
–B.Sc. Thesis–

Creating a Pipeline for Reproducible Evaluation
Report Generation

Freie Universität Berlin

Institute of Computer Science

Human-Centered Computing (HCC) Research Group

Alexander Rudolph

Date of Submission: 17.05.2024

Supervisor:

Prof. Dr. Claudia Müller-Birn∗, Freie Universität Berlin, Germany

Examiner:

Prof. Dr. Claudia Müller-Birn†, Freie Universität Berlin, Germany

Barry Linnert ‡, Freie Universität Berlin, Germany

This work is licensed under CC BY-NC-SA cbna
§

∗Department of Mathematics and Computer Science, Human-Centered Computing Research Group
†Department of Mathematics and Computer Science, Human-Centered Computing Research Group
‡Department of Mathematics and Computer Science, Software Engineering
§https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/

Abstract

To ensure lecturers can improve their teaching quality, the Faculty of Mathematics and
Computer Science employs an evaluation process every semester, during which students
can evaluate their lecturers anonymous and directly. In addition to individual results,
the faculty also manually creates an evaluation report for all institutes belonging to it.
To support the evaluation committee in generating the report, a reproducible pipeline
will be created to automate this task as much as possible.

Special focus will be applied to the concepts of code understandability and (computa-
tional) reproducibility, while following modern design, documentation, coding guidelines
and specifications. This ensures the pipeline is usable by anyone and continues to stay
so in the future.

Along with the pipeline, a prototype for a dashboard will be developed with minimal
functionality to demonstrate how the processed data can be used to convey results in a
way that extends the current evaluation report.

2

Contents

1. Introduction 2
1.1. Motivation . 2
1.2. Goal . 2

2. Theoretical Background 3
2.1. The Evaluation Process . 3
2.2. The Current Approach . 3
2.3. Introducing Reproducibility . 5

3. Analysis 7
3.1. Analyzing the Current Approach . 7
3.2. User Requirements . 7

3.2.1. Interview 1 - Initial Requirement Elicitation 9
3.2.2. Interview 2 - Prototype Presentation 11

4. Implementation 14
4.1. Evaluation Data . 14
4.2. Technology . 15
4.3. Data Cleanup . 15
4.4. The Old Report . 16

4.4.1. Implementation . 16
4.4.2. Differences in Generated Results 17

4.5. The Question and Score API . 18
4.6. The New Process . 21
4.7. An Example Dashboard . 22
4.8. Assessing Reproducibility . 25

5. Discussion 27
5.1. Limitations . 27
5.2. Future . 28
5.3. Conclusion . 29

References 30

A. Git Repo 33

B. Mockups 33
B.1. Table . 33
B.2. Linechart . 34
B.3. Barchart . 34
B.4. Scatterplot . 35
B.5. Boxplot . 36
B.6. Violinplot . 36

3

C. API Endpoints 37
C.1. questions . 37
C.2. scores . 37
C.3. telemetry . 37

D. Non-implemented Questions 38

E. Dashboard 40
E.1. Table . 40
E.2. Linechart . 40
E.3. Barchart . 41
E.4. Scatterplot . 41
E.5. Boxplot . 41
E.6. Violinplot . 42

1

1. Introduction

Evaluations in the academic context provide important feedback to lecturers that can
help them better assess student needs as they continue teaching their subjects. Providing
anonymous feedback will not only give students a useful tool to express their likings and
grievances, but will also enable lecturers to include the results in their teaching process.
Understanding evaluation results not just as a good or bad grade for themselves, but
rather as the base for an open discussion with students, helps raise student satisfaction
by giving them the chance to influence the curriculum [5].

While individual lecturers only need their personal results, the faculty itself needs an
overview of all courses to determine if teaching quality improves or decreases over time.
Using evaluation reports can provide a comprehensive overview of all courses without
having to execute the time-consuming task of analyzing every individual evaluation re-
sult themselves. To improve decision-making this visualization should encode as much
information as possible, while still staying comprehensive to enable the decision-making
process to move fast, but also efficient.

1.1. Motivation

Currently, most steps in the generation of an evaluation report at the faculty contain
manual labor, where a single person uses Excel to interpret and clean the data. This
process not only takes a long time, since it’s repeated multiple times to validate the re-
sults, but also isn’t transparent. Since the process doesn’t follow a fixed scheme and isn’t
documented anywhere, it is impossible to reproduce, especially if the person conducting
the process stops working for the institute. Additionally, this way of generating the re-
port complicates the possibility to put results into historical context, due to the amount
of additional workload that would be introduced. Creating a pipeline to handle the data
cleanup and modification allows the process to become more transparent, since the steps
that produced a result can be retraced by following the code steps. Reproducibility
additionally enables the current and future personnel to understand the process and to
keep it uniform, while also minimizing their workload with the report generation itself.

1.2. Goal

During this thesis, a pipeline will be implemented, which employs the concept of repro-
ducibility to enable current and future members of the evaluation committee to get a
historical development for evaluation performance in their faculty. To achieve this goal,
the concept of reproducibility will be introduced (see subsection 2.3) and applied during
the development process. In order to elicit requirements for the new pipeline, interviews
will be conducted with key personnel from the institutes.

2

2. Theoretical Background

2.1. The Evaluation Process

According to the supplementary text provided with evaluation reports [24], evaluations
are conducted in the second third of every semester. Lecturers are provided with a
QR code they can distribute in their courses, which leads students to the evaluation
page. Based on the course type, students fill out one of four different types of ques-
tionnaires. For lectures, tutorials and seminars they contain mostly similar questions,
but also questions tailored specifically to the course type. In evaluations for lectures
students are asked about the lecture contents and its difficulty, while the tutorial ques-
tions rather ask about the quality of interaction between the lecturer and the students.
Seminar questionnaires are structured similarly to the ones provided for lectures, with
the addition of asking about the topic itself, since seminars typically focus on a single
topic, whereas lectures contain multiple.

If any lecturer is new at the faculty, they won’t get any of the three types mentioned
above, but rather get distributed a questionnaire assessing teaching competence of the
new lecturer. This questionnaire contains all questions that can be found on the other
three types and applies special focus to didactic capabilities of the lecturer.

Typically, students have about two weeks to fill out these forms before the links aren’t
accessible anymore. After the deadline the current approach begins, where the data gets
transferred into the evaluation software, the individual results of lecturers get distributed
back to them and the evaluation report gets generated.

2.2. The Current Approach

The requirement elicitation interviews conducted in subsection 3.2.1 reveal that the
current process of creating the evaluation report contains almost exclusively manual
labor. The Advisor for Studies and Teaching explained how they use the internal software
Zensus [4] to extract the evaluation data into Comma Separated Values (CSV) files,
which are used to manually create a minimal evaluation report.

This report follows a fixed scheme, where the first part contains text that is similar
every semester. It explains how and when the evaluation was conducted, how many
people started teaching this semester and finally statements about the participation of
students.

Following this section, a table is presented, which contains specific values about partici-
pation and provides most information about courses (cf. Figure 1). The table follows the
same structure every semester, where the rows relate to the courses split into the three
types of lecture, seminar and tutorial and then splits these types into subcategories that
represent the three institutes of bioinformatics, computer science and mathematics.

3

Table columns represent the numeric values for these rows. In the first three columns
informational values about the courses themselves are displayed. They denote how many
instances of the specific types of courses were registered for the corresponding institute,
how many of these were held cooperative by at least two lecturers and how many courses
had less than five sign-ups.

The next three columns give information about the participation of students in the
evaluation. Values included here, display how many courses were evaluated for a type,
how many of the evaluated courses had at least five student responses to the evaluation
and the percentage of how many courses were evaluated overall.

In the final two columns medians for the number of students registered for evaluated
courses and the number of returned evaluations per course are provided.

The evaluation concept states that, due to data privacy of the students, courses only
get their evaluation responses, when at least five students took part in the evaluation
[17]. Courses that don’t get an evaluation response aren’t included in the report, since
they wouldn’t contribute to the overall statistic. Thus, some columns mentioned above
contain the ”at least five responses” constraint, where applicable.

Figure 1: Overview table in the evaluation report from the summer term in 2023 [24]
Columns marked with a star (*) denote that they had the ”at least five student responses” constraint.

In the interview with the Dean of Study, they additionally revealed that the deanery
evaluation that should happen every semester, as mentioned by the evaluation guide-
lines of the institute [17], is currently not conducted. The presented example of such an
evaluation in the guideline has never reached the dean. However, they could not say if
their predecessors received such documents. They did note that they see the overall eval-
uation report when they participate in faculty council meetings, in which the evaluations
report is presented.

4

2.3. Introducing Reproducibility

The main focus of this work is to deliver a result that is reproducible. Designing and
implementing the pipeline this way, allows other people to verify results and correctness.
Before creating a reproducible software, it is important to define what reproducibility
is.

This thesis aims to use definitions according to Kitzes et al. [10]. In their book they
conducted 31 case studies, which employed a reproducible research workflow. They
introduce the concept of computational reproducibility, defined as ”A research project is
computationally reproducible if a second investigator (including you in the future) can
recreate the final reported result of the project, including key quantitative finding, tables,
and figures, given only a set of files and written instructions” [10]. This definition later
gets more generalized to the essence, that research is reproducible, if other researchers
can use the original raw data and methodology to create the same workflow and thus
reaching the same result. The aim of this concept is to create a workflow, which allows
the analysis of new data with the same workflow. Since this thesis attempts to create
a pipeline that works with past, present and future evaluation data, both concepts will
be applied. To enable other users to understand and use the pipeline, it will be created
reproducible, by providing the necessary code that ensures evaluation reports can be
generated in the future, provided the questionnaires or data structure won’t change
significantly. This is in line with an answer provided by the Evaluation Officer, who
stated that ideally the pipeline will be self-explanatory, so they could give the code to
any external person, who then could comprehend how the results are created.

This concept of reproducibility should not be confused with the term of replicability.
According to Kitzes et al. [10] any software is replicable, if the provided code produces
the same output, regardless of the person executing it. Reproducibility wants to recreate
results by using the same methods, while replicability recreates results by using the exact
same steps.

To ensure the workflow can be reproducible, the key points from Kitzes et al. [10] will
be applied. They suggest using automation to the degree that the person accessing the
workflow only needs to press one button or spend an equivalent of minimal effort to
produce a result, without creating a monolith. To achieve this, the steps can be split
into multiple files or multiple cells in Jupyter Notebooks. However, this introduces the
need to highlight the starting point of the whole workflow. Employing any type of wiki
or READMEs helps people to access the workflow for the first time. Supplying Makefiles
for example, can also simplify interaction with the workflow, by providing commands
that execute the stept. Another key focus of reproducible workflows is availability. Using
a publicly accessible version control system like GitHub1 or GitLab2 not only provides
interested people with the source code, but also enables utilization of the git tag system,
where current and past versions and their differences can easily be labeled. When using

1https://github.com
2https://gitlab.com

5

https://github.com
https://gitlab.com

a public version control system, a corresponding license should be supplied to ensure
derivatives of the original workflow stay publicly accessible. By choosing a Copyleft
license, anyone using the workflow in their own software in any way, has to make their
source code available under the same terms as the original workflow. This helps with
preserving any future iterations of the workflow, by forcing the source code to stay open
to the public [11].

The resulting pipeline will follow these key points. It will be hosted publicly on the
GitLab instance of the faculty (see Appendix A) with the copyleft GNU GPL v3 License3

forcing the source code to stay open. Additionally, the Wiki feature in GitLab is used
to provide documentation for the workflow. To provide in-code documentation, the
option to create markdown cells in Jupyter Notebooks will be employed. For simplified
access with the pipeline, a Makefile is provided that combines installation, building and
execution into the command make install and make run_pipeline.

3https://www.gnu.org/licenses/gpl-3.0.en.html

6

https://www.gnu.org/licenses/gpl-3.0.en.html

3. Analysis

3.1. Analyzing the Current Approach

In the interviews, the Advisor for Studies and Teaching revealed how they create the
evaluation report manually, and according to them, this method contains a few caveats.

They mentioned that the Zensus software they use can’t automatically find and mark
lectures that were held cooperative, so the advisor has to search for and count them
by hand. The resulting CSV file from Zensus contains all responses, which means they
have to manually group courses belonging together, filter results and count responses.

This process, while trivial, can be error-prone due to the amount of data in these files. For
example, in the summer term 2023, the three files for computer science, bioinformatics
and mathematics contained 1028, 92 and 1196 lines (= number of individual responses)
respectively, adding up to around 2316 data points per semester. Using these data points,
the advisor then has to filter out courses that received less than five responses, which
means counting rows belonging to the same course by hand. The remaining responses
then need to be grouped into the respective courses, to be able to get the number
of responses for every course to use in calculations. Finally, to ensure the results are
accurate, the process needs to be repeated multiple times, to guarantee errors weren’t
made. The advisor noted in the interviews that this process can take them up to three
hours.

Executing these steps manually invites errors. Comparing the data with the results on
the evaluation report shows that in some semesters the median includes all registered
courses, while in other semesters it’s calculated using courses with at least five responses.
Similar problems arise when looking at the column that reports how many courses were
evaluated, where sometimes all registered courses are used as base value, while courses
that had at least five registered students are used in other reports. Since these mis-
takes aren’t obvious to the naked eye, it becomes near impossible to notice them when
calculating results manually.

3.2. User Requirements

In order to create the resulting software in a manner that is user centered, a design
process was employed that aims to create software in cooperation with the stakeholders.
By following the key principles for a User-Centred System Design (UCSD) process pro-
posed by Gulliksen et al. [7], the development cycle will be guided by the user and their
goals, ensuring the result is to their satisfaction. USCD notes that not only should the
user requirements be extracted early in the development, but the user should always be
involved. Based on this technique a process proposed by International Organization for
Standardization (ISO) for human-centred design is applied (cf. Figure 2).

7

Figure 2: Human-centred design process based on ISO 9241-210 Ergonomics of human-
system interaction-Part 210: Human-centred design for interactive systems [8].
The solid lines represent transitions that must occur and the dotted lines are transitions that may occur depending
on how the processes evolve.

To understand the context of evaluation reports and to identify the needs and wants
from people working with the pipeline or the generated results, requirement elicitation
interviews were conducted with key personnel at the institutes. Applying concepts from
Scheinholtz et al. [18], the interviews provided only a few questions that mainly are
intended to act as a transition between topics, while the actual interview relied on
reactions and replies by the interviewer to what the interviewee said. This leads the
interview to be structured more like a conversation between both participants, thus
causing the interviewee to expose information that they thought was trivial or didn’t
need explaining.

Different tags were applied to questions as classification, guaranteeing they can be asked
in the right context. In the same publication Scheinholtz et al [18] suggested that
questions can be split into three groups which classify the question type (cf. Figure 3).
The first group (”Open vs. Closed”) identifies the questions’ specificity. Open questions
allow the person answering them a lot of room on the topic, while closed questions
restrict the answer possibilities. Open and Closed Questions can be tagged even more
precisely by using the adjectives highly and moderately to specify the degree of openness
or closeness. The second group (”Neutral vs. Leading”) mark the interviewers intentions.

8

When asking leading questions, the interviewer may already have an answer in mind
they want to hear, while neutral questions are used as ”normal” interview questions that
need an answer. Finally, the last group (”Primary vs. Probing”) exclaims the current
position of the interview. Asking a primary question opens up a new subject different
to the one discussed before, and asking a probing question attempts to extract more
answers out of the interviewed person [18]. Most questions were labeled as primary,
since probing questions rather arise during the interview itself and can only be identified
after it concluded. Closed questions are mainly used for extracting (non-) functional
requirements, while open questions are employed when the interviewed person should
talk about their relation to the evaluation process.

Figure 3: Question Qualifications according to Scheinholtz et al. [18]

3.2.1. Interview 1 - Initial Requirement Elicitation

Overall six members of the institutes have been identified as suitable candidates for
requirement elicitation interviews due to their direct involvement in the evaluation pro-
cess or because of their experience with evaluations at the university. The three key
interviewees consisted of the Evaluation Officer, who oversees the general procedure of
evaluations at the institute, the Advisor for Studies and Teaching, who conducts the
evaluations and creates the resulting report, and the Dean of Study, who is tasked with
improving quality of teaching. Additionally, three lecturers of the three institutes were
chosen, who once were in the position of Dean (of Study).

All participants received the same base set of questions that asked about the current
evaluation report and how they think it can be improved. To ensure everybody could
provide ideas they normally may not disclose, the headstand method was employed, where
the question of ”How would an ideal evaluation report look like to you”was negated into

9

”How would an evaluation report look like to you, so you couldn’t make any statements
about teaching quality” to force interviewees out of their perspective [9].

In addition to the base set of questions, each type of interviewee got questions specifically
tailored to their job position. The Dean of Study was asked about how they use the
results of the evaluation report as a tool to fulfill their task of improving teaching and
studying. Due to their involvement in the process itself, the Evaluation Officer and the
Advisor for Studies and Teaching were asked about how they partake in the evaluation
process and what steps they take from the beginning of the evaluation up to the final
evaluation report. The lecturers of the institute were asked how they use evaluations
overall in their work and if they pay attention to the results of the evaluation report.

During these interviews all interviewees confirmed that the deanery evaluation was never
conducted. Where applicable, the interviewee was asked questions about their preferred
version of such an evaluation. Based on the answers, the deanery evaluation would
contain the same information as the evaluation report itself, with the addition of a
ranking of all courses. This ranking would then be used to award good teaching and to
identify teaching deemed insufficient by students. In opposition to the public evaluation
report, the deanery evaluation is only shown to the dean and can contain personal data,
thus enabling the ranking.

Once the interviews were concluded, requirements got extracted and categorized by
using the MoSCoW prioritization. According to the Agile Business Consortium [2],
MoSCoW stands for Must Have, Should Have, Could Have and Wont Have. Each
category has a ruleset, which determines what type of requirements are supposed to
be in it. Requirements that are in the Minimum Usable SubseT (MUST Have) denote
core features that ensure usability at the point of delivery. Without these features the
software could either be illegal, dangerous or simply just not viable enough. Once the
Must Haves are implemented, the software can be expanded with Should Haves. These
requirements aren’t necessary, but would improve user experience noticeably. After Must
and Should Haves are implemented, the software can be improved by introducing the
Could Haves. They will improve the software similarly to Should Haves, but will be less
noticeable if implemented or left out. Users could live without them, but also wouldn’t
mind haven these minor features. Finally, the category of Wont Haves are requirements
that will not be implemented in either this release cycle or ever. This category may
also simply hold features that will be addressed, when deemed possible. Keeping this
category can help users and developers alike by acting as a list that can be looked at to
prevent duplicated requirements.

The extracted items were put into the categories as seen in Figure 4 and also tagged
as a functional or non-functional requirement, where functional requirements are fea-
tures that specifically need to be implemented during development, while non-functional
requirements describe attributes of the resulting pipeline [22].

As visible, the MUST is the old report, but with the enhancement of displaying historic
development. Non-functional requirements like Open Source or Anonymity can easily

10

Figure 4: MoSCoW prioritization of requirements

be realized by hosting the source code publicly, while withholding the source data and
removing lecturer names when results are displayed anywhere. Reproducibility is guar-
anteed by following the concepts mentioned in subsection 2.3, which in turn helps with
keeping the pipeline dynamic, by providing code that can easily be understood and thus
expanded. Ensuring these key features will not only speed up the generation of reports,
but also enhance them by providing historic context.

Requirements that are possible and enhance the visualization of the report are put
into Should Have. They were wished by a few people and would improve the results
noticeably. Providing the results of the report generation as an application programming
interface (API), where users can simply request results by using the provided endpoints,
would enable people not involved in the evaluation process to interact with results to
create own visualizations over a standardized endpoint. Additionally, this would apply
an Open Science approach to the evaluation where the open code of the pipeline in
combination with the results make the research process available to everyone just like
the UNESCO suggest in Understanding open science [21].

Finally, requirements put into Wont Have will be discussed further in subsection 5.2.

3.2.2. Interview 2 - Prototype Presentation

The second interview served the purpose to produce a design that satisfies the users
and evaluate this design with them (following the steps in Figure 2). For this, mockups
were created, that implemented the requirements extracted in the first interviews and
presented to the same interviewees (see Appendix B). To assess the validity of the
designs, the interviews were designed with the Think Aloud method, where participants
will normally be presented with software unknown to them and tasked with navigating

11

through it while vocalizing their thoughts during the experience [12]. In this thesis
however, the interviewees are presented with the mockups and asked to describe what
information they can get from it. Analogue to the original intention of the method, this
interpretation will show if the designs are intuitive, convey the right data points and
lead interpreters to the intended conclusions.

For this interview, every aspect of the MoSCoW prioritization, except the Wont Haves
were included. Must Haves like Open Source and Reproducibility can’t be illustrated and
thus won’t be visible in the mockups.

Historic development was shown in multiple examples. It was visualized with a line chart,
bar chart and visible in the box- and violin plots. Most of the interviewees confirmed,
that a line chart is a good way to display historic data, while the bar chart obfuscates
this goal. The traffic light system was employed in a table where arrows display historic
development. To convey if the development is positive, negative or neutral, the arrows
were colored green, red or yellow respectively. They would receive their color based
on intervals in which the development resides, which is the same for every course type.
Interviewees noted that using a system like this can obfuscate interpretation. If a course
was colored red for a long time and now starts to ascend into the yellow category they
still seem to perform badly, even though they managed to improve. In order to prevent
confusion, this should be mentioned when the table is used on an evaluation report.

The ”Should Have” of clustering courses was done by a scatter plot. In order to en-
able comparison of values and to minimize the amount of data points, questionnaires
were placed along dimensions, rather than individual responses to questions. These
dimensions are derived from the lecture competence questionnaire, which splits its 44
questions into three dimensions that group questions into ”Conveying Knowledge and
Supporting Understanding” (Dimension A), ”Motivate and Create an Atmosphere con-
ductive to Learning” (Dimension B) and ”Control of Interaction in the Learning Group”
(Dimension C). Since every question on the teaching competence questionnaire can be
mapped onto the other three, these categories can be applied universally. In order to cre-
ate two similar values that can be compared along two axes, the initial three dimensions
have been split into two subdimensions each. Since the lecture competence question-
naire not only splits questions into dimensions, but also categorizes similar questions,
these categories can be assigned to subdimensions. This resulted in the six dimensions of
”Course Design” (A.1), ”Student interaction” (A.2), ”Catering to Students” (B.1), ”Moti-
vating Students” (B.2), ”Rules of Conduct” (C.1) and ”Time management” (C.2). What
questions belong to what category can be found under src/db/questions.json in the
GitLab repository (see Appendix A). With these categories, the mockup places courses
based on their score in the dimensions onto the coordinate system and clusters them
with similarly placed ones. Almost all interviewees stated that they like the idea, but
would rather like to see a scatter plot, where each lecture is placed by its individual
score, without creating clusters. This not only allows to get a more detailed overview
about how courses are doing, but will also create clusters on its own, if courses are close
enough to each other.

12

Finally, box- and violin plots also took advantage of the dimensions mentioned above
and visualized the comparison between institutes over time. The only feedback received
on this type of visualization is that both box and violin plots are hard to read for people
not familiar with them, thus a legend should be provided.

Overall the second interview concluded that the mockups are useful and the dimension
system is viable. However, most interviewees mentioned that the design choice of coloring
the institutes gray for computer science, green for bioinformatics and blue for mathe-
matics, provided a visual challenge and should be more accessible in future visualization
to include people with color blindness.

By omitting course and lecturer names on visualizations, anonymity is guaranteed, since
courses are displayed as a group instead of individuals. However, this design choice got
negative responses from almost all interviewees, claiming that evaluation results should
be publicly accessible for all members in the evaluated institutes. While this thesis
will keep names of lecturers and courses hidden as part of the requirements by both
the university and members of the evaluation committee, the cleaned data will still be
kept in a way that keeps the course and lecturer names intact, providing the necessary
flexibility, in case this requirement should change in the future.

13

4. Implementation

4.1. Evaluation Data

After evaluations are finished, the data of the responses is exported from Zensus into
CSV files. The output is split into three separate folders representing the institutes,
where each folder has subfolders for evaluated semesters. Every generated folder con-
tains four files, daten.csv, kommentare.csv, mittelwerte.csv and summen.csv with the last
three files representing student comments, averages and sums respectively. daten.csv is
a file containing all data, which can be used to generate the other three files. Since
the first file contains all data, the pipeline only uses that file and transforms it as
needed. An example of this file can be found in the repository (see Appendix A) under
raw_data/data.example.csv.

The data in the file contains about 152 columns that follow a specific schema. In the
first columns the provided data contains metadata of the course. Here the course name,
number, type, lecturer and additional data that is used by Zensus is displayed. The
remaining columns in the file contain all questions from the four questionnaires, with each
column corresponding to one question. In every file duplicated questions can exist, since
every question in every questionnaire is listed sequentially, thus containing duplicates
if questions exist on two or more questionnaires. An example dataset with all columns
and dummy data can be found in the raw data folder in the GitLab Repository (see
Appendix A). It should be noted that the CSV files generated by Zensus have semicolons
as separators and are encoded in ISO-8859-1 and need to be opened with these constraints
in mind in order to keep special characters like umlauts and to maintain the column
structure.

Additionally, an extra file is needed per semester, in which the number of students and
lecturers for each course is denoted. The Advisor for Studies and Teaching mentioned
that the format of these files evolved over time, when they encountered complications
with the schema they used before. This required to normalize these files, as every
semester contained a different way to store the data. Every file was normalized by hand,
since the schema was impossible to normalize with code. To clean up the files most col-
umn names were uniformed, since most of them changed over the years. The course and
questionnaire type sometimes contain the key of ”LeKo” in both columns. This compli-
cates the identification of the course by its type, as it becomes impossible to infer if it is
a lecturer, seminar or tutorial. The course type would then be changed to Vorlesungen
(lectures), Seminare (seminars) or Übungen (tutorials) according to their entries in the
course directory of the university, to enable the categorization later in the pipeline. Nor-
malizing was oriented on the layout of the most recent semester schema, since it is the
one currently used. The final schema contains the course number, course name, ques-
tionnaire type, course type, lecturer, number of participants, number of lecturers and the
institute name. An example can be found in the raw_data/participants/example.csv
file in the source code (see Appendix A).

14

4.2. Technology

As mentioned in subsection 2.3 the chosen file type is Jupyter Notebook, which enables
to write the application code using python that can be separated into multiple code
cells to create visual groups of steps that belong together. Additionally, the cells can
be used as Markdown fields allowing to expand the code with textual explanations for
sections. While the Notebooks were employed where possible, a few files remained normal
python files, since they provide functionality not possible with Jupyter Notebooks, like
providing constant variables or functions that interact with the API (see subsection 4.5)
that are used by multiple files.

In order to simplify interaction with data, the popular python data analysis tool pandas
was used. Pandas can convert data into a DataFrame, which essentially is a table in
which the residing data can be filtered, manipulated and modified without having to
change the original CSV file [23].

4.3. Data Cleanup

The raw data contains a few obstacles. Since the file structure changed over time, the
data isn’t uniform across semesters. For example the column denoting the questionnaire
type has four possible entries in the most recent data. Here ”VL” is used for lectures,
”S” for seminars, ”Ü” for tutorials and finally ”LeKo” for teaching competence. However,
past data does not follow this rule. In these files, lectures are also sometimes identified
by ”V”, ”Vl” or ”VL+Ü”. This creates three possible values to be expected in the data,
that need to be handled. To prevent the pipeline itself having to encode these types and
additionally to provide support for future notation changes, the cleanup script applies
a function to the column that uses a dictionary to normalize names. This dictionary
provides the possibility to change future notation by simply expanding or changing it.
Currently, this step normalizes the names for lectures mentioned before to ”VL”, but
also changes special combinations like ”VLeko”and ”SLeko” to ”VL”and ”S” respectively.
When looking at the course category, the courses in the most recent data file are denoted
in their plural form (”Vorlesungen”, ”Übungen”, ”Seminare”). However, in past data some
courses are singular. The pipeline takes a similar approach to the questionnaire type
and maps a dictionary to the singular nouns, converting them to plural.

To prevent the pipeline having to deal with large files, the cleanup script removes columns
deemed unnecessary. These are indexed in an array that can be expanded or shrunk as
needed.

During development, it became apparent that some course numbers have leading or
trailing whitespaces. These can hinder the pipelines’ ability to identify courses, as the
whitespaces will fail equality checks with the same course number without whitespaces.
Thus the cleanup script removes all leading and trailing whitespaces in the lecture num-
ber column. A similar problem exists with question columns, where some questions

15

contain trailing whitespaces, which becomes a problem when attempting to merge ques-
tions, since duplicates could be overlooked. The cleanup script removes these whitespaces
the same way as it does with the course numbers.

The next cleanup step merges questions. Due to the fact that the columns in the data
represent the questionnaires in order, some questions that are on multiple questionnaires,
will become duplicated columns. This does not only cause pandas to append numbers to
the duplicates, but also storing the data this way leaves large gaps in the values. Courses
that were evaluated by one type of questionnaire, won’t be evaluated by another one.
This means lectures for example have data in 27 questions columns and no data in
the remaining 113 columns allotted for questions. Since data is organized this way,
duplicated questions can simply be merged into one column, without the danger of
overwriting values. This reduces the file size and ensures that column names are truly
unique. After the merge took place the duplicated columns are dropped. Once all
columns have been merged, they get replaced with Universally Unique Identifiers

(UUIDs) to enable the pipeline to interact with the API defined in subsection 4.5.

This data then is split into the questionnaire types and saved in the clean_data folder
along with a file containing all the data. The original structure of separating the data
by institute and then by semester is kept in this step.

Finally, the cleanup script takes the files under raw_data/participation and changes
the lecturer name column. Since all lecturers are denoted as ”Surname, Name”, but the
rest of the data uses ”Name Surname”, the participation names are split at the comma,
reversed and joined by a whitespace, to enable interaction between these files.

To simplify interaction with the cleaned data, the script saves all files in the new encoding
of ”UTF-8” to conserve umlauts and changes the column separator from a semicolon (;)
to a comma (,).

4.4. The Old Report

To ensure the correctness of the provided data and to create a Minimum Viable Product
(MVP), the first step was to recreate the manually generated current evaluation report
with code and to compare the output with the existing reports. This section also aims
to explain differences in results.

4.4.1. Implementation

The values provided in the table of evaluation reports (cf. Figure 1) are heavily summa-
rized, which in turn simplifies the generation of the report. Most columns are created
by simply summing up the related rows that satisfy the requirements in the rows and
columns. The last two columns are easily generated by using the median function pro-
vided by pandas.

16

The first three columns need the participation data provided by the Advisor for Studies
and teaching, which was already cleaned as mentioned in subsection 4.1. Here the number
of registered courses simply is the size of the DataFrame and the collegial held courses
and lectures with less than five registered students are extracted from the corresponding
columns in the file.

Generating the remaining columns of the evaluation report requires the evaluation data.
This data is split into the three institutes for computer science, mathematics and bioin-
formatics by default. To simplify working with the data it will first be combined into
a single DataFrame containing all the data from all three institutes. During the merge
every dataset will get a column called ”institute” appended, so the single evaluation re-
sponses can still be mapped to the respective institute. After that the responses are
grouped into the courses they evaluate. This is done by using four columns that contain
the course number, lecturer name, type of course (lecture, seminar or tutorial) and the
name of the course. The number of responses per course is then appended as a size
column, by counting the rows belonging to the group.

The four attributes mentioned above are the minimum set that can uniquely identify
any student response to any course. While course numbers are unique for the courses,
they fail to identify the ones held by two or more people that are evaluated differently.
In order to differentiate between the people, the lecturer name is needed. In some cases
lectures have the same course number as their tutorials and can be held by the same
person, while still being evaluated separately, thus requiring to take course type into
account. Finally, lecturers holding tutorials belonging to a lecture can lead multiple
instances of tutorials, that are evaluated individually. In order to prevent the grouping
of two tutorials held by the same person, the lecture name get’s taken into account, since
they are mostly different from tutorial to tutorial.

To get the number of courses with at least 5 student responses, the grouped courses are
filtered by the newly created size attribute.

Calculating the percentage of courses that got more than five responses uses the number
of courses provided in the participation file and the data generated in the previous step
to calculate the resulting percentage.

Finally, getting the median for returned questionnaires and registered students in eval-
uated courses takes advantage of the median function in pandas. The function gets
applied to the courses with at least five responses.

4.4.2. Differences in Generated Results

When comparing pipeline generated results to the official evaluation reports, it becomes
apparent that numbers generated by the pipeline sometimes differ from the ones provided
by the official report.

17

The biggest potential source of this data variation could arise during the grouping of the
courses, since there is no way to uniquely identify a tutorial for a specific module. While
the course name and number in combination with the lecturer name enables to uniquely
group together tutorials, it is still possible that one person holds multiple tutorials with
the same name. Since these tutorials share a name, lecturer and course number, they are
grouped into a single tutorial, thus combining the results of the two tutorials. Currently,
this does not happen often, but can potentially cause the loss of about half the data,
since most tutors lead at least two tutorials per module.

Evaluation reports occasionally contain mathematical errors or differ in the way they
calculate values. The report states it calculates the median of returned questionnaires
per evaluated course with the restraint that the course has received at least five responses.
On occasion the median is calculated considering all courses that got responses, even
if they received less than five of them. The code only uses courses with at least five
responses, thus reporting a different median. Similarly, the percentage of evaluated
courses with at least five responses is calculated differently depending on the evaluation
report. Each report takes the amount of courses with five responses as the percentage
value, but some reports use the number of evaluated courses as the base value, while
other reports use the number of registered courses.

4.5. The Question and Score API

In order to future-proof the pipeline it needs to be dynamic. This means it should be
able to handle any question introduced in the future, but also needs to work if questions
get dropped from the questionnaire. To implement these features, an additional API
was created during development. This API is separated into two categories, which serve
different purposes.

The first category is dedicated to questions. Here each question on the questionnaires is
stored. Every question has a unique identifier that can be used to retrieve its content,
scale and what dimension it belongs to. The API allows to either retrieve all questions
or to get specific information about a question when provided with its identifier. In
addition to the questions, this category also allows to retrieve all dimensions, course
types and/or scales. A list of all endpoints is provided in subsection C.1.

This part of the API currently covers 74 out of 127 questions from every questionnaire
from the last five semesters. Currently excluded are questions that aren’t used anymore
or that are variations of existing questions that haven’t been identified yet. They can
be found in Appendix D

The second category of the API was build to store the evaluation results. This category
has multiple endpoints for retrieving, inserting or deleting evaluation results. It is pos-
sible to insert multiple courses at once with their respective results or to retrieve all of
them. If scores are only needed for specific semesters, institutes, dimensions or all three

18

at the same time, they can be retrieved by corresponding API calls. All endpoints are
listed in subsection C.2.

The API instance itself gets delivered as two docker4 containers that can be started
together with recommended configurations using the provided docker compose specifi-
cation. Docker is a tool that enables to create virtual machines (containers) that host
all files required to run software that is by default isolated, preventing access to the
underlying software, if not specified otherwise. It can be used on any system to recreate
services identically, since containers get delivered with a description (called images) that
tells docker what dependencies it should install with which version. This can guarantee
that, regardless of their operating system, the user can execute software the way it was
intended [6].

The first of the two containers simply runs a Postgres5 Database image, which gets fed
a Structured Query Language file that instructs the database what tables to create
and what data (like current questions) to insert into them on startup. This file can
be found in the public repository (see Appendix A). The second container hosts the
actual code for the API. While both containers could be started independently of the
compose file with their own provided Dockerfiles, it is not recommended. The compose
file provides additional constraints that ensure full functionality. It creates a shared
network that prevents the database container from being publicly accessible, thus only
allowing the container housing the code to communicate with the database, securing it
from attacks. Additionally, the compose file provides a health check for the database
container, which causes the API container to wait with its startup until the database is
ready. This prevents the API from crashing, since it tries to connect to the database
upon startup.

The API was implemented in the programming language JavaScript using the Ope-

nAPI specification. OpenAPI provides a standard to create API endpoints that are both
easily readable by humans and machines [19], by providing standardized definition files
alongside the actual API, that denote the behavior of the defined endpoints [20].

To follow this specification the API was developed with the express-openapi6 package,
which automatically generates OpenAPI 3.1.0 compliant APIs based on file structure.
The package expects two folders, services and paths alongside an api-doc.js file.
The API Document contains the definition of all types (here called models) that exist in
the context of the API. Models typically provide their data type alongside with a short
description and/or examples of input values. This file, is fully compliant to OpenAPI

schemas7 defining models.

The paths folder describes endpoints by following the folder structure to construct the
URL. For example constructing the endpoint /scores the folder structure would look

4https://www.docker.com
5http://www.postgresql.org
6https://www.npmjs.com/package/express-openapi
7https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.3.md#schemaObject

19

https://www.docker.com
http://www.postgresql.org
https://www.npmjs.com/package/express-openapi
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.3.md#schemaObject

like Figure 5.

/paths

/score.js

Figure 5: Directory tree for the /scores endpoint

In this example the score.js file hosts all logic for the endpoint. It defines what HTTP
requests (GET, POST, DELETE, etc.) the endpoint accepts and how the response looks
like. During development, it was decided that these files reference their respective service
that handles the actual logic, while score.js itself would just call the service with the
input data and return the response from the service.

In order to create endpoints that accept variable parameters, the parts in the path simply
need to be enclosed with curly braces. Any part of the path can become a parameter,
regardless if it is a folder or file. An endpoint like /scores/{semester}/{dimension}

would allow users to replace semester and dimension with the respective values they
want to request. The file structure for such an endpoint would look like Figure 6.

/paths

/scores

/{semester}

/{dimension}.js

Figure 6: Folder structure for the /scores/{semester}/{dimension} endpoint

The parameters delivered would be provided through the request parameters in the
function signatures like Listing 1

1 async function GET(req, res, _next) {

2 res.status(200).json(await service.function(req.params.semester,

req.params.dimension))↪→

3 }

Listing 1: Function signature for endpoints with parameters

As mentioned above, the endpoints reference services, which are stored in the services
folder. These services contain functions that get called by the endpoint files. Typically,
functions in the service files contain a common topic. For example everything that
returns questions is handled by the questionsService.js file. If these services need
to retrieve information from the database, they will call a function from the dedicated
database file postgres.js, which actually communicates with the database. Functions
in this file are exclusively syntactic sugar to hide SQL statements. These functions will
convert the input, perform SQL statements to the database and return the output, while
formatting in- and output it if needed.

20

To ensure all endpoints can be used by people without knowledge of the OpenAPI speci-
fications, the swagger-ui8 package was employed. It takes the provided definitions and
endpoints and converts them into a graphical user interface that can be accessed in a
browser. This user interface demonstrates descriptions for endpoints, what data they
expect and return. It additionally provides the tools to make API requests directly. In
the pipeline however, the API gets accessed by the python requests9 package that calls
the endpoints.

Creating the API this way not only allows code interacting with it to autodiscover
endpoints through the standardized OpenAPI description, but also simplifies development
of new endpoints or renaming/maintaining existing ones by following the mentioned file
structure.

With both of these categories the API enables easy creation of new questions by inserting
them along with their scales and dimensions into the database. The pipeline will then be
able to recognize these questions in the raw data and convert them into the identifier (as
described in subsection 4.3) to consider the student answers in the score calculation.

The API also implements the only ”Could Have”that was put on the MoSCoW scale (see
Figure 4), indicating that the feature was categorized falsely and actually is tightly-knit
together with the ”Must Have” of a dynamic pipeline.

4.6. The New Process

To enable the implementation of the mockups created and verified in the second phase
of prototype design and interviews (see subsection 3.2.2) the transforming of answers
to scores for the respective dimension is the focus of the new pipeline. Calculating the
score for questions on a course basis provides the starting point for the scatter-, box- and
violin plots (visualization see Appendix B). To calculate the score, every possible answer
to a question has been given a value, which can either be positive, negative or neutral,
based on what the answer conveys. Most answer possibilities are valued symmetrically
along their scale. Due to the nature of Likert Scales, the possibilities have a neutral
answer in the middle and get more negative/positive to the right/left of the neutral
choice [3]. However, some answers were deemed ”valueless”. Specifically questions that
asked how much time students spend on the course outside regular events, were seen as
too individual to affect the score of the course. These answers were assigned a weight of
zero and won’t affect the score. Every answer with its weight can be found listed in the
SQL file under src/db/schema.sql in the GitLab repository (see Appendix A).

To achieve this transformation from the Likert Scale into the new scores, the pipeline
iterates over every file in the cleaned data and converts them into pandas DataFrames.
In each DataFrame the student responses then get grouped by the course number, course

8https://www.npmjs.com/package/swagger-ui
9https://pypi.org/project/requests/

21

https://www.npmjs.com/package/swagger-ui
https://pypi.org/project/requests/

name, course type and lecturer name, creating groups for each individual course. Af-
terwards, the score function gets applied on each column of the group that matches a
regular expression for UUIDs. The function takes the answer scale corresponding to the
question and then maps the given student scores to the value of the answer in the scale.
Once every answer to the question has been converted, the function returns the sum
of all scores, creating the total score for the question while additionally obfuscating the
individual responses.

Finally, these scores along with the course number, name, type, lecturer name, semester,
institute, number of returned evaluations and number of registered students are put
into the result API, which in turn inserts them into the database where they become a
course object. The course gets assigned a UUID, which serves as a foreign key in a table
that keeps track of scores, which also connects the question ID with an instance in the
question table.

Courses may be identified uniquely by their ID, but to prevent course duplication, the
database has an additional constraint. Any course in the database has an additional
superkey, meaning the smallest number of columns that allow unique identification of
any row in the database [1]. The course superkey consists of the five columns representing
the course number, name, type, lecturer and semester. This means that courses that
are repeated every semester are also created every semester. While any course can be
uniquely identified by the first four mentioned columns alone, the semester column is
still needed to fulfill one of the most mentioned Must Haves (cf. Figure 4). Keeping
track of the semester for every course enables to keep track of historic development when
working with the result data, since every iteration of any course keeps track of its own
scores. Saving the history this way allows simplified queries by the API. With a simple
select providing a course name, number, type and lecturer, the code can generate the
historic development, without the need of performing complicated join statements in
SQL. Additionally, the Advisor of Studies and Teaching mentioned that around every
five years they have to delete the evaluation data. The semester column can be used to
delete every course containing a specific semester without deleting the same course and
by association the scores of a later iteration. Since the database also cascades deletions to
foreign keys, the tracked scores for the specific course will also be deleted automatically
(cf. Figure 7).

4.7. An Example Dashboard

In order to demonstrate how the data in the API can be used, the /dashboard/dash-

board.py file contains multiple examples on how to modify data in order to present it
using the mockups created and validated during subsection 3.2.2. Here the python so-
lution for building dashboards - streamlit10 - is used to generate graphs out of pandas
DataFrames. This file is a demonstration and in no way production ready. It does

10https://streamlit.io

22

https://streamlit.io

Figure 7: Relationships between tables in the Database

however provide multiple wrapper functions to generate charts interactively. Almost ev-
ery chart has selection tools to filter data by institute, dimension or semester. It provides
an example on how a single DataFrame can be used to generate almost every graph, by
using pandas functions and the python plotting library altair11. The starting point is
a DataFrame that contains all the data from the results API.

Initially scores for questions get converted to percentages for all dimensions using the
equation

∀question ∈ dimension : ((
∑

question score)+(
∑

max score))/((
∑

max score)∗2)

where dimension is any dimension out of {A,B,C,A1, A2, B1, B2, C1, C2}, question score
is the score the student gave to the question and max score is the highest score possi-
ble for the question multiplied with the amount of students that evaluated the course.
Both sides of the division are added with the

∑
max score to move all answers into

11https://altair-viz.github.io

23

https://altair-viz.github.io

positive integers, thus simplifying the calculation of the percentage without falsifying
the result.

These scores then can be used directly for the scatter plot where values from subdi-
mensions (all dimensions ending with 1 or 2) are used as x and y values to place the
courses. Filtering for the dimensions, semesters or institutes then is done by altair

functions. Semesters are filtered using transform_filter(alt.FieldOneOfPredicate(
field="Semester", oneOf=semester_range)), where semester_range is the range of
semesters chosen by the user. Dimensions are encoded by changing what column the x
and y-axis should represent.

For the box- and violin plots, the percentages are converted into seven intervals (each
interval is 1

7 of 100%), thus returning to a Likert Scale. The converted data then is used
to generate the plots.

Since the line- and bar chart use participation data instead of scores, the initial data
is used to group courses by semester and institute. Participation then is calculated for
each course by dividing the number of responses with the number of registered students
per course, which in turn gets visualized in the line- and bar chart.

The final chart is a table, which visually represents the historic development of par-
ticipation for every semester in the data. The table highlights the current percentage
while indicating with an arrow how this percentage changed since the beginning of the
recording. Arrows are accompanied by a percentage indicating how much the value
changed. Additionally, they are colored like a traffic light, where problematic develop-
ments are rendered red. This dataset does differentiate between course types, while the
line- and bar chart won’t. Thus, a new dataset is generated which groups courses by
semester, institute and course category, but the participation is calculated the same way
as before.

All examples are provided in Appendix E, additionally a more detailed explanation about
how to organize and execute the pipeline can be found in the wiki provided in the GitLab
repository in Appendix A.

Finally, the dashboard creates a ranking of the best courses per semester for the deanery
evaluation. This ranking is created by summing all scores and dividing them by number
of respondents, thus creating the average points per question.

In every chart except the last one the data is always created in a way that drops any
values that could identify courses in the visualization. This fulfills the anonymity Must
Have requirement from the MoSCoW prioritization (see Figure 4). The ranking can also
be toggled if the dashboard should hide all personal data.

24

4.8. Assessing Reproducibility

During subsection 2.3 constraints for reproducibility and how they are realized have been
introduced. While provding a license and hosting the code publicly accessible can be
easily realized, creating reproducible code is not. As mentioned before, Jupyter Note-

books provide a useful tool to create code that promotes reproducibility. To validate
the code, metrics identified by Pimentel et al. [13] were checked against the produced
notebooks. In their publication, they analyzed 1,159,166 notebooks from 264,023 GitHub
repositories in order to identify eight best practices notebooks should follow. The first
practice dictates that a notebook name should be short and only consist of alphanu-
meric characters in combinations with a dot (.), underscore () and/or minus (-), which
also applies to markdown headings. To ensure notebooks are verified as usable, before
committing them into the repository, one should execute all cells in a sequential order
from top to bottom. To ensure the provided dependencies are complete, they should be
installed into a fresh environment and then be used to run the code. For file structure,
they suggest putting imports into the first code cell in the notebook, check the end of the
notebook for dangling cells not used anymore and to modularize code by using functions,
classes or modules. Finally to ensure that the code can run on every system, imported
files should be included by using relative paths, in order to be able to access these files
on every system.

Most of these practices can be verified by using pynblint12, which is a linter for Jupyter
Notebooks that can check if notebook names follow a specific schema, if notebooks were
executed linear, if cells exist in the notebook that weren’t executed or are empty and
if imports are at the top of the file [16]. By using this tool on all Jupyter Notebooks,
most of the best practices mentioned above, can be verified. Currently, all notebooks
pass the linting, on all rules, except the cell-too-long rule, which aims to keep code
cells to a maximum of 30 lines. However, the cells failing this check either contain most
function definitions or code that would be obfuscated if it would be modularized.

Additionally, all three notebooks developed during this thesis abstract code into single
cells as much as possible, even providing a single cell dedicated for functions. The newest
version also has been tested on a clean environment to validate its functionality. Finally,
all file imports are done by dynamically building paths with the os module, without
hardcoding paths, to enable file access on all systems.

On normal python files the python linter flake813 is employed. Flake8 is a tool im-
plementing various python coding guidelines, like the Python Enhancements Proposals,
which are community driven code suggestions about coding conventions [14, 15]. Using
this tool on normal python files provides sufficient information about reproducibility,
especially since it’s only used on supplementary files, which support the pipeline.

12https://pynblint.readthedocs.io/en/latest/index.html
13https://flake8.pycqa.org

25

https://pynblint.readthedocs.io/en/latest/index.html
https://flake8.pycqa.org

A similar process is used with the JavaScript files used in the API (see subsection 4.5).
Here the linter Prettier14 is used to help make code more readable.

In order to ensure these guidelines are followed, GitLab executes and checks against
them after every commit.

14https://prettier.io

26

https://prettier.io

5. Discussion

Once the second interviews were concluded, a second iteration of the UCSD steps of
”Produce design solutions to meet user requirements” and ”Evaluate the design solutions
against requirements” (cf Figure 2) started. This thesis only started this iteration by
producing a solution based on the requirements (see section 4), but did not conduct
final interviews with the stakeholders to evaluate the design again to prove whether the
solution meets the user requirements. However, since the users in the first iteration
validated the dimension system and the forms of visualization, the argument can be
made that the design was already evaluated and meets requirements, while the final
color schemes and layout are not as important. It would still be recommended to show
the final dashboard to the users again, collect feedback and build a solution based on
it.

With the help of the API a user can always create a historic comparison of courses
and visually represent this development without much effort as shown in subsection 4.7.
While the dashboard may not be the most optimal visual solution, it definitely shows
the potential of the different visualization possibilities the data has.

The overarching goal of this thesis was to help the evaluation committee in their work
in the long run. This thesis provides the tools and collected the necessary input to start
this journey. However, most of the work still stays within the committee. They still need
to manually filter through data every year and identify meaningful statements from it.
While the pipeline may automatically unify and normalize data, it still has caveats. As
mentioned in subsection 4.4.2, the pipeline has data loss it can’t recover. It now is up
to the committee to develop a schema for their raw data that prevents data loss by
machine interpreted results. Based on the requirement elicitation and the validation
that followed, the faculty proposed needs that can be met using the pipeline.

5.1. Limitations

Ideally, reproducibility follows an Open Science approach, where not only results and
the code are public, but also the initial data is publicly available [21]. Evaluation data is
however, sensitive, so publishing it is impossible. Keeping this data private also obstructs
any further individual research that could be using this data as a base, thus impeding
on advancement of any supplements for the evaluation committee. This thesis aims to
lower this barrier by providing example data in the repository (see Appendix A), that
at least describes how the data looks. Creating an approach to anonymize data, without
loosing meaning, can help the faculty in the future.

During the development of the pipeline, data was missing. Some semesters didn’t have
data for all institutes, which created gaps in the visualization. Especially missing or
incomplete participation data eliminated some data points. If the pipeline is unable to
find the number of participants for a course, it defaults to -1. This creates problems in

27

all visualizations that use participation in some form, because courses that are missing
this datum are excluded from the calculations. In order to unlock the full potential of
the pipeline, the missing data should be added to the existing data.

5.2. Future

During subsection 3.2.1 a few interviewees mentioned that they would like to see motifs in
the text responses by students that occur in multiple courses that should be highlighted.
They declared that this can be positive but also negative feedback. The free text answers
from students give them a tool that breaks the boundaries of the employed Likert Scale
and gives them the freedom to express their personal grievances and likings with the
course. If specific motifs are mentioned across multiple courses, the problem could be
located outside the area of possibilities of the person teaching the course and may show
problems with the study regulations or the institute as a whole. This can provide specific
starting points for conversations with the student body on how these problems can be
tackled. Implementing a system like that was beyond the scope of this thesis, as it would
need a Large Language Model (LLM) to interpret the text answers and summarize them.
The training and fine-tuning of such a model would be a bachelor’s thesis on its own.

The provided visualizations in the dashboard (see subsection 4.7) currently are split by
dimension and institute, however interviewees did mention that they could imagine split-
ting courses by their level (bachelor and master), course choice (mandatory or voluntary
courses) or their classification (career preparation or core subject) can provide better
information, due to the fact, that these visualizations better pinpoint where courses
perform well or not.

Almost all interviewees mentioned that the results of individual evaluations at the faculty
once were fully public to the student body and the lecturers. This was changed at some
point due to different regulations. However, all people interviewed expressed their desire
to return to this openness about the results, since handling the results this way showed
students that their answers mattered and initiated conversations between lecturers about
their (different) results. The pipeline itself tries to respect these wishes by keeping
identifying information for courses, but removing them in the dashboard.

If in the future these requirements become reality, the pipeline provides the ability to
easily transition from an anonymous approach to a more open one. It should however
be noted that the API in its current state should not be accessible publicly, since it
has no security measurements. Implementing such measurements like authentication via
usernames and passwords can be implemented on desired routes by using the currently
disabled _next parameter provided on every endpoint, where a middleware can be in-
serted that enforces security on routes that can delete, update or insert data to prevent
malicious requests.

28

5.3. Conclusion

The created pipeline with all its supplements is able to fulfill the requirements provided
by interviewees in subsection 3.2.1. With the provided cleanup (see subsection 4.3) the
creation of the old report becomes possible, while also providing opportunities to create
new visualizations (see Appendix E).

This thesis was able to provide decision makers in the evaluation process with useful
tools they can use to fulfill requirements from personnel at the institute. Using these
results as groundwork, the process can be enhanced in the future, where the (historical)
data provided can verify changes made to evaluations, but also to honor good lecturers
and motivate others to go into discussions with their colleagues or students on how they
can improve their own teaching. While there exists discontent about how evaluations
are handled, they are generally considered the right tool to measure student satisfaction
with the faculty.

29

References

[1] C. J. Date. Codd’s First Relational Papers: A Critical Analy-
sis. https://www.dcs.warwick.ac.uk/~hugh/TTM/CJD-on-EFC’s-First-Two-

Papers.pdf, 2016. Accessed: May 2024.

[2] Agile Business Cosortium. Chapter 10: MoSCoW Prioritisation.
https://www.agilebusiness.org/dsdm-project-framework/moscow-

prioririsation.html, 2014. Accessed: May 2024.

[3] Bertram, D. Likert Scales. Tech. rep., Poincare, 2006. http://pages.

cpsc.ucalgary.ca/~saul/wiki/uploads/CPSC681/topic-dane-likert.pdf,
Accessed: December 2023.

[4] Blubbshoft GmbH. Evaluationen von Lehrveranstaltungen - umfassend und ein-
fach. https://blubbsoft.de/Evaluation/Evaluationsprozess. Accessed: May
2024.

[5] Brandl, K., Mandel, J., and Winegarden, B. Student evaluation team focus
groups increase students’ satisfaction with the overall course evaluation process.
Medical Education 51, 2 (2017), 215–227.

[6] Docker Inc. Use containers to Build, Share and Run your applications. https:

//www.docker.com/resources/what-container/, 2024. Accessed: May 2024.

[7] Gulliksen, J., Göransson, B., Boivie, I., Blomkvist, S., Persson, J., and
Cajander, Å. Key principles for user-centred systems design. Behaviour & Infor-
mation Technology 22, 6 (Nov. 2003), 397–409.

[8] International Organization for Standardization. ISO 9241-210:2010.
https://www.iso.org/standard/52075.html, 2010. Accessed: May 2024.

[9] Jahnke, I. How to Foster Creativity in Technology Enhanced Learning? Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 95–116.

[10] Kitzes, J., Turek, D., & Deniz, F., Ed. The Practice of Reproducible Research:
Case Studies and Lessons from the Data-Intensive Sciences. University of California
Press, Oakland, CA, USA, 2018.

[11] Maheshwari, Arushi and Agarwal, Kartik. Copyleft: Copying Done Right.
Indian JL & Pub. Pol’y 4 (2017), 24.

[12] Olmsted-Hawala, E. L., Murphy, E. D., Hawala, S., and Ashenfelter,
K. T. Think-aloud protocols: a comparison of three think-aloud protocols for use
in testing data-dissemination web sites for usability. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (New York, NY, USA, 2010),
Association for Computing Machinery, p. 2381–2390.

30

https://www.dcs.warwick.ac.uk/~hugh/TTM/CJD-on-EFC's-First-Two-Papers.pdf
https://www.dcs.warwick.ac.uk/~hugh/TTM/CJD-on-EFC's-First-Two-Papers.pdf
https://www.agilebusiness.org/dsdm-project-framework/moscow-prioririsation.html
https://www.agilebusiness.org/dsdm-project-framework/moscow-prioririsation.html
http://pages.cpsc.ucalgary.ca/~saul/wiki/uploads/CPSC681/topic-dane-likert.pdf
http://pages.cpsc.ucalgary.ca/~saul/wiki/uploads/CPSC681/topic-dane-likert.pdf
https://blubbsoft.de/Evaluation/Evaluationsprozess
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.iso.org/standard/52075.html

[13] Pimentel, J.F. and Murta, L. and Braganholo, V. and Freire, J. A large-
scale study about quality and reproducibility of jupyter notebooks. IEEE/ACM 16th
International Conference on Mining Software Reprositories (MSR) (2019), 507 –
517.

[14] Python Quality Authority. Error / Violation Codes — flake8 7.0.0 documen-
tation. https://flake8.pycqa.org/en/latest/user/error-codes.html, 2023.
Accessed: May 2024.

[15] Python Software Foundation. PEP 0 – Index of Python Enhancement Pro-
posals (PEPs). https://peps.python.org/, 2000. Accessed: May 2024.

[16] Quaranta, L., Calefato, F., and Lanubile, F. Pynblint: a static analyzer for
python jupyter notebooks. In Proceedings of the 1st International Conference on
AI Engineering: Software Engineering for AI (New York, NY, USA, 2022), CAIN
’22, Association for Computing Machinery, p. 48–49.

[17] Regulin, M. Richtlinie zur Durchführung von Lehrveranstaltungen am Fachbere-
ich Mathematik und Informatik. https://www.mi.fu-berlin.de/fb/qualitaet/
PDFs/Evaluationskonzept_final.pdf, June 2021. Accessed: December 2023.

[18] Scheinholtz, L. A., and Wilmont, I. Interview Patterns for Requirements
Elicitation. In Requirements Engineering: Foundation for Software Quality (Berlin,
Heidelberg, 2011), D. Berry and X. Franch, Eds., Springer Berlin Heidelberg, pp. 72–
77.

[19] The Linux Foundation. New Collaborative Project to Extend Swagger
Specification for Building Connected Applications and Services. https:

//www.linuxfoundation.org/press/press-release/new-collaborative-

project-to-extend-swagger-specification-for-building-connected-

applications-and-services, 2015. Accessed: May 2024.

[20] The Linux Foundation. What is OpenAPI? https://www.openapis.org/what-

is-openapi, 2023. Accessed: May 2024.

[21] United Nations Educational, Scientific and Cultural Ogranization
(UNESCO). Understanding open science. https://unesdoc.unesco.org/ark:

/48223/pf0000383323, 2022. Accessed: May 2024.

[22] Vinicius Fulber-Garcia. Requirements: Functional vs Non-functional. https:

//www.baeldung.com/cs/requirements-functional-vs-non-functional, 2024.
Accessed: May 2024.

[23] Wes McKinney. Data Structures for Statistical Computing in Python. In Pro-
ceedings of the 9th Python in Science Conference (2010), Stéfan van der Walt and
Jarrod Millman, Ed., pp. 56 – 61.

31

https://flake8.pycqa.org/en/latest/user/error-codes.html
https://peps.python.org/
https://www.mi.fu-berlin.de/fb/qualitaet/PDFs/Evaluationskonzept_final.pdf
https://www.mi.fu-berlin.de/fb/qualitaet/PDFs/Evaluationskonzept_final.pdf
https://www.linuxfoundation.org/press/press-release/new-collaborative-project-to-extend-swagger-specification-for-building-connected-applications-and-services
https://www.linuxfoundation.org/press/press-release/new-collaborative-project-to-extend-swagger-specification-for-building-connected-applications-and-services
https://www.linuxfoundation.org/press/press-release/new-collaborative-project-to-extend-swagger-specification-for-building-connected-applications-and-services
https://www.linuxfoundation.org/press/press-release/new-collaborative-project-to-extend-swagger-specification-for-building-connected-applications-and-services
https://www.openapis.org/what-is-openapi
https://www.openapis.org/what-is-openapi
https://unesdoc.unesco.org/ark:/48223/pf0000383323
https://unesdoc.unesco.org/ark:/48223/pf0000383323
https://www.baeldung.com/cs/requirements-functional-vs-non-functional
https://www.baeldung.com/cs/requirements-functional-vs-non-functional

[24] Zentiks, S. R. Bericht zur Evaluation der Lehrveranstaltungen im
Sommersemester 2023. https://www.mi.fu-berlin.de/fb/qualitaet/

Evaluationen/Evaluationsberichte/Lehrevaluationsbericht_SoSe2023_

final.pdf, 2023. Accessed: May 2024.

32

https://www.mi.fu-berlin.de/fb/qualitaet/Evaluationen/Evaluationsberichte/Lehrevaluationsbericht_SoSe2023_final.pdf
https://www.mi.fu-berlin.de/fb/qualitaet/Evaluationen/Evaluationsberichte/Lehrevaluationsbericht_SoSe2023_final.pdf
https://www.mi.fu-berlin.de/fb/qualitaet/Evaluationen/Evaluationsberichte/Lehrevaluationsbericht_SoSe2023_final.pdf

A. Git Repo

The GitLab Repository is publicly available under: https://git.imp.fu-berlin.de/alexander06/evaluation-
report-generator

B. Mockups

B.1. Table

33

https://git.imp.fu-berlin.de/alexander06/evaluation-report-generator
https://git.imp.fu-berlin.de/alexander06/evaluation-report-generator

B.2. Linechart

B.3. Barchart

34

B.4. Scatterplot

35

B.5. Boxplot

B.6. Violinplot

36

C. API Endpoints

C.1. questions

C.2. scores

C.3. telemetry

37

D. Non-implemented Questions

1 ['An wie vielen der angebotenen Live-Sitzungen haben Sie teilgenommen

bzw. wie viele Inhalte der Lerneinheiten haben Sie bearbeitet',↪→

2 'Aus welchen Gründen haben Sie an der Hälfte oder mehr der

Live-Sitzungen nicht teilgenommen bzw. nicht die Inhalte der

Lerneinheiten bearbeitet?; Betreuung Kinder / Angehöriger',
↪→

↪→

3 'Aus welchen Gründen haben Sie an der Hälfte oder mehr der

Live-Sitzungen nicht teilgenommen bzw. nicht die Inhalte der

Lerneinheiten bearbeitet?; Erkrankung',
↪→

↪→

4 'Aus welchen Gründen haben Sie an der Hälfte oder mehr der

Live-Sitzungen nicht teilgenommen bzw. nicht die Inhalte der

Lerneinheiten bearbeitet?; Erwerbsarbeit',
↪→

↪→

5 'Aus welchen Gründen haben Sie an der Hälfte oder mehr der

Live-Sitzungen nicht teilgenommen bzw. nicht die Inhalte der

Lerneinheiten bearbeitet?; zeitliche Überschneidung mit anderen

Lehrveranstaltungen',

↪→

↪→

↪→

6 'Aus welchen Gründen haben Sie an der Hälfte oder mehr der

Live-Sitzungen nicht teilgenommen bzw. nicht die Inhalte der

Lerneinheiten bearbeitet?; fehlende Motivation',
↪→

↪→

7 'Aus welchen Gründen haben Sie an der Hälfte oder mehr der

Live-Sitzungen nicht teilgenommen bzw. nicht die Inhalte der

Lerneinheiten bearbeitet?; Lehrstoff selbständig erarbeitet',
↪→

↪→

8 'Aus welchen Gründen haben Sie an der Hälfte oder mehr der

Live-Sitzungen nicht teilgenommen bzw. nicht die Inhalte der

Lerneinheiten bearbeitet?; technische Probleme',
↪→

↪→

9 'Aus welchen Gründen haben Sie an der Hälfte oder mehr der

Live-Sitzungen nicht teilgenommen bzw. nicht die Inhalte der

Lerneinheiten bearbeitet?; fehlende technische Ausstattung',
↪→

↪→

10 'Aus welchen Gründen haben Sie an der Hälfte oder mehr der

Live-Sitzungen nicht teilgenommen bzw. nicht die Inhalte der

Lerneinheiten bearbeitet?; keine Antwort',
↪→

↪→

11 'anderer Grund/andere Gründe:',
12 'Die Teilnahme an der Lehrveranstaltung hat mir Spaß gemacht',
13 'Haben Sie sich (auch) unabhängig von der Lehrveranstaltung mit anderen

Studierenden über die dort behandelten Themen ausgetauscht',↪→

14 'Beabsichtigen Sie (trotz der Aussetzung der Semesterzählung auf die

Regelstudienzeit) die Lehrveranstaltung/das Modul dieses Semester

erfolgreich abzuschließen',
↪→

↪→

15 'Falls nein, nennen Sie bitte den Grund/die Gründe:',
16 'Ich habe alle erforderlichen Informationen und Materialien zur

Vorbereitung und Teilnahme an der Lehrveranstaltung rechtzeitig

erhalten',
↪→

↪→

38

17 'Das Gesamtkonzept der Lehrveranstaltung wurde zu Beginn ausreichend

erläutert (u.a. Live-Anteile und selbstständiges Arbeiten mit

digitalen Angeboten; verpflichtende und freiwillige Aufgaben;

Termine und Fristen)',

↪→

↪→

↪→

18 'Werden in dieser Lehrveranstaltung',
19 '. präsentierte Inhalte (z.B. Folienpräsentation)',
20 '. eigene Inhalte zu präsentieren (z.B. eine Referatspräsentation)',
21 '. die Teilnehmenden im Rahmen der Live-Sitzungen mit Wortbeiträgen

(Audioübertragung) zu beteiligen',↪→

22 '. gemeinsam an Inhalten zu arbeiten (z.B. mit Hilfe eines Whiteboards

oder eines Wikis?)',↪→

23 '. in virtuellen Arbeitsgruppen in separaten Räumen zu arbeiten',
24 '. den Einsatz von kurzen Umfragen oder Frage-Antwort-Formaten',
25 '. bei Live-Sitzungen die Kommunikation über einen Chat',
26 'das Arbeiten in studentischen Arbeitsgruppen (Untergruppe innerhalb

einer Sitzung)',↪→

27 'die zur Verfügung gestellten Kursunterlagen (Skripte,

Präsentationsfolien o.ä.)',↪→

28 'die als Video oder vertonte Folienpräsentation zur Verfügung gestellten

Lehrvorträge',↪→

29 'die als Audiodatei zur Verfügung gestellten Lehrvorträge',
30 'die zur Verfügung gestellten Videotutorials',
31 'die zur Verfügung gestellten Selbsttests/interaktiven Übungen',
32 'das/die in dieser Lehrveranstaltung genutzte/n Forum/Foren',
33 'den/die in dieser Lehrveranstaltung genutzten Blog/s',
34 'die/den in dieser Veranstaltung genutzten Wiki/s',
35 'Die/der Lehrende war durch die angebotenen Interaktionsmöglichkeiten

(z.B. Foren, E-Mail, Telefon-/Online-Sprechstunde) gut erreichbar',↪→

36 'Im Vergleich mit einem festen wöchentlichen Präsenztermin fiel mir die

Auseinandersetzung mit den Inhalten der Lehrveranstaltung in dieser

rein digitalen Lehrveranstaltung',
↪→

↪→

37 'Der Stoffumfang, der in der LV behandelt wird, ist für mich',
38 'stellt zu Beginn einer Sitzung den Zusammenhang zur letzten Sitzung

her',↪→

39 'regt die Studierenden dazu an, die Richtigkeit ihrer Beiträge/Antworten

selbst zu überprüfen',↪→

40 'verdeutlicht die Lernziele zu Beginn jedes Veranstaltungstermins',
41 'präsentiert die Lerninhalte/den Stoff stimmig und kohärent',
42 'gibt den Studierenden konkrete Hinweise zur Verbesserung individueller

Leistungen',↪→

43 'unterstützt gezielt einzelne Studierende oder Studierendengruppen, die

einen besonderen Unterstützungsbedarf haben',↪→

44 'formuliert Anforderungen so, dass der Großteil der Studierenden sie

auch erfüllen kann',↪→

39

45 'ist in der Lage, eine ruhige und ungestörte Lernsituation

herzustellen',↪→

46 'geht angemessen mit Unruhe und Störungen um',
47 'beweist bei Unruhe und Störungen das nötige Durchsetzungsvermögen',
48 'führt nach Beiträgen einzelner Studierender, die vom Thema wegführen,

geschickt wieder zum Thema zurück',↪→

49 'Das Gesamtkonzept der Lehrveranstaltung wurde zu Beginn ausreichend

erläutert',↪→

50 'Die/der Lehrende ist durch die angebotenen Interaktionsmöglichkeiten

(z.B. Foren, E-Mail, Telefon-/Online-Sprechstunde) gut erreichbar',↪→

51 'Findet die Lehrveranstaltung in Teilen oder komplett digital statt?

(Papier-Evaluation: Wenn Sie "nein" angekreuzt haben, dann fahren

Sie bitte mit "Erfassen des Outputs" fort.)',
↪→

↪→

52 'Das Studieren in dieser digitalen Lehrveranstaltung fällt mir im

Vergleich zu einer reinen Präsenzlehrveranstaltung',↪→

53 'Im Vergleich mit einem festen wöchentlichen Präsenztermin fällt mir die

Auseinandersetzung mit den Inhalten der Lehrveranstaltung in dieser

rein digitalen Lehrveranstaltung']
↪→

↪→

E. Dashboard

E.1. Table

E.2. Linechart

40

E.3. Barchart

E.4. Scatterplot

E.5. Boxplot

41

E.6. Violinplot

42

	Introduction
	Motivation
	Goal

	Theoretical Background
	The Evaluation Process
	The Current Approach
	Introducing Reproducibility

	Analysis
	Analyzing the Current Approach
	User Requirements
	Interview 1 - Initial Requirement Elicitation
	Interview 2 - Prototype Presentation

	Implementation
	Evaluation Data
	Technology
	Data Cleanup
	The Old Report
	Implementation
	Differences in Generated Results

	The Question and Score API
	The New Process
	An Example Dashboard
	Assessing Reproducibility

	Discussion
	Limitations
	Future
	Conclusion

	References
	Git Repo
	Mockups
	Table
	Linechart
	Barchart
	Scatterplot
	Boxplot
	Violinplot

	API Endpoints
	questions
	scores
	telemetry

	Non-implemented Questions
	Dashboard
	Table
	Linechart
	Barchart
	Scatterplot
	Boxplot
	Violinplot

