
Machine Learning for Cancer Survival
Prediction

Dissertation
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

am FachbereichMathematik und Informatik
der Freien Universität Berlin

vorgelegt von

Anna Kristina Thedinga

Berlin 2024



Erstgutachter: Prof. Dr. Martin Vingron
Zweitgutachter: Prof. Dr. Tobias Scheffer

Tag der Disputation: 05. Juli 2024



Preface

Contributions and Publications
This dissertation is based on a project that had the aim of investigating machine learning for
cancer survival prediction. Based on extensive experimentation and fruitful discussions, two
different aspects of machine learning for cancer survival prediction were explored. The first
aspectwas to develop amachine learning approach based onXGBoost tree ensemble learning
and network propagation to predict cancer survival and to derive the biological plausibility
of the survival predictionmethod by using network propagation. The idea for this approach
arose from valuable discussions with my supervisor Ralf Herwig. The approach, in particu-
lar single-cohort and pan-cancer survival prediction trained on gene expression data and the
identification and analysis of a pan-cancer survival network, was published in iScience170 and
a corresponding protocol detailing the steps necessary to reproduce the results from the first
publication was published in STAR Protocols169. In this dissertation, the approach was fur-
ther extended beyond the published version, in particular by integrating additionalmolecular
data types and by considering the tumor status of patients as additional information. The sec-
ond aspect of this workwas the exploration of transfer learning for cancer survival prediction,
where we explored the transferability of knowledge learned by neural networks for different
tasks to cancer survival prediction. The idea for this part of the work developed through
discussions with my second reviewer and thesis advisory committee (TAC) member Tobias
Scheffer and my supervisor Ralf Herwig. This part of the dissertation is unpublished.

In the first part of this work, network propagation was used to add biological plausibility
to the cancer survival prediction method. Network propagation leverages prior knowledge
from a network, commonly a protein-protein interaction network, to gain insights into un-
derlying biological mechanisms43 and has been successfully used on a variety of biological
problems. Recently, I performed network propagation on time-resolved gene expression pro-
files of Leishmania major infected bone marrow-derived macrophages from mice that were
susceptible or resistant to the disease. This contributed to a publication, which investigated
how host M-CSF-induced gene expression affects the immune response to Leishmania ma-
jor infection and was published in Frontiers in Immunology20. In addition, I contributed to
a paper that is currently in revision atNatureCommunications by performing network prop-
agation. In this paper, the time-resolved insulin-regulated phosphoproteomewas analyzed to
gain a better understanding of insulin intracellular signaling.
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Furthermore, I participated in the collaborativeML-Medproject, whichhad the goal of devel-
oping a machine learning approach for drug sensitivity prediction. Results from this project
were published in NAR Genomics and Bioinformatics138 and Cancers139. The first publi-
cation138 proposed a drug sensitivity prediction method that uses a ranking loss to identify
the most effective anti-cancer drugs for unseen cancer cell lines or the most sensitive cancer
cell lines for new drugs, whereas the second publication139 introduced an approach that uses
transfer learning to transfer knowledge learned from cancer drug sensitivity prediction on
in vitro data to patient-derived data, such as patient-derived cell cultures, xenografts, and
organoids.
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1
Introduction

This chapter aims to motivate the work and to explain the research objective of this disserta-
tion. In addition, a brief outline of the following chapters of this dissertation is given.

1.1 Motivation

With approximately 10 million deaths in 2020, cancer is one of the leading causes of death
worldwide55. In Germany alone, 231,533 people have died from cancer in 2022, accounting
for 22.4% of all deaths and making it the second leading cause of death163 in the country. To
reduce these numbers and improve the survival of cancer patients is the primary goal of cancer
therapy. However, therapies with the aim of complete remission are often relatively aggres-
sive and can be accompanied by severe side effects. When a patient has a poor prognosis and
complete remission is not possible or at least highly unlikely, therapy can also have the goal of
merely prolonging life or improving life quality for the remainder of the patient’s life27. Ac-
cordingly, the choice of therapy is heavily influenced by patient prognosis. Computational
models for cancer survival prediction can help estimate prognosis and quantify individual pa-
tient risk to guide therapy decisions. These models are typically based on either clinical data
such as age or tumor stage, molecular data such as mutations or gene expression, or imaging
data such as hematoxylin and eosin (H&E, where hematoxylin stains cell nuclei in the tissue
slide blue and eosin stains the extracellular matrix and cytoplasm pink28) stained whole slide
images (WSIs) or magnetic resonance images (MRI) of the tumor and use machine learn-
ing to detect relationships between these data and the survival of the corresponding cancer
patients.

1



Chapter 1

1.2 Research Objective
The research objective of this dissertation is twofold. The first goal is the development of
a machine learning approach for cancer survival prediction based on molecular patient data
and the investigation of the approach’s biological plausibility. The second goal is to answer
the question of whether cancer survival prediction can be improved by transferring knowl-
edge from pre-trained machine learning models through transfer learning.

To achieve the first goal, we propose a survival prediction method that applies XGBoost tree
ensemble learning onmolecular data such as gene expression to predict cancer survival for 25
cancer types from The Cancer Genome Atlas (TCGA). The survival prediction method is
evaluated for cancer-type-specific training, where a separate prediction model is trained for
each cancer type, and pan-cancer training, where molecular data from patients of all 25 can-
cer types is combined to train a shared survival prediction model. We show that pan-cancer
training yields improved prediction performance over cancer-type-specific training and gene
expression is the most informative of the evaluated molecular datatypes, which include mu-
tation, copy number variation, gene expression, and protein expression data. The biological
plausibility of the proposed approach is investigated by applying network propagation on fea-
ture importance scores learned by the pan-cancer survival prediction model trained on gene
expression data. This way, a pan-cancer survival network is inferred and further analyzed
with respect to biological pathways and mechanisms.

To answer the second research question, we explore transfer learning, where a machine learn-
ingmodel is pre-trained on a source domain and then knowledge from the pre-trainedmodel
is transferred to a target domain to improve prediction performance on this target domain.
We use neural networks as the machine learning model of choice for most transfer learning
tasks and investigate two different settings of transfer learning: In the first setting, a neural
network for pan-cancer survival prediction is pre-trained on 25 different cancer types from
TCGA and knowledge learned by this model is transferred to survival prediction on smaller,
independent cancer datasets. In the second setting, neural networks are trained on data from
the Genotype-Tissue Expression (GTEx) project for auxiliary tasks like tissue type classifi-
cation and age prediction. Knowledge from the pre-trained models is then transferred to
the task of cancer survival prediction on the TCGA dataset and the effect of this knowledge
transfer is evaluated.

1.3 Outline of This Dissertation
This dissertation is structured as follows:

In Chapter 2, the biological terminology and concepts necessary to understand this disserta-
tion are outlined.

2



Chapter 1

Chapter 3 describes the fundamental mathematical principles and key methodology under-
lying the work of this dissertation.

Chapter 4 briefly introduces existing work within the thematic scope of this dissertation and
explains its relevance for this dissertation. The literature introduced in this chapter includes
work from the field of cancer survival prediction as well as relevant publications related to
XGBoost, which is a key machine learning method of this dissertation (cf. Chapter 5), and
applications of transfer learning, which is further explored with regard to cancer survival pre-
diction in Chapter 6.

In Chapter 5, we introduce our approach for the identification of a pan-cancer survival net-
work with gradient tree boosting and network propagation. The approach has two key steps:
In the first step, an XGBoost machine learning method is trained to predict cancer survival
from patient molecular data. In the second step, the biological plausibility of this survival
predictionmethod is investigated by applying network propagation to the genes identified as
important survival features in the first step. This way, a pan-cancer survival prediction net-
work is identified, which is then further analyzed with respect to biological mechanisms and
molecular pathways.

In Chapter 6, transfer learning as a means to improve cancer survival prediction is explored.
To this end, different transfer learning scenarios are evaluated, in which neural networks are
pre-trained on different tasks, and then knowledge from these pre-trained models is trans-
ferred to the task of cancer survival prediction to improve prediction performance.

The final Chapter 7 summarizes the results of this dissertation and gives an outlook on how
challenges of cancer survival prediction on currently available cancer datasets could be re-
solved and how cancer survival prediction could be further advanced in the future if more
comprehensive data becomes available. In addition, a brief conclusion is provided.
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2
Biological Background

This chapter introduces the biological background knowledge that is fundamental for under-
standing the following chapters.

2.1 Cancer

Cancer describes a group of diseases that can affect any body part and is characterized by the
rapid creation of abnormally growing cells185. These abnormal cells can also spread to other
body parts and initiate new tumors, a process called metastasis185,68.

2.1.1 The Hallmarks of Cancer

Despite cancer being a heterogeneous group of diseases rather than a single disease with uni-
form phenotype, several characteristics are shared between cancer types. Hanahan andWein-
berg67 summarized these characteristics as “TheHallmarks ofCancer”, whichoriginally com-
prised six andwere later updated to eight68 functional capabilities shared between all types of
cancer cells (Figure 2.1). These hallmarks are acquired by the cells during their development
from a healthy normal cell to a cancer cell and encompass the following capabilities: Sustain-
ing proliferative signaling, evading growth suppressors, resisting cell death, enabling replica-
tive immortality, inducing angiogenesis, activating invasion and metastasis, reprogramming
cellular metabolism, and avoiding immune destruction. In the following paragraphs, these
eight hallmark capabilities will be explained in more detail.
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Figure 2.1: Hallmarks of cancer. The eight hallmarks of cancer proposed by Hanahan and Weinberg in 201168 summa-
rize the func onal characteris cs shared by all cancer cells. Inspired by68 and created with BioRender.com.

Sustaining Proliferative Signaling

While normal, non-cancerous tissues preserve homeostasis of cell number and thus main-
tain tissue function and architecture by controlling the production and release of growth-
promoting signals, cancer cells deregulate these signals and can thus sustain proliferation68.

Evading Growth Suppressors

In addition to sustaining proliferative signaling, cancer cells can also evade growth suppres-
sors, which in normal tissues limit cell growth and proliferation68. Many of the genes encod-
ing proteins involved in the negative regulation of cell proliferation, such asTP53, have been
identified as tumor suppressors that are frequently inactivated in human cancers.
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Resisting Cell Death

Furthermore, cancer cells can resist cell death by limiting or circumventing apoptosis68. In
normal cells, apoptosis is triggered by extracellular and intracellular signals as a response to
physiologic stress such as abnormal signaling or DNA damage. Cancer cells however can
evade apoptosis, for instance by loss of TP53 tumor suppressor function, an increase of the
expression of antiapoptotic regulators or survival signals, or by downregulation of proapop-
totic factors.

Enabling Replicative Immortality

Another hallmark of cancer is the enabling of replicative immortality68. To form tumors, can-
cer cells need the ability to replicate without the normal limitations that restrict the number
of growth and division cycles a cell can go through. Once the cell reaches this limit, senes-
cence, which is a viable but nonproliferative state of the cell, or apoptosis, which leads to the
death of the cell, is induced. Cancer cells can reach a state of immortalization with unlim-
ited replicative potential by maintaining long telomeres that protect the chromosome ends,
while in normal cells, the telomeres shorten with every cell cycle and eventually become so
short that they lose their protective function and senescence or apoptosis is triggered.

Reprogramming Cellular Metabolism

To fuel cell growth and replication, the cancer cells also adjust their energy metabolism68.
Normal cells under aerobic conditions use glycolysis in the cytosol to convert glucose to
pyruvate and then transmit the pyruvate to the mitochondria, which use oxidative phospho-
rylation to produce adenosine triphosphate (ATP), thereby consuming oxygen and produc-
ing carbon dioxide. Under anaerobic conditions, normal cells limit their energy metabolism
largely to glycolysis to produce more lactate via fermentation and only transmit little pyru-
vate to the mitochondria. In contrast to normal cells, cancer cells reprogram their energy
metabolism and favor producing lactate over transmitting pyruvate to themitochondria and
producing ATP even under aerobic conditions, a phenomenon that is called the “Warburg
effect” after its discoverer OttoWarburg. One hypothesis that could explain the Warburg ef-
fect is that increased glycolysis facilitates the incorporation of nutrients into biomass, which
is needed to assemble new cells during replication, because when glycolysis is increased and
only a little pyruvate is transmitted to the mitochondria, the glycolytic intermediates can be
used for the biosynthesis of macromolecules like nucleotides, amino acids, and lipids that are
required for cell proliferation and replication, instead of mainly producing ATP68,81.

Avoiding Immune Destruction

Tumors can only grow if the cancer cells are able to avoid destruction through the immune
system68. According to the well-established theory of immune surveillance, the immune sys-
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tem constantlymonitors tissues and cells and eliminatesmost cancer cells. Thus, the immune
system functions as a barrier to tumor formation and progression. However, some cancer
cells can evade being detected by the immune system or limit immune destruction and ulti-
mately form tumors.

Inducing Angiogenesis

When a tumor forms by replication of cancer cells, it needs to be supplied with nutrients
and oxygen. Moreover, the metabolic waste and carbon dioxide produced by the cancer cells
must be transported away from the tumor68. To this end, the tumor induces a process called
angiogenesis. During angiogenesis, tumor-associated neovasculature that helps to sustain tu-
mor growth is generated by the formation of new blood vessels from existing ones. However,
this newly formed vasculature is typically aberrant with distorted and enlarged vessels, vessels
branching in a convoluted and excessive manner, capillary sprouting prematurely, leakiness
of vessels, erratic blood flow, and more.

Activating Invasion and Metastasis

Carcinomas, cancers arising from epithelial tissues, can, as they progress, invade tissue in
the vicinity of the tumor or metastasize to distant tissues68. Invasion and metastasis can be
viewed as amulti-step process, starting with the local invasion of cancer cells, which then also
invade nearby blood and lymphatic vessels and transit through the lymphatic and hemato-
geneous systems to distant tissues, where they escape from the lumina of the vessels into the
parenchyma of the tissue and form small nodules of cancer cells called micrometastases. As
a last step of this invasion-metastasis cascade, these micrometastases then grow into macro-
scopic tumors, a process that is called colonization.

2.1.2 Cancer Survival
Metastasis is a common cause of cancer death185. For instance, two-thirds (66.7%) of deaths
from solid tumor cancers registered in theCancerRegistry ofNorway in 2015 hadmetastases
as a contributing cause of death52. However, there was substantial variation between differ-
ent cancer types: While for nose sinus and testicular cancers, metastasis was present in 100%
of registered cancer deaths, only 9.3% of central nervous system cancer deaths were associated
with metastasis.

This heterogeneity between different cancer types is also reflected in the overall death rates in
different cancers. While the 5-year relative survival across all cancer typeswas 68% for patients
diagnosed between 2012 and 2018 in theUnited States of America, it was substantially lower
in pancreas (12%), liver (21%), and esophagus (21%) cancers. For other cancer types such as
melanoma, testis, prostate, and thyroid cancers, on the other hand, only a small proportion
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of patients died from the disease within the first five years after diagnosis and 5-year relative
survival rates were as high as 94%, 95%, 97% and 98%, respectively158.

Worldwide, cancer is one of the leading causes of premature death, i.e. death between ages
30 to 69, according to theWorld Cancer Report 202057. In 134 of 183 countries, it is either
the first or second leading cause of premature death. In 2016, 40.5million people worldwide
died from noncommunicable diseases, accounting for 72% of global deaths and 15.2 million
of these deaths were premature. Of these 15.2million premature deaths from noncommuni-
cable diseases, 4.5 million (29.8%) were attributed to cancer, making cancer the second lead-
ing cause of premature death worldwide.

2.2 Omics—Different Aspects of Molecular Biology

Cancer cells and tumors have abnormal function and structure compared to normal cells
and tissues, as reflected in “The Hallmarks of Cancer”68. To identify, quantify, and char-
acterize the biological molecules involved in the function and structure of cells, tissues, and
organisms is the objective of a scientific field called omics175. The term omics summarizes
different aspects of molecular biology that end with the suffix -omics, including genomics,
transcriptomics, and proteomics, among others.

In this section, different types of omics that are relevant to thisworkwill be introduced. How-
ever, this section does not intend to give a comprehensive list of all omics types, but focuses
only on the omics modalities used in this work for cancer survival prediction.

2.2.1 Genomics
Genomics is concerned with the study of the genome, that is, the entirety of deoxyribonu-
cleic acid (DNA) in an organism175. Its aim is to identify genetic variants175,168, such as short
insertions and deletions (indels), single nucleotide variants (SNVs) or single nucleotide poly-
morphisms (SNPs), which are SNVs with an abundance of at least 1% in the population24,
but also more complex structural variants (SVs), which are DNA variations larger than 50
base pairs and are thought to account for 50–95% of the sequence variation between human
samples and the reference genome42. To identify genetic variants in the DNA, the genome
or parts of it are sequenced. The development of next-generation sequencing (NGS) tech-
nologies has made it possible to sequence entire genomes and thus detect genetic variants
on a genome-wide scale, which was previously not possible in a reasonable amount of time
using the Sanger sequencing technology14. In NGS, millions of small DNA fragments are
sequenced in parallel and thenmapped to a reference genome (Figure 2.2). In this way, NGS
can identify different types of mutations and other genetic variations, such as base substi-
tutions, and indels, but also more complex variations like large genomic deletions, genome
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Figure 2.2: Next-genera on DNA-sequencing. Illustra on of a typical NGS workflow for DNA-sequencing. First, DNA
is extracted and fragmented. Next, a sequencing library is prepared by liga ng sequencing adapters to both ends of the
DNA fragments and the DNA library is sequenced. Finally, the sequenced reads are aligned to a reference genome and
genomic variants are called. Created with BioRender.com.

rearrangements, and translocations, while Sanger sequencing is only able to identify substi-
tutions and indels.

Genetic variants are typically stored in the variant call format (VCF)168, in which each vari-
ant is represented by, at minimum, the chromosome it is located on, the exact base position,
a reference allele sequence, and at least one alternative allele. Optionally, the variant entry
can also contain additional information such as a quality score, for known SNPs a dbSNP
identifier, or any other additional information about the variant.

2.2.2 Transcriptomics
Transcriptomics is the study of the transcriptome, which is the total ribonucleic acid (RNA)
expressed in a cell type or tissue175,53. The transcriptome comprises different types of RNA,
including for example messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA
(rRNA), and long non-coding RNA (lncRNA). According to the central dogma of molecu-
lar biology, which was first formulated by Francis Crick in 195847 and further explained in
197046, the genetic information of a cell is carried byDNA and can be transferred intoRNA,
which serves as a template for protein (Figure 2.3). However,Crick47,46 emphasizes thatwhile
genetic information can be transferred from nucleic acid (i.e., DNAorRNA) to nucleic acid
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or fromnucleic acid to protein, the transfer of genetic information between proteins or from
protein to nucleic acid is not possible47,46.

Figure 2.3: The central dogma of molecular biology. According to the central dogma of molecular biology47,46, DNA
contains the gene c informa on of the cell and can be transcribed into mRNA, which in turn can be translated into an
amino acid sequence that cons tutes a protein. Created with BioRender.com.

However, since thenmanymore types ofRNAbesides the protein-codingmRNAhave been
discovered. In fact, while the vast majority (more than 90%) of the human genome is tran-
scribed into RNA72, only a small fraction (less than 3%) of this RNA is translated into pro-
tein110. While some types of non-coding RNA, such as tRNA and rRNA, fulfill infrastruc-
tural roles, others like lncRNA have gene regulatory functions110. RNA microarrays and
the NGS technology RNA-sequencing (RNA-seq) are the two principal methods for the
quantification of gene expression119. The microarray technology is based on probes—short
nucleotide oligomers complementary to the RNA transcripts—that are fixed to a solid sub-
strate such as a glass array. Gene expression is quantified by measuring the abundance of
fluorescently labeled transcripts to the microarray, which can be detected by the intensities
of fluorescence at the individual probe locations on the microarray. RNA-seq, on the other
hand, uses high-throughput sequencing to quantify gene expression, whereby complemen-
tary DNA (cDNA) synthesized from the RNA transcripts is sequenced and gene expression
is quantified by counting the number of reads from each transcript (Figure 2.4). More pre-
cisely, in RNA-seq, after they have been isolated from tissue, long RNAs are either frag-
mented into short segments and then converted into cDNA (steps 2 and 3 in Figure 2.4)
or first converted into cDNA, which is then fragmented181. Next, sequencing adaptors are
ligated to each cDNA fragment and the cDNA fragments are sequenced. After sequencing,
the resulting sequence reads are mapped to a reference genome or reference transcriptome
and the number of reads mapping to each gene are counted. RNA-seq, which has replaced
microarrays as the predominant gene expression quantification method by now, has some
advantages over microarrays: Firstly, to perform a microarray experiment, it is necessary to
know the sequences of the transcripts in advance in order to be able to generate the set of com-
plementary probes, while for RNA-seq, such prior knowledge is not required. Additionally,
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RNA-seq has a much larger dynamic range than microarrays, which can suffer from signal
saturation for highly abundant transcripts85, and the amount of RNA required as input is
much higher for microarrays than for RNA-seq (micrograms vs. nanograms).

Figure 2.4: RNA-sequencing. Illustra on of a typical RNA-seq workflow. RNA is first isolated from ssue and then
fragmented into short segments. Next, cDNA is synthesized from the short RNA segments and sequencing adapters are
ligated to each cDNA fragment. The cDNA fragments are then sequenced by NGS and the resul ng sequence reads are
mapped to a reference genome or transcriptome. Created with BioRender.com.

2.2.3 Proteomics
Proteomics focuses on studying the proteome, the set of all proteins in a cell, tissue, or or-
gan at a certain point in time175. The aim of proteomics is to identify and quantify proteins
and to resolve protein structure and function9. Protein expression levels are not only depen-
dent on the expression of their corresponding mRNA, but also on translational regulation
and are thus more informative for the characterization of a biological system than genomics
and transcriptomics. Methods for the quantification of protein expression include the high-
throughput techniques mass spectrometry and protein microarrays. In mass spectrometry,
the proteins are first transformed into gas-phase ions and then separated in amass analyzer by
an electric or magnetic field based on their mass-to-charge ratios. To quantify protein expres-
sion, the amount of ions with a protein-specific charge ratio is measured9. The reverse-phase
protein array (RPPA) is a type of protein microarray9. In the RPPA method, cell lysates,
which contain proteins, are in the first step placed on a slide coatedwith nitrocellulose. Then
the slide is probedwith antibodies that are targeted against specific proteins andprotein levels
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are quantified by first using fluorescent, chemiluminescent, and colorimetric assays to detect
the antibodies and then comparing the antibody levels with those of a microarray with refer-
ence peptides.

2.3 Protein-Protein Interaction Networks
Proteins are essential for cells to function and are involved in key cellular processes such as
metabolism, cell signaling, transport, cellular decision making, and cellular organization22.
These protein functions are mediated by molecular interactions, including protein-protein
interactions (PPIs), where proteins physically interactwith eachother and thus perform func-
tions like environmental sensing, signal transduction, regulation of metabolic and signaling
enzymes, conversion of energy into motion, or maintenance of the cell’s structural organiza-
tion. Two common high-throughput methods for identifying protein-protein interactions
are yeast two-hybrid (Y2H) and affinity purification mass spectrometry (AP-MS)102 (Figure
2.5).

In the yeast two-hybrid method, the DNA-binding domain of a transcription factor is at-
tached to a protein of interest, called bait, and the activation domain of the same transcrip-
tion factor is attached to another protein, called prey, that is potentially interacting with the
first protein. To detect whether there is a protein-protein interaction between bait and prey,
both proteins are expressed in a yeast cell. If both proteins bind to each other, the two at-
tached transcription factor components form a functional transcription factor, which then
activates a reporter gene.

The affinity purification mass spectrometry method, on the other hand, does not use a bait
protein paired with a single prey protein, but can simultaneously detect multiple prey pro-
teins interacting with a bait protein. To this end, the bait protein is isolated in a matrix by
affinity capture, and a protein mixture containing multiple prey proteins that potentially in-
teract with the bait protein is passed through the matrix. During this passage, proteins that
interact with the bait protein are retained in the matrix because they bind to the bait, while
other proteins that do not interact with the bait can pass through the matrix. The prey pro-
teins that have bound to the bait and have thus been retained in the matrix can then be iden-
tified from their peptide signatures by mass spectrometry.

The entirety of detected PPIs, involving a plethora of different proteins, can be assembled
into a PPI network. Commonly, PPI networks are formulated as undirected graphs, inwhich
proteins are represented by nodes and PPIs are represented by edges that connect the nodes
of interacting proteins102. There are multiple databases providing PPI networks of differ-
ent completeness and size, some of which extend the experimentally identified PPIs by in-
teractions that are for instance predicted computationally or inferred from homology with
other species142. Examples of widely used PPI databases are BioGRID132 and STRING167,
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(a) yeast two-hybrid (Y2H) method. (b) Affinity purifica on mass spectrometry method

Figure 2.5: Protein-protein interac on detec on methods. (a) In the yeast two-hybrid (Y2H) method, the bait protein
is a ached to the DNA-binding domain (BD) of a transcrip on factor and the prey protein is a ached to the ac va on
domain (AD) of the same transcrip on factor. The BD binds to the upstream ac va ng sequence (UAS) and if the bait
and prey proteins interact, the AD localizes the reporter gene and ac vates gene expression. Thus, gene expression
of the reporter gene serves as a measure of protein-protein interac on between the bait protein and the prey protein.
Created with BioRender.com (b) In affinity purifica on mass spectrometry (AP-MS), the bait protein is bound to a
matrix by affinity capture and a protein mixture is passed through the matrix. Interac ng prey proteins bind to the bait
protein and are retained in the matrix, while other proteins pass through. The protein complex of proteins bound to the
bait protein is then eluted and the prey proteins are iden fied by mass spectrometry. Created with BioRender.com.

but also the meta-database ConsensusPathDB (CPDB)82,93, which combines PPI data from
multiple resources.

2.3.1 ConsensusPathDB
ConsensusPathDB (CPDB)82,93 is a meta-database containing data on PPIs as well as other
types ofmolecular interactions, such as drug-target and biochemical interactions, for human,
mouse, and yeast obtained fromover 30 different public interaction databases, including PPI
databases such as BioGRID132. In addition to molecular interaction data, CPDB also pro-
vides molecular pathway gene sets from well-known databases such as the Kyoto Encyclope-
dia of Genes and Genomes (KEGG)94. The 2016 version of the CPDB database contained
261,085 humanprotein interactions, including both binary PPIs andprotein complexes, and
4,593 pathway gene sets82, which increased to 616,304 protein interactions and 5,578 path-
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way gene sets in the most recent CPDB version from 202293. Binary PPIs in the CPDB
database are annotated with a score, which is in the range [0, 1] and indicates the confidence
associated with the respective interaction.

2.4 Molecular Pathways
Cellular functions are rarely conferred by single molecules, but rather by sets or pathways
of interacting molecules and their respective genes74,60. Hartwell et al.74 define such path-
ways, which they call “modules”, as discrete functional entities, composed of manymolecule
types, whose function is separable from that of othermodules and arises from interactions be-
tween the module’s components. The molecules comprising a module can be DNA, RNA,
proteins, and other small molecules, which in isolation cannot confer the same function as
the module they are members of. Rather than defining pathways merely as sets of interact-
ing molecules without further specifying the exact nature of the interactions involved, an-
other definitionofmolecular pathways comes fromanetworkperspective, where a pathway is
viewed as a network ofmolecular interactions connected by themolecules taking part in these
interactions149. In this pathway definition, there are different types of interactions, includ-
ing gene regulation, which comprises transcription and translation, transport of molecules,
also known as translocation, reactions involving the conversion of small molecules, PPIs,
as well as so-called macroprocesses, whose internal organization is unknown. Furthermore,
whole pathways of interacting molecules can be part of other, often more generalized path-
ways. However, while the network-based definition of a pathway is arguably more biologi-
cally precise than the gene set-based definition, for many downstream analyses such as over-
representation analysis (ORA), the simpler view of a pathway as a set or functional entity
of interacting molecules is usually sufficient. There are several public databases providing
comprehensive information on molecular pathways. Some of the most prominent pathway
databases includeKEGG94, a database ofmanually curated pathways, Reactome61, which be-
sides the molecules constituting a pathway also contains information about the relations be-
tween these molecules, andWikipathways125, a community-driven pathway database project
to which experts from different sub-fields of biology can contribute their knowledge.
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3
Mathematical Principles and
Methodological Background

This chapter introduces some basic mathematical principles that lay the foundation for this
dissertation as well as the key statistical methods and algorithms that are used in this work.

3.1 Mathematical Notation
Firstly, we will introduce some basic mathematical notation used throughout this disserta-
tion. Natural numbers are denoted byN = 0, 1, 2, ... and include 0, while natural numbers
excluding 0 are denoted byN+. Real numbers are denoted byR. The notation (x1, x2, ..., xn)
denotes a row vector with n elements and the superscript⊤ indicates the transpose of a ma-
trix or vector, such that (x1, x2, ..., xn)⊤ would be the corresponding column vector. The
notation [a, b] is used for closed intervals, indicating that a and b are both included in the
interval, while (a, b) denotes an open interval excluding a and b. The capital letter P denotes
probability with P(A) being the probability of an eventA and P(A|B) being the conditional
probability of event A, given another event B. A binomial coefficient for two integers n and
k with 0 ≤ k ≤ n is denoted by

(n
k

)
= n!

k!(n−k)! and describes the number of ways to choose
an unordered subset of k elements from a set of n elements.

3.2 Machine Learning
The termmachine learning was coined by Arthur L. Samuel, who in 1959 described the con-
cept ofmachine learning as “the programmingof a digital computer to behave in awaywhich,
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if done by human beings or animals, would be described as involving the process of learn-
ing”147. More specifically, machine learning refers to the capability of a system to acquire
knowledge by extracting patterns from raw data rather than relying on hard-coded rules or
knowledge63.

There are two major categories of machine learning—supervised learning and unsupervised
learning—and most machine learning algorithms fall into one of these two categories63. In
supervised learning, each sample or data point in the input data is associated with an output
label or target and the goal of the machine learning algorithm is to predict this target from
the features of the input data63,75. One can think of supervised learning as a student-teacher
relationship, where the machine learning algorithm as the student tries to learn from the in-
put data and is provided with the correct result or target by a teacher who functions as a
supervisor and teaches the student what to learn63. In unsupervised learning, on the other
hand, there is no teacher supervising the student’s learning process and there are no target
variables that the machine learning algorithm should learn to predict. Instead, the goal of
unsupervised learning is to infer properties of the input’s probability distribution from the
input data samples alone63,75.

Classification and regression are common tasks from the category of supervised learning,
while a typical example of unsupervised learning is clustering63. The goal of classification is
to predict to which of a predefined number k of categories or classes an input sample belongs
to63. To this end, the classifier typically either tries to learn a function f : Rn → {1, ..., k}
that for an input sample x ∈ Rn with n input features outputs the number of the class y the
sample belongs to, i.e. f(x) = y, or a function f : Rn → Rk, which outputs a probability
distribution over the k different classes63. In the latter case, the predicted class ŷ for input
sample x is the class with the highest probability in the predicted output probability distri-
bution. In regression, in contrast to classification, the target variable is numerical rather than
categorical, and the machine learning algorithm thus tries to learn a function f : Rn → R,
which outputs a real number y ∈ R for each input sample x ∈ Rn 63.

In order to be able to learn anything, supervisedmachine learning algorithms rely on a perfor-
mancemeasure. This performancemeasure is usually specific to the task themachine learning
algorithm is trying to learn and quantitatively measures how well the algorithm performs in
predicting target variables from input data63. Performance measures are used in supervised
learning in two different ways: During training and after training. During training, a loss
function is used to compute the prediction error on the training data. Themachine learning
algorithm then tries to minimize this training error by iteratively adapting the algorithm’s
learnable parameters. After the training phase, a performance metric is typically used to eval-
uate the algorithm’s performance on a test dataset that was not used for training in order
to determine how well the algorithm generalizes to new data. In classification tasks, for in-
stance, prediction accuracy is a commonly used performancemetric tomeasure howwell the
machine learning algorithm has learned its classification task. How well a machine learning
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model generalizes to new data is closely related to the two concepts of underfitting and over-
fitting. If the model is not complex enough and its capacity to fit different functions is low,
underfitting occurs and the model is not able to fit the training data sufficiently, resulting in
a high training error63. On the other hand, if the model’s capacity to fit different functions
is too high, it may overfit the training data, resulting in a small training error, but a high test
error63. Hence, a goodmachine learningmodel is characterized by a capacity that allows it to
neither underfit nor overfit the training data and achieve a small training error while keeping
the gap between training and test error small as well63.

3.2.1 Tree Boosting

One widely used and effective type of machine learning is tree boosting31. The basic idea
underlying the concept of boosting is that multiple weak predictors can together constitute
a strong predictor150,75. In this context, a weak predictor can have an error rate that is only
marginally better than random, but by sequentially applying and then combining multiple
weak predictors, it is possible to compose a stronger predictor. In tree boosting, decision trees
are used as weak predictors. Decision trees are named after their tree-like structure, where a
sample is passed to the root node at the top of the tree and is then moved down through the
tree according to a sequence of decisions or splits58. Each node in the decision tree except
for the leaf nodes has an associated splitting attribute, which is usually an input feature, and
when the sample passes through the node, it is forwarded to one of the child nodes through
the branch that corresponds to a certain value of this attribute, i.e., that is either below or
above a threshold value. In contrast to the inner nodes of the tree, the childless leaf nodes
do not have splitting attributes associated with them. Instead, each leaf node j = 1, 2, ..., J
corresponds to a constant leaf score ωj, and the decision tree will output that score as a pre-
diction for all samples reaching that specific leaf node58,75. From a feature space perspective,
a decision tree can also be viewed as a method that partitions the input feature space into J
disjoint regionsRj, j = 1, 2, ..., J , corresponding to the J leaf nodes of the decision tree, and
then assigns a leaf score ωj to each region75. Figure 3.1 illustrates a decision tree with two
features and six leaf nodes and shows the corresponding feature space partition.

Mathematically, a decision tree with parameters Θ = {Rj, ωj} J
j=1 can be formulated as

T (x;Θ) =

J∑
j=1

ωj I
(
x ∈ Rj

)
, (3.1)

where x = (x1, x2, ..., xn) is an input sample with n features and I(·) refers to the indicator
function, which outputs 1 if its input term evaluates to true and 0 otherwise75.
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(a) (b)

Figure 3.1: Decision tree. (a) Decision tree with two features (X1 and X2) and six leaf nodes, which par on the feature
space into regionsR1, ...,R6. Each inner node corresponds to one decision threshold t1, ..., t5 on one of the features.
(b) Par on of the feature space by the decision tree from (a). Each rectangle corresponds to one leaf node i of the
decision tree and the corresponding region of the feature spaceRi. Adapted from 89.

A boosted tree is an additive combination ofM such simple decision trees, that is,

f (M)(x) =
M∑

m=1

fm(x), (3.2)

with fm(x) = T (x;Θm). In each tree construction stepm ∈ {1, ...,M}, a new treeT (x;Θm)
is added to the model and its parameters Θm = {Rjm, ωjm} Jm

j=1, where Jm is the number of
leaves of the tree,Rjm are the regions of the corresponding feature space, and ωjm are the leaf
scores, are optimized based on the previous model f (m−1)(x)with f (0)(x) = 0 by solving the
following optimization problem:

Θ̂m = argmin
Θm

N∑
i=1

l
(
yi, f (m−1)(xi) + T (xi;Θm)

)
(3.3)

Here, Θ̂m are the optimal parameters for the m-th tree, yi is the target output for sample
i ∈ {1, ...,N}, and l : R2 → R is a task-specific differentiable loss function. Accordingly,
the objective that themodel attempts tominimize in them-th training iteration thenbecomes

L (m) =
N∑
i=1

l
(
yi, f (m−1)(xi) + fm(xi)

)
. (3.4)

Notably, the leaf scores ω of boosted trees are continuous31, that is ωj ∈ R for all j =
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1, 2, ..., J .

Extreme Gradient Boosting

Extremegradient boosting (XGBoost) is a scalable tree boostingmethod31. As a tree boosting
method, it uses a tree ensemble of additive functions to predict an output given an input
sample (cf. Equation 3.2). However, in contrast to the objective from Equation 3.4, which
the model tries to minimize, XGBoost uses a regularized objective

L(m) =
N∑
i=1

l
(
yi, f (m−1)(xi) + fm(xi)

)
+Ω (fm) (3.5)

withΩ(f) = γJ+ 1
2λ ∥ω∥

2 as a regularization term that penalizesmodel complexity to reduce
overfitting. J is the number of leaves in the tree f, ω are the associated leaf scores, and γ and λ
are model hyperparameters. The objective is optimized by second-order approximation:

L(m) ≃
N∑
i=1

[
l
(
yi, f (m−1)(xi)

)
+ gifm(xi) +

1
2
hif 2m(xi)

]
+Ω(fm), (3.6)

where gi = ∂f (m−1)(xi)l
(
yi, f (m−1)(xi)

)
is the first order derivative of the loss function l and

hi = ∂ 2
f (m−1)(xi)

l
(
yi, f (m−1)(xi)

)
is the second order derivative of the loss function. This

approximation can be derived from Taylor’s theorem, which states that for a function f that
is (n+ 1) times differentiable in the interval I and x, x0 ∈ I:

f(x) =
n∑

k=0

f (k)

k!
(x− x0)k + Rn(x− x0) (3.7)

with remainderRn(x− x0) = f(n+1)(ϑ)
(n+1)! (x− x0)n+1 for a ϑ between x and x0 73.

When removing the constant terms from the approximation in Equation 3.6, a simplified
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model objective L̃m at training iterationm can be derived as

L̃m =
N∑
i=1

[
gifm(xi) +

1
2
hif 2m(xi)

]
+Ω(fm) (3.8)

=
N∑
i=1

[
gifm(xi) +

1
2
hif 2m(xi)

]
+ γJm +

1
2
λ

Jm∑
j=1

ω 2
jm (3.9)

=

Jm∑
j=1

∑
i∈Ijm

gi

 ωjm +
1
2

∑
i∈Ijm

hi + λ

 ω 2
jm

+ γJm, (3.10)

where Ijm = {i|qm(xi) = jm} is the instance set of leaf jm of tree fm, which contains the indices
of the samples assigned to leaf jm, and qm is the tree structure of fm, which maps samples to
leaf indices. For a fixed tree structure qm(x), the optimal scorew∗

jm of leaf jm, whichminimizes
the objective, can be computed as

w∗
jm = −

∑
i∈Ijm gi∑

i∈Ijm hi + λ
. (3.11)

By substituting wjm by w∗
jm in Equation 3.10, the corresponding objective term L̃m(qm) be-

comes

L̃m(qm) = − 1
2

Jm∑
j=1

(∑
i∈Ijm gi

)2∑
i∈Ijm hi + λ

+ γJm. (3.12)

This objective term L̃ m(qm) can be used to evaluate how good the tree structure qm is for the
prediction task. Because this optimization strategy uses the gradient of the tree functions,
this type of tree boosting is called gradient tree boosting.

Since it is computationally infeasible to test all possible tree structures q and compute their
corresponding objective, XGBoost uses a greedy algorithm to construct a tree structure qm
starting from a single leaf and growing the tree by iteratively adding new split nodes and
their corresponding branches and leaves. To this end, candidate splits on all features are con-
structed and each candidate split is evaluated in terms of the loss reduction by the split:

ΔLsplit =
1
2

[ (∑
i∈IL gi

)2∑
i∈IL hi + λ

+

(∑
i∈IR gi

)2∑
i∈IR hi + λ

−
(∑

i∈I gi
)2∑

i∈I hi + λ

]
− γ, (3.13)

where IL and IR with I = IL ∪ IR are the instance sets of left and right child nodes after the
split and the candidate split with the largest ΔLsplit is selected.
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3.2.2 Neural Networks
A neural network is a type of machine learning architecture that tries to simulate the learn-
ing mechanism in the brain of biological organisms4. It consists of multiple computational
units, which are called neurons and are interconnected by edges, each of which is associated
with a weight that is used to scale the input passing through the edge4. The neural network
then computes a function of the inputs by propagating them through the network from the
input neurons to the output neuron(s)4. More specifically, the neural network computes
the function f (x; θ) = ŷwith inputs x, learnable parameters θ, which in a neural network are
weights and biases, and output ŷ63. Learning occurs by adapting the parameters θ such that
the function f computed by the neural network becomes as similar as possible to the target
function f ∗(x) = y, where y is the true outcome associated with x63.

If the neurons of a neural network are arranged in a layer-wise fashionwith one layer of input
neurons, one or multiple intermediate layers, which are called hidden layers, and one output
layer, the neural network is called a feedforward neural network, or sometimes alsomultilayer
perceptron (MLP)4,63 (Figure 3.2).

Input Layer Hidden Layers Output Layer

Figure 3.2: Feedforward neural network. General architecture of a feedforward neural network with one input layer, one
or mul ple hidden layers, and one output layer. In a feedforward neural network, each neuron in one layer is connected
to all neurons in the next layer and informa on is propagated in a forward direc on from the input layer through the
hidden layers to the output layer. Created with https://www.yworks.com/yed-live/.
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The name ‘feedforward neural network’ originates from the characteristic of this type of neu-
ral network that each node in one layer is connected to all nodes in the next layer by weighted
edges and each layer ‘feeds’ its computed activation values to the next layer in a forward direc-
tion from input layer to output layer4. That is, the first layer of a feedforward neural network
computes activation values by the following function:

h(1) = g(1)
(
W(1)⊤x+ b(1)

)
, (3.14)

where x is a vector of inputs,W is a layer-specific weight matrix, b is a bias vector, and g is a
nonlinear activation function. Each subsequent layer i then computes the function

h(i) = g(i)
(
W(i)⊤h(i−1) + b(i)

)
, (3.15)

based on the activations h(i−1) of the previous layer63. While in early neural network archi-
tectures, the activation function g was usually the sigmoid or tanh function4, in modern
feedforward neural networks it is often recommended to use the rectified linear unit (ReLU)
instead, which is defined as g(z) = max{0, z}63.

As inothermachine learning architectures, learning inneural networks relies on a task-specific
loss function, which measures the prediction error made by the model on the training data
(cf. Section 3.2). The training algorithm is usually based on using the gradient to descend
the loss function by iteratively adjusting the weight and bias parameters, driving the loss to
a very low value63. To compute the gradient, the backpropagation algorithm is normally
used. During backpropagation, the error computed by the loss function is propagated back-
ward through the network from the output layer to the input layer to compute∇l(θ), which
is the gradient of the loss function with respect to the parameters θ63. In this context, θ are
the weights and biases of the neural network. Basically, backpropagation computes the chain
rule of calculus, which canbeused to calculate the derivatives of functions composed of other
functions, given that the derivatives of the other functions are known63. The chain rule of
calculus states the following63: Given x ∈ R and two functions f : R → R and g : R → R
with y = g(x) and z = f(g(x)) = f(y), then

dz
dx

=
dz
dy

dy
dx

. (3.16)

In the non-scalar case, if x ∈ Rm, y ∈ Rn, g : Rm → Rn, and f : Rn → Rwith y = g(x) and
z = f(y), the chain rule generalizes to

∂z
∂xi

=
n∑
j=1

∂z
∂yj

∂yj
∂xi

. (3.17)
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Equation 3.17 can also be rewritten in vector notation using the n × m Jacobian matrix ∂y
∂x

of g, which is a matrix containing all partial derivatives of g:

∇x z =
(
∂y
∂x

)⊤

∇y z (3.18)

with ∇y z being the gradient of z with respect to y and ∇x z being the gradient of z with
respect to x. Hence, backpropagation becomes the recursive computation of such a product
of the Jacobianmatrix and the gradient for each operation in the computational graph of the
neural network63.

Once the gradient of the loss function with respect to the model’s parameters has been com-
puted using backpropagation, this gradient can be used for learning by adapting the net-
work’s weights and biases using a gradient descent algorithm such as stochastic gradient de-
scent63. Gradient descent is based on the notion that the derivative f ′(x) of a univariate func-
tion f (x) provides the slope of the function at point x and thus indicates how a small change
in the input x affects the output of the function63. Thus, f (x) can be reduced bymoving x in
small steps into the opposite direction of the derivative63. If f (x) is a multivariate function
with x = (x1, ..., xn), n ∈ N+, as is usually the case in neural networks, its gradient is a vector
that contains all partial derivatives of f , where element iof the gradient is the partial derivative
of f with respect to xi, and the negative gradient points into the direction of steepest descent
of f 63. Thus, bymoving into the direction of the negative gradient of f by a small step, f (x) is
decreased63. The step size is specified by the learning rate ε, which is a positive scalar63. Given
an initial point x and a learning rate ε, a new point x′ can be determined, which reduces f (x′)
compared to f (x) and is defined as follows63:

x′ = x− ε∇xf(x). (3.19)

If f is the loss function of a neural network and x are the weights and biases that should be
learned, this equation instructs the neural network how to change these weights and biases
in order to reduce the prediction error. This step of adjusting weights and biases according
to the gradient and learning rate is repeated multiple times during gradient descent and the
procedure convergeswhen all elements of the gradient are zero, or in practice rather very close
to zero63.

3.2.3 Transfer Learning
Transfer learning is a concept based on the idea that the performance of a machine learn-
ing model on a target domain—often with a limited number of labeled samples—can be im-
proved by leveraging knowledge from a related source domain191 (Figure 3.3).

A domain D = {X ,P(X)} consists of a feature space X and a marginal distribution P(X)
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Figure 3.3: Transfer Learning. In transfer learning, knowledge learned on a source domain is transferred to a target
domain to improve the performance of the target model. Created with https://www.yworks.com/yed-live/.

with instance set X = {xi|xi ∈ X , i = 1, ..., n}191,188. This means that every input in-
stance xi in the instance setX is contained in the domain’s feature spaceX and P(X) captures
the distribution of the instance set. In practice, a domain is usually observed by a set of in-
stances that belong to the domain and can either be labeled or unlabeled191. If two domains
are different, this means that they can have different feature spaces or different marginal dis-
tributions188. In supervised machine learning, the goal usually is to learn a task T given
some labeled training data from a domain D. T = {Y , f} has two components: the la-
bel space Y and a decision or prediction function f : X → Y , which is an implicit function
that is learned from the training data and can then be used to make predictions on unseen
instances191,188. With these definitions in mind, transfer learning can be defined more for-
mally: Given a set of nS instance-label pairs {(xi, yi)|xi ∈ XS, yi ∈ YS, i = 1, ..., nS} from
a source domain DS with feature space XS and label space YS and a set of nT instance-label
pairs {(xi, yi)|xi ∈ XT, yi ∈ YT, i = 1, ..., nT} from a target domainDT with feature space
XT and label space YT, and DS ̸= DT or TS ̸= TT (i.e., the source and target domains are
different or the source and target tasks are different), transfer learning uses knowledge from
the source domainDS and task TS to improve the learning and performance of the prediction
function fT : XT → YT on the target domain191,179,188. This two-domain scenario, where
knowledge is transferred from one source domain to one target domain, is themost common
transfer learning scenario188. However, it is also possible to extend the definition of transfer
learning to multiple source and target domains and tasks. In this case, transfer learning uses
knowledge learned from mS ∈ N+ source domains and tasks {(DSj , TSj)| j = 1, ...,mS} to
improve the prediction functions fTj , j = 1, ...,mT, onmT ∈ N+ different target domains
and tasks {(DTj , TTj)| j = 1, ...,mT}191.

Transfer learning can be categorized based on different criteria: For instance, transfer learn-
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ing can be divided into homogeneous transfer learning and heterogeneous transfer learning
based on the similarity of the source and target domains191,188. While in homogeneous trans-
fer learning, the label spaces must be the same and the domains must have the same feature
space, in heterogeneous transfer learning, the label spaces can be different and the domains
can have different feature spaces, making it necessary to adapt the feature space during trans-
fer learning and thus making heterogeneous transfer learning more complex than homoge-
neous transfer learning191. Another criterion bywhich transfer learning can be categorized is
the availability of label information. In inductive transfer learning, label information is avail-
able for the target domain, while in transductive transfer learning, label information is only
available for the source domain, but not for the target domain, and in unsupervised transfer
learning, label information is available for neither domain191. The two types of transfer learn-
ing categorization described so far are based on the type of transfer learning problem at hand,
but it is also possible to categorize transfer learning based on how knowledge is transferred.
Instance-based, feature-based, parameter-based, and relation-based are four categories related
to the question of “how to transfer”191,188. Instance-based approaches are usually based on
an instance weighting strategy191, where source-domain instances are weighted and the trans-
ferred knowledge consists of the instances with large weights188. Feature-based approaches
try to learn a good feature representation—either by transforming the source features to
match the target features or by learning a common latent feature space for the source and
target domains—such that the source domain data can be used for training on the target do-
main191,188. Parameter-based approaches—also termed model-based approaches—transfer
knowledge from the source domain to the target domain through the learned parameters of
amodel that was trained on the source domain191,188. Themotivation behind this type of ap-
proach is the assumption that a model that has been well trained on the source domain will
have captured much useful general structure, which can be transferred to the target domain,
thereby benefiting target model performance188. Lastly, relation-based approaches are based
on the idea that at least some relationships between instances are similar in the source and tar-
get domains and that rules regarding these relationships between entities can be transferred
between domains191,188.

In the context of neural networks and deep learning, pre-training approaches from the para-
meter- or model-based category are widely used188: To transfer knowledge from the source
domain to the target domain, a (deep) neural network is first trained to solve a source task
on the source domain. Once training is completed, the parameters of the pre-trained neural
network are transferred to the target domain and task, for example by freezing some layers of
the pre-trained neural network and fine-tuning the parameters of the last few layers based on
labeled instances from the target domain191,188.

Transfer learning has been shown to be successful in many cases. For instance, Zoph et al.193
pre-trained a neural machine translation model on a large bilingual dataset and used the
trained model to translate between languages with little bilingual data available, Phan et al.
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used transfer learning for automatic sleep staging by pre-training a neural network on a large
source dataset and fine-tuning it on smaller target datasets136, and Maqsood et al.123 trans-
ferred knowledge from the AlexNet105 image classification method to detect Alzheimers’s
disease from MRI images. However, transfer learning does not always positively affect the
prediction performance on new tasks191. Instead, transferring knowledge from a source do-
main to the target domain can even negatively impact model performance on the target do-
main and task191. This phenomenon is called negative transfer and can happen, for example,
if the source and target domains are not related to each other closely enough or if themodel is
not able to find the part of the knowledge that is transferable to the target domain andwould
benefit performance191,188.

3.2.4 Feature Selection
If machine learning methods are trained on high-dimensional data—as in the case of most
omics data such as gene expression—a phenomenon termed the “curse of dimensionality”
can make training difficult and cause overfitting. The term “curse of dimensionality” was
first introduced by Richard Bellman15 and refers to the circumstance that the number of ob-
servations required to specify a function in an n-dimensional space grows exponentially with
the number of dimensions n and thus in higher dimensions data becomes more sparse15,111.
Possible approaches for alleviating the overfitting problem caused by high data dimensional-
ity are the application of dimensionality reduction techniques such as principal component
analysis (PCA)84,134 to the data before training or the use of feature selection techniques to
select a subset of features to train the machine learning model on. While dimensionality re-
duction techniques alter the original representation of the features, potentially exacerbating
interpretability, feature selection methods select a subset of the original features, leaving fea-
ture representations intact and thus allowing for better interpretability146.

Feature selection methods applied to supervised learning problems can be categorized into
filter methods, wrapper methods, and embedded methods146. Filter methods have in com-
mon that they select features based on intrinsic properties of the data, such as the correla-
tion between features or the χ2 test146. In contrast to filter methods, which do not consider
dependencies between the features and the target variable, wrapper methods do take such
dependencies into account by evaluating the same machine learning method as used for the
prediction task on different subsets of features and selecting the feature subset that yields the
best performance146. However, wrapper methods are computationally expensive, especially
for datasets with many features, because the number of feature subsets that need to be eval-
uated by the machine learning method grows exponentially with the number of features146.
Embeddedmethods, on the other hand, also take relations between the features and the target
into consideration and use the samemachine learningmethod as used for the prediction task
to evaluate features, but in contrast to wrappermethods, the evaluation is not done on differ-
ent subsets of features, but by leveraging built-in feature importancemeasures of the selected
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machine learning method146. While embedded feature selection methods are thus only fea-
sible with machine learning methods implementing such feature importance measures, they
are computationally far less expensive than wrapper methods146 because they don’t rely on
evaluating different feature combinations separately.

3.2.5 Hyperparameter Optimization

In addition to learnable parameters, which are estimated from training data, many machine
learningmodels also have parameters that cannot be directly learned from the data106. These
parameters are called hyperparameters, also referred to as tuning parameters106,89. Hyperpa-
rameters control many important properties of the machine learning model such as model
complexity and poorly adapted hyperparameters can negatively impact the prediction perfor-
mance106. Therefore, for most machine learningmodels, it is crucial to optimize the model’s
hyperparameters.

Grid Search

Grid search is the most basic hyperparameter optimization method56. Given a finite set of
discrete values for each hyperparameter, grid search evaluates the machine learning model
for every possible combination (the Cartesian product) of these sets of hyperparameter val-
ues56, usually on a set of validation samples that are neither used for estimating the model’s
learnable parameters nor for evaluating the performance of the final model. Afterwards, the
combination of hyperparameters that yielded the best model performance can be selected for
training a final machine learning model. However, the main disadvantage of grid search is
that the number of model evaluations grows exponentially with the number of optimized
hyperparameters and the number of candidate values per hyperparameter56. Thus, for ma-
chine learning models with many hyperparameters or fine-grained hyperparameter configu-
ration spaces, grid search becomes computationally expensive and sometimes infeasible due
to its high time complexity.

Random Search

Random search is a less runtime-intensive, yet simple alternative to grid search. In contrast
to grid search, which evaluates all possible hyperparameter configurations from a finite set of
hyperparameter values, random search only evaluates a pre-definednumber of randomly sam-
pled hyperparameter configurations56. Importantly and as opposed to grid search, random
search does not need to be supplied with a set of discrete candidate values for each hyperpa-
rameter, but can also sample hyperparameter values froma continuous distribution, allowing
it to evaluate more different values of a hyperparameter than grid search typically does.
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Bayesian Optimization

Instead of treating the evaluated hyperparameter configurations independently from each
other, as grid search and random search do, Bayesian optimization iteratively selects new hy-
perparameter configurations to evaluate based on the results of previously evaluated hyper-
parameter configurations. In each iteration, a probabilistic surrogate model, which can for
example be aGaussian process or a Tree-structured Parzen Estimator (TPE), is fitted to the re-
sults of all hyperparameter configurations that have been evaluated up to this point56. Then,
an acquisition function is used to determine the utility of different hyperparameter configura-
tions based on the predictive distribution of the surrogate model, balancing exploration and
exploitation56. In this context, exploration means selecting hyperparameter configurations
in yet relatively unexplored regions of the hyperparameter space, while exploitationmeans se-
lecting hyperparameters in regions that aremost likely to yield a good performance according
to the current surrogate model.

3.3 Survival Analysis
Survival analysis refers to a set of problems where individuals from one or more groups may
experience a defined event, often called failure, that occurs after a certain period of time, often
called failure time45. The failure event must occur at a discrete time point and each individ-
ual can experience the event only once45. Furthermore, the time origin must be defined for
each individual and the different individuals should be as comparable as possible at their time
origin45. The time to the event or failure time of each individual is then measured with re-
spect to the individual’s time origin45. Examples of survival analysis tasks are survival times
of patients enrolled in a clinical study, but also lifetimes ofmachines ormachine components
in industry settings, or duration of unemployment or strikes in economics45. In the first case
of patient survival in a clinical study, for instance, the time origin could be the entry date at
which an individual was enrolled in the clinical study and the failure that an individualmight
experience would be death in general or death from a certain cause like lung cancer. Failure
time would then accordingly be measured as time from study enrollment to death.

3.3.1 Censoring
A peculiarity of survival data is that some individuals may not have been observed until they
experienced the event of failure45. In the case of a clinical study, some patients might have
survived until the end of the study or some patients might have dropped out of the study at
some point and might thus have been lost to follow-up. Alternatively, if the failure event is
not death in general, but death from a certain cause such as lung cancer, a patient who has
died from another cause (e.g. cardiovascular disease), would not experience the event of in-
terest either. If failure cannot be observed in a patient, the patient is called censored and the
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event that made it impossible to observe failure is called censoring45. Like failure, censoring
also occurs at a discrete time point and the time period until censoring occurs is called cen-
soring time45. Figure 3.4 illustrates the survival times of ten different patients, of which five
experience failure and the other five are censored at different time points, in real time (Figure
3.4a) and in time relative to entry into the study as the time origin (Figure 3.4b). For an indi-

(a) (b)

Figure 3.4: Survival me. (a) Real survival mes of ten pa ents. Lines start at the year of entry into the study of the
respec ve pa ent and end at the year of death (failure) or censoring. (b) Time to failure or me to censoring for the
same ten pa ents in years with study entry as the me origin. Events are indicated with 6 for death (failure) and l for
censoring. Adapted from 45.

vidual i, the observation can be formalized in terms of its failure time ti and the time period
of observation ci, which is the censoring time if the individual has not experienced failure by
that time45. Then, the observation for individual i consists of the time yi = min(ti, ci) and
an indicator variable δi ∈ {0, 1}, which indicates the censoring status of the individual with
δi = 0 if ti > ci (i is censored) and δi = 1 if ti ≤ ci (i is uncensored)45.

3.3.2 Cox Regression
In conventional regression, the task is to learn a function f : Rn → R and predict a numerical
target value from a given input63. In survival analysis problems, however, where some of
the samples are censored before they experience failure, conventional regression is not suited
to predict survival in terms of failure time, because the failure time of censored patients is
unknown. To resolve this problem, David Cox developed a novel type of regression that can
handle censored samples44 and is also known as Cox regression. Cox regression considers
the following problem setting: Given a population of n0 individuals for n of which failure
time and for the rest censoring time is observed, the failure time is represented by a random
variable T, which can be either discrete or continuous, with k ≤ n different failure times
t(1) < t(2) < ... < t(k) and k = n in the continuous case. Then, the age-specific failure rate
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or hazard is defined as

λ(t) = lim
Δt→0+

P(t ≤ T ≤ t+ Δt|t ≤ T)
Δt

. (3.20)

That is, λ(t) is a function of time, which for a given time t yields the rate of failure in the
infinitesimal time interval [t, t+Δt). Furthermore, λ(t)Δt canbe regarded as the approximate
probability that an individual that has survived until time t fails in the next instant100.

If for each individual i ∈ {1, ..., n0}, m covariates x are available and the ith individual is
associated with the covariate values xi = (x1i, ..., xmi), the hazard function can be expressed
as a function of time t and covariates x and becomes:

λ(t; x) = exp(xβ)λ0(t), (3.21)

where λ0(t) is an unknown baseline hazard function under the standard conditions x = 0
and β is a m × 1 vector of unknown parameters44. Cox44 allows λ0(t) to be arbitrary with
the reasoning that the main interest of survival analysis is in the regression parameters β and
if λ0(t) is left arbitrary, usually only little information about β is lost.

In the case of continuous failure times, the conditional probability that an individual j dies
or fails at time point ti, given that i− 1 individuals j1, ..., ji−1 have failed before ti and one in-
dividual from the remaining population that has not experienced failure or censoring before
ti fails at ti can be computed as45

Pi(j|j1, ..., ji−1) =
exp(xjβ)λ0(ti)∑

l:tl≥ti (exp(xl β)λ0(ti))
(3.22)

=
exp(xj β)∑

l:tl≥ti exp(xl β)
, (3.23)

with xi being the covariate set of individual i. According to the chain rule for conditional
probabilities, the joint probability distribution for all failures j1, ..., jn can be computed as45

p(j1, ..., jn) =
n∏
i=1

Pi(ji|j1, ...ji−1) (3.24)

=
n∏
i=1

exp(xi β)∑
l:tl≥ti exp(xl β)

(3.25)

32



Chapter 3

and the corresponding partial log-likelihood is45,44

LCox (β) =
n∑
i=1

xi β − log
∑
l:tl≥ti

exp(xl β)

. (3.26)

For machine learning-based survival prediction, the negative partial log-likelihood is com-
monly used as a loss function34,95,107, which takes the form:

lCox = −
n∑
i=1

ĥβ(xi)− log
∑
l:tl≥ti

exp(ĥβ(xl))

, (3.27)

where lCox denotes the loss function and the predicted log-risk ĥβ(x) is the output of the
machine learning model given an input x. To make the loss independent of the size of the
analyzed dataset, it is often averaged over the number of uncensored samples n95,107 and thus
becomes:

lCox = − 1
n

n∑
i=1

ĥβ(xi)− log
∑
l:tl≥ti

exp(ĥβ(xl))

 (3.28)

= − 1
n
∑
i:δi=1

ĥβ(xi)− log
∑
l:tl≥ti

exp(ĥβ(xl))

, (3.29)

where δi indicates the censoring status of individual iwith δi = 1 if i is uncensored and δi = 0
otherwise.

3.3.3 Concordance Index
The concordance index orC-Index71 is a performancemetric commonly used to evaluate the
performance of survival predictionmethods. It is suited for populations of individuals where
part of the individuals experience failure and the other part of individuals are censored. The
C-Index calculates the ratio of the number of pairs of individuals whose failure times and pre-
dictions are concordant with the number of comparable pairs. In this context, a concordant
pair denotes a pair of individuals where the individual with the shorter failure time has the
smaller predicted failure time or the larger predicted risk score, and a comparable pair is a pair
of individuals where either both individuals are uncensored or one individual is censored and
its censoring time is larger than the failure time of the other individual, thus allowing to de-
termine which of the two individuals survived longer. Therefore, the C-Index can be viewed
as a type of rank correlation between observed failure times and predicted failure times or
risks71.
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For this work, the C-Index implementation of Dereli et al.51 was adapted as follows to the
prediction of risk instead of failure time:

C-Index =
∑N

i=1
∑

j ̸=i ΔijI
((
yi − yj

) (
ŷj − ŷi

)
> 0
)∑N

i=1
∑

j ̸=i Δij
(3.30)

with Δij =

{
1 if (δi = 1 and δj = 1) or (δi = 1 and δj = 0 and yi < yj)
0 otherwise,

(3.31)

where yi is the failure time of individual i, ŷi is the corresponding predicted risk score, δi ∈
{0, 1} denotes the censoring status with δi = 1 if i is uncensored and δi = 0 if i is censored,
Δij indicates whether the pair of individuals i and j is comparable, and I(·) is the indicator
function.

3.4 Network Propagation
As described in Section 2.3, the entirety of PPIs can be formulated as an undirected graph,
where nodes represent proteins and edges represent interactions between proteins. Network
propagation is a type of method in which information is diffused or propagated over a graph
or network to amplify biological signal and at the same time reduce noise43. This concept can
be imagined as fluid flowing through the graph or network, where each node is filled with a
node-specific amount of fluid that is proportional to its initial importance and this fluid then
flows from one node to the neighbors of this node, and then in the next step from the neigh-
bors to the neighbors’ neighbors and so on, until either the diffusion process is halted after a
few steps or an equilibrium is reached, where all liquid is evenly distributed over all nodes43.
In the first case, where the liquid diffusion or network propagation process is stopped after a
few steps, some nodes in the neighborhood of nodes that were initializedwith a large amount
of fluid will have received more fluid than other nodes, which is proportional to their impor-
tance in thenetwork after networkpropagation and canbeused toprioritize nodes. However,
the other case, where the liquid is evenly distributed over all nodes of the network at the end
of the network propagation, is not informative, because all nodes have the same amount of
liquid at the end and no prioritization of nodes is not possible anymore. Another approach
to gain information from network propagation and prioritize nodes besides halting the net-
work propagation after a certain number of steps is the concept of randomwalk with restart
(RWR)43. In contrast to the approach described before, where each node is initialized once
with a certain amount of fluid and this fluid is then diffused over the network, RWR returns
the liquid to the initial nodes at each step with a certain probability43. This way, the fluid is
kept somewhat close to the initial nodes andpropagation to distant nodes through longpaths
becomes less likely, thusmaking it possible for the network propagation to continue formany
steps and reach a steady state, where the amount of fluid in each node at each step changes
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only marginally, while the fluid is still largely confined to the local node neighborhoods of
the initial nodes43.

More formally, the amount of fluid or weight associated with each node after step k of RWR
can be computed as

pk = αp0 + (1− α)Wpk−1, (3.32)

where p0 is a weight vector, which assigns an initial weight to each node of the network, pk−1
are the node weights in step k − 1 of the network propagation, W is a normalized version
of the adjacency matrix A of the network, where A represents which nodes are connected to
which other nodes in the network, and α is a restart probability, specifying with which prob-
ability the node weight or fluid is returned to the respective initial node at each step43. α can
also be viewed as a network smoothing parameter, where a larger value of α corresponds to
less network smoothing43. Thus, the network propagation over k steps can be computed it-
eratively starting from p0. A common normalization for the adjacency matrixA is the degree
normalization, where A is normalized by the diagonal degree matrixD, which on the diago-
nal contains the degree, that is the number of neighbors, of each node, and the normalized
adjacency matrix is computed asW = AD−1 orW = D−1/2AD−1/2 43.

If the eigenvalues of the normalized adjacency matrix W are less than or equal to one and
the network is connected, meaning each node can be reached from each other node in the
network by traversing the edges, RWR converges to a steady-state distribution p, which can
be calculated as

p = α (I− (1− α)W)−1 p0, (3.33)

with I being the identity matrix43. Figure 3.5 illustrates RWR on a small graph.

Figure 3.5: Random walk with restart (RWR). Illustra on of RWR on a small graph with nine nodes. In 0) two nodes (5
and 7) are ini alized with a high weight, while all other nodes are ini alized with zero weight. During the subsequent
network propaga on steps 1)-3), the weight is propagated over the network, un l a steady-state s) is reached. Created
with BioRender.com.

In the biological context, network propagation is often used to propagate information over
PPI networks, which were introduced in Section 2.3. Here, the underlying assumption is
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that proteins encoded by genes that give rise to similar phenotypes have a tendency to inter-
act with each other and this tendency can be exploited by network propagation to identify
proteins (and their encoding genes) that are associated with a phenotype of interest but were
not initially known to be associated with this phenotype by leveraging prior information on
genes with a known association to this phenotype.

3.4.1 NetCore
NetCore13 is a network propagation method, which is based on RWR, but in contrast to
normalizing the adjacency matrix of the underlying graph by the node degree as described
above, NetCore applies a normalization based on node core to the adjacency matrix.

PPI networks are believed to be scale-free12. That is, they follow a power-law distribution,
where a small number of nodes, the so-called hubs, have a high degree and are connected to
a large number of interaction partners, while most nodes only participate in a small number
of interactions. A possible biological explanation for the scale-free nature of PPI networks is
gene duplication12: When a gene is duplicated during cell division, resulting in two identical
genes and consequently two identical proteins in the daughter cells, the proteins interacting
with the protein that is being duplicated will also interact with the duplication of this pro-
tein and thus each gain an interaction partner. If gene duplication is equally likely for each
protein-coding gene, proteinswithmany interaction partners aremore likely to be connected
to a duplicated protein than proteins with few interaction partners and will therefore gain
interactions through duplication events at a higher probability. This concept is called pref-
erential attachment and promotes the scale-free characteristic of PPI networks when these
networks are growing. However, besides this biological explanation for the power-law distri-
bution that is observed in PPI networks, there are also experimental reasons for this obser-
vation. As described in Section 2.3, PPIs are commonly detected by experimental methods
like Y2H or AP-MS, where one protein of interest is used as bait protein and interactions
of other proteins with this bait protein are measured. The selection of the bait proteins is
done by the investigator and hence is biased towards certain proteins of interest, which are
thus heavily studied and have many detected PPIs, while other proteins are studied less and
thus have fewer known interactions62. Additionally, the selection of a protein as bait can
introduce further experimental bias stemming from proteins behaving differently in Y2H
experiments if they are used as bait as compared to being used as prey164.

NetCore tries to reduce this degree bias by using a normalization strategy based on node core
during network propagation instead of the commonly used degree normalization13. The
core value of a node can be computed fromnode degree in an iterative process and reflects the
influence of a node on the spreading of information in the network. More precisely, the node
coremeasures how central a node is in the network, where a high node core indicates that the
node is located in a densely connected part of the network, while nodes in the periphery of
the network have a low core value, even if they have a high degree. To compute the core
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value of a node, the k-shell decomposition method59 can be used. In the first step, all nodes
with degree k = 1 are recursively removed from the network such that only nodeswith degree
k ≥ 2 remain in the network. Recursive removal of nodeswith degree kmeans that removing
nodes with degree k from the network is repeated until no nodes with degree k are left in the
network after the removal step. A core value of 1 is assigned to all nodes that couldbe removed
from the network in this first step. In the second step of the k-shell decomposition, all nodes
with degree k = 2 are recursively removed from the network until only nodes with degree
k ≥ 3 remain and a core value of 2 is assigned to the removed nodes. This node removal
step is repeated iteratively with increasing values of k until all nodes in the network have been
assigned a core value. The node core values are used by NetCore to normalize the adjacency
matrix A of the PPI network as follows:

Acore
i,j =

ki∑
l:Al,j ̸=0 kl

, (3.34)

where ki is the core value of node i in the network13. Thus, during the network propagation,
neighbors of a node that have a high core value will get more weight than neighbors with
a low core value that are located in the network’s periphery. Network propagation is then
performed by computing the steady-state distribution of an RWR according to Equation
3.33 withW = Acore 13.

In addition to re-weighting nodes by network propagation, NetCore implements semi-su-
pervised module identification, where network propagation results are combined with a set
of seed genes, which can be either user-defined or inferred from the initial node weights of
the network propagation input, to extract a biologically relevant sub-network and network
modules from the PPI network13. To this end, initially, only seed genes are included in
the sub-network and the sub-network is then extended by intermediate nodes that are di-
rect neighbors of at least one seed node, have a weight that is above a pre-defined minimum
weight after network propagation and have been identified as significant according to a per-
mutation test13. If the user does not define a list of seed genes, the top 100 genes with the
highest initial weights before network propagation are used as seed genes13. After construct-
ing the sub-network, the sub-network is split into connected components, which are called
modules13.

3.5 Hypothesis Testing
Hypothesis testing is a statistical concept used to decide if a statistical hypothesis about a
population should be either accepted or rejected based on experimental sample values from
this population137. In hypothesis testing, there are two types of hypotheses, which are com-
plementary to each other. The first type of hypothesis is the null hypothesis H0, also called
the statement of “no difference”, which is the hypothesis the researcher wants to investigate
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through the experiment. The second hypothesis type is the alternative hypothesisH1, which
states the opposite of the null hypothesis.

For instance, the researcher might have a coin and would like to find out whether this coin is
fair or biased. In this case, the null hypothesis could be “The coin is fair” and the alternative
hypothesis could be formulated as “The coin is biased”.

To decide whether to accept or reject the null hypothesis, a test statistic is necessary137. The
test statistic is a function of the experimental sample values and follows a distribution that
depends on a parameter θ with θ = θ0 under the null hypothesis70. The distribution of
possible outcomes of the test statistic is divided into two disjoint regions, the non-rejection
region (sometimes also called acceptance region137), which includes all outcomes that are
consistent with the null hypothesis at a predefined level of confidence and thus do not lead
to a rejection of the null hypothesis, and the rejection region, which is also called critical
region and comprises all outcomes that lead to the rejection of the null hypothesis70. The
boundary values dividing non-rejection and rejection regions are called critical values and
can be computed based on the probability distribution of the test statistic given a significance
level α 70. Thus, the significance level α controls when the null hypothesis is rejected, which
is the case when, under the null hypothesis, the probability that a sample comes from the
hypothesized probability distribution is less than or equal to α 70. In practice, α is typically
set to a small value of 0.01, 0.05, or 0.1070. If the null hypothesis is rejected despite being
true, this is called a Type I Error and the probability for committing a Type I Error is α 70.
Conversely, not rejecting the null hypothesis even though the alternative hypothesis is true is
called Type II Error70.

(a) Two-sided hypothesis test (b)One-sided hypothesis test

Figure 3.6: Hypothesis test. (a) In a two-sided hypothesis test, the rejec on region consists of two parts and is separated
from the non-rejec on region by two cri cal values clower and cupper. The total area of the rejec on region is equal to
the significance level α. (b) In a one-sided hypothesis test, only one cri cal value c separates non-rejec on and rejec on
regions. Here, a right-sided test is shown for illustra on.

There are two types of test statistics, two-sided tests and one-sided tests: In two-sided tests,
the rejection region consists of two parts on both sides of the non-rejection region, which are
defined by the two critical values clower and cupper, and outcomes that fall either below clower or
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above cupper lead to the rejection of the null hypothesis70 (Figure 3.6a). On the other hand,
in one-sided tests, there is only one critical value that separates non-rejection and rejection
regions70. If the rejection region lies on the left side of the non-rejection region and the re-
searcher is interested in outcomes smaller than the critical value, this is called a left-sided test,
while in a right-sided test, the rejection region lies on the right side of the non-rejection region
and values larger than the critical value are of interest70 (Figure 3.6b).

3.5.1 P-Value
The p-value is the probability of obtaining an outcome by chance that is as extreme or more
extreme than the observed outcome under the assumption that the null hypothesis is true101.
To determine if the p-value of an observed outcome is statistically significant, it can be com-
pared to the significance level α. If the p-value is smaller than or equal to α, this means that
the corresponding test statistic value falls within the rejection region of the test statistic and
thus the null hypothesis can be rejected70. Conversely, if the p-value is larger than α, this is
reflective of the test statistic value falling within the non-rejection region and hence the null
hypothesis is not rejected.

3.5.2 Multiple Hypothesis Testing
Multiple hypothesis testing refers to the setting where two or more statistical hypotheses are
tested simultaneously152. In that case, the probability of committing a Type I Error accumu-
lates in proportion to the number of tested hypotheses152.

This can be illustrated by an example: Consider the setting where ten different hypotheses
are tested simultaneously at a significance level of 0.05. Then, the probability of obtaining at
least one significant result purely by chance would be approximately 40%, as shown by the
following calculation:

P(at least one significant result) = 1− P(no significant result)
= 1− (1− 0.05)10

≈ 0.401

This probability of committing at least one Type I Error is called the family-wise error rate
(FWER)83. If not only 10, but 50 hypotheses were tested simultaneously at the same signif-
icance level of 0.05, the FWER would rise from 40% when testing 10 hypotheses to above
90%when testing 50 hypotheses. Thus, whenmultiple hypotheses are tested simultaneously
on the same data, all of the obtained p-values need to be adjusted for multiple testing, for in-
stance with the Bonferroni method or the less conservative Benjamini-Hochbergmethod for
multiple testing correction.
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Bonferroni Method

The Bonferroni method is a multiple testing correction method that controls the FWER by
adjusting the significance level α proportionally to the number of tested observations77. That
is, instead of comparing the p-value of an observation to the significance level α, it is compared
to α/n, where n is the number of tested observations and the null hypothesis is rejected only
if the p-value is smaller than α/n.

Benjamini-Hochberg Method

Instead of directly controlling the FWER like the Bonferroni method, the Benjamini-Hoch-
bergmethod controls the false discovery rate (FDR), which is the likelihood that an incorrect
rejection of the null hypothesis occurs76. Controlling for the FDR instead of the FWER
is less conservative, allowing for the rejection of more null hypotheses in a family of tested
hypotheses.

In the Benjamini-Hochberg multiple testing correction method16, them tested hypotheses
are sorted by their p-values p(i) in ascending order such that p(1) ≤ p(2) ≤ ... ≤ p(m). Then
k is determined, which is the largest index i for which

p(i) ≤
i
m
q∗,

where q∗ is the desired FDR.Once khas been determined, the null hypotheses corresponding
to p-values p(i) with i = 1, 2, ..., k are rejected.

3.5.3 Wilcoxon Rank Sum Test
The Wilcoxon rank sum test is a nonparametric test that is used to assess whether the dif-
ference between two groups of samples is significant79. To this end, the samples from both
groups are sorted by magnitude and a rank is assigned to each sample based on this sorting,
where the sample with the largest magnitude gets a rank of 1. If two or more samples have
the samemagnitude, the average rank of these samples in the sortedmagnitude list is assigned
to these samples (e.g., if three samples have the same magnitude and are located at ranks 2, 3,
and 4 in the sortedmagnitude list, all of the three samples are assigned a rank of 3). Then, for
each of the two sample groups that should be compared, the sum of ranks is computed over
all samples belonging to the respective group and the rank sum value of the smaller sample
group is compared to a rank sum score-associated p-value table to assess statistical significance.

The Wilcoxon rank sum test is related to the Student’s t-test in that both tests are used to
compare two sample groups and assess whether both groups are significantly different from
each other, but in contrast to the parametric Student’s t-test, which requires the two sample
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groups to be normally distributed and to have approximately equal variance, the Wilcoxon
rank sum test is nonparametric and does not have these requirements78,79.

3.6 Over-Representation Analysis
Over-representation analysis (ORA) is a type of pathway analysis that can be used for the
functional interpretation of genes associated with a phenotype of interest183. More precisely,
given a collection of gene sets or biological pathways and a list containing genes of interest
(e.g., genes that are associated with a phenotype of interest), ORA can be used to identify
those gene sets or pathways that are significantly over-represented or enriched for the genes
of interest183. To this end, ORA uses the hypergeometric distribution to calculate a p-value,
which reflects the probability that at least as many genes of interest as observed are contained
in a given gene set or pathway by chance, and can be calculated as follows21:

p = 1−
k−1∑
i=0

(M
i

)(N−M
n−i

)(N
i

) , (3.35)

whereN is the number of genes in the background distribution (e.g., all genes measured in
an experiment),M is the size of the input list of genes (e.g., genes that are associated with a
phenotype of interest), n is the size of the gene set or pathway, and k is the number of genes
from the input list that are contained in the gene set or pathway (Figure 3.7).

Figure 3.7: Over-representa on analysis (ORA). Given a list containing genes of interest from a background distribu on
(e.g., all genes measured in an experiment) and a database of gene sets or pathways, ORA uses the hypergeometric
distribu on to iden fy gene sets or pathways significantly enriched for genes of interest. The Venn diagram represents
the ORA parameters from Equa on 3.35. Created with BioRender.com.

This type of test to compute the p-value is also known as right-tailed Fisher’s exact test183.
Since this p-value is typically calculated for each of multiple gene sets or pathways separately,
multiple testing correction is commonly applied to the computed p-values.
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4
RelatedWork

This chapter aims to place this dissertation in context with existing work in the field by high-
lighting selected publications related to different aspects of this dissertation.

4.1 Cancer Survival Prediction
The focus of this dissertation is cancer survival prediction. Cancer survival prediction is a
challenging task that has been addressed in several works. In this section we will introduce a
selection of these works. Most publications in the field of cancer survival prediction address
the task of single-cancer survival prediction,where the aim is topredict the survival of patients
suffering from a specific type of cancer. Relevant examples of single-cancer survival predic-
tion methods will be explained in Subsection 4.1.1. However, there are also some works ad-
dressing pan-cancer survival prediction, where survival models are trained on patients from
multiple cancer types simultaneously. This pan-cancer training allows themodels to leverage
knowledge from a larger number of samples from the different cancer types instead of being
limited to the samples available for only one specific cancer type. Twomethods representing
this category of cancer survival prediction will be introduced in Subsection 4.1.2.

4.1.1 Single-Cancer Survival Prediction
Random survival forests88 are a well-known and widely used survival prediction method.
They are based on the popular random forest (RF) method23 and extend it by the ability to
handle right-censored survival data. This is achieved by introducing splitting rules adapted to
survival data when growing trees and modifying the random forest to predict the ensemble
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cumulative hazard function, which is computed by first calculating a cumulative hazard func-
tion for each tree of the survival random forest and then averaging over all trees. The cumula-
tive hazard function, in turn, is estimated by the Nelson–Aalen estimator, which computes
the cumulative proportion of deaths among individuals at risk summed over time. Random
survival forests are commonly applied to predict cancer survival. For instance, Zhang et al.190
compared random survival forests and Cox regression trained on clinical data of spindle cell
carcinoma patients and identified survival prognostic features, while Dereli et al.51 used ran-
dom survival forests to predict cancer survival for different cancer types based on gene expres-
sion data and compared the results to their proposed cancer survival prediction method.

Survival support vector machines156 are another established survival predictionmethod that
can be used for single-cancer survival prediction. They extend classic support vector ma-
chines by regression on censored targets. To incorporate censored samples into the model,
survival support vector machines disregard predicted survival times of censored samples that
are larger than the respective censoring times when computing the loss during model train-
ing.

Dereli et al.51 applied both random survival forests and survival support vector machines
to compare their proposed Path2Surv survival prediction method. To this end, they trained
and evaluated all threemethods on gene expression data from20different cancer types. Their
proposed cancer survival predictionmethod Path2Surv is a multiple-kernel learning method
that is based on the aforementioned survival support vector machines. The main novelty of
Path2Surv, which distinguishes it from survival support vector machines, is that it combines
multiple kernels, each representing amolecular pathwayor gene set, to predict cancer survival,
thus incorporating prior biological knowledge into the learning process.

Another single-cancer survival prediction approach that incorporates prior knowledge into
the learning process is the reweighted random survival forest180. This prior knowledge comes
in the form of gene interaction information and is incorporated into the model by reweight-
ing genes according to their topological importance. More specifically, reweighted random
survival forests are trained on gene expression data, where topologically important genes re-
ceive highweights, thus biasing themodel to select them as predictorswith higher probability
than topologically less important genes. According to the authors of reweighted random sur-
vival forests, the underlying assumption behind prioritizing topologically important genes
in this way is that these genes often have important functions in disease development and
show consistent gene expression variations across patients180. In the original publication in-
troducing reweighted randomsurvival forests180, themethodwas applied to two cancer types,
namely glioblastoma multiforme and esophageal squamous cell carcinoma, and topological
importance values were derived from a global pathway network based on the KEGG94 path-
way database and a co-expression network based on the training gene expression data, respec-
tively.
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In 2016, Li et al.112 proposed a somewhat different approach to survival prediction, where
they formulated survival prediction as a multitask learning problem and tried to estimate the
patients’ survival times by predicting their survival status at predefined time intervals. This
way, the survival prediction task is reformulated from a regression problem to a combination
of multiple binary classification problems and the corresponding regularized optimization
problem is solved to obtain survival coefficients. In the original publication112, the multitask
learning approach was applied to seven different cancer datasets, where each dataset com-
prised gene expression data of patients from one cancer type.

In addition to modifying traditional machine learning methods such as support vector ma-
chines or random forests to handle right-censored survival data, some works have also ap-
proached theproblemof single-cancer survival predictionby applyingneural networks. Three
prominent examples of neural network-based cancer survival prediction methods are Cox-
nnet, DeepSurv, and Cox-PASNet.

Cox-nnet34 is a neural network consisting of two layers—one hidden layer with 143 nodes
andone output layerwith a single node—with the output layer implementingCox regression.
Thus, the output layer computes the relative risk compared to a non-parametric baseline for
each patient. Cox-nnet uses the partial log-likelihood (cf. Chapter 3, Equation 3.26) to com-
pute the loss and incorporates dropout to prevent overfitting. In the original publication34,
themethodwas applied for survival prediction on gene expression data of ten different cancer
types from the TCGA.

DeepSurv95 is a Cox proportional hazards deep feed-forward neural network, which, similar
to Cox-nnet, implements Cox regression in its output layer and uses the negative partial log-
likelihoodwith regularization as a loss function. In contrast toCox-nnet, which has only one
hidden layer, DeepSurv has up to three hidden layers depending on the dataset it is trained
on and uses dropout in combinationwithL2-regularization to prevent overfitting. Addition-
ally, DeepSurv implements a treatment recommender system, where initially each patient is
assigned to one treatment group and each treatment group is assumed to have an indepen-
dent risk function. Then, after the model is trained, each patient can be passed through the
network once in a treatment group i and again in a treatment group j, and the difference of
log hazards for the different treatment options is computed. If this difference is positive, this
means that treatment option i has a higher predicted risk of death than treatment option j
and treatment j is recommended for the patient. Otherwise, if the difference is negative, treat-
ment option i is recommended. DeepSurv was evaluated on simulated and real survival and
treatment data95, where the real survival data stemmed from three different studies: a study
on heart attack survival and a study on survival of seriously ill hospitalized adults, both com-
prising clinical features, and one study on breast cancer survival with both clinical and gene
expression features. However, from the last dataset, only a subset of four gene indicators was
used as gene expression features and the remaining gene expression data was disregarded.
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Cox-PASNet69 combines neural networks with a priori biological information. More pre-
cisely, prior knowledge about biological pathways is explicitly incorporated into the architec-
ture of the neural network by introducing sparse layers that represent genes and pathways.
Thus, Cox-PASNet consists of an input gene layer, where each node corresponds to a gene
and only genes belonging to at least one pathway are considered. The second layer of Cox-
PASNet is the pathway layer, where each node represents a specific biological pathway and is
only connected to nodes from the input layer that correspond with genes belonging to that
pathway. The pathway layer is followed by multiple sparse hidden layers, whose output is
combined with the output of a clinical layer that introduces clinical features into the model
and forwarded to a single-node output layer, which—similar toDeepSurv—implementsCox
regression with L2-regularization. The sparsity in the hidden layers is achieved by initializing
them to be fully connected in each training epoch, then using a dropout technique to ran-
domly select and train a small sub-network, and applying sparse coding on the trained sub-
network, where connections with an absolute weight that is below a layer-specific threshold
are removed. To evaluateCox-PASNet for cancer survival prediction, themethodwas applied
to gene expression and clinical data from glioblastoma multiforme69, which is an aggressive
type of brain cancer.

4.1.2 Pan-Cancer Survival Prediction
In 2019, Cheerla andGevaert introduced amultimodal neural network-basedmodel for pan-
cancer survival prediction29. Their method incorporates clinical data, gene and microRNA
expression data, as well as histopathology whole slide images. A separate neural network per
data modality is first used to extract feature vectors of length 512 for each modality. These
modality-specific neural networks are trained using a representation learning framework. In
this representation learning framework, a similarity loss is used tomake the feature vectors ex-
tracted from the same patient but different data modalities similar, while driving the feature
vectors corresponding to different patients apart. To predict cancer survival, the feature vec-
tors extracted from the different data modalities are aggregated into a single representation
vector of length 512, which is then fed to a prediction layer implementing Cox regression.
The sum of similarity loss and Cox loss—computed as the negative partial log-likelihood—
is used as an overall loss to train the model. During training, multimodal dropout is ap-
plied to make the model robust to missing data modalities. Multimodal dropout is a vari-
ation of the dropout technique where instead of dropping single neurons, whole feature vec-
tors corresponding to one of the data modalities are randomly dropped with a pre-defined
probability and the weights of the remaining modalities are scaled up accordingly. Cheerla
and Gevaert evaluated their multimodal survival prediction model on single-cancer and pan-
cancer data comprising 20 cancer types from TCGA and different combinations of data
modalities, which always included clinical data. They found microRNA expression to be
themost and gene expression to be the least informative datamodality for pan-cancer survival
prediction integrating all modalities. For single-cancer survival prediction, they found differ-
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ent combinations of data modalities to yield the best performance: for eight cancer types,
the combination of all four considered data modalities was the most informative for survival,
while for six cancer types, the combination of clinical data, microRNA, and histopathol-
ogy whole slide images, excluding gene expression data, showed the best results. For all but
one (KIRC) cancer type, they additionally found that pan-cancer training including all data
modalities yielded superior results compared to single-cancer training on the samemodalities.

In 2020, Vale-Silva and Rohr proposed MultiSurv176, another multimodal deep learning
method for pan-cancer survival prediction. MultiSurv integrates a pan-cancer dataset con-
sisting of 33 different cancer types and multiple data modalities, including clinical data, his-
topathologymicroscopy slides, and different types of molecular data such as gene expression,
microRNA expression, DNAmethylation, and CNV data. Similar to the method proposed
by Cheerla and Gevaert in 201929, the different data modalities are first individually fed
to modality-specific sub-models, which are used for feature extraction. The outputs of all
sub-models are then fused into a compact representation vector using a multimodal fusion
procedure that is based on a multimodal keyless attention mechanism. Using this attention
mechanism, the model can learn how much to focus on each of the modalities when fus-
ing them into the representation vector. The representation vector is then fed to a six-layer
fully connected neural network with one output node, which implements Cox regression
and is optimized using the average negative partial log-likelihood as loss function, similar to
the single-cancer neural network-based survival predictionmethods. Analogously toCheerla
and Gevaert’s multimodal survival prediction model29, MultiSurv is also trained with mul-
timodal input data dropout, where for every patient, each data modality is dropped with
a certain probability during training and the values of the fused representation vector are
scaled up to compensate for the missing data modality, allowing the model to handle miss-
ing data modalities. Vale-Silva and Rohr evaluated their proposed MultiSurv method on 33
cancer types fromTCGA and different combinations of data modalities and found the com-
bination of clinical, gene expression, andDNAmethylation data to yield the best pan-cancer
survival prediction results. Interestingly, and in stark contrast to Cheerla and Gevaert, who
found gene expression to be the least informativemodality29, Vale-Silva andRohr found gene
expression to be the most predictive single data modality, followed by DNAmethylation176.

4.2 XGBoost

Our work is subdivided into two main parts: the identification of a pan-cancer survival net-
work with gradient tree boosting and network propagation, and transfer learning for cancer
survival prediction. In the first part, XGBoost31 (cf. Section 3.2.1) is used to predict survival
in individual cancer types and for a pan-cancer dataset from theTCGAdatabase, followed by
network propagation on the pan-cancer prediction results to identify a pan-cancer survival
network. The XGBoost framework31 has been successfully applied in a number of different
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biomedical prediction tasks. Here we introduce three interesting examples, namely the appli-
cation of XGBoost in the diagnosis of chronic kidney disease131, epilepsy detection based on
language patterns identified from cerebral activity using XGBoost174, and the prediction of
the biological activity of molecular compounds11.

Chronic kidney disease is characterized by a gradual loss of kidney function, including its abil-
ity to filter the bloodstream and dispose of metabolic waste131. It affects more than 10% of
the populationworldwide and 15%of the SouthAfrican population131. Ogunleye andWang
from the University of Johannesburg, South Africa propose the use of XGBoost to diagnose
chronic kidney disease from clinical features131. The prediction task is formulated as a binary
classification problem, where patients can be classified as either healthy or ill. To solve this
prediction task, Ogunleye and Wang considered different machine learning frameworks, in-
cluding logistic regression, linear discriminant analysis (LDA), classification and regression
tree (CART), support vector machine (SVM), k-nearest neighbor (KNN), and XGBoost,
and found thatwithout hyperparameter tuning, XGBoost showed the best prediction perfor-
mance. Based on these results, they selectedXGBoost for the disease diagnosis task and tuned
its hyperparameters using grid search. To evaluate the model for diagnosing chronic kidney
disease, a 10-fold cross-validation schemewas used. In addition to oneXGBoostmodel using
the full set of available features, Ogunleye andWang trained and evaluated a secondXGBoost
model using only a subset of features, which had roughly half the size of the original feature
set. To select the features from the full feature set, they applied three different feature selec-
tion methods, namely recursive feature elimination (RFE), extra tree classifier (ETC), and
univariate selection (US), and retained features selected by at least two of the three methods.
The evaluation of both models showed that the reduced model only using the subset of se-
lected features matched the performance of the full model using the original feature set.

Another application of XGBoost in the biomedical field is the detection of epilepsy from
language patterns based on cerebral activity. In 2017, Torlay et al. proposed the applica-
tion of an XGBoost model on functional MRI (fMRI) data to identify atypical language
patterns and classify subjects as healthy or patients with epilepsy174. The symptoms of focal
epilepsy are caused by the lesion or dysfunction of a specific cerebral region, which is often
located in the vicinity of language networks174. Additionally, brain networks involved in
cognitive functions such as language show reorganization or plasticity in patients with focal
epilepsy, leading to atypical language patterns, which can be mapped with fMRI174. Tor-
lay et al. leveraged this characteristic and applied an XGBoost binary classification model to
fMRI mappings of language networks to distinguish healthy individuals, who show typical
language patterns, from epilepsy patients, who show atypical language patterns174. The XG-
Boost model was trained and evaluated using a random subsampling scheme, where in each
of 12 replications, patients were randomly split into training and test sets and an inner 5-fold
cross-validation for feature selection was performed on the training data to select the most
predictive combination of 20 features derived from fMRI activation signal.
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XGBoost has also been successfully applied in the field of drug discovery. This application
was proposed by Mustapha and Saeed, who used XGBoost for bioactive molecule predic-
tion11 and showed that the method could outperform other machine learning methods like
random forest, support vector machines, radial basis function neural network, and Naïve
Bayes on themajority of evaluated datasets. They formulated the prediction of the biological
activity of molecular compounds as a binary classification problem, where compounds were
classified as either active or inactive. The prediction was based on quantitative descriptors
of the compound’s molecular structure, called molecular fingerprints, and was evaluated on
seven datasets that had previously been used to validatemolecular fingerprint-basedmolecule
classification and activity prediction, showing very good validation accuracy of up to 98%.

4.3 Transfer Learning

In the second main part of this work, we seek to improve cancer survival prediction by the
use of transfer learning. Transfer learning is based on the idea that knowledge from one do-
main with abundant data can be transferred to a different, but related domain to improve
performance191 (cf. Section 3.2.3). Here, we introduce three exemplary works that use the
concept of transfer learning, either to build a generalmachine learning framework, such as in-
corporating transfer learning into theXGBoost algorithm166, or to solve a specific prediction
task, such as predicting drug sensitivity for anti-cancer compounds139 or predicting cancer
survival based on gene expression data98.

TransBoost166 is an extension of the XGBoost framework31 implementing transfer learning
for binary classification taskswithXGBoost boosting trees. For transfer learning, it combines
a parallel tree structure with an instance weighting strategy. More precisely, TransBoost con-
sists of two parallel XGBoost classification models, which are trained conjointly. They are
constrained to share the same tree structure and split values, but can have different node
weights. One of the two models, termed main boosting tree, is optimized on the combina-
tion of target domain and weighted source domain instances, while the other model, called
ancillary boosting tree, is optimized on source domain instances only. To this end, the main
model, which is also the final model that can be used to make predictions on the target do-
main, is trained using the sum of the loss on the target domain instances, a weighted loss on
the re-weighted source domain instances, and a regularization term as the objective. The an-
cillary model, on the other hand, is trained to optimize a regularized loss on the unweighted
source domain instances. The weights used for re-weighting the source domain instances in
the main model are defined as the ratio between the joint distribution of the target domain
and the joint distribution of the source domain and can be computed for each source domain
instance at each training iteration based on the predictions of the main model and the ancil-
larymodel for the respective instance. Sourcedomain instances that resemble thedistribution
of the target domain will receive high weights, while instances that differ more from the tar-
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get domain distribution receive lowweights. This way, the distribution discrepancy between
source domain and target domain is minimized and knowledge from the source domain can
be effectively transferred to improve model performance on the target domain. Thus, Trans-
Boost implements an instance-based transfer learning approach (cf. Section 3.2.3).

Transfer learning has been successfully applied to several biomedical tasks, including drug
sensitivity prediction and cancer survival prediction. Recently, Prasse et al. used a parameter-
based (cf. Section 3.2.3) transfer learning approach for drug sensitivity prediction, where
they first pre-trained a neural network on in vitro gene expression data and then fine-tuned
the model on patient-derived gene expression data139. Large-scale drug sensitivity screening
data, such as that provided by theGenomics ofDrug Sensitivity inCancerDatabase (GDSC),
are typically generated by exposing cultured cancer cell lines to a variety of drug candidates139.
However, these cancer cell lines have often been cultured for years or evendecades under selec-
tive pressure in culture conditions and without interaction with other cell types, so theymay
no longer represent themolecular characteristics of the primary tumor well139. On the other
hand, there are patient-derived model systems for assessing drug sensitivity, such as ex vivo
cell cultures, patient-derived xenografts, or patient-derived organoids, which more closely re-
semble clinical tumors than cultured cell lines139. However, drug sensitivity screening ismore
complex in thesemodel systems, resulting in amuch lower availability of drug sensitivity data
compared to cultured cell lines, which is not sufficient for training high-capacity machine
learning models139. To address this problem, Prasse et al.139 proposed a transfer learning ap-
proach, where first a neural network model was trained on gene expression data from the
GDSC database to predict drug sensitivity, and then the pre-trained model was fine-tuned
on a patient-derived drug sensitivity dataset. Three different neural network models were in-
vestigated for pre-training and fine-tuning: PaccMann, a state-of-the-art drug sensitivity pre-
diction method, which uses prior knowledge of drug targets and network propagation on a
PPI network for feature selection on the gene expression data and attention-based network
modules to encode gene expression and drug information, tDNN, which is based on approx-
imately 1,900 biologically relevant genes and uses two separate fully connected sub-networks
for processing gene expression and drug information, respectively, before concatenating the
output of both sub-networks and passing it through some additional fully connected layers,
and a convolutional neural network, consisting of a single-layer gene expression sub-network
and a convolutional drug sub-network, respectively, whose outputs are then concatenated
and passed through some additional fully connected layers with batch normalization. The
transfer learning approachwas evaluated on four different target datasets used for fine-tuning,
including cultured cell lines from the Cancer Cell Line Encyclopedia (CCLE), ex vivo cell
lines from the Beat Acute Myeloid Leukemia program, a lung cancer xenograft dataset, and
the Pancreatic Cancer Patient-derived Organoid dataset. For each model and each target
dataset, two different settings were evaluated: the precision oncology setting, where the aim
was to predict drug sensitivity of known drugs for new, previously unseen tumor cases, and
the drug development setting, where drug sensitivity of known tumor cases to a new drug
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was predicted. Additionally, for each target dataset, it was investigated how the number of
training samples would impact model performance by fine-tuning the pre-trained model on
data subsets of different sizes. In the precision oncology setting, pre-training consistently im-
proved prediction performance when up to 1,000 training samples from the target dataset
were used for fine-tuning, while in most cases there was no significant improvement when
more than 1,000 training samples were used. In the drug development setting, however, the
benefit of pre-training was less dependent on the number of training samples from the target
domain and improvements from pre-training were observed across the full range of sample
sizes.

VAECox98 is another parameter-based (cf. Section 3.2.3) transfer learning approach that is
based on a neural network. It was introduced in 2020 by Kim et al. and uses transfer learn-
ing to transfer knowledge from pan-cancer RNA-seq gene expression data to predict survival
in a specific cancer type. The training of VAECox consists of two steps: In the first step, a
variational autoencoder (VAE) is trained on a pan-cancer gene expression dataset and in the
second step, the trained weights from the encoder part of the VAE are transferred to a sur-
vival predictionmodel and fine-tuned to predict cancer survival for a single cancer type. The
encoder consists of an input layer, one hidden layer, and a latent layer comprising a mean
encoding component and a variance encoding component. Once trained on the pan-cancer
pre-training dataset, the input layer, hidden layer, and mean encoding layer are combined
with an additional hidden layer and a Cox-PH output layer for survival prediction, while the
variance encoding layer is not transferred. The complete model is then trained on a single
cancer type, using the negative partial log-likelihood as a loss function and fine-tuning the
weights of the encoder layers. In the original publication, VAECox was evaluated on 10 dif-
ferent TCGA cancer types, while the gene expression VAE was pre-trained on a pan-cancer
dataset comprising 20 TCGA cancer types. In addition to evaluating the survival prediction
performance on the 10 cancer types, Kim et al. analyzed the hidden nodes of the VAECox
model fine-tuned for breast cancer (BRCA) to find genes that were important for survival
prediction. To this end, they extracted the hidden nodes with the highest variance from the
second and third hidden layers of the model and computed the Pearson correlation between
the extracted nodes and the expression of each gene across all breast cancer patients, deeming
the genes with a high absolute correlation with the extracted hidden nodes as important.
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5
Identification of a Pan-Cancer Survival
Network with Gradient Tree Boosting and
Network Propagation

This chapter introduces our approach for the identification of a pan-cancer survival network
with gradient tree boosting and network propagation*.

5.1 Motivation
The prediction of cancer survival is an important computational task in biomedical research
and can be used to quantify patient risks and estimate prognoses. In fact, survival statistics
are the most commonly used measure to estimate the prognosis of cancer patients124, which
has important implications for the choice of treatment. For instance, patients with a good
prognosis might receive more aggressive therapies with the goal of remission, thereby accept-
ing the occurrence of side effects, while patients with a poor prognosis might decide against
aggressive therapies and favor palliative treatment to improve life quality instead27. Early
methods for predicting survival include the Cox proportional hazards model44, which can
account for censored samples that often occur in survival data (cf. Section 3.3.2). However,
the Cox proportional hazards model can only account for linear effects of covariates on the

*Amajor part of the work and results described in this chapter were published in170 and169. This concerns
in particular the single-cohort and pan-cancer survival prediction methods trained on gene expression data and
the identification and analysis of the pan-cancer survival network. When describing this published work, we
will refrain from repeatedly citing the aforementioned publications for the sake of readability.
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log hazard function153,165. Nonlinear effects and interactions between covariates can only
be considered if terms describing them are explicitly integrated into the model153. To over-
come this limitation, we used the XGBoost machine learning framework in combination
with the negative partial log-likelihood from the Cox proportional hazards model as a loss
function to predict cancer survival. XGBoost31 is a popular gradient tree boosting method
(cf. Section 3.2.1) that has demonstrated good performance in various types of applications,
including biomedical prediction tasks such as diagnosing chronic kidney disease131 and iden-
tifying patientswith epilepsy based on cerebral activity174 (cf. Section 4.2). To the best of our
knowledge, however, we were the first to apply XGBoost with negative partial log-likelihood
to pan-cancer survival prediction based on gene expression data.

Modern machine learning methods like XGBoost or neural networks often show much bet-
ter prediction performance than traditional machine learning methods like linear models
or decision trees2,115. However, this improved prediction performance can often only be
achieved by increasedmodel complexity, whichmakes themodel’s decisions harder to under-
stand and the predictions more difficult to interpret115. While several of the existing survival
predictionmethods introduced in Chapter 4 have addressed the issue of model interpretabil-
ity either by analyzing the trained model with respect to important features or by directly
integrating prior knowledge into the model, there are some shortcomings. For example, the
authors of VAECox98 (cf. Section 4.3) investigated their trained neural network by comput-
ing the correlation between hidden nodes and gene expression features, considering genes
with high correlation to highly variable hidden nodes as important. However, hidden nodes
can reflect more or less complex interactions between multiple features, where sometimes
multiple hidden nodes together represent the same interaction or different interactions in-
volve the same feature. In these cases, the correlation between a feature and any single hidden
node might be rather moderate, even if this feature is highly important for the output of
the neural network and contributes to several hidden nodes. On the other hand, another
feature might be less important for the prediction of the neural network, but highly corre-
lated to a single hidden node. In the model interpretation strategy applied to VAECox, the
first feature would be considered less important than the second feature due to its smaller
correlation with any single hidden node, even though it has a larger effect on the model’s
prediction. Instead of analyzing the trained model post hoc, other cancer survival predic-
tionmethods like Path2Surv51, reweighted random survival forests180, or Cox-PASNet69 (cf.
Section 4.1) directly incorporate prior biological knowledge to enable interpretation. While
models following this approach are inherently more easily interpretable because their archi-
tecture directly reflects biological concepts such as pathways, this architecturemight also lead
to a loss of potentially valuable information: On the one hand, the model typically only con-
tains features forwhichprior knowledge, e.g. in the formof pathwaymembership, is available
and will completely disregard potentially informative features that are not contained in the
respective dataset used as the source of prior knowledge. For instance, the KEGG pathway
database used by reweighted random survival forest and Cox-PASNet contains only∼8,000
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unique genes and the Hallmark gene sets used by Path2Surv contain∼4,000 unique genes,
which is only a fraction of the total number of genes for which gene expression data is avail-
able in databases like TCGA.On the other hand, not only the number of features used by the
model, but also themodeled interactions between features can be limited by integrating prior
knowledge into the model architecture. For example, Path2Surv’s51 architecture is based on
multiple kernels, each representing a separate pathway or gene set, preventing themodel from
learning interactions between genes that do not share a common pathway or gene set, even if
they are actually interacting through another type of interaction not reflected in the pathway
membership information, such as a protein-protein interaction.

To show the biological plausibility of our cancer survival predictionmethod without a priori
restricting the features to those contained in, for example, a specific pathway database, we
combined the XGBoost model with post hoc network propagation on a comprehensive PPI
network. More specifically, after training for cancer survival prediction, we extracted feature
importance scores producedby theXGBoostmodel andused themas input to theNetCore13
network propagation method. In this way, we hoped to identify a subnetwork of the PPI
network with a high association with cancer survival and to gain a better understanding of
the underlying biological mechanisms.

5.2 Methods
In this section, we describe the methodology used to predict cancer survival and to identify
a pan-cancer survival network using network propagation based on the important features
identified during survival prediction.

5.2.1 Data and Preprocessing
The survival prediction and network identification described in this chapter are based on
molecular and clinical data from the TCGA consortium (https://www.cancer.gov/tcga).
TCGA comprises molecular and clinical data frommore than 10,000 cancer patients and for
33 different types of cancer, which originate from a wide variety of organ systems133. The
data used in this work was retrieved from the Genomic Data Commons (GDC) data por-
tal (https://portal.gdc.cancer.gov/). For the single-cohort and pan-cancer survival
prediction and the identification of the pan-cancer survival network, RNA-seq gene expres-
sion data normalized as fragments per kilobase of transcript per million fragments mapped
(FPKM) and corresponding clinical data, including survival or censoring time for each pa-
tient, was used (see Supplementary Table B.1 for more details on the used TCGA cancer
cohorts). We decided to use FPKM-normalized gene expression data to ensure comparabil-
ity between our survival prediction method, random survival forest, survival support vec-
tor machine, and the Path2Surv multiple-kernel learning (MKL) method, which is based on
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FPKM-normalized gene expression data. For each cancer type, all HTSeq-FPKM files and
corresponding clinical files were downloaded from the GDC data portal. For the cohorts
TCGA-COAD, TCGA-LAML, TCGA-LUAD, and TCGA-LUSC, all data was obtained
fromGDCdata release v22.0 (released January 16, 2020) and for the 29 remaining cohorts, all
files were retrieved fromGDCdata release v24.0 (releasedMay 7, 2020). For further analyses,
which included evaluating the integration of additional data modalities like mutation, copy
number variation, and protein expression data and the inclusion of information on tumor
status into the survival prediction, we used gene expression data normalized as transcripts
per million (TPM) instead of FPKM-normalized gene expression data. In TPM-normalized
expression data, the sum of gene expression values over all genes is equal in each sample or pa-
tient and thus patients should—at least in theory—bemore comparable in TPM-normalized
data. Since the GDC database underwent a major update in 2022, in which gene expression
files processed by HTSeq were replaced with files processed by STAR, STAR-TPM gene ex-
pression and corresponding clinical data from the GDC data release v32.0 (released March
29, 2022, downloaded with TCGAbiolinks R package40,128,159) were used for further anal-
yses. For the evaluation of mutation, copy number variation, and protein expression data
as additional data modalities for cancer survival prediction, all corresponding data for the
analyzed cancer types was downloaded with the TCGAbiolinks R package from GDC data
release v.32.0, analogously to the STAR-TPMgene expression data. Mutation data consisted
of simple somatic nucleotide variations such as point mutations, missense mutations, non-
sense mutations, and insertions and deletions (indels) and was downloaded from GDC as
mutation annotation format (MAF) files containing masked somatic mutations, which are
a filtered subset of somatic mutations with potential germline and lower quality variants re-
moved (cf. https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/). Copy
number variation data contained integer gene level copy numbers computed as the weighted
median of copy number values of all copy number segments overlapping with a gene (cf.
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/CNV_Pipeline/)
and protein expression data was measured by RPPA (cf. Section 2.2.3 and https://docs.g
dc.cancer.gov/Data/Bioinformatics_Pipelines/RPPA_intro/).

For training the survival prediction models in each of the evaluated setups, we only used
TCGAcohortswith at least 20uncensoredpatients, leaving25 (ACC,BLCA,BRCA,CESC,
COAD, ESCA,GBM,HNSC, KIRC, KIRP, LAML, LGG, LIHC, LUAD, LUSC,MESO,
OV, PAAD, READ, SARC, STAD, SKCM, UCEC, UCS, and UVM) of the 33 TCGA
cancer cohorts. We decided to exclude cohorts with less than 20 uncensored patients from
model training since splitting these cohorts into 80% training and 20% test data would result
in evaluating model performance on test data with no more than four uncensored patients,
limiting the meaningfulness of the evaluation. The eight TCGA cohorts with less than 20
uncensored patients (CHOL,DLBC, KICH, PCPG, PRAD, TGCT, THCA, and THYM)
were not used for survival model training, but only for evaluating the transferability of the
pan-cancer XGBoost survival predictionmodel to new cancer types not seen during training.
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For all analyses, we only used primary tumor and primary blood-derived cancer samples and
excluded samples derived fromnormal tissues andmetastatic tumors since these sample types
are expected to have different molecular characteristics compared to primary cancer samples.
In the case of multiple tumor samples from the same patient, we selected the sample with
the lexicographically highest sample ID, assuming that this sample ID corresponded to the
most recent sample and reasoning that there might have been reasons to re-sample from the
same patient, making the most recent sample the most reliable. Furthermore, we excluded
all patients for whom the molecular data modality of interest (e.g., gene expression) was not
measured or for whom key clinical data like vital status, age, gender, or time to either death
or censoringwasmissing or inconsistent. For theHTSeq FPKM-normalized gene expression
data used in the first part of this work, this resulted in a total of 8,024 patients from the 25
different cancer cohorts that were used for model training and an additional 1,571 patients
from the eight remaining cohorts thatwere not used formodel training due to small numbers
of uncensored patients. The gene expression data comprised 60,483 RNA molecules mea-
sured in TCGA for all cohorts—including protein-coding genes, processed pseudogenes30,
and lncRNAs162, among others. From here on we will use the term ‘gene’ for all of these
molecule types and not only for protein-coding genes. In theGDCupdate from2022 (GDC
data release v32.0), patient and gene numbers for the STAR TPM-normalized gene expres-
sion data increased slightly to 8,045 patients and 60,616 genes from the 25 cancer cohorts.
Mutation data from GDC data release v32.0 comprised 17,975 genes mutated in a total of
7,975 patients. For copy number variation (CNV) data, in addition to the filtering steps de-
scribed above, we removed CNVs located on the Y chromosome prior to survival prediction
training, resulting in CNVs affecting 59,754 genes in 8,955 patients. Lastly, for protein ex-
pression data, TCGA data comprised 487 proteins measured in 6,256 patients from 24 of
the 25 TCGA cohorts (there was no protein expression data available for TCGA-LAML),
making protein expression the sparsest of the investigated data modalities.

5.2.2 Single-Cohort andPan-Cancer Survival PredictionwithXGBoost
We applied theXGBoost gradient tree boosting framework31 to predict cancer survival in the
form of Cox proportional hazards risk scores (cf. Section 3.3.2) from gene expression data in
a single-cohort setting, where a separatemodel was trained for each of the 25 analyzedTCGA
cancer cohorts, and in a pan-cancer setting, where the XGBoost model was trained on gene
expression data from all 25TCGAcancer cohorts jointly170. To this end, we used the Python
XGBoost package (https://xgboost.readthedocs.io) with the learning objective set to
Cox proportional hazards regression with negative partial log-likelihood (cf. Section 3.3.2).
In both settings—single-cohort and pan-cancer—we repeatedmodel training and evaluation
100 times with different splits of patients into training and test data to ensure a robust and
reliable assessment of prediction performance in the respective setting. In each of these 100
replications, we randomly split the patients and their corresponding gene expression and sur-
vival data into 80% training and 20% test data using a stratified splitting strategy to ensure
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that the percentage of censored and uncensored patients in the training and test data was ap-
proximately the same in all replications. In the pan-cancer setting, we additionally ensured
that the cohort composition of training and test data remained the same across replications
by assigning 80% of patients from each cohort to the training data and 20% to the test data
in each replication.

Then, in each replication, a survival prediction model was constructed and trained on the
training data and evaluated on the test data. The training procedure (visualized in Figure
5.1) comprised three main steps: feature selection, hyperparameter tuning, and training of
the XGBoost model.
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Figure 5.1: Method outline of the XGBoost training procedure. The XGBoost training procedure is based on a pa ent×
gene expression matrix comprising pa ents from either one cancer cohort (single-cohort approach) or mul ple cancer co-
horts (pan-cancer approach). From this gene expression matrix, a subset of 500 genes is selected in a feature selec on
step that includes a 4-fold cross-valida on on the training data, in which small XGBoost models are trained on the com-
plete set of features and the features with the highest average feature importance scores across models are selected.
Next, another 4-fold cross-valida on on the training data with reduced features is performed to tune the model hyper-
parameters and finally, a survival predic on model is trained on the reduced gene expression matrix of 500 genes and
with the op mized model hyperparameters. This figure was published in170.

In the feature selection step, an embedded feature selection approach (cf. Section 3.2.4) was
implemented to reduce the number of gene expression features used to train the XGBoost
survival predictionmodel in each training replication from60,483 genesmeasured inTCGA
to 500 genes that are informative for survival. Embedded feature selection uses the same ma-
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chine learning method as chosen to solve the prediction task (XGBoost in this case) to evalu-
ate and select features from a set of candidate features based on built-in feature importance
measures146. To identify genes that are informative for survival more generally and not only
for a specific training set composition, we integrated a stratified 4-fold cross-validation on the
training data into the feature selection step. To this end, the training data was first split into
four subsets or folds in a stratified manner such that the percentages of censored and uncen-
sored patients were approximately equal in all folds. In each of the four cross-validation steps,
three folds were used for training, while one fold was held out. Then, genes with zero mean
absolute deviation (MAD) in the three training folds were removed because these genes are
not informative for cancer survival. Next, 20 XGBoost survival prediction models with lim-
itedmodel size (maximum number of trees between 5 and 20, maximum tree depth between
1 and 3) and different sets of model hyperparameters were trained on the three training folds
and feature importance was measured in terms of ‘gain’, which is the average improvement
the respective feature adds to the evaluation metric across all decision tree splits in which it
is used (cf. https://xgboost.readthedocs.io/en/latest/python/python_api.html)
and hence measures the relative importance of this feature for the model’s prediction. We
limited model size in order to reduce runtime, which increases proportionally to the num-
ber of features and model size, to avoid overfitting on the large number of features of the
training data, and to force each model to select only the most informative genes as features.
Furthermore, we trained models with 20 different sets of randomly selected hyperparameter
configurations in each cross-validation step to identify genes whose feature importance does
not depend on the yet untuned model hyperparameters, but which have high feature impor-
tance under different sets of hyperparameters. Finally, we calculated a feature importance
score for each candidate gene by averaging the computed feature importance scores across all
20 models per cross-validation step and across all four cross-validation steps and selected the
top 500 genes with the highest average feature importance as features for training the final
survival prediction model.

In the subsequent hyperparameter tuning step, the goal was to findXGBoostmodel hyperpa-
rameters—including the maximum tree depth, number of trees, and regularization parame-
ters—that optimized the survival predictionperformance. To this end, wefirst randomly gen-
erated 500 combinations of hyperparameters and introduced another 4-fold cross-validation
scheme—analogous to the cross-validation in the feature selection step—on the training data
to evaluate each hyperparameter combination. In each step of the 4-fold cross-validation, we
trained one XGBoost model per hyperparameter combination on the three training folds us-
ing the 500 genes selected in the feature selection step as input features and evaluated the
survival prediction performance of themodel on the remaining fold in terms of concordance
index (C-Index, cf. Section 3.3.3). To select the best hyperparameter combination, we then
averaged the C-Indices obtained for each hyperparameter combination across the four cross-
validation steps and selected the hyperparameter combination that showed the best average
concordance index.
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In the last step of the training procedure, the whole training data (80% of patients) was used
to train a final XGBoost survival prediction model with the hyperparameters identified in
the hyperparameter tuning step and based only on the 500 features selected in the feature
selection step. The fully trained survival prediction model was evaluated on the held-out
test data (20% of patients) by computing the C-Index on the test patients from each TCGA
cancer cohort.

Thus, across the 100 model replications, we trained 100 independent models with training-
data-specific sets of gene features and hyperparameters and obtained 100 C-Indices for each
of the 25 analyzed TCGA cancer cohorts.

5.2.3 Comparison of the XGBoost Survival Prediction Method with
Other Methods

In order to evaluate the survival prediction performance of our XGBoost-based method not
only in isolation in termsof theC-Index, but also in comparison toother establishedmethods,
we compared the single-cohort XGBoost method against random survival forest88, survival
support vector machine97,156, and the MKLmethod Path2Surv51.

Random Survival Forest

Random survival forest88 is a widely used random forest (RF) method specifically designed
to handle right-censored survival data (cf. Section 4.1.1). RFs are ensemble tree methods,
where a model consists of multiple decision trees and a prediction is generated by averaging
over the trees88. Each tree is built based on a randomly drawn bootstrap sample of the data
and for each tree node, a randomly drawn subset of features or covariates is selected as candi-
date variables to split samples on. To be able to handle right-censored survival data, random
survival forest incorporates two key mechanisms into the RF method88: Firstly, when grow-
ing a tree, in each node, the covariate thatmaximizes the survival difference between the child
nodes is selected as split variable, and tree growth is constrained in that each terminal node
must contain at least d0 > 0 unique deaths from the bootstrap sample of the data on which
the tree is grown. Secondly, random survival forest calculates an ensemble cumulative hazard
function (CHF) as the prediction output. The ensemble CHF is the average of the CHFs of
all terminal nodes T , where the CHF of a terminal node h ∈ T can be estimated by the
Nelson-Aalen estimator. The Nelson-Aalen estimator represents the cumulative rate of ex-
pected deaths up to a time point t and for a terminal node h ∈ T takes the form88:

Ĥh(t) =
∑
tl,h≤t

dl,h
Yl,h

(5.1)
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with l indexing time points tl,h that correspond to terminal node h and are smaller than or
equal to the reference time point t, dl,h being the number of deaths at tl,h and Yl,h being the
number of individuals at risk at tl,h.

For the comparison between our XGBoost-based survival prediction method and random
survival forest, we used the R implementation from Dereli et al.51, which trains and eval-
uates the random survival forest and is based on the randomForestSRC package. Using this
implementation, we evaluated the performance of random survival forests in 100model repli-
cations for each TCGA cancer cohort. In each replication, the data of the respective cancer
cohort (comprising all 60,483 genes measured in TCGA) was log2-transformed, genes with
a standard deviation of zero were removed and the data was randomly split into 80% training
and 20% test data. Next, the training data was normalized to zero mean and unit standard
deviation, with the test data being normalized accordingly and the number of treeswas tuned
in a 4-fold cross-validation on the training data (range between 500 and 2,500 trees), while
all other hyperparameters were kept as default. Then, the final survival predictionmodel was
trained with the optimal number of trees and evaluated on the held-out test data using the
C-Index.

Survival Support Vector Machine

Survival support vector machine156 is a survival prediction method based on support vector
machines (SVMs). SVMs are linear models that use mathematical kernel functions mapping
input data to a higher-dimensional feature space to model not only linear, but also nonlinear
relationships between input features and a target variable by encapsulating any nonlinearities
in the kernel functions and thus transforming the nonlinear prediction problem to a linear
problem97. In support vector regression, the SVM tries to learn the relationship between
input features x ∈ Rp and a continuous target variable y ∈ R97,18:

f(x) = w⊤ϕ(x) + b, (5.2)

where f(x) is the function that best fits the training data, k(x, x′) = ϕ(x)⊤ϕ(x′) is a kernel
function with ϕ : Rp → Rm, w ∈ Rm is a weight vector, and b ∈ R is a bias. To find the
optimal w and b, the following optimization problem is solved97,18:

min
w,b

1
2
∥w∥2 + C

n∑
i=1

(ξi + ξ ∗i ) (5.3)

subject to
yi − (w⊤ϕ(xi) + b) ≤ ε + ξi (5.4)
(w⊤ϕ(xi) + b)− yi ≤ ε + ξ ∗i (5.5)
ξi, ξ

∗
i ≥ 0, i = 1, ..., n (5.6)
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with n being the number of training samples, ξi and ξ ∗i being so-called slack variables for
each data point i = 1, ..., n that allow for model constraints to be violated and thus make it
possible to solve otherwise unsolvable optimization problems, C > 0 being a regularization
parameter that determines the trade-off between the minimization of the training error and
the control for model complexity, and ε > 0 being a margin parameter that defines a thresh-
old below which the prediction error is considered insignificant and thus influences model
complexity.

To enable survival prediction with SVMs, this optimization problem can be modified to be
able to handle censored patients156,51. To this end, a censoring indicator δi is introduced into
Equation (5.3) of the optimization problem, with δi = 1 indicating that patient i is censored
and δi = 0 meaning the patient is uncensored. This way, the model does not consider pre-
dicted survival times that are larger than the censoring times as errors for censored patients
and the optimization problem becomes:

min
w,b

1
2
∥w∥2 + C

n∑
i=1

(ξi + (1− δi)ξ ∗i ) (5.7)

subject to
yi − (w⊤ϕ(xi) + b) ≤ ε + ξi (5.8)
(w⊤ϕ(xi) + b)− yi ≤ ε + ξ ∗i (5.9)
ξi, ξ

∗
i ≥ 0, i = 1, ..., n (5.10)

For comparing our XGBoost-based survival prediction method with survival support vector
machines, we adapted the R implementation from Dereli et al.51. Since the CPLEX opti-
mization algorithm86 used in the original implementation is not openly accessible, we used
the ROptimization Infrastructure (ROI)171 instead to solve the survival SVM optimization
problem. According to the implementation of Dereli et al., we evaluated the performance of
survival SVM in 100 model replications for each TCGA cancer cohort. In each replication,
the data of the respective cancer cohort (comprising all 60,483 genesmeasured inTCGA)was
log2-transformed, geneswith a standard deviation of zerowere removed and the datawas ran-
domly split into 80% training and 20% test data51. Then, the training data was normalized
to zeromean and unit standard deviation, and the test data was normalized accordingly. The
regularization parameter Cwas tuned in a 4-fold cross-validation on the training data (range
between 1× 104 and 1× 105), ε was kept at 0 and the Gaussian kernel defined as

kG(x, x′) = exp
(
−(x− x′)⊤(x− x′)

2σ2

)
(5.11)

with kernel width parameter σ set to the mean of pairwise Euclidean distances between train-
ing samples was used as kernel function. At the end of each replication, the final survival
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prediction model was trained with the optimal C and evaluated on the test data using the
C-Index.

Path2Surv

Dereli et al.51 developed the Path2SurvMKLmethod for survival prediction, which is based
on survival support vector machines. However, instead of using a single kernel function
like in survival support vector machines, Path2Surv combines multiple kernels in a weighted
sum to learn the relationship between input features and the survival outcome. Each ker-
nel kp(x, x′), p = 1, ...,P (with P being the total number of kernels) represents a molecular
pathway or gene set and comprises all genes constituting that pathway or gene set as features.
Path2Surv tries to learn a non-negative kernel weight ηp for each of these kernels, where the
sum of all kernel weights is required to sum up to one and kernels can have a weight of zero
to exclude pathways or gene sets that are not informative for survival from the prediction.
This way, Path2Surv uses fewer gene expression features for survival prediction than random
survival forest or survival support vector machine and also offers interpretability in terms of
which pathways or gene sets are most relevant for survival prediction. Learning the kernel
weights η ∈ RP is considered as an outer optimization problem, while learning the weights
and biases for each kernel as in the survival support vectormachine formulation in Equations
(5.7)–(5.10) is regarded as an inner optimization problem J. Accordingly, duringmodel train-
ing, the following outer optimization problem is solved:

min
η

J(η) (5.12)

subject to
P∑

p=1

ηp = 1 (5.13)

ηp ≥ 0 p = 1, ...,P, (5.14)

where J(η) represents the inner optimization problem with
∑P

p=1 ηpkp(x, x
′) replacing the

kernel function k(x, x′).

In the publication of Path2Surv51, the authors report results on two different gene sets and
pathway databases, namely the Hallmark gene sets113 and the Pathway Interaction Database
(PID)149. We compared both versions of the Path2Surv method with our XGBoost-based
survival predictionmethod. The comparison is analogous to comparing our XGBoost-based
method with random survival forest and survival support vector machine. As for survival
SVM, we replaced the CPLEX optimization algorithm86 in the original implementation of
Path2Surv byROI171 and evaluated the performance of Path2Surv in 100model replications
for each TCGA cancer cohort. In each replication, the data of the respective cancer cohort

63



Chapter 5

(comprising all 60,483 genes measured in TCGA) was log2-transformed, genes with a stan-
dard deviation of zero were removed and the data was randomly split into 80% training and
20% test data51. Then, the training data was normalized to zero mean and unit standard de-
viation, and the test data was normalized accordingly. The regularization parameter C was
tuned in a 4-fold cross-validation on the training data (range between 1 × 104 and 1 × 105),
εwas kept at 0 and the Gaussian kernel defined in Equation (5.11) with kernel width param-
eter σ set to the mean of pairwise Euclidean distances between training samples was used as
kernel function for each gene set or pathway. At the end of each replication, the final sur-
vival prediction model was trained with the optimal C and evaluated on the test data using
the C-Index.

5.2.4 Computation of GeneWeights for the Analysis of Important Fea-
tures

To identify and analyze genes that are informative for cancer prognosis, we computed gene
weights, which summarize the importance of genes for cancer survival prediction with XG-
Boost across model replications. To this end, feature importance scores, which reflect the rel-
ative importance of a gene for the prediction of cancer survival, were extracted in each repli-
cation of single-cohort or pan-cancer model training from the respective XGBoost model.
These feature importance scores are directly provided by the XGBoost implementation and
measure the ‘gain’ of each feature used by the trained XGBoost model, which is the aver-
age improvement the feature adds to the evaluation metric across all decision tree splits in
which it is used. Using these gene-specific feature importance scores, we then computed a
gene weight for each gene used in at least one model replication as the sum of feature impor-
tance scores over all 100model replications, where a feature importance of zero is assumed for
model replications in which the respective gene was not used in themodel to predict survival.

5.2.5 Entropy Measurement for Cancer Type Specificity Analysis of
Genes

In information theory, entropymeasures the uncertainty or information content of a random
variable154. It is often also referred to as Shannon entropy after Claude E. Shannon, who in
1948 introduced the following definition of entropy154:

H(X) = −
n∑
i=1

P(xi) log2(P(xi)), (5.15)

where P(xi) is the probability of outcome xi of a random variable X with possible outcomes
x1, ..., xn and the logarithm has basis 2 for informationmeasured in bits. That is, the entropy
ismaximal when all outcomes occurwith the same probability, while it is minimal when only
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one of the outcomes occurs with certainty and all other possible outcomes have a probability
of zero.

We have adopted the concept of entropy to evaluate how well genes identified as important
features in our XGBoost approach generalize as features for predicting survival in different
cancer types. In theXGBoost approach, we calculated geneweights by summing over feature
importance scores from the 100 model replications for every gene. In the single-cohort XG-
Boost approach, this was done for each of the 25 TCGA cancer cohorts separately, such that
each gene received one weight per cancer cohort, while in the pan-cancer approach, where
all cancer types were combined for model training, only one weight per gene was computed.
To compute the entropy of genes across cancer types, we constructed a gene weight matrix
containing gene weights computed from the single-cohort approach for all genes and all 25
cancer cohorts and converted this gene weight matrix into a probability matrix by dividing
each weight value by the sum of scores for this gene over all 25 cohorts. Then, we computed
the entropy of each gene across cohorts according to Equation 5.15 by using the computed
probability score. Thus, genes identified as important features for survival prediction with
similar gene weights across all 25 cancer cohorts would have high entropy, while genes that
were only predictive for cancer survival in one of the 25 cohorts would have a minimal en-
tropy of zero. Therefore, the entropy of a gene with respect to the single-cohort XGBoost
feature importance scores can be used to assess how well a gene generalizes as a survival pre-
diction feature across cancer cohorts, in that genes with high entropy can be considered as
predictive of cancer survival across different cancer types, while a low entropy means that a
gene is likely to be cancer-type-specific.

5.2.6 Pan-Cancer Survival Network Identification
To further assess the biological plausibility of the important features identified in the pan-
cancer XGBoost survival prediction approach, we used network propagation to infer a pan-
cancer survival network (method outline shown in Figure 5.2). To this end, we applied the
NetCore13 network propagationmethod (cf. Section 3.4.1) over the high-confidenceCPDB
(version 34) PPI network82,93, which we initialized with gene weights derived from the pan-
cancer XGBoost approach. Tomap the gene weights onto the PPI network, we downloaded
the high-confidence CPDB PPI network, which contained 114, 341 binary PPIs with inter-
action confidence > 0.95 and proteins mapped to 10, 586 Hugo Gene Symbols, from the
NetCore GitHub repository (https://github.molgen.mpg.de/barel/NetCore) and
converted Ensembl Gene Identifiers of the gene weights to Hugo Gene Symbols using the
MyGene Python package (version 3.1, http://mygene.info)186,187, removing gene enti-
ties that did not map to a Hugo Gene Symbol. Then, network propagation based on RWR
was performed on the gene weight-initialized PPI network using NetCore with the default
restart probability of 0.8. In addition to network propagation, NetCore also implements
a subsequent semi-supervised module identification step, where phenotype-associated net-
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Figure 5.2: Outline of the survival network iden fica on. A er 1) training 100 replica ons of the pan-cancer XGBoost
survival predic on method on different train-test splits of the pa ents, 2) feature importance scores for each gene were
extracted from each trained model and gene weights were computed as the sum of feature importance scores over the
model replica ons. These gene weights were then used to 3) ini alize a high-confidence PPI network and NetCore 13

was used to perform network propaga on on the PPI network and 4) to iden fy network modules.

work modules are identified. These modules are sub-networks of the PPI network compris-
ing seed nodes, which in this case are the top 100 genes with the highest initial gene weights
represented in the PPI network, and inferred nodes, which are genes that function as links
between seed nodes and have been identified as significant in the network propagation step.
Taken together, all of the network modules identified by NetCore based on the XGBoost-
derived pan-cancer gene weights form a pan-cancer survival network, i.e., a sub-network of
the PPI network that is presumably associated with patient survival across different cancer
types.
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5.2.7 Over-Representation Analysis of the Pan-Cancer Survival Net-
work

To further analyze the pan-cancer survival network identified by NetCore’s network propa-
gation andmodule identificationwith respect to biological function, we performed anORA
(cf. Section 3.6) using QUIAGEN’s Ingenuity Pathway Analysis (IPA) software104.

5.2.8 Implementation
Our cancer survival prediction method is based on the Python XGBoost package (https:
//github.com/dmlc/xgboost/tree/master/python-package). All steps of the method,
including feature selection, hyperparameter tuning, and training of the final survival predic-
tion model, were implemented in Python (release 3.7). Based on gene weights derived from
the pan-cancer XGBoost survival prediction method trained on gene expression data, we
conducted network propagation using NetCore13 to identify a pan-cancer survival network.
All experiments, including model training for survival prediction and network propagation,
were performed on Linux servers. All corresponding code for the survival prediction based
on gene expression data and the processing of the results to use with NetCore is available in
the following GitHub repository: https://github.molgen.mpg.de/thedinga/xgb_sur
vival_network. A protocol detailing all steps necessary to train the XGBoost pan-cancer
survival prediction approach on gene expression data and to derive the pan-cancer survival
network through network propagation was published in STAR Protocols169.

5.3 Results
This section describes the results that were obtained for survival prediction with XGBoost in
different settings and the pan-cancer survival network identified through network propaga-
tion based on the important features of the XGBoost method.

5.3.1 XGBoostGradientTreeBoostingPredictsCancer Survival inDif-
ferent Cancer Types

As described in Section 5.2.3, we compared our single-cohort XGBoost survival prediction
method, in which XGBoost survival prediction models were trained for each of the 25 ana-
lyzed TCGA cancer cohorts (cf. Section 5.2.1) separately, against three other survival predic-
tion methods, which were also trained on one cancer cohort at a time, to assess the perfor-
mance of our method in predicting cancer patient survival from gene expression data. Fig-
ure 5.3 shows the performances of the different survival prediction methods measured by C-
Index (cf. Section 3.3.3). The evaluated methods are random survival forest (RF)88, survival
support vectormachine (SVM)156, themultiple-kernel learning (MKL)methodPath2Surv51
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trained on the Hallmark gene sets113 (MKL[H]), Path2Surv trained on the Pathway Interac-
tionDatabase149 (MKL[P]), andourproposed single-cohortXGBoostmethod170 (XGB[SIN-
GLE]). Our single-cohort XGBoost approach showed the best median C-Index of all evalu-
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Figure 5.3: Single-cohort predic on performance. C-Index boxplots over 100 replica ons of model training for random
survival forest (RF), survival support vector machine (SVM), the Path2Surv mul ple-kernel learning on the Hallmark gene
sets (MKL[H]) and the Pathway Interac on Database (MKL[P]), and the single-cohort XGBoost method (XGB[SINGLE])
on 25 different TCGA cancer cohorts. Mean C-Indices were compared with Wilcoxon’s unpaired rank-sum test and
significance levels are defined as ns : p > 0.05, ∗ : p ≤ 0.05, ∗∗ : p ≤ 0.01, ∗ ∗ ∗ : p ≤ 0.001, ∗ ∗ ∗∗ : p ≤
0.0001. This figure was published in 170.

ated survival prediction methods for 10 of the 25 TCGA cohorts (BLCA, BRCA, CESC,
COAD, HNSC, LGG, OV, PAAD, SARC, and STAD), while random survival forest was
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the best-performing method for 7 cohorts (ACC, KIRC, KIRP, LAML, READ, UCS, and
UVM). Path2Surv outperformed the other methods in 4 cohorts (LIHC, LUAD, LUSC,
and MESO) when it was trained on the PID and in 3 cohorts (ESCA, GBM, and SKCM)
when itwas trained on theHallmark gene sets, while survival support vectormachine showed
the best median C-Index in only 1 of the TCGA cohorts (UCEC). In comparison with each
of the other survival prediction methods individually, our single-cohort XGBoost method
significantly outperformed random survival forest for 13, Path2Surv trained on the PID for
10, Path2Surv trainedon theHallmark gene sets for 9 and survival support vectormachine for
17 of the 25 TCGA cohorts, where significance was evaluated by comparingmeanC-Indices
withWilcoxon’s unpaired rank-sum test and p-values≤ 0.05 were considered significant.

For bladder urothelial carcinoma (TCGA-BLCA) and uveal melanoma (TCGA-UVM) as
two example cancer types, we also assessed the Spearman correlation between the predictions
of the different methods to investigate whether the different survival prediction methods
make similar predictions for the same sets of cancer patients. To this end, we first split the
patients of each cohort into 80% training and 20% test data and then trained each of the sur-
vival prediction models on the training data of the respective cohort. Then, we applied each
of the trained methods to the TCGA-BLCA and TCGA-UVM test data, respectively, to
predict the survival outcome of each test patient. The predicted survival outcome was either
survival time (in survival support vector machine and Path2Surv) or a risk score (in random
survival forest and single-cohort XGBoost), where a higher risk corresponded to shorter sur-
vival. Hence, survival predictions of survival support vector machine (SVM) and Path2Surv
(MKL[H] and MKLP) were expected to be negatively correlated to the predictions of ran-
dom survival forest (RF) and the single-cohort XGBoost method (XGB[SINGLE]). Accord-
ing to this expectation, predictions of different methods using the same output type (either
survival time or risk score) were positively correlated, while survival time predictions were
negatively correlated to risk predictions in both of the analyzed cancer cohorts (Figure 5.4a).
However, the strength of correlation varied among cancer cohorts and between compared
methods: In TCGA-UVM, Spearman correlations between the different methods were gen-
erally higher than in TCGA-BLCA. Furthermore, the predictions of MKL[P] and RF and
of RF and XGB[SINGLE] were most highly correlated in TCGA-UVM, while in TCGA-
BLCA, the correlation between XGB[SINGLE] and SVM was the highest and correlations
between other methods were relatively weak (R > −0.5 orR < 0.5).

The likelihood of developing cancer is age-dependent with a probability below 6% (male
3.4%; female 5.5%) to develop cancer under the age of 50, but a probability over 25% (male
32.2%, 26% female) to develop cancer in the time span above an age of 70 years157. Therefore,
age is an important indicator of tumor development. Indeed, we observed that the survival
prediction performance of our single-cohort XGBoost method was at least to some degree
dependent on the age distribution of the studied cohort. For instance, TCGA-ACC and
TCGA-LGG—the two cohorts for which the single-cohort XGBoost method showed the

69



Chapter 5

(a)

●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

R = − 0.55

p = 0.004

TCGA−ACC

TCGA−BLCA

TCGA−BRCA

TCGA−CESC

TCGA−COAD

TCGA−ESCA

TCGA−GBM

TCGA−HNSC

TCGA−KIRC TCGA−KIRP

TCGA−LAML

TCGA−LGG

TCGA−LIHC

TCGA−LUADTCGA−LUSC TCGA−MESO

TCGA−OV

TCGA−PAAD

TCGA−READ

TCGA−SARC
TCGA−SKCM

TCGA−STAD

TCGA−UCEC

TCGA−UCS

TCGA−UVM

40

50

60

70

0.5 0.6 0.7 0.8

Median C−Index

M
ed

ia
n 

ag
e

(b)

Figure 5.4: Correla on analyses of single-cohort results. (a) Spearman correla ons between predic ons of the differ-
ent methods for test pa ents from the cohorts TCGA-BLCA (le ) and TCGA-UVM (right). Larger circles correspond to
a greater correla on, blue indicates a posi ve correla on and red indicates a nega ve correla on. (b) Spearman cor-
rela on (R) between median C-Indices of single-cohort XGBoost predic ons and median ages for 25 different TCGA
cohorts. The blue line shows the linear regression fit to the data and the gray area indicates the 95% confidence interval.
This figure was published in 170.

best performance with a median C-Index above 0.8—comprised relatively young patients
withmedian ages of 49 and 41 years, respectively, while for TCGA-KIRP andTCGA-UVM,
which had higher median ages of 61 and 61.5 years, respectively, the median survival predic-
tion performance dropped below a C-Index of 0.8 and for TCGA-UCS—a cohort with a
particularly high median age of 68.5 years—prediction performance was low at a median C-
Indexof∼0.5, not onlywith the single-cohortXGBoostmethod, butwith all other evaluated
survival predictionmethods as well. Considering all cohorts jointly, we observed that for can-
cer types that aremore prevalent in younger patients, survival prediction performance tended
to be better than for cancers of older patients. In fact, the median C-Indices of the single-
cohort XGBoost predictions in different cancer cohorts were negatively correlated (Spear-
man R = −0.55, p = 0.004, Figure 5.4b) with the median age of the respective cohort.
This suggests the presence of age-specific gene expression signatures in the cancer cohorts un-
der study that are resolvable more easily in younger patients by machine learning methods.

5.3.2 Important Features fromSingle-Cohort Survival PredictionVary
across Cancer Types

In addition to the quality of single-cohort XGBoost survival predictions, we were also inter-
ested in the features on which these predictions were based. To this end, we analyzed the
feature importance of the gene expression features used by the single-cohort method to pre-
dict survival in the different TCGA cancer cohorts. XGBoost implements built-in feature
importance metrics such as ‘gain’, ‘weight’, or ‘cover’, which are computed during model
training and measure the relative importance of each feature (cf. https://xgboost.readth
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edocs.io/en/latest/python/python_api.html). Among these metrics, we chose ‘gain’ as
the feature importance metric that was best suited for identifying genes relevant to survival.
While ‘weight’ counts how often a feature is used as a split variable by the XGBoost model,
it does not take into account where in a tree a feature is used and thus disregards how much
the feature affects the prediction, since splits close to the root of the tree will generally have
a higher impact on the prediction than splits more distant from the root. The metric ‘cover’,
on the other hand, only considers the number of samples affected by a split in which a feature
is involved, but does not consider how often the feature is used or how it affects the predic-
tion. In contrast, the ‘gain’ metric measures the average improvement a feature adds to the
prediction and thus better reflects the relative importance of a feature in the XGBoostmodel.
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Figure 5.5: Frac ons of genes shared over different cohorts for predic ng survival in the single-cohort XGBoost ap-
proach. The histogram depicts the frac ons of gene features that are shared for single-cohort survival predic on over
different numbers of training cohorts (x-axis: number of TCGA cohorts a gene feature is shared over; y-axis: frac on of
all 46,642 genes used in at least one single-cohort model). This figure was published in170.

For each of the 25 TCGA cohorts under study, we extracted the ‘gain’ feature importance
scores for all genes in eachof the100model replicationsof the single-cohortXGBoostmethod
for further analysis. Across all 25 cohorts and all 100 model replications per cohort, there
were a total of 46,642 different genes ( 77% of all genes available in TCGA) that were used for
cancer survival prediction in at least one of the 2,500 single-cohort XGBoost models. How-
ever, most genes were only used for prediction in a small number of cohorts (< 10) and only
a very small number of genes were among the important features in a larger proportion of the
studied cohorts (> 15 cohorts, Figure 5.5). This heterogeneity between cohorts and model
replications in terms of important features is likely a reflection of cancer type differences and
tissue specificity of some features, but also of inter-patient heterogeneity.

5.3.3 Pan-Cancer Training Improves Survival Prediction
To identify gene features with more general importance to cancer survival prediction and
overcome the featureheterogeneitybetweencancer types,we also trained theXGBoostmethod
on a combined dataset comprising all 25 studied TCGA cohorts (pan-cancer XGBoost ap-
proach, cf. Section 5.2.2) instead of training XGBoost models on each cohort separately.
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When comparing the prediction performances for each of the 25 cohorts between the single-
cohort and pan-cancer XGBoost approaches by means of C-Index over 100 replications of
model training, we observed that for 15 (BLCA, COAD, HNSC, KIRC, KIRP, LIHC,
LUAD, LUSC, MESO, PAAD, READ, SARC, STAD, UCEC, and UCS) out of the 25
cancer cohorts under study, pan-cancer training significantly improved over single-cohort
training (p ≤ 0.05 inWilcoxon’s unpaired rank-sum test comparingmeanC-Indices, Figure
5.6). For nine additional cohorts (ACC, BRCA, CESC, ESCA, GBM, LGG, OV, SKCM,
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Figure 5.6: Pan-cancer predic on performance. This figure compares the predic on performances of the single-cohort
XGBoost method (XGB[SINGLE]) and the pan-cancer XGBoost method (XGB[PAN]) on 25 different TCGA cancer co-
horts, depicted as C-Index boxplots over 100 replica ons of model training. Mean C-Indices were compared with
Wilcoxon’s unpaired rank-sum test and significance levels are defined as ns : p > 0.05, ∗ : p ≤ 0.05, ∗∗ : p ≤ 0.01,
∗ ∗ ∗ : p ≤ 0.001, ∗ ∗ ∗∗ : p ≤ 0.0001. This figure was published in 170.

and UVM), the C-Indices obtained with single-cohort and pan-cancer training were com-
parable (p > 0.05), and only in acute myeloid leukemia (LAML), which is a cancer of the
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blood and the bone marrow and the only studied cancer type that is not a solid tumor can-
cer, the pan-cancer XGBoost approach performed significantly worse (p ≤ 0.05) than the
single-cohort approach.

5.3.4 Important Features from Pan-Cancer Survival Prediction Gener-
alize over Cancer Types

We compared the gene features used for predicting survival in the pan-cancer XGBoost ap-
proachwith the features used by the single-cohort approach and found that the vast majority
(98.6%) of genes used for pan-cancer survival prediction in at least one of the 100model repli-
cationswere also among the important features of single-cohort training in at least one cohort
and replication (Figure 5.7a). Furthermore, the total number of genes used as features for can-
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Figure 5.7: Single-cohort vs. pan-cancer survival predic on. (a) Venn diagram comparing features used for predic on in
the single-cohort XGBoost method (pink) with those selected in the pan-cancer XGBoost method (blue). (b) Predic on
performances (C-Indices) of single-cohort XGBoost (pink) and pan-cancer XGBoost (blue) for eight new cancer cohorts
(not used in model training). For the single-cohort method, the mean C-Index over all 25 models trained on different
TCGA cohorts is shown. This figure was published in 170.

cer survival prediction in at least one of the 100 replications was reduced from 46,642 in the
single-cohort XGBoost approach to 12,082 in pan-cancer training—a reduction of 74%—
and the feature composition changed from 40.4% protein-coding genes, 25.0% lncRNAs,
and 15.8% processed pseudogenes in single-cohort training (Figure 5.8a) to 56.5% protein-
coding genes, 20.7% lncRNAs, and 11.9%processed pseudogenes in pan-cancer training (Fig-
ure 5.8b). This shift towards a larger fraction of protein-coding genes and a smaller fraction
of lncRNAs and processed pseudogenes among the important features in pan-cancer sur-
vival predictionmight be driven by tissue specificity of lncRNAs andpatient-specificmRNA
retrotransposition.
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Figure 5.8: Single-cohort and pan-cancer gene types. This figure shows the types of important features iden fied in
single-cohort and pan-cancer training. RNA types were obtained using the MyGene Python package (version 3.1,
h p://mygene.info) 186,187. (a) Percentages of different types of RNAs iden fied as important features in the single-
cohort XGBoost approach. (b) Percentages of different types of RNAs iden fied as important features in the pan-cancer
XGBoost approach. This figure was published in 170.

The gene features selected in the pan-cancer XGBoost approach were not specific to a par-
ticular type of cancer, but tended to generalize over multiple cancer types. This advantage
can be used to extrapolate survival prediction to yet unseen cancer types that were not repre-
sented in the training data. To test this claim, we additionally trained a single-cohort model
on each of the 25 TCGA cohorts under study, using all available patients without holding
out any test data, and a pan-cancer model, again using all available patients from all 25 co-
horts, but this time combining all 25 cohorts to one pan-cancer dataset. Then, to evaluate
the transferability of the trained models to new cancer types, we tested each of the trained
models on eight additional TCGA cancer cohorts (CHOL, DLBC, KICH, PCPG, PRAD,
TGCT, THCA, and THYM), which had previously been excluded due to small numbers of
uncensored patients (cf. Section 5.2.1). For the 25 single-cohort models—each trained on
the data of one TCGA cancer cohort—we summarized the survival prediction performance
on each new cancer cohort as themean ofC-Indices, while testing the pan-cancermodel only
resulted in one C-Index per new cancer cohort and no aggregation of results was necessary.
For all of the eight new cohorts, the C-Index of the prediction computed by the pan-cancer
XGBoostmodel was better than themeanC-Index of predictionsmade by single-cohort XG-
Boost models and for seven of the eight cohorts, the pan-cancer model yielded a C-Index
above 0.5 even though none of the eight cancer cohorts was represented in model training.
This supports the hypothesis that genes identified in the pan-cancer XGBoost approach are
more predictive of patient survival in previously unseen cancer types than genes identified by
the single-cohort approach.
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5.3.5 Important Features from Pan-Cancer Survival Prediction Are Bi-
ologically Plausible

To explore the biological plausibility of the genes identified as important features by the pan-
cancer XGBoost method and to gain more insights into the underlying biology of cancer
survival, we analyzed the distribution of gene weights, which were computed as the sum of
feature importance scores per gene across all 100 replications of pan-cancer training. Fig-
ure 5.9 shows the top 100 genes with the highest weights. Ensembl gene identifiers were
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Figure 5.9: Pan-cancer feature importance. This figure shows the weight distribu on for the 100 genes with the highest
feature importance (sums of feature importance scores over 100 model replica ons) for pan-cancer XGBoost training
(gene iden fiers that did not map to a Hugo symbol are named with their Ensembl iden fiers). The different colors indi-
cate gene types (blue: protein coding, orange: lncRNA, green: processed pseudogenes, purple: transcribed unprocessed
pseudogene, red: gene type unknown). These gene types were obtained using the MyGene Python package (version 3.1,
h p://mygene.info) 186,187. This figure was published in 170.

converted to HUGO gene symbols using the MyGene186,187 Python package (version 3.1;
http://mygene.info) if a gene symbol was available. In cases where the Ensembl gene identi-
fier could not be mapped to a HUGO symbol, Ensembl identifiers were used as gene names.
Noticeably, a few genes, and especially IGF2BP3 (insulin-like growth factor 2 mRNA bind-
ing protein 3), havemuch higher geneweights than all other genes identified as important fea-
tures by the pan-cancer XGBoost approach, indicating a particularly high prognostic poten-
tial for cancer survival. Indeed, IGF2BP3 is overexpressed in many tumor types and has been
associated with tumor progression, metastasis, and poor prognosis in multiple cancers122, in-
cluding colon cancer117, oral squamous cell carcinoma114, and melanoma155.

To further analyze the prognostic potential of the genes attributed with the highest feature
importance by the pan-cancer XGBoost approach, we queried OncoLnc6—an online tool
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providing Cox regression analyses and Kaplan-Meier survival plots on TCGA gene expres-
sion data of different cancer types—with the top four protein-coding genes with the high-
est gene weights (IGF2BP3, IL1RAP, PIK3R3, and CISH). Figure 5.10 shows one Kaplan-
Meier plot for each of these four genes, where for each gene the cancer type with the lowest
FDR-corrected p-value in the OncoLnc Cox regression was selected for display. IGF2BP3 is
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Figure 5.10: Kaplan-Meier plots for the four most important gene features from pan-cancer XGBoost. For each gene, we
selected the cancer type with the lowest FDR-corrected p-value in Cox regression, respec vely. As a cutoff for gene ex-
pression, the 50th percen le was selected. Cox regression data and Kaplan-Meier plots were retrieved from OncoLnc6.
(a) Survival of brain lower grade glioma (LGG) pa ents, split by expression of IGF2BP3. (b) Survival of kidney renal papil-
lary cell carcinoma (KIRP) pa ents, split by expression of IL1RAP. (c) Survival of kidney renal clear cell carcinoma (KIRC)
pa ents, split by expression of PIK3R3. (d) Survival of brain lower grade glioma (LGG) pa ents, split by expression of
CISH. This figure was published in 170.

most predictive for survival in brain lower grade glioma (LGG, FDR = 3.59× 109 in Cox re-
gression), while IL1RAP,PIK3R3, andCISH have the highest predictive potential in kidney
renal papillary cell carcinoma (KIRP, FDR= 1.65×104 inCox regression), kidney renal clear
cell carcinoma (KIRC, FDR = 4.16× 103 in Cox regression), and LGG (FDR = 1.51× 105
in Cox regression), respectively. Furthermore, IGF2BP3, IL1RAP, PIK3R3, andCISH have
significant prognostic value (FDR< 0.05 inCox regression) for four (KIRP, KIRC, LUAD,
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and PAAD), two (LGG and PAAD), two (LGG and HNSC), and four (LUAD, LIHC,
KIRP, and KIRC) additional TCGA cohorts, respectively. Kaplan-Meier plots for these
gene-cohort pairs are shown in Supplementary Figure A.3. For generating the Kaplan-Meier
plots for each gene-cohort pair, the 50th percentile was selected as a cutoff inOncoLnc, such
that patients belonging to the respective cohort were split into two groups of equal size based
on the gene expression value of the corresponding gene. We selected the 50th percentile as a
cutoff to ensure that all patients from the respective cohort were included in the analysis and
the two groups (low expression and high expression) the patients were split into had approx-
imately equal size. OncoLnc uses the logrank test to assess if there is a significant difference
in survival times between the low-expression and high-expression groups. According to this
test, there is a significant survival difference (p ≤ 0.05) between the low-expression and
high-expression groups for all gene-cohort pairs with a significant FDR-corrected p-value in
OncoLnc’s Cox regression except for the gene CISH in the liver hepatocellular carcinoma
(LIHC). This indicates that the top four genes with the highest feature importance in the
pan-cancer XGBoost survival prediction method are indeed predictive for cancer survival in
different cancer types.

To further evaluate whether the genes attributed with high feature importance values in the
pan-cancer XGBoost approach generalize over cancer types and are prognostic for survival
across multiple types of cancer, we additionally computed the entropy of the top 100 genes
with the highest gene weights from the pan-cancer XGBoost approach with respect to the
gene weights derived from the single-cohort approach and compared the resulting entropy
distribution with the entropy distribution obtained by computing the entropies of the top
100 genes with the highest sum of gene weights across all 25 cohorts from the single-cohort
XGBoost approach (cf. Section 5.2.5). In our case, where feature importance in 25 different
cancer cohorts is analyzed, the entropy falls into a range between 0 and∼4.64 and measures
to what extent each gene’s prognostic value generalizes across cancer types. That is, a high en-
tropy score indicates that the respective gene has similar gene weights in many or all of the 25
analyzed cancer types, while genes that are only predictive for survival in one or a few cohorts
will have a low entropy. The comparison between the entropy distributions of the 100 most
important pan-cancer survival prediction genes and the 100 most important single-cohort
survival prediction genes shows that the pan-cancer prognostic genes have significantly higher
entropy than the single-cohort genes (p = 1.145 × 1014 in a one-sided Wilcoxon unpaired
rank-sum test, Figure 5.11), implying that the pan-cancer XGBoost survival prediction ap-
proach indeed generalizes better over different cancer types than the single-cohort XGBoost
approach.

5.3.6 Network Propagation Identifies a Pan-Cancer Survival Network
As described in the previous Sections 5.3.4 and 5.3.5, the pan-cancerXGBoost approach uses
substantially (74%) fewer genes for predicting cancer survival than the single-cohortXGBoost
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Figure 5.11: Single-cohort and pan-cancer feature entropy. The entropy distribu ons between the top 100 genes with
the highest feature importance (feature importance is measured as sums of feature importance scores over 100 model
replica ons) from the single-cohort approach and the pan-cancer approach are compared (mean entropies are indicated
as dashed lines). The entropy measure (x-axis) is based on the genes used in the single-cohort approach (cf. Sec on
5.2.5). The density of the entropy distribu on is displayed on the y-axis. This figure was published in170.

approach and the genes with the highest feature importance are biologically highly plausible.
However, there is still a total of 12,082 genes that are used for survival prediction in at least
one of the 100 replications of pan-cancer training. This large number of features is not biolog-
ically focused and exacerbates the inference of mechanistic information. Furthermore, many
of the genes are only identified as important features in a small number of replications, imply-
ing that their selection as survival features is highly dependent on the training set composition
and they might not generally have high relevance for cancer prognosis. In fact, the distribu-
tion of pan-cancer gene weights—computed for each gene as the sum of feature importance
scores over all model replications—resembles a “long-tail” distribution (Figure 5.12), a distri-
bution that is also often visible with cancer-associated SNPs7. Nonetheless, genes with rela-
tively lower gene weights might still be prognostic for cancer survival in a subset of patients
and simply omitting genes that fall below some weight threshold would be rather arbitrary
and could potentially lead to a loss of relevant information.

It has been suggested that domain-specific prior knowledge, such as that from biological net-
works, can improve the performance of machine learning methods and help to understand
the underlying biological mechanisms26. One way to incorporate such prior knowledge is
network propagation. Network propagation is a popular technique that leverages the prior
knowledge from a network, such as a PPI network, to amplify biological signal and can help
to gain insights into underlying biological mechanisms43 (cf. Section 3.4). The technique
has for example been used for the identification of genes that are associated with specific
diseases109,103,145 and recently, we have applied network propagation to time-resolved gene
expression profiles of Leishmania major infected bone marrow-derived macrophages from
mice with different responses to the infection (disease susceptible or resistant) and identi-
fied network modules of interacting proteins in the PPI network that aggregated infection
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Figure 5.12: Distribu on of pan-cancer gene weights. The pan-cancer gene weights resemble a “long-tail” distribu on.
The x-axis displays the 12,082 genes iden fied as important features in the 100 model replica ons of the pan-cancer
XGBoost method and the y-axis shows the corresponding gene weights, computed as sums of feature importance
scores across the 100 replica ons. A version of this figure was published in170.

response signals for the susceptible and resistant mouse strains20.

In this work, we applied the NetCore13 network propagation method to the gene weights
extracted from the 100 replications of the pan-cancer XGBoost survival prediction approach
(cf. Section 5.2.6). To this end, the high-confidence CPDB PPI network82,93 was initialized
with the pan-cancer geneweights and theweights were then propagated over the network in a
RWRuntil a steady state distributionwas reached13. Based on this re-weighted PPI network,
NetCore then identified network modules—connected subgraphs of the network that con-
nect genes with initially high gene weights with genes that gained significantly high weights
during network propagation. Figure 5.13 displays the largest network module identified by
NetCore based on the pan-cancer geneweights. In total, NetCore could identify 13 different
modules, each containing between 2 and 79 genes. Taken together, these modules compose
a pan-cancer survival network comprising a total of 103 different genes, of which 76 are seed
genes with high initial gene weights before network propagation and 27 genes were inferred
during network propagation. All 103 genes, including their initial and propagated weights,
are listed in Supplementary Table B.2.

The identified pan-cancer survival network is indeed informative for survival in different can-
cer types. For the 25 TCGA cancer types under study, an average of 41.48 genes of the 103
survival network genes were among the important features of the respective cohort in the
single-cohort XGBoost survival prediction approach. For instance, in the single-cohort train-
ing of lung squamous cell carcinoma (TCGA-LUSC), 59 of the 103 survival network genes
were among the important features, followed by head and neck squamous cell carcinoma
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(TCGA-HNSC) and ovarian serous cystadenocarcinoma (TCGA-OV) with 54 genes each
(Figure 5.14). However, the gene weights of the 103 survival network genes, which were
computed from their pan-cancer XGBoost feature importance scores, were highly variable
between cohorts. For instance, while the sum of gene weights over the 103 genes was rela-
tively high in some cohorts, including TCGA-LUAD, TCGA-KIRC, TCGA-LUSC, and
TCGA-HNSC, the gene weight of the same genes was much lower in other cohorts like
TCGA-SKCM, TCGA-READ, and TCGA-UVM (Figure 5.14). The low gene weights in
the latter cohorts might partly be attributed to the comparatively small sizes of these cohorts
(<200 patients, cf. Supplementary Table B.1), possibly leading to a proportionally smaller
contribution of these cohorts to pan-cancer XGBoost training and the associated feature im-
portance scores.

Approximately a quarter of the genes in the pan-cancer survival network (27 of the 103 genes)
are annotated cancer genes, which have been manually curated in NCG (version 6.0)144. In-
terestingly, 16 of these 27 genes were inferred by network propagation (Supplementary Table
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B.2), meaning that they had relatively little or no feature importance in the XGBoost pan-
cancer survival prediction, but received significantly high weights during network propaga-
tion due to their high connectivity with highly important gene features in the PPI network.

5.3.7 The Pan-Cancer Survival Network Is Strongly Associated with
the Tumor Microenvironment

To further characterize the genes contained in the pan-cancer survival network, weperformed
an ORA using the QIAGEN IPA software104 on a set of canonical pathways defined by
IPA (SupplementaryTable B.3) and additionally retrieved upstream regulators of the survival
network genes (Supplementary Table B.4). The 103 pan-cancer survival network genes are
most significantly enriched for the tumor microenvironment (TME) pathway (p = 4.57 ×
10−10; overlapping genes: FGF2, IDO1, IGF2, JAK2,MMP1,MMP14,MMP3, PIK3R3,
PLAU, SPP1, TGFB1; Supplementary Table B.3). The TME is implicated in tumor initia-
tion, growth, invasion,metastasis, and response to therapies92,140. It comprises non-malignant
host cells, blood vessels, nerves, lymph nodes, and lymphoid organs, as well as intercellular
components and metabolites and forms in close vicinity of the tumor. It strongly interacts
with the cancer cells, assisting the development ofHallmark capabilities (cf. Section 2.1) and
supporting the cancer cells’ survival andmigration. The TME can be subdivided into several
specialized microenvironments with distinct functions, such as the hypoxic, the acid, and
the innervated niches, and the immune, metabolism, and mechanical microenvironments.
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Supplementary Table B.3, Sec on 3.5.2). Inspired by https://digitalinsights.qiagen.com/wp-content/upload
s/2016/12/1-for-akhil.png, accessed on May 9th, 2023.

Besides the TME as a whole, some of these specialized microenvironments, such as hypoxia-
inducible factor 1A (HIF1A) signaling (p = 4.27 × 10−6; overlapping genes: FGF2, IGF2,
MMP1, MMP14, MMP3, PIK3R3, SERPINE1, TGFB1), are also enriched by the pan-
cancer survival network. Hypoxia is a known property of cancer and promotes angiogene-
sis through the upregulation of vascular endothelial growth factor (VEGF)92,48. It has been
linked to cancer progression, therapeutic resistance, and poor prognosis92, as well as metasta-
sis143.

Furthermore, there is significant enrichment for immune-related pathways in the pan-cancer
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survival network. For instance, glucocorticoid receptor (GR) signaling has been found to reg-
ulate CD8+ T cell differentiation, where increased GR signaling is associated with dysfunc-
tional CD8+ tumor-infiltrating lymphocytes (TILs)3, and is significantly enriched by the
103 survival network genes (p = 2.51×10−9; overlapping genes: A2M,CAV1, ESR1, JAK2,
MMP1,MMP3,PGR,PIK3R3,PLA2G4A,PLA2G5,PLAU,RPS6KA5, SERPINE1,TGF-
B1,TGFBR2). While high levels of TILs are linked to improved patient survival in colorectal
cancer87 and some breast cancer subtypes49, dysfunctional CD8+ TILs contribute to im-
munosuppression in the TME3, potentially interfering with the positive effect of functional
TILs on survival. Another significantly enriched pathway related to the immune system is
theTCell Exhaustion Signaling Pathway (p = 1.44×10−4; overlapping genes: BTLA, JAK2,
PIK3R3, TGFB1, TGFBR2, TNFRSF14). T cell exhaustion is a phenomenon observed in
chronic viral infection and cancer in response to chronic antigen stimulation19,91 and is char-
acterized by increased expression of inhibitory receptors, decreased production of effector
cytokines, and reduced cytotoxicity91. Most T cells in the TME are exhausted and lose the
competence to eliminate cancer, thus allowing the cancer to evade immune response91.

Another pathway associatedwith theTME and significantly enriched for genes from the pan-
cancer survival network is inhibition of matrix metalloproteases (MMPs) (p = 1.28× 10−1,
overlapping genes: A2M,MMP1,MMP14,MMP3,TIMP4). MMPs are a proteinase fam-
ily thatmediatesmolecular communicationbetween tumor and stroma andcanmodulate the
TME96. MMPs regulate signaling pathways that control cell growth, inflammation, and an-
giogenesis, play an important role in extracellular matrix turnover and cancer cell migration,
and are thus tightly linked to tumorigenesis.

In addition to TME- and immune-related pathways, the pan-cancer survival network is also
enriched by other signaling pathways that have been linked to cancer survival, such as the
mechanistic target of rapamycin (mTOR) signaling pathway (p = 2.86 × 10−2, overlap-
ping genes: EIF4G3, FKBP1A, INS, PIK3R3, RPS6KA3, RPS6KA5), which regulates es-
sential cell processes like protein synthesis and autophagy, and, if deregulated, promotes
cancer progression148,173. Notably, mTOR signaling is activated by PI3K/AKT in response
to insulin (INS)192 and the INS and PI3KR3 genes were among the top 100 genes with
the highest gene weights in the pan-cancer prediction approach. Another pathway closely
linked to cancer and enriched by the pan-cancer survival network is ERK/MAPK signaling
(p = 3.47× 10−2, overlapping genes: ESR1, FYN, ITGA3, PIK3R3, PLA2G4A, PLA2G5,
RPS6KA5). ERK/MAPK signaling is involved in the regulation of cell proliferation, differ-
entiation, apoptosis, and stress responses65 and is targeted by many cancer drugs161.

Thorsson et al.172 have divided TCGA cancer patients into six distinct immune subtypes
based on immune expression signatures. The six immune subtypes are wound healing, IFN-
γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-β domi-
nant and are characterized by differences in somatic aberrations, tumor microenvironments,
and patient prognosis. Since we found a strong association between the pan-cancer survival
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network and TME- and immune-related molecular pathways, we asked to what extent the
gene expression signals of the 103 survival network genes reflect the six immune subtypes
identified by Thorsson et al.172. For 7,475 of the 8,024 TCGA patients used for survival pre-
diction, one of the six immune subtypes could be assigned according to Thorsson et al.172.
PCA of these patients with respect to the 103 pan-cancer survival network genes showed a
partial discrimination between immune subtypes (Figure 5.16).
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In particular, patients belonging to immune subtype C5 (immunologically quiet), which
predominantly comprised brain lower-grade gliomas (LGG), were separated from patients
associated with other immune subtypes in the first two principal components of the PCA.
This indicates that the pan-cancer survival network indeed contains gene expression signal
that is informative for the patients’ immune subtypes.

In addition to the ORA of the pan-cancer survival network and the analysis of immune sub-
types, we also explored potential upstream regulators of the survival network genes that are
frequently mutated in cancer and are annotated as cancer drivers or candidate cancer drivers
in the Network of Cancer Genes (NCG)144. To this end, we used QIAGEN IPA104 again
to perform enrichment analysis on the annotation sets of “upstream regulators” and identi-
fied 47 significantly enriched upstream regulators (p < 1× 10−5, Supplementary Table B.4).
The top ten most significantly enriched upstream regulators are JUN (20 target genes in the
pan-cancer survival network), TNF (34 target genes), IL1B (25 target genes), TP53 (33 tar-
get genes), IL1A (13 target genes), FGF2 (15 target genes),MAP3K1 (7 target genes), EGFR
(15 target genes), STAT3 (16 target genes), andHRAS (16 target genes). Notably, several of
these upstream regulators are associated with the TME. For instance, TNF (tumor necrosis
factor alpha) is a multifunctional cytokine that regulates the tumor microenvironment and
is involved in apoptosis, angiogenesis, inflammation, and immunity177,66. Another upstream
regulator, STAT3 (signal transducer and activator of transcription3), is hyperactivated in can-
cer and normal cells in the tumor ecosystem and is a key regulator of the anti-tumor immune
response194. It is involved in the inhibition of essential immune activation regulators and the
production of immunosuppressive factors and is thus a promising target for immunotherapy.
TP53 is the most frequently mutated gene in human cancers and encodes for the p53 tumor
suppressor protein, which is associated with the control of cell cycle progression, DNA re-
pair, apoptosis, and cell survival and thus acts as a suppressor of tumorigenesis8. Addition-
ally, p53 promotes an anti-tumor microenvironment, in part through secreted factors that
modulate macrophage function120. Mutations of p53 can have non-cell autonomous effects,
modulating theTMEand impairing its tumor-suppressing function, thus allowing for cancer
development8.

Taken together, our results emphasize the strong association of the pan-cancer survival net-
work with the TME, which is closely linked to cancer immune response and has an integral
role in cancer progression and metastasis.

5.3.8 Gene Expression Is the Most Informative Data Modality
Cancer survival prediction based on gene expression data of TCGA cancer patients from
multiple cancer types yielded good results (cf. Sections 5.3.1 and 5.3.3). However, we were
also interested in whether the integration of additional molecular data modalities would fur-
ther improve survival prediction performance. To this end, we applied the pan-cancer XG-
Boost approach (cf. Section 5.2.2) to mutation, copy number variation, and protein ex-
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pression data (cf. Section 5.2.1) alone and in combination with TPM-normalized RNA-
seq gene expression data. As described in Section 5.2.1, for this part of the work we used
TPM-normalized gene expression data from the more recent GDC release v32.0 instead of
the FPKM-normalized gene expression data from releases v22.0 and v24.0 that was used in
the first part of the work described above. However, despite the different processing and
normalization strategies applied to the two types of gene expression data, pan-cancer survival
prediction with XGBoost yielded similar performances on both gene expression types (Sup-
plementary Figure A.4).

Integration of Mutation Data

The genomic landscapes andmutation patterns of tumors vary between tissues and cell types,
but also between tumors originating from the same tissue and cell type25. In fact, the vast
majority of mutations occurring in tumors of a particular tissue type are only found in less
than 5–10% of patients25 and even when the same gene is mutated in different patients, the
specific mutations occurring in that gene often differ between tumors178. Because of this
large diversity and low prevalence of most mutations across tumors, it is not feasible to use
the rawmutation data with locus-specificmutation information directly as input for our sur-
vival predictionmethod. Themachine learning algorithmwould likely not be able to extract
muchmeaningful information from a very large number of low-prevalencemutations, some
of which do not even affect protein function. To address this problem, we implemented
different strategies, first selecting only high-impact mutations and then summarizing mu-
tations at the gene or pathway level, or extracting other potentially affected genes through
network propagation. More specifically, we first filtered simple nucleotide variations for
their impact and for each TCGA patient only kept mutations annotated with “high” im-
pact in the respective MAF file. The different “impact” categories are defined by Ensembl’s
variant effect predictor (VEP)126 and reflect the impact of a mutation on the encoded pro-
tein. “High” impact means that the variant is assumed to have a disruptive impact like pro-
tein truncation or loss of function on the protein or may trigger nonsense-mediated decay,
while “moderate” impact means the variant is not disruptive and might only change pro-
tein effectiveness and “low” impact mutations do likely not change protein behavior at all
(cf. https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/). Then, we
binarized the high-impact mutations at the gene level, where for each patient, a gene was
considered mutated if it contained at least one high-impact mutation. As an alternative to
binarizingmutations at the gene level, we also computed pathway-level mutations or applied
network propagation to mutations to identify genes that were not mutated themselves, but
were likely affected by other mutated genes. For the computation of pathway-level muta-
tions, high-impact mutations were also first mapped to genes, but instead of computing a
binary mutation value for each gene, we counted the high-impact mutations per gene and
for each CPDB82,93 pathway computed the sum over all genes belonging to that pathway.
Then, we normalized each pathway-level mutation value with the pathway size by dividing
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Figure 5.17: Pan-cancer survival predic on performance on muta on data. Comparison of the predic on performance
of the pan-cancer XGBoost method on 25 different TCGA cancer cohorts, trained on gene expression data (XGB[RNA]),
gene-level muta on data (XGB[muta ons(gene)]), gene expression and gene-level muta on data (XGB[RNA&muta ons-
(gene)], pathway-level muta on data (XGB[muta ons(pathway)]), gene expression and pathway-level muta on data
(XGB[RNA&muta ons(pathway)]), muta ons processed with network propaga on (XGB[muta ons(network_propaga-
on)]), and gene expression data in combina on with muta ons processed with network propaga on (XGB[RNA&mu-
ta ons(network_propaga on)]). Performance is depicted by C-Index boxplots over 100 replica ons of model training.
Mean C-Indices were compared with Wilcoxon’s unpaired rank-sum test and significance levels are defined as ns : p >
0.05, ∗ : p ≤ 0.05, ∗∗ : p ≤ 0.01, ∗ ∗ ∗ : p ≤ 0.001, ∗ ∗ ∗∗ : p ≤ 0.0001.

it by the number of genes belonging to the pathway. For the application of network prop-
agation to mutations, on the other hand, the binarized gene-level mutations were mapped
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to the CPDB82,93 (release 35) high-confidence (confidence> 0.9) PPI network and network
propagation according to theNetCore13RWR(cf. Section 3.4.1; restart probability 0.8)was
performed on the network. The re-weighted gene values computed during network propa-
gation were then used as input for the pan-cancer XGBoost approach.

Figure 5.17 shows the performance (measured as C-Index) of pan-cancer XGBoost survival
prediction in different settings that used either gene expression data (XGB[RNA]) or the
processedmutationdata (gene-levelmutations: XGB[mutations(gene)], pathway-levelmuta-
tions: XGB[mutations(pathway)], or mutations processed with network propagation: XG-
B[mutations(network_propagation)]) alone or in combinationwith gene expression data (X-
GB[RNA&mutations(gene)], XGB[RNA&mutations(pathway)], and XGB[RNA&muta-
tions(network_propagation)]) as input. Analogously to pan-cancer survival prediction on
gene expression data only (cf. Section 5.3.3), we repeated model training 100 times on differ-
ent train-test splits and in each replication selected the 500 most predictive features per data
modality as described in Section 5.2.2. In almost all (23) of the 25 TCGA cancer cohorts,
survival prediction performance was significantly worse for all three types of processedmuta-
tion data when compared to survival prediction based on TPM-normalized RNA-seq gene
expression data. When the processed mutation data modalities were combined with gene
expression data to predict pan-cancer survival and compared to survival prediction on gene
expression data alone, no significant performance differences were observed in most TCGA
cohorts. Only in TCGA-BLCA, pathway-level mutations in combination with gene expres-
sion andmutations processed by network propagation in combination with gene expression
yielded significantly (p < 0.05) better performance than gene expression alone, indicating
that for most cancer types, mutations did not contain additional survival information that
is complementary to the information contained in gene expression data and would improve
survival prediction.

Integration of Copy Number Variation Data

Copy number variations (CNVs) are a type of SV42. They refer to genomic regions that vary
in copy number either through amplification or deletion ofDNA and can drive adaptive evo-
lution and progression of genetic diseases like cancer108. By incorporating copy number vari-
ation data from TCGA into pan-cancer survival prediction with XGBoost, we sought to in-
vestigatewhether and towhat extent copy number variations provide information on patient
survival and can complement gene expression data in survival prediction. To this end, we con-
ducted pan-cancer survival prediction on copy number variation data only (XGB[CNV]),
and copy number variation data in combination with gene expression data (XGB[RNA&C-
NV]) and compared these two settingswith survival prediction based on gene expression data
alone (XGB[RNA]).We repeatedmodel training 100 times per setting on different train-test
splits and in each replication selected the top 500 most predictive genes per data modality as
features (cf. Section 5.2.2).
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Figure 5.18: Pan-cancer survival predic on performance on copy number varia on (CNV) data. Comparison of the
predic on performance of the pan-cancer XGBoost method on 25 different TCGA cancer cohorts, trained on gene
expression data (XGB[RNA]), copy number varia on data (XGB[CNV]), and gene expression data in combina on with
copy number varia on data (XGB[RNA&CNV]). Performance is depicted by C-Index boxplots over 100 replica ons
of model training. Mean C-Indices were compared with Wilcoxon’s unpaired rank-sum test and significance levels are
defined as ns : p > 0.05, ∗ : p ≤ 0.05, ∗∗ : p ≤ 0.01, ∗ ∗ ∗ : p ≤ 0.001, ∗ ∗ ∗∗ : p ≤ 0.0001.

Figure 5.18 shows the survival prediction performance of the pan-cancer XGBoost survival
predictionmodel in all three settings. Although copy number variations seemed to be predic-
tive for survival at least to some extent (C-Index> 0.5) in many of the investigated TCGA
cohorts, they were significantly less predictive for patient survival than gene expression in
the majority of cancer types (22 of 25 TCGA cohorts). When copy number variations were
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combined with gene expression data, this conferred a significant improvement over survival
prediction on gene expression data alone in only one cohort (TCGA-BLCA), while in 23
cohorts, the difference in C-Index was insignificant and one cohort (TCGA-LIHC) even
showed a drop in performance when both gene expression and copy number variation data
were incorporated into survival prediction. These results suggest that copy number variation
data does contain information on cancer patient survival, but this information does not ap-
pear to be complementary to the information contained in gene expression data and could
thus not significantly improve prediction performance in most cancer types.

Integration of Protein Expression Data

With 6,256 patients and 487 proteins, protein expression measured by RPPA is the sparsest
of the data modalities on which we evaluated our pan-cancer XGBoost survival prediction
approach. For a fair comparison between survival prediction on the more comprehensive
TPM-normalized gene expression data with 8,045 patients and survival prediction on pro-
tein expression data, we thus evaluated our pan-cancer survival prediction approach on dif-
ferent patient (sub-)sets from one of the two data modalities alone or from the combination
of both modalities. More precisely, we evaluated pan-cancer survival prediction on gene ex-
pression data and all patients withmeasured gene expression (XGB[RNA_all_patients]), on
gene expression data and only patients for which protein expression data was also available
(XGB[RNA_patient_subset]), on protein expression data and all patients for whomprotein
expression measurements were available (XGB[protein_patient_subset]), and on the combi-
nation of gene expression and protein expression data and either only the patients with both
gene expression and protein expression data available (XGB[RNA&protein_patient_sub-
set]) or all patients withmeasured gene expression data (XGB[RNA&protein_all_patients]),
where for patients with only gene expression data available protein expression was treated as
missing data.

Figure 5.19 shows theperformance (measured asC-Index) of ourpan-cancerXGBoostmodel
in the 25 different TCGA cohorts, comparing the different patient sets and data settings
trained for 100 replications each. When comparing survival prediction based on gene expres-
sion data and protein expression data on the same set of patients (XGB[RNA_patient_sub-
set] vs. XGB[protein_patient_subset]), gene expression yielded significantly better results
thanprotein expression in10of 24TCGAcohorts (therewasnoprotein expressiondata avail-
able for TCGA-LAML), survival prediction based on protein expression data outperformed
survival prediction based on gene expression data in 5 cohorts and both modalities yielded
similar performances (no significant differences) in 9 cohorts. However, only for one cohort
(TCGA-COAD), the combination of gene expression and protein expression yielded signifi-
cantly better survival prediction results than gene expression data alone, indicating that gene
expression and protein expression data likely contain similar information on patient survival,
with gene expression being slightly more informative than protein expression. When com-
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Figure 5.19: Pan-cancer survival predic on performance on protein expression data. Comparison of pan-cancer XG-
Boost trained on gene expression data and all pa ents with measured gene expression (XGB[RNA_all_pa ents]), gene
expression and only pa ents with both gene and protein expression data available (XGB[RNA_pa ent_subset]), protein
expression and all pa ents with protein expression data available (XGB[protein_pa ent_subset]), gene expression and
protein expression and only pa ents with both gene expression and protein expression data available (XGB[RNA&pro-
tein_pa ent_subset]), and gene expression and protein expression and all pa ents with measured gene expression data
(XGB[RNA&protein_all_pa ents]; unavailable protein expression is treated as missing data). Performance is measured by
C-Index over training 100 replica ons. Mean C-Indices were compared with Wilcoxon’s unpaired rank-sum test and sig-
nificance levels are defined as ns : p > 0.05, ∗ : p ≤ 0.05, ∗∗ : p ≤ 0.01, ∗ ∗ ∗ : p ≤ 0.001, ∗ ∗ ∗∗ : p ≤ 0.0001.

paring survival prediction performance including all patients withmeasured gene expression
rather than just those with both gene and protein expression available, the picture is similar:
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For most (21 of 24) cohorts, adding protein expression for patients wherever this data type
is available does not improve prediction performance over using gene expression alone, with
TCGA-ESCA, TCGA-LIHC, and TCGA-UCS being the only three cohorts for which the
combination of protein expression and gene expression improves survival prediction signifi-
cantly.

5.3.9 Tumor Status Impacts Survival Prediction
The tumor status of a cancer patient refers to “the condition or state of the tumor at a partic-
ular time” (NCI Thesaurus version 23.05e; code C96643) and can assume the values “with
tumor”, “tumor free”, or “unknown tumor status”. For the TCGA data, information on
tumor status is recorded for most cancer types in the clinical supplement data of the GDC
database (the according files were retrieved from GDC data release v31.0). We hypothesized
that patients who were tumor-free at a follow-up at some point after their initial cancer diag-
nosis shouldhave a better prognosis thanpatientswith tumor at the timeof follow-up. Tover-

Figure 5.20: Kaplan-Meier plot by tumor status. The Kaplan-Meier plot shows the survival rate (frac on of pa ents s ll
alive at a given me point) over me of tumor-free TCGA pa ents according to their tumor status compared with TCGA
pa ents with tumor. Only TCGA pa ents with known tumor status “tumor free” or “with tumor” were included.

ify this assumption, we first split all patients with known tumor status from the 25 analyzed
TCGA cohorts into two groups of tumor-free patients and patients with tumor, respectively.
Then, based on this partition, we generated aKaplan-Meier plot (Figure 5.20), which for each
of the two groups visualizes the respective group’s survival rate (i.e., the fraction of patients
that are still alive after the respective time) over time. As expected, tumor-free patients have
significantly better survival times compared to patients with tumor (logrank p < 0.005).
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Figure 5.21: Median ages of TCGA pa ents according to cancer type and tumor status. For each of the 25 evaluated
TCGA cohorts, the median age of all pa ents belonging to that cohort is compared with the median age of all dead
pa ents, all dead tumor-free pa ents, and all dead pa ents with tumor. For the la er two categories, only pa ents with
known tumor status (“tumor free” or “with tumor”) were considered. If no pa ents with the respec ve tumor status
were available for a cohort, no median age was computed.

When stratifying the TCGA patients by censoring status and tumor status and comparing
the median ages of the different groups, it becomes apparent that the group of tumor-free
patients that have died during the study period has a larger median age than dead patients
with tumor in 19 of 23 TCGA cohorts with recorded tumor status (Figure 5.21). Further-
more, in 16 of these cohorts, the median age of the dead tumor-free patients is also larger
than the median age of all patients of the respective cohort and all patients of the cohort that
have died during the study period (Figure 5.21). A possible explanation for the overall older
age of dead tumor-free patients compared to other patient groups could be that at least part
of the tumor-free patients might not have died directly from their cancer, but rather from
old age or other age-related co-morbidities. This would be a case of competing risks, where
other types of events (e.g., death due to age-related causes) may forestall the event of inter-
est (e.g., cancer-related death)184. Since the risk of dying from age-related causes rather than
cancer can be expected to be especially high in older, tumor-free patients, we hypothesized
that this could be a confounding factor for cancer survival prediction and by not considering
the death of tumor-free patients as a death from cancer, we would be able to at least partly re-
move this confounding factor and might be able to improve our survival prediction model’s
performance.

To test this hypothesis with our gene expression-based pan-cancer XGBoost approach, we
inverted the censoring status of all dead patients with recorded “tumor free” status, thus
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Figure 5.22: Pan-cancer survival predic on performance under considera on of the tumor status. Comparison of the
predic on performance of the pan-cancer XGBoost method trained on gene expression data of 25 different TCGA can-
cer cohorts, either not taking the pa ents’ tumor status into considera on (XGB[RNA]) or taking the tumor status into
considera on and regarding the survival mes of dead tumor-free pa ents as censored (XGB[RNA_tumor_free_to_cen-
sored]). Performance is depicted by C-Index boxplots over 100 replica ons of model training. Mean C-Indices were
compared with Wilcoxon’s unpaired rank-sum test and significance levels are defined as ns : p > 0.05, ∗ : p ≤ 0.05,
∗∗ : p ≤ 0.01, ∗ ∗ ∗ : p ≤ 0.001, ∗ ∗ ∗∗ : p ≤ 0.0001.

considering these patients as censored when training and evaluating the XGBoost survival
prediction method. Figure 5.22 shows the survival prediction performance (measured as C-
Index) of the pan-cancer XGBoost approach on the 25 analyzed TCGA cohorts evaluated
in the setting where dead tumor-free patients are considered as censored (XGB[RNA_tu-
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mor_free_to_censored]) compared to the original setting where these patients were consid-
ered as uncensored (XGB[RNA]). In agreement with our hypothesis, regarding dead tumor-
free patients as censored instead of uncensored improves the survival prediction performance
of our pan-cancer XGBoost model significantly (p < 0.05) in 13 (BLCA, COAD, ESCA,
HNSC, KIRC, KIRP, LUAD, LUSC, PAAD, READ, SKCM, UCEC, and UVM) of the
25 TCGA cohorts. Interestingly however, it has the opposite effect in three other cohorts
(LGG, LIHC, and UCS), where keeping the original censoring status for dead tumor-free
patients leads to a significantly better survival prediction performance.

5.4 Discussion

Cancer is a leading cause of premature death worldwide57. To inform treatment decisions
and ultimately reduce cancer mortality, it is critical to be able to quantify a patient’s risk and
estimate prognosis. Therefore, cancer survival prediction is an important computational task.
Our goal was to develop a cancer survival predictionmethodwith high biological plausibility.
We achieved this by combining a gradient tree boosting approach for survival predictionwith
networkpropagationon a comprehensive high-confidencePPI network for the identification
of a biologically plausible pan-cancer survival network.

More precisely, we applied XGBoost31 tree ensemble learning to gene expression data from
each of 25 cancer cohorts from TCGA and showed competitive performance of this single-
cohort XGBoost approach with established survival prediction methods. To address the
problemof low sample numbers in the single-cohort training approach, where a separateXG-
Boost survival predictionmodel is trained for each cohort, and to enable the identification of
cross-cohort survival features, we then implemented pan-cancer training, where all 25TCGA
cancer cohorts were used jointly to train an XGBoost model, and showed improved perfor-
mance of the pan-cancer approach over the single-cohort approach. We believe that a large
part of this improvement is likely due to the larger sample numbers in pan-cancer training
compared to single-cohort training. This assessment is consistent with findings from other
prediction tasks like drug sensitivity prediction116 and is supported by survival prediction
results from pan-cancer XGBoost training—including feature selection and hyperparameter
tuning—on randomly sampled patient subsets of different sizes (Supplementary Figure A.2).
In these additional experiments, survival prediction performance deteriorated for many of
the evaluated cancer types when the sample size of the training data was reduced. Interest-
ingly, we also observed that pan-cancer features generalized well across different cancer types,
whereas features from the single-cohort approach tended to be more cancer-type-specific.
There were also notable differences in the types of features used in single-cohort and pan-
cancer survival prediction. While 40.4% of the features used in the single-cohort approach
were protein-coding genes, this proportion increased to 56.5% in the pan-cancer approach,
and correspondingly, the proportion of other—possibly more tissue-specific—feature types
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such as lncRNAs and processed pseudogenes decreased in pan-cancer training compared to
single-cohort training.

To provide biological plausibility for our pan-cancer survival prediction approach, we then
applied the NetCore13 network propagation method to the feature importance scores ex-
tracted from the pan-cancer XGBoost models of 100 training replications and identified a
pan-cancer survival network comprising 103 genes. This survival network is strongly associ-
ated with the TME, as we showed byORA and correlationwith patient immune status. The
TME has been found to play important roles in tumor initiation, growth, invasion, metasta-
sis, as well as response to therapies92,140, making the association we found between the TME
and cancer survival highly plausible. Furthermore, our findings highlighted the particular
importance of the hypoxic and immune-related aspects of the TME for cancer survival and
identified amoderately negative correlation (R = −0.55) between survival predictionperfor-
mance and age, suggesting that the agingTMEmay bemore difficult to interpret bymachine
learning approaches than younger and presumably more intact states of the TME and sup-
porting the notion that the aging TME could influence cancer progression and survival54.
Survival prediction can potentially benefit from these findings by taking age-specific effects
into account, for example by considering age when splitting the patients into training and
test data.

In addition to applying our pan-cancer survival prediction method to gene expression data,
we also evaluated themethod on additional omics data modalities, includingmutation, copy
number variation, and protein expression data. DNA methylation was not evaluated as a
data modality because the DNA methylation data available through the GDC data portal
was not consistent across patients with respect to the measurement platform, thus making it
difficult to compare patients. More specifically, the DNAmethylation data available for the
analyzed cancer patientswasmeasured by either only one or both of twodifferent generations
of IlluminaDNAmethylation arrays (HumanMethylation27 andHumanMethylation450),
which are not directly comparable. Even when considering only the intersection of methy-
lation sites measured by both arrays, substantial batch effects were observable between the
DNAmethylation beta values obtained fromHumanMethylation 27 and HumanMethyla-
tion 450 arrays, respectively (exemplarily shown for TCGA-COAD in Supplementary Fig-
ure A.5), making it difficult to compare patients with methylation beta values measured by
IlluminaHumanMethylation 27 to patients with beta values measured by IlluminaHuman
Methylation 450. Of all evaluated omics data modalities, gene expression showed to be the
most informative, which is consistent with previous findings from different biomedical pre-
diction tasks, including the results of Costello et al.41 on drug sensitivity prediction and the
results of Vale-Silva and Rohr176 on pan-cancer survival prediction, but interestingly in con-
trast to the findings of Cheerla and Gevaert29 on the same task. After gene expression, pro-
tein expression was the second most predictive datatype for cancer survival, outperforming
survival prediction based on gene expression data for 5 of the 25 evaluated cancer cohorts.
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Notably, protein expression data was the sparsest of the evaluated data modalities, both in
terms of patient numbers and the number of measured features (i.e., proteins). Therefore,
the relatively good performance of survival prediction based on protein expression data is
noteworthy and it can be speculated that the predictive power of protein expression data for
cancer survival predictionmight be underestimated fromour results. Hence, the survival pre-
diction performance of the pan-cancer XGBoost model trained on protein expression data
might be further improved with a more comprehensive protein expression dataset providing
measurements for more patients and more proteins. Recalling the central dogma of molecu-
lar biology, genetic information can be transcribed fromDNA to RNA and translated from
RNA to protein47,46. Accordingly, proteins are usually the functional molecules that link
genotype to phenotype90 and we can speculate that protein expression should therefore be
the data modality that is most immediately related to the phenotype of cancer survival, fol-
lowed by gene expression and the genomic data modalities that measure mutations and copy
number variations. Indeed, our results are largely consistentwith these considerations, in that
protein expression and gene expression yield better survival prediction performances than
mutation and copy number variation data and the superior performance of gene expression
over protein expression data for most cancer types might be explained by the greater sparsity
of protein expression data compared to gene expression data, for which more patients and
substantially more features are measured than for protein expression data.

SomeTCGApatientswith reported death during the respective study period have a recorded
“tumor free” status, meaning they did not have any remaining tumor at some point after their
initial diagnosis. For these patients, we speculated that they might have died from other—
potentially age-related—causes rather than their cancer and hypothesized that by regarding
these patients as censored rather than uncensored during survival prediction, we might be
able to improve the prediction performance of our pan-cancer XGBoost model on gene ex-
pression data as the most predictive data modality. Indeed, we could show that considering
the tumor status as described above significantly improved survival prediction performance
for 13 of the 25 evaluated cohorts, supporting this hypothesis. Surprisingly, however, for
three other cohorts, regarding dead tumor-free patients as censored significantly deteriorated
performance instead. A possible explanation for this result could be that at least some of the
tumor-free patients, especially in these three cohorts, were tumor-free at some point, but the
cancer might have recurred later on, ultimately leading to death. For these patients, consid-
ering their survival time as censored might have led to losing important information on their
survival, negatively impacting the survival prediction performance.

In summary, we have introduced a cancer survival prediction approach based on XGBoost
tree ensemble learning and have shown that single-cohort training on gene expression data
demonstrates highly competitive performance with established survival prediction methods,
pan-cancer training significantly improves survival predictionperformance compared to single-
cohort training, and gene expression is themost informative datamodality for cancer survival,
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closely followed by the more sparse protein expression data. Additionally, we found that tak-
ing patient tumor status into account can further improve survival prediction performance,
suggesting that cancer and other—possibly age-related—causes of death may act as compet-
ing risks. Furthermore, we combined the gene expression-based pan-cancer survival predic-
tion approach with network propagation to gain biological plausibility for the survival pre-
diction step and identified a pan-cancer survival network, which highlighted the importance
of the aging tumor microenvironment for cancer survival.

5.4.1 Limitations
Our survival predictionmethod is based on cancer patient data made available by the TCGA
consortium. Although TCGA includes a relatively large number of patients from a wide
variety of cancer types, all TCGA data has been processed according to uniform protocols.
As a result, the TCGA data can be assumed to be at least somewhat consistent. When data
from a new, non-TCGA domain that was processed according to different protocols should
be used instead for survival prediction with the method trained on TCGA domain data, dif-
ferent marginal distributions of the source domain used for training and the target domain
that should be used for survival prediction can be a problem. As described in Section 3.2.3, a
possible solution to this type of problem is transfer learning. However, while transfer learn-
ing approaches such as pre-training the model on the source domain and then transferring
it to the target domain, where it is fine-tuned, have been successfully applied and are widely
used with neural networks188, transfer learning is not as easily and widely applicable to other
machine learning frameworks like XGBoost. Althoughwith TransBoost166 (cf. Section 4.3),
there is a transfer learning approach building on XGBoost, it cannot be applied to already
trained XGBoost models. Instead, TransBoost modifies the XGBoost implementation to
allow transfer learning by co-learning two parallel models with shared tree structures but dif-
ferent node weights on the source domain instances and a combination of target domain
instances and weighted source domain instances, respectively. This way, the method at the
same time adjusts for different distributions of the source and target domains and trains a
prediction model applicable to the target domain. However, TransBoost is implemented for
classification problems only and is not readily applicable for regression or survival prediction
problems.
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6
Transfer Learning in Cancer Survival
Prediction

In this chapter, different transfer learning scenarios for improving cancer survival prediction
are explored and evaluated.

6.1 Motivation
Knowledge learned on a task with abundant data can be used to improve the performance
of machine learning models on related tasks with less data through transfer learning (cf. Sec-
tion 3.2.3). This can be especially useful in biomedical prediction tasks like cancer survival
prediction, where large quantities of training data are usually not available. Transfer learning
can be applied to cancer survival prediction in one of two ways: Either a machine learning
model can be trained on a large dataset for an auxiliary prediction task that is in some way
related to cancer survival, or the model can be directly trained for cancer survival prediction
on a medium-sized cancer survival dataset such as the The Cancer Genome Atlas (TCGA)
pan-cancer dataset and then transferred to another independent small cancer survival dataset
obtained from a different clinical study or database. However, while transfer learning can
potentially improve the performance of cancer survival prediction models, it is not compat-
ible with every machine learning framework and prediction task. For instance, while with
TransBoost166 (cf. Section 4.3) there has been an attempt to combine XGBoost and transfer
learning, the method can only be applied to classification tasks. To the best of our knowl-
edge, there is no method implementing transfer learning for XGBoost that can be applied to
survival prediction. Thus, despite XGBoost showing compelling results in cancer survival
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prediction, it cannot easily be combined with transfer learning to transfer knowledge from
medium-sized to independent small cancer survival datasets or to leverage knowledge from
other prediction tasks for cancer survival prediction. Therefore, in addition to pan-cancer
survival prediction with XGBoost, we also investigated the application of neural networks, a
machine learningmethodology that canbe conveniently combinedwith transfer learning, for
transfer learning in cancer survival prediction. To this end, we developed two application sce-
narios of transfer learning in cancer survival prediction, which are described in this chapter:
In the first scenario, we pre-trained a survival prediction neural network on the TCGA pan-
cancer gene expression dataset and then fine-tuned it on smaller cancer survival datasets from
different independent studies, and in the second scenario, we pre-trained neural networks on
the tasks of tissue type classification and age prediction from gene expression data and trans-
ferred the trained networks to cancer survival prediction on the TCGA pan-cancer dataset.
While the prediction of tissue type and age is not specific to cancer and indeedwe pre-trained
the tissue type and age predictionmodels on gene expression data fromdeceased donors with
various non-cancer-related causes of death, both tasks are to some extent related to cancer sur-
vival prediction in that there are tissue- and cell-type-specific differences in tumorigenesis and
in the organization of oncogenic signaling pathways151, and aging is correlatedwith cancer in-
cidence50,130 and shares some of its hallmarks with cancer121. Therefore we think that tissue
type and age prediction are promising candidate tasks for transfer learning.

6.2 Methods
In this section, the methodology used to pre-train survival prediction as well as tissue type
and age prediction models is introduced and the investigated transfer learning strategies for
cancer survival prediction are explained.

6.2.1 Data and Preprocessing
All transfer learning experiments described in this chapter are based onRNA-seq gene expres-
sion data.

For the first scenario, where a neural network was pre-trained and fine-tuned on gene expres-
sion data for the task of cancer survival prediction, TPM-normalized RNA-seq gene expres-
sion data and the corresponding clinical data were obtained from the GDC data portal and
downloaded with the TCGAbiolinks R package40,128,159. More specifically, for pre-training,
the TCGA dataset (GDC data release v32.0) was used, which comprised 60,616 gene expres-
sion values and 8,045 patients from 25 cancer types after excluding patients with incomplete
data or inconsistent survival information. For fine-tuning the pre-trained model, datasets
from three different cancer studies (CPTAC-3, CDDP_EAGLE-1, and CGCI-BLGSP were
evaluated, which were all downloaded fromGDC release v36.0 and comprised TPM-norma-
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lizedRNA-seq gene expression data and corresponding clinical data. TheClinical Proteomic
Tumor Analysis Consortium (CPTAC) is an effort by the National Cancer Institute (NCI)
to explore the molecular basis of cancer through large-scale proteome and genome analysis.
In the framework ofCPTAC, theCPTAC-3 study investigatedmolecular and clinical data of
endometrial, lung, kidney, brain, head and neck, and pancreatic cancers and provides both
gene expression and survival data for primary cancers of 763 patients. Unlike TCGA and
CPTAC-3, which are both pan-cancer studies, the other two studies, CDDP_EAGLE-1 and
CGCI-BLGSP, each only investigated a specific cancer type. More specifically, the CDDP
Integrative Analysis of LungAdenocarcinoma (CDDP_EAGLE-1) project provides data for
bronchus and lung adenomas and adenocarcinomas for 50 cases, 44 of which could be used
in our transfer learning experiments because both primary-tumor gene expression and sur-
vival datawere available. The goal of theCancerGenomeCharacterization Initiative (CGCI)
on the other hand, is to catalog genomic alterations in rare adult and pediatric cancers. In
the framework of the CGCI, the CGCI Burkitt Lymphoma Genome Sequencing Project
(CGCI-BLGSP), which we used in our transfer learning experiments, provides primary can-
cer gene expression and survival data for 29 patients with mature B-cell lymphoma, which is
a type of non-Hodgkin lymphoma that is most prevalent in children and young adults. For
pre-training and transfer learning, the 60,616 genes common to all cancer datasets were se-
lected and gene expression data was log-transformed by log2(TPM+ 1) to reduce the impact
of extremely large values and data skewness195.

For the second transfer learning scenario, where a neural network was pre-trained for tissue
type or age prediction or both and then transferred to the cancer survival prediction task,
TPM-normalized RNA-seq gene expression data from the GTEx project118 was used for
pre-training. The GTEx data was retrieved from the GTEx Portal on August 17 and 18,
2021 and included gene expression data for 56,156 genes and 17,382 samples from 30 tissue
types and 948 deceased donors with tissue type information and donor age information in
the form of 10-year age brackets. For transfer learning on cancer survival prediction, we used
TPM-normalized gene expression and clinical data of 25 cancer types fromTCGA, provided
through the GDC data portal (GDC data release v32.0) and downloaded with the TCGAbi-
olinks R package40,128,159. The TCGA survival data comprised 60,616 gene expression val-
ues and 8,045 patients from 25 cancer types after excluding patients with incomplete data
or inconsistent survival information. For pre-training and transfer learning, we only used
the 55,617 genes common to the GTEx and TCGA datasets and log-transformed all gene
expression values by log2(TPM+ 1).

For both transfer learning scenarios, we used the same 25 cancer types from TCGA as previ-
ously used for survival predictionwithXGBoost (cf. Section 5.2.1), excludingTCGAcancer
cohorts with less than 20 uncensored patients. Analogously to what we described in Section
5.2.1, in the case of multiple tumor samples from the same patient, the sample with the lexi-
cographically highest sample ID was selected in all investigated cancer datasets.
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6.2.2 Transferring Survival Information from TCGA to Smaller Can-
cer Datasets

The goal of the first transfer learning scenario was to transfer knowledge within the same task
of cancer survival prediction, but from one dataset to other independent datasets generated
by different studies. To this end, we pre-trained a fully connected feed-forward neural net-
workwith aCox regressionoutput layer for cancer survival predictionon aTCGApan-cancer
dataset comprising 25 cancer types and then transferred the knowledge learned by this net-
work to survival prediction on independent, substantially smaller cancer datasets. The sur-
vival prediction neural network had a single-neuron output layer with linear activation and
without bias andwas trainedusing negative partial log-likelihood (cf. Section 3.3.2, Equation
3.29) as a loss function and the C-Index (cf. Section 3.3.3) as a performance metric. For pre-
training, the TCGA data was first split into 80% training and 20% test data, while keeping
similar distributions of censored and uncensored patients and similar cancer type distribu-
tions in both the training and the test data. The training data was then further split into 80%
training and 20% validation data under consideration of the censoring status and cancer type
distributions, with the training data being used formodel training and the validation data be-
ing used for hyperparameter optimization and early stopping. Then, the gene expression data
was scaled between 0 and 1 based on the training data using scikit-learn’s135 MinMaxScaler,
and the validation and test data were scaled accordingly. To find the combination of hyperpa-
rameters yielding the best model performance, we used the Optuna framework5 with TPE,
which is a Bayesian optimizationmethod. The optimized hyperparameters included network
architecture, such as the number and sizes of hidden layers, as well as other hyperparameters
such as batch size, learning rate, regularizationparameters, anddropout (the selectedhyperpa-
rameters and tested parameter ranges are displayed in SupplementaryTable B.5). We used the
adaptivemoment estimation (Adam) optimizer99 for training and selected themicro-average
C-Index on the TCGA validation data as the optimization objective. The micro-average C-
Index was computed as the weighted average over C-Indices of the 25 cancer types contained
in the validation data, weighted by the number of patients from each cancer type. More for-
mally, it is defined as

CIavg =
∑T

i=1 nici∑T
i=1 ni

, (6.1)

whereT is the number of evaluated cancer types, ni is the number of patients from the cancer
typewith index i, and ci is theC-Index computed from the patients of the same cancer type98.

For transfer learning,we then extracted allweights andbiases from theneural network trained
with the best hyperparameter combination (i.e., the combination of hyperparameters that
yielded the best micro-average C-Index on the validation data during hyperparameter tun-
ing) for survival prediction on theTCGAdata andfine-tuned themondifferent independent
smaller cancer datasets (fine-tuningmodel type), which comprised data from the CPTAC-3,
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the CDDP_EAGLE-1 or the CGCI-BLGSP study. Before fine-tuning, however, we first
scaled the gene expression data from all datasets using the MinMaxScaler that we had fitted
on the TCGA training data before pre-training to ensure comparability between datasets.
Because the CPTAC-3 study is a pan-cancer study reporting gene expression and survival
data for seven different cancer types (glioma, bronchus and lung adenomas and adenocar-
cinomas, kidney adenomas and adenocarcinomas, uterus adenomas and adenocarcinomas,
pancreas ductal and lobular neoplasms, lung and bronchus squamous cell neoplasms, and
squamous cell neoplasms of other and ill-defined sites), we evaluated separate fine-tuning on
each of the cancer types as well as fine-tuning on the pan-cancer CPTAC-3 dataset as a whole.
For the other two studies (CDDP_EAGLE-1 and CGCI-BLGSP), we only conducted one
fine-tuning experiment each since these two studies only report gene expression and survival
data of a single cancer type (bronchus and lung adenomas and adenocarcinomas andmature
B-cell lymphomas, respectively). In each fine-tuning experiment, we conducted 5-fold cross-
validation on the respective small cancer dataset using the scikit-learn library135 to obtain a
reliable assessment of prediction performance for this dataset. In k-fold cross-validation, a set
of observations if first randomly divided into k groups, called folds, of approximately equal
size89. Then themodel is trained on the last k− 1 folds, while the first fold is held back as test
data, which is then used to evaluate the performance of the trainedmodel89. This procedure
of training themodel on k− 1 folds while withholding the remaining fold is repeated k times
for the different folds, until each of the k folds has been used once to evaluate model perfor-
mance89. This results in k different evaluations of prediction performance, which in com-
bination gives a more reliable estimation of model performance than evaluating the model
only on one set of observations89. In each iteration of the 5-fold cross-validation on one of
the small cancer datasets, we first split the four training folds further into 80% training and
20% validation data. Using these training and validation data, we then fine-tuned theweights
and biases extracted from the pre-trained neural network using the Adam optimizer99 with a
learning rate of 0.1 times the learning rate used for pre-training on TCGA data. During fine-
tuning, we applied early stopping with patience 5 on the validation data to prevent overfit-
ting of themodel on the training data. Finally, we used the respective test fold to evaluate the
fine-tuned cancer survival prediction model. To this end, we computed the C-Index on the
test fold if the respective test data contained only a single cancer type and the micro-average
C-Index on the test fold in the case of the CPTAC-3 pan-cancer dataset.

To be able to assess the effect of transfer learning on survival prediction performance, we
additionally trained survival prediction models ‘from scratch’ as a negative control for each
of the evaluated datasets (scratchmodel type). To this end, we conducted another 5-fold cross-
validation on each of the target cancer datasets. All steps of these control experiments were
analogous to the fine-tuning experiments, except that the weights and biases of the trained
neural networks were randomly initialized instead of initializing them with the pre-trained
weights and biases and the same learning rate as used for pre-training onTCGAdatawas used
to train the model (instead of using the reduced fine-tuning learning rate). All other model
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hyperparameters were also selected to be the same as for pre-training to ensure comparability
between fine-tuned models and models trained from scratch.

Furthermore, to assess howwell the pre-trainedmodel was already adapted to predicting sur-
vival on the independent small cancer datasets, we also directly applied the pre-trainedmodel
to the target datasets without further fine-tuning (pre-trainingmodel type). To this end, we
performed a 5-fold cross-validation,where in each iteration,weonly evaluated thepre-trained
model on the respective test split, such that all threemodel types (fine-tuning, scratch, and pre-
training) were evaluated on the same patients and results were therefore directly comparable.

6.2.3 TransferringKnowledge fromTissueTypeClassification andAge
Prediction to Cancer Survival Prediction

In contrast to the first transfer learning scenario, where we investigated the transferability
of knowledge learned for cancer survival prediction from a larger cancer survival dataset to
smaller cancer survival datasets, the second transfer learning scenario explored the transfer-
ability of knowledge not only between different datasets, but also between different predic-
tion tasks. More specifically, the transferability of knowledge learned from tissue type classi-
fication and age prediction to cancer survival prediction was investigated. To this end, three
neural networks were first trained on GTEx gene expression data to predict tissue type, age,
and both tissue type and age. For pre-training on all three prediction tasks, only genes mea-
sured in both theGTEx and theTCGAdatasets were used to enable the transfer of themodel
from one dataset to the other.

In the first step of pre-training, the GTEx gene expression data was randomly split into 80%
training and 20% test data, and the training data was further split into 80% training and 20%
validation data. The splitting procedure took into account the donor of each sample so that
all samples from the same donor were assigned to the same data split (training, validation,
or test) to avoid data leakage and potentially inflated model performance. In addition, it ac-
counted for the distributionof the target variable(s) such that according to the task at hand, ei-
ther the tissue typedistribution, the age distribution, or bothdistributionswere similar across
training, validation, and test splits. In the second step, gene expression was scaled between
0 and 1 by fitting a MinMaxScaler implemented by the scikit-learn library135 to the training
data and then applying it to training, validation, and test data. Next, class imbalances in the
training data were addressed: Tissue types and 10-year age brackets are highly imbalanced in
the GTEx dataset, where some tissue types and age brackets are vastly over-represented com-
pared to others (Supplementary Figure A.6). This can bias the model towards predicting the
majority classes over the minority classes, while still showing relatively good accuracy, and
may lead to poor prediction performance, especially for under-represented classes. There
are different strategies to counter this problem, including undersampling, where for over-
represented classes only a subset of samples is selected, such that the new class size resembles

104



Chapter 6

the size of the smallest class, oversampling, where minority classes are supplemented with
multiple copies of samples from the respective class to match the size of the largest class, or
weighting strategies, where classes or samples are weighted according to class sizes. Class or
sample weighting can compensate for class imbalances by assigning higher weights to minor-
ity classes or samples fromminority classes than tomajority classes when computing the loss.
For pre-training our neural networks, we decided to use sample weighting because it doesn’t
have the disadvantages of undersampling, where some samples from the majority classes are
disregarded, potentially leading to loss of information, or oversampling, where the size of the
dataset is artificially increased, slowing downmodel trainingwithout adding further informa-
tion. For the tissue type classification task, we used scikit-learn’s135 compute_sample_weight
function with the class_weight parameter set to ‘balanced’ to compute sample weights for
all GTEx samples, while for the age prediction task, we directly implemented class weight-
ing into the loss function. For all pre-training tasks of predicting tissue type, age, and both
tissue type and age, we used the Adam optimizer99 and tuned model hyperparameters on
the training and validation data using the Optuna framework5 with TPE for hyperparame-
ter sampling. Among the optimized hyperparameters were the number of hidden layers of
the respective neural network, layer sizes, activation function, regularization, and dropout
parameters, but also training-related parameters like learning rate, batch size, and optimizer-
specific parameters like weight decay and beta parameters of the Adam optimizer (a full list
of optimized hyperparameters and their optimal values for each of the pre-training tasks can
be found in Supplementary Tables B.6, B.7, and B.8). Additionally, we used early stopping
with patience 5 on the validation data in all pre-training settings to avoid overfitting. The
three different pre-training settings are explained in more detail in the following subsections.

Pre-Training for Tissue Type Classification

The first evaluated pre-training task was tissue type classification on GTEx gene expression
data. In this pre-training task, the goal was to predict which of 30 tissue types a sample was
from. To this end, a fully connected neural network with 30 output units and softmax acti-
vation in the output layer was trained using categorical cross-entropy as a loss function. The
remaining architecture, such as the number and sizes of hidden layers, and other model hy-
perparameters were optimized using the Optuna hyperparameter tuning framework5, as de-
scribed in the previous section. To assess the performance of each hyperparameter combina-
tion, the respective models were evaluated on the validation data with the multi-class version
ofMatthew’s CorrelationCoefficient (MCC), which is based on the confusionmatrixC and
is defined as

MCC =
cs−

∑K
k=1 pktk√(

s2 −
∑K

k=1 p2k
)(

s2 −
∑K

k=1 t2k
) , (6.2)
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whereK is the number of classes, c =
∑K

k=1 Ckk is the number of correctly predicted samples,
s =

∑K
i=1
∑K

j=1 Cij is the total number of samples, pk =
∑K

i=1 Cki is the column total of
the confusion matrix, which indicates the number of times each class k was predicted, and
tk =

∑K
i=1 Cik is the row total of the confusion matrix, indicating the number of times each

class k truly occurred64. Compared to using accuracy as a performance metric, Matthew’s
Correlation Coefficient has the advantage that it can be applied to unbalanced prediction
problems without the majority class or classes dominating its value as would happen with
accuracy64,33.

Pre-Training for Age Prediction

The second pre-training task we evaluated was age prediction, where we trained a neural net-
work to predict sample donor ages by classifying samples into 10-year age brackets based on
gene expression. However, predicting age brackets is not a typical classification task, where
the different classes are independent from each other. For instance, when the true age of an
individual is between 60 and 69, predicting the age bracket 50-59 would be closer to the true
age and thus better than predicting for example the age bracket 20-29. Typical classification
models that use loss functions such as the categorical cross-entropy cannot take this type of
dependency between classes into account. However, the age prediction task can instead be
formulated as an ordinal regression problem, where the distance between classes is consid-
ered in the loss function. For this formulation, the age classes must be encoded in a way that
reflects the similarity between classes, and the loss function must penalize predictions that
are further away from the true age class more than predictions that are closer to the true age
class. To this end, the ordinal regression problem is converted into multiple binary classifica-
tion problems, which is inspired by Cheng et al.32. Given K classes Y = 1, ...,K, an ordinal
relation between the classes with 1 < 2 < ... < K is assumed and each class k is encoded as
a (K− 1)-dimensional vector o(k) = (o(k)1 , o(k)2 , ..., o(k)K−1)with

o(k)i =

{
1, if i < k
0, else.

That is, considering for instance six age brackets with the age bracket 20-29 corresponding
to class 1, age bracket 30-39 corresponding to class 2, and so on, class 1 will be encoded as
(0, 0, 0, 0, 0), class 2 as (1, 0, 0, 0, 0), and class 3 as (1, 1, 0, 0, 0), while class 6will be encoded
as (1, 1, 1, 1, 1).

According to this formulation, the neural network trained for predicting age hadK−1 nodes
in the output layer and each of these output nodes used the sigmoid function as activation.
Thus, the output of the kth output node can be interpreted as the probability that the age of
a given individual is higher than the age bracket represented by class k. The networkwas then
trained using a loss function that is based on binary cross-entropy. More precisely, the loss
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of each sample was computed as the mean over the K − 1 output nodes, for each of which
a weighted version of the binary cross-entropy was calculated. Using just the standard bi-
nary cross-entropy without introducing any weights would bias the neural network towards
overpredicting classes in the middle range, while underpredicting classes with small or high
numbers, even for class-balanced training data. The reason for this phenomenon lies in the
encoding of the ordinal classes: The target value of the first position of the output encoding
is 0 only for class 1 and 1 for all other classes, while the target value of the last position only
becomes 1 for class K and 0 for all other classes, introducing a form of class imbalance with
the same effects on model training. Hence, the model might learn to always predict 1 for the
first position, while always predicting 0 for the last position. On the other hand, the num-
bers of zeros and ones in the target output become more and more balanced when moving
towards classes in the middle range, making it easier for the model to learn the correct classes.
A second source of bias comes from inherent class imbalances in the training data, which can
influence the model towards overpredicting majority classes while underpredicting minority
classes. Tomitigate both sources of bias caused by the two different forms of class imbalance,
we computed twoweights for zeros and ones, respectively, for each output node based on the
numbers of zeros and ones at this position in the target output encodings of the training data.
Based on these weights, a weighted binary cross-entropy for each sample i and each output
node k can be computed as

crossentropyik = −
(
w(1)
k yik log(ŷik) + w(0)

k (1− yik) log(1− ŷik)
)
, (6.3)

where yik is the target value at the kth position of the output encoding of sample i, ŷik is
the prediction of the kth output node for sample i, and w(0) and w(1) are weight vectors of
length K − 1 containing the weights that should be given to zeros and ones, respectively, in
each of the K − 1 output nodes. These weight vectors are computed as w(0) = 1

max(n0,1)

and w(1) = 1
max(n1,1) , where n0 ∈ NK−1 and n1 ∈ NK−1 are the numbers of zeros and ones

respectively at each of theK−1 output encoding positions in the target y. For example, if the
input data contained ten samples and four different classes with two samples from class 1, five
samples from class 2, and three samples from class 4, then there would be 8 ones (from the
samples of classes 2 and 4) and 2 zeros (from the samples of class 1) in the first position of the
output encoding, 3 ones (from the samples of class 4) and 7 zeros (from the samples of classes
1 and 2) in the second position, and 3 ones and 7 zeros in the third position. Accordingly, the
weight vectors would then become w(0) = ( 12 ,

1
7 ,

1
7) and w

(1) = ( 18 ,
1
3 ,

1
3).

The complete loss function for the ordinal regression task can then be computed as themean
of weighted binary cross-entropies across theK− 1 output encoding positions, averaged over
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theN input samples:

lordinal = − 1
N

N∑
i=1

(
1

K− 1

K−1∑
k=1

w(1)
k yik log(ŷik) + w(0)

k (1− yik) log(1− ŷik)

)
(6.4)

= − 1
N(K− 1)

N∑
i=1

K−1∑
k=1

w(1)
k yik log(ŷik) + w(0)

k (1− yik) log(1− ŷik) (6.5)

The class prediction for a sample i can be derived from the predicted output encoding as
the first position in the encoding that has a predicted value smaller than 0.5. For instance,
the predicted output encoding (0.9, 0.8, 0.6, 0.2, 0.1)would correspondwith the predicted
class 4.

The hyperparameters of the age prediction neural network, including the number and sizes
of hidden layers, learning rate, and other model hyperparameters, were optimized using the
Optuna hyperparameter tuning framework5. To this end, the weighted Cohen’s κ with
quadratic weights was used as a performance metric to evaluate the different hyperparameter
combinations, and the hyperparameter combination that yielded the best weighted Cohen’s
κ score on the validation datawas selected for pre-training the final age predictionmodel. Co-
hen’s κ was first proposed by Jacob Cohen in 196038 to quantify the level of agreement be-
tween two judges or annotators on a classification problemwith independent classes. Since a
certain amount of the agreement between annotators is expected by chance, Cohen proposed
to include this proportion of expected chance agreement into his κ score. More precisely, Co-
hen’s κ is defined as

κ =
po − pc
1− pc

, (6.6)

where po is the proportion of units where the annotators agree and pc is the proportion of
units for which agreement is expected by chance. That is, the numerator po − pc reflects the
proportion of cases inwhich the annotators agree beyond chance and the denominator 1−pc
represents the proportion of cases for which disagreement between the annotators would be
expected by chance. Hence, κ is the proportion of agreement between the annotators after
removing chance agreement and positive values of κ indicate more agreement between anno-
tators than expected by chance, while negative values of κ indicate less than chance agreement.

In ordinal regression, classes are not independent from each other, but have an ordinal rela-
tionship, andmisclassification in amore distant class is worse thanmisclassification in amore
proximate class. However, Cohen’s κ as described above treats all disagreements between
annotators equally. In 1968, Jacob Cohen proposed a generalization to his κ metric, the
weighted Cohen’s κw, which incorporates weights to account for different degrees of agree-
ment or disagreement between the K classes39. The weighted Cohen’s κw with agreement
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weights is defined as

κw =

∑
i,j wijpoij −

∑
i,j wijpcij

wmax −
∑

i,j wijpcij
, (6.7)

wherewij is the agreement weight between class i and class j,wmax is themaximum agreement
score for complete agreement (i = j), poij is the proportion of joint annotations observed
in the cell ij of the K × K contingency table, and pcij is the proportion of joint annotations
expected by chance in the same cell. To compute the agreement weights wij between class i
and class j, different weighting schemes can be applied. For example, linear weights, which
are inversely proportional to the distance between classes, can be computed as189

wij = 1− |i− j|
K− 1

(6.8)

withK being the total number of classes. Quadratic weights, which are quadratically decreas-
ing for classes that are further away, can be computed with the following formula189:

wij = 1− (i− j)2

(K− 1)2
(6.9)

For the agepredictionpre-training task,weusedquadraticweights for computing theweighted
Cohen’s κw.

Pre-Training for Tissue Type Classification and Age Prediction

In the third pre-training setting, we trained a neural network to predict tissue type and age si-
multaneously from the gene expression data of GTEx samples. To this end, we trained amul-
titask model with shared hidden layers, followed by task-specific layers for each task. Similar
to the pre-training on tissue type classification or age prediction alone, themodel architecture
(including the number of shared and task-specific layers) and other hyperparameters were op-
timized using Optuna5 withmultivariate TPE (see Supplementary Table B.8 for the selected
hyperparameters). In addition to the prediction performance in tissue type classification and
age prediction, we also optimized the size of the last shared layer (latent size) to be as small
as possible without compromising the performance of the other two prediction tasks to pre-
vent themodel from simply selecting one large and very general shared layer and then shifting
the learning of the actual prediction tasks to task-specific layers that would not be transferred
to the survival prediction model. During hyperparameter tuning, we used Matthew’s Cor-
relation Coefficient to evaluate the tissue classification performance of the model, while the
weighted Cohen’s κw with quadratic weights was used for assessing the age prediction perfor-
mance. The hyperparameter combination used for the final pre-training was then selected
by manual inspection of the Pareto front of the optimization objectives (Figure 6.2), i.e. the
set of all Pareto efficient solutions where none of the optimization objectives can be further
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improved without deteriorating another37.

Transfering the Pre-Trained Model to Survival Prediction

Once training the neural network in one of the three described pre-training settings was
complete, the knowledge learned by that model in the form of weights and biases could be
transferred to the cancer survival prediction task. To this end, the first n hidden layers of
the tissue type classification or the age prediction neural network, or the first n shared lay-
ers of the multitask neural network trained for both tissue type and age prediction (with
1 ≤ n ≤ total number of hidden/task-specific layers) were transferred to a new neural net-
work with the same model architecture (i.e., the same number and sizes of hidden layers) as
the respective pre-trained model. While in this way, the first n hidden layers of each new
neural network were initialized with the learned weights of the respective pre-trained neural
network, the remaining hidden layers were randomly initialized. Additionally, to adapt each
newneural network for survival prediction, the output layerwas replaced by aCox regression
output layer with linear activation and no bias term.

Eachnewneural networkwas then further trained for cancer survival predictionon theTCGA
pan-cancer dataset in one of two different transfer learning settings: In the first setting, only
the randomly initialized last layer(s) of the neural network were trained while freezing the n
pre-trained layers (transfer setting), meaning that weights and biases of the pre-trained layers
were not updated during training. In the second setting, on the other hand, both the ran-
domly initialized last layer(s) and the pre-trained layers were further trained for the survival
prediction task (fine-tuning setting). In addition to these two transfer learning settings, we
evaluated another setting (scratch setting), where corresponding to each pre-trained model,
another randomly initialized survival prediction neural network with the same model archi-
tecture and hyperparameters as the pre-trained model (except for the task-specific output
layer) was trained from scratch and without transferring any pre-trained weights and biases.
This neural network trained from scratch served as a negative control to assess the effect of
transfer learning on survival prediction performance. In all three settings, the respective neu-
ral network was trained for survival prediction using the Adam algorithm99 as the optimizer,
the negative partial log-likelihood (cf. Section 3.3.2, Equation 3.29) as a loss function, and
the C-Index (cf. Section 3.3.3) as a performance metric. In the transfer setting, the weights
and biases of the transferred pre-trained layers were frozen and only the randomly initialized
layers were trained using the same learning rate as used in the respective pre-trained model.
In the fine-tuning setting, in contrast, two different learning rates were used for training the
model, where the transferred pre-trained layers were fine-tuned with a learning rate of 0.1
times the learning rate of the pre-trainedmodel, and the randomly initialized non-transferred
layers were trained with the same learning rate as the respective pre-trained model. Lastly, in
the scratch setting, all layers of the neural network were trained using the learning rate of the
respective pre-trainedmodel. In all three settings, all othermodel hyperparameters except for
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the learning rate were kept the same as for the respective pre-trained model to allow for a fair
comparison between the settings.

To obtain a reliable assessment of the survival prediction performance in the different pre-
training and transfer learning settings, we applied a stratified 5-fold cross-validation scheme
using the scikit-learn library135. In this scheme, the TCGA data was first split into five parts
(folds) of equal size and equal distributions of cancer types. Then, in each iteration of the
cross-validation, one of the folds was used as test data formodel evaluation, while the remain-
ing four folds were further split into 80% training and 20% validation data used for model
training and early stopping (with patience 5), respectively. For model training and evalua-
tion in each iteration, the TCGA training, validation, and test data were scaled using the
MinMaxScaler fitted to the respective GTEx pre-training data. Next, transfer learning for
survival prediction was performed on the training data according to one of the transfer learn-
ing settings described above with early stopping based on the validation data. Finally, after
transfer learning was completed, the trained model was evaluated on the test data.

6.2.4 Implementation
All transfer learning experiments were implemented in Python (release 3.10) and based on
the Keras36 and TensorFlow1 machine learning libraries. For hyperparameter tuning, the
Optuna framework5 was used. Pre-training and transfer learning of all models and all evalu-
ated settings was conducted on a Tesla V100-PCIE-32GB GPU using the NVIDIA CUDA
platform (version 11.6).

6.3 Results
This section describes the results obtained in the two scenarios exploring the potential of
transfer learning for cancer survival prediction. The first scenario investigated the transfer-
ability of knowledge learned for cancer survival prediction on the TCGA dataset to smaller,
independent cancer datasets from different studies. In the second scenario, transfer learning
was used to extract knowledge from tissue type classification and age prediction and explore
the potential benefits of this knowledge for cancer survival prediction.

6.3.1 Survival Information Can Be Partially Transferred between Can-
cer Studies

As described in Section 6.2.2, we first explored transfer learning from a survival prediction
model pre-trained on 25 cancer cohorts from TCGA to survival prediction on smaller, inde-
pendent cancer datasets, including CPTAC-3, CDDP_EAGLE-1, and CGCI-BLGSP. To
this end, we pre-trained a feed-forward neural network on 5,148 patients (training data) from
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25 TCGA cohorts and during training applied early stopping with patience 5 based on the
validation performance to avoid overfitting. On the TCGA test data (1,609 patients), the
pre-trainedmodel achieved amicro-averageC-Index of 0.6595, whichwas calculated by com-
puting the C-Indices for every cancer cohort in the test data separately and then computing
the mean of these C-Indices weighted by the number of test patients from each cohort. On
a per-cohort level, the survival prediction performance of the pre-trained model appears to
be largely on par with the average performance of the XGBoost pan-cancer model described
in Chapter 5 over 100 training replications with different training and test splits (Figure 6.1).
However, because we only evaluated the pre-trained model on a single training and test split
of theTCGAdata, its performance on the test datamayprovide a less accurate and less robust
estimate of model quality than the averaged results of the XGBoost models.
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Figure 6.1: Performance of pre-trained survival predic on model. This figure shows the test performance (measured
as C-Index) of the pre-trained survival predic on neural network (darker blue) on the 25 TCGA cancer cohorts. The
performance for each cohort is compared with the average test survival predic on performance of the pan-cancer
XGBoost method (lighter blue) described in Chapter 5, which was trained and evaluated on 100 different train-test splits.
Error bars represent the standard devia on of C-Indices over the 100 replica ons of XGBoost.

After pre-training the survival prediction model on TCGA data, the weights and biases of
the pre-trained neural network were transferred to predict survival on smaller, independent
cancer datasets, includingCPTAC-3 as a pan-cancer dataset and all cancer types contained in
CPTAC-3 separately, the lung adenocarcinoma dataset from the CDDP_EAGLE-1 study
and the CGCI-BLGSP mature B-cell lymphoma dataset. For each dataset, we compared
the 5-fold cross-validated survival prediction performances from pre-training, where the pre-
trainedmodel was directly applied to the respective small cancer dataset without further fine-
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tuning of weights and biases, fine-tuning, where the transferred weights and biases of the
pre-trained model were further fine-tuned on the small cancer dataset with a small learning
rate (0.1 times the original learning rate), and training from scratch, where a randomly initial-
ized neural network with the same model architecture and the same hyperparameters as the
pre-trained model was trained without prior transfer of weights and biases.

For seven out of ten evaluated datasets (CPTAC-3 pan-cancer, CPTAC-3 Bronchus and
lung – Adenomas and Adenocarcinomas, CPTAC-3 Bronchus and lung – Squamous Cell
Neoplasms, CPTAC-3 Kidney – Adenomas and Adenocarcinomas, CPTAC-3 Other and
ill-defined sites – Squamous Cell Neoplasms, CDDP_EAGLE-1 Bronchus and lung – Ade-
nomas and Adenocarcinomas, and CGCI-BLGSP Mature B-Cell Lymphomas), applying
the pre-trained survival prediction model directly to the respective dataset without further
fine-tuning of weights and biases yielded the best average performance in terms of C-index
(or micro-average C-index in case of the CPTAC-3 pan-cancer dataset) of all three evalu-
ated model types (Table 6.1). For the remaining three datasets (CPTAC-3 Brain – Gliomas,
CPTAC-3Pancreas–Ductal andLobularNeoplasms, andCPTAC-3Uterus,NOS–Adeno-
mas and Adenocarcinomas), the models trained from scratch without any transfer learning
showed the best average performance in 5-fold cross-validation. Interestingly, fine-tuning
the transferred weights and biases on the small datasets did not yield the best average sur-
vival prediction performance for any of the evaluated datasets. However, for six of the seven
datasets where pre-training without any further fine-tuning yielded the best performance of
all model types, the models with fine-tuning still outperformed the models that were trained
from scratch, further confirming that for these datasets transfer learning provides an advan-
tage over training from scratch.

6.3.2 Transfer of Knowledge from Auxiliary Tasks Can Improve Sur-
vival Prediction Performance

In addition to the first transfer learning scenario, where we explored the effect of transfer-
ring knowledge from one cancer survival dataset to different independent, smaller cancer
survival datasets, we also investigated a second scenario for transfer learning (described in
Section 6.2.3). In this second scenario, we pre-trained neural networks for different auxiliary
tasks, including tissue type classification, age prediction, and joint tissue type and age pre-
diction, on gene expression data from the GTEx project and tried to transfer the knowledge
learned from these tasks to cancer survival prediction on a pan-cancer dataset from TCGA,
which comprised gene expression and survival data from 25 different cancer types.

The hyperparameters of each of the pre-trained neural networks were optimized using the
Optuna framework5 with TPE. For the tissue type classification and age prediction models,
the hyperparameters were optimized according to only one metric (Matthew’s correlation
in the case of tissue type classification and weighted Cohen’s κw in the case of age predic-
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Figure 6.2: Results of hyperparameter op miza on for joint ssue type and age predic on. Dots represent trials of the
Optuna 5 hyperparameter op miza on procedure and mark the achieved predic on performance on the GTEx valida-
on data with respect to the op mized performance metrics. Each trial is associated with a dis nct configura on of
model hyperparameters. For the ssue type and age predic on mul -task model, three metrics, including the weighted
Cohen’s κw for age predic on, Ma hew’s correla on for ssue type classifica on, and the size of the last layer shared
between both tasks (latent size), were jointly op mized. Pareto-efficient solu ons, which are solu ons where none of
the op miza on objec ves can be further improved without compromising another37, are marked in red. (a) Plot of the
pareto front including all three op mized metrics. (b) Plot of the two Pareto-front dimensions represen ng ssue type
and age predic on performance. The black arrow marks the trial whose hyperparameters were selected to train the
ssue type and age predic on model that was then used for transfer learning for cancer survival predic on.

tion), resulting in a single hyperparameter combination that produced the best results on the
validation data. In contrast, for the tissue type and age predictionmulti-taskmodel, hyperpa-
rameters needed to be optimized according to both metrics simultaneously. In addition to
the twometrics for tissue type classification and age prediction, we also optimized the hyper-
parameters of themulti-taskmodel tominimize the size of the last layer shared between tasks
to prevent themodel from just sharing one large, very general layer between tasks, while shift-
ing most of the task-specific knowledge to the remaining, task-specific layers, whose weights
and biases would not be used in transfer learning. When optimizing hyperparameters simul-
taneously, it is not always possible to find a solution (i.e., a set of hyperparameters) that is
optimal according to all metrics (optimization objectives) at the same time. Instead, a solu-
tion is selected that lies on the Pareto front of the optimization problem, which is an image of
the set of all Pareto optimal solutions of the optimization problem37. A solution is said to be
Pareto optimal if there is no other solution that improves one of the optimization objectives
without compromising another. For our tissue type and age predictionmulti-taskmodel, we
selected a hyperparameter combination from the set of Pareto optimal solutions by manual
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inspection of the Pareto front (Figure 6.2) and pre-trained the tissue type and age prediction
model used for transfer learning based on this hyperparameter combination.
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Figure 6.3: Tissue type and age predic on performance of pre-trained models. Shown are the row-normalized confusion
matrices for (a) ssue type predic on of the model trained for ssue type classifica on (c) ssue type predic on of the
model trained for ssue type and age predic on (b) age predic on of the model trained for age predic on, and (d) age
predic on of the model trained for ssue type and age predic on. The rows of the confusion matrices represent ground
truth ssue types and age ranges and columns represent predicted ssue types and age ranges, respec vely.

Figure 6.3 visualizes the prediction performances of all pre-trained neural networks onGTEx
test data that was withheld during training. Prediction performances are presented in the
formof row-normalized confusionmatrices of true (rows) versus predicted (columns) classes.
Subfigure 6.3a compares the true and predicted tissue types of test samples predicted with
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the model pre-trained for tissue type prediction only, while subfigure 6.3b shows true and
predicted tissue types of the model pre-trained for tissue type and age prediction simultane-
ously. Both models yield almost perfect classification accuracy (0.9956 for the tissue type
classificationmodel and 0.9883 for the tissue type and age predictionmodel) andMatthew’s
correlation scores of 0.9953 and 0.9874, respectively, on the test data. Donor age predic-
tion from gene expression data, however, seems to be a more challenging task. Both models
trained for this task show suboptimal prediction accuracy of 0.3707 for themodel trained on
age prediction only and 0.4492 for the multi-task model trained on both age prediction and
tissue type prediction simultaneously. However, the 10-year age brackets predicted in this
task are not independent from each other, but have an ordinal relationship. Therefore, con-
sidering only prediction accuracy to assess model performance may be somewhat misleading
because it fails to reflect the ordinal relationship between classes and treats a false prediction
that deviates from the true age of the tissue donor by only one age bracket in the sameway as a
false prediction that deviates from the true class bymultiple age brackets, which is arguably a
larger error. To circumvent this problem and account for the relationship between age brack-
ets, we also evaluated the test performance based on the weighted Cohen’s κw with quadratic
weights, which has values in the range [−1, 1], with 1 indicating a perfect prediction. This
way, prediction errors were weighted according to the distance between the true class and
the predicted class, providing a more complete picture of model quality than accuracy alone.
The model trained for age prediction alone yielded a weighted Cohen’s κw score of 0.5225
on the GTEx test data, while the model trained on both age and tissue type prediction had
a weighted Cohen’s κw score of 0.6706. Looking at the respective confusion matrices of the
two models (Figure 6.3 c and d), it is noticeable that while many predictions do not lie on
the diagonal of correctly predicted age brackets, there is a distinctive accumulation of predic-
tions close to the diagonal, meaning that for many samples, the predicted age was not exactly
correct, but at least close to the true age bracket.

Using the three pre-trained models for tissue type classification, age prediction, and joint tis-
sue type and age prediction, we explored two different modes of transfer learning for each
of the models and additionally compared the results achieved in these two modes with sur-
vival prediction models that had the same model architecture as the respective pre-trained
model, but were trained on the TCGA data from scratch and without any knowledge trans-
fer (scratch mode). In the first transfer learning mode (transfer), weights and biases of the
first n layers of the network were initialized with the weights and biases of the respective pre-
trainedmodel. The remaining, randomly initialized, layers were then trained for survival pre-
diction, while the transferred layers were frozen and not trained further. In the second trans-
fer learning mode (fine-tune), on the other hand, the first n layers of the neural network were
also initialized with the weights and biases of the respective pre-trainedmodel, but instead of
training only the remaining, randomly initialized layers, all layers were trained further for sur-
vival prediction, using a lower learning rate for the transferred layers than for the randomly
initialized layers to prevent the neural network from ‘forgetting’ the pre-learned knowledge
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Table 6.2: Transfer learning results of models pre-trained on ssue type and age predic on. All models were trained for
cancer survival predic on on TCGA pan-cancer data and had the same model architecture as the pre-trained model of
the respec ve Pre-training task. In the “Transfer” and “Fine-tune” modes (Mode), weights and biases of the first n neural
network layers (Transferred layers) were ini alized with values transferred from models pre-trained on GTEx data for
either ssue type classifica on, age predic on, or joint ssue type and age predic on. In “Transfer” mode, transferred
layers were frozen and only the remaining, randomly ini alized layers were trained and in “Fine-tune” mode, transferred
and randomly ini alized layers were trained with different learning rates. In “Scratch” mode, all layers were randomly
ini alized (no transfer learning) and trained for survival predic on. The last column (Micro-average C-Index (± SEM))
displays the average survival predic on performance (measured as micro-average C-Index across cancer cohorts)±
standard error of the mean (SEM) of 5-fold cross-valida on on the TCGA data. The best average survival predic on
performance for each pre-training task is marked in bold and the overall best performance is addi onally marked with †.

Pre-training task Mode Transferred layers Micro-average C-Index (± SEM)

Tissue type classification

Transfer
3 0.6028± 0.0057
2 0.6170± 0.0042
1 0.6295± 0.0071

Fine-tune
3 0.6481± 0.0089†
2 0.6451± 0.0022
1 0.6362± 0.0082

Scratch 0 0.6295± 0.0087

Age prediction

Transfer 2 0.5482± 0.0068
1 0.6011± 0.0061

Fine-tune 2 0.6430± 0.0056
1 0.6457± 0.0006

Scratch 0 0.6326± 0.0046

Tissue type & age prediction

Transfer
3 0.5467± 0.0058
2 0.5812± 0.0075
1 0.6100± 0.0086

Fine-tune
3 0.6287± 0.0054
2 0.6282± 0.0050
1 0.6322± 0.0048

Scratch 0 0.6013± 0.0058

again by changing the transferred layers to much based on the survival data. For both trans-
fer learning modes (transfer and fine-tune), we evaluated models with different numbers of
transferred layers nwith n between 1 and the number of hidden layers (or shared layers in the
case of the tissue type and age prediction multi-task model).

Overall, a survival predictionmodel with three transferred layers that were pre-trained on the
tissue classification task and were further trained for survival prediction in fine-tune mode
showed the best mean micro-average C-index in a 5-fold cross-validation on the TCGA data
(Table 6.2). Themicro-average C-index was computed by calculating the C-Indices for every
cancer cohort based on the test data of the respective iteration of the cross-validation sepa-
rately and then computing the mean of these C-Indices weighted by the number of test pa-
tients from each cohort. Notably, also for the other two evaluated pre-training tasks of age

118



Chapter 6

prediction and joint tissue type and age prediction, a survival predictionmodel trained infine-
tune mode showed the best prediction performance, respectively, in terms of mean micro-
average C-index, indicating that cancer survival prediction can benefit from transfer learning
on auxiliary tasks such as tissue type classification and age prediction. However, while for
the models pre-trained on tissue type classification, the fine-tuned model with the maximal
number of transferred layers (3) yielded the best survival prediction performance, the best-
performing models pre-trained on one of the other two tasks (age prediction or joint tissue
type and age prediction) only used one transferred layer each, while all consecutive layers
were randomly initialized. Moreover, the improved performance of the best-performing fine-
tuned models of all three pre-training tasks over the respective models trained from scratch
was observable for many, but not all 25 cohorts of the TCGA pan-cancer dataset (Supple-
mentary Figures A.7, A.8, and A.9). This emphasizes the heterogeneity of the different can-
cer types and their different relationships to the pre-training tasks, which can have more or
less relevance for patient survival in a certain cancer type. For example, for bladder urothe-
lial carcinoma (TCGA-BLCA), the neural networks pre-trained for tissue type classification
and fine-tuned for survival prediction on TCGA pan-cancer data performed worse than the
corresponding model that was trained from scratch (Supplementary Figure A.7), while the
fine-tuned models outperformed the scratch model for the same cancer type when the pre-
training task was age prediction or joint tissue type and age prediction (Supplementary Fig-
ures A.8 and A.9, respectively). We speculate that the lack of benefit from transfer learning
from tissue type classification for this cancer type might be caused by the composition of the
pre-training data, which contained only 21 bladder tissue samples (∼ 0.12% of all samples,
cf. Supplementary Figure A.6a) and might thus not represent the molecular characteristics
of bladder cancer comprehensively enough. On the other hand, bladder cancer is a cancer
of old age (median age at diagnosis 73 and median age at death 79 in the U.S.129), which
might explain why survival prediction in this cancer type benefited from pre-training on age
prediction and joint age and tissue type prediction.

Models thatwere initializedwith transferred layers thatwere not further fine-tuned for cancer
survival prediction (transfermode) showed anoverallworse performance (measured asmicro-
average C-Index averaged over 5-fold cross-validation) than the fine-tuned models (fine-tune
mode), which was also consistently worse than the model trained from scratch when more
than one layer was transferred.

Overall, these results suggest that transfer learning from auxiliary tasks such as tissue type
classification or age prediction can be beneficial for the training of cancer survival prediction
models. However, while the pre-training tasks explored in thiswork are to some extent related
to cancer survival, this relationship is not particularly close for all cancer types, such that the
weights and biases learned for the tasks of tissue type classification or age prediction appear to
require further fine-tuning on cancer survival data for the model to unfold its full predictive
capacity for most cancer types.
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6.4 Discussion

Transfer learning is a concept used in machine learning to leverage knowledge learned from
one task to improve the prediction performance of a machine learning model on a different
but related task (cf. 3.2.3). Here, we explored the potential of transfer learning for cancer sur-
vival prediction by pre-training neural networks on different tasks and then transferring the
learned knowledge to predict patient survival. In contrast to the first part of our work, where
we applied the tree ensemble learning method XGBoost31 to predict survival for pan-cancer
patients from TCGA, we switched to neural networks in this part of the work because neu-
ral networks allow for easier knowledge transfer between models than XGBoost, for which
further training on data not seen during initial training is not straightforward because it has
a fixed tree structure and split variables once trained. Neural networks, on the other hand,
have weights (and often biases) associated with each of their layers, which can be trained on
one dataset, and then either all or a subset of the trained layers can be transferred to a new
dataset and optionally be fine-tuned for a new task. In this work, we investigated two differ-
ent transfer learning scenarios for cancer survival prediction.

In the first scenario, we pre-trained a neural network for cancer survival prediction on gene ex-
pression data from TCGA and transferred the learned knowledge to different independent,
smaller single- and pan-cancer datasets. Since in this scenario, both the source and the tar-
get task were to predict cancer survival from gene expression data, we transferred all layers
from the pre-trained neural network to the survival prediction models for the target datasets
and found that for seven of the ten evaluated target cancer datasets, applying the pre-trained
model directly to the target data without fine-tuning the weights and biases of the respective
model further yielded a better prediction performance than fine-tuning the model on the
target dataset or training a model from scratch on the target dataset only. For six out of the
seven datasets in which the pre-trained model yielded the best performance, the fine-tuned
model still performed better than the corresponding model trained from scratch, but worse
than the pre-trainedmodel without fine-tuning. We speculate that a reason for this outcome
might be that the evaluated target datasets are relatively small with only 28 to 174 patients per
cancer type (with 11–52 uncensored patients for the cancer types in which the pre-trained
model showed the best performance) and further fine-tuning the pre-trainedmodel on these
small datasets can easily lead to overfitting on the training data, thus deteriorating the test per-
formance. On the other hand, training from scratch without the involvement of any transfer
learning showed the best performance for only three of the ten evaluated datasets, suggesting
that pre-training survival prediction models on larger (pan-)cancer datasets can be beneficial
for survival prediction on smaller datasets and that the learned knowledge can indeed be suc-
cessfully transferred to other cancer studies in many cases. Nevertheless, we also note that
due to the small size of the explored target datasets, the evaluated patients might not always
be entirely representative of the respective cancer type and the observed results might not be
very robust in some cases. Hence, we think that the results obtained in this transfer learn-
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ing scenario (Table 6.1) should be interpreted with caution and are an indication rather than
proof that survival prediction on small cancer datasets can benefit from transfer learning.

In the second transfer learning scenario, we investigated the effects of transfer learning when
knowledge was transferred between different but related tasks. More specifically, in this sce-
nario, we pre-trained three different neural networks on gene expression data from theGTEx
project, which is not associated with cancer and comprises 17,382 samples and correspond-
ingmeta-data collected frommultiple tissue types of 948deceaseddonors, and transferred the
learned knowledge to predict survival for pan-cancer patients fromTCGA. The pre-training
tasks of the three neural networkswere the prediction of donor age, the classification of tissue
types, or joint age prediction and tissue type classification, respectively. Both age prediction
and tissue type classification are to some extent related to cancer survival prediction and are
thus promising pre-training tasks. On the one hand, aging and cancer are tightly connected
with each other and share some common biological mechanisms17. For instance, the inci-
dence of many cancer types is positively correlated with age50,130 and cancer survival is higher
in younger patients than in older patients141. Additionally, cancer and aging share some key
biological characteristics, including genomic instability, epigenetic alterations, chronic in-
flammation, and dysbiosis, which is characterized by the disruption of bacteria-host commu-
nication of the gutmicrobiome and can contribute to aging and aging-associated diseases like
cancer121. On the other hand, there are tissue- and cell-type-specific differences in tumorigen-
esis and in the organization of oncogenic signaling pathways, such that the signaling output
of oncogenic drivers may vary considerably between tissue types151, suggesting tissue type
classification as another suitable pre-training task. In addition to the two neural networks
trained for age prediction and tissue type classification, respectively, we also trained a third,
multi-task neural network that combined both pre-training tasks and thus learned both types
of knowledge simultaneously, which we thought could potentially be even more beneficial
for transfer learning for cancer survival prediction than learning either task alone. For all
three pre-training tasks, transferring one or multiple layers of the pre-trained neural network
to a new neural network and then further fine-tuning all layers of the new neural network for
survival prediction on pan-cancer TCGA data resulted in improved performance over train-
ing a neural network with the same model architecture from scratch, while without further
fine-tuning the weights and biases of the transferred layers, the model trained from scratch
outperformed the model with transferred layers in most cases.

At first glance, these results seem to conflict with the findings from the first transfer learn-
ing scenario, where knowledge was transferred between different cancer survival datasets and
pre-training without further fine-tuning on the target dataset produced the best results in
most cases. However, we do not believe that this is actually a contradiction, because the two
transfer learning scenarios are different from each other in many aspects. For instance, in
the first scenario, where knowledge learned from survival prediction on one cancer dataset
was transferred to other cancer datasets from different studies, the evaluated target datasets
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were relatively small, making fine-tuning on the target datasets more difficult because mod-
els trained with small sample sizes can easily overfit on the training data, while in the second
transfer learning scenario, where knowledge from auxiliary tasks such as tissue type classi-
fication and age prediction was transferred to cancer survival prediction, the target dataset
was substantially larger, allowing for successful fine-tuning. Furthermore, while in the first
scenario, knowledge was transferred for the same task of predicting cancer survival, making
further fine-tuning less relevant, in the second scenario, knowledge was transferred between
different prediction tasks, making further fine-tuning on the target task of cancer survival
prediction more important.

In summary, we have investigated the effects of transfer learning on cancer survival prediction
and have found that cancer survival prediction models can benefit from knowledge transfer,
both between domains with datasets from different cancer studies and the same task of pre-
dicting cancer survival, but also between different tasks such as tissue type and age predic-
tion and cancer survival prediction. Depending on the similarity of the source and target
tasks (i.e., same task vs. different tasks), but also on the size and other characteristics (e.g., the
cancer type) of the target data, the effects of transfer learning were different. For example,
we observed positive transfer with improved prediction performance between TCGA can-
cer survival prediction and cancer survival prediction on seven out of ten evaluated datasets
(Table 6.1) in the first transfer learning scenario and between all three pre-trainedmodels and
TCGApan-cancer survival prediction in terms ofmicro-average C-Index in the second trans-
fer learning scenario (Table 6.2), but negative transfer with reduced prediction performance
for the remaining three datasets of the first scenario (Table 6.1) and for some individual cancer
types and pre-training tasks (e.g., bladder urothelial carcinoma with tissue type classification
pre-training; Supplementary Figure A.7) in the second scenario.

6.4.1 Limitations
Although our transfer learning experiments showed some promising results, there are a few
limitations to transfer learning for cancer survival prediction. In contrast to some popular
pre-trained models such as ResNet5080, VGG16160, or Xception35, which are commonly
used in transfer learning for image classification and are typically pre-trained on extremely
large datasets withmore than amillion samples, our pre-training datasets were much smaller,
with sample sizes in the thousands (pre-training on TCGA for cancer survival prediction)
or tens of thousands (pre-training on GTEx for tissue type and age prediction). Therefore,
the potential of the investigated pre-training tasks for transfer learning on cancer survival pre-
diction might not have been fully exploited and models pre-trained on larger datasets might
yield even better performance on the pre-training tasks and thus provide more comprehen-
sive knowledge that can be transferred. In addition to the size of the source dataset used for
pre-training, the size of the target dataset can be another limiting factor for transfer learn-
ing. In the first transfer learning scenario, where knowledge was transferred between datasets
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from different studies, but on the same task of cancer survival prediction, the target datasets
had very small sample sizes and the few test samples for each dataset might not have been
entirely representative of the respective cancer type, such that the robustness of the obtained
results might be somewhat limited. This problem of limited robustness of performance esti-
mation due to small sample sizes can be especially pronounced in cancer survival prediction
with Cox loss and C-Index as a performance metric, where prediction performance is judged
by comparing predicted risks and true survival times between samples and for small sample
sizes, outliers can substantially influence the performance estimate. Lastly, the relationship
between the source and target domains can be a limiting factor for the success of transfer
learning. In the first transfer learning scenario, where knowledge was transferred between
different cancer datasets, but for the same task of cancer survival prediction, this relationship
was naturally fairly close. However, in the second transfer learning scenario, knowledge was
transferred between more distinct tasks. Although the two pre-training tasks of tissue type
classification and age prediction are related to the task of cancer survival prediction in that
there are tissue- and cell-type-specific differences in tumorigenesis and in the organization of
oncogenic signaling pathways151, and aging shares some of its hallmarks with cancer121 and
is correlated with cancer incidence50,130, this relationship is not extremely close, limiting the
amount of knowledge that can be effectively transferred between the tasks. Nevertheless, the
observed improvement in prediction performance through both pre-training tasks suggests
that their relationship to cancer survival was still close enough for transfer learning to be suc-
cessful.
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7
Outlook and Conclusion

In this chapter, the results of this dissertation are summarized. Furthermore, an outlook is
given on how challenges of cancer survival prediction on currently available cancer datasets
could be resolved and how cancer survival prediction could be further advanced in the future
if more comprehensive data becomes available. Finally, a brief conclusion is given.

7.1 Summary of the Work
Cancer is one of the leading causes of death worldwide55,57 and the second leading cause
of death in Germany163. Reducing cancer mortality and improving patient survival are the
primary goals of cancer therapy. However, therapy choices are usually influenced by patient
prognosis, thus making cancer survival prediction an important computational task, which
can help to estimate prognosis and quantify individual risk.

Thefirst goal of this dissertationwas todevelop amachine learningmethod for cancer survival
prediction based on molecular patient data and to derive the biological plausibility of this
method. Furthermore, we tried to answer the question of whether cancer survival prediction
can be improved by transferring knowledge frommachine learning models that were trained
on different datasets and tasks.

To achieve the first objective, we developed a survival prediction method that applied XG-
Boost tree ensemble learning to gene expression data of patients from 25 different cancer
types fromTCGA.We investigated two versions of this survival prediction approach, a single-
cohort version in which we trained separate survival prediction models for each cancer type,
and apan-cancer version inwhichwe combinedpatients fromall 25 cancer types intoonepan-
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cancer training dataset to overcome the small sample sizes as an observable shortcoming of
the single-cohort approach and to enable the identification of cross-cohort survival features.
Indeed, pan-cancer training showed improved performance over single-cohort training, sug-
gesting that biological mechanisms affecting survival can be shared across different cancer
types and the machine learning model could benefit from the increased sample size of the
pan-cancer dataset. In addition to gene expression, we also evaluated our pan-cancer survival
prediction approach on other molecular data types, including mutation, copy number vari-
ation, and protein expression data. The results indicated that gene expression was the most
informative data modality, consistent with previous findings on other biomedical prediction
tasks41,176, closely followed by protein expression as the modality that is most directly related
to the phenotype according to the central dogma of molecular biology. The biological plau-
sibility of the gene expression-based approach was investigated by applying network propa-
gation on gene weights derived from the pan-cancer XGBoost survival prediction method.
This way, we inferred a pan-cancer survival network and further analyzed it with respect to
biological pathways andmechanisms, revealing a strong association with the tumormicroen-
vironment, which has been linked to several molecular processes affecting cancer survival.

The second objective of this dissertation was to explore whether cancer survival prediction
can be improved through transfer learning, where knowledge learned from training a ma-
chine learning model on a source domain is transferred to a prediction task on a target do-
main. For this objective, we decided to switch machine learning frameworks from XGBoost
to neural networks. The reason for this change was that, to the best of our knowledge, there
is no method implementing transfer learning for XGBoost that is suited for survival predic-
tion. On the other hand, neural networks are well-suited for transfer learning due to their
multi-layered architecture. To understand the effect of transfer learning on cancer survival
prediction, we investigated twodifferent transfer learning scenarios based onneural networks.
In the first scenario, we pre-trained a neural network onpan-cancer gene expression data from
TCGAand transferred the learnedweights andbiases to predict cancer survival on smaller, in-
dependent datasets. Applying the pre-trained neural network directly to the respective target
dataset yielded thebest performance for sevenout of ten evaluated small cancer datasets. Con-
versely, training from scratch without any transfer learning performed better for only three
of the small cancer datasets, confirming that pre-training can have a positive effect on cancer
survival prediction. In the second transfer learning scenario, we took the transfer of knowl-
edge a step further and investigatedwhether survival prediction performance can also benefit
from knowledge learned in different but related prediction tasks. We pre-trained three differ-
ent neural networks on gene expression data from theGTEx project, which contains samples
frommultiple tissues of deceased donors. More specifically, we trained one of the neural net-
works on the task of tissue type classification, one on age prediction, and one on the dual task
of simultaneous tissue type classification and age prediction. Our results showed that knowl-
edge from all three models could be successfully transferred to cancer survival prediction,
with neural networks initialized with pre-trained weights and biases and further fine-tuned
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for cancer survival prediction consistently performing the best.

7.2 Outlook
Both aspects of cancer survival prediction investigated in this dissertation showed encour-
aging results. However, there are still some unresolved challenges regarding cancer survival
prediction and room for further advancement.

First and foremost, machine learning approaches like the ones applied in this work to pre-
dict cancer survival rely on abundant data to learn from. However, currently available can-
cer survival datasets like the TCGA dataset have limited numbers of patients (ranging from
less than 100 to∼1,000 patients per cancer type and less than 10,000 patients in total). We
suspect that this relatively small number of patients available for most cancer types is a lim-
iting factor for model performance and that our proposed survival prediction approaches
would benefit from more training data. This hypothesis is supported by our findings from
survival prediction with XGBoost, where we observed that the increased number of training
samples in the pan-cancer approach as compared to single-cohort training could improve sur-
vival prediction performance for most cancer types (Figure 5.6) and pan-cancer prediction
performance generally deteriorated when model training was conducted on randomly sam-
pled subsets of the data (Supplementary Figure A.2). Additionally, a larger number of train-
ing samples could mitigate the “curse of dimensionality”15,111, a phenomenon commonly
encountered in machine learning and often responsible for overfitting caused by a surplus
of features over samples (e.g.,<10,000 patients, but∼60,000 gene expression values per pa-
tient in TCGA). Therefore, if either the TCGA dataset is expanded with additional patients
or larger similar datasets become available in the future, it would beworthwhile to re-evaluate
our proposed cancer survival prediction approaches incorporating this additional data.

Undoubtedly, cancer treatment has a major effect on patient survival. However, treatment
information is incomplete for all 25 analyzed TCGA cancer cohorts and is available for only
a small proportion of patients in many cohorts (Supplementary Figure A.1). Overall, treat-
ment information (for either drug treatment, radiation treatment, or both) is available for
only 48.6% of TCGA patients (3,911 of 8,045 patients with available survival and gene ex-
pression data for GDC data release v.32.0). This lack of comprehensive treatment data and
the diversity of treatment regimens (e.g. in terms of radiation therapy administration, admin-
istered drugs or drug combinations, drug or radiation doses, and frequency and duration of
drug or radiation therapy)makes it extremely difficult to include treatment information into
any survival prediction model that is trained on this data. In fact, if treatment information
was to be considered in the survival prediction model, one would have to discard more than
half of the cancer patients due to lack of this information. However, less training data would
likely result in degraded model performance, as discussed above and observed for example in
Supplementary Figure A.2. In addition, the diversity of treatment regimens and lack of drug
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naming conventions (some drugs are namedby theirmolecule names, while others are named
by their commercial names, and additionally some of the drug names in the TCGAdata con-
tain misspellings127) would make it extremely difficult for any machine learning model to
extract meaningful information from the treatment data, given the relatively small number
of available patients, and would require elaborate manual feature engineering to standardize
drug names and make treatments comparable across patients. Taking all of this into consid-
eration, we believe that more complete and consistent treatment data is needed and has the
potential to further improve cancer survival prediction. For future cancer studies, we suggest
that standardized treatment information should be routinely recorded andmade available in
addition to clinical and molecular data. If such data becomes available to a greater extent
in the future, it would also be worth exploring the incorporation of auxiliary knowledge on
drug sensitivity, for example learned from abundant drug response datasets such as GDSC
or CCLE, in addition to the treatment information. This could enable themachine learning
method to better model the effects of different drugs on cancer survival, which would likely
further improve prediction performance.

In addition, competing risks can pose a challenge to cancer survival prediction. Competing
risks are death events that preclude the event of interest10, which is death from cancer in our
case. Cancer studies such as TCGAoften record the overall survival of cancer patients, mean-
ing the time from entry of the patient into the study until their death. However, especially for
older patients, it is often questionable if the recorded death is due to the diagnosed cancer or
due to a competing risk such as another co-morbidity or simply old age. Nevertheless, infor-
mation on death causes is often not recorded. When amachine learningmodel is now trained
for survival prediction with overall survival as the target variable, the training procedure can-
not distinguish between causes of death and may, for example, penalize a low predicted risk
for a patient who does not have an aggressive cancer but has died of another cause unrelated
to the cancer in the same way as an incorrect prediction, where a patient with an aggressive
cancer is predicted to have a low risk or a patient with a less aggressive cancer has a high pre-
dicted risk. This, in turn, makes it more difficult for themodel to learn patterns that are truly
related to cancer survival and can degrade the overall prediction performance of the trained
model, as we also found when we compared the performance of our XGBoost pan-cancer
survival prediction model including all recorded survival times with a model where we con-
sidered dead patients with recorded “tumor free” tumor status as censored instead of dead
(Figure 5.22). In this analysis, we observed that regarding tumor-free patients as censored
significantly improved prediction performance for 13 of the 25 TCGA cohorts. However, a
“tumor free” tumor status does not guarantee that a patient has died from a competing risk
rather than from cancer, since the cancermay have recurred at a later time. Thus, considering
the survival times of all tumor-free patients as censored is not a satisfactory solution to the
problem of competing risks and may also result in the loss of valuable survival information.
Instead, if in the future the cause of death would be recorded in addition to the overall sur-
vival time for all ormost deceased patients, we think that explicitlymodeling these competing
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risks in the survival predictionmodel could reduce the confounding effect of competing risks
and would be beneficial for the prediction performance.

All three challenges described above are related to different aspects of the training data that
is used for cancer survival prediction. Therefore, they are not easily resolved by improving
the machine learning methods used for survival prediction, but could be overcome through
more comprehensive and complete data, which might become available in the future.

Lastly, as brieflymentioned inChapter 6, the effect and success of transfer learningdepends at
least partly on the similarity between the source and target domains. Therefore, we suggest
that in future works, in addition to tissue type classification and age prediction, other pre-
training tasks and datasets that are potentially even more closely related to cancer survival
prediction could be evaluated for transfer learning.

7.3 Conclusion
To summarize, this dissertation has investigated two different aspects of cancer survival pre-
diction, with the first part focusing on biological plausibility with respect to the underlying
molecular mechanisms, and the second part highlighting avenues for further improvement
of cancer survival prediction through transfer learning. In the first part, we have introduced
amachine learning approach for pan-cancer survival prediction that combines XGBoost tree
ensemble learning with network propagation to derive a pan-cancer survival network. This
pan-cancer survival network is significantly enriched for the TME, confirming the biologi-
cal plausibility of our approach and highlighting the important role of the TME in cancer
prognosis. In addition, we have investigated whether transfer learning can improve the per-
formance of survival prediction neural networks and found that cancer survival prediction
can indeed benefit from the transfer of knowledge, not only between datasets from different
cancer studies, but also from pre-training on different auxiliary tasks such as tissue type or
age prediction. However, we have also observed that the beneficial effect of transfer learning
may depend on the size and characteristics of the target data, as well as the similarity between
the source and target tasks.
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Figure A.3: Addi onal Kaplan-Meier plots for IGF2BP3, IL1RAP, PIK3R3, and CISH. The Kaplan-Meier plots shown here
were obtained from OncoLnc 6 and correspond to the four (KIRP, KIRC, LUAD, and PAAD), two (LGG and PAAD), two
(LGG and HNSC), and four (LUAD, LIHC, KIRP, and KIRC) addi onal cohorts that were not shown in Figure 5.10, but also
show significant survival performance (FDR < 0.05 in Cox regression) in the OncoLnc analyses for IGF2BP3, IL1RAP,
PIK3R3, and CISH, respec vely. For grouping the pa ents into two groups the 50th percen le of gene expression was
selected as a cutoff in all cases. This figure was published in170.
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Figure A.4: FPKM vs. TPM survival predic on performance. Comparison of the predic on performance of the pan-
cancer XGBoost method trained on FPKM-normalized gene expression data (XGB[FPKM_RNA]) and TPM-normalized
gene expression data (XGB[TPM_RNA]). Performance is depicted by C-Index boxplots over 100 replica ons of model
training. Mean C-Indices were compared with Wilcoxon’s unpaired rank-sum test and significance levels are defined as
ns : p > 0.05, ∗ : p ≤ 0.05, ∗∗ : p ≤ 0.01, ∗ ∗ ∗ : p ≤ 0.001, ∗ ∗ ∗∗ : p ≤ 0.0001.
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Figure A.5: Batch effects in methyla on data. UMAP of methyla on beta values for TCGA-COAD. Blue marks show
samples measured by Human Methyla on 27 array and red marks show samples measured by HumanMethyla on 450
array. For genera ng the UMAP, only methyla on sites measured by both arrays were considered and methyla on
sites with missing values were dropped. Methyla on beta values were standardized to zero mean and unit variance,
and principal component analysis (PCA) was performed to reduce the dimensionality to 50 dimensions before applying
UMAP.
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Figure A.6: GTEx ssue type and age distribu ons. (a) Distribu on of ssue types in the GTEx dataset. (b) Distribu on
of 10-year age brackets in the GTEx dataset.
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Figure A.7: Survival predic on performance of the neural network pre-trained for ssue type classifica on. Performance
is depicted by C-Index boxplots for 5-fold cross-valida on on TCGA.
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Figure A.8: Survival predic on performance of the neural network pre-trained for age predic on. Performance is de-
picted by C-Index boxplots for 5-fold cross-valida on on TCGA.
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Figure A.9: Survival predic on performance of the neural network pre-trained for ssue type and age predic on. Perfor-
mance is depicted by C-Index boxplots for 5-fold cross-valida on on TCGA.
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Table B.1: Summary of TCGA cohorts used for pan-cancer survival predic on and survival network iden fica on (from
GDC data releases v22.0 and v24.0). Number of Pan-Cancer Features refers to the number of pan-cancer gene expression
features that were also among the important features in single-cohort training for the respec ve cohort in XGBoost
survival predic on. IQR indicates the interquar le range, which measures how much the data is spread. Informa on on
the organ system of each cancer cohort was obtained from133. More detailed informa on on the different cancer types
can be found at https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/t
cga/studied-cancers. This table was published in 170.

Cohort
Abbre-
viation

Cohort
Name

Organ Sys-
tem

Number
of Pan-
cancer
Fea-
tures

Number
of Pa-
tients

Number
of
Uncen-
sored
Pa-
tients

Median
Age
(IQR)

Gender

TCGA-
ACC

Adreno-
cortical
carcinoma

Endocrine 2027 79 28 49.0
(24.50)

48
female,
31
male

TCGA-
BLCA

Bladder uro-
thelial carci-
noma

Urologic 4814 401 176 68.0
(16.00)

104
female,
297
male
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TCGA-
BRCA

Breast
invasive
carcinoma

Gyneco-
logic

4864 1068 149 58.0
(18.25)

1056
female,
12
male

TCGA-
CESC

Cervical
squamous
cell car-
cinoma
and endo-
cervical
adenocarci-
noma

Gyneco-
logic

4359 291 72 46.0
(18.00)

291 fe-
male

TCGA-
COAD

Colon
adenocarci-
noma

Gastrointes-
tinal

4719 433 95 68.0
(19.00)

200
female,
233
male

TCGA-
ESCA

Esophageal
carcinoma

Gastrointes-
tinal

4048 160 63 60.0
(19.00)

23
female,
137
male

TCGA-
GBM

Glioblas-
toma
multiforme

Central ner-
vous system

4351 151 122 60.0
(18.00)

54
female,
97
male

TCGA-
HNSC

Head and
neck squa-
mous cell
carcinoma

Head and
neck

5157 498 217 61.0
(16.00)

132
female,
366
male

TCGA-
KIRC

Kidney re-
nal clear cell
carcinoma

Urologic 4605 526 171 60.0
(17.00)

183
female,
343
male

TCGA-
KIRP

Kidney
renal pap-
illary cell
carcinoma

Urologic 3540 283 44 61.0
(17.00)

75
female,
208
male
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TCGA-
LAML

Acute
myeloid
leukemia

Hemato-
logic and
lymphatic
malignan-
cies

3827 130 78 55.5
(24.75)

60
female,
70
male

TCGA-
LGG

Brain
lower grade
glioma

Central ner-
vous system

3999 505 125 41.0
(20.00)

226
female,
279
male

TCGA-
LIHC

Liver hepa-
tocellular
carcinoma

Gastrointes-
tinal

4678 364 130 61.0
(17.25)

119
female,
245
male

TCGA-
LUAD

Lung adeno-
carcinoma

Thoracic 4984 490 179 66.0
(13.00)

266
female,
224
male

TCGA-
LUSC

Lung squa-
mous cell
carcinoma

Thoracic 5391 488 211 68.0
(11.00)

127
female,
361
male

TCGA-
MESO

Mesothe-
lioma

Thoracic 3731 84 72 64.0
(12.00)

15
female,
69
male

TCGA-
OV

Ovarian
serous
cystadeno-
carcinoma

Gyneco-
logic

4696 372 229 59.0
(17.00)

372 fe-
male

TCGA-
PAAD

Pancreatic
adenocarci-
noma

Gastrointes-
tinal

4489 176 92 65.0
(16.00)

80
female,
96
male

TCGA-
READ

Rectum
adenocarci-
noma

Gastrointes-
tinal

3137 156 26 65.0
(15.00)

68
female,
88
male
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TCGA-
SARC

Sarcoma Soft tissue 4503 256 98 60.5
(17.25)

139
female,
117
male

TCGA-
SKCM

Skin cu-
taneous
melanoma

Melanocytic 3116 98 28 63.5
(18.75)

40
female,
58
male

TCGA-
STAD

Stomach
adenocarci-
noma

Gastrointes-
tinal

4864 344 143 67.0
(14.00)

123
female,
221
male

TCGA-
UCEC

Uterine
corpus
endometrial
carcinoma

Gyneco-
logic

4723 537 90 64.0
(14.00)

537 fe-
male

TCGA-
UCS

Uterine
carcinosar-
coma

Soft tissue 3436 54 33 68.5
(13.50)

54
female

TCGA-
UVM

Uveal mela-
noma

Melanocytic 2062 80 23 61.5
(23.25)

35
female,
45
male

TCGA-
CHOL

Cholangio-
carcinoma

Gastrointes-
tinal

N/A 36 18 66.5
(15.50)

20
female,
16
male

TCGA-
DLBC

Lymphoid
neoplasm
diffuse
large B-cell
lymphoma

Hemato-
logic and
lymphatic
malignan-
cies

N/A 47 9 58.0
(21.00)

26
female,
21
male

TCGA-
KICH

Kidney
chromo-
phobe

Urologic N/A 64 9 50.0
(19.25)

26
female,
38
male
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TCGA-
PCPG

Pheochro-
mocytoma
and paragan-
glioma

Neuralcrest
derived

N/A 178 6 46.0
(23.50)

101
female,
77
male

TCGA-
PRAD

Prostate
adenocarci-
noma

Urologic N/A 493 10 61.0
(10.00)

493
male

TCGA-
TGCT

Testicular
germ cell
tumors

Urologic N/A 134 4 31.0
(11.00)

134
male

TCGA-
THCA

Thyroid car-
cinoma

Endocrine N/A 501 16 46.0
(23.00)

366
female,
135
male

TCGA-
THYM

Thymoma Hemato-
logic and
lymphatic
malignan-
cies

N/A 118 9 59.5
(20.50)

56
female,
62
male

Table B.2: The 103 survival network genes. Each of the 103 module genes iden fied in the network propaga on and
module iden fica on steps is annotated with its original feature importance weight derived from pan-cancer XGBoost
training, the weight and corresponding p-value a er network propaga on, and the type of the gene (seed gene, other
pan-cancer feature, or inferred during network propaga on). † a er a gene name indicates known cancer genes and ‡
indicates candidate cancer genes according to NCG 6.0144. This table was published in 170.

Gene Original
Feature
Importance

Network
Propagation
Weight

Network
Propagation
P-value

Type of Gene

BCHE 282.92 227.86 0.01 Seed gene
TMEM30B 272.23 221.27 0.01 Seed gene
INS 235.63 206.38 0.01 Seed gene
TREM1 231.79 185.75 0.01 Seed gene
ADRA1D 210.45 168.53 0.01 Seed gene
SEMA7A 190.95 154.80 0.01 Seed gene
CDH10† 177.00 143.35 0.01 Seed gene
SPP1 164.45 136.74 0.01 Seed gene
APP 50.89 135.16 0.01 Pan-cancer feature
BTLA‡ 158.03 127.95 0.01 Seed gene
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SCG5 153.32 123.76 0.01 Seed gene
PLAU 112.53 95.14 0.01 Pan-cancer feature
NCAM1 0.00 77.62 0.01 Inferred gene
RBL2 0.00 72.48 0.01 Inferred gene
TEAD1 10.50 71.72 0.01 Pan-cancer feature
PLAUR 2.27 65.34 0.01 Pan-cancer feature
FYN ‡ 1.53 56.14 0.01 Pan-cancer feature
FBLN1 0.00 54.58 0.01 Inferred gene
A2M 0.00 52.55 0.01 Inferred gene
COLQ 0.00 45.69 0.01 Inferred gene
CDK5 4.38 43.72 0.01 Pan-cancer feature
SGCD 53.26 43.37 0.01 Pan-cancer feature
PLA2G4A 5.90 42.16 0.01 Pan-cancer feature
CAV1 0.00 40.55 0.01 Inferred gene
TP63† 0.00 40.54 0.01 Inferred gene
TMEM25 42.74 38.56 0.01 Pan-cancer feature
ITGA3 39.06 33.29 0.01 Pan-cancer feature
PLG 0.00 32.80 0.01 Inferred gene
SFN 0.00 32.00 0.01 Inferred gene
TLR4‡ 0.00 31.18 0.01 Inferred gene
ATP8B2‡ 0.00 29.59 0.01 Inferred gene
FKBP1A 15.99 29.09 0.01 Pan-cancer feature
EPHA2‡ 7.48 28.90 0.01 Pan-cancer feature
DCTN1† 0.00 28.64 0.01 Inferred gene
MMP14 7.40 28.13 0.01 Pan-cancer feature
PCSK2 1.78 27.47 0.01 Pan-cancer feature
ERBB4† 0.00 26.77 0.01 Inferred gene
MMP3 4.19 26.65 0.01 Pan-cancer feature
TNFRSF14† 0.00 23.19 0.01 Inferred gene
FGF2‡ 11.51 23.13 0.01 Pan-cancer feature
LUZP1 0.00 22.71 0.01 Inferred gene
CDH6 8.46 22.23 0.01 Pan-cancer feature
AGL 0.00 22.13 0.01 Inferred gene
PRMT6 0.00 21.52 0.01 Inferred gene
IGSF21 18.58 21.05 0.01 Pan-cancer feature
GLYR1‡ 0.00 20.84 0.01 Inferred gene
MMP1 13.14 20.74 0.01 Pan-cancer feature
TGFBR2† 0.00 20.68 0.01 Inferred gene
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JAK2† 0.00 20.39 0.01 Inferred gene
LRP2‡ 8.62 19.98 0.01 Pan-cancer feature
PICALM† 0.00 19.34 0.01 Inferred gene
RAB27B 19.94 19.27 0.01 Pan-cancer feature
ADRA1A‡ 0.00 18.64 0.01 Inferred gene
RPS6KA3‡ 0.00 18.51 0.01 Inferred gene
EIF4G3 0.00 18.05 0.01 Inferred gene
DPYSL3 10.86 18.05 0.01 Pan-cancer feature
HSF2BP 0.00 17.93 0.01 Inferred gene
IGF2‡ 0.00 17.24 0.01 Inferred gene
GNAI3 0.00 17.14 0.01 Inferred gene
COL17A1 2.45 16.91 0.01 Pan-cancer feature
SERPINE1 558.51 451.64 0.02 Seed gene
VTN 397.78 327.91 0.02 Seed gene
LARGE2 365.16 292.92 0.02 Seed gene
TGFB1 339.00 282.17 0.02 Seed gene
PAEP 256.85 205.82 0.02 Seed gene
CLDN4 240.49 192.73 0.02 Seed gene
IGFBP1 221.18 177.40 0.02 Seed gene
ADAM9 170.62 138.16 0.02 Seed gene
DPYSL5 161.96 129.96 0.02 Seed gene
FLNC 488.05 399.73 0.03 Seed gene
UNC13D 207.33 166.16 0.04 Seed gene
PTX3 405.79 326.90 0.05 Seed gene
PIK3R3 870.79 701.96 0.06 Seed gene
DKK1 328.54 262.89 0.06 Seed gene
MLC1 243.16 194.63 0.06 Seed gene
TIMP4 218.82 175.46 0.07 Seed gene
EYA4‡ 203.69 162.99 0.10 Seed gene
S100A10 164.35 134.44 0.12 Seed gene
ST8SIA3 476.24 381.05 0.13 Seed gene
ARHGEF3 157.88 126.33 0.14 Seed gene
LAD1 278.45 222.81 0.15 Seed gene
PLEC‡ 281.59 229.50 0.16 Seed gene
DLG3‡ 376.41 303.90 0.17 Seed gene
HJURP 348.03 278.72 0.18 Seed gene
BARX1 454.28 363.58 0.19 Seed gene
CENPA 362.38 298.74 0.19 Seed gene
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BCAT1 244.63 195.73 0.21 Seed gene
VGLL2 383.43 306.77 0.23 Seed gene
CCDC88C 167.97 134.40 0.29 Seed gene
IRF6‡ 432.21 345.81 0.32 Seed gene
PLA2G5 209.22 167.38 0.35 Seed gene
FRK 155.23 124.26 0.40 Seed gene
KIF2C 158.16 128.35 0.41 Seed gene
CDK6† 173.38 142.07 0.46 Seed gene
LBX1 438.19 350.56 0.51 Seed gene
CDK5R2 238.29 190.64 0.52 Seed gene
ZNF557 193.75 155.01 0.55 Seed gene
CDC20 441.45 358.13 0.83 Seed gene
IDO1 377.05 301.65 0.86 Seed gene
RPS6KA5 152.61 123.09 0.87 Seed gene
PGR‡ 246.63 198.55 0.99 Seed gene
IGF2BP2† 241.03 193.01 0.99 Seed gene
ESR1† 240.89 215.59 1.00 Seed gene

Table B.3: Over-represented pathways (p < 0.001) computed with QIAGEN Ingenuity Pathway Analysis (IPA)104. Path-
way: annotated pathway name;−log10(p-value): − log10 of enrichment p-value computed with Fisher’s exact test;
−log10(q-value): − log10 of Benjamini-Hochberg (cf. Sec on 3.5.2) adjusted p-value; Ra o: number of genes in the
survival network that map to the respec ve pathway divided by the overall number of genes in the pathway;Molecules:
survival network genes that overlap with the pathway. This table was partly published in170.

Ingenuity canoni-
cal pathway

−log10
(p-value)

−log10
(q-value)

Ratio Molecules

Tumor microenvi-
ronment pathway

9.34 6.48 6.25 × 10−2 FGF2, IDO1, IGF2,
JAK2, MMP1,
MMP14, MMP3,
PIK3R3, PLAU,
SPP1, TGFB1
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Glucocorticoid
receptor signaling

8.60 6.17 3.25 × 10−2 A2M, CAV1, ESR1,
JAK2, MMP1,
MMP3, PGR,
PIK3R3, PLA2G4A,
PLA2G5, PLAU,
RPS6KA5, SER-
PINE1, TGFB1,
TGFBR2

Role of tissue factor
in cancer

8.55 6.17 7.76 × 10−2 FRK, FYN,
ITGA3, JAK2,
MMP1, PIK3R3,
PLAUR, RPS6KA3,
RPS6KA5

Hepatic fibrosis sig-
naling pathway

6.85 4.61 3.17 × 10−2 FGF2, GNAI3,
INS, ITGA3, JAK2,
MMP1, PIK3R3,
SERPINE1, SPP1,
TGFB1, TGFBR2,
TLR4

Hepatic fibro-
sis/Hepatic stellate
cell activation

6.77 4.61 4.84 × 10−2 A2M, COL17A1,
FGF2, IGF2,MMP1,
SERPINE1, TGFB1,
TGFBR2, TLR4

Coagulation system 6.31 4.23 1.43 × 10−1 A2M, PLAU,
PLAUR, PLG,
SERPINE1

HOTAIR regula-
tory pathway

6.18 4.20 5.00 × 10−2 ESR1, MMP1,
MMP14, MMP3,
PIK3R3, SPP1,
TGFB1, TLR4

Osteoarthritis path-
way

6.15 4.20 4.09 × 10−2 DKK1, FGF2,
ITGA3, MMP1,
MMP3, SPP1,
TGFB1, TGFBR2,
TLR4

Growth hormone
signaling

6.08 4.20 8.45 × 10−2 A2M, IGF2, JAK2,
PIK3R3, RPS6KA3,
RPS6KA5
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Inhibition ofmatrix
metalloproteases

6.06 4.20 1.28 × 10−1 A2M, MMP1,
MMP14, MMP3,
TIMP4

Glioma invasiveness
signaling

6.01 4.19 8.22 × 10−2 PIK3R3, PLAU,
PLAUR, PLG,
TIMP4,VTN

Reelin signaling in
neurons

5.87 4.09 5.74 × 10−2 APP, ARHGEF3,
CDK5, FRK, FYN,
ITGA3, PIK3R3

Axonal Guidance
signaling

5.62 3.91 2.43 × 10−2 ADAM9, CDK5,
DPYSL5, EPHA2,
FYN, GNAI3,
ITGA3, MMP1,
MMP14, MMP3,
PIK3R3, SEMA7A

Estrogen receptor
signaling

5.62 3.91 3.05 × 10−2 CAV1, ESR1,
GNAI3, IGF2,
JAK2, MMP1,
MMP14, MMP3,
PGR, PIK3R3

Leukocyte extrava-
sation signaling

5.57 3.89 4.15 × 10−2 CLDN4, GNAI3,
ITGA3, MMP1,
MMP14, MMP3,
PIK3R3, TIMP4

HIF1A signaling 5.37 3.72 3.90 × 10−2 FGF2, IGF2,MMP1,
MMP14, MMP3,
PIK3R3, SERPINE1,
TGFB1

Semaphorin signal-
ing in neurons

5.12 3.49 8.33 × 10−2 CDK5, DPYSL3,
DPYSL5, FYN,
SEMA7A

Neuroinflammation
signaling pathway

5.05 3.45 3.00 × 10−2 APP, JAK2, MMP3,
PIK3R3, PLA2G4A,
PLA2G5, TGFB1,
TGFBR2, TLR4
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Molecular mecha-
nisms of cancer

4.87 3.30 2.50 × 10−2 ARHGEF3, CDK5,
CDK6, FYN,GNAI3,
ITGA3, JAK2,
PIK3R3, TGFB1,
TGFBR2

Tec kinase signaling 4.86 3.30 4.05 × 10−2 FRK, FYN, GNAI3,
ITGA3, JAK2,
PIK3R3, TLR4

p38 MAPK signal-
ing

4.80 3.26 5.08 × 10−2 PLA2G4A,
PLA2G5, RPS6KA3,
RPS6KA5, TGFB1,
TGFBR2

Colorectal cancer
metastasis signaling

4.71 3.20 3.16 × 10−2 JAK2, MMP1,
MMP14, MMP3,
PIK3R3, TGFB1,
TGFBR2, TLR4

Caveolar-mediated
endocytosis signal-
ing

4.70 3.20 6.85 × 10−2 CAV1, FLNC, FYN,
INS, ITGA3

Atherosclerosis sig-
naling

4.61 3.13 4.72 × 10−2 MMP1, MMP3,
PLA2G4A, PLA2G5,
TGFB1, TNFRSF14

ERK/MAPK
signaling

4.43 2.97 3.47 × 10−2 ESR1, FYN, ITGA3,
PIK3R3, PLA2G4A,
PLA2G5,RPS6KA5

Semaphorin neu-
ronal repulsive
signaling pathway

4.39 2.95 4.32 × 10−2 CDK5, DPYSL3,
DPYSL5, FYN,
ITGA3, PIK3R3

Oncostatin M sig-
naling

4.37 2.94 9.30 × 10−2 JAK2, MMP1,
MMP3, PLAU

Role of osteoblasts,
osteoclasts and
Chondrocytes
in rheumatoid
arthritis

4.22 2.81 3.21 × 10−2 DKK1, MMP1,
MMP14, MMP3,
PIK3R3, SPP1,
TGFB1

Spermmotility 4.16 2.76 3.14 × 10−2 EPHA2, ERBB4,
FRK, FYN, JAK2,
PLA2G4A, PLA2G5
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Bladder cancer sig-
naling

4.10 2.72 5.15 × 10−2 FGF2, MMP1,
MMP14, MMP3,
RPS6KA5

Cardiac hyper-
trophy signaling
(enhanced)

4.07 2.70 2.01 × 10−2 ADRA1A,
ADRA1D, FGF2,
GNAI3, ITGA3,
JAK2, PIK3R3,
RPS6KA5, TGFB1,
TGFBR2

Role of
macrophages,
fibroblasts and
endothelial cells
in rheumatoid
arthritis

4.05 2.70 2.55 × 10−2 DKK1, FGF2, JAK2,
MMP1, MMP3,
PIK3R3, TGFB1,
TLR4

Chronic myeloid
leukemia signaling

3.98 2.64 4.85 × 10−2 CDK6, PIK3R3,
RBL2, TGFB1,
TGFBR2

Insulin secretion sig-
naling pathway

3.91 2.58 2.87 × 10−2 EIF4G3, FYN, INS,
JAK2, PCSK2,
PIK3R3,RPS6KA5

CNTF signaling 3.89 2.58 7.02 × 10−2 JAK2, PIK3R3,
RPS6KA3,
RPS6KA5

T cell exhaustion
signaling pathway

3.84 2.54 3.43 × 10−2 BTLA, JAK2,
PIK3R3, TGFB1,
TGFBR2, TN-
FRSF14

Regulation of the
epithelial mesenchy-
mal transition by
growth factors
pathway

3.67 2.38 3.19 × 10−2 FGF2, JAK2,MMP1,
PIK3R3, TGFB1,
TGFBR2

RhoGDI signaling 3.66 2.38 3.17 × 10−2 ARHGEF3, CDH10,
CDH6, ESR1,
GNAI3, ITGA3

IL-15 production 3.65 2.38 4.13 × 10−2 EPHA2, ERBB4,
FRK, FYN, JAK2
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Agranulocyte adhe-
sion and diapedesis

3.61 2.35 3.11 × 10−2 CLDN4, GNAI3,
ITGA3, MMP1,
MMP14,MMP3

Senescence pathway 3.60 2.35 2.55 × 10−2 CDK6, PIK3R3,
RBL2, RPS6KA5,
SERPINE1, TGFB1,
TGFBR2

Role of MAPK sig-
naling in inhibiting
the pathogenesis of
influenza

3.43 2.20 5.33 × 10−2 PLA2G4A, PLA2G5,
RPS6KA3, TLR4

mTOR signaling 3.41 2.19 2.86 × 10−2 EIF4G3, FKBP1A,
INS, PIK3R3,
RPS6KA3,
RPS6KA5

Inhibition of angio-
genesis by TSP1

3.32 2.12 8.82 × 10−2 FYN, TGFB1,
TGFBR2

MIF-mediated
glucocorticoid
regulation

3.32 2.12 8.82 × 10−2 PLA2G4A, PLA2G5,
TLR4

Necroptosis signal-
ing pathway

3.13 1.93 3.18 × 10−2 FKBP1A, PLA2G4A,
PLA2G5, RBL2,
TLR4

Cardiac hypertro-
phy signaling

3.11 1.92 2.50 × 10−2 ADRA1A,
ADRA1D, GNAI3,
PIK3R3, TGFB1,
TGFBR2

MIF regulation of
innate immunity

3.04 1.86 7.14 × 10−2 PLA2G4A, PLA2G5,
TLR4

Table B.4: Top 15 cancer-relevant upstream regulators computed with QIAGEN Ingenuity Pathway Analysis (IPA)104.
Upstream regulator: gene name of an annotated cancer driver gene or a poten al cancer driver gene144 as an upstream
regulator of the pan-cancer survival network;Molecule type: molecule type of the upstream regulator; P-value of overlap:
Fisher test p-value for over-representa on of survival network genes in the target set of the upstream regulator; Target
molecules in dataset: survival network genes downstream of the upstream regulator. This table was published in170.

Upstream
Regula-
tor

Molecule
Type

P-value of
Overlap

Target Molecules in Dataset
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JUN Transcription
regulator

1.20E-13 A2M, APP, CAV1, CDC20, DKK1,
FGF2, FLNC, IGFBP1, MMP1, MMP3,
NCAM1, PGR, PLA2G4A, PLAU,
PLAUR, PTX3, S100A10, SERPINE1,
SPP1, TGFB1

TNF Cytokine 1.88E-12 A2M, APP, CAV1, CLDN4, COLQ,
DKK1, EPHA2, ESR1, FGF2, FYN,
GNAI3, IDO1, IGF2, IGFBP1, INS,
LAD1, MMP1, MMP14, MMP3,
NCAM1, PLA2G4A, PLA2G5, PLAU,
PLAUR, PTX3, S100A10, SERPINE1,
SPP1, TGFB1, TGFBR2, TIMP4, TLR4,
TP63, TREM1

IL1B Cytokine 7.12E-12 A2M, APP, ESR1, FGF2, IDO1, IGFBP1,
INS, ITGA3, MMP1, MMP14, MMP3,
PCSK2, PGR, PLA2G4A, PLA2G5,
PLAU, PTX3, S100A10, SERPINE1,
SPP1, TGFB1, TGFBR2, TIMP4, TLR4,
TREM1

TP53 Transcription
regulator

1.63E-11 A2M, ADRA1A, APP, BCAT1, CAV1,
CDC20,CDH10,CENPA,DKK1,EIF4G3,
EPHA2, ESR1, EYA4, FGF2, FKBP1A,
FYN, HJURP, IGF2, IGF2BP2, INS,
MMP1, MMP3, PGR, PIK3R3, PLAU,
PLAUR, RBL2, SERPINE1, SFN, SPP1,
TGFB1, TGFBR2, TP63

IL1A Cytokine 1.37E-10 APP, FGF2, MMP1, MMP14, MMP3,
PLA2G4A, PLAU, PTX3,RBL2, S100A10,
SERPINE1, SPP1, TGFB1

FGF2 Growth factor 1.28E-09 AGL, CAV1, DKK1, FGF2, IGF2, ITGA3,
MMP1,MMP3, PCSK2, PLAU, PLAUR,
S100A10, SERPINE1, SPP1, TGFB1

MAP3K1 Kinase 5.30E-09 MMP3, PGR, PLA2G4A, PLAU, PLAUR,
SERPINE1, TGFB1

EGFR Kinase 1.03E-08 APP, CAV1, CDK6, EPHA2, ERBB4,
ESR1, IGF2, MMP1, MMP14, MMP3,
PLA2G4A, PLAU, PLAUR, SEMA7A,
SERPINE1
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STAT3 Transcription
regulator

3.37E-08 A2M, DKK1, ESR1, FGF2, IGFBP1,
JAK2, LRP2, MMP1, MMP3, PGR,
PLA2G4A, PLAU, PLAUR, SERPINE1,
SPP1, TGFB1

HRAS Enzyme 8.45E-08 A2M, APP, CAV1, EIF4G3, FGF2, IGF2,
MMP1, MMP14, MMP3, PLA2G4A,
PLAU, PLAUR, SERPINE1, SPP1,
TGFB1, TP63

CDH1 Other 1.32E-07 ERBB4, MMP1, MMP14, MMP3,
NCAM1, PLAUR, TGFB1

AKT1 Kinase 1.36E-07 ESR1, FGF2, IGF2, IGFBP1, MMP14,
PGR, PLA2G4A, PLG, SERPINE1, SPP1,
TP63

PTEN Phosphatase 1.38E-07 CDC20, CDK6, ESR1, IGF2, LAD1,
MMP14, MMP3, NCAM1, PLAU,
PLEC, RBL2, SERPINE1, SPP1, TGFB1,
TGFBR2, TNFRSF14

FOXO1 Transcription
regulator

2.36E-07 A2M, CAV1, FYN, IGFBP1, INS, ITGA3,
MMP1, MMP3, RBL2, RPS6KA3, SER-
PINE1, SFN, TGFB1

SMARCA4 Transcription
regulator

2.49E-07 A2M, GNAI3, IRF6, ITGA3, MMP1,
PAEP, PLAUR, PTX3, SCG5, SEMA7A,
SERPINE1, SPP1, TNFRSF14, TREM1,
UNC13D

ERBB2 Kinase 2.91E-07 CDC20, CDK6, CENPA,CLDN4, ERBB4,
ESR1, IGF2, IRF6, MMP1, MMP14,
MMP3, PLAU, PLAUR, RBL2, SCG5,
SERPINE1, TP63, TREM1

PRKCB Kinase 3.05E-07 APP, FGF2, INS, SERPINE1, TGFB1,
TGFBR2

ITGAV Transmembrane
receptor

3.43E-07 MMP1,PLAU,SERPINE1,TGFB1,VTN

CD36 Transmembrane
receptor

3.77E-07 FGF2, MMP1, MMP14, MMP3, PLAU,
PLAUR, SERPINE1

TP73 Transcription
regulator

4.29E-07 CDC20, EPHA2, FGF2, MMP14,
NCAM1, PIK3R3, PLAU, SERPINE1,
SFN, SPP1, TGFB1, TIMP4
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CDKN1A Kinase 4.90E-07 APP, CDC20, HJURP, KIF2C, MMP1,
MMP3, RBL2, SERPINE1, TP63,
TREM1

FGFR1 Kinase 4.94E-07 FGF2, MMP1, MMP14, MMP3, PLAU,
PLAUR, SFN

FOXO3 Transcription
regulator

5.05E-07 CAV1, CDC20, ESR1, FYN, IGFBP1,
KIF2C, PLAU,RBL2, SERPINE1,TGFB1,
TP63

NRG1 Growth factor 5.07E-07 CAV1,CDC20,EPHA2,FGF2, IGF2,PGR,
PLAU, PLAUR, PLG, SERPINE1

HGF Growth factor 5.24E-07 A2M, CAV1, CDC20, KIF2C, MMP1,
MMP14, PLAU, PLAUR, SERPINE1,
SPP1, TGFB1, TGFBR2, TP63

ETV4 Transcription
regulator

6.33E-07 CAV1,MMP14, PLEC, SPP1, TGFBR2

MYC Transcription
regulator

7.56E-07 APP, BCAT1, CAV1, CDC20, CDK6,
DKK1, EPHA2, GLYR1, INS, IRF6,
ITGA3, NCAM1, PLAU, PLAUR,
S100A10, SERPINE1, SPP1, TEAD1,
TGFB1, TGFBR2

RAF1 Kinase 7.95E-07 ESR1, INS, LAD1, MMP1, MMP3,
PLAU, PLAUR, PLEC,RPS6KA5

ETS1 Transcription
regulator

9.96E-07 CAV1, CDK6, MMP1, MMP3, PGR,
PLAU, SERPINE1, SPP1, TGFBR2

NFKBIA Transcription
regulator

1.01E-06 A2M, FGF2, IGF2, ITGA3, MMP1,
MMP14, MMP3, PICALM, PLAU,
PTX3, TGFB1, TLR4

NR3C1 Ligand-
dependent
nuclear recep-
tor

1.07E-06 A2M, ADRA1D, APP, ARHGEF3,
CAV1, IGFBP1, LAD1, MMP1, PIK3R3,
PLA2G4A, SERPINE1, SPP1, TGFB1,
TIMP4,VGLL2

GLIS2 Transcription
regulator

1.24E-06 INS,MMP14, SERPINE1, TGFB1

ESR1 Ligand-
dependent
nuclear recep-
tor

1.65E-06 BCAT1, CAV1, CDK5, CDK6, CENPA,
CLDN4, ERBB4, ESR1, FBLN1, HSF2BP,
IGF2, JAK2, MMP1, PGR, PLAU,
PLAUR, PTX3, RBL2, SERPINE1, SPP1,
TGFB1
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NAB2 Transcription
regulator

1.94E-06 FGF2,MMP3, PLAU, TGFB1

TGFA Growth factor 2.17E-06 ESR1, PLA2G4A, PLA2G5, S100A10,
SERPINE1, TGFB1

TP63 Transcription
regulator

2.37E-06 CDK6, DKK1, EPHA2, ITGA3, MMP14,
PIK3R3, PLAU, SERPINE1, SFN,TGFB1,
TGFBR2, TP63

DLC1 Other 3.28E-06 CDK6, S100A10, SERPINE1
AREG Growth factor 3.29E-06 CDC20, CENPA,HJURP,MMP1, PLAU,

PTX3
MAP2K1 Kinase 3.39E-06 DKK1, FGF2, INS, MMP1, MMP14,

MMP3, PLA2G4A, PLAUR
PPARG Ligand-

dependent
nuclear recep-
tor

3.82E-06 APP, CAV1, CDK6, IGFBP1, INS,
MMP14, MMP3, SERPINE1, SPP1,
TGFBR2, TIMP4, TLR4

NOTCH1 Transcription
regulator

4.45E-06 DKK1, FGF2, MMP1, MMP3, SER-
PINE1, SPP1, TGFB1, TGFBR2, TP63

ZEB1 Transcription
regulator

4.54E-06 MMP1, PLAU, RBL2, S100A10, SER-
PINE1, TP63

TGFBR2 Kinase 4.57E-06 FGF2, MMP14, MMP3, RBL2, SER-
PINE1, SPP1, TGFB1, TGFBR2

TERT Enzyme 4.91E-06 CAV1, COLQ, FGF2, MMP1, MMP14,
MMP3, SPP1

ABL2 Kinase 5.23E-06 MMP1,MMP14,MMP3
ERG Transcription

regulator
5.66E-06 FLNC, FYN, MMP1, MMP3, PLAU,

PLAUR, SPP1, TGFBR2
IKBKB Kinase 7.93E-06 FYN, MMP1, MMP3, PLA2G4A, PLAU,

PTX3, TGFB1, TGFBR2, TP63
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Table B.5: Op mized hyperparameters of the model pre-trained for survival predic on. The model was trained on TCGA
gene expression data and hyperparameters were op mized using Optuna5 with Tree-structured Parzen Es mator (TPE),
considering the Hyperparameters and Considered values displayed in this table.

Hyperparameter Considered values Selected value Notes

Hidden layers Number of layers [1,4] 1
Layer sizes [32,4096] 4071 Each layer≤ than preceding layer

Activation {ReLU,ELU,GELU} GELU
Learning rate [1e-7,1e-4] 2.858e-07
Batch size [32,512] 32
Dropout [0,0.9] 0

L2 regularization
Use regularization {True,False} True

L2 regularization factor [1e-4,0.1] 0.0547

Learning rate decay Use learning rate decay {True,False} False
Decay rate [0.9,1] N/A

Weight decay (adam optimizer) Use weight decay {True,False} True
Weight decay rate [1e-4,0.1] 1.15e-4

β1 (adam optimizer) [0.7,0.9999] 0.7110
β2 (adam optimizer) [0.9,0.9999] 0.9602

Table B.6: Op mized hyperparameters of the model pre-trained for ssue type classifica on. The model was trained on
GTEx gene expression data and hyperparameters were op mized using Optuna5 with Tree-structured Parzen Es mator
(TPE), considering the Hyperparameters and Considered values displayed in this table.

Hyperparameter Considered values Selected value Notes

Hidden layers Number of layers [1,4] 3
Layer sizes [32,4096] 3704,1853,1407 Each layer≤ than preceding layer

Activation {ReLU,ELU,GELU} ReLU
Learning rate [1e-7,1e-4] 4.830e-05
Batch size [32,512] 42
Dropout [0,0.9] 0.1

L2 regularization
Use regularization {True,False} True

L2 regularization factor [1e-8,0.1] 4.013e-4

Learning rate decay Use learning rate decay {True,False} True
Decay rate [0.9,1] 0.9088

Weight decay (adam optimizer) Use weight decay {True,False} False
Weight decay rate [1e-8,0.1] N/A

β1 (adam optimizer) [0.7,0.9999] 0.8960
β2 (adam optimizer) [0.9,0.9999] 0.9248

Table B.7: Op mized hyperparameters of the model pre-trained for age predic on. The model was trained on GTEx
gene expression data and hyperparameters were op mized using Optuna5 with Tree-structured Parzen Es mator (TPE),
considering the Hyperparameters and Considered values displayed in this table.

Hyperparameter Considered values Selected value Notes

Hidden layers Number of layers [1,4] 2
Layer sizes [32,4096] 2713,659 Each layer≤ than preceding layer

Activation {ReLU,ELU,GELU} ReLU
Learning rate [1e-7,1e-4] 6.456e-05
Batch size [32,512] 32
Dropout [0,0.9] 0

L2 regularization
Use regularization {True,False} True

L2 regularization factor [1e-8,0.1] 9.562e-05

Learning rate decay Use learning rate decay {True,False} True
Decay rate [0.9,1] 0.9377

Weight decay (adam optimizer) Use weight decay {True,False} False
Weight decay rate [1e-8,0.1] N/A

β1 (adam optimizer) [0.7,0.9999] 0.9346
β2 (adam optimizer) [0.9,0.9999] 0.9482
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Table B.8: Op mized hyperparameters of the model pre-trained for ssue type classifica on and age predic on. The
model was trained on GTEx gene expression data and hyperparameters were op mized using Optuna5 with Tree-
structured Parzen Es mator (TPE), considering the Hyperparameters and Considered values displayed in this table.

Hyperparameter Considered values Selected value Notes

Hidden layers Number of shared layers [1,4] 3
Sizes of shared layers [128,4096] 2242,614,140 Each layer≤ than preceding layer
Number of task layers [0,2] 1
Sizes of task layers [32,4096] 67 Each layer≤ than preceding layer

Activation {ReLU,ELU,GELU} ReLU
Learning rate [1e-7,1e-4] 6.456e-05
Batch size [32,512] 459
Dropout [0,0.9] 0.1

L2 regularization
Use regularization {True,False} True

L2 regularization factor [1e-8,0.1] 1.745e-05

Learning rate decay Use learning rate decay {True,False} False
Decay rate [0.9,1] N/A

Weight decay (adam optimizer) Use weight decay {True,False} True
Weight decay rate [1e-8,0.1] 0.0951

β1 (adam optimizer) [0.7,0.9999] 0.8380
β2 (adam optimizer) [0.9,0.9999] 0.9038
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Summary

Cancer is a leading cause of death worldwide and the second leading cause of death in Ger-
many. The primary goal of cancer therapy is to reducemortality and improve patient survival.
However, the choice of therapy is heavily influenced by the patient’s prognosis, highlighting
the importance of cancer survival prediction as a means to quantify the patient’s risk and
estimate prognosis.

This dissertation presents a cancer survival prediction approach that uses XGBoost tree en-
semble learning and is based on gene expression data of 25 different cancer types from The
Cancer Genome Atlas (TCGA). We evaluate two versions of this approach, one trained on
each cancer type separately and the other trained on pan-cancer data comprising all 25 cancer
types, and find that the pan-cancer approach yields improved performance over the single-
cancer approach. Furthermore, we evaluate the pan-cancer approach on additional molec-
ular data types, including mutations, copy number variations, and protein expression data,
and identify gene expression as the most informative data type. To assess the biological plau-
sibility of the gene expression-based pan-cancer survival prediction approach, we apply net-
work propagation to gene weights derived from the survival prediction model and infer a
pan-cancer survival network comprising 103 genes. These 103 genes are most significantly
enriched for the tumor microenvironment, which has been associated with cancer progres-
sion, metastasis, and response to therapy, validating the biological plausibility of our survival
prediction approach.

Furthermore, we explore the potential of transfer learning for cancer survival prediction. To
this end, we pre-train neural networks for cancer survival prediction, but also for related tasks
such as tissue type and age prediction. We then transfer the learned knowledge to cancer sur-
vival prediction on independent datasets from TCGA, as well as substantially smaller can-
cer studies. We find that transfer learning can indeed improve cancer survival prediction,
although the benefit of transfer learning may depend on the size and characteristics of the
datasets used.
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Zusammenfassung

Krebs ist eine der häufigsten Todesursachen weltweit und die zweithäufigste Todesursache
in Deutschland. Das vorrangige Ziel von Krebstherapie ist es, die Sterblichkeit zu reduzieren
und das Überleben von Patienten zu verbessern. Die Wahl der Therapie wird jedoch stark
von der Prognose des Patienten beeinflusst, was die Bedeutung von Krebsüberlebensvorher-
sage als Mittel zur Quantifizierung des Patientenrisikos und zur Einschätzung der Prognose
hervorhebt.

Diese Dissertation stellt einen Ansatz zur Vorhersage des Überlebens von Krebspatienten
vor, der XGBoost Tree-Ensemble-Learning nutzt und auf Genexpressionsdaten von 25 ver-
schiedenen Krebsarten aus The Cancer Genome Atlas (TCGA) basiert. Wir evaluieren zwei
Versionen dieses Ansatzes, wobei in der einen Version für jede Krebsart separat und in der
anderen auf Pan-Krebs-Daten von allen 25 Krebsarten trainiert wird, und stellen fest, dass
das Pan-Krebs-Training zu besseren Ergebnissen führt als das Training für einzelne Krebsty-
pen. Außerdem evaluieren wir den Pan-Krebs-Ansatz auf zusätzlichen molekularen Daten-
typen, einschließlich Mutationen, Copy Number Variations, und Proteinexpressionsdaten,
und identifizieren Genexpression als den informativsten Datentypen. Um die biologische
Plausibilität des auf Genexpression basierenden Pan-Krebs-Ansatzes zu untersuchen, wen-
den wir Network Propagation auf aus dem Vorhersagemodell abgeleitete Gengewichte an
und leiten ein 103 Gene umfassendes Pan-Krebs-Überlebensnetzwerk ab. Diese 103 Gene
sind angereichert für die Mikroumgebung des Tumors, die mit Krebsfortschritt, Metastasie-
rung und dem Ansprechen auf Therapien assoziiert ist, was die biologische Plausibilität un-
serer Vorhersagemethode bestätigt.

Darüber hinaus untersuchen wir das Potenzial von Transferlernen für die Vorhersage von
Krebsüberleben.Dazu trainierenwir zunächstNeuronaleNetze für dieVorhersage vonKrebs-
überleben, aber auch für verwandte Aufgaben wie die Vorhersage von Gewebsarten und Al-
ter. Dann übertragen wir das gelernte Wissen auf die Vorhersage von Krebsüberleben für
unabhängige Datensätze von TCGA, aber auch aus wesentlich kleineren Krebsstudien. Wir
stellen fest, dass Transferlernen tatsächlich die Vorhersage von Krebsüberleben verbessern
kann, obgleich der Nutzen von Transferlernen von der Größe und den Eigenschaften der
verwendeten Datensätze abhängen kann.
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