gene
RPS6KA3* 0.00 18.51 0.01 Inferred gene
EIF4G3 0.00 18.05 0.01 Inferred gene
DPYSL3 10.86 18.05 0.0I Pan-cancer feature
HSF2BP 0.00 17.93 0.01 Inferred gene
IGF2* 0.00 17.24 0.01 Inferred gene
GNAI3 0.00 17.14 0.01 Inferred gene
COL17Ar 2.45 16.91 0.01 Pan-cancer feature
SERPINET 558.51 451.64 0.02 Seed gene

VTN 397.78 327.91 0.02 Seed gene
LARGE: 365.16 292.92 0.02 Seed gene

TGFBrI 339.00 282.17 0.02 Seed gene

PAEP 256.85 205.82 0.02 Seed gene
CLDN4 240.49 192.73 0.02 Seed gene
IGFBPr 221.18 177.40 0.02 Seed gene
ADAMy 170.62 138.16 0.02 Seed gene
DPYSLs 161.96 129.96 0.02 Seed gene

FLNC 488.05 399.73 0.03 Seed gene
UNCi13D 207.33 166.16 0.04 Seed gene

PTX3 405.79 326.90 0.05 Seed gene
PIK3R3 870.79 701.96 0.06 Seed gene

DKKr 328.54 262.89 0.06 Seed gene

MLCr 243.16 194.63 0.06 Seed gene

TIMP4 218.82 175.46 0.07 Seed gene

EYA4* 203.69 162.99 0.10 Seed gene
Sr00Aro0 164.35 134.44 o.12 Seed gene
STESIA3 476.24 381.05 0.13 Seed gene
ARHGEF;3; 157.88 126.33 0.14 Seed gene

LADr 278.45 222.81 0.15 Seed gene

PLEC* 281.59 22.9.50 0.16 Seed gene

DLG3? 376.41 303.90 0.17 Seed gene
HJURP 348.03 278.72 0.18 Seed gene

BARX1 454.2.8 363.58 0.19 Seed gene
CENPA 362.38 298.74 0.19 Seed gene
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BCAT1 244.63 195.73 0.21 Seed gene
VGLL:z 383.43 306.77 0.23 Seed gene
CcCcDCcssC 167.97 134.40 0.29 Seed gene
IRF6* 432.21 345.81 0.32 Seed gene
PLA2Gg 209.2.2 167.38 0.35 Seed gene
FRK 155.23 124.26 0.40 Seed gene
KIF2C 158.16 128.35 0.41 Seed gene
CDK¢' 173.38 142.07 0.46 Seed gene
LBX1 438.19 350.56 0.51 Seed gene
CDK5R2 238.29 190.64 0.52 Seed gene
ZNFss7 193.75 155.01 0.55 Seed gene
CDCzo 441.45 358.13 0.83 Seed gene
IDO1 377.05 301.65 0.86 Seed gene
RPS6KAs 152.61 123.09 0.87 Seed gene
PGR} 246.63 198.55 0.99 Seed gene
IGF2BP2" 241.03 193.01 0.99 Seed gene
ESR:' 240.89 215.59 1.00 Seed gene

Table B.3: Over-represented pathways (p < 0.001) computed with QIAGEN Ingenuity Pathway Analysis (IPA) %4, Path-
way: annotated pathway name; —loglo(p—value): - log10 of enrichment p-value computed with Fisher's exact test;

—loglo(q-value): — log10 of Benjamini-Hochberg (cf. Section 3.5.2) adjusted p-value; Ratio: number of genes in the
survival network that map to the respective pathway divided by the overall number of genes in the pathway; Molecules:

survival network genes that overlap with the pathway. This table was partly published in
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Ingenuity canoni- —log —logio Ratio Molecules

cal pathway (p-value) (q-value)

Tumor microenvi- 9.34 6.48 6.25 x 10—2  FGF2, IDO1, IGF2,
ronment pathway JAK2, MMPr,

MMPry, MMP3,

PIK3R3,
SPPr, TGFBr1

PLAU,
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Glucocorticoid 8.60 6.17 3.25 X 10—2  Az2M, CAV1, ESR1,

receptor signaling JAK 2, MMPr,
MMP3, PGR,
PIK3R3, PLA2G4A,
PLA2Gg, PLAU,
RPS6KAs, SER-
PINET", TGFB1,
TGFBR:z

Role of tissue factor  8.55 6.17 7.76 x 10—2  FRK, FYN,

in cancer ITGA3, JAK2,
MMPr, PIK3R3,
PLAUR, RPS6KA3,
RPS6KAs

Hepatic fibrosis sig- 6.85 4.61 3.17 x 10—2  FGF2, GNAI3,

naling pathway INS, ITGA3, JAKz,
MMPr,  PIK3R3,
SERPINE1, SPPi,
TGFB1, TGEFBR:z,
TLR4

Hepatic fibro- 6.77 4.61 4.84 x 10—2  A2M, COL17A1,

sis/Hepatic stellate FGF2, IGF2, MMPr,

cell activation SERPINE:1, TGFB1,
TGFBRz, TLR4

Coagulation system 6.3 1 4.23 1.43 X 10—1 A2M, PLAU,
PLAUR, PLG,
SERPINET

HOTAIR  regula- 6.18 4.20 5.00 x 10—2 ESR1>, MMPr,

tory pathway MMPry, MMP3,
PIK3R3, SPPr,
TGFB1, TLR4

Osteoarthritis path- 6.15 4.20 4.09 x 10—2  DKK1, FGF2,

way ITGA3, MMPr,
MMP3, SPPr,
TGFBr, TGFBR:z,
TLR4

Growth hormone 6.08 4.20 8.45 x 10—2  Az2M, IGFz2, JAK2z,

signaling

PIK3R3, RPS6KA3,
RPS6KAs
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Inhibition of matrix 6.06 4.20 1.28 x 10—1  Az2M, MMPr,
metalloproteases MMPry, MMP3,
TIMP4
Glioma invasiveness 6.01 4.19 8.22 x 10—2 PIK3R3, PLAU,
signaling PLAUR, PLG,
TIMP4, VIN
Reelin signaling in  5.87 4.09 5.74 x 10—2 APP,  ARHGEF3,
neurons CDK5, FRK, FYN,
ITGA3, PIK3R3
Axonal Guidance 5.62 3.91 2.43 x 10—2  ADAMoy, CDKs,
signaling DPYSLs, EPHA:2,
FYN, GNAI3,
1TGA3, MMPr,
MMPrgq, MMDP3,
PIK3R3,SEMA7A
Estrogen receptor 5.62 3.91 3.05 x 10—2  CAVI, ESR1,
signaling GNAI3, IGF2,
JAK 2, MMPr,
MMPry, MMP3,
PGR, PIK3R3
Leukocyte extrava- s.57 3.89 4.15 x 10—2 CLDNgy, GNAI3,
sation signaling 1TGA3, MMPr,
MMPrq, MMDP3,
PIK3R3, TIMP4
HIF1A signaling 5.37 3.72 3.90 x 10—2 FGF2, IGF2, MMZPr,
MMPry, MMDP3,
PIK3R3,SERPINE!,
TGFB1
Semaphorin signal- .12 3.49 8.33 x to0—2 CDKj, DPYSL3,
ing in neurons DPYSLs, FYN,
SEMA7 A
Neuroinflammation 5.05 3.45 3.00 X 10—2  APP, JAKz2, MMDP3,
signaling pathway PIK3R3, PLA2G4A4,

PLA2Gs, TGFBI1,
TGFBRz2, TLR4
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Molecular mecha- 4.87 3.30 2.50 x 10—2  ARHGEF3, CDKj,

nisms of cancer CDK6, FYN, GNAI3,
ITGA3, JAK 2,
PIK3R3, TGFB1,
TGFBR:z

Tec kinase signaling  4.86 3.30 4.05 x 10—2  FRK, FYN, GNAI3,
ITGA3, JAK2,
PIK3R3, TLR4

p38 MAPK signal- 4.80 3.26 5.08 x 10—2  PLA2G4A4,

ing PLA2Gs, RPS6KA3,
RPS6KAs, TGFBi,
TGFBR:z

Colorectal cancer 4.71 3.20 3.16 x 10—2  JAK2, MMPr,

metastasis signaling MMPry, MMP3,
PIK3R3, TGFB1,
TGFBRz, TLR4

Caveolar-mediated  4.70 3.20 6.85 x 10—2  CAV1, FLNC, FYN,

endocytosis  signal- INS, ITGA3

ing

Atherosclerosis sig-  4.61 3.13 4.72 % 10—2  MMPr, MMP3,

naling PLA2G4A4, PLA2Gy,
TGFB1, TNFRSF14

ERK/MAPK 4.43 2.97 3.47 x 10—2 ESR1, FYN, ITGA3,

signaling PIK3R3, PLA2G4A,
PLA2Gs, RPS6KAs

Semaphorin  neu- 4.39 2.95 4.32x 10—2  CDKj5, DPYSL3,

ronal repulsive DPYSLs, FYN,

signaling pathway ITGA3, PIK3R3

Oncostatin M sig-  4.37 2.94 9.30 x 10—2 JAKz, MMPr,

naling MMP3, PLAU

Role of osteoblasts, 4.22 2.81 3.21 X 10—2  DKK1, MMPr,

osteoclasts and MMPrg, MMP3,

Chondrocytes PIK3R3, SPPr1,

in rheumatoid TGFBI1

arthritis

Sperm motility 4.16 2.76 3.14 x 10—2  EPHA:2, ERBB4,

FRK, FYN, JAKz,
PLA2G4A, PLA2Gs
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Bladder cancer sig- 4.10 2.72 5.15 x 10—2 FGF2, MMPr,
naling MMPryg, MMP3,
RPS6KAs
Cardiac hyper- 4.07 2.70 2.01 x 10—2  ADRAIA,
trophy  signaling ADRAID, FGF2,
(enhanced) GNAI3, ITGA3,
JAK2, PIK3R3,
RPS6KAs, TGFBi,
TGFBR:z
Role of 4.05 2.70 2.55 x 10—2  DKK1, FGF2, JAK2,
macrophages, MMPr, MMP3,
fibroblasts and PIK3R3, TGFB1,
endothelial  cells TLR4
in rheumatoid
arthritis
Chronic  myeloid 3.98 2.64 4.85 x 10—2  CDKG¢, PIK3R3,
leukemia signaling RBL:z, TGFBI1,
TGFBR:z
Insulin secretion sig-  3.91 2.58 2.87 x 10—2  ElF4G3, FYN, INS,
naling pathway JAK2, PCSK 2,
PIK3R3, RPS6KAs
CNTF signaling 3.89 2.58 7.02 x 10—2 JAK2, PIK3R3,
RPS6KA3,
RPS6KAs
T cell exhaustion 3.84 2.54 3.43 x 10—2  BTLA, JAKz,
signaling pathway PIK3R3, TGFBI,
TGFBR2, TN-
FRSF14
Regulation of the 3.67 2.38 3.19 x 10—2 FGF2, JAKz2, MMP1,
epithelial mesenchy- PIK3R3, TGFBI,
mal transition by TGFBR:z
growth factors
pathway
RhoGDI signaling ~ 3.66 2.38 3.17 x 10—2  ARHGEF3, CDHro,
CDHeo, ESR1,
GNAI3, ITGA3
IL-15 production 3.65 2.38 4.13 x 10—2  EPHA2, FERBB4,
FRK, FYN, JAK 2
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Agranulocyte adhe- 3.61 2.35 3.11 x 10—2  CLDNy, GNAI3,

sion and diapedesis 1TGA3, MMPr,
MMPry, MMP3

Senescence pathway  3.60 2.35 2.55 x 10—2  CDKG, PIK3R3,
RBLz2, RPS6KAjs,
SERPINE:1, TGFBI,
TGFBR:2

Role of MAPK sig- 3.43 2.20 5.33 x 10—2  PLA2G4A, PLA2Gj,

naling in inhibiting RPS6KA3, TLR4

the pathogenesis of

influenza

mTOR signaling 3.41 2.19 2.86 x 10—2  EIF4G3, FKBP1A,
INS, PIK3R3,
RPS6KA3,
RPS6KAs

Inhibition of angio- 3.32 2.12 8.82 x 10—2 FYN, TGFB1,

genesis by TSP1 TGFBR:z

MIF-mediated 3.32 2.12 8.82 x 10—2 PLA2G4A, PLA2Gs,

glucocorticoid TLR4

regulation

Necroptosis signal-  3.13 1.93 3.18 x 10—2  FKBPrA, PLA2G4A,

ing pathway PLA2Gg, RBLz,
TLR4

Cardiac  hypertro- 3.11 1.92 2.50 x 10—2  ADRAIA,

phy signaling ADRA1D, GNAI3,
PIK3R3, TGFB1,
TGFBR:z

MIF regulation of 3.04 1.86 7.14 x 10—2 PLA2G4A4, PLA2Gg,

innate immunity

TLR4

Table B.4: Top 15 cancer-relevant upstream regulators computed with QIAGEN Ingenuity Pathway Analysis (IPA
Upstream regulator: gene name of an annotated cancer driver gene or a potential cancer driver gene

)104

144 35 an upstream

regulator of the pan-cancer survival network; Molecule type: molecule type of the upstream regulator; P-value of overlap:

Fisher test p-value for over-representation of survival network genes in the target set of the upstream regulator; Target

molecules in dataset: survival network genes downstream of the upstream regulator. This table was published in
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Upstream Molecule

Regula-

tor

Type

P-value of Target Molecules in Dataset
Overlap
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JUN

Transcription
regulator

1.20E-13

AzM, APP, CAVi, CDCzo, DKKI,
FGF2, FLNC, IGFBP1, MMPr, MMP;3,
NCAM:1, PGR, PLA2G4A, PLAU,
PLAUR, PTX3, SrooAro, SERPINE1,
SPPr, TGFB1

TNF

Cytokine

1.88E-12

AzM, APP, CAVi, CLDNy, COLQ,
DKK1, EPHA2, ESRi, FGFz, FYN,
GNAI3, IDOr1, IGFz, IGFBPr, INS,
LAD1, MMPr, MMPry, MMP3,
NCAM:1, PLA2G4A, PLA2Gs, PLAU,
PLAUR, PTX3, SrooAro, SERPINE1,
SPP1, TGFB1, TGFBRz, TIMP4, TLR4,
TP63, TREM1

IL1B

Cytokine

7.12E-12

AzM, APP, ESR1, FGFz, IDO1, IGFBPI,
INS, ITGA3, MMPr, MMPrq4, MMP;3,
PCSK2, PGR, PLA2G4A, PLAz2Gs,
PLAU, PTX3, SrooAro, SERPINE1,
SPPr, TGFBr, TGFBRz, TIMP4, TLR4,
TREM1

TPs3

Transcription
regulator

1.63E-11

Az2M, ADRA1A, APP, BCATI, CAV1,
CDCz20,CDH1o0, CENPA, DKK 1, EIF4G3,
EPHA2, ESR1, EYA4, FGF2, FKBPIA,
FYN, HJURP, IGFz2, IGF2BPz, INS,
MMPr, MMP3, PGR, PIK3R3, PLAU,
PLAUR, RBLz2, SERPINE1, SFN, SPPr,
TGFBi1, TGFBR2, TP63

IL1A

Cytokine

1.37E-10

APP, FGF2, MMPr, MMPrq4, MMDP3,
PLA2G4A, PLAU, PTX3, RBL2,S100A10,
SERPINE1, SPPr, TGFB1

FGF2

Growth factor

1.28E-09

AGL, CAV1, DKK1, FGFz, IGF2, ITGA3,
MMPr, MMP3, PCSK2, PLAU, PLAUR,
Sro0Adro, SERPINE1, SPP1, TGFB1

MAP;K1

Kinase

5.30E-09

MMP3, PGR, PLA2G4A, PLAU, PLAUR,
SERPINE:, TGFB1

EGFR

Kinase

1.03E-08

APP, CAV1, CDKe6, EPHA2, ERBB4,
ESR1, IGF2, MMPr, MMPry, MMP;3,
PLA2G4A, PLAU, PLAUR, SEMA7A,
SERPINET
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STAT3 Transcription  3.37E-08 A2M, DKKr1, ESRi, FGFz, IGFBPr,
regulator JAK2, LRPz2, MMPr, MMP3, PGR,
PLA2G4A, PLAU, PLAUR, SERPINEI,
SPPr, TGFB1
HRAS Enzyme 8.45E-08 A2M, APP, CAV1, EIF4G3, FGFz, IGF2,
MMPr, MMPry, MMP3, PLA2G4A,
PLAU, PLAUR, SERPINEr, SPPr,
TGFB1, TP63
CDHr Other 1.32E-07 ERBB4, MMPr, MMPry, MMP;3,
NCAM:1, PLAUR, TGFBI
AKTr Kinase 1.36E-07 ESRi1, FGF2, IGF2, IGFBPr, MMZPi4,
PGR, PLA2G4A, PLG, SERPINE1, SPP1,
TP63
PTEN Phosphatase 1.38E-07 CDCz0, CDK6, ESRi1, IGFz, LADi,
MMPrg, MMP3, NCAMi, PLAU,
PLEC, RBLz2, SERPINE1, SPP1, TGFBI,
TGFBR2, TNFRSF14
FOXOr Transcription  2.36E-07 A2M, CAVr1, FYN, IGFBP1, INS, ITGA3,
regulator MMPr, MMP3, RBL2, RPS6KA3, SER-
PINE1, SEN, TGFB1
SMARCA4 Transcription  2.49E-07 A2M, GNAIz, IRF6, ITGA3, MMPr,
regulator PAEP, PLAUR, PTX3, SCGs, SEMA7A,
SERPINEr, SPP1, TNFRSFr4, TREM1,
UNCr13D
ERBB:2 Kinase 2.91E-07 CDCz0,CDK6, CENPA, CLDN4, ERBB4,
ESR1, IGFz2, IRF6, MMPr, MMPr14,
MMP3, PLAU, PLAUR, RBLz2, SCGs,
SERPINE>, TP63, TREM 1
PRKCB Kinase 3.05E-07 APP, FGFz, INS, SERPINE1, TGFBi1,
TGFBR:z
ITGAV Transmembrane 3.43E-07 MMPr, PLAU,SERPINE1, TGFB1, VTN
receptor
CD36 Transmembrane 3.77E-07 FGF2, MMPr, MMPry4, MMP3, PLAU,
receptor PLAUR, SERPINET
TP73 Transcription  4.29E-07 CDCz20, EPHA2, FGFz2, MMPr1y4,
regulator NCAM:1, PIK3R3, PLAU, SERPINEI,

SEN, SPP1, TGFB1, TIMP4
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CDKN1A Kinase 4.90E-07 APP, CDCz0, HIURP, KIF2C, MMZPr,
MMP3, RBL2, SERPINE1, TP63,
TREM1
FGFR1 Kinase 4.94E-07 FGFz, MMPr, MMPry, MMP3, PLAU,
PLAUR, SEN
FOXO3 Transcription  5.05E-07 CAVri, CDCzo0, ESRi, FYN, IGFBPr1,
regulator KIF>2C,PLAU, RBL2, SERPINE1, TGFB1,
TP63
NRG1 Growth factor  5.07E-07 CAV1,CDCz0, EPHA2, FGF2,IGFz, PGR,
PLAU, PLAUR, PLG, SERPINE1
HGF Growth factor  5.24E-07 AzM, CAVi, CDCzo0, KIF2C, MMZPr,
MMPry4, PLAU, PLAUR, SERPINE1,
SPP1, TGFB1, TGFBRz2, TP63
ETV4 Transcription  6.33E-07 CAV 1, MMPr4, PLEC, SPPr, TGFBR2
regulator
MYC Transcription  7.56E-07 APP, BCATr, CAVi, CDCzo, CDKG,
regulator DKKi1, EPHA2, GLYRi1, INS, IRF6,
ITGA3, NCAM1, PLAU, PLAUR,
SrooAdro, SERPINEr, SPP1, TEADi,
TGEFBr1, TGFBR:z
RAFr1 Kinase 7.95E-07 ESR1, INS, LAD1, MMPr, MMDP;3,
PLAU, PLAUR, PLEC, RPS6K A
ETSr1 Transcription  9.96E-07 CAVi, CDK6, MMPr, MMP3, PGR,
regulator PLAU, SERPINE1, SPP1, TGFBR:2
NFKBIA  Transcription  1.01E-06 A2zM, FGFz2, IGFz2, ITGA3, MMPr,
regulator MMPrg, MMP3, PICALM, PLAU,
PTX3, TGFBr1, TLR4
NR3Cr Ligand- 1.07E-06 A2M, ADRA1D, APP, ARHGEF3,
dependent CAV1, IGFBPr, LAD1, MMZPr1, PIK3R3,
nuclear recep- PLA2G4A, SERPINE:r, SPPr, TGFBi,
tor TIMP4, VGLL:2
GLIS2 Transcription  1.24E-06 INS, MMPry4, SERPINE1, TGFBI
regulator
ESR1 Ligand- 1.65E-06 BCAT1, CAV1, CDKs, CDK6, CENPA,
dependent CLDN4, ERBB4, ESR1, FBLN1, HSF2BP,

nuclear recep-
tor

IGF2, JAKz, MMPr, PGR, PLAU,
PLAUR, PTX3, RBLz, SERPINE:1, SPP1,
TGFB1
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NAB:2 Transcription  1.94E-06 FGFz, MMP3, PLAU, TGFBr
regulator
TGFA Growth factor  2.17E-06 ESR1, PLA2G4A, PLA2Gs, SrooAro,
SERPINE1, TGEFB1
TP63 Transcription  2.37E-06 CDK6, DKK1, EPHAz, ITGA3, MMP14,
regulator PIK3R3, PLAU, SERPINE1, SFN, TGFB1,
TGFBRz, TP63
DLCr Other 3.28E-06 CDKG6,S100A10, SERPINET
AREG Growth factor  3.29E-06 CDCz0, CENPA, HIURP, MMPr, PLAU,
PTX3
MAP2K1  Kinase 3.39E-06 DKKi1, FGFz, INS, MMPr, MMPi4,
MMP3, PLA2G4A, PLAUR
PPARG Ligand- 3.82E-06 APP, CAVi, CDKé6, IGFBPi, INS,
dependent MMPry, MMP3, SERPINEr, SPPr,
nuclear recep- TGFBR2, TIMP4, TLR4
tor
NOTCHr Transcription  4.45E-06 DKKr1, FGFz2, MMPr, MMP3, SER-
regulator PINE1,SPPr, TGEB1, TGFBRz, TP63
ZEB1 Transcription  4.54E-06 MMPr, PLAU, RBLz, SrooA1o, SER-
regulator PINE1, TP63
TGFBRz  Kinase 4.57E-06 FGFz2, MMPry, MMP3, RBL2, SER-
PINE1,SPPr, TGFB1, TGFBR:2
TERT Enzyme 4.91E-06 CAV1, COLQ, FGFz, MMPr, MMDP14,
MMP3,SPPr
ABL:z Kinase 5.23E-06 MMPr, MMPrg, MMDP3
ERG Transcription  5.66E-06 FLNC, FYN, MMPr, MMP3, PLAU,
regulator PLAUR, SPPr, TGFBR:2
IKBKB Kinase 7.93E-06 FYN, MMPr, MMP3, PLA2G4A, PLAU,

P1X3, TGFB1, TGFBRz, TP63
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Table B.5: Optimized hyperparameters of the model pre-trained for survival prediction. The model was trained on TCGA
gene expression data and hyperparameters were optimized using Optuna’ with Tree-structured Parzen Estimator (TPE),

considering the Hyperparameters and Considered values displayed in this table.

Hyperparameter Considered values Selected value Notes
Hidden lavers Number of layers [1,4] I
¥ Layer sizes [32,4096] 4071 Each layer < than preceding layer
Activation {ReLU,ELU,GELU} GELU
Learning rate [1e-7,1e-4] 2.858e-07
Batch size [32,512] 32
Dropout [0,0.9] o
I reeularization Use regularization {True,False} True
218 L, regularization factor [1e-4,0.1] 0.0547
. Use learning rate decay {True,False} False
Learning rate decay Decay rate [oou1] N/A
. L. Use weight decay {True,False} True
h 3
Weight decay (adam optimizer) Weight decay rate [1e-4,0.1] I.15e-4
£, (adam optimizer) [0.7,0.9999] 0.7110
£, (adam optimizer) [0.9,0.9999] 0.9602

Table B.6: Optimized hyperparameters of the model pre-trained for tissue type classification. The model was trained on

GTEx gene expression data and hyperparameters were optimized using Optuna® with Tree-structured Parzen Estimator

(TPE), considering the Hyperparameters and Considered values displayed in this table.

Hyperparameter Considered values Selected value Notes
Hidden lavers Number of layers [1,4] 3
4 Layer sizes [32,4096] 3704,1853,1407 | Eachlayer < than preceding layer
Activation {ReLU,ELU,GELU} ReLU
Learning rate [1e-7,1e-4] 4.830€-05
Batch size [32,512] 42
Dropout [0,0.9] o.1
I reularization Use regularization {True,False} True
21 L, regularization factor [1e-8,0.1] 4.013€-4
Learning rate deca Use learning rate decay {True,False} True
& ¥ Decay rate lo.9,1] 0.9088
. L. Use weight decay {True,False} False
Weight decay (adam optimizer) Weight decay rate [re8.01] N/A
£, (adam optimizer) [0.7,0.9999] 0.8960
£, (adam optimizer) [0.9,0.9999] 0.9248

Table B.7: Optimized hyperparameters of the model pre-trained for age prediction. The model was trained on GTEx
gene expression data and hyperparameters were optimized using Optuna’ with Tree-structured Parzen Estimator (TPE),

considering the Hyperparameters and Considered values displayed in this table.

Hyperparameter Considered values Selected value Notes
Hidden layers Number of layers [1,4] 2
Layer sizes [32,4096] 2713,659 Each layer < than preceding layer
Activation {ReLU,ELU,GELU} ReLU
Learning rate [1e-7,1e-4] 6.456€-05
Batch size [32,512] 32
Dropout [0,0.9] o
L Use regularization {True,False} True
L, regularization —
L regularization factor [1e-8,0.1] 9.562€-05
Learning rae decay Use learning rate decay {True,False} True
Decay rate lo.9,1] 0.9377
. . Use weight decay {True,False} False
Weight decay (adam optimizer) Weight decay rate [1e-8,0.1] N/A
£, (adam optimizer) [0.7,0.9999] 0.9346
£, (adam optimizer) [0.9,0.9999] 0.9482
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Table B.8: Optimized hyperparameters of the model pre-trained for tissue type classification and age prediction. The
model was trained on GTEXx gene expression data and hyperparameters were optimized using Optuna > with Tree-
structured Parzen Estimator (TPE), considering the Hyperparameters and Considered values displayed in this table.

Hyperparameter Considered values Selected value Notes
. Number of shared layers [1,4] 3
Hidden layers Sizes of shared IayeZs [I 28,4096] 2242,614,140 Each layer < than preceding layer
Number of task layers [0,2] I
Sizes of task Iayers [3 2,4096] 67 Each layer < than preceding layer
Activation {ReLU,ELU,GELU} ReLU
Learning rate [1e-7,1e-4] 6.456¢€-05
Batch size [32,512] 459
Dropout [0,0.9] 0.1
I L Use regularization {True,False} True
» regularization 7 Tevization £ - -
» regularization factor [1e-8,0.1] 1.745€-05
Learning rate decay Use learning rate decay {True,False} False
Decay rate [0.9,1] N/A
. Iy Use weight deca {True,False} True
Weight decay (adam optimizer) Weight gecay rati [1e-8,0.1] 0.0951
£, (adam optimizer) [0.7,0.9999] 0.8380
£, (adam optimizer) [0.9,0.9999] 0.9038
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Summary

Cancer is a leading cause of death worldwide and the second leading cause of death in Ger-
many. The primary goal of cancer therapy is to reduce mortality and improve patient survival.
However, the choice of therapy is heavily influenced by the patient’s prognosis, highlighting
the importance of cancer survival prediction as a means to quantify the patient’s risk and
estimate prognosis.

This dissertation presents a cancer survival prediction approach that uses XGBoost tree en-
semble learning and is based on gene expression data of 25 different cancer types from The
Cancer Genome Atlas (TCGA). We evaluate two versions of this approach, one trained on
each cancer type separately and the other trained on pan-cancer data comprising all 25 cancer
types, and find that the pan-cancer approach yields improved performance over the single-
cancer approach. Furthermore, we evaluate the pan-cancer approach on additional molec-
ular data types, including mutations, copy number variations, and protein expression data,
and identify gene expression as the most informative data type. To assess the biological plau-
sibility of the gene expression-based pan-cancer survival prediction approach, we apply net-
work propagation to gene weights derived from the survival prediction model and infer a
pan-cancer survival network comprising 103 genes. These 103 genes are most significantly
enriched for the tumor microenvironment, which has been associated with cancer progres-
sion, metastasis, and response to therapy, validating the biological plausibility of our survival
prediction approach.

Furthermore, we explore the potential of transfer learning for cancer survival prediction. To
this end, we pre-train neural networks for cancer survival prediction, but also for related tasks
such as tissue type and age prediction. We then transfer the learned knowledge to cancer sur-
vival prediction on independent datasets from TCGA, as well as substantially smaller can-
cer studies. We find that transfer learning can indeed improve cancer survival prediction,
although the benefit of transfer learning may depend on the size and characteristics of the
datasets used.
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Zusammenfassung

Krebs ist eine der hiufigsten Todesursachen weltweit und die zweithdufigste Todesursache
in Deutschland. Das vorrangige Ziel von Krebstherapie ist es, die Sterblichkeit zu reduzieren
und das Uberleben von Patienten zu verbessern. Die Wahl der Therapie wird jedoch stark
von der Prognose des Patienten beeinflusst, was die Bedeutung von Krebsiiberlebensvorher-
sage als Mittel zur Quantifizierung des Patientenrisikos und zur Einschitzung der Prognose
hervorhebt.

Diese Dissertation stellt einen Ansatz zur Vorhersage des Uberlebens von Krebspatienten
vor, der XGBoost Tree-Ensemble-Learning nutzt und auf Genexpressionsdaten von 25 ver-
schiedenen Krebsarten aus The Cancer Genome Atlas (TCGA) basiert. Wir evaluieren zwei
Versionen dieses Ansatzes, wobei in der einen Version fur jede Krebsart separat und in der
anderen auf Pan-Krebs-Daten von allen 25 Krebsarten trainiert wird, und stellen fest, dass
das Pan-Krebs-Training zu besseren Ergebnissen fiihrt als das Training fiir einzelne Krebsty-
pen. Auflerdem evaluieren wir den Pan-Krebs-Ansatz auf zusitzlichen molekularen Daten-
typen, einschlieflich Mutationen, Copy Number Variations, und Proteinexpressionsdaten,
und identifizieren Genexpression als den informativsten Datentypen. Um die biologische
Plausibilitit des auf Genexpression basierenden Pan-Krebs-Ansatzes zu untersuchen, wen-
den wir Network Propagation auf aus dem Vorhersagemodell abgeleitete Gengewichte an
und leiten ein 103 Gene umfassendes Pan-Krebs-Uberlebensnetzwerk ab. Diese 103 Gene
sind angereichert fiir die Mikroumgebung des Tumors, die mit Krebsfortschritt, Metastasie-
rung und dem Ansprechen auf Therapien assoziiert ist, was die biologische Plausibilitit un-
serer Vorhersagemethode bestitigt.

Dariiber hinaus untersuchen wir das Potenzial von Transferlernen fiir die Vorhersage von

Krebstiberleben. Dazu trainieren wir zunichst Neuronale Netze fiir die Vorhersage von Krebs-
tiberleben, aber auch fiir verwandte Aufgaben wie die Vorhersage von Gewebsarten und Al-
ter. Dann iibertragen wir das gelernte Wissen auf die Vorhersage von Krebstiberleben fiir

unabhingige Datensitze von TCGA, aber auch aus wesentlich kleineren Krebsstudien. Wir

stellen fest, dass Transferlernen tatsichlich die Vorhersage von Krebstiberleben verbessern

kann, obgleich der Nutzen von Transferlernen von der Gréfle und den Eigenschaften der

verwendeten Datensitze abhingen kann.
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