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Predictive Brain Activity Shows Congruent Semantic
Specificity in Language Comprehension and Production
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Sentence fragments strongly predicting a specific subsequent meaningful word elicit larger preword slow waves, prediction poten-
tials (PPs), than unpredictive contexts. To test the current predictive processing models, 128-channel EEG data were collected from
both sexes to examine whether (1) different semantic PPs are elicited in language comprehension and production and (2) whether
these PPs originate from the same specific “prediction area(s)” or rather from widely distributed category-specific neuronal circuits
reflecting the meaning of the predicted item. Slow waves larger after predictable than unpredictable contexts were present both
before subjects heard the sentence-final word in the comprehension experiment and before they pronounced the sentence-final
word in the production experiment. Crucially, cortical sources underlying the semantic PP were distributed across several cortical
areas and differed between the semantic categories of the expected words. In both production and comprehension, the anticipation
of animal words was reflected by sources in posterior visual areas, whereas predictable tool words were preceded by sources in the
frontocentral sensorimotor cortex. For both modalities, PP size increased with higher cloze probability, thus further confirming that
it reflects semantic prediction, and with shorter latencies with which participants completed sentence fragments. These results sit
well with theories viewing distributed semantic category-specific circuits as the mechanistic basis of semantic prediction in the two
modalities.
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Significance Statement

We report larger anticipatory negative-going prediction potentials (PPs) after sentence fragments with predictable than
unpredictable endings both during language comprehension and production. In production and comprehension experiments,
PP topographies resembled each other, but, for each modality, PPs differed in the same way between semantic categories of
the predictable words. Likewise, cortical source estimation revealed similar prediction-related cortical activations across
modalities but consistent activation differences reflecting the meaning of predicted symbols. Furthermore, PP size was linked
with behavioral measures of predictability (cloze probability) and ease of processing (reaction times), and correlated PPs were
seen in production and comprehension; these observations are consistent with similar prediction mechanisms across modal-
ities but different ones for semantic types.
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Introduction
Perception arises from information reaching the primary sensory
cortex cascading “upward” to higher perceptual and multimodal
areas (Hubel, 1995; Riesenhuber and Poggio, 2002; DiCarlo et al.,
2012). However, recent research emphasizes the importance of
predictive processing, which influences sensory activation in a
“top-down” manner and leads to priming-like effects in case of
matches, but prediction error signals in case of mismatching
between predictions and actual input (Knill and Pouget, 2004;
Friston, 2010; Clark, 2013; Grisoni et al., 2016; Auksztulewicz
et al., 2017; De Lange et al., 2018; Keller and Mrsic-Flogel,
2018). As separable mechanisms of prediction and prediction
error are fundamental to predictive processing theories, assessing
these models against bottom-up approaches requires separable
measures of predictive brain activity and prediction error signals
(Walsh et al., 2020). In the spatial domain, it is difficult to unam-
biguously identify and separate “prediction units” from “predic-
tion error units” (Walsh et al., 2020), as recent invasive
neurophysiological studies seemingly supporting this distinction
(Bell et al., 2016, 2017) raised discussion about alternative inter-
pretations (Vinken and Vogels, 2017; Kaposvari et al., 2018;
Walsh et al., 2020). However, a straightforward separation is pos-
sible in the time domain. Predictive activity precedes predictable
stimuli, whereas prediction error signals can only emerge after
the critical stimulus arrives. A range of recent noninvasive neu-
rophysiological studies revealed separate and distinct brain
indexes of prediction, the so-called PPs, which precede predict-
able (but not unpredictable) stimuli (Peelen and Kastner, 2011;
Kok et al., 2014, 2016; Grisoni et al., 2016, 2017, 2021; Trapp et
al., 2016; León-Cabrera et al., 2017, 2019, 2021) and even reflect
predicted information at different levels, such as the acoustic–
phonological makeup of spoken words (Grisoni and
Pulvermüller, 2022), semantic meaning (Grisoni et al., 2021),
and communicative function (Boux et al., 2021). These
prediction-related measures show regular relationships to estab-
lished brain responses recently linked to prediction error, such as
the mismatch negativity (Näätänen et al., 2007; Bendixen et al.,
2012; Grisoni et al., 2016, 2019a) and the N400 (Kutas and
Federmeier, 2011; Lau et al., 2013; Grisoni et al., 2017, 2021).

Predictions are effective in perception and production. In pro-
duction, the planning of a voluntary movement includes predic-
tions about coordinated muscle contractions, reafferent sensory
signals, and goal-related aspects of the action. Relevant models
can be partitioned into three groups: (1) classic cascaded
bottom-up perception and top-down production models see
different mechanisms at work in production and perception
(e.g., in the language domain, see Levelt, 1993; Indefrey and
Levelt, 2004; Hickok and Poeppel, 2007; Indefrey, 2011; Price,
2012; Hickok, 2013), thus implicating different anticipatory
mechanisms; (2) major predictive processing accounts propose
the same prediction mechanisms in perception and production,
which are localized in one (set of) areas (e.g., prediction units
in the sensorimotor system, Schubotz, 2007; Pickering and
Clark, 2014); and finally (3) predictions may be so fundamental
that they can involve all brain areas (De Lange et al., 2018;
Pulvermüller and Grisoni, 2020; Grisoni, 2022); in this perspec-
tive, prediction mechanisms are realized as preactivity in neuron
circuits whose distribution across the cortex varies dependent of
which type of information the circuit “holds.” For example,
different cortical activation topographies were observed for
meaningful words predictable from their preceding context,
depending on whether these words designate animals and

therefore denote substantial amounts of visual information
(about shape and color) or tools, therefore implicating significant
additional action knowledge (for discussion, see Pulvermüller,
1999; Kiefer and Pulvermüller, 2012; Grisoni et al., 2021).
Interestingly, these prediction-related semantic activation differ-
ences resemble those revealed by brain responses to single words
presented out of context (Martin et al., 1996; Kiefer, 2005;
Martin, 2007; Binder and Desai, 2011; Moseley and
Pulvermüller, 2014; Pulvermüller, 2018; Kuhnke et al., 2020;
Grisoni et al., 2021). This congruency of category-specific seman-
tic activations in prediction and recognition is consistent with
meaning-specific prediction mechanisms, rooted in the activa-
tion of topographically specific cortical circuits processing these
meaningful signs.

We here ask whether statistically different prediction signals
index the planning of a specific action and the expectation of a
specific perception—the production or understanding of a
context-determined word—and whether predicted words with
different meanings, animal and tool words, elicit consistently
different predictive semantic brain activity in speaking and
understanding. The classic position [different production and
perception mechanisms, see (1) above] implies different activity
patterns for prediction in production and perception, but not
necessarily between different semantic word types. A single-locus
prediction model [e.g., prediction in the sensorimotor cortex, see
(2)] suggests no differences between modalities or between
semantic types. Finally, models postulating prediction mecha-
nisms in distributed neuronal circuits with different cortical
topographies [see (3) above] do not predict differences between
prediction mechanisms in production and perception but dis-
tinct brain indexes for different semantic types. We used
128-channel EEG to record event-related anticipatory PPs and
calculated distributed cortical sources to evaluate these
predictions.

Materials and Methods
Participants
Thirty healthy adults (mean age, 24.7 years; range, 18–35 years; 15
females) participated in the study. All subjects were German native
speakers with no records of neurological and/or psychiatric disease.
Datasets from four subjects were excluded either because of technical
problems during EEG recording or noisy data (e.g., >30% of rejected tri-
als) or because the participant did not pronounce any word in too many
trials. Therefore, the final sample consisted of 26 participants (mean
age, 24.7 years; range, 18–35 years; 13 females) all right-handed
(mean laterality quotient 88.2, ±14.6 SD) as documented by the
Edinburgh Handedness Inventory (Oldfield, 1971). The experimental
procedures were approved by the Ethics Committee of Charité
Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany.
All tested participants provided written informed consent and were
paid 10 euros per hour for their participation.

Experimental design
Participants were presented with the same 116 German sentences previ-
ously used for another work (Grisoni et al., 2021). Half of these sentences
(i.e., 58) started with a sentence fragment that strongly predicted the final
target word [high-constraint (HC) sentences, Fig. 1; example translated
fromGerman: “The emblem of Germany is the eagle”], whereas the other
58 sentence fragments allowed several different final target words [low-
constraint (LC) sentences, Fig. 1; example translated from German:
“The emblem of my family is the eagle”]. That the sentences in the
two lists each had a predictable versus unpredictable ending was
confirmed by a rating study with subjects not partaking in the neuro-
physiological study (Grisoni et al., 2021). Each of the two lists (HC
and LC) included 29 sentences ending in an animal word, such as “eagle,”
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and another 29 ending in a tool word, such as “horn.” Except for predict-
ability, HC and LC sentences werematched for several important linguis-
tic features, including sentence length, syntactic structure, and verb
conjugation, whereas animal and tool, target, words always appeared
at the end of the sentences, and they were matched for several linguistic
features, such as word length and word frequency (for stimulus evalua-
tion and characteristics, see Grisoni et al., 2021).

The EEG recording took place in the acoustically and electrically
shielded chamber of the Brain Language Laboratory at the Freie
Universität Berlin. The EEG task was programmed using E-Prime
2.0.8.90 software (Psychology Software Tools). All the acoustic stimuli
were presented binaurally, though high-quality headphones (Ultrasone
HFI-450 S-LOGIC), at a comfortable hearing level (adjusted per each
participant before starting the experiment). During the EEG recording,
participants were monitored via a camera.

The study included two experiments, each conducted in one block
(Fig. 1). During the comprehension experiment, participants were pre-
sented with all the sentences, and they were instructed to listen to
them carefully. To separate stimulus-elicited activity to the last words
of the sentence fragments from any anticipatory, predictive slow-wave
activity, the final target word was presented after a delay of 1,100 ms
from sentence fragment offset (Grisoni et al., 2021). Previous studies
show that predictive brain activity during language understanding is sim-
ilarly present when such a pause is introduced before the critical word
(León-Cabrera et al., 2019). A further reason to introduce this delay
was to match the comprehension experiment with speech production
(described below). It had previously been reported (Staub et al., 2015)
that, when being presented with sentence fragments in a production
task, participants take at least ∼1,000 ms to find the final, critical,
word to complete a fragment. To match this break, a pause was added
in the comprehension trials. No overt behavioral response was required
or recorded during the comprehension EEG experiment. After the com-
prehension experiment, to ascertain that the participants had paid atten-
tion to the sentences, they were asked to indicate which sentences, from a
list of 20, they had listened to before. Of the 20 sentences on the list, only
10 had been presented during the EEG recording of the comprehension
experiment; EEG participants correctly identified an average of 9.6 sen-
tences (range 8–10). During the production experiment, participants
were presented with the same spoken sentence fragments, missing the
final target word, which, in this case, was replaced by a sine pure tone
(F0, 1,000 Hz) lasting for 100 ms. Participants were instructed to wait
until the beep was presented and then to pronounce one single word,
which they would use to complete the preceding sentence fragment.
The order of the two blocks (i.e., comprehension and production) was
counterbalanced across participants so that half of the participants
started with comprehension and the other half with production. The sen-
tence order was randomized in three different lists, and each participant
was randomly assigned to one of these lists that remained the same across
the two blocks (i.e., the same sentences were presented to all participants,
only the order varied according to the specific randomization). Similar to
the comprehension experiment, the speech production experiment
included a delay of 1,000 ms (Fig. 1) between the offset of the sentence
fragment and the onset of the beep to reduce as much as possible any
overlap of the brain responses elicited by the preceding sentence frag-
ments and by any anticipatory slow-wave activity. The beep presentation
functioned as a go signal for participants to select and pronounce a word
to complete the incomplete sentences. In both blocks, the interval
between individual trials (i.e., sentences) varied randomly between
4,000 and 5,000 ms. The words pronounced during the production
experiment were recorded through a microphone placed inside the
chamber. Using Audacity 2.1.1 (https://www.audacityteam.org/), three
research assistants independently determined off-line the time of speech
onset by listening to, and visually inspecting, the waveforms of the audio
files recorded during the production experiment. These research assis-
tants calculated, per each participant (i.e., N= 30) and per each trial
(i.e., N= 116), the time interval (i.e., Δt) between the start of the beep
and the start of the spoken word. Trials for which the three research
assistants indicated latencies that differed by >20 ms (∼10% of the sam-
ple) were re-evaluated by the lead investigator (LG). This evaluation had

different purposes: (1) to mark and remove production trials during
which participants did not utter any words. All these trials, together
with their counterparts of the other constraint condition, were excluded
from the final analyses of both the production and comprehension exper-
iments to avoid differences in the number of trials between HC and LC
conditions and between the two modalities (ANOVA analyses, see
below). Overall, ∼17% of all (i.e., 116) production trials were rejected
based on this criterion; (2) to create trial-specific triggers at speech onset
[see below, Electrophysiological recordings and preprocessing; please
note that methods normally used to extract speech onset automatically
(including voice keys) did not produce precise enough results; therefore,
the more labor-intensive processing was chosen]; (3) to identify the pro-
nounced words to ascertain their status as HC versus LC endings
(Grisoni et al., 2021). HC sentence endings were more predictable than
those produced in the LC contexts, as confirmed by the statistical evalu-
ation (see Results); (4) to extract the latencies of the target word produc-
tion, which were later used to determine the processing load or ease of
completing the fragments (i.e., response times; Fig. 1).

Electrophysiological recordings and preprocessing
The EEG was recorded through 128 active electrodes (actiCAP system,
Brain Products). As compared with the standard 10-10 system configura-
tion of the actiCAP, the reference was moved from the FCz position to
the tip of the nose (which allows a greater reduction of the impedance),
and the electrode occupying the I2 position was moved to the empty FCz
position. Furthermore, the vertical electrooculogram (VEOG) channel
was obtained by moving the electrode occupying the I1 position to below
the right eye, whereas the horizontal electrooculogram (HEOG) signals
were recorded with two electrodes embedded in a fabric cap and placed
next to the eyes (i.e., F9 and F10). Finally, two electrodes were used as
electromyogram (EMG) channels to keep track of articulatory muscle
activity during the entire EEG recording. To this end, the electrode
OI1 h was removed from its standard position, and it was placed in prox-
imity of the left buccinator muscle (i.e., next to the lateral opening of the
mouth), whereas the channel OI2 h was placed in proximity of the left
zygomaticus major muscle (i.e., right below the cheekbone). During
data acquisition, the electrooculogram (EOG) and EMG channels had
the same reference as all the other electrodes.

EEG independent component analysis (ICA)–based correction for
eye and articulatory motor artifacts was performed on the original
data. The ICA was performed with the default infomax algorithm
“runica” (Bell and Sejnowski, 1995), as implemented in EEGLAB 13
(Swartz Center for Computational Neuroscience, http://www.sccn.ucsd.
edu/eeglab). Since the (ICA) decomposition of the EEG signal works bet-
ter for signals filtered at lower frequencies (e.g., <2 Hz; Winkler et al.,
2015; Klug and Gramann, 2020), for the ICA, we created two datasets
per participant: one dataset contained the EEG signal to which a
0.1 Hz high-pass and an 80 Hz low-pass filters were applied (the target
data set), whereas the second dataset (used for ICA purposes only) con-
tained the same EEG data high-pass filtered below 2 Hz (to avoid edge
artifacts, the Butterworth zero-phase filter, 24 dB/oct, was always applied
to the raw, unsegmented, data). Afterward, raw data were segmented
time-locked to the critical events (i.e., the final target word in compre-
hension, the “go” beep sound in production); for the comprehension
experiment, the epochs started at 1,100 ms before to 1,900 ms after the
critical event, whereas for the production experiments, the epochs started
at 1,100 ms before to 3,900 ms after the beep sound. The decomposition
of the signal into the maximally independent components was carried
out on the segmented EEG data filtered below 2 Hz, to then associate
the obtained ICA arrays with the first target dataset, which is that one
filtered below 0.1 Hz. Following this procedure, it is possible to obtain
a more accurate IC decomposition without losing the signal at lower fre-
quencies, which might be particularly important for anticipatory slow-
wave potentials (Kappenman and Luck, 2012). Therefore, the ICA was
carried out on all 128 electrodes to correct the signal for eye movements
and articulatory motor activity (Delorme and Makeig, 2004). Artifactual
ICs were identified for these two different datasets, that is, (1) compre-
hension, time-locked to word presentation, and (2) production, time-
locked to the beep sound onset. The EEG signals from the
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comprehension experiment (1) were also corrected for potential articu-
latory artifactual activity. Indeed, it has been proposed that prediction
in language comprehension might originate from the production system
(Pickering and Garrod, 2007), and, following this reasoning, it might be
possible that the passive listening to sentences induces some anticipatory
motor system activation and resultant articulatory artifacts. Therefore, to
exclude the possibility that the previously reported prediction potential
(PP) responses were due to this artifactual activity, here we also corrected
the EEG signals from the comprehension experiment. To this end, ICs
were marked as artifactual with a semiautomatic procedure using the
algorithm “ICLabel,” which classifies the ICs based on their functional
origin (Pion-Tonachini et al., 2019). An IC was marked as artifactual if
it was classified either as “eye,” “muscle,” “hearth,” or “other” with a
probability >80% by the “ICLabel” algorithm included in EEGLAB (see
above). Furthermore, any other component whose topography showed
peak activity over HEOG, VEOG, or EMG channels and whose power
spectrum smoothly decreased was marked as artifactual by visual inspec-
tion (Delorme andMakeig, 2004). All the artifactual (eye and articulatory
motor) ICs were subtracted from the EEG signals. On average, 9.7 (range,
1–27) out of 128 components were removed from the comprehension
experiment; 40.9 (range, 19–67) out of 128 components were removed
from the production experiment. Finally, since the auditory evoked
potentials (AEPs) elicited by the “go” signal (beep) overlapped with
the slow anticipatory potential shift before the speech onset of the target
word in the production experiment, we created a second dataset for the
production experiment from which the beep-related auditory evoked
potential (AEP) ICs were removed. To this end, the AEP-related ICs
were identified and removed according to the following criteria: (1) the
ICs activity showed three successive peaks (i.e., P50-N100-P200), and
(2) these three peaks emerged at early latencies (i.e., ∼50–100–
200 ms). This method follows a recent study by Ross et al., (2022). On
average, an additional 2.1 ICs (range, 1–4) of the remaining ICs were
removed to create the second dataset of the production experiment.

After signal correction, off-line analysis continued with BrainVision
Analyzer 2.2 (Brain Products). After ICA, bipolar EOG channels were
created by subtracting the Fp2 from the lower eye electrode, whereas
the new HEOG channel was obtained by subtracting the right, F10,
from the left, F9, channel. The EEG signal was then epoch time-locked
to the event. The EMG channel used for the statistical analysis was com-
puted as the average of the two EMG channels (see above). The epochs
were filtered with a low-pass (20 Hz, Butterworth zero-phase filter,
24 dB/oct) and notch filter (50 Hz, 24 dB/oct); the filter settings adopted
in this study (i.e., high-pass 0.1 Hz, low-pass 20 Hz, and notch filter
50 Hz) are standard in research on slow brain potentials (Kappenman
and Luck, 2012). For the comprehension experiment, epochs lasted
from 1,100 ms before to 1,900 ms after target word onset); in the produc-
tion experiment, epochs lasted from 1,100 ms before until 1,900 ms after
beep onset and from 1,100 ms before until 900 ms after speech onset. As
a baseline, we always used the first 100 ms of the epoch (i.e., from
−1,100 ms to −1,000 ms before the critical event). Epochs with voltage
fluctuation exceeding either 100 µV at any channel or 60 µV at EOG
channels and those contaminated with artifacts due to amplifier clipping,
burst of electromyographic activity, or alpha power were excluded from
averaging. On average, ∼5% of trials were rejected.

Statistical analysis
Electrophysiological signals
For all time windows analyzed in this study, we also tested whether the
activity recorded at the EMG channels (average of the two EMG chan-
nels, see above), at the same latencies, differed between the two condi-
tions (i.e., HC and LC).

Comprehension and production experiments
Anticipatory brain activity in production and comprehension. Three

different types of ERPs were calculated and plotted: (1) the comprehen-
sion ERPs starting 1,100 ms before target word onset, (2) the production
ERPs starting 1,100 ms before the go signal, and (3) the recalculated pro-
duction ERPs starting 1,100 ms before speech onset. These were each
analyzed by calculating the mean ERP amplitudes during the last

200 ms before the critical events (acoustic spoken word onset, go signal,
and speech onset, respectively) for a selection of 30 frontoparietal elec-
trodes (F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4,
T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, PO7, PO3, POz,
PO4, PO8). To determine any differences between the two modalities
(i.e., comprehension and production) and predictability (i.e., HC and
LC), three four-way repeated measures ANOVA were performed. First,
a repeated measures ANOVA was performed to compare the slow waves
in comprehension and production aligned to beep sound onset [(1) vs
(2), see above] using the following factors: modality (two levels: compre-
hension, production), predictability (two levels: HC, LC), gradient [six
levels: anteroposterior, i.e., from frontal (F) to parieto-occipital (PO)
regions], and laterality [five levels: left–right, i.e., from the most left (7)
to the most right (8) electrodes]. Then the same 2 × 2 × 6 × 5 repeated
measures ANOVA was computed on the same data extracted from the
comprehension experiment (see above) and the slow waves aligned to
speech onset in production [(1) vs (3), see above]. This last analysis
was carried out both on the data with the AEPs and on the data corrected
for the AEPs (see above, Ross et al., 2022).

Finally, a 2 × 2 × 2 × 6× 5 repeated measures ANOVA with the addi-
tional factor semantic category (i.e., animals and tools) was computed to
test whether the slow waves’ topographies were modulated by the
expected word category in both comhension and production. To this
end, we focused this analysis on the slow waves preceding the perceived
word in comprehension, and the speech onset in production as previous
results have shown that the last time window (here the last 200 ms)
before the critical event is when semantics modulations typically appear.

For all ANOVA results, we give F, degrees of freedom, and p values.
In addition, we report an effect size measure (partial eta squares, ηp2;
Cohen, 1973). For all significant effects involving more than two levels,
we tested for sphericity violations, which, when detected, were corrected
by means of the Greenhouse–Geisser (GG) correction (Greenhouse and
Geisser, 1959). If corrections were made, GG epsilon values and cor-
rected p values were reported.

Source estimation. The three models at test assume either compara-
ble or different prediction-related cortical activation topographies in pro-
duction and comprehension and for different semantic word types. To
address these hypotheses, we restricted source estimations to the differ-
ence between the ERPs obtained in the predictable, HC condition and
those in the unpredictable, LC condition. These prediction-related
sources were compared between production and comprehension modal-
ities and between tool and animal semantic categories. Distributed
sources were estimated following the standard procedure in SPM 12
(Litvak and Friston, 2008). This method, as any other distributed source
localization technique, cannot overcome the nonuniqueness of the
inverse problem (Helmholtz, 1853), although it uses established priors
for providing plausible source solutions for cognitive experiments. The
cortical mesh of 8,196 vertices was obtained from the template MRI
included in SPM, and it was coregistered with the electrode cap using
three electrodes as fiducials: Fpz, TP9, and TP10; for the forward model,
the “EEGBEM”was selected as the EEG headmodel. The four conditions
[i.e., PP in comprehension before animal and tool nouns; PP in produc-
tion before animal and tool nouns] were inverted together at the group
level, using the “greedy search” algorithm (Bayesian approach; Friston
et al., 2008; Litvak and Friston, 2008). The unexplained variance of the
solutions reported in this article was below 10% (average ∼ 7.8%), which
represents a realistic estimate in line with previous reports (Miozzo et al.,
2015). The activations maps were smoothed using the Gaussian kernel of
FWHM of 20 mm and then submitted to paired t tests to evaluate the
critical comparisons.

We performed paired t tests to compare the brain responses elicited
by the two modalities (comprehension vs production, collapsed across
semantic categories) and by the two predictable semantic categories (ani-
mal vs tool words, collapsed across modalities). For all these compari-
sons, we compared the clusters of activations by considering both the
whole-brain (p< 0.001, uncorrected) and hypothesis-driven regions of
interest (ROIs). ROI analyses were carried out by applying a mask image,
created with WFU_PickAtlas (Maldjian et al., 2003), which included the
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posterior, visual, and prefrontal motor brain areas (Brodmann areas 1, 2,
3, 4, 6 17, 18, and 19). This mask image was used as an explicit mask in
the paired t tests to restrict the number of comparisons to these relevant
voxels; for all these restricted contrasts, the p values were thresholded at
p < 0.05 (FWE corrected; Table 1).

Correlation analyses. Since previous results (Grisoni, 2022) showed
the largest effect of predictability in left frontal areas, correlation analyses
focused on this region and three more control areas. To this end, four
ROIs were defined as the average of two neighbor electrodes (left frontal,
F3, FC3; centrofrontal, Fz, FCz; left parietal, P3, PO3; centroparietal, Pz,
POz). For these correlations, we focused on the time intervals before
word presentation in the comprehension experiment and before speech
onset in the production experiment obtained by removing the ICs related
to the beep presentation.

To study whether the brain responses obtained reflect the predictabil-
ity of the target word based on the sentence fragment, we correlated the
predictive electrophysiological responses with both the reaction times
(RTs) and the cloze probabilities (CPs). Response times can be consid-
ered an index of the ease with which participants were able to complete
the sentence fragments; the context scores include information about the
likelihood with which the target word appears in the sentence fragment
context in ordinary language. Therefore, both can be used as measures of
(possibly different aspects of) the predictability of the target word. To
make it possible to obtain correlations across sentence fragments, aver-
ages per item were calculated across all participants; likewise, response
times were averaged per item and across subjects. The correlations
were also calculated between the ERPs obtained in the production and
comprehension experiments.

Indeed, since the HC and LC sentences were matched for several
features (see above), both the RTs and the contextual constraint scores
can be considered a reliable measure of the facilitating effect that the
preceding sentence fragments play on predictive processing, or, in
other words, the more predictable a context, the faster the response
and the higher the contextual constraint. Therefore, to test whether
this predictive facilitation effect was functionally linked with our elec-
trophysiological responses, we performed Pearson’s correlation

analysis at item level between the RTs and the contextual constraint
(e.g., average of the RTs of all the participants per each sentence) and
the two anticipatory responses (i.e., average of the electrophysiological
responses of all participants per each sentence fragment). Finally, we
also performed Pearson’s correlation analysis between PPs and RPs
at the item level.

Since each correlation was calculated for four ROIs, all the p values
were multiplied by 4 to obtain the Bonferroni-corrected p values, which
are those reported in the Results section. Finally, per each significant
correlation, we also performed nonparametric Spearman rank order
correlations to further test the relationships between our variables.

Results
Cloze probability and RTs in the speech production
experiment
From the audio files recorded during the production experiment
(see Materials and Methods), it was possible to extract the target
words used by all participants; their cloze probability in the con-
text of the sentence fragments was determined based on a previ-
ous study (Grisoni et al., 2021). RTs were obtained by measuring
the time between the go signal and articulation onset. To reassess
the cloze probability of our sentence fragments (Grisoni et al.,
2021), we performed a 2 × 2 repeated measures ANOVA with
the factors predictability (i.e., HC and LC) and semantic category
(animals, tools), which revealed only a statistically significant
difference between HC and LC conditions (main effect of pre-
dictability: F1,28 = 248.77, p < 0.001, ηp2 = 0.90; Fig. 1c). The
most frequently uttered word in any of the HC fragments always
corresponded to the word also presented in the comprehension
experiment. The RTs were calculated as the time interval (Δt)
between the onset presentation of the beep (i.e., the “go” signal)
and the speech onset of the pronounced word (Fig. 1b). These
RTs were taken as an indirect index of sentence predictability,
that is, as an index of the ease with which participants were

Figure 1. Experimental design and behavioral results. a, Schematic representation of the comprehension experiment in which participants had to passively listen to all the spoken sentences
randomly presented. Sentence fragments and the critical target words were separated by a 1.1 s break. b, Schematic representation of the production experiment in which participants heard the
sentence fragments and, after a delay of 1 s, heard a “go” signal and then pronounced a word to complete the sentence. c, Behavioral results: CPs for the target words completing the predictable
“HC,” in green, and the unpredictable ending “LC,” in magenta, sentences (averages and standard errors of mean). d, Behavioural results: delays between “go” signal onset and the onset of word
production in the HC (in green) and LC (in magenta) conditions of the speech production experiment.
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able to complete each sentence fragment. Consistent with previ-
ous reports (Staub et al., 2015), the 2 × 2 (i.e., semantic category,
predictability) repeated measures ANOVA revealed that partici-
pants were faster (on average,∼245 ms) to complete the HC than
the LC fragments (main effect of predictability: F1,25 = 33.62,
p < 0.001, ηp2 = 0.57; Fig. 1d), thus confirming that predictability
is associated with faster language processing (Huettig, 2015;
Staub et al., 2015). For both the ANOVAs (i.e., cloze probability
and RTs), no statistically significant difference involving the
semantic category was found (i.e., neither the main effect of
semantic category nor an interaction between semantic category
and predictability), thus suggesting that the predictive con-
straints (HC, LC) were similarly manipulated across the two
semantic categories (animal and tool nouns).

ERP analysis
Anticipatory activity before the critical events
Electromyographic (EMG) activity showed no significant differ-
ences between HC and LC conditions during the last 200 ms
before the critical events (in comprehension before final word
onset: HC vs LC, t25 =−0.25, n.s.; in production before beep
onset: HC vs LC, t25 =−0.7, n.s.; in production before speech
onset: HC vs LC, t25 =−0.9, n.s.) nor between the two modalities
(all t25 < 1.16, n.s.); this indicates that the amount of articulatory
motor activity was similar across all the conditions.

The repeated measures ANOVA on the mean amplitudes
extracted from the comprehension experiment during the last
200 ms before critical word presentation and from the produc-
tion experiment during the last 200 ms before beep sound onset
showed that the slow waves were modulated by predictability
(main effect of predictability: F1,25 = 6.06, p= 0.02, ηp

2 = 0.20)
and had different topographies across the scalp (main effects of
gradient, that is anteroposterior: F5,125 = 23.72, GG epsilon =
0.33, adjusted p < 0.001, ηp2 = 0.49). In addition, the same

ANOVA also revealed interactions of the factors modality (i.e.,
comprehension vs production), topography (i.e., gradient or
laterality), and predictability (modality and gradient: F5,125 =
6.83, GG epsilon = 0.38, adjusted p= 0.003, ηp2 = 0.21; modality,
predictability, and laterality: F4,100 = 2.88, GG epsilon = 0.63,
adjusted p= 0.05, ηp2 = 0.10). Whereas the former interaction
was due to larger anticipatory signals in comprehension than
in production at the most frontal (i.e., p < 0.001 Bonferroni cor-
rected) but neither at central nor at the most posterior locations,
the latter indicated that the predictability effect (i.e., HC > LC)
was more left-lateralized in comprehension than in production.
Overall, these results showed a similar PP modulation for the
two modalities (i.e., larger slow-wave responses for HC than
LC contexts, Fig. 2a,b), with one notable difference: the topo-
graphical distribution of this modulation differed between the
two modalities. However, as the go signal and beep likely give
rise to additional sensory and cognitive processing (related to
search, selection, response inhibition, etc.), the analysis of go sig-
nal–related activity was not strongly interpreted. Instead, we
focus on the production results just before word articulation
onset. Note that this corresponds directly to the evaluation of
precritical-word activity in the comprehension experiment. The
repeated measures ANOVA on the mean amplitudes extracted
during the last 200 ms before word presentation in comprehen-
sion and before speech onset in production revealed larger antic-
ipatory activity after HC than LC sentence fragments (main effect
of predictability: F1,25 = 11.84, p= 0.002, ηp

2 = 0.32). In addition,
there was a significant interaction of predictability and laterality
(F4,100 = 4.77, GG epsilon = 0.69, adjusted p= 0.005, ηp2 = 0.16).
The modality factor interacted with gradient and laterality
(F20,500 = 4.75, GG epsilon = 0.42, adjusted p < 0.001, ηp2 =
0.16), thus suggesting different ERP topographies in anticipation
of comprehension and production. However, crucially, there was
no significant interaction between predictability (factor

Table 1. Results: source analysis

x y z
t-values
(peak level) Number of voxels Brodmann areas Cortical areas

PP sources computed on the difference signal HC minus LC:
Comprehension > production (word type collapsed)
Whole-brain analysis and ROIs (Brodmann areas 1, 2, 3, 4, 6, 17, 18, and 19)
p< 0.001 uncorrected

- - - n.s. n.s. - -

PP sources computed on the difference signal HC minus LC:
Production > comprehension (word type collapsed)
Whole-brain analysis and ROIs (Brodmann areas: 1, 2, 3, 4, 6, 17, 18, and 19)
p< 0.001 uncorrected

- - - n.s. n.s. - -

PP sources computed on the difference signal HC minus LC:
animals > tools (modality collapsed)
Whole-brain analysis
p< 0.001 uncorrected

−20 −88 6 3.74 141 18 Posterior, visual cortex

PP sources computed on the difference signal HC minus LC:
animals > tools (modality collapsed)
ROIs (Brodmann areas: 1, 2, 3, 4, 6, 17, 18, and 19)
p< 0.05 FWE corrected

−22 −90 4 3.75 48 18 Posterior, visual cortex

PP sources computed on the difference signal HC minus LC:
tools > animals (modality collapsed)
Whole-brain analysis
p< 0.001 uncorrected

−40 −30 44 3.54 35 2/4 Somatosensory, motor cortex

PP sources computed on the difference signal HC minus LC:
tools > animals (modality collapsed)
ROIs (Brodmann areas: 1, 2, 3, 4, 6, 17, 18, and 19)
p< 0.05 FWE corrected

−42 −30 42 3.69 64 2/4 Somatosensory, motor cortex

The table displays the significant clusters underlying the PPs recorded from the comprehension and production experiments. The Montreal Neurological Institute coordinates of the voxel with the highest t value, its t value, the number of
significant voxels per each significant cluster, the Brodmann area labels, and a description of the area in which the cluster (peak voxel) was observed are reported.
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predictability) and modality or a higher-order interaction involv-
ing both of these factors. Note that this would have been expected
in the case of different prediction-related topographies. To fur-
ther confirm the similarity of prediction-related ERP topogra-
phies between the production and comprehension modalities,
we here also list the recording sites where significant differences
between predictable and unpredictable sentences (HC vs LC)
were obtained. When calculating prespeech onset slow waves,
such differences appeared at recording sites (F7, F3, Fz, F4, F8,
FT7, FC3, FCz, FC4, C3, Cz, C4, CP4). In comparison, such

differences appeared in comprehension at recording sites (F7,
F3, Fz, F4, FT7, FC3, FCz, FC4, T7, C3, CP3). As the critical
difference (i.e., HC> LC) emerged at similar (frontal and central)
locations in the two modalities, these results suggest that similar
generators underly predictive processing in production and com-
prehension (Fig. 2a,c). The repeated measures ANOVA on the
mean amplitudes extracted during the last 200 ms before word
presentation in comprehension and speech onset in production
(adjusted for the AEPs) revealed a further main effect of the fac-
tor gradient (F5,125 = 4.39, GG epsilon = 0.32, adjusted p= 0.03,

Figure 2. ERPs and source estimations. a, PP observed at left frontal electrodes before the critical, final, word presentation of HC (green) and LC (magenta) sentences along with their voltage
maps (average across the last 200 ms before critical word onset). b, PP observed in the speech production experiment before the beep sound recorded at central electrodes; and (c) before speech
onset at the left frontal region. All source estimations were computed on the difference ERPs (i.e., HC minus LC). Averages of source images from the comprehension experiment (d) and from the
production experiment (e), the arbitrary scale is the same in the two modalities (d, e). f, Semantic contrasts (modality collapsed) animals > tools (blue) and tools > animals (red) left posterior
view, right superior view. g, h, Differences (not thresholded) at ROIs [obtained from the significant results where the two modalities were collapsed) in the comprehension (g) and production (h)
experiment for the two semantic contrasts (i.e., animals > tolls (blue); tools > animals (red)].
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ηp2 = 0.15) and the interactions of the factors predictability and
gradient (F5,125 = 3.53, GG epsilon = 0.30, adjusted p= 0.05,
ηp2 = 0.12) and gradient and laterality (F20,500 = 2.74, GG epsi-
lon = 0.37, adjusted p= 0.009, ηp2 = 0.10). Finally, the same
ANOVA performed on the mean amplitudes extracted during
the last 200 ms before word onset in comprehension and speech
onset in production not adjusted for the AEPs revealed similar
results. This repeated measures ANOVA showed the main effects
of predictability (F1,25 = 13.57, p= 0.001, ηp

2 = 0.35) and gradient
(F5,125 = 3.61, GG epsilon = 0.34, adjusted p= 0.04, ηp2 = 0.13)
and the following interactions: predictability and gradient
(F5,125 = 5.32, GG epsilon = 0.29, adjusted p= 0.02, ηp2 = 0.18),
predictability and laterality (F4,100 = 4.59, GG epsilon = 0.69,
adjusted p= 0.007, ηp2 = 0.16), gradient and laterality (F20,500 =
2.96, GG epsilon = 0.37, adjusted p= 0.005, ηp2 = 0.11), modality,
gradient, and laterality (F20,500 = 5.29, GG epsilon = 0.42,
adjusted p < 0.001, ηp2 = 0.17).

Predictive semantic processing in language comprehension and
production
We also tested whether the semantic category of the predicted
word affected the scalp distribution of both signals. We observed
a significant interaction of the factors semantic category (i.e., ani-
mals and tools) and gradient (anteroposterior; F5,125 = 5.29, GG
epsilon = 0.48, adjusted p= 0.005, ηp2 = 0.17), but not with
modality. This interaction suggests general ERP-distributional
differences between (HC and LC) conditions along the antero-
posterior axis between animal and tool word conditions. Most
importantly, however, there was a further significant triple inter-
action involving the factors semantic category, gradient, and pre-
dictability (F5,125 = 3.99, GG epsilon = 0.37, adjusted p= 0.03,
ηp2 = 0.14), which provides strong evidence that the prediction-
related difference between HC and LC stimuli was manifest in
different ERP distributions for animal- and tool-related stimuli.
The lack of significant interactions involving the two factors pre-
dictability and modality, or the triplet predictability, semantic
category, and modality, is consistent with the assumption that
similar prediction-related semantic activations occurred in
both modalities.

The same sentence fragments were presented in the produc-
tion and comprehension experiments. Therefore, stimulus repe-
tition may have affected brain activity in production and
comprehension, either in the same way or to different degrees.
To explore any general or condition-specific repetition and pos-
sibly learning effects, we performed additional analyses. To this
end, the additional ANOVAs were performed with the above-
mentioned factors plus an additional between-group variable
experiment order (i.e., participants who started with the compre-
hension experiment vs participants who started with the produc-
tion experiment). This new variable did not produce significant
main effects in any of the analyses nor was it involved in signifi-
cant interactions with other factors. In particular, there was no
evidence of a differential effect of repetition on production and
comprehension. These results fail to support a general influence
of stimulus repetition on the PP in the present experiment or a
differential influence on the ERPs obtained for the modalities
or semantic categories. Our data do not support a specific influ-
ence of stimulus repetition or learning.

Source estimation
Source estimations were computed on the slow waves obtained
by subtracting the ERPs induced by LC fragments from those
induced by the HC stimuli. Here, neither the comprehension >

production nor the production > comprehension contrasts
revealed significant clusters of activation (neither on the whole-
brain nor in posterior, visual, and prefrontal ROIs, Fig. 2d,e,
see also Materials and Methods). In contrast, the semantic differ-
ence (animal vs tool word condition, collapsed across modalities)
revealed significant clusters in modality preferential brain areas.
The contrast animals > tools revealed clusters of activations in
posterior visual, regions in the left hemisphere; whereas the
opposite, tools > animals, contrast showed greater activity in cen-
tral sensorimotor areas (both exploratory whole-brain analysis
p < 0.001 uncorrected and within ROIs p < 0.05 FWE corrected,
see below Materials and Methods, Table 1, Fig. 2f). Strikingly
similar prediction-related category-specific semantic differ-
ences in activation were seen in these ROIs for the two modal-
ities (Fig. 2g,f). These results from ERP and source analyses are
consistent with the assumption of little or no neurophysiologi-
cal differences between prediction mechanisms effective in pro-
duction and perception and with the participation of wide
cortical areas and distributed semantic circuits in the prediction
process.

Correlation analysis
RTs and CPs extracted from the production experiment (see
above and Materials and Methods) were used as a measure of
the ease with which each sentence was completed by the partic-
ipants; these measures were then considered as a measure of sen-
tence fragment predictability, that is, the more predictable a
fragment was, the higher the CP and the faster the participants
were expected to complete the fragment after the beep (low
RTs), “go,” sound (Fig. 1d). First, correlation analyses were per-
formed to investigate whether the predictive signals were associ-
ated to these behavioral indexes of predictability. At sentence
level (i.e., by item) both the slow waves in comprehension and
production (before speech onset) correlated with these measures
of predictability (i.e., both CPs and RTs) at the same left frontal
region. The CPs and the ERP amplitudes showed negative corre-
lations with each other, i.e., the higher the contextual constraint
was, the larger (i.e., more negative) was the activity indexes elic-
ited by the sentence fragments in the two modalities (in compre-
hension: left frontal, r=−0.33, Bonferroni adjusted p < 0.001;
Fig. 3a; in production: both left frontal, r=−0.32, Bonferroni
adjusted p < 0.001, and centrofrontal, r=−0.24, Bonferroni
adjusted p= 0.032 regions; Fig. 3b). These relationships were
confirmed also by nonparametric, Spearman, correlations (in
comprehension: left frontal, R=−0.28, p= 0.002; in production:
left frontal, R=−0.34, p < 0.001, and centrofrontal, R=−0.23,
p = 0.01). In the same way, the RTs and the ERPs showed signifi-
cant positive correlations (shorter RTs, more negative-going slow
potentials). Specifically, the faster the participants completed a
sentence after the “go” sound, the larger the predictive
brain responses elicited by the sentence fragment in comprehen-
sion at left frontal electrodes (r= 0.26, Bonferroni adjusted
p = 0.016, Fig. 3c) and in production at the same locations
(r = 0.34, Bonferroni adjusted p < 0.001, Fig. 3d) and also at
the frontocentral (r = 0.31, Bonferroni adjusted p = 0.004)
ones. Nonparametric, Spearman, correlations confirmed these
results (in comprehension: left frontal, R = 0.20, p = 0.03; in pro-
duction: left frontal, R = 0.33, p < 0.001, centrofrontal: R = 0.27,
p = 0.004). Overall, this analysis confirmed that the slow waves
from the two modalities were associated with the ease with
which each sentence fragment was completed. Furthermore,
if the previous correlations are mediated by the same latent
variable (i.e., predictability of the target event), then the
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Figure 3. Results of correlation analyses. a, b, Significant correlations between the PP mean amplitudes recorded at the left frontal electrodes during the comprehension experiment, and the
CP (a) and RTs (c) obtained from the speech production experiment; (b, d) significant correlations between the PP mean amplitudes (aligned to speech onset) recorded at left frontal electrodes at
sentence level in the speech production experiment and the CP (b) and the RTs (d) were obtained from the same experiment; (e) significant positive correlation between the two anticipatory
signals from the two modalities recorded at sentence level at left frontal electrodes.
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prediction-related ERPs recorded in production and compre-
hension should also correlate with each other. To this end,
we correlated the anticipatory signals obtained before word
onset in production and comprehension between the two
modalities and observed once again a significant positive cor-
relation at the left frontal region (r = 0.30, Bonferroni adjusted
p=0.004; nonparametric: R=0.24, p=0.008; Fig. 3e), that is, at
the location where the largest effect of predictability was observed
(see above and Fig. 3a–d) and previously reported (Grisoni et al.,
2021).

Discussion
Here, we investigated anticipatory brain responses emerging
after sentence fragments but before the onset of sentence-final
spoken words in comprehension and before subjects started to
pronounce the final word to complete the same fragments by
producing a word of their own choice. Predictable, HC, sentence
fragments induced larger anticipatory slow waves, or Prediction
Potentials (PPs), than unpredictable, LC, fragments in both
modalities: before sentence-final word onset in comprehension
and before the two critical events in production (i.e., both before
the “go” signal and before speech onset). Crucially, the topogra-
phies of the PPs measured in speech comprehension and produc-
tion resembled each other. Similar prediction indices in
production and comprehension were further suggested by source
analyses showing congruent cortical activation patterns underly-
ing these ERPs (Fig. 2d,e). In contrast to such congruency, there
were clear topographical and source-level differences between the
predictive brain activation patterns after sentence fragments pre-
dicting animal and tool words. Animal items activated posterior,
visual, areas relatively more strongly, whereas tool items led to
relatively enhanced predictive activity in frontocentral areas,
including sensorimotor cortex. These differences are consistent
with the literature on category-specific brain processing of ani-
mal and tool words presented in unpredictable contexts (Martin
et al., 1996; Kiefer, 2005; Moseley and Pulvermüller, 2014;
Kuhnke et al., 2020; Grisoni et al., 2021). Remarkably, these
semantic differences between the prediction indices emerged
in the same way in production and understanding (Fig. 2). In
other words, the specific brain correlates of semantically specific
predictions were similarly present across modalities.

These congruent patterns of brain responses suggest shared
predictive processes across modalities. This is, of course, not to
argue that there are no differences between producing a word
form and understanding it when it is spoken by somebody else
or, more generally, between production and perception.
Clearly, the auditory system is stimulated in auditory perception,
whereas the motor system is active in articulatory production,
typically followed by auditory and tactile stimulation. These triv-
ial differences must leave traces in brain activity, and the signifi-
cant effects reported above for the factor modality are consistent
with this. However, when we focussed on the specific brain index
of prediction, the PP calculated by subtracting the ERPs before a
matched unpredictable event from those of a predictable one (i.e.,
HC minus LC), there were no significant differences between the
modalities.

It is evident that these data alone cannot provide proof of the
null hypothesis, but considering the correlation analyses (Fig. 3)
and the models of predictions at test (Introduction), there is no
evidence in favor of the different-systems proposal (1) according
to which the twomodalities are controlled by different sets of cor-
tical areas and, therefore, different cortical origins would be

expectable in predictive language production and comprehen-
sion (Lichteim, 1885; Hickok and Poeppel, 2007; Price, 2012;
Hickok, 2013). In contrast, we obtained strong support for the
whole-brain, distributed-circuit, model (3) according to which
predictions in both production and comprehension are mecha-
nistically implemented in the same way by distributed neuronal
assemblies, whose cortical topographies however may differ to
reflect different types of stored semantic information. As strongly
object-related animal nouns and action-related tool nouns draw
relatively more strongly on visual versus action-related semantic
information, respectively, the different distributions of the
related circuits can be explained (Strijkers et al., 2017; De
Lange et al., 2018; Grisoni et al., 2019b; Pulvermüller and
Grisoni, 2020; Grisoni, 2022). The remaining model (2), which
assumes that the same prediction area, or set of areas, is involved
in any type of predictive processing (e.g., the sensorimotor sys-
tem, Schubotz, 2007; Pickering and Clark, 2014), does not receive
support from the present data as comparable prediction-related
activations would have been forecasted not only in production
and perception but likewise for different types of predicted
information.

Pre-articulation versus pre-go signal activity
Topographical differences between prediction-related ERPs
emerged only when the production ERP was calculated relative
to the go signal onset, where subjects may prepare for uttering
the target word but also withhold it until the beep appears.
This discrepancy between the two modalities might be explained
by motor response inhibition (Diamond, 2013), which crucially
depends on prefrontal areas (Aron et al., 2004, 2015; Wessel
and Aron, 2017). Furthermore, our task left our participants
the freedom to search for the to-be-uttered word already before
the beep or spontaneously select an item after. As the task
required all subjects to utter a word as fast as possible after the
go signal, a task that they performed well, the appropriate time
slot to check for preparatory and anticipatory processes was
shortly before spoken word onset. Furthermore, the brain
responses preceding the “go” signal might reflect the time point
at which the target word has been selected, so that the earlier
slow-wave onset in the predictable condition (HC) might just
indicate an earlier onset of articulatory motor preparation in
the HC than in the LC condition (Fig. 1d). When calculating pre-
dictive activity relative to speech production onset (and after the
“go” signal), scalp topographies of the difference betweenHC and
LC fragments were similar and statistically indistinguishable
across modalities. Also, unlike the results observed before the
“go” sound, the observation of larger PPs in HC than LC contexts
during the last 200 ms before speech onset argues against the
possibility that this modulation is merely due to an earlier latency
of motor preparation, as they are both time-locked to speech
onset.

The prediction potential as an index of semantic expectancy
That the PP observed in the two modalities is an index of the pre-
dictability of an upcoming word was further confirmed by a
range of correlation analyses. Not only did the CPs with which
the target words follow the sentence fragments correlate with
the amplitude of the PP recorded in production and comprehen-
sion experiments, but we also found similar significant relation-
ships between PPs and RTs obtained from experiment
participants. Together with earlier work (Grisoni et al., 2021),
this further bolsters the PP’s function as a modality-general
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prediction indicator (Pulvermüller and Grisoni, 2020). Further
evidence for this came from studies relating the PP to established
prediction error measures, such as the MMN and the N400,
which showed functional relationships between the prediction-
related (PP) and these prediction error–related brain responses
(Grisoni et al., 2019a, 2021). These results are consistent with
separable and systematically interrelated ERP indexes of predic-
tion and prediction error, a feature required by predictive coding
theories (Walsh et al., 2020).

A limitation of the current experiment may be the artificial
character of the production experiment implementing a sentence
completion task. However, it should be noted that our data indi-
cate that the context (here HC vs LC sentence fragments) deter-
mined whether the critical event (spoken word in
comprehension, speech onset in production) is firmly predicted
in advance or accessed and selected on the spur of the moment
(as indicated also by the variability with which participants com-
pleted the sentence fragments). It is therefore desirable for future
research to study the brain basis of context-related predictions in
more naturalistic speech production settings (Boux et al., 2021).

The PPs observed in the current experiments can be related to
established ERP components. However, a range of negative-
going slow waves have previously been shown to signal motor
preparation—in particular the readiness potential or RP
(Deecke et al., 1969; Shibasaki and Hallett, 2006; Schurger
et al., 2021)—or to indicate foreseeable perceptions linked to
motor preparation—such as the contingent negative variation
(CNV; Walter et al., 1964; Luck and Kappenman, 2012). The
RP has even been claimed to also precede predictable visual per-
ceptions (Kilner et al., 2004), and likewise, the CNV may index
stimulus expectation. One might therefore suggest that the
ERPs we recorded in the production and comprehension exper-
iments also be labeled RP and/or CNV, as they may primarily
reflect motor preparation and perceptual expectation. We are
not opposed to such nomenclature but should mention that
such labeling would mask the obvious parallelism of the function
of these slow waves in production and perception and likewise
miss their important role in carrying predictive semantic infor-
mation. This latter point, that the PP includes information about
the semantic meaning of words (and, as shown in other experi-
ments, different perceptual features of linguistic and nonlinguis-
tic stimuli), seems to contrast with the function normally
attributed to the abovementioned ERPs (e.g., the RP’s role as a
motor preparation index). We therefore prefer the label “PP”
to highlight the cognitive aspects of this response.

The observation that, in addition to distributed cortical repre-
sentations, prefrontal areas generally take an important role in
predictive processing (Fuster and Bressler, 2015; Grisoni et al.,
2017, 2021; León-Cabrera et al., 2019; Pulvermüller and
Grisoni, 2020; Grisoni, 2022) is consistent with the proposed
framework. Indeed, it is well-known that these prefrontal regions
include multimodal and association areas (Fuster, 2001; Fuster
and Bressler, 2015), and the reason why the PFC becomes impor-
tant for predictive and semantic processing lies in its connectivity
structure (Pulvermüller et al., 2021). Many areas of the prefrontal
cortex (PFC) are connector hubs on which modality preferential
areas converge. During predictive activation of these circuits,
activity therefore emerges in prefrontal (and other) hub areas
(Garagnani and Pulvermuller, 2013). This position can explain
why predictive semantic processes generally draw heavily on
the PFC (Grisoni, 2022). It is a valuable target of future research
to work toward a mechanistic explanation of predictive

processes, including the current neurophysiological indexes
shared across production and comprehension.

Conclusions
We found similar brain indexes of prediction in language pro-
duction and comprehension, but consistently different distribu-
ted cortical sources when words with different meanings
(animal and tool nouns) were predicted. These results are consis-
tent with the proposal that the same distributed neuronal circuits
are called into play when a word is predicted in production and
understanding and therefore similar patterns of activation
emerge in the two modalities (Pulvermüller and Fadiga, 2010;
Strijkers et al., 2017). As the same differences between semantic
category-specific predictive activity patterns were seen in pro-
duction and comprehension, it appears unlikely that insufficient
signal-to-noise ratios or lack of statistical power in the present
study worked against finding between-modality differences.
Our results confirm previous reports about reliable prediction-
related brain responses which can be recorded similarly in both
production and perception andmay be generated by the preactiva-
tion of distributed neuronal circuits whose cortical topographies
reflect semantic information immanent to the representations
these circuits carry. The present results do not supportmodels pos-
tulating different prediction mechanisms in production and per-
ception or a narrowly localized prediction hub.

Data Availability
We reported all data exclusions, all inclusion/exclusion criteria,
all the preprocessing manipulations, and all the measures
included in this work. The full list of stimuli used in this study
(i.e., the sentence list) will be provided upon request, whereas
behavioral and electrophysiological processed data used for the
final analysis will be made available at Open Science
Framework after publication.

References
Aron AR, Cai W, Badre D, Robbins TW (2015) Evidence supports specific

braking function for inferior PFC. Trends Cogn Sci 19:711–712.
Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior

frontal cortex. Trends Cogn Sci 8:170–177.
Auksztulewicz R, Friston KJ, Nobre AC (2017) Task relevance modulates the

behavioural and neural effects of sensory predictions. PLoS Biol 15:
e2003143.

Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind
separation and blind deconvolution. Neural Comput 7:1129–1159.

Bell AH, Summerfield C, Morin EL, Malecek NJ, Ungerleider LG (2016)
Encoding of stimulus probability in macaque inferior temporal cortex.
Curr Biol 26:2280–2290.

Bell AH, Summerfield C,Morin EL,MalecekNJ, Ungerleider LG (2017) Reply
to vinken and vogels. Curr Biol 27:R1212–R1213.

Bendixen A, SanMiguel I, Schröger E (2012) Early electrophysiological indi-
cators for predictive processing in audition: a review. Int J Psychophysiol
83:120–131.

Binder JR, Desai RH (2011) The neurobiology of semantic memory. Trends
Cogn Sci 15:527–536.

Boux I, Tomasello R, Grisoni L, Pulvermüller F (2021) Brain signatures pre-
dict communicative function of speech production in interaction. Cortex
135:127–145.

Clark A (2013) Whatever next? Predictive brains, situated agents, and the
future of cognitive science. Behav Brain Sci 36:181–204.

Cohen J (1973) Eta-squared and partial Eta-squared in fixed factor anova
designs. Educ Psychol Meas 33:107–112.

Deecke L, Scheid P, Kornhuber HH (1969) Distribution of readiness poten-
tial, pre-motion positivity, andmotor potential of the human cerebral cor-
tex preceding voluntary finger movements. Exp Brain Res 7:158–168.

Grisoni et al. • Prediction Potential in Comprehension and Production J. Neurosci., March 20, 2024 • 44(12):e1723232023 • 11



De Lange FP, Heilbron M, Kok P (2018) How do expectations shape percep-
tion? Trends Cogn Sci 22:764–779.

Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of
single-trial EEG dynamics including independent component analysis.
J Neurosci Methods 134:9–21.

Diamond A (2013) Executive functions. Annu Rev Psychol 64:135–168.
DiCarlo JJ, Zoccolan D, Rust NC (2012) How does the brain solve visual

object recognition? Neuron 73:415–434.
Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev

Neurosci 11:127–138.
Friston K, Harrison L, Daunizeau J, Kiebel S, Phillips C, Trujillo-Barreto N,

Henson R, Flandin G, Mattout J (2008) Multiple sparse priors for the
M/EEG inverse problem. NeuroImage 39:1104–1120.

Fuster JM (2001) The prefrontal cortex–an update: time is of the essence.
Neuron 30:319–333.

Fuster JM, Bressler SL (2015) Past makes future: role of pFC in prediction.
J Cogn Neurosci 27:639–654.

GaragnaniM, Pulvermuller F (2013) Neuronal correlates of decisions to speak
and act: spontaneous emergence and dynamic topographies in a compu-
tational model of frontal and temporal areas. Brain Lang 127:75–85.

Greenhouse SW, Geisser S (1959) On methods in the analysis of profile data.
Psychometrika 24:95–112.

Grisoni L (2022) Predictions built upon belongings. Front Psychol 13:994098.
Grisoni L, Dreyer FR, Pulvermüller F (2016) Somatotopic semantic priming

and prediction in the motor system. Cereb Cortex 26:2353–2366.
Grisoni L, Miller TM, Pulvermuller F (2017) Neural correlates of semantic pre-

diction and resolution in sentence processing. J Neurosci 37:4848–4858.
Grisoni L, Mohr B, Pulvermuller F (2019a) Prediction mechanisms in motor

and auditory areas and their role in sound perception and language
understanding. NeuroImage 199:206–216.

Grisoni L, Moseley RL, Motlagh S, Kandia D, Sener N, Pulvermüller F,
Roepke S, Mohr B (2019b) Prediction and mismatch negativity responses
reflect impairments in action semantic processing in adults with autism
spectrum disorders. Front Hum Neurosci 13:1–11.

Grisoni L, Pulvermüller F (2022) Predictive and perceptual phonemic pro-
cessing in articulatory motor areas: a prediction potential & mismatch
negativity study. Cortex 155:357–372.

Grisoni L, Tomasello R, Pulvermüller F (2021) Correlated brain indexes of
semantic prediction and prediction error: brain localization and category
specificity. Cereb Cortex 31:1553–1568.

Helmholtz H (1853) Über einige gesetze der vertheilung elektrischer ströme
in körperlichen leitern mit anwendung auf die thierisch-elektrischen ver-
suche. Ann Phys 165:211–233.

Hickok G (2013) Predictive coding? Yes, but from what source? Behav Brain
Sci 36:358.

Hickok G, Poeppel D (2007) The cortical organization of speech processing.
Nat Rev Neurosci 8:393–402.

Hubel D (1995) Eye, brain, and vision, 2nd ed. New York: Scientific American
Library.

Huettig F (2015) Four central questions about prediction in language process-
ing. Brain Res 1626:118–135.

Indefrey P (2011) The spatial and temporal signatures of word production
components: a critical update. Front Psychol 2:255.

Indefrey P, LeveltWJ (2004) The spatial and temporal signatures of word pro-
duction components. Cognition 92:101–144.

Kaposvari P, Kumar S, Vogels R (2018) Statistical learning signals in macaque
Inferior temporal cortex. Cereb Cortex 28:250–266.

Kappenman ES, Luck SJ (2012) The Oxford handbook of event-related poten-
tial components. Oxford: Oxford University Press.

Keller GB, Mrsic-Flogel TD (2018) Predictive processing: a canonical cortical
computation. Neuron 100:424–435.

Kiefer M (2005) Repetition-priming modulates category-specific effects on
event-related potentials: further evidence for multiple cortical semantic
systems. J Cogn Neurosci 17:199–211.

Kiefer M, Pulvermüller F (2012) Conceptual representations in mind and
brain: theoretical developments, current evidence and future directions.
Cortex 48:805–825.

Kilner JM, Vargas C, Duval S, Blakemore SJ, Sirigu A (2004) Motor activation
prior to observation of a predicted movement. Nat Neurosci 7:1299–1301.

Klug M, Gramann K (2020) Identifying key factors for improving ICA-based
decomposition of EEG data in mobile and stationary experiments. Eur J
Neurosci 54:8406–8420.

Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neu-
ral coding and computation. Trends Neurosci 27:712–719.

Kok P, Bains LJ, van Mourik T, Norris DG, de Lange FP (2016) Selective acti-
vation of the deep layers of the human primary visual cortex by top-down
feedback. Curr Biol 26:371–376.

Kok P, Failing MF, de Lange FP (2014) Prior expectations evoke stimulus
templates in the primary visual cortex. J Cogn Neurosci 26:1546–1554.

Kuhnke P, Kiefer M, Hartwigsen G (2020) Task-dependent recruitment of
modality-specific and multimodal regions during conceptual processing.
Cereb Cortex 30:3938–3959.

Kutas M, Federmeier KD (2011) Thirty years and counting: finding meaning
in the N400 component of the event-related brain potential (ERP). Annu
Rev Psychol 62:621–647.

Lau EF, Holcomb PJ, Kuperberg GR (2013) Dissociating N400 effects of pre-
diction from association in single-word contexts. J Cogn Neurosci 25:
484–502.

León-Cabrera P, Flores A, Rodriguez-Fornells A, Moris J (2019) Ahead of
time: early sentence slow cortical modulations associated to semantic pre-
diction. NeuroImage 189:192–201.

León-Cabrera P, Pagonabarraga J, Moris J, Martinez-Horta S, Marin-Lahoz J,
Horta-Barba A, Bejr-KasemH, Kulisevsky J, Rodriguez-Fornells A (2021)
Neural signatures of predictive language processing in Parkinson’s disease
with and without mild cognitive impairment. Cortex 141:112–127.

León-Cabrera P, Rodríguez-Fornells A, Morís J (2017) Electrophysiological
correlates of semantic anticipation during speech comprehension.
Neuropsychologia 99:326–334.

Levelt WJM (1993) Speaking: from intention to articulation. Cambridge, MA:
The MIT Press.

Lichteim L (1885) On Aphasia1. Brain 7:433–484.
Litvak V, Friston K (2008) Electromagnetic source reconstruction for group

studies. NeuroImage 42:1490–1498.
Luck SJ, Kappenman ES (2012) The Oxford handbook of event-related poten-

tial components. USA: Oxford University Press.
Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated

method for neuroanatomic and cytoarchitectonic atlas-based interroga-
tion of fMRI data sets. NeuroImage 19:1233–1239.

Martin A (2007) The representation of object concepts in the brain. Annu Rev
Psychol 58:25–45.

Martin A, Wiggs CL, Ungerleider LG, Haxby JV (1996) Neural correlates of
category-specific knowledge. Nature 379:649–652.

Miozzo M, Pulvermuller F, Hauk O (2015) Early parallel activation of seman-
tics and phonology in picture naming: evidence from a multiple linear
regression MEG study. Cereb Cortex 25:3343–3355.

Moseley RL, Pulvermüller F (2014) Nouns, verbs, objects, actions, and
abstractions: local fMRI activity indexes semantics, not lexical categories.
Brain Lang 132:28–42.

Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity
(MMN) in basic research of central auditory processing: a review. Clin
Neurophysiol 118:2544–2590.

Oldfield RC (1971) The assessment and analysis of handedness: the
Edinburgh inventory. Neuropsychologia 9:97–113.

Peelen MV, Kastner S (2011) A neural basis for real-world visual search in
human occipitotemporal cortex. Proc Natl Acad Sci U S A 108:12125–
12130.

Pickering MJ, Clark A (2014) Getting ahead: forward models and their place
in cognitive architecture. Trends Cogn Sci 18:451–456.

Pickering MJ, Garrod S (2007) Do people use language production to make
predictions during comprehension? Trends Cogn Sci 11:105–110.

Pion-Tonachini L, Kreutz-Delgado K, Makeig S (2019) ICLabel: an auto-
mated electroencephalographic independent component classifier, data-
set, and website. NeuroImage 198:181–197.

Price CJ (2012) A review and synthesis of the first 20 years of PET and fMRI
studies of heard speech, spoken language and Reading. NeuroImage 62:
816–847.

Pulvermüller F (1999)Words in the brain’s language. Behav Brain Sci 22:253–
279; discussion 280–336.

Pulvermüller F (2018) Neural reuse of action perception circuits for language,
concepts and communication. Prog Neurobiol 160:1–44.

Pulvermüller F, Fadiga L (2010) Active perception: sensorimotor circuits as a
cortical basis for language. Nat Rev Neurosci 11:351–360.

Pulvermüller F, Grisoni L (2020) Semantic prediction in brain and mind.
Trends Cogn Sci 24:781–784.

12 • J. Neurosci., March 20, 2024 • 44(12):e1723232023 Grisoni et al. • Prediction Potential in Comprehension and Production



Pulvermüller F, Tomasello R, Henningsen-Schomers MR, Wennekers T
(2021) Biological constraints on neural networkmodels of cognitive func-
tion. Nat Rev Neurosci 22:488–502.

Riesenhuber M, Poggio T (2002) Neural mechanisms of object recognition.
Curr Opin Neurobiol 12:162–168.

Ross JM, Ozdemir RA, Lian SJ, Fried PJ, Schmitt EM, Inouye SK,
Pascual-Leone A, Shafi MM (2022) A structured ICA-based process for
removing auditory evoked potentials. Sci Rep 12:1391.

Schubotz RI (2007) Prediction of external events with our motor system:
towards a new framework. Trends Cogn Sci 11:211–218.

Schurger A, Hu PB, Pak J, Roskies AL (2021) What is the readiness potential?
Trends Cogn Sci 25:558–570.

Shibasaki H, Hallett M (2006) What is the Bereitschaftspotential? Clin
Neurophysiol 117:2341–2356.

Staub A, Grant M, Astheimer L, Cohen A (2015) The influence of cloze
probability and item constraint on cloze task response time. J Mem
Lang 82:1–17.

Strijkers K, Costa A, Pulvermüller F (2017) The cortical dynamics of
speaking: lexical and phonological knowledge simultaneously recruit

the frontal and temporal cortex within 200 ms. NeuroImage 163:
206–219.

Trapp S, Lepsien J, Kotz SA, Bar M (2016) Prior probability modulates antic-
ipatory activity in category-specific areas. Cogn Affect Behav Neurosci 16:
135–144.

Vinken K, Vogels R (2017) Adaptation can explain evidence for encoding of
probabilistic information in macaque inferior temporal cortex. Curr Biol
27:R1210–R1212.

Walsh KS, McGovern DP, Clark A, O’Connell RG (2020) Evaluating the neu-
rophysiological evidence for predictive processing as a model of percep-
tion. Ann N Y Acad Sci 1464:242–268.

Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL (1964)
Contingent negative variation: an electric sign of sensori-motor associa-
tion and expectancy in the human brain. Nature 203:380–384.

Wessel JR, Aron AR (2017) On the globality of motor suppression: unexpected
events and their influence on behavior and cognition. Neuron 93:259–280.

Winkler I, Debener S, Müller KR, Tangermann M (2015) On the influence of
high-pass filtering on ICA-based artifact reduction in EEG-ERP. Annu Int
Conf IEEE Eng Med Biol Soc 2015:4101–4105.

Grisoni et al. • Prediction Potential in Comprehension and Production J. Neurosci., March 20, 2024 • 44(12):e1723232023 • 13


	 Introduction
	 Materials and Methods
	 Participants
	 Experimental design
	 Electrophysiological recordings and preprocessing

	 Statistical analysis
	 Electrophysiological signals
	 Comprehension and production experiments
	 Anticipatory brain activity in production and comprehension
	 Source estimation
	 Correlation analyses



	 Results
	 Cloze probability and RTs in the speech production experiment
	 ERP analysis
	 Anticipatory activity before the critical events
	 Predictive semantic processing in language comprehension and production

	 Source estimation
	 Correlation analysis

	 Discussion
	 Pre-articulation versus pre-go signal activity
	 The prediction potential as an index of semantic expectancy

	 Conclusions
	 Data Availability
	 References

