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We consider the classical shadows task for pure states in the setting of both
joint and independent measurements. The task is to measure few copies of an un-
known pure state ρ in order to learn a classical description which suffices to later
estimate expectation values of observables. Specifically, the goal is to approxi-
mate Tr(Oρ) for any Hermitian observable O to within additive error ϵ provided
Tr(O2) ≤ B and ∥O∥ = 1. Our main result applies to the joint measurement
setting, where we show Θ̃(

√
Bϵ−1 + ϵ−2) samples of ρ are necessary and sufficient

to succeed with high probability. The upper bound is a quadratic improvement on
the previous best sample complexity known for this problem. For the lower bound,
we see that the bottleneck is not how fast we can learn the state but rather how
much any classical description of ρ can be compressed for observable estimation.
In the independent measurement setting, we show that O(

√
Bdϵ−1 + ϵ−2) samples

suffice. Notably, this implies that the random Clifford measurements algorithm of
Huang, Kueng, and Preskill, which is sample-optimal for mixed states, is not op-
timal for pure states. Interestingly, our result also uses the same random Clifford
measurements but employs a different estimator.

1 Introduction
How many copies of an unknown state are required to construct a classical description of
the state? The answer to this question will depend on several details: what constitutes an
accurate description; what is already known about the state; and what restrictions are placed
on the measurements of the state. Given the fundamental importance of this question, there
has been significant prior work in bounding the number of samples of the states required to
perform this learning task in a variety of contexts.

The most well-known setting is called quantum state tomography, where the goal is to
learn enough about the state to be able to completely reconstruct it—precisely, estimate the
unknown d-dimensional quantum state to accuracy ϵ in the Schatten 1-norm. Tight upper and
lower bounds for the number of copies required for this task are known: Θ̃(ϵ−2d3) copies of the
state are needed with independent measurements [1], and Θ̃(ϵ−2d2) copies are needed when the
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unknown states can be simultaneously measured in a large joint measurement [2]. Independent
measurements are easier to experimentally implement, while the joint measurements explore
what is possible with respect to the fundamental limits of quantum mechanics. A key takeaway
in the joint measurement setting is that the algorithm for the upper bound is achieving what
would näıvely be the best possible result, given that a d-dimensional state has Θ(d2)-many
independent parameters, and Θ(ϵ−2) samples are necessary to estimate any one parameter.

In some sense, the requirements of the quantum tomography question are quite rigid.
For many applications, only some properties of the unknown state are important. Can we
get away with fewer samples if we relax our notion of approximation? In particular, what
if we only wish to learn the expected values of certain Hermitian observables? Aaronson
gave a somewhat surprising answer to this question in a joint measurement setting called
shadow tomography [3]: given M bounded observables ({Oi}Mi=1, ∥Oi∥ ≤ 1), estimate Tr(Oiρ)
to within ϵ additive error.1 In this setting, Aaronson showed that only Õ(ϵ−4 log4M log d)
samples of the state are needed. Subsequent work by Bădescu and O’Donnell [4] improved
this to Õ(ϵ−4 log2M log d), but there are still no matching lower bounds for this setting. That
is, we do not know if we are extracting as much information about the unknown state as we
can. In the independent measurement setting, Θ̃(min{M,d}/ϵ2) samples are necessary and
sufficient [5].

One subtlety concerning these observable estimation tasks is whether or not the mea-
surements are allowed to depend on the specific observables Oi. In shadow tomography, the
measurements can depend on the observables, but an increasingly popular setting (inspired by
the work of Huang, Kueng, and Preskill [6]) is one in which the observables Oi are unknown
at the time of measurement. That is, the measurements must produce a classical descrip-
tion (called the classical shadow) from which the observable expected values can later be
calculated. In their randomized Clifford measurement scheme, Huang, Kueng, and Preskill
consider the independent measurement setting and show that Θ(Bϵ−2 logM) copies of the
unknown state are both necessary and sufficient provided that Tr

(
O2
i

)
≤ B for all i (note that

Tr
(
O2
i

)
≤ d).

Consider now how the classical shadows setting compares to the quantum state tomogra-
phy setting with regard to the type of measurements allowed. In the quantum state tomog-
raphy setting, we know that joint measurements allow us to extract more information from
the state, yielding estimates of the unknown state with provably fewer samples than those
required with independent measurements. In the classical shadows setting, however, it is not
known how the type of measurement affects the number of samples required. Concretely,
is it possible to perform the classical shadows task with fewer samples if we switch to joint
measurements? We answer this question affirmatively in the setting of pure states.

Formally, we show the following: O((
√
Bϵ−1 + ϵ−2) logM) samples of the unknown pure

state are sufficient for performing the classical shadows task with constant probability of
failure. Compared to [6], this achieves almost a square root reduction in sample complexity.

Remarkably, in analogy with the quantum state tomography setting, our joint measure-
ment procedure is in some sense extracting the maximum amount of information possible. To
see this, consider a simple setting in which B = d, ϵ is constant, and we only wish to estimate

1Aaronson actually stipulates that each observable is positive semi-definite matrix Ei so that {Ei, I − Ei}
is a 2-outcome POVM. We note that this is equivalent to the task of estimating expectation values of the
(bounded) Hermitian observables Oi via the mapping Ei = (Oi + I)/2.
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a single observable. Our algorithm uses O(
√
d) samples. However, Gosset and Smolin [7]

show that even if you are given the state as an explicit density matrix, you cannot compress
your description of the state down to fewer than Ω(

√
d)-many bits of information in order to

estimate arbitrary observable expectation values. Notice, however, that to successfully exe-
cute the classical shadows task, one would first need to learn such a compressed description
through measurement of the unknown state. A priori, the number of measurements required
to do this could be much higher than the size of this compressed description. The fact that
we find a matching upper bound implies that accessing the relevant information contained in
the state is not the significant bottleneck.

We show that a similar phenomena exists for arbitrary parameters B and ϵ. Namely,
we refine the Gosset-Smolin lower bound for compression to Ω(

√
Bϵ−1)-many bits, which

ultimately allows us to show that Ω̃(
√
Bϵ−1 + ϵ−2) samples of the state are required for the

classical shadows task. Therefore, our joint-measurement algorithm above is sample-optimal
(at least for a single observable and up to log factors).

Finally, we address the classical shadows question with pure states and independent mea-

surements. We show that O((
√
Bd
ϵ + 1

ϵ2 ) logM) copies of the state suffice. It’s worth noticing
that in certain parameter regimes, this upper bound is smaller than Θ(Bϵ−2 logM). In other
words, our algorithm uses fewer samples than the classical shadows algorithm of Huang,
Kueng, and Preskill which was designed for general mixed states. Indeed, their lower bound
methods require the underlying state to be mixed.

1.1 The classical shadows task
We consider the classical shadows task introduced by Huang, Kueng, and Preskill [6]: given
several copies of an unknown quantum state, produce a classical description of the state that
is sufficiently representative to permit the reliable and accurate estimation of expectation
values of some number of observables chosen from a broad class.

To formalise the task, let’s begin with the class of observables we will use:

Definition 1. For any B ∈ (0, d], let

Obs(B) :=
{
O ∈ Cd×d | O = O†, ∥O∥∞ = 1,Tr(O2) ≤ B

}
.

In summary, these observables have been scaled/normalized so that ∥O∥∞ = 1 and have
a bound of B on their squared Frobenius norm Tr(O2). The latter condition is due to the
fact that Tr(O2) is typically the dominant term in the sample complexity. We could also
reasonably upper bound it by the rank of the observable since Tr(O2) ≤ rankO ≤ d.

We remark that ∥O∥2 =
√

Tr(O2) and ∥O∥∞ are examples of Schatten p-norms where
p = 2 and p = ∞ respectively, but defined in general as ∥A∥p := Tr(|A|p)1/p for p ∈ [1,∞).
We will also use the Schatten 1-norm. Going forward, we write ∥O∥1 for the 1-norm, ∥O∥ for
the infinity norm, and prefer Tr(O2) over ∥O∥22.

Definition 2 (Classical Shadows Task). The Classical Shadows Task consists of two separate
phases—a measurement phase and an observable estimation phase—which are completed by
two separate (randomized) algorithms, Ameas and Aest, respectively. In addition to the inputs
below, each algorithm also depends on the four parameters s, B, ϵ, and δ:
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Measurement: Ameas : ρ⊗s → {0, 1}∗
Input: s copies of a state ρ ∈ Cd×d.
Output: A bit string called the classical shadow.

Estimation: Aest : Obs(B)× {0, 1}∗ → R
Input: Observable O ∈ Obs(B) and a classical shadow.
Output: Estimate E ∈ R.

It’s worth emphasizing that the input to the measurement algorithm is quantum (the state
ρ⊗s) and the output is classical (the classical shadow). This output is computed from mea-
suring the input state with some POVM (with arbitrary post-processing).

We say that Ameas and Aest constitute a valid protocol for the classical shadows task if
their estimate for the expectation of the observable E := Aest(O,Ameas(ρ⊗s)) is such that

|Tr(Oρ)− E| < ϵ (1)

with probability at least 1− δ over the randomness of Ameas and Aest.

Some may find it useful to think about the classical shadows task as a one-way communi-
cation protocol where one party (let’s call her Melanie) is given copies of an unknown state
and another party (say, Esteban) is given an observable. Melanie doesn’t know Esteban’s
observable, and Esteban cannot send hints because we are assuming one way communication
from Melanie to Esteban, so there is only one course of action: Melanie must measure her un-
known state and send (over a classical channel) a description of the state from which Esteban
can estimate the expected value of his given observable.

Throughout this paper, we will focus on the classical shadows task with unknown pure
states. This motivates the following definitions:

Definition 3 (Sample Complexity of the Classical Shadows Task). Let Shadows(B, ϵ, δ) to
be the minimum number of samples s required to successfully carry out the classical shadows
task on pure states with the set of observables Obs(B), to accuracy ϵ, and failure probability
at most δ.

Sometimes we will omit δ and write Shadows(B, ϵ) to denote the minimum number of
samples to achieve these tasks with some constant probability of failure, say, 0.001.

Definition 4 (Classical Shadows with Independent Measurements). Let I-Shadows(B, ϵ, δ)
be the sample complexity for the classical shadows task with pure states when the measure-
ment algorithm can only make independent measurements on the input state—that is, the
measurement POVM is the tensor product of POVMs on single copies of the state. These
POVMs do not have to be identical, but the entire state must be measured at the same time,
or in other words, the output from a measurement on one copy of the state cannot influence
the measurement on another.

We note that there are many possible variants for the sample complexity of the classical
shadows task that we haven’t given individual names. Most notably are the settings where
the unknown states are mixed states (rather than pure) and/or the measurements are allowed
to be adaptive (while still acting on single copies of the state).
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1.2 Summary of results
Our main result is to prove matching upper and lower bounds on the sample complexity of
performing the classical shadows task with respect to joint measurements and pure states.

Theorem 5. Shadows(B, ϵ) = Θ̃
(√

B
ϵ + 1

ϵ2

)
provided B ≤ ϵd.

Notice that Theorem 5 consists of separate upper and lower bound results (for constant δ).
These match up to logarithmic factors in B and ϵ−1, and the technical relationship between
B, ϵ, and d is only required for the lower bound. In Section 3, we will prove the upper bound,
where we will also show that the dependence on the failure probability δ goes as log(1/δ). We
note that this dependence on δ implies that there are efficient protocols for the calculation of
several observables simultaneously—that is, if the classical shadows task fails with probability
at most δ on a single observable, then it fails with probability at most Mδ on one or more
out of M observables by the union bound. In Section 4, we will prove the lower bound where
only the ϵ−2 term will scale with log(1/δ).

We also prove an upper bound on the sample complexity of performing the classical
shadows task with respect to independent measurements and pure states. Our upper bound
can be compared to the matching upper and lower bound of Huang, Kueng, and Preskill
[6] which applies to independent measurements and general states. In certain parameter
regimes, our upper bound achieves a smaller sample complexity than the lower bound in [6]
which implies that in the independent measurement setting, the classical shadows task has
smaller sample complexity for pure states.

Theorem 6. For all ϵ, δ > 0,

I-Shadows(B, ϵ, δ) = O
(

min
{
B

ϵ2
,

√
Bd

ϵ
+ 1
ϵ2

}
log(δ−1)

)
.

We discuss and prove Theorem 6 in Section 5.
Finally, we note that in all of our algorithms, the estimator ρ̂ we use for the unknown

state ρ is not itself a proper state. In Appendix A, we show that this is a necessary price
for the favorable sample complexity enjoyed by classical shadows schemes. Informally, we
show that even for observables in Obs(1), learning an estimate ρ̂ that is a proper state to
sufficient accuracy to solve the classical shadows task via the formula Tr(Oρ̂), requires a
sample complexity that scales linearly in d, the dimension of the unknown state.

2 Preliminaries
Here we cover key background material related to Haar random states, their moments, and
the symmetric subspace. Throughout, we’re working with qudits of dimension d ≥ 2 unless
otherwise specified. Since the unitary group U(d) acts on the Hilbert space of dimension d,
it has a corresponding Haar measure which is invariant under the action of the group. Haar
random states sampled proportional to this measure are ubiquitous in quantum information,
and essential to define our measurement in Section 3.

To perform the necessary calculations on Haar random states, we need to discuss their
moments, and some ancillary concepts.
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Definition 7. For integer k ≥ 1, k-th moment of an ensemble E of quantum states is

E|ψ⟩∼E [|ψ⟩⟨ψ|⊗k].

An ensemble E is a (state) t-design if the moments 1 ≤ k ≤ t are identical to those of the
Haar distribution (see Lemma 10).

Definition 8 (permutation operator). Given a permutation π ∈ Ss (for s ≥ 1), define a
permutation operator Wπ ∈ Cds×ds such that

Wπ|x1⟩ · · · |xs⟩ =
∣∣∣xπ−1(1)

〉
· · ·
∣∣∣xπ−1(s)

〉
,

and extend by linearity. That is, Wπ acts on (Cd)⊗s by permuting the qudits, sending the
qudit in position i to position π(i).

Definition 9 (symmetric subspace). The symmetric subspace of an s-qudit system (Cd)⊗s is
the subspace invariant under Wπ for all π ∈ Ss. We use κs to denote its dimension and define
Π(s)

sym to be the projector onto it (notationally omitting the dependence on d, the dimension
of the qudit).

We have two characterizations of the symmetric subspace.

Fact 1. For all s, Π(s)
sym = 1

s!
∑
π∈Ss

Wπ, and κs =
(s+d−1
d−1

)
.

The integral of |ψ⟩⟨ψ| over the Haar measure is known from, e.g., [8].

Lemma 10.
κs

∫
ψ

(|ψ⟩⟨ψ|)⊗sdψ = Π(s)
sym = 1

s!
∑
π∈Ss

Wπ

where Π(s)
sym is the projector onto the symmetric subspace and Wπ is the operator that permutes

s qudits by an s-element permutation π.

We will often need to compute the (partial) trace of (A1 ⊗ A2 ⊗ · · · ⊗ As)Wπ for some
linear operators A1, . . . , As ∈ Cd×d. It turns out that there is an extremely useful tensor
network based pictorial representation that simplifies these calculations. Let us give a brief
introduction to those techniques, though readers may also find more thorough treatments
useful [9, 10].

To start, we draw a single d dimensional linear operator A =
∑
i,j∈[d] ai,j |i⟩⟨j| as a tensor

block with a leg for the input and output indices for A:

A

i

j

Suppose we have another tensor B =
∑
i,j∈[d] bi,j |i⟩⟨j|. We express composition, tensor prod-

uct, and trace as the following tensor networks:
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Composition (AB) Tensor Product (A⊗B) Trace (Tr(A))

A

B

A B A

The reason the tensor network picture is particularly nice for dealing with traces of Wπ terms
is because each Wπ term is simply a permutation of wires in the tensor network picture. For
example, for a simple cyclic permutation, we have

W(1 2 3) = .

The key feature of tensor networks is that only the topology of the network matters, so
we can simplify tensor networks just by moving the elements around. For example, consider
a common partial trace that will arise in this paper: Tr1((A⊗B)W(1 2)). Drawing the tensor
network, we get

Tr1((A⊗B)W(1 2)) =
A B

=
B

A

=
B

A

= BA

where we can push the B tensor through the SWAP and around the trace loop to see that it is
composed with A. In other words, we have just shown the identity Tr1((A⊗B)W(1 2)) = BA.

As a generalization, we have the following useful fact:

Fact 2. Let n ≥ 1 and π = (1 2 · · · n) ∈ Sn. For any A1, . . . , An, we have

Tr−1(Wπ(A1 ⊗A2 ⊗ · · · ⊗An)) = AnAn−1 · · ·A1,

where Tr−1 indicates the partial trace of all but the first qudit. Thus, Tr(Wπ(A1 ⊗A2 ⊗ · · · ⊗
An)) = Tr(AnAn−1 · · ·A1).

Proof. The fact is best seen with a small example. When n = 5, for instance, the tensor
network diagram is

A1 A2 A3 A4 A5

from which the identity follows.
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3 Joint Measurement Upper Bound
The goal of this section is to prove the following upper bound for the sample complexity of
classical shadows for pure states and joint measurements.

Theorem 11.
Shadows(B, ϵ, δ) = O

((√
B

ϵ
+ 1
ϵ2

)
log 1

δ

)
.

The proof of Theorem 11 is constructive; given B, ϵ, δ and d, we specify the number of
samples and a pair of algorithms Ameas and Aest that solve the classical shadows task with
that many samples.

In brief, the construction is as follows. We give a measurementMs on s copies of ρ, where
the outcome of the measurement is a classical description of a pure state Ψ. We apply an
affine transformation to the outcome Ψ to produce an unbiased “shadow” estimator: a unital
Hermitian matrix ρ̂ such that E[ρ̂] = ρ. Increasing the number of samples, s, suppresses
the additive error ϵ and the failure probability δ by a factor of s−O(1). To improve this to
an inverse exponential suppression in the failure probability, we repeat the entire procedure
k = O(log(δ−1)) times and take the median of the batch estimates akin to the median of
means method [11, 12, 6]. A pseudocode description is given in Algorithms 1 and 2.

Algorithm 1 Algorithm for Ameas of Theorem 11
Input: Quantum state ρ⊗N , B, ϵ, δ, d.
Output: Classical shadow

{
ρ̂(i)
}
i∈[k]

.

1: s← O(
√
Bϵ−1 + ϵ−2) ▷ Samples per batch

2: k ← ⌊N/s⌋ ▷ Number of batches
3: for each batch i = 1, . . . , k do
4: ψi ← Measure new batch of ρ⊗s with Ms

5: ρ̂(i) ← (d+s)ψi−I
s

6: end for
7: return

{
ρ̂(i)
}
i∈[k]

Algorithm 2 Algorithm for Aest of Theorem 11 and Theorem 29

Input: Classical shadow
{
ρ̂(i)
}
i∈[k]

and observable O.

1: E ← median(Tr(Oρ̂(1)), . . . ,Tr(Oρ̂(k)))
2: return E

We now define our measurementMs.

Definition 12. The standard symmetric joint measurement is a measurement on s qudits.
It is defined by the POVM Ms = {Aψ}ψ ∪ {I −Π(s)

sym} with elements

Aψ := κs|ψ⟩⟨ψ|⊗sdψ,
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for all d-dimensional pure states, proportional to the Haar measure, plus a “fail” outcome
I −Π(s)

sym for non-symmetric states.

We will be interested in the setting were ρ is pure2 and therefore ρ⊗s is in the symmet-
ric subspace, so we will never see the “fail” outcome—it exists solely to make the POVM
sum/integrate to I.

One might be concerned that the standard symmetric joint measurement is constructed
from the Haar measure, resulting in a continuum of outcomes. This is technically inconsistent
with Definition 2 where the measurement must output a finite length bit string. However, it
will turn out that our analysis (c.f. Theorem 11) only requires the states that appear in the
POVM to form an (s+2)-design, where s is the number of samples jointly measured. That is, it

suffices to replace the continuous POVMMs with a finite POVM {κspi|ψi⟩⟨ψi|⊗s}i∪{I−Π(s)
sym}

such that
∑
i pi|ψi⟩⟨ψi|

⊗(s+2) =
∫
ψ|ψ⟩⟨ψ|

⊗(s+2)dψ where the pi ≥ 0 define a finite probability
distribution.

For some perspective, consider the independent measurement setting in which s = 1. By
the above observation, we require the measurement to form a 3-design. Since the set of multi-
qubit stabilizer states forms a 3-design, we recover the efficient measurement protocol of [6].
That said, our measurements typically involve many copies of the state, resulting in a large
s. In such cases, we must use much more complicated constructions of designs (see, e.g.,
[13, 14, 15]). Nevertheless, these constructions result in a finite POVM that can at least in
principle be implemented with a projective measurement using poly(d, log(1/ϵ))-many ancillas
[16].

3.1 Analysis
After defining the measurement, the estimator, and how many samples we need, the only
remaining technical component is to bound the probability of failure. This ultimately comes
down to Chebyshev’s inequality:

Pr[|Tr(Oρ̂)− E[Tr(Oρ̂)]| ≥ ϵ] ≤ Var(Tr(Oρ̂))
ϵ2

.

Hence, we need to calculate the mean and variance of the random variable Tr(Oρ̂). To be
precise, let ρ be a pure state and suppose we measure ρ⊗s with the standard symmetric joint
measurement Ms. Let Ψ be the density matrix random variable for |ψ⟩⟨ψ|, where ψ is the
outcome of the measurement. Let’s start with the mean:

Lemma 13 (First moment). For measurement Ms on pure state ρ⊗s, we have

E[Ψ] = I + sρ

d+ s
.

Proof. To start, let’s express the expectation as a Haar integral using the definition of Ms:

E[Ψ] =
∫
ψ · Pr[Ψ = ψ] =

∫
ψ · Tr(Aψρ⊗s) = κs

∫
ψ · Tr(ψ⊗sρ⊗s) dψ.

2This is the first time we use the purity of ρ in our analysis, but certainly not the last.
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Using the identity ATr(B) = Tr2(A ⊗ B) for all square matrices A and B, we can apply
Lemma 10 to compute the integral above:

E[Ψ] = κs

∫
Tr−1

(
ψ⊗s+1 · (I ⊗ ρ⊗s)

)
dψ = κs

κs+1

1
(s+ 1)!

∑
π∈Ss+1

Tr−1(Wπ(I ⊗ ρ⊗s)).

We attack the right hand side by evaluating Tr−1(Wπ(I ⊗ ρ⊗s) for each π. In particular, we
will show that

Tr−1(Wπ(I ⊗ ρ⊗s)) =
{
I, if π(1) = 1,
ρ, otherwise.

To do this, we take the cycle decomposition of π and analyze each cycle separately. Notice
that any cycle not involving position 1 is completely traced out and the cycle operator acts
on a tensor power of ρ only, so Fact 2 says the trace is Tr(ρk) = Tr(ρ) = 1 (since ρ is pure).
Thus, only the cycle through position 1 matters. If π(1) = 1, then this cycle is trivial, and
the result is I. Otherwise, the cycle visits k ≥ 1 copies of ρ, leading to the product ρk = ρ.

There are s! permutations which fix 1 (i.e., π(1) = 1) and hence s · s! which do not, so we
conclude that

E[Ψ] = κs
κs+1

1
(s+ 1)!

∑
π∈Ss+1

Tr−1(Wπ(I ⊗ ρ⊗s)) = s! · I + s · s! · ρ
(d+ s)s! = I + sρ

d+ s
.

Notice that Tr(E[Ψ]) = Tr(I)+sTr(ρ)
d+s = 1 = E[Tr(Ψ)], as a sanity check.

We now turn to the variance calculation, which depends on the second moment of the
estimator:

Lemma 14 (Second moment). For measurement Ms on pure state ρ⊗s, we have

E[Ψ⊗Ψ] = 2
(d+ s)(d+ s+ 1)

(
(I + sρ)⊗2 − s(s+ 1)

2 (ρ⊗ ρ)
)

Π(2)
sym

Proof. As in Lemma 13, we evaluate E[Ψ⊗Ψ] as

E[Ψ⊗Ψ] =
∫

(ψ ⊗ ψ) · Pr[Ψ = ψ]

=
∫

(ψ ⊗ ψ) · κs Tr(ψ⊗sρ⊗s) dψ

= κs

∫
Tr−1,2

(
ψ⊗s+2 · (I⊗2 ⊗ ρ⊗s)

)
dψ

= κs
κs+2

1
(s+ 2)!

∑
π∈Ss+2

Tr−1,2(Wπ(I⊗2 ⊗ ρ⊗s)),

where the partial trace Tr−1,2 now preserves the first two qudits. In Figure 1 and for the
special case of s = 1, we show a complete derivation of how this trace simplifies using the
tensor network notation, which may be useful to some readers before proceeding to the more
general proof.
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Let us evaluate the sum term-by-term. We divide the permutations into two types: those
where 1 and 2 appear in separate cycles (type A) and those where 1 and 2 appear in the same
cycle (type B). Consider the type A permutations first:

Tr−1,2(Wπ(I⊗2 ⊗ ρ⊗s)) =


I ⊗ I if π(1) = 1 and π(2) = 2
I ⊗ ρ if π(1) = 1 and π(2) ̸= 2
ρ⊗ I if π(1) ̸= 1 and π(2) = 2
ρ⊗ ρ if π(1) ̸= 1 and π(2) ̸= 2

As before, we end up getting I or ρ for each position, depending on whether 1 and 2 were

E[Ψ⊗Ψ] = d · Eψ∼Haar[ψ ⊗ ψTr(ρψ)]

= d · Eψ∼Haar

 ρ

ψ ψ ψ



= 1
(d+ 1)(d+ 2)

∑
π∈S3

 ρ

Wπ



= 1
(d+ 1)(d+ 2)

 ρ + ρ + ρ + ρ + ρ + ρ



= 1
(d+ 1)(d+ 2)

 + ρ + ρ + + ρ + ρ


=

(I ⊗ I + ρ⊗ I + I ⊗ ρ)(W(1)(2) +W(1 2))
(d+ 1)(d+ 2)

Figure 1: Second moment calculation in the special case s = 1.

fixed by the permutation. The combinatorics is similar but not identical: there are (s + 1)!
permutations which fix 1, and of those, s! fix 2 and s · s! do not. Likewise, s · s! fix 2 but not
1. The remainder of the type A permutations fix neither 1 nor 2, and to count these we need
a fact.

Fact 3. Let π ∈ Sn be a permutation, and consider π′ := (1 2)π. Then

1 and 2 are in distinct cycles of π ⇐⇒ 1 and 2 are in the same cycle of π′.

In other words, there is a bijection between A and B permutations, so exactly half of all
permutations (1

2(s+ 2)!) are type A, and half are type B. It follows that there are s(s−1)
2 · s!

Accepted in Quantum 2024-05-01, click title to verify. Published under CC-BY 4.0. 11



type A permutations such that π(1) ̸= 1 and π(2) ̸= 2. Therefore, the overall contribution of
the type A permutations is equal to s! times

(I ⊗ I) + s(I ⊗ ρ) + s(ρ⊗ I) + s(s− 1)
2 (ρ⊗ ρ) = (I + sρ)⊗2 − s(s+ 1)

2 ρ⊗2.

Fortunately, we do not have to repeat this counting argument for the type B permutations.
The bijection from Fact 3 decomposes each type B permutation π as (1 2)π′ where π′ is type
A, and so

Tr−1,2(Wπ(I ⊗ ρ⊗s)) = Tr−1,2(W(1 2)Wπ′(I ⊗ ρ⊗s)) = W(1 2) Tr−1,2(Wπ′(I ⊗ ρ⊗s)).

Therefore, we can multiply our result for type A permutations by W(1)(2) +W(1 2) = 2Π(2)
sym to

get the total. The result follows from some careful accounting of the scalar factors.

Corollary 15. Let ρ̂ = (d+s)Ψ−I
s . For any observable O ∈ Obs(B) and ϵ > 0, we bound the

probability of failure as

Pr[|Tr(Oρ̂)− Tr(Oρ)| ≥ ϵ] ≤ 1
ϵ2s2

[
Tr(O2) + 8sTr(O2ρ)

]
.

Proof. Our goal will be to compute the mean and variance of the estimate Tr(Oρ̂) in order
to apply Chebyshev’s inequality. By Lemma 13, we have

E[ρ̂] = E
[(d+ s)Ψ− I

s

]
= ρ,

and so the mean of the estimate is correct: E[Tr(Oρ̂)] = Tr(OE[ρ̂]) = Tr(Oρ).
To analyze the variance, let us first consider traceless observables O, where Tr(O) = 0.

As usual, it will be useful to break the variance into a first moment term E[Tr(OΨ)] and a
second moment term E[Tr(OΨ)2]:

Var(Tr(Oρ̂)) = Var
((d+ s) Tr(OΨ)− Tr(O)

s

)
=
(
d+ s

s

)2
(E[Tr(OΨ)2]− E[Tr(OΨ)]2)

Putting aside the s−2 factor for now, the (squared) first moment term is

(d+ s)2E[Tr(OΨ)]2 = (d+ s)2
(Tr(O) + sTr(Oρ)

d+ s

)2
= s2 Tr(Oρ)2.

For the second moment term, we use E[Tr(OΨ)2] = E[Tr((O ⊗ O)(Ψ ⊗ Ψ))] and Lemma 14
to write

(d+ s)2E[Tr(OΨ)2] = 2(d+ s)
d+ s+ 1 Tr

[
O⊗2

(
(I + sρ)⊗2 − s(s+ 1)

2 ρ⊗2
)

Π(2)
sym

]
≤ Tr

[
O⊗2

(
I⊗2 + s(I ⊗ ρ+ ρ⊗ I)− s(s− 1)

2 ρ⊗2
)

(2Π(2)
sym)

]
.

Recall that (2Π(2)
sym) = W(1)(2) +W(1 2), so to simplify, consider the contribution of those two

terms:

W(1)(2) : Tr(O)2 + 2sTr(O) Tr(Oρ) + s(s− 1)
2 Tr(Oρ)2

W(1 2) : Tr(O2) + 2sTr(O2ρ) + s(s− 1)
2 Tr((Oρ)2)
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In fact, because ρ is pure, we have3 that Tr((Oρ)2) = Tr(Oρ)2. Combining all of the above,
we arrive at a bound for the (scaled) variance of Tr(OΨ):

(d+ s)2 Var(Tr(OΨ)) ≤ Tr(O2) + 2sTr(O2ρ)− sTr(Oρ)2 ≤ Tr(O2) + 2s
∥∥∥O2

∥∥∥
where the last inequality uses Hölder’s inequality.4

It follows that Var(Tr(Oρ̂)) is

Var(Tr(Oρ̂)) ≤ Tr(O2) + 2s∥O2∥
s2 ,

for traceless observables. Now suppose O has nonzero trace, and let O0 := O − Tr(O)I/d be
its traceless part. Naturally, we have

Var(Tr(Oρ̂)) = Var(Tr(O0ρ̂)) ≤ Tr(O2
0) + 2s∥O2

0∥
s2 .

Let’s now show that we can bound each of those terms (Tr(O2
0) and ∥O2

0∥) using functions of
the original observable O. First, for the Tr(O2

0) term, we have that

Tr(O2
0) = Tr(O2)− Tr(O)2/d ≤ Tr(O2).

Next consider the ∥O2
0∥ term. We have that Tr(O) ≤ ∥O∥d, and so the largest eigenvalue (in

absolute value) of O − Tr(O)I/d is at most 2∥O∥. We get

∥O2
0∥ = ∥O0∥2 ≤ (2∥O∥)2 = 4∥O2∥.

Hence Var(Tr(Oρ̂)) ≤ 1
s2
(
Tr(O)2 + 8s∥O2∥

)
, and the result follows by Chebyshev’s theorem.

At last, we can prove the main theorem for this section.

Proof of Theorem 11. Consider an arbitrary observable O, and use Corollary 15 to bound the
probability a single batch estimate ρ̂(i) is wrong by

Pr[|Tr(Oρ̂(i))− Tr(Oρ)| ≥ ϵ] ≤ 1
ϵ2s2

[
Tr(O2) + 8s∥O2∥

]
≤ B + 8s

ϵ2s2 .

Suppose we want this probability to be less than some constant p < 1/2; we leave it to the
reader to check that at most O(1/(ϵ2p)+

√
B/(ϵ2p)) samples suffice, and note that s is chosen

accordingly in Algorithm 1.
Recall that our final estimate E is

E := median(Tr(Oρ̂(1)), . . . ,Tr(Oρ̂(k))).

Assume there are an odd number of batches, so the median is actually some Tr(Oρ̂(i)). If E
is a bad estimate, i.e., |E − Tr(Oρ)| > ϵ then at least k/2 of the batch estimates are wrong:
either E and the estimates higher than it, or E and the estimates lower than it.

3If ρ := |ψ⟩⟨ψ|, we get Tr((Oρ)2) = Tr(O|ψ⟩⟨ψ|O|ψ⟩⟨ψ|) = Tr(⟨ψ|O|ψ⟩⟨ψ|O|ψ⟩) = ⟨ψ|O|ψ⟩2 = Tr((Oρ)2).
4Hölder’s inequality: For density matrix ρ and observable O, Tr(Oρ) ≤ ∥Oρ∥1 ≤ (∥O∥∞∥ρ∥1) ≤ ∥O∥∞.
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The batches are independent so Chernoff bounds the chance of seeing ≥ k/2 failures.

Pr[|E − Tr(Oρ)| ≥ ϵ] ≤ Pr
[
#{i : |Tr(Oρ̂(i))− Tr(Oρ)| ≥ ϵ} ≥ k

2

]
≤
√

4p(1− p)
k

Setting this less than the failure probability δ, we have

k ≥ log δ−1

log (4p(1− p))−1/2 .

Again, we note that k is set accordingly in Algorithm 1.

3.2 Discussion
Let us compare this result with the original classical shadows protocol of Huang, Kueng, and
Preskill [6]. Their algorithm measures each copy of ρ withM1

5, producing unbiased single-
copy estimates ρ̂1, . . . , ρ̂s for ρ, which are then averaged into a batch estimate ρ̂ = 1

s

∑s
i=1 ρ̂i.

Given the observable O, the estimate is then Tr(Oρ̂), or the median of several batches, if
necessary to reduce the probability of failure.

We have just seen that the variance of a single-copy estimate is Var(Tr(Oρ̂i)) ≤ Tr(O2) +
Tr(O2ρ), and averaging s estimates together reduces the variance by a factor of 1

s . On the
other hand, our measurement withMs provides an unbiased estimate with variance

Var(Tr(Oρ̂)) ≤ Tr(O2)
s2 + Tr(O2ρ)

s
.

Since Tr(O2ρ) ≤ 1, we see that the quadratic denominator of Tr(O2) (which is the dominant
term) is making all the difference.

4 Joint Measurement Lower Bound
Theorem 16. Shadows(B, ϵ, δ) = Ω

( √
B

ϵ log(B+1) + log δ−1

ϵ2

)
provided B ≤ ϵd.

Notice that this bound matches the O((
√
Bϵ−1 + ϵ−2) log(δ−1)) upper bound up to a

log(B) and a log(1/δ) factor. We prove this as two separate lower bounds: Ω( log δ−1

ϵ2 ) and

Ω(
√
B

ϵ log(B+1)).
The first lower bound (Ω(ϵ−2 log(δ−1)) is derived via a reduction from the problem of

distinguishing two pure states, ρ0 and ρ1, at trace distance 2ϵ from each other. We then use
the known performance of the optimal measurement (Helstrom measurement).

The second lower bound is shown via a reduction from a problem in communication com-
plexity known as Boolean Hidden Matching [21]. We will show that any protocol for the
classical shadows task implies a protocol for the Boolean Hidden Matching problem, which
has known communication complexity lower bounds. These communication lower bounds will

5Technically, they use a Clifford unitary instead of a Haar random unitary, presumably for the sake of
efficient implementation. However, M1 will work in place of their measurement, and the analysis is identical
since it uses up to third moments of the ensemble of unitaries, which are the same for Clifford vs. Haar random
unitaries, i.e., the Cliffords are a 3-design [17, 18, 19, 20].
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imply that the classical shadow must contain a significant amount of information. However,
Holevo’s theorem gives an upper bound on the amount of information gained through mea-
surement. Therefore, in order to successfully complete the classical shadows task, many copies
of the unknown state are required.

4.1 Ω(ϵ−2 log(δ−1)) lower bound
The proof of the lower bound uses known results relating the trace distance between two
states with our ability to distinguish the states by observables or binary measurements. In
particular, the maximum gap for the expectation of a positive semi-definite observable is equal
to the trace distance between the states:

Lemma 17. For arbitrary states ρ and σ,

max
0⪯O⪯I

|Tr(Oρ)− Tr(Oσ)| = 1
2∥ρ− σ∥1.

Furthermore, there is an optimal O satisfying Tr(O2) ≤ 1
2 rank(ρ− σ) ≤ 1

2(rank ρ+ rank σ).

Proof. Diagonalize ρ − σ as
∑
i λi|ϕi⟩⟨ϕi|. Define two positive semi-definite observables, O+

and O−.

O+ :=
∑
i:λi>0

|ϕi⟩⟨ϕi| O− := −
∑
i:λi<0

|ϕi⟩⟨ϕi|

Clearly O+ − O− is a projector onto the eigenvectors of ρ − σ, so Tr((O+ − O−)(ρ − σ)) =
Tr(ρ− σ) = 0, and rank(O+ −O−) = rank(ρ− σ). On the other hand,

Tr((O+ +O−)(ρ− σ)) = Tr

 ∑
i:λi ̸=0

(sgnλi)λi|ϕi⟩⟨ϕi|

 =
∑
i:λi ̸=0

|λi| = ∥ρ− σ∥1.

It follows that Tr(O+(ρ−σ)) = Tr(O−(ρ−σ)) = 1
2∥ρ−σ∥1. Since O+ and O− are orthogonal,

the rank of their sum, rank(ρ − σ), is the sum of their ranks. Hence, we can take whichever
of O+ and O− has rank at most 1

2 rank(ρ− σ).

Separately, we know the optimal measurement for distinguishing a uniformly randomly
chosen ρ or σ is given by:

Lemma 18 (Helstrom measurement [22]). The optimal measurement for distinguishing states
ρ and σ succeeds with probability 1

2 + 1
4∥ρ− σ∥1.

Theorem 19. Shadows(1, ϵ, δ) = Ω(ϵ−2 log(1/δ)).

Proof. Let ρ0 and ρ1 be pure states with trace distance 1
2∥ρ0 − ρ1∥1 = 2ϵ. We claim that a

protocol for the classical shadows task to ϵ-approximate the expected values of observables
of rank 1 with probability of failure at most δ can be used to distinguish states ρ0, ρ1 with
probability of failure at most δ. First, apply the measurement subroutine to unknown state
ρ⊗s
b to produce the classical shadow. Then, use the observable O from Lemma 17 to estimate

Tr(Oρb). If the estimate is closer to Tr(Oρ0) then guess b = 0, otherwise guess b = 1. Since
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the gap |Tr(Oρ0) − Tr(Oρ1)| = 1
2∥ρ0 − ρ1∥ = 2ϵ, we succeed whenever the gap between the

estimate and Tr(Oρb) is less than ϵ.
We can see this classical shadows protocol as a binary measurement distinguishing ρ0 and

ρ1. Since it succeeds with probability 1 − δ, the optimal distinguishing measurement from
Lemma 18 must do better, so

(1− 2δ)2 ≤ 1
4∥ρ

⊗s
0 − ρ

⊗s
1 ∥

2
1 = 1− Tr(ρ⊗s

0 ρ⊗s
1 ) = 1− Tr(ρ0ρ1)s

= 1−
(

1− 1
4∥ρ0 − ρ1∥21

)s
= 1− (1− ϵ2)s

where we have used the equation 1
2∥ρ0 − ρ1∥ =

√
1− Tr(ρ0ρ1) relating trace distance and

fidelity for pure states [23]. Rearranging, we have (1− ϵ2)s ≤ 1− (1− 2δ)2 = 4δ − 4δ2 ≤ 4δ.
Taking logs and using 1− 1

x ≤ ln x we have

− sϵ2

1− ϵ2 ≤ s log(1− ϵ2) ≤ log(4δ),

or equivalently,

s ≥ 1− ϵ2

ϵ2
log
( 1

4δ

)
= Ω(ϵ−2 log(1/δ)).

4.2 Ω(ϵ−1B/ log(B + 1)) lower bound
To prove this lower bound, we leverage the perspective that the classical shadows task is
fundamentally a one-way communication problem—recall the setup of the classical shadows
task (c.f., Section 1.1) where Melanie measures copies of an unknown state ρ and sends a
classical message to Esteban that allows him to estimate the expectation of some observable O
on ρ. Intuitively, measuring more copies of ρ means the message will contain more information
about ρ. Conversely, if we can prove that Melanie’s message must contain a lot of information,
we can prove that she must have measured many copies of ρ. In other words, there is a
tight correspondence between the sample complexity and one-way classical communication
complexity of the classical shadows task.

Formalizing this correspondence is somewhat tricky, so we leave the precise details for later
(in particular, Section 4.2.1). However, once this correspondence is established, the high-level
structure of the proof is relatively straightforward.

Our starting point is a one-way communication task called “Boolean Hidden Matching”.
As in the classical shadows task, there are two parties involved in the task: Alice and Bob.
Alice has a labeled graph and Bob has a “partial matching” (a collection of vertex-disjoint
edges from the graph). Together, these encode a secret bit6. Bob doesn’t know the labels
on the graph, so Alice’s goal is to send him a classical message so that he can extract the
encoded bit. [21] shows a lower bound on the number of bits that Alice must send to be
successful—namely, she must send Ω(

√
n/α) bits where n is the number of vertices in Alice’s

graph and α is the fraction of edges in Bob’s partial matching.

6See Section 4.2.2 for the precise definition.
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Figure 2: Protocol for Boolean Hidden Matching using classical shadows subroutines (shown in blue). From
her input x, Alice prepares ρ⊗s

x , measures, and sends the classical shadow to Bob. From his input y, Bob
computes Oy and then estimates Tr(Oyρx) to accuracy α from the classical shadow that Alice sent to him.
He then uses that estimate to answer the Boolean Hidden Matching problem. Correctness follows from the
fact that Tr(Oyρx) = 2α · BHMα(x, y). For the details of ρx and Oy see Theorem 25.

Our goal will be to take this lower bound for Boolean Hidden Matching and turn it into
a lower bound for the classical shadows task. To do this, we create an ensemble of states
(corresponding to labeled graphs) and observables (corresponding to partial matchings) such
that computing the expected value of an observable with a state solves the Boolean Hidden
Matching problem for the corresponding graph and matching. In other words, if Alice and Bob
want to solve the Boolean Hidden Matching problem, they can first create the corresponding
states and observables, and then use a protocol for classical shadows. We give a depiction of
this reduction in Figure 2.

To tie everything together, we appeal to the equivalence between the sample complexity of
the classical shadows task and the one-way communication complexity. Namely, Alice must
measure a number of copies of her state (roughly) proportional to the number of bits she
wants to send Bob. Since we have a lower bound on the number of bits she must send Bob,
we have a lower bound on the number of copies she must measure. This completes the proof.

This overall idea draws considerable inspiration from that in the work of Gosset and
Smolin for compressing classical descriptions of quantum states [7]. Our proof can be seen as
generalization of their techniques.

The remainder of this section is devoted to formalizing the above ideas. Section 4.2.1
introduces one-way communication complexity, culminating in a powerful theorem connecting
the number of bits exchanged in a communication protocol and the amount of Shannon
information exchanged in the protocol. In Section 4.2.2, we give the formal definition of the
Boolean Hidden Matching problem and fill in the missing details from the proof outline above.

4.2.1 One-way communication complexity

Because our proof is based on principles from communication complexity, let’s briefly intro-
duce that topic. We are interested in one-way communication protocols where two parties—
Alice and Bob—are trying to jointly compute some function f : X ×Y → {0, 1}. Alice is given
some input x ∈ X and Bob is given some input y ∈ Y. Alice’s goal is to send a single message
m ∈ {0, 1}∗ to Bob, so that he can compute f(x, y). Of course, she could choose to send her
entire input x, but in many cases it may be possible to communicate fewer bits and still be
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successful.
To be precise about the size of the message Alice must send, let X and Y be the random

variables (possibly correlated) for the inputs of Alice and Bob, respectively, and let M be the
random variable for Alice’s message to Bob. Notice that implicit in M is Alice’s communica-
tion strategy, which may be an arbitrary (randomized) function of her input. Let’s start with
the easiest setting, where Alice and Bob run deterministic algorithms.

Definition 20 (Deterministic One-Way Communication Complexity). D(X,Y )
δ (f), the bounded-

error deterministic one-way communication complexity of f , is the minimum number of bits
that Alice must send to Bob to compute f with at most δ probability of error whenever their
inputs are chosen according to the distribution (X,Y ).

A natural variant of classical one-way protocols is when Alice and Bob are allowed to run
randomized algorithms. There are two settings: private-coin protocols, where Alice and Bob
each have access to private random strings; and public-coins protocols, where Alice and Bob
also have access to a shared random string along with their private strings. It will not be
critical to completely understand the nuances of the various types of protocols for our proof,
but we define them in order to precisely state the theorems on which the lower bound rests.

Definition 21 (Randomized One-Way Communication Complexity). Rδ(f), the bounded-
error randomized one-way communication complexity of f , is the minimum number of bits
that Alice must send to Bob with a public-coin protocol to compute f over all possible inputs
with failure probability at most δ.

While randomized strategies may seem more powerful than deterministic strategies, Yao’s
minimax principle shows that there is always some input distribution for which the randomized
and deterministic complexities coincide:

Theorem 22 (Yao’s minimax principle [24]). max(X,Y )D
(X,Y )
δ (f) = Rδ(f).

It turns out that we will eventually be interested in the amount of information contained
in Alice’s message M , not just the length, which is what is measured by the communication
complexity. That said, these two quantities are intuitively related—if the information I(M :
X) that Alice’s message M reveals about her input X is much lower than the number of bits
she is communicating, she should be able to send a smaller message and still be successful.
The following theorem formalizes this message compression idea:

Theorem 23 ([25]). D(X,Y )
∆+δ (f) = 2∆−1[min I(M : X) +O(1)] where the minimization is

over all one-way private-coin protocols for f with input distribution (X,Y ) and probability of
error at most δ.

In the next section, we will show that classical shadows must also contain a lot of infor-
mation, which will be the basis of our lower bound.

4.2.2 Classical shadows for Boolean Hidden Matching

Our starting point is a lower bound for the one-way communication complexity for the Boolean
Hidden Matching function BHMα : X×Y → {0, 1} which was introduced by Gavinsky, Kempe,
Kerenidis, Raz, and de Wolf.
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Theorem 24 ([21]). Rδ(BHMα) = Θ(
√
n/α) for any constant δ < 1/2.

Recall that our lower bound technique is to show that a classical shadows strategy with
few samples implies a communication protocol for the Boolean Hidden Matching function
with low complexity. To do this, let’s look more closely at the BHMα function.

It will be useful describe the function directly as a communication problem with the inputs
x ∈ X for Alice and y ∈ Y for Bob. Alice is given (0, 1)-assignments for the n vertices of a
graph, and Bob is given (0, 1)-assignments to αn vertex-disjoint edges in the graph. A set
of vertex-disjoint edges from a graph is called a matching, hence the name of the function.
Importantly, the function is only defined on inputs for Alice and Bob that satisfy the following
promise: for each edge in the matching, the parity of the connected vertices (from Alice’s
input) plus Bob’s edge bit assignment is some constant b ∈ {0, 1}. The output of the function
is then defined as this bit b.

Formally, for every n ≥ 2, the Boolean Hidden Matching function BHMα : X ×Y → {0, 1}
with parameter α ∈ (0, 1/4] is defined on inputs X = {0, 1}n and Y = (N,N)αn × {0, 1}αn as
follows:

Alice: x ∈ X .
Bob: y = (M, w) ∈ Y, where M = {(i1, j1), . . . , (iαn, jαn)} is a matching

and w ∈ {0, 1}αn is a bit assignment.
Promise: There exists b ∈ {0, 1} such that b = xik ⊕ xjk ⊕ wk for all k.
Output: b ∈ {0, 1}

In the setting where α is constant, [21] show that the quantum communication complexity
of the Boolean Hidden Matching problem is low—Alice only needs to send a (logn)-qubit
state. Gosset and Smolin [7] notice that this implies the existence of a set of states and
observables whose expectation values give solutions to the Boolean Hidden Matching function.
We generalize this observation to the non-constant α setting below:

Theorem 25. There is a set of states {ρx ∈ Cn}x∈X and observables {Oy ∈ Obs(αn)}y∈Y
such that Tr(Oyρx) = 2α ·BHMα(x, y). Furthermore, a protocol for the classical shadows task
for observables of squared Frobenius norm B := αn, estimation accuracy ϵ := α, and failure
probability δ implies a one-way private-coin protocol for Boolean Hidden Matching with failure
probability δ.

Proof. Given valid inputs x and y = (M, w) to the BHMα function, define the pure state

|ψx⟩ := 1√
n

n∑
i=1

(−1)xi |i⟩

and the observable

Oy :=
αn∑
k=1

1
2(|ik⟩ − (−1)wk |jk⟩)(⟨ik| − (−1)wk⟨jk|).

Notice that Oy ∈ Obs(αn) since Oy is a αn-rank projector. Letting ρx := |ψx⟩⟨ψx|, we get

Tr(Oyρx) = ⟨ψx|Oy|ψx⟩ = 1
n

αn∑
k=1

(1− (−1)xik
⊕xjk

⊕wk) = 2αb = 2αBHMα(x, y).

Accepted in Quantum 2024-05-01, click title to verify. Published under CC-BY 4.0. 19



In particular, this implies that if E is an α-approximation to Tr(Oyρx), then

|E − Tr(Oyρx)| < α =⇒
∣∣∣∣ E2α − BHMα(x, y)

∣∣∣∣ < 1/2,

or in other words, rounding E/(2α) is equal to BHMα(x, y).
We now claim that the existence of these states and observables implies a private-coin

one-way protocol for the Boolean Hidden Matching problem (see Figure 2): Suppose we want
a protocol for BHMα with probability of failure at most δ. Let s = Shadows(αn, α, δ). On
input x, Alice prepares the state ρ⊗s

x , measures it with a valid classical shadows strategy, and
sends the resulting classical shadow to Bob. On input y, Bob computes the observable Oy,
and then computes an estimate E for Tr(Oyρx) using the classical shadow sent by Alice. The
correctness of the classical shadows strategy implies that E is an α-approximation to Tr(Oyρx)
with probability of failure at most δ. As shown above, Bob can then compute BHMα(x, y)
with failure probability at most δ by appropriately rounding the estimate.

Let us now note a key property of the one-way protocol in Theorem 25 for the Boolean
Hidden Matching problem. Namely, once Alice prepares ρ⊗s

x , she no longer uses her original
input x. Her message (the classical shadow) only depends on her measurement of the state
ρ⊗s
x . In particular, if her message is to contain a lot of information about her input x, then

Holevo’s theorem stipulates that she must be measuring a state of high dimension, or, in other
words, s must be large:

Theorem 26 (Holevo [26]). Let Z be the classical outcome of measuring a d-dimensional
state drawn from an ensemble {ρx}x∈X according to x ∼ X. Then, I(X : Z) ≤ log d.

Näıvely, the states ρ⊗s
x in Theorem 25 consist of s qudits of dimension n, i.e., it is a space

of dimension ns. However, since each ρ⊗s
x is invariant under permutation, it belongs to the

symmetric subspace, which has dimension nearly a factor of s! smaller (see Fact 1).
We are now ready to put all of the pieces of the lower bound together:

Theorem 27. Shadows(B, ϵ) = Ω
( √

B
ϵ log(B+1)

)
provided B ≤ ϵd.

Proof. Using the communication complexity of BHMα as our starting point, we first show
that Alice’s message to Bob in every successful protocol for the Boolean Hidden Matching
problem must contain a significant amount of information. To show this, note that by Yao’s
minimax principle (Theorem 22), there exists a distribution (X,Y ) such that Rδ(BHMα) =
D

(X,Y )
δ (BHMα), for any given δ is the probability of error. Theorem 23 lets us upper bound the

(deterministic) complexity with mutual information, and Theorem 24 proves a lower bound.
Thus,

D
(X,Y )
δ (BHMα) = O(min I(M : X) + 1), and

D
(X,Y )
δ (BHMα) = Ω(

√
n/α),

for any constant δ. It follows that I(M : X) = Ω(
√
n/α) for any one-way private-coin protocol

for BHMα.
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Now consider the classical shadows strategy for solving BHMα as described by Theorem 25,
and suppose that Alice measures s = Shadows(αn, α) copies of ρx.7 Recall that Alice’s message
M depends only on her measurement of ρ⊗s

X which has classical outcome Z. We get

I(X : M) ≤ I(X : Z) ≤ log(dim Π(s)
sym) ≤ O(s log(n/s+ 1)),

where we have used (in order) the Data Processing Inequality, Holevo’s theorem (Theorem 26),
the dimension of the symmetric subspace (Fact 1), and the following inequality:

dim Π(s)
sym =

(
n+ s− 1
n− 1

)
≤
(
n+ s

n

)
=
(
n+ s

s

)
≤
(
e(n+ s)

s

)s
.

Notice that we now have both an upper bound and a lower bound for the mutual informa-
tion between Alice’s input and her message for a one-way protocol for BHMα with constant
error probability. Setting ϵ := α and B := ϵn, we have

I(X : M) = Ω(
√
B/ϵ), and

I(X : M) = O(s log(B/(ϵs) + 1)).

It follows that
s = Ω

( √
B

ϵ log(B/(ϵs) + 1)

)
.

Notice that if we substitute any lower bound for s in the RHS of the equation above, then we
get a new lower bound for s on the LHS. Unfortunately, plugging in the trivial lower bound
(s ≥ 1) is not very tight. Instead, we will use the s = Ω(1/ϵ2) lower bound from the previous
section. To justify this, notice that

s = Shadows(B, ϵ) ≥ Shadows(1, ϵ) = Ω(1/ϵ2),

where we have used Theorem 19 and the fact that B ≥ 1 since ∥O∥ = 1. Therefore, we can
plug s = Ω(1/ϵ2) into the RHS above to arrive at the following:

s = Ω
( √

B

ϵ log(Bϵ+ 1)

)
.

Assuming ϵ ≤ 1, we simplify this to s = Ω(
√
B

ϵ log(B+1)).8
Finally, we point out that the construction of Theorem 25 operates in the regime where

the states have dimension d := n and the observables are of rank B = ϵd. One can extend
the lower bound to apply to all observables of rank B ≤ ϵd by embedding the states used in
Theorem 25 into a subspace of dimension n ≤ d and keeping the observables the same.

7It is possible that Alice could use fewer than Shadows(αn, α) samples for this specific application to Boolean
Hidden Matching, but it will be useful later that s is big enough to estimate a broader class of observables
(specifically those used in Theorem 19).

8While this simplification apparently makes lower bound weaker for no reason, it doesn’t actually effect the
overall lower bound. In regimes where log(Bϵ + 1) is significantly smaller than log(B + 1), the additive 1/ϵ2

term in the lower bound becomes dominant.
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5 Independent Measurement Upper Bound
Since the global Clifford group acting on qubits is a 3-design, the randomized Clifford mea-
surement classical shadows algorithm of Huang, Kueng, and Preskill [6] can be viewed as
simulating independentM1 measurements on all copies of ρ then, constructing an unbiased
estimator from the measurement outcome on each copy. Their result is for independent mea-
surements and general mixed states, but it upper bounds pure states as a special case.

Theorem 28 (Huang, Kueng, Preskill [6]). For all ϵ, δ > 0,

I-Shadows(B, ϵ, δ) = O
(
B log(δ−1)

ϵ2

)
.

Huang, Kueng, and Preskill also show a matching lower bound, but the hard instances
they construct are with states of full rank. We give an independent measurement classical
shadows algorithm for pure states which is better in certain parameter regimes (and is no
worse).

Theorem 29. For all ϵ, δ > 0,

I-Shadows(B, ϵ, δ) = O
(

min
{
B

ϵ2
,

√
Bd

ϵ
+ 1
ϵ2

}
log(δ−1)

)
.

For example, consider the parameter regime in which δ is a constant, B = d, and any
ϵ = o(1). Note that this encompasses natural settings such as estimating full-weight Paulis.
One can check that (as d grows) the sample complexity given by Theorem 29 is O(d/ϵ+1/ϵ2),
which is evidently less than O(d/ϵ2), the sample complexity of the Huang-Kueng-Preskill
protocol. In general, our approach gives lower sample complexity whenever ϵ = o(

√
d/B) and

B = ω(1).
As it turns out, our measurement algorithm is the same as the one in [6]—on each copy

of ρ, we make an independent measurement with the POVM M1, which (on multi-qubit
systems) can be performed with a random Clifford measurement since we only use third
moments of the Haar measure. The difference is in how we construct our estimator for the
unknown state. To see this, first let Ψ1, . . . ,Ψs be the Hermitian random variables for the
measurement outcomes. Using Lemma 13, notice that ρ̂i := (d + 1)Ψi − I is an unbiased
estimator for the unknown state, i.e., E[ρ̂i] = ρ. The average of the ρ̂i’s, i.e.,

X̂ := 1
s

s∑
i=1

ρ̂i

is effectively the Huang-Kueng-Preskill estimator. Our key observation is that when ρ is pure,
ρ̂iρ̂j is also an unbiased estimator of ρ:

E[ρ̂iρ̂j ] = E[ρ̂i]E[ρ̂j ] = ρ2 = ρ.

where we have used the independence of the measurements for the first equality and the purity
of ρ for the last. In light of this, we consider an estimator Ŷ defined to be the average of the
s(s− 1) quadratic terms where i ̸= j.

Ŷ := 1
s(s− 1)

∑
i ̸=j

ρ̂iρ̂j .
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To analyze the accuracy of the estimator Ŷ , we will once again turn to Chebyshev’s inequality:

Pr[|Tr(OŶ )− Tr(Oρ)]| ≥ ϵ] ≤ Var(Tr(OŶ ))
ϵ2

.

Expanding out the variance term using the definition of Ŷ , we get

Var(Tr(OŶ )) = 1
s2(s− 1)2

∑
i ̸=j

∑
k ̸=ℓ

Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂kρ̂ℓ)).

We need to bound all of these covariance terms to bound the variance. When all indices
i, j, k, ℓ are distinct, then the covariance is 0 (by independence). For the other four cases, we
rely on corollaries 35, 36, 37, and 38, which we summarize in the following lemma (proof in
Appendix B):

Lemma 30. For each combination of i, j, k, ℓ, Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂kρ̂ℓ)) is

1. One index matches (|{i, j} ∩ {k, ℓ}| = 1)

• Match in different positions (i = ℓ or j = k): O(∥O∥2)
• Match in same position (i = k or j = ℓ): O(∥O∥2)

2. Both indices match (|{i, j} ∩ {k, ℓ}| = 2)

• Order swapped (i = ℓ and j = k): O(Bd)
• Same order (i = j and k = ℓ): O(Bd)

Since ∥O∥2 ≤ 1, the contribution from the first two terms is extremely small compared to
the last term. This gives us the following bound on the variance:

Lemma 31. Var(Tr(OŶ )) = O(Bd
s2 + 1

s ).

Proof. Expand the variance as

Var(Tr(OŶ )) = 1
s2(s− 1)2

∑
i ̸=j

∑
k ̸=ℓ

Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂kρ̂ℓ)).

Using Lemma 30, we account for the contribution of each type of covariance term to get

Var(Tr(OŶ )) = O
(

0 · s4 + ∥O∥2 · s3 + ∥O∥2 · s3 +Bd · s2 +Bd · s2

s4

)
= O

(
Bd/s2 + 1/s

)
where we have used that ∥O∥2 ≤ 1 and that there are O(s4) terms where i, j, k, ℓ are distinct;
O(s3) terms where exactly one index matches; and O(s2) terms where both indices match.

Putting everything together, we can now prove the claimed sample complexity in Theo-
rem 29.
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Proof of Theorem 29. We first point out that the sample complexity of our new estimator is
only better (or at least no worse) when ϵ ≤

√
B/d, so when that does not hold we simply use

the original X̂ estimator of Huang, Kueng, and Preskill.9
Otherwise, we use Algorithm 3 to measure the state and construct several Ŷ estimators

(line 9, constituting the classical shadow. This shadow is then used in Algorithm 2 for the
observable estimation step, which once again uses the median-of-means method where the
analysis will be identical to that in the proof of Theorem 11.

It suffices to analyze the variance of the estimator constructed within each batch, which
is O

(
Bd/s2 + 1/s

)
by Lemma 31. To apply Chebyshev’s inequality, we need the variance to

be at most ϵ2, which occurs when we have at least s = O(
√
Bd/ϵ+ 1/ϵ2) samples.

We simulate the new quadratic estimator as shown in Figure 3. The plots show the empir-
ical variances of the linear and quadratic estimators in a regime where the target observable
has large Frobenius norm, namely B = d. For the linear estimator, one expects that the
variance should decrease linearly with the number of samples. For the quadratic estimator,
the variance is O(Bd/s2 +1/s) by Lemma 31. Therefore, whenever Bd/s2 dominates 1/s, the
variance should decrease quadratically in the number of samples. Since the plots are shown on
a log-log scale, this should result in a slope of −2. We see this scaling in the graph shown on
the right since d is large (the slope of the regression for the linear estimator is −.998 and the
slope for the quadratic estimator is −1.936). However, for the left graph Bd = d2 is only 64,
so we expect that the variance for the quadratic estimator to scale linearly after about s = 64
copies. Indeed, one can observe that the lines for the linear and quadratic estimators are
essentially parallel after that point. As a final observation, we note that in both graphs the
quadratic estimator becomes better than the linear estimator at the point where the variance
becomes less than 1. Since the estimate is only useful once the variance is less than 1, one
could interpret this as conveying the fact that the quadratic estimator is always better than
the linear estimator in this particular parameter regime.

6 Open Problems
Our upper and lower bounds almost completely settle the question of sample complexity for
the classical shadows task with arbitrary measurements and arbitrary observables, but clearly
many questions remain. First, can the remaining discrepancies between our upper and lower
bounds be removed? That is, can we get the lower bounds to have the correct dependence on
δ (which we conjecture to be log(δ−1)) and remove a logB factor?

Second, the sample complexity of learning states in the context of tomography is known for
all combinations of independent vs. joint measurements, and pure vs. mixed states. Can we
characterize the sample complexity of classical shadows as thoroughly? Ref. [6] gives matching
bounds for independent measurements and mixed states, and our result gives matching bounds
for joint measurements on pure states, but the independent/pure and joint/mixed cases are
open. At the very least, we know that in the independent measurement setting that the pure

9Actually, it is better to smoothly transition between the estimators X̂ and Ŷ using a convex combination
rather than use a sharp threshold. However, the improvement is only a constant factor and would require
computing covariance of linear vs. quadratic terms (e.g., Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂k))) to justify rigorously. Hence,
we simply use one or the other.
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Figure 3: Empirical variances of the linear estimator (X̂, the estimator of [6]) and our quadratic estimator
(Ŷ , defined in Section 5) for the classical shadows task using independent measurements. The data confirm
our variance calculation in Lemma 31: O( Bd

s2 + 1
s ). Specifically, the quadratic estimator variance scales

inverse-quadratically in s when Bd/s2 dominates 1/s (a slope on the graph of −2), and the linear estimator
scales inverse-linearly in s (a slope of −1). Each point in the graphs represent an empirical variance of
104 trials of the following procedure: generate a random pure state ρ of dimension d = 2n and a random
full-weight Pauli operator P on n qubits; independently measure s copies of ρ in a random basis to obtain
outcomes ψ1, . . . , ψs; compute ρi = (d + 1)ψi − I for all i ∈ [s]; compute estimates x = 1

s

∑s
i=1 ρi and

y = 1
s(s−1)

∑
i ̸=j ρiρj ; output error from true expectation value: Tr(Px)−Tr(Pρ) and Tr(Py)−Tr(Pρ).

See main text for detailed explanation of the slope of the lines.

state case is different than the mixed state setting since our upper bound in Theorem 29 is
smaller than the lower bound in Ref. [6] for some regimes.

As a follow up, tomography bounds are sometimes stated as a function of r, the rank of
the unknown state. For example, the sample complexity is Θ̃(rdϵ−1) for joint measurements,
capturing the pure state (r = 1) and worst-case mixed state (r = d) behaviour simultaneously.
We believe the sample complexity of the classical shadows task depends smoothly on r, but
do not yet have a conjecture.

Third, we do not describe how to concretely implement our large joint measurements. We
may replace the continuum of Haar random pure states and elements Aψ in the POVMMs

with a concrete (s + 2)-design, but even then it is not clear how to practically implement
the measurement. Alternatively, can we make a similar POVM with a simpler ensemble of
states, e.g., t-designs for some t < s+ 2, and update the analysis to achieve an equivalent end
result? We note that for our exact measurement, a lower bound on t can be computed by
using upper bounds on the number of bits required to describe a state t-design. To see this,
notice that the outcome of the POVM Ms suffices as a compressed description of the state
for the purpose of observable estimation. Since we proved a state compression lower bound
of Ω(

√
Bϵ−1)-many bits, the number of bits required to specify the state must be at least this

large. In particular, this implies that you could not implement our measurement on n qubits
with a 3-design since Clifford states can be specified using O(n2)-many bits.

Fourth, there is the question of robustness to error or noise. For any classical shadows
protocol, we can ask how it behaves when the samples are not exactly of the form ρ⊗s, due
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to variation in samples. For our pure state protocols, we are also interested in how fast our
algorithms degrade when given mixed states that are close to pure.

Fifth, Ref. [6] introduced two classical shadows protocols known as the random Pauli
measurements and the random Clifford measurements schemes. The former schemes targets
local observable. The latter scheme, like our protocols, targets observables with low Frobenius
norm. These target classes of observables are mutually exclusive and each scheme achieves
lower sample complexity with respect to its target class observable. Recent work [27, 28] has
also focused on the development of an intermediate scheme that achieves favourable sample
complexity scaling in both target classes of observables. All these works focus on general
states and independent measurements. Our work identifies an optimal protocol for the low
Frobenius norm class of observable in the setting of pure states and joint measurements. So
it is natural to consider the pure states and/or joint measurements setting in the context of
local observables or the combined class.

Finally, one may consider cubic or higher order generalizations of the quadratic estimator
used in the proof of Theorem 29. We leave the analysis of such estimators to future work.
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A Proper Learning Discussion
The classical shadows task is a learning problem: given many samples of a quantum state, we
make measurements with the goal of learning the state well enough to approximate arbitrary
observables. A learning problem is said to be proper if it requires the learned representation
to be from the same class—in our case, the class of pure states—as the original object. Our
classical shadows algorithm fails to be proper on several counts:

1. The output of the problem is a real number, not the classical description of a quantum
state. By definition, the classical shadows task is not a proper learning task.

2. Internally, our algorithm does produce Hermitian matrices ρ̂(i) with trace 1 (the shad-
ows), which have the potential to represent a quantum state. However, each such
estimate is

(a) high rank, so it cannot represent a pure state, and

(b) not positive semi-definite, so it cannot represent a mixed state.

3. The algorithm uses multiple ρ̂(i) shadows, and takes a median of their estimates on each
observable. Even if each ρ̂(i) were a quantum state, there may not exist a state exactly
consistent with all our medians on a set of observables.

On the other hand, in the limit where the failure probability is extremely small, we can
afford to estimate the expectation of the state on an ϵ-cover of the observables. From these
values, we can approximate the original state to accuracy ϵ in trace distance. In this regime,
the problem is equivalent to tomography, which is a proper learning problem.
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In this section, we show that any proper learning algorithm for classical shadows would
require significantly more samples. Our starting point is a known lower bound for the quantum
state tomography question for pure states:

Theorem 32 ([1]). Any quantum algorithm that takes copies of an unknown pure state ρ and
outputs a classical estimate ρ̂ such that ∥ρ− ρ̂∥1 ≤ ϵ with constant failure probability δ < 1
requires Ω(dϵ−2/ log(d/ϵ)) samples.

In particular, we show that a proper classical shadows algorithm implies a state tomogra-
phy algorithm.

Theorem 33. Suppose there exists a quantum learning algorithm that, given s copies of an
unknown d-dimensional state ρ, outputs a classical description of a trace 1, Hermitian PSD
matrix ρ̂ such that, for all O ∈ Obs(1) with failure probability δ < 1:

|Tr(Oρ)− Tr(Oρ̂)| ≤ ϵ. (2)

Then, s = Ω̃(d/ϵ).

Proof. Run the algorithm and feed it O = ρ. We have that ∥ρ− ρ̂∥1 ≤
√

8ϵ since

ϵ ≥ |Tr(Oρ)− Tr(Oρ̂)|
= |Tr(ρ2)− Tr(ρρ̂)|
= |1− Tr(ρρ̂)| ρ = ρ2 since ρ is pure
= |1− F (ρ, ρ̂)2| Tr(ρσ) = F (ρ, σ)2 if either is pure
≥ 1− F (ρ, ρ̂)2

≥ 1
8∥ρ− ρ̂∥

2
1 Fuchs-van de Graaf inequality

where F (ρ, σ) := Tr(
√√

ρσ
√
ρ) is the fidelity of ρ and σ.

Hence, if we solve the classical shadows task to error ϵ on this observable, then we have
estimated ρ to within Schatten 1-norm distance O(

√
ϵ). That is, classical shadows learner

is also a quantum tomography algorithm, so we can use the known lower bound from The-
orem 32. It follows that a proper learning algorithm for the classical shadows task requires
Ω̃(d/ϵ) samples.

In the commonly considered regime where d≫ ϵ−1, the above lower bound is significantly
more than both our algorithm (from Section 3) and the original classical shadows algorithm,

which use only O
(

1
ϵ2

)
samples.

B Covariance bounds
The goal of this subsection is to prove Lemma 30, which gives each of the covariance terms
Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂kρ̂ℓ)) that appears in the expansion of the estimator Ŷ . Because ρ̂j
appears twice in all of the covariance terms that are non-zero, it will be convenient to explicitly
calculate the second moment of ρ̂j .
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Lemma 34. For all j, the second moment of ρ̂j is

E[ρ̂⊗2
j ] = (I ⊗ I + I ⊗ ρ+ ρ⊗ I)

(
W(1 2) −

2
d+ 2Π(2)

sym

)
.

Proof. Recall that ρ̂j is obtained through an independent and identical measurement process,
so it suffices to analyze a specific ρ̂ := (d+ 1)Ψ− I term. By Lemma 13 and Lemma 14, we
compute the first and second moment of Ψ for the special case s = 1 as

E[Ψ] = I + ρ

d+ 1 and E[Ψ⊗Ψ] = I ⊗ I + I ⊗ ρ+ ρ⊗ I
(d+ 1)(d+ 2)

(
W(1)(2) +W(1 2)

)
Now, expanding out the second moment, we get

E[ρ̂⊗2] = E[((d+ 1)Ψ− I)⊗2]
= (d+ 1)2E[Ψ⊗Ψ]− (d+ 1)(E[Ψ]⊗ I + I ⊗ E[Ψ]) + I ⊗ I

= d+ 1
d+ 2(I ⊗ I + I ⊗ ρ+ ρ⊗ I)(W(1)(2) +W(1 2))− (I ⊗ I + I ⊗ ρ+ ρ⊗ I)

= (I ⊗ I + I ⊗ ρ+ ρ⊗ I)
(

(d+ 1)W(1 2) −W(1)(2)
d+ 2

)
,

where we recall that W(1)(2) = I ⊗ I to obtain the last equality. We arrive at the lemma by
writing the final line in terms of the symmetric subspace Π(2)

sym = (W(1 2) +W(1)(2))/2.

Our goal will now be to express all covariance terms in a manner such that we can apply
Lemma 34. Since these equations can become quite cumbersome to write out fully, we will
often drop the “⊗” symbol in expressions with I and ρ. For example,

I ⊗ I + ρ⊗ I + I ⊗ ρ→ (II + Iρ+ ρI)

will be a common abbreviation. We enclose these abbreviations in parentheses when they are
multiplied with other terms.

Let’s first tackle the covariance terms Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂kρ̂ℓ)) where there is only 1
index shared, i.e., (|{i, j}∩{k, ℓ}| = 1). There are two subcases: a match in different positions
(i = ℓ or j = k); or a match in same position (i = k or j = ℓ). While the proofs are quite
similar, we break them into two separate corollaries.

Corollary 35. For all distinct i, j, k,

Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂j ρ̂k)) ≤ 2 Tr(Oρ)2 ≤ 2∥O∥2.

Proof. First, translate covariance to a second moment calculation:

Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂j ρ̂k)) = E[Tr(Oρ̂iρ̂j) Tr(Oρ̂j ρ̂k)∗]− Tr(Oρ) Tr(Oρ)∗

= E[Tr(Oρ̂iρ̂j) Tr(Oρ̂kρ̂j)]− Tr(Oρ)2,

where the last equality uses that O, ρj , ρk are Hermitian. The second moment can be further
decomposed using independence of ρ̂i, ρ̂j , and ρ̂k.

E[Tr(Oρ̂iρ̂j) Tr(Oρ̂kρ̂j)] = Tr((O ⊗O)E[ρ̂iρ̂j ⊗ ρ̂kρ̂j ])
= Tr((O ⊗O) (E[ρ̂i]⊗ E[ρ̂k])E[ρ̂j ⊗ ρ̂j ])
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Using E[ρ̂i] = E[ρ̂k] = ρ and Lemma 34, we have

(E[ρ̂i]⊗ E[ρ̂k])E[ρ̂j ⊗ ρ̂j ] = (ρρ)(II + ρI + Iρ)(W(1 2) − 2Π(2)
sym/(d+ 2))

= 3(ρρ)(W(1 2) − 2Π(2)
sym/(d+ 2)),

where we have once again use the purity of ρ. Plugging everything in, we get

Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂j ρ̂k)) = 3 Tr(O⊗2ρ⊗2W(1 2))−
6

d+ 2 Tr(O⊗2ρ⊗2Π(2)
sym)− Tr(Oρ)2

= 3 Tr(Oρ)2 − 6
d+ 2 Tr(Oρ)2 − Tr(Oρ)2

≤ 2 Tr(Oρ)2 ≤ 2∥O∥2.

Corollary 36. For all distinct i, j, k,

Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂kρ̂j)) ≤ 2 Tr(O2ρ) ≤ 2∥O∥2.

Proof. The proof is similar to that of Corollary 35. We expand the covariance as

Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂kρ̂j)) = E[Tr(Oρ̂iρ̂j) Tr(Oρ̂j ρ̂k)]− Tr(Oρ)2

and compute the second moment term using independence:

E[Tr(Oρ̂iρ̂j) Tr(Oρ̂j ρ̂k)] = Tr
(
(O ⊗O)(E[ρ̂i]⊗ I)E[ρ̂j ⊗ ρ̂j ](I ⊗ E[ρ̂k])]

)
= Tr((O ⊗O)(ρI)(II + ρI + Iρ)(W(1 2) − 2Π(2)

sym/(d+ 2))(Iρ))

For the W(1 2) term, we get

Tr(O⊗2(ρI)(II + Iρ+ ρI)W(1 2)(Iρ)] = Tr(O⊗2(2ρI + ρρ)W(1 2)) = 2 Tr(O2ρ) + Tr(Oρ)2.

The Π(2)
sym term subtracts a positive quantity, so we drop it to get an upper bound on covari-

ance.

Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂kρ̂j)) ≤ 2 Tr(O2ρ) + Tr(Oρ)2 − Tr(Oρ)2 = 2 Tr(O2ρ) ≤ 2∥O∥2.

We now turn to the covariance terms Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂kρ̂ℓ)) which share two indices,
i.e., (|{i, j} ∩ {k, ℓ}| = 2). Once again, there are two subcases: the order is swapped (i = ℓ
and j = k); or the order is the same (i = j and k = ℓ).

In both cases, their are terms of the covariance that are proportional to Tr(O), but inter-
estingly, we cannot assume O is traceless as we have earlier. This is due to the fact that the
Ŷ estimator does not necessarily have trace 1. Nevertheless, it will turn out that this cannot
affect the overall covariance of Ŷ too much, as we will show in the following corollaries.

Corollary 37. For all distinct i, j,

Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂j ρ̂i)) ≤ dTr(O2) + 6
√
dTr(O2) + ∥O∥2

Accepted in Quantum 2024-05-01, click title to verify. Published under CC-BY 4.0. 31



Proof. Using independence, we expand the covariance as

Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂j ρ̂i)) = Tr((O ⊗O)E[ρ̂i ⊗ ρ̂i]E[ρ̂j ⊗ ρ̂j ])− Tr(Oρ)2.

Using Lemma 34, we get an expression for the second moment terms:

E[ρ̂i ⊗ ρ̂i]E[ρ̂j ⊗ ρ̂j ] = (II + ρI + Iρ)2(W(1 2) − 2Π(2)
sym/(d+ 2))2

= (II + 3Iρ+ 3ρI + 2ρρ)(W(1)(2) − 4Π(2)
sym/(d+ 2) + 4Π(2)

sym/(d+ 2)2)
= (II + 3Iρ+ 3ρI + 2ρρ)(W(1)(2) − 4(d+ 1)Π(2)

sym/(d+ 2)2).

For the W(1)(2) term in Tr((O ⊗O)E[ρ̂i ⊗ ρ̂i]E[ρ̂j ⊗ ρ̂j ]), we get

Tr(O⊗2(II + 3Iρ+ 3ρI + 2ρρ)W(1)(2)) = Tr(O)2 + 6 Tr(O) + 2 Tr(Oρ)2.

For the Π(2)
sym term, we get (ignoring the scalar factor)

Tr(O⊗2(II + 3Iρ+ 3ρI + 2ρρ)Π(2)
sym) = Tr(O2) + Tr(O)2 + 6 Tr(O) + 6 Tr(O2ρ) + 4 Tr(Oρ)2

2 .

Therefore, the covariance Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂j ρ̂i)) is

= Tr(O)2 + 6 Tr(O) + Tr(Oρ)2 − 2(d+ 1)
(d+ 2)2

(
Tr(O2) + Tr(O)2 + 6 Tr(O) + 6 Tr(O2ρ) + 4 Tr(Oρ)2

)
≤ Tr(O)2 + 6|Tr(O)|+ Tr(Oρ)2

≤ dTr(O2) + 6
√
dTr(O2) + ∥O∥2

where the first inequality drops the negative terms and the last line comes from Cauchy-
Schwarz.

Corollary 38. For all distinct i, j,

Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂iρ̂j)) = (d+ 2) Tr(O2) + (3d− 2)∥O∥2.

Proof. We expand the covariance as usual and obtain the following.

Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂iρ̂j)) = Tr((O ⊗O)E[ρ̂iρ̂j ⊗ ρ̂j ρ̂i])− Tr(Oρ)2

It is not so easy to decompose this into E[ρ̂i⊗ ρ̂i] and E[ρ̂j ⊗ ρ̂j ]. We introduce a third qudit,
and use the following identity:

ρ̂iρ̂j ⊗ ρ̂j ρ̂i = Tr3((I ⊗ ρ̂i ⊗ ρ̂i)(ρ̂j ⊗ ρ̂j ⊗ I)W(1 3)(2)).

So, plugging back into the expectation, we get

Tr((O ⊗O)E[ρ̂iρ̂j ⊗ ρ̂j ρ̂i]) = Tr((O ⊗O ⊗ I)(I ⊗ E[ρ̂i ⊗ ρ̂i])(E[ρ̂j ⊗ ρ̂j ]⊗ I)W(1 3)(2)).

Once again, we use Lemma 34 to compute

I ⊗ E[ρ̂i ⊗ ρ̂i] = (III + IρI + IIρ)
(
d+1
d+2W(1)(2 3) − 1

d+2W(1)(2)(3)
)
,

E[ρ̂j ⊗ ρ̂j ]⊗ I = (III + ρII + IρI)
(
d+1
d+2W(1 2)(3) − 1

d+2W(1)(2)(3)
)
.
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O O I

Figure 4: The dominant term in Corollary 38, Tr((O ⊗ O ⊗ I) III W(1)(2 3) III W(1 2)(3)W(1 3)(2)) =
dTr(O2).

Each expectation is a difference of two Wπ permutation terms. Therefore, computing the
product of the two expectations, we get four Wπ terms. It will turn out that the dominant
one is the following, where we have taken the W(1)(2 3) term for ρ̂i and the W(1 2)(3) term from
ρ̂j (to visualize the largest contribution from this term, we refer to tensor network picture in
Figure 4). Dropping the scalar factor (d+ 1)2/(d+ 2)2 for now, we get

Tr((O ⊗O ⊗ I)(III + IρI + IIρ)W(1)(2 3)(III + ρII + IρI)W(1 2)(3)W(1 3)(2))
= Tr((O ⊗O ⊗ I)(III + IρI + IIρ)(III + ρII + IIρ)W(1)(2 3)W(1 2)(3)W(1 3)(2))
= Tr((O ⊗O ⊗ I)(III + 3IIρ+ IρI + ρII + ρIρ+ Iρρ+ ρρI)W(1 2)(3))
= Tr(O2)(Tr(I) + 3 Tr(ρ)) + Tr(O2ρ)(2 Tr(I) + 2 Tr(ρ)) + Tr(Oρ)2 Tr(I)
= (d+ 3) Tr(O2) + 2(d+ 1) Tr(O2ρ) + dTr(Oρ)2.

For completeness, let’s also compute the other 3 terms (also without their scalar factors):

Tr((O ⊗O ⊗ I)(III + IρI + IIρ)W(1)(2)(3)(III + ρII + IρI)W(1)(2)(3)W(1 3)(2))
= Tr((O ⊗O ⊗ I)(III + ρII + 3IρI + IIρ+ ρIρ+ ρρI + Iρρ)W(1 3)(2))
= Tr(O)2 + 6 Tr(O) Tr(Oρ) + 2 Tr(Oρ)2

≤ dTr(O2) + 6
√
dTr(O2) + 2 Tr(Oρ)2 ≤ 6dTr(O2) + 2 Tr(Oρ)2,

where inequality comes from Cauchy-Schwarz and the fact that d ≥ 2. The final two terms
turn out to be equal:

Tr((O ⊗O ⊗ I)(III + IρI + IIρ)W(1)(2 3)(III + ρII + IρI)W(1)(2)(3)W(1 3)(2))
= Tr((O ⊗O ⊗ I)(III + 3IIρ+ IρI + ρII + Iρρ+ ρIρ+ ρρI)W(1 2 3))
= Tr(O2) + 6 Tr(O2ρ) + 2 Tr(Oρ)2

and

Tr((O ⊗O ⊗ I)(III + IρI + IIρ)W(1)(2)(3)(III + ρII + IρI)W(1)(2 3)W(1 3)(2))
= Tr((O ⊗O ⊗ I)(III + IIρ+ 3IρI + ρII + Iρρ+ ρIρ+ ρρI)W(1 2 3))
= Tr(O2) + 6 Tr(O2ρ) + 2 Tr(Oρ)2
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Notice that these last two terms are non-negative, and so multiplying them by −(d +
1)/(d+2)2 makes them non-positive. Since we want to give an upper bound on the covariance,
these terms can be dropped. Altogether, and inserting the appropriate constants, we get the
following upper bound on the covariance Cov(Tr(Oρ̂iρ̂j),Tr(Oρ̂iρ̂j)):

= Tr((O ⊗O ⊗ I)(I ⊗ E[ρ̂i ⊗ ρ̂i])(E[ρ̂j ⊗ ρ̂j ]⊗ I)W(1 3)(2))

≤ (d+1)2

(d+2)2 ((d+ 3) Tr(O2) + 2(d+ 1) Tr(O2ρ) + dTr(Oρ)2) + (6dTr(O2) + 2 Tr(Oρ)2)
(d+ 2)2 − Tr(Oρ)2

≤ 1
(d+ 2)2 ((d3 + 5d2 + 13d+ 3) Tr(O2) + (3d3 + 7d2 + 3d)∥O∥2)

≤ (d+ 2) Tr(O2) + (3d− 2)∥O∥2

where we’ve used once again that d ≥ 2.

Algorithm 3 Algorithm for Theorem 29
Input: Quantum state ρ⊗N , B, ϵ, δ, d.
Output: Classical shadow

{
ρ̂(i)
}
i∈[k]

.

1: p← O(log(1/δ)) ▷ Number of batches
2: s← O(

√
Bd/ϵ+ 1/ϵ2) ▷ Samples per batch

3: N ← ps ▷ Total number of samples
4: for each batch i = 1, . . . , p do
5: for j = 1, . . . , s do
6: ψ

(i)
j ← Measure fresh ρ with M1

7: ρ̂
(i)
j ← (d+ 1)ψ(i)

j − I
8: end for
9: ρ̂(i) ← 1

s(s−1)
∑
j ̸=k ρ̂

(i)
j ρ̂

(i)
k

10: end for
11: return

{
ρ̂(i)
}
i∈[k]
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