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ChineseEEG: A Chinese Linguistic 
Corpora EEG Dataset for Semantic 
Alignment and Neural Decoding
Xinyu Mou   1,10, Cuilin He2,10, Liwei Tan2,10, Junjie Yu1, Huadong Liang3, Jianyu Zhang1, 
Yan Tian2, Yu-Fang Yang4, Ting Xu   5, Qing Wang6, Miao Cao7, Zijiao Chen8, Chuan-Peng Hu   9, 
Xindi Wang1, Quanying Liu1 ✉ & Haiyan Wu   2 ✉

An Electroencephalography (EEG) dataset utilizing rich text stimuli can advance the understanding of 
how the brain encodes semantic information and contribute to semantic decoding in brain-computer 
interface (BCI). Addressing the scarcity of EEG datasets featuring Chinese linguistic stimuli, we present 
the ChineseEEG dataset, a high-density EEG dataset complemented by simultaneous eye-tracking 
recordings. This dataset was compiled while 10 participants silently read approximately 13 hours of 
Chinese text from two well-known novels. This dataset provides long-duration EEG recordings, along 
with pre-processed EEG sensor-level data and semantic embeddings of reading materials extracted by 
a pre-trained natural language processing (NLP) model. As a pilot EEG dataset derived from natural 
Chinese linguistic stimuli, ChineseEEG can significantly support research across neuroscience, NLP, and 
linguistics. It establishes a benchmark dataset for Chinese semantic decoding, aids in the development 
of BCIs, and facilitates the exploration of alignment between large language models and human 
cognitive processes. It can also aid research into the brain’s mechanisms of language processing within 
the context of the Chinese natural language.

Background & Summary
The human brain’s ability to rapidly comprehend linguistic information and generate corresponding lin-
guistic expressions is an indicator of its complex processing capabilities1. When exposed to linguistic stim-
uli, the human brain encodes the semantic information through neural activities2. By analyzing such neural 
activities, we can uncover the encoding mechanisms of semantics in the brain3. A variety of neural signals, 
including EEG, Functional Magnetic Resonance Imaging (fMRI), Electrocorticography (ECoG) are employed 
in language-related tasks, from academic research like investigating language processing mechanisms in the 
brain to practical applications like language decoding in BCI4–9. Recently, a lot of studies on neurolinguistics 
utilized both traditional machine learning methods and modern deep learning methods in NLP to explore 
linguistic-related problems10–16. However, these data-driven methods rely heavily on massive and comprehensive 
datasets17. In the field of NLP, it is relatively easy to collect large amounts of natural language data. In contrast, 
acquiring a large volume of neural signals generated in response to natural language stimuli poses significant 
challenges. To utilize the strong ability of modern data-driven methods, it is important to scale neural data-
sets to commensurate the state-of-the-art NLP to encompass the wide range of language expressions encoun-
tered in daily life. Among all neuroimaging techniques, EEG holds great potential to meet this demand. EEG 
is non-invasive and cost-effective18, which allows the creation of long-duration neural signal datasets enriched 
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with semantic information. Meanwhile, EEG features high temporal resolution19, which enables it to precisely 
capture the brain’s rapid dynamic changes in the language processing process.

Despite the abundance of EEG datasets for natural visual stimuli (e.g., THINGS-EEG)20–23, those for natural 
language stimuli remain scarce. Currently, only a few language-related EEG datasets exist, such as the ZuCo 
dataset24. However, the majority of these datasets are collected using stimuli from English language corpora. This 
leads to limited research on the neural representations of other languages like Chinese. The brain’s processing 
mechanisms differ for various languages. For example, the brain exhibits specificity in response to Chinese com-
pared to English25. Therefore, it is important to create an EEG dataset based on other language stimuli. Chinese, 
being distinct from English in both structure and semantics, provides an opportunity to expand our understand-
ing of neural responses to linguistic stimuli. An EEG dataset stimulated by Chinese corpora can facilitate the 
investigation of cross-linguistic commonalities and variations in language processing in the brain, bringing new 
perspectives to our understanding of language processing mechanisms.

To address these gaps, we have collected an EEG dataset, named the “ChineseEEG” (Chinese Linguistic 
Corpora EEG Dataset)26,27. It contains high-density EEG data and simultaneous eye-tracking data recorded 
from 10 participants, each silently reading Chinese text for about 13 hours. The text materials are sourced from 
two well-known novels, the Little Prince and Garnett Dream, both in their Chinese versions. This dataset fur-
ther comprises multiple versions of pre-processed EEG sensor-level data generated under different parameter 
settings, offering researchers a diverse range of selections. Additionally, we provide embeddings of the Chinese 
text materials encoded from BERT-base-chinese model, which is a pre-trained NLP model specifically used for 
Chinese28, aiding researchers in exploring the alignment between text embeddings from NLP models and brain 
information representations in neural signals.

ChineseEEG26,27 is a pilot EEG dataset specifically stimulated by Chinese text. It offers several advantages. 
Firstly, each participant was exposed to around 13 hours of diverse Chinese linguistic stimuli, encompassing a 
broad spectrum of semantic information. The extensive exposure is significant for studying the long-term neural 
dynamics of language processing in the brain. Secondly, we employed 128 channels of high-density EEG data, 
which offers superior spatial resolution for precise localization of brain regions involved in language processing. 
Besides, with a sampling rate of 1 kHz, it effectively captures the dynamics of neural representations during read-
ing. Furthermore, the inclusion of the pre-processed EEG data and text embeddings is beneficial for scholars 
in both neuroscience and computer science domains who lack inter-disciplinary experience, enabling them to 
directly utilize well processed data from fields they may not familiar with.

ChineseEEG26,27 can serve as a valuable resource in neuroscience, linguistics, and other related fields. EEG 
data generated from Chinese language stimuli will significantly support research within the Chinese context, 
aiding researchers in revealing the characteristics of brain signal representations under Chinese stimuli, and 
promoting the development of brain-to-text translation, semantic decoding and other practical applications tai-
lored to Chinese context. The dataset can also bring diversity to languages used in related research, encouraging 
the exploration of similarities and differences in language processing stimulated by different languages. It can 
also aid in multi-linguistic alignment in NLP by aligning multi-lingual brain signals with natural languages29,30. 
Given the dataset’s inclusion of widely used text materials like the Little Prince in multilingual neuroimaging 
research, ChineseEEG can be combined with prior datasets to extend its potential. For example, combining 
ChineseEEG with neural signal datasets for auditory language comprehension tasks under similar semantic 
stimuli31,32 can help to uncover the neural mechanisms of language understanding in multi-modal perceptions. 
Besides, researchers can integrate semantically rich EEG data in ChineseEEG with other neuroimaging modal-
ities, such as fMRI and MEG, in language comprehension tasks33,34 to precisely uncover brain’s spatio-temporal 
dynamics and thus enhance the understanding of neural mechanisms of language processing in the brain.

Methods
Participants and task overview.  We recruited 15 participants (18–29 years old, averaged 21.9 years old, 
and 9 males). 3 participants participated the pre-experimental test before the official experiment to ensure the 
rationality of the experimental procedure and the stability of the devices. In the official experiment, 2 partici-
pants withdrew halfway due to scheduling conflicts (After communicating with the experimenter, they decided 
to withdraw from the experiment). In total, data from only 10 participants were used (18–29 years old, aver-
aged 22.7 years old, and 5 males). No participant reported neurological or psychiatric history. All participants 
are right-handed and have normal or corrected-to-normal vision. Each participant voluntarily enrolled in and 
signed the informed consent form before the experiment and got a coupon compensation of approximately 50 
MOP (MOP is the official currency of the Macao Special Administrative Region of China) for each experimen-
tal run (25 runs in total). This study complied with the Declaration of Helsinki and was performed according 
to the ethics committee approval of the Institutional Review Board of the University of Macau (Approval No. 
BSERE20-APP011-ICI).

Experimental material.  The experimental materials consist of two novels, both in the genre of children’s 
literature. The first is the Chinese translation of the Little Prince (http://www.xiaowangzi.org/index.html) and 
the second is Garnett Dream (https://www.feiku6.com/read/s3-langwangmeng/18242419.html), both sourced 
from the Internet. Using novels, especially children’s literature provides several advantages for research, especially 
within a naturalistic paradigm. Firstly, given their extensive size, these novels offer vast and diverse linguistic 
content, encompassing the majority of frequently utilized Chinese characters and daily expressions. Besides, chil-
dren’s literature can create an engaging environment for participants, making them more focused and emotionally 
engaged in the experiment.

Each novel was used as the material for a single session in the experiment. Each session was divided into 
several runs. For the Little Prince, the preface was used as the material for the practice reading phase. The main 
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body of the novel was then used for seven runs in the formal reading phase. The first six runs each includes 4 
chapters of the novel, while the seventh run includes the last 3 chapters. For Garnett Dream, the first 18 chapters 
were used for 18 runs in the formal reading stage, with each run including a complete chapter. Due to the loss 
of markers during the EEG collection process, run 18 of ses-GarnettDream of sub-07 is unusable. We requested 
this participant to re-complete the reading task using chapter 19 of Garnett Dream.

To properly present the text on the screen during the experiment, the content of each run was segmented 
into a series of units, with each unit containing no more than 10 Chinese characters. These segmented contents 
were saved in Excel (.xlsx) format for subsequent usage. During the experiment, three adjacent units from each 
run’s content will be displayed on the screen in three separate lines, with the middle line highlighted for the 
participant to read. The relevant code has been uploaded to the GitHub repository. See Code availability section 
for detailed information.

The overview of experimental materials is shown in Table 1. In summary, a total of 115,233 characters (24,324 
in the Little Prince and 90,909 in Garnett Dream), of which 2,985 characters are unique, are used as experimental 
stimuli in ChineseEEG dataset.

Experimental procedures.  Participants were instructed to sit in an adjustable chair, with their eyes posi-
tioned approximately 67 cm away from the monitor (Dell, width: 54 cm, height: 30.375 cm, resolution: 1,920 × 
1,080 pixels, vertical refresh rate: 60 Hz), see Fig. 1b. They were tasked with reading a novel and were required to 
keep their heads still and keep their gaze on the highlighted (red) Chinese characters moving across the screen, 
reading at a pace set by the program. Eye-tracking technique was utilized to confirm that participants followed 
the highlighted characters.

Each participant was required to complete a total of 1 practice reading phase and 2 formal reading sessions. the 
Little Prince session was divided into 7 experimental runs and Garnett Dream session was divided into 18 experi-
mental runs. The schedule for the entire experiment is as follows: participants were required to finish all experimen-
tal runs over the span of 8 days. The total daily reading duration was set at approximately 1.5 hours to avoid fatigue. 
Specifically, the reading tasks for the first day comprised the practice reading phase and runs 1–4 of the Little Prince 
session. The tasks for the second day comprised runs 5–8 of the Little Prince session. From the third to the eighth day, 
each day’s reading tasks comprised 3 runs of Garnett Dream session. While participants were afforded the flexibility 
to adjust their schedules in the experiment, they were required to complete all reading tasks within one month.

Each experimental run lasted approximately 30 minutes and was divided into two phases: the eye-tracker 
calibration phase and the reading phase.

Session Run Chapter
Number of Chinese 
characters Duration

LittlePrince

Preface 210

1 1–4 3,805 24min34s

2 5–8 3,734 24min5s

3 9–12 3,218 20min50s

4 13–16 4,030 25min59s

5 17–20 1,713 11min11s

6 21–24 3,635 23min27s

7 25–27 4,189 26min54s

GarnettDream

1 1 5,267 34min17s

2 2 4,406 28min39s

3 3 5,327 34min35s

4 4 3,906 25min15s

5 5 4,989 32min14s

6 6 4,413 28min29s

7 7 3,912 25min25s

8 8 5,537 35min52s

9 9 4,171 27min2s

10 10 5,943 38min30s

11 11 4,351 28min21s

12 12 4,830 31min13s

13 13 3,799 24min31s

14 14 4,963 32min9s

15 15 4,656 29min55s

16 16 4,615 29min42s

17 17 5,273 33min57s

18 18 5,113 32min57s

19 19 5,438 35min10s

Table 1.  An overview of the experiment.
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Phase 1: Eye-tracker calibration phase.  At the beginning of each run, participants were required to undergo 
an eye-tracker calibration process. Initially, the message “Hello! Please press the spacebar to start calibration” 
was displayed at the screen’s center. Participants were instructed to keep their gaze at a fixation point, which 
sequentially appeared at the four corners and the center of the screen, each for 5 seconds. If the calibration failed, 
participants were prompted to start another calibration. Upon successful calibration, the message “Calibration 
successful! The page will automatically redirect in 5 seconds” was displayed at the center of the screen.
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Fig. 1  Overview of the experiment and the modalities included in the dataset. (a) Equipment utilized in the 
experiment, including the EGI device for collecting EEG data and the Tobii Pro Glasses 3 eye-tracker for 
tracking eye movements. (b) The experiment setup. Participants were instructed to sit quietly approximately 
67 cm from the screen and sequentially read the highlighted text. (c) The experimental protocol. Participants’ 
128-channel EEG signals and eye-tracking data were recorded while reading the highlighted text. (d) The data 
modalities in the dataset. The dataset comprises raw data such as the original textual stimuli, eye movement data, 
EEG data, and derivatives such as text embeddings from pre-trained NLP models and pre-processed EEG data.
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During the reading process, the accuracy of eye-tracking data can be influenced by several factors, including 
drift errors resulting from involuntary eye movements, as well as head movements and equipment positioning 
discrepancies. By performing calibrations at the beginning of each experimental run, these potential errors can 
be effectively mitigated, thereby ensuring the precision of the eye-tracking data.

Phase 2: Reading phase.  After the calibration phase, participants were automatically directed to the read-
ing phase. During the reading process, the screen initially displayed the serial number of the current chap-
ter. Subsequently, the text appeared with three lines per page, ensuring each line contained no more than ten 
Chinese characters (excluding punctuation). On each page, the middle line was highlighted as the focal point, 
while the upper and lower lines were displayed with reduced intensity as the background. Each character in the 
middle line was sequentially highlighted with red color for 0.35 s, and participants were required to read the 
novel content following the highlighted cues. To facilitate a smooth reading experience, the text was designed to 
scroll automatically on the screen. Once participants finished reading the highlighted middle line, the text would 
scroll, moving the third line up to become the new middle line on the subsequent page.

The reading speed, which is slower than the typical speeds reported in previous studies35, was deliberately 
chosen. This speed was selected based on feedback from the pre-experimental test to maintain participants’ 
attention and minimize fatigue throughout the relatively long experimental run. The reading speed was fixed to 
enable character-level alignment between EEG segments and text. Additionally, fixed speed can also minimize 
the impact of external interference in the experiment and eliminate the impact of different reading speeds of 
different participants on subsequent analyses.

To ensure the accuracy of both EEG and eye-tracking data, participants were instructed to consistently focus 
on the highlighted text, while avoiding significant body movements to maintain a stable reading position. This 
protocol was strictly enforced to reduce any potential drifts and artifacts in the recordings.

After each run, participants were given sufficient time to rest. They were instructed to start the subsequent 
run only when they explicitly reported being ready to proceed. Adequate rest time can mitigate fatigue and 
enable participants to sustain their attention throughout the experiment, thus ensuring the quality of both EEG 
and eye-tracking data. The experimenter also evaluated each participant’s performance and fatigue level through 
oral inquiries after each experimental run to ensure they could fully maintain their attention in subsequent runs. 
During each rest period, the experimenter replenished the saline solution on the electrodes of the EEG cap, 
which helped to maintain a low impedance, ensuring the collection of high-quality EEG data. Additionally, the 
experimenter checked the power status of the eye-tracker and replaced the batteries as necessary to ensure its 
continuous operation.

It should be noted that during the initial participation in the experiment, participants were required to com-
plete a practice reading phase. The preface chapter of the Little Prince was selected as the reading material for this 
phase. All settings remained the same as those of the formal reading stage, to familiarize participants with the 
eye-tracker calibration process and the reading task.

The presentation of stimuli was managed using PsychoPy v2023.2.336, with the EGI PyNetstation v1.0.1 mod-
ule facilitating the connection between PsychoPy and EGI Netstation. We also utilized g3pylib package to con-
trol our eye-tracker to follow the eye movement trajectories of the participants.

Data collection and analysis.  This section shows the details of the data collection, pre-processing, and 
data analysis procedure. The modalities included in our dataset26,27 are shown in Fig. 1d, including raw data and 
derivatives. Raw data contains the raw EEG data, eye-tracking data, raw text materials, and derivatives contain 
pre-processed EEG data and text embeddings generated by a pre-trained NLP model BERT-base-chinese.

EEG data collection.  EEG data was acquired using an EGI 128-channel cap based on the GSN-HydroCel-128 
montage with the Geodesic Sensor Net system (see Fig. 1a). The egi-pynetstation v1.0.1 package was used to 
control the EGI system. Before recording, the experimenter used a soft ruler to locate the position of the Cz 
electrode (i.e., the center of the brain) for each participant, ensuring the alignment of the electrodes in each 
experimental run. During recording, the sampling rate was 1 kHz. The impedance of each electrode was kept 
below 50 kΩ during the experiment. Setups and recording parameters are similar to our previous EEG dataset37. 
To precisely co-register EEG segments with individual characters during the experiment, we marked the EEG 
data with triggers (Table 2). The raw EEG data was exported to metafile format (.mff) files on the macOS system.

Eye-tracking data collection.  Eye-tracking data was acquired using Tobii Pro Glasses 3. The device features 16 
illuminators and 4 eye cameras integrated into scratch-resistant lenses, along with a wide-angle scene camera, 
allowing for a comprehensive capture of participant behavior and environmental context (see Fig. 1a). Due 
to the extensive duration of our experiments, the requirement for a lightweight eye-tracker was prioritized. 
The Tobii Pro Glass 3 fulfilled this criterion. Tobii Pro Glass 3 has a maximum sampling rate of 100 Hz. Given 
the relatively slow reading speed in our experiment, a sampling rate of 100 Hz is adequate for capturing the 
eye movement trajectories of the participants and assessing whether they were fixating on highlighted text at 
specific moments. More information about Tobii Pro Glass 3 can be found on the official website (https://www.
tobii.com/products/eye-trackers/wearables/tobii-pro-glasses-3). We utilized the package g3pylib to control the 
glasses. The raw data was exported to .rar files.

EEG data pre-processing.  To retain maximum amount of valid information in the data, we performed minimal 
pre-processing on the data, allowing researchers to further process the data according to their specific research 
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needs. The pre-processing pipeline is shown in Fig. 2. These pre-processing steps include data segmentation, 
downsampling, powerline filtering, band-pass filtering, bad channel interpolation, independent component 
analysis (ICA), and re-referencing. The MNE v1.6.038 package was utilized to implement all pre-processing steps.

Trigger Description

EYES Start of eye-tracker recording

EYEE End of eye-tracker recording

CALS Start of the calibration stage before reading

CALE End of the calibration stage

BEGN Start of EEG data collection by the EGI device

STOP Stop collecting EEG data

CHxx Start of each chapter, where xx is the chapter number (e.g., the first chapter is CH01)

ROWS Start of a new line of text

ROWE End of a line

PRES Start of the preface reading phase

PREE End of the preface reading phase

Table 2.  EEG triggers.
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Fig. 2  EEG pre-processing pipeline. (a) Data segmentation: Data is segmented based on markers, retaining 
only the data from the formal reading phase. (b) Band-pass filtering: Two versions of filtered data are provided, 
with band-pass ranges of 0.5–30 Hz and 0.5–80 Hz respectively. (c) Bad channel interpolation: Our bad channel 
detection includes automatic detection implemented with the pyprep package and manual checking. For 
interpolation, the spherical spline interpolation implemented in MNE is utilized. (d) ICA denoising: In this 
part, the automatic labeling method in mne-iclabel package is utilized followed by a manual checking to remove 
noisy independent components such as eye movements and heartbeats. (e) Dataset organization: Our dataset is 
organized in the BIDS41,42 format. The detailed file structure is shown in Fig. 3.
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During the data segmentation phase, we only retained data from the formal reading phase of the experiment. 
Based on the event markers during the data collection phase, we segmented the data, removing sections irrel-
evant to the formal experiment such as calibration and preface reading. To minimize the impact of subsequent 
filtering steps on the beginning and end of the signal, an additional 10 seconds of data was retained before the 
start of the formal reading phase. Subsequently, the signal was downsampled to 256 Hz. This specific sampling 
rate ensures effective capture of information related to language comprehension while reducing the burden of 
subsequent data processing and storage. Additionally, it aligns with the principle of minimal pre-processing, 
leaving necessary room for researchers to conduct personalized pre-processing based on their needs.

Following downsampling, a 50 Hz notch filter was applied to remove the powerline noise from the signal. 
Next, we performed band-pass overlap-add FIR filter on the signal to eliminate the low-frequency direct current 
components and high-frequency noise. Here, two versions of filtered data were offered. The first one has a filter 
band of 0.5–80 Hz and the second one has a filter band of 0.5–30 Hz. Researchers can choose the appropriate 
version based on their specific needs. After filtering, we performed an interpolation of bad channels. The bad 
channels were selected automatically using a Python-implemented EEG pre-processing package pyprep v0.4.339. 
After automatic detection, we manually checked to avoid mislabeling or errors before interpolation. The spher-
ical spline interpolation in the MNE package was utilized in this process.

Independent Component Analysis (ICA) was then applied to the data, utilizing the infomax algorithm 
available in the MNE package. The number of independent components was set to 20, ensuring that they con-
tain the majority of information while not being so numerous to increase the burden of manual processing. 
Additionally, we set the random seed of the ICA algorithm to 97 to ensure the reproducibility of the ICA results. 
An automatic method was used to inspect and label components. It was implemented using mne-iclabel v0.5.140, 
which is a Python-implemented package for automatic independent component labeling. By manually inspect-
ing the independent components after automatic labeling, we excluded obvious noise components such as 
Electrooculography (EOG) and Electrocardiogram (ECG). Finally, the data was re-referenced using the average 
method.

The process of manually identifying bad channels and excluding independent components during the ICA 
step can be conducted through annotations in a Graphical User Interface (GUI), making the annotation process 
quicker and more user-friendly.

Data Records
The full dataset is publicly accessible via the ChineseNeuro Symphony community (CHNNeuro) in the 
Science Data Bank (ScienceDB) platform (https://doi.org/10.57760/sciencedb.CHNNeuro.00007)26 or via 
the Openneuro platform (https://doi.org/10.18112/openneuro.ds004952.v1.2.0)27. Public data is distributed 
under the the Creative Commons Attribution 4.0 International Public License (https://creativecommons.org/
publicdomain/zero/1.0).

Data organization.  The dataset26,27 is organized following the EEG-BIDS41,42 specification, which is an 
extension to the brain imaging data structure for EEG. The overview directory tree of our dataset is shown in 
Fig. 3. The dataset contains some regular BIDS files, 10 participants’ data folders, and a derivatives folder. The 
stand-alone files offer an overview of the dataset: i) dataset_description.json is a JSON file depicting the informa-
tion of the dataset, such as the name, dataset type and authors; ii) participants.tsv contains participants’ informa-
tion, such as age, sex, and handedness; iii) participants.json describes the column attributes in participants.tsv; iv) 
README.md contains a detailed introduction of the dataset.

Each participant’s folder contains two folders named ses-LittlePrince and ses-GarnettDream, which store the 
data of this participant reading two novels, respectively. Each of the two folders contains a folder eeg and one file 
sub-xx_scans.tsv. The tsv file contains information about the scanning time of each file. The eeg folder contains 
the source raw EEG data of several runs, channels, and marker events files. Each run includes an eeg.json file, 
which encompasses detailed information for that run, such as the sampling rate and the number of channels. 
Events are stored in events.tsv with onset and event ID. The EEG data is converted from raw metafile format (.mff 
file) to BrainVision format (.vhdr,.vmrk and.eeg files) since EEG-BIDS41,42 is not officially compatible with .mff 
format. All data is formatted to EEG-BIDS41,42 using the mne-bids v0.1442,43 package in Python.

The derivatives folder contains six folders: eyetracking_data, filtered_0.5_80, filtered_0.5_30, preproc, nov-
els, and text_embeddings. The eyetracking_data folder contains all the eye-tracking data. Each eye-tracking 
data is formatted in a .rar file with eye moving trajectories and other parameters like sampling rate saved in 
different files. The filtered_0.5_80 folder and filtered_0.5_30 folder contain data that has been processed up 
to the pre-processing step of 0.5–80 Hz and 0.5–30 Hz band-pass filtering respectively. This data is suitable 
for researchers who have specific requirements and want to perform customized processing on subsequent 
pre-processing steps like ICA and re-referencing. The preproc folder contains minimally pre-processed EEG 
data that is processed using the whole pre-processing pipeline. It includes four additional types of files compared 
to the participants’ raw data folders in the root directory: i) bad_channels.json contains bad channels marked 
during bad channel rejection phase. ii) ica_components.npy stores the values of all independent components in 
the ICA phase. iii) ica_components.json includes the independent components excluded in ICA (the ICA ran-
dom seed is fixed, allowing for reproducible results). iv) ica_components_topography.png is a picture of the top-
ographic maps of all independent components, where the excluded components are labeled in grey. The novels 
folder contains the original and segmented text stimuli materials. The original novels are saved in .txt format and 
the segmented novels corresponding to each experimental run are saved in Excel (.xlsx) files. The text_embed-
dings folder contains embeddings of the two novels. The embeddings corresponding to each experimental run 
are stored in NumPy (.npy) files.
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Technical Validation
Classic sensor-level EEG analysis.  The EEG data in the dataset26,27 can be used to do classic time-fre-
quency analysis. In this section, pre-processed EEG data was used to extract neural oscillations in different fre-
quency bands. Specifically, we targeted the segment corresponding to the sentence “Draw me a sheep” in the Little 
Prince from the 0.5–80 Hz filtered pre-processed data of sub-07. The analysis was exclusively focused on the C3 
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Fig. 3  File structure of the dataset. (a) Eye-tracking data: Each experimental run is associated with a .rar file 
that contains eye-tracking data. (b) Electrode information files: These include detailed information of electrodes 
such as the location, type, and sampling rate, as well as information on any channels marked as bad during pre-
processing. (c) EEG data and event-related files: Including EEG data in BrainVision format and event files that 
record marker information. (d) ICA-related files: Containing independent components in numpy format, records 
of removed components during pre-processing, and topographic maps of the components. (e) Text materials: 
Containing original and segmented text. (f) Text embedding files: Each file corresponds to an experimental run 
and is stored in .npy format. (g) Raw EEG data.
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electrode to investigate the neural activities at the scalp location overlying the temporal lobe, which is a language 
processing related area.

To dissect the frequency components inherent in the C3 electrode’s signal, we applied the Fast Fourier 
Transform (FFT) algorithm to the data. This mathematical technique transforms the time-domain signal into 
the frequency domain, revealing the spectrum of frequencies present in the neural recordings. We defined fre-
quency bands of interest—Theta (4–8 Hz), Alpha (8–12 Hz), Beta (12–30 Hz), and Gamma (30–100 Hz)—to 
categorize the neural oscillations according to their respective frequency ranges.

For each frequency band, we separated the components from the FFT results and conducted an inverse FFT 
to retrieve the time-domain signal representing the band’s oscillatory activity. This step allows for the quantita-
tive analysis of the amplitude of oscillations within each frequency band, offering insights into the neurophysio-
logical activity in these specific ranges. The results of different frequency bands are shown in Fig. 4.

EEG source reconstruction.  Apart from the sensor level analysis, the EEG data allows for conducting 
source localization. Here, three segments of the data were utilized as an example to perform the source-level 
analysis using the MNE package. The fsaverage MRI template (https://surfer.nmr.mgh.harvard.edu/fswiki/
FsAverage)44 in MNE package was utilized to complete the surface reconstruction process. A 3-layer Boundary 
Element Method (BEM) model with 15360 triangles and conductivities of 0.3 S/m, 0.006 S/m, and 0.3 S/m for 
the brain, skull, and scalp compartments respectively was created. Source spaces consisted of 10242 sources per 
hemisphere. Three segments of the pre-processed EEG data with a band-pass frequency band of 0.5–80 Hz cor-
responding to one line displayed in the experiment were used to calculate the inverse solution. Inverse solutions 
were calculated using dynamic Statistical Parametric Maps (dSPM). The method was selected because it is widely 
used by researchers and is representative of currently used methods45. We offer the code of source reconstruction 
in our GitHub repository. See Code availability section for detailed information.

The visualization of the source activities is shown in Fig. 5b. Results for the left and right hemispheres are 
presented separately. The moments of peak activation in the left and right brain regions are chosen for visuali-
zation. The source localization results for the first segment reveal a dispersed activation area, encompassing the 
anterior temporal lobe and temporo-parietal region, which are associated with language comprehension and 
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Fig. 4  EEG time course and the neural oscillations under different frequency bands (i.e., Theta, Alpha, Beta, 
and Gamma) corresponding to the Chinese sentence meaning “Draw me a sheep”. The pre-processed EEG data 
using 0.5–80 Hz band-pass filter from ses-LittlePrince of sub-07 was used in the analysis. We illustrated the EEG 
signals from electrode C3, which locates at a language processing related area overlying the temporal lobe.
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primary processing46. The results of the second segment exhibit more focused activation, particularly near the 
left middle temporal gyrus, an area (encompassing Wernicke’s area) intimately related to language comprehen-
sion47. The activation areas for the third segment are localized in the left temporal and frontal lobes, potentially 
representing high-level stages of language processing, including sentence construction, semantic processing, 
and language expression48. Fig. 5c presents plots of source activities over time, derived from 12 sources in the 
corresponding region with strongest activities. The first two curves in each plot correspond to sources in the left 
and right hemispheres that reach maximum peak values.

Text embeddings with pre-trained language model.  To assist researchers in efficiently exploring the 
alignment between EEG and text representations, as well as in text decoding based on EEG, this study pro-
vides embeddings of two novels calculated using a pre-trained language model, accompanied by the code to 
compute these embeddings. This work employed Google’s pre-trained language model BERT-base-Chinese28. 
This model, pre-trained on Chinese corpora, effectively encodes Chinese semantic features. Given that Chinese 
characters are the smallest unit of composition in Chinese writing and cannot be further decomposed49, 
bert-base-chinese adopts a character-based tokenization approach, treating each Chinese character as a token for 
embedding. During the experimental procedure, each displayed line of text contains n Chinese characters. The 
BERT-base-Chinese model processes these n Chinese characters, yielding an embedding of size (n, 768), where n 
represents the number of Chinese characters, and 768 the dimensionality of the embedding. To ensure displayed 
lines of varying length to have embeddings of the same shape, the first dimension of the embeddings is averaged 
to standardize the embedding size to (1, 768) for each instance. This processing procedure was implemented using 
the Hugging Face Transformers v4.36.250 package.

Temporal alignment between EEG, text sequences, and eye-tracking data.  This section provides 
a comprehensive explanation on how to align the EEG data with its corresponding text content and eye-tracking 
data in the temporal domain.

To facilitate semantic decoding, it is necessary to align specific text with its corresponding EEG segment in 
the temporal domain. During the marking process when collecting the data, the start and end of each line of the 
stimuli were annotated, thereby enabling the alignment of each text line with a corresponding segment of EEG 
data. Given the consistent highlighting duration for each character, the EEG segment can be equally divided to 
match the corresponding character. In the GitHub repository, we offer the script to align the EEG segments to 
their corresponding text and text embeddings.

The recorded eye-tracking data can be aligned with EEG data to verify whether participants were focusing on 
the text as expected. The eye-tracking data captures both the scene viewed by the participants at each moment 
and the coordinates of the gaze points. During each experimental run, the marker “EYES” and “EYEE” were 
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Fig. 5  EEG source localization analysis. (a) EEG sensor-level data: Three segments of pre-processed EEG data 
using 0.5–80 Hz band-pass filter were selected for analysis, accompanied by the corresponding text segments 
shown above the EEG segments. (b) Visualization of brain activation after source analysis: The dSPM method 
was utilized to solve the inverse problem. Results for the left and right hemispheres are presented separately. The 
moments of peak activation in the left and right brain regions are chosen for visualization. (c) Plots of source 
activity over time: Each plot contains the activities of 12 sources in the region with the strongest activity.
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inserted into the EEG recordings when the eye-tracker was activated and deactivated. These markers enable pre-
cise alignment between the eye-tracking data and the EEG recordings. Once the alignment is complete, markers 
in the EEG recordings enable the extraction of specific eye-tracking data segments corresponding to particular 
EEG segments. These eye-tracking data segments can be used to check whether the eye fixation locations align 
with the anticipated positions on the screen, thus reflecting the quality of the EEG data.

Usage Notes
The code for the experiment and data analysis has been uploaded to GitHub to facilitate sharing and utilization, 
which is accessible at https://github.com/ncclabsustech/Chinese_reading_task_eeg_processing.

The code repository contains four main modules, each including scripts desired to reproduce the experiment 
and data analysis procedures. The script cut_chinese_novel.py in the novel_segmentation_and_text_embeddings 
folder contains the code to prepare the stimulation materials from source materials. The script play_novel.py in 
the experiment module contains code for the experiment, including text stimuli presentation and control of the 
EGI device and Tobii Pro Glasses 3 eye-tracker. The script preprocessing.py in data_preprocessing_and_alignment 
module contains the main part of the code to apply pre-processing on EEG data. The script align_eeg_with_sen-
tence.py in the same module contains code to align the EEG segments with corresponding text contents and text 
embeddings. The docker module contains the Docker image required for deploying and running the code, as 
well as tutorials on how to use Docker for environment deployment.

The code for EEG data pre-processing is highly configurable, permitting flexible adjustments of various 
pre-processing parameters, such as data segmentation range, downsampling rate, filtering range, and choice of 
ICA algorithm, thereby ensuring convenience and efficiency. Researchers can modify and optimize this code 
according to their specific requirements.

Before using our ChineseEEG dataset26,27, we encourage all users to check the README.md and the updated 
information in the GitHub repository.

Code availability
The code for all modules is openly available on GitHub (https://github.com/ncclabsustech/Chinese_reading_
task_eeg_processing). All scripts were developed in Python 3.1051. Package openpyxl v3.1.2 was utilized to export 
segmented text in Excel (.xlsx) files, and egi-pynetstation v1.0.1, g3pylib v0.1.1, psychopy v2023.2.336 were used 
to implement the scripts for EGI device control, Tobii eye-tracker control, stimuli presentation respectively. In 
the data pre-processing scripts, MNE v1.6.038, pybv v0.7.552, pyprep v0.4.339, mne-iclabel v0.5.140 were used to 
implement the pre-processing pipeline, while mne-bids v0.1442,43 was used to organize the data into BIDS41,42 
format. The text embeddings were calculated using Hugging Face transformers v4.36.250. For more details about 
code usage, please refer to the GitHub repository.
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