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Introduction: Mechanical loading is known to determine the course of bone
fracture healing. We hypothesise that lower limb long bone loading differs with
knee flexion angle during walking and frontal knee alignment, which affects
fracture healing success.

Materials andmethods:Using ourmusculoskeletal in silicomodelling constrained
against in vivo data from patients with instrumented knee implants allowed us to
assess internal loads in femur and tibia. These internal forces were associated with
the clinical outcome of fracture healing in a relevant cohort of 178 extra-articular
femur and tibia fractures in patients using a retrospective approach.

Results: Mean peak forces differed with femoral compression (1,330–1,936 N at
mid-shaft) amounting to about half of tibial compression (2,299–5,224 N). Mean
peak bendingmoments in the frontal planewere greater in the femur (71–130 Nm)
than in the tibia (from 26 to 43 Nm), each increasing proximally. Bending in the
sagittal plane showed smaller mean peak bending moments in the femur (−38 to
43 Nm) reaching substantially higher values in the tibia (−63 to −175 Nm) with a
peak proximally. Peak torsional moments had opposite directions for the femur
(−13 to −40 Nm) versus tibia (15–48 Nm) with an increase towards the proximal
end in both. Femoral fractures showed significantly lower scores in the modified
Radiological Union Scale for Tibia (mRUST) at last follow-up (p < 0.001) compared
to tibial fractures. Specifically, compression (r=0.304), sagittal bending (r=0.259),
and frontal bending (r = −0.318) showed strong associations (p < 0.001) to mRUST
at last follow-up. This was not the case for age, body weight, or localisation alone.

Discussion: This study showed that moments in femur and tibia tend to decrease
towards their distal ends. Tibial load components were influenced by knee flexion
angle, especially at push-off, while static frontal alignment played a smaller role.
Our results indicate that femur and tibia are loaded differently and thus require
adapted fracture fixation considering load components rather than just overall
load level.
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1 Introduction

Beside biological challenges, such as immune competence of the
patient (Kolar et al., 2010; Reinke et al., 2013; Borgiani et al., 2019;
Schlundt et al., 2019; Bucher et al., 2022; Duda et al., 2023; Jahn et al.,
2023;Malhan et al., 2023), themechanical boundary conditions can also
impact fracture healing (Kassi et al., 2001; Epari et al., 2007; Ode et al.,
2014; Santolini et al., 2015).Mechanical cues are known to control tissue
regeneration and especially bone tissue regeneration as a model system
of regeneration (Drzeniek et al., 2021; Knecht et al., 2021), and
mechanical overloading may disrupt early callus healing. In addition
to the direct mechanical environment, patient anatomy, activity,
fracture geometry, and fixation (applied osteosynthesis) are factors
known to impact fracture healing outcome.

Loading strongly determines the course and outcome of fracture
healing (Seebeck et al., 2005), which has been acknowledged as one
out of four key factors influencing healing outcome: osteogenic cells,
osteoinductive mediators, osteoconductive matrix, and mechanical
loading stability—“the diamond concept” (Giannoudis et al., 2007;
Giannoudis et al., 2008; Willie et al., 2010; Giannoudis et al., 2014;
Giannoudis et al., 2015).

Mechanical loads between bones, as well as across localisations
within a single bone, are expected to differ, for instance due to
attachment sites and activation patterns of muscles, or patient
anatomy. The variation of these forces and moments between
patients and localisations and how the specific loading may be
associated with alterations in healing success is still speculative.
Delayed healing, i.e., no or only little signs of healing for
3–6 months, or non-union fractures, i.e., absent healing for more
than 6–9 months, not only affect patients, but also results in a high
economic burden (Kanakaris and Giannoudis, 2007). Therefore,
greater knowledge of fracture healing and further improvement in
clinical settings is essential.

Only few studies have tried to quantify the mechanical boundary
conditions acting at a fracture location (Schwarzenberg et al., 2020;
Augat et al., 2021). To define the local mechanical boundary conditions
for successful fracture healing, it is necessary to extend the knowledge
about local forces and moments acting in vivo in long bones (Duda
et al., 1997a; Duda et al., 1997b; Taylor et al., 2004; Bergmann et al.,
2016; Dreyer et al., 2022) and how they interact with the selected
fixation of fragments (Märdian et al., 2021).

With the present work, we aimed to determine the internal loads
acting within the lower limb long bones (femur and tibia) during
walking using a validated musculoskeletal modelling approach
(Trepczynski et al., 2012; Trepczynski et al., 2018), and to associate
them with fracture healing outcome. We hypothesise that changes in
patient kinematics, represented by knee flexion angle, and anatomical
alignment, represented by frontal plane knee alignment, would allow
internal femoral and tibial loading to be assessed, and thus make it
possible to determine the mechanical boundary conditions for
successful fracture healing. Such understanding of the mechanical
boundary conditions and the parameters influencing them appears
especially important for guiding the selection of a fracture fixation that
is capable of appropriately counteracting and stabilising the specific
load components (forces and moments) and thereby to ensuring
beneficial mechanical boundary conditions for successful healing,
independent from the long bone affected or the specific location of
a given fracture.

2 Materials and methods

In this study, we utilised our validated musculoskeletal in silico
models, which are based on in vivo measured knee loads from
patients equipped with instrumented knee implants. This allowed us
to constrain the model solutions to realistic in vivo loading
conditions. An in vivo fluoroscopic assessment allowed us to
determine patient-specific kinematics. These internal forces are
considered to represent the mechanical boundary conditions
under which a fracture fixation would affect bone healing in
extraarticular fractures of the lower limb (Figure 1).

2.1 Musculoskeletal modelling

Our musculoskeletal modelling was based on the 3D patient-
specific anatomy reconstructed from CT imaging data, ground
reaction forces, and kinematic input from gait analysis (Trepczynski
et al., 2012; Trepczynski et al., 2018), and allows muscle forces and
resulting joint contact loads to be estimated for the whole leg. The
musculoskeletal analysis used in this investigation was based on the
CAMS-Knee Dataset (https://cams-knee.orthoload.com/), which
provides a comprehensive combination of in vivo measured inputs
for this type of model (Taylor et al., 2017). Six patients (5 male,
1 female), aged 74 (65–80) [mean (range)] years, with body-mass of
89 (67–101) kg, and body-height of 172 (165–175) cm (Supplementary
Table S1 or https://cams-knee.orthoload.com/subjects/) were previously
implanted with instrumented knee implants that allowed the in vivo
tibio-femoral (TF) contact forces andmoments (Heinlein et al., 2007) to
be telemetrically measured. The six patients (with the codes K1L, K2L,
K3R, K5R, K7L, and K8L) were asked to perform several repetitions of
walking at self-selected speeds in a laboratory setting, yielding a
minimum of 5 gait phases of stance for each patient that were
suitable for further analysis. The internal forces were recorded
synchronously with the internal knee kinematics, which were
captured using a mobile video-fluoroscope (List et al., 2017).

Subsequently, musculoskeletal modelling was performed for each
patient to estimate the muscle and joint contact forces in the lower
limb as described previously (Trepczynski et al., 2018; Kneifel et al.,
2023), briefly outlined here: Lower limb kinematics were derived from
skin markermotion (Trepczynski et al., 2012), and combined with the
functional flexion knee axis derived from the fluoroscopic TF
kinematics (Taylor et al., 2010; Ehrig et al., 2011; Heller et al.,
2011), serving as input to an inverse dynamics approach. The
subsequent muscle optimisation was based on minimising the sum
of muscle stresses squared, but was also constrained to match the
magnitude of the TF contact force measured in vivo to within 5%.

2.2 Cross-sectional loads acting within the
lower limb long bones

The muscle and joint contact forces yielded by the musculoskeletal
model of the patients from the CAMS-Knee Dataset were then used to
compute the local bone loading along the centroids of the lower long
bone shafts. The curved shaft centroids were generated from the
patient-specific bone geometry taken from CT data using the auto
skeleton module of Amira (Thermo Fisher Scientific Inc.) (Figure 2).
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The proximal end of the femoral shaft was defined at the height of the
trochanter minor [corresponding to 16% ± 1% (mean ± SD) of the total
bone length from proximal], while the distal end was placed half of the
inter-epicondylar distance above the inter-epicondylar midpoint

(85% ± 1% bone length). For the tibia, the proximal shaft end was
defined at the height of the tibial tuberosity (13% ± 1% bone length),
while the distal end was defined half of the inter-malleoli distance above
the inter-malleoli midpoint (93% ± 0% bone length). The local bone

FIGURE 1
The measurement and modelling pipeline to assess internal bone loads, which are thought to be associated with the clinical outcome.
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loads, resulting from the joint contact forces and the spanning
musculature, were determined along the centroid curve in each
lower limb bone in 5% steps of its total length. At each evaluation
point (EP) a local coordinate system was defined (Figure 2), with the
axial base vector along the local centroid tangent defining the local
transverse plane of the shaft. The base vectors in the local transverse
plane were based on the medio-lateral direction defined from the
epicondyles for the femur and tibial plateau compartment centres
for the tibia. The components of the cross-sectional loading in each
bone were based on this local coordinate system, with the moments
acting around the EP at the centroid locations. Within each bone and
for each shaft location, load components were determined as loading
range during the stance phase in each patient and repetition. To allow
for comparison across patients, all forces from the analysis were
normalised to multiples of bodyweight (BW), while all moments
were normalised to multiples of bodyweight times metre (BWm).
The adapted sign convention ensured that load values for left and
right legs were consistent.

Linear regression was applied to investigate the relationships
between the extremal cross-sectional loads within both bones and
the hip-knee-ankle (HKA) angle from static frontal plane radiographs,
as well as the knee flexion at 20%, 50%, and 80% of the stance phase,
which approximately corresponds to the time points of the early and
late joint loading peaks (if present), and their intermediate time point.

2.3 Clinical assessment of extra-articular
healing in the femur and tibia using a
retrospective analyses of fracture healing
outcomes

The inclusion criteria for the retrospective analyses of fracture
healing was a patient age of minimal 18 years, and patients
undergoing surgery for an extra-articular fracture of a long bone
of the lower extremity (femur or tibia) performed between January
2005 and April 2022. For inclusion, patient fracture X-rays had to be
taken in two perpendicular planes, one taken pre- and one post-
surgery plus at least one follow-up time point.

The exclusion criteria ruled out patients with critical clinical
conditions at the time of the operation (e.g., unstable circulatory
conditions, not fit for surgery and/or lack of consent of treatment),
pregnant and lactating patients, persons who were not legally
competent, and fractures involving articulation, including
proximal femur and femoral neck fractures. We excluded cases
with insufficient imaging data quality, lacking or inadequate
documentation, or lack of follow-up imaging.

Overall, a total of 4,841 cases were screened with treatment
performed at our local trauma centre, resulting in 190 fractures from
171 patients, of which 154 patients had only a single fracture, 15 had
2 fractures, and 2 had 3 fractures. Finally, closer inspection revealed
that some of those cases still contained fractures reaching into the
joint articulations and had to be excluded, resulting in a total of N =
178 fractures used for analysis (Figure 1; Table 1).

Localisation of fractures was recorded as a relative position along
the long bone axes between a proximal to a distal location and cases
were grouped in steps of a fifth of the total long bone lengths
(i.e., 10%/30%/50%/70%/90% of bone length). Further, fracture
cases were separated according to the treatment method used
with either intramedullary nailing or plate fixation.

Healing success was assessed using the modified Radiographic
Union Score for Tibia, or modified Radiological Union Scale for
Tibia (mRUST) fractures, an established and validated score that
judges the bridging and fracture line (from 4—no bridging to
16—complete consolidation at each cortical and two planes) of
the fracture of tibia or femur by a radiologist blinded for time points
and clinical information (Fiset et al., 2018; Mitchell et al., 2019;
Plumarom et al., 2021; Alentado et al., 2022; Schmidt et al., 2022).

2.4 Statistical evaluation

The mRUST at the last follow-up time point was compared
statistically in femur versus tibia fractures, for nail versus plate
fixation as well as along the fracture localisations within each long
bone (Mann-Whitney-U-Test). Finally, we combined the model-
based mean of local peak loading over all modelled subjects with the

FIGURE 2
The shaft centroid lines of femur and tibia along which the bone
cross sectional loads were evaluated, with local coordinate systems
shown at 20%, 50%, an 80% shaft length.
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localisation of the fracture (inter- and intraosseous: comparison of
healing outcome between femur and tibia, but also localisations
within the same bone of the retrospective clinical fracture patients),
and tested for associations (Pearson correlation) of the expected
local load, localisation of fracture within the bone, age, and body
weight, with the healing outcome (mRUST at last follow-up).

3 Results

3.1 Joint contact force

The joint contact force (JCF) for hip and knee followed similar
patterns and reached similar peak levels of ~2–4 BW, usually occurring
in the late stance phase (Figure 3). The mean peak hip JCF ranged from
1,751 (patient K7L) to 3,672 N (K1L), while the mean peak knee JCF
ranged from 1,946 (K8L) to 3,305 N (K1L). For the ankle, the mean
peak JCF was always in the late stance phase, where it showed a larger
variation across patients than those at the other two joints, ranging from
2,403 (K3R) to 5,343 N (K2L). In particular the substantially lower ankle
JCFs in K3R were observed to be associated with a different push-off
pattern in this patient with engagement of the entire foot instead of just
the forefoot as in the other five patients.

3.2 Cross-sectional loads within femur and
tibia

The peak compressive loads in the tibia were more than two
times greater than in the femur, but roughly constant along the

shaft for both bones (Figure 4). While the mean peak
compression at 50% shaft length for the femur ranged from
1,330 (K8L) to 1,936 N (K1L), compression in the tibia ranged
from 2,299 (K3R) to 5,224 N (K2L). Here again, the distal tibial
shaft loading in patient K3R appeared related to the lower ankle
JCFs, possibly related to their distinct push-off pattern engaging
the whole foot in a flat contact while all others exhibited a
forefoot contact pattern at push-off.

In the frontal plane, the mean peak bending moments were
greater for the femur than for the tibia, and increased towards the
proximal ends, where for the femur they ranged from 71 (K7L) to
130 Nm (K1L), while for the tibia they ranged from 26 (K5R) to
43 Nm (K1L). In the sagittal plane, the mean peak bending moments
for the femur overall remained between −38 (K3R) and 43 Nm
(K1L), while at the proximal end of the tibial shaft values
reached −63 (K3R) to −175 Nm (K2L).

The peak torsional moments had opposite directions for femur
versus tibia and increased in magnitude towards the proximal ends
in both bones. Torsional moments for the femur ranged from −13
(K3R) to −40 Nm (K2L), while they ranged from 15 (K3R) to 48 Nm
(K2L) for the tibia.

3.3 Different impact of static frontal knee
alignment versus dynamic knee flexion on
bone loading

The linear regressions between static frontal plane alignment, knee
flexion during stance, and the dominant cross-sectional loading along
the long bones showed only weak relationships for the femur, with R2

TABLE 1 Fracture patient demographics [mean (SD: standard deviation); range or absolute numbers], and treatments.

Fracture location Age Sex female: male Weight Fixation Nail: Plate

All (N = 178) 43.0 (SD 15.4) years; 18–84 years 55: 122 (1 undetermined) N = 92 81.7 (SD 15.5) kg; 52–118 kg 135: 43

Femur (N = 57) 40.4 (SD 16.4) years; 18–84 years 17: 40 N = 27 81.4 (SD 15.0) kg; 60–110 kg 41: 16

Tibia (N = 121) 44.3 (SD 14.8) years; 18–78 years 38: 82 (1 undetermined) N = 65 81.9 (SD 15.8) kg; 52–118 kg 94: 27

FIGURE 3
The joint contact force at the hip, knee and ankle from left to right respectively, predicted by the model, with the knee contact force magnitude
constrained to match the in vivo measured force. The mean time point of the peak force is marked with a dashed grey line.
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values below 0.5. For the tibia however, several strong relationships were
found (Figure 5). For the mid-shaft of the tibia, the knee flexion at 80%
of the stance phase had strong relationships with the peak compression

(R2 = 0.86), sagittal plane bending (R2 = 0.85), and torsion (R2 = 0.70).
The static HKA angle on the other hand, showed only relevant
correlation with the frontal plane bending (R2 = 0.63).

FIGURE 4
Cross sectional loading range during the stance phase of walking as a function of the relative location along the extra-articular section of bone shaft.
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3.4 Comparing long bone shaft loading with
fracture healing outcome

In our retrospective, clinical analyses, femoral fractures
showed significantly decreased mRUST at last follow-up (p <
0.001, Mann-Whitney-U) compared to tibial fractures
(Figure 6A). Independent nail fixation, which was much more
prominent in this sample (Table 1), showed more consistent
healing with less variability compared to plate fixations in the
distal part of the bones for femur fixation (Supplementary Figure
S1), but with no detectable differences in mRUST between nail and
plate fixation. Despite the large variability of healing outcomes,
more distal fractures within the bones appeared to show higher
mRUST values at last follow-up (Figure 6, not significant).
Different local loading (as assessed by the modelling) showed
significant (p < 0.001) associations with mRUST at last follow-
up, in detail: compression (r = 0.304), sagittal plane bending (r =
0.259), and frontal plane bending (r = −0.318, negative
correlation). However, mRUST was not associated to age, body
weight, or facture localisation along the long bone axis alone
(Table 2).

4 Discussion

We aimed to reliably determine the internal loading conditions
acting within the tibia and femur by employing in vivo
measurements and musculoskeletal modelling to provide a basis
for optimised treatments. Further, we aimed at associating these
loads to a retrospective analysis of fracture healing outcome in extra-
articular fractures of these bones. Apparently, fracture healing
outcome—as reflected by mRUST—appears to be associated
more strongly with the specific load components than with age,
sex, or bodyweight of the patients.

Local load components that act during gait showed a positive
association with healing as seen for compression or sagittal plane
bending, but also a negative association with frontal plane bending
(Table 2). This has already been indicated in a previous animal study,
where just different placement of fixators could already control for the
effect of frontal plane bending, by changing mediolateral bending
stiffness, resulting in much better healing with a stiffer construct in
the frontal plane (Epari et al., 2007). At the same time, moderate stiffness
in compression and sagittal bending yielded the best healing results
(Epari et al., 2007). Thus, high fixation stiffness is only reasonable against
shear, torsion and frontal plane bending, while the other fixation stiffness
components should bemoderately rigid and adapted to the requirements
of patient weight and activity, as well as fracture location.

During gait, the tibia appeared more compressed than the
femur, mainly associated with plantar-flexor muscle activation
during late stance phase particularly at push-off. As expected, the
mean bending moments in the frontal plane were greater for the
femur than for the tibia, and decreased towards each long bone’s
distal end (Duda et al., 1997b; Duda et al., 2002; Kutzner et al., 2010).
In the sagittal plane, mean bending moments for the femur overall
remained moderate, while for the proximal end of the tibial shaft
they reached high values, decreasing towards its distal end.

Torsional moments had opposite directions for the femur and
tibia, again with decreases in magnitude towards the distal ends. The

hip joint loads were consistent with direct measurements
(Bergmann et al., 2016; Damm et al., 2017; Palmowski et al.,
2021). The femoral loads were consistent with previous
assessments of internal loads (Duda et al., 1997b). Overall, we
saw higher loads in the proximal parts of the bones, except for
the load component of compression, which was similar all over the
tibia and femur, but at a higher level in the tibia.

When the mean peak loads derived from modelling were
compared to healing outcomes for the different fracture locations
along the long bone axis of the tibia or femur, load components
showed stronger association to fracture healing outcomes than age,
body weight, or sex. Also, the fracture localisation within a long bone
did not show a strong correlation to bone healing outcome (Table 2).
Despite the higher load magnitudes in the tibia during normal
walking as derived from the modelling, we see higher mRUST at last
follow-up in the tibia compared to the femur, which indicates that
compressive loading is not necessarily detrimental to healing.
Interestingly, another study also found a higher prevalence of
non-union cases in femoral (54%) versus tibial (34%), or other
fractures (11%) that were treated in a revision for bone repair
(Giannoudis et al., 2015). Importantly, we did not find significant
differences in healing outcomes with different types of nailing versus
plating in either the tibia or femur (Supplementary Figure S2).

We hypothesised that changes in knee flexion angle and frontal
knee alignment lead to altered internal muscle and joint loads, which
affect fracture healing. Local bone loading can be influenced not only
by different activities (Kutzner et al., 2010; Schwachmeyer et al., 2013;
Bergmann et al., 2016; Haffer et al., 2021), but also by their execution
(e.g., gait pattern, speed), (Trepczynski et al., 2014; Trepczynski et al.,
2018). Confirming our hypothesis, we could show that late stance
knee flexion had strong relationships with the peak compression,
sagittal plane bending, and torsion in the tibia, which implies that only
certain loading components can be influenced by the patients. The
static frontal plane alignment correlated with peak frontal plane
bending in the tibia. Effects of changes in knee flexion angle and
frontal knee alignment on the internal loading conditions were much
weaker within the femur. This means loading could potentially be
influenced to a much greater degree and with multiple options at the
tibia compared to the femur.

In the past, worse healing at certain locations was often
attributed to worse perfusion or fewer available osteogenic cells
at locations such as the more distal parts of the femur and tibia
(Santolini et al., 2014; Santolini et al., 2015; Wildemann et al., 2021).
We did not assess differences in perfusion or other biological
differences of the patients in the retrospective study. However, in
our assessment, the more distal fractures appear to have a more
consistent healing (Figure 6B), but this was not a significant
improvement due to the low number of cases and high
variability, which might be associated with the fixation type and
bone (Supplementary Figures S1, S2). A limitation of the present
study is that we employed loads in otherwise healthy “normal gait”
settings of patients after TKA as a reference for the forces and
moments acting in long bones after fracture. These loads during
early rehabilitation might well differ (Seebeck et al., 2005), however,
or other loading conditions such as chair rise might be more relevant
for success or failure of long bone healing. A limitation of our
retrospective analysis of 4,841 fracture healing cases was that only
178 fracture cases qualified for being included and also follow-up

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Heyland et al. 10.3389/fbioe.2023.1284091

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1284091


periods were different between patients, as well as the last time point
of follow up was variable. In the future, we aim to examine
prospective fracture healing studies with dedicated study
documentation to ensure a more comprehensive data basis and

allow causal relationships to be elucidated between mechanical limb
loading and healing outcome. For the fracture patients the
evaluations were performed on standard clinical radiographs,
which did not always cover the entire bone, making the relative

FIGURE 5
Linear regressions between late stance knee flexion (at 80% stance), static HKA angle and the tibia loading at 50% shaft length.
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localisation an estimate. In the presented retrospective analysis of
extra-articular fractures, we had mainly young (<40 years) or
middle-aged (40–60 years) patients included with a higher

incidence in young males with tibial fractures. We missed the
otherwise frequently indicated group of elderly women above
60 years (Court-Brown and Caesar, 2006) in our analyses.

TABLE 2 Pearson correlation of model-based mean loading at the respective fracture location (according to bone type and intra-osseous fracture location), and
Pearson correlation of localisation within bone, age, weight with mRUST at last follow-up for femur and tibia (pooled and separately).

Compression Sagittal
bending

Frontal
bending

Torsion Localisation
within bone

Age Weight
(n = 92)

Pearson correlation coefficient r with
mRUST (tibia and femur pooled together,

N = 178)

0.304 0.259 −0.318 0.090 0.141 −0.108 −0.167

p-value <0.001 <0.001 <0.001 0.233 0.061 0.149 0.111

Pearson correlation coefficient r with
mRUST Femur (N = 57)

0.146 0.159 −0.170 −0.167 0.170 −0.048 −0.199

p-value 0.279 0.238 0.207 0.214 0.206 0.725 0.321

Pearson correlation coefficient r with
mRUST Tibia (N = 121)

0.000 −0.037 −0.055 −0.034 0.095 −0.220 −0.185

p-value 0.998 0.690 0.549 0.715 0.300 0.015 0.140

Statistically significant Pearson correlations (p < 0.05) are marked in bold.

FIGURE 6
(A) Healing outcome at last follow-up for different bones, femur (n = 57) and tibia (n = 121), differs significantly (Mann-Whitney-U: p < 0.001). (B)
Healing outcome according to detailed localisation within the bone from proximally to distally for femur and tibia. Median mRUST at last follow-up of
each bone is marked with thick lines.
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Although we found a bimodal distribution in our data, the two
modes exist rather between young and middle-aged patients with a
similar distribution for men and women. We conclude that in our
retrospective assessments, such selection effects clearly result in bias
and we see the need for more prospective analyses, especially for
geriatric, frailty fractures. We found a significant negative
correlation between age and mRUST at last follow-up for the
tibia fractures (Table 2), and suspect that this poorer healing
outcome with age would also be present in a larger cohort of
femoral fractures. However, long bone loading within a lower
limb appears to be modulated by patient knee flexion during
push-off phase in walking. In our assessment, healing of femur
fractures did not worsen with age. Moreover, nail fixation was much
more prevalent than plate fixation. We did not control for fixation
choice, nor normalise the fracture patterns, such as fracture
classifications, slope, orientation, or degree of comminution. Also,
we did not control for individual muscle status (Damm et al., 2018;
Damm et al., 2019; Winkler et al., 2023). Muscle activity assumes
ideal muscle use to match the measured kinematics and knee joint
loading. Geriatric or pain-induced muscle activation and gait
patterns will be different, but it is not age that mostly determines
different activation patterns, but rather extensive muscle damage
(Damm et al., 2018; Damm et al., 2019; Winkler et al., 2023) or
neurological co-morbidities which were not considered in this
approach. We strive to investigate early rehabilitation gait
patterns and detailed age- and muscle-status related changes in
kinematics and loading in more detail in fracture patients in the
future.

In summary, our results advocate the importance of specific
loading components on fracture outcome rather than overall load
magnitude alone. We conclude that local loading components are
differently associated with healing outcome in this assessment for
a specific patient cohort: While higher compressive loads and
bending in the sagittal plane were correlated to higher fracture
healing/bridging scores at last follow-up, higher moments in the
frontal plane were negatively correlated with healing outcomes.
More detailed assessments of individual fracture cases,
considering the patient-specific kinematics (gait speed, flexion
angles) and anatomy (alignment) to achieve even more accurate
local loading assessments, but also considering the fracture
pattern and local strain at the fracture zone, could further
elucidate the context of loading and mechanical tissue
stimulation for fracture healing. Well-controlled, adapted
mechanical loading may represent one integral part to the
solution for a coordinated fracture healing. The loading
patterns during walking for lower limb long bones reported
from our validated musculoskeletal model analyses could be
used in further studies to identify “ideal fixation
configurations” to optimize fracture treatment in the future.
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