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Abstract
Recent years have witnessed an increased interest in recovering dynamical laws of complex systems
in a largely data-driven fashion under meaningful hypotheses. In this work, we propose a scalable
and numerically robust method for this task, utilizing efficient block-sparse tensor train
representations of dynamical laws, inspired by similar approaches in quantum many-body systems.
Low-rank tensor train representations have been previously derived for dynamical laws of
one-dimensional systems. We extend this result to efficient representations of systems with
K-mode interactions and controlled approximations of systems with decaying interactions. We
further argue that natural structure assumptions on dynamical laws, such as bounded polynomial
degrees, can be exploited in the form of block-sparse support patterns of tensor-train cores.
Additional structural similarities between interactions of certain modes can be accounted for by
weight sharing within the ansatz. To make use of these structure assumptions, we propose a novel
optimization algorithm, block-sparsity restricted alternating least squares with gauge-mediated
weight sharing. The algorithm is inspired by similar notions in machine learning and achieves a
significant improvement in performance over previous approaches. We demonstrate the
performance of the method numerically on three one-dimensional systems—the
Fermi–Pasta–Ulam–Tsingou system, rotating magnetic dipoles and point particles interacting via
modified Lennard–Jones potentials, observing a highly accurate and noise-robust recovery.

1. Introduction

Discovering dynamical laws that govern the time evolution of dynamical systems has been a central task in
physics and engineering for centuries, from practical as well as fundamental perspective. Historically, this
task has been approached from two directions—firstly by using expert physical knowledge and intuition, and
secondly by using data obtained by measuring the time evolution of the dynamical system in question. With
the ever growing availability of large amounts of computational power and data, the second approach is
becoming increasingly accessible [SL09, BPK16, GKES19, GGR+20, IMW+20, CPSW21, KBK22, CDA+21,
MBPK16]. However, since a crucial aspect of using data to learn dynamical laws is choosing the right
hypothesis class, physical intuition about the system is essential in developing efficient data-driven
algorithms.

One prominent recent approach is the sparse identification of non-linear dynamics (SINDy) algorithm
[BPK16, SBK21, dSCQ+20]. Here the learning task is phrased as a linear inversion problem for a chosen
function dictionary. To arrive at a physically motivated hypothesis class, the authors impose sparsity of the
recovered dynamical laws with respect to this dictionary—implementing the principle of Occam’s razor.
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The remarkable success of the SINDy algorithm demonstrates that imposing structure in learning
dynamical laws is immensely powerful. This is in spite of the fact that Occam’s razor is a general heuristic
principle that is not linked to any specific physical properties of the system at hand.

Building on the ideas of SINDy and its variant MANDy [GKES19], in [GGR+20] the authors proposed to
use locality in one dimension as the structure imposing physical principle. They have shown that the resultant
hypothesis class consists of low rank tensor trains (TT) [BSU16], a specific type of an efficient tensor network
representation of multivariate functions [CSS15, SS16, LYCS17]. A similar result is widely known in the
quantum many-body literature [CPGSV21, Oru14, VC04, HMOV14], where it has been shown that low rank
TTs (known in this context asmatrix product states (MPS)) parametrize ground states of one-dimensional
local Hamiltonians [VC06], as well as other states of physical importance [ECP10, SWVC08, VMC08].

Another structural observation made by the quantum many-body community is that the TT
representations of quantum states that are symmetric under local action of some symmetry group have
tensor cores with a characteristic sparse support, a property dubbed block-sparsity [SPV10]. Recently, it has
been proven that functions with bounded polynomial degree (or an equivalent notion suitable for the chosen
function dictionary) also admit block-sparse TT representations [GST21, BGP21]. Being able to control the
polynomial degree of non-linear functions is in the context of learning dynamical laws a promising
primitive. On a technical level, limiting the total polynomial degree offers a natural truncation of a
multivariate function space via Taylor’s theorem. On a conceptual level, high-degree polynomials in
dynamical laws correspond to terms that vary quickly with respect to many modes. The appearance of such
terms in dynamical laws is generally a sign that a better choice of coordinates parametrizing the state space
could be made. Similar arguments also apply to other dictionaries, e.g. for trigonometric functions limiting
the total ‘degree’ corresponds to neglecting fast oscillating terms in the dynamical law.

Bounding a notion of total degree suitable for a chosen multi-variate function dictionary, block-sparse
TTs arise as a natural, physically well-motivated efficient restriction of the ansatz class for dynamical laws. In
another context, block-sparsity has been observed to improve the performance of tensor network
optimization methods in terms of computational, memory and sample complexity [GST21, BGP21].

The contribution of this work is three-fold: (1) we broaden the range of physical principles that lead to
efficient TT representations of dynamical laws. In particular, we show that systems with K-mode interactions
admit an efficient TT representation and that systems with algebraically decaying interactions can be
approximated with bounded error by a system with efficient TT representation. (2) We utilize block-sparsity
in the context of learning dynamical laws—demonstrating a significantly improved performance of the
resulting method compared to previous work. (3) We use self-similarity between certain modes in the system
to further restrict the search space and develop a new optimization algorithm for the resultant hypothesis
class, referred to as ALS optimization with gauge mediated weight sharing (ALS-GMWS), which is inspired by
similar notions in machine learning [RCR+20]. We show numerically that (2) and (3) improve scalability of
the method, allowing us to learn dynamical laws of systems more than three times larger than the systems
presented in [GGR+20].

The remainder of this work is structured as follows: Our setting of learning dynamical laws is formally
introduced in section 2. In section 3 we give a brief primer into tensor networks. Section 4 shows how a
natural truncation of the function space leads to an efficient parametrization via block sparse TTs. In
section 5 we prove that low rank TTs parametrize dynamical laws of systems obeying generic physical
principles. The concept of self-similarity and the ALS-GMWS algorithm is presented in section 6. Finally, we
numerically demonstrate the performance of our method in section 7, before concluding in section 8.

2. Setup

We will use the notation [N] := {1, . . . ,N} for any integer N. Consider a dynamical system with state space
S ⊂ Rd, such that its state is described by a real d-dimensional vector x= (x(1), . . . ,x(d)). We call each of the
degrees of freedom x(i) amode. The time evolution is a smooth curve x(t) : R→S , which is, given initial
conditions x0, generated by

ẋ(t) = f(x(t)) or ẍ(t) = f(x(t)) , (1)

where we have restricted our attention to time-independent systems. We assume that it is known which of
these forms governs the dynamical system of interest, and we will refer to both equation (1) and the function
f : S → Rd as the dynamical law. The first form of equation (1) can arise, e.g. from Hamilton’s equations,
where f(x) = {x,H} with H the Hamiltonian and {·, ·} the Poisson bracket, while the second form appears,
e.g. in Newton’s equations, where fk(x) is the total force acting on the k-th mode in the state x. By learning a
dynamical law we mean identifying f (x) given data pairs (xi,yi) ∈ Rd ×Rd for i ∈ [M] with the relation
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yi(xi)≈ f(xi). The data may be coming from time-series measurements of a trajectory with the gradients yi
approximated, e.g. by the method of finite differences.

To learn f, we choose a function dictionary {Ψi : R→ R}i∈[p] of linearly independent functions. Forming
a product basis

Φi1,...,id (x) = Ψi1

(
x(1)
)
. . .Ψid

(
x(d)
)

(2)

we obtain the space

A= span{Φi1,...,id : ik ∈ [p] ∀k ∈ [d]} , (3)

with elements mapping Rd to R, so thatAd can be used as a search space for f : Rd → Rd.

Elements g(x) ∈ A are labeled by tensorsΘ ∈ Rpd via

g(x) =
∑

i1,...,id∈[p]d

Θi1,...,idΦi1,...,id (x) . (4)

Hence, the dimension ofA is exponential in the system size d, limiting the scalability of learning a function
withinA. This is an example of the notorious curse of dimensionality. In order to overcome the curse, we use
structural constraints onΘ due to known physical properties of the system to identify a physically relevant
subspaceH⊂A with dim(H) ∈ O(poly(d)), defining the physical corner of solutions. Specifically, in this
work, we show that for many dynamical systems of interest a suitableH is the set of low rank block-sparse
TTs, as defined in section 3.

3. A primer to tensor networks

To set the stage and notation, we start with a brief introduction to tensor networks. For a more thorough
treatment of this topic, see [BSU16, BC17]. The curse of dimensionality, as discussed in the previous section,
renders high-order tensors hard to work with. Not only are they hard to optimize over, even storing them
and performing basic operations on them quickly becomes impractical as the order grows. Tensor networks
are a way of decomposing high-order tensors in terms of contractions of smaller tensors. Limiting the ranks
of these contractions we define subspaces of tensor spaces with dimensions scaling polynomially in the order,
averting the curse of dimensionality. Crucially for us, such subspaces turn out to contain physically relevant
tensors in many cases of interest.

Tensor networks can be visually represented by tensor network diagrams. Suppose an order d tensor T,
which is a contraction of tensors {Ci}i, called tensor cores. To draw a tensor network diagram for T, we draw
a node for each tensor core Ci. For each of the indices of the tensor cores we draw an edge and connect those
edges that represent indices that are contracted over in T. The indices represented by connected edges are
referred to as virtual indices. The remaining d unconnected edges represent the d physical indices of T.

A widely studied example of such a network is the tensor train, which is represented by the tensor
network

This contraction of tensors can be written in matrix notation as

Ti1,...,id =
∑

j1,...,jd−1

∈[r1]×...×[rd−1]

(C1)
i1
j1
(C2)

i2
j1,j2

. . .(Cd)
id
jd−1

,
(6)

where the superscripts on the tensor cores are the physical indices, while the subscripts are the virtual indices.
Any tensor T ∈ Rdp can be represented as a TT, if we allow rk to scale exponentially with d. To obtain an
efficient ansatz class that does not suffer from the curse of dimensionality, we have to bound rk by a
polynomial in d. We call r=mink∈[d] rk the TT rank of such a decomposition of T.

An important observation is that the TT decomposition is not unique. The gauge transformation

C1 7→ C1A
−1
1 , Cd 7→ Ad−1Cd,

Cℓ 7→ Aℓ−1CℓA
−1
ℓ ∀ℓ ∈ {2, . . . ,d− 1} ,

(7)
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applying matrix multiplication by invertible matrices Aℓ on the virtual indices of the tensor cores, leaves the
TT invariant. Part of this gauge freedom is removed by imposing the so-called left canonical condition

∀i ∈ {2, . . . ,d− 1}. The remaining gauge freedom can be shown to be a unitary transformation.

4. Block-sparsity

In choosing the finite local dictionary, we are truncating the univariate function space, e.g. bounding the
polynomial degree or a similar notion relevant to the dictionary at hand. However, if we now take the d-fold
tensor productA of the univariate dictionaries as the search space for a multivariate fk, we introduce terms
that are of higher total degree than the degree imposing the local truncation. Thus, from the perspective of
multivariate Taylor series, the multivariate dictionary appears inconsistently truncated. Here, it is more
natural to work with complete function spaces of bounded total degree. In this section we show that such a
natural restriction can be conveniently captured by enforcing a certain support pattern of the TT cores,
yielding so-called block-sparse TTs. This structure allows us to allocate resources much more efficiently—we
can enlarge the dictionary while keeping the problem-relevant expressivity of the ansatz class and the
computational resources required constant.

More formally, we define a degree map w : [p]→ N0, which assigns the degree to the elements of a given
function dictionary. Without loss of generality we will assume that w is a non-decreasing function. The
degree map provides us with a natural definition of the Laplace-like multivariate degree operator

L : Rpd → Rpd , which acts on tensor representations of multivariate functions,

L=
d∑

j=1

Id⊗j−1
p ⊗Ω⊗ Id⊗d−j

p , (9)

where Ω= diag(w(1), . . . ,w(p)) and Idp is the p× p identity matrix. This operator is analogous to the
bosonic particle number operator in quantum physics.

Suppose a tensor ϕ with a TT representation with cores {Cℓ}dℓ=1. We define the left and right interface
operators

L<ℓ :=
ℓ−1∑
j=1

Id⊗j−1 ⊗Ω⊗ Id⊗ℓ−j−1, (10)

L>ℓ :=
d−ℓ∑
j=1

Id⊗j−1Ω⊗ Id⊗d−ℓ−j, (11)

and the left and right interface tensors

for each interface at the ℓth tensor core. When using matrix notation for the interface tensors, we will think

of them as linear operators ϕ<ℓ : Rrℓ−1 → Rpℓ−1
and ϕ>ℓ : Rpd−ℓ → Rrℓ .

In [GST21], the following theorem has been shown.
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Theorem 1 (Block-sparsity). Suppose a TT ϕ with tensor cores {Cℓ}ℓ∈[d] in left canonical form with minimal

ranks {rℓ}d−1
ℓ=1 , such that

Lϕ = λϕ, (13)

where L is as in equation (9) and λ ∈ N0. Then there exist a unitary gauge transformation {Aℓ}ℓ∈[d−1] acting
via equation (7), such that for each interface ℓ ∈ [d− 1] the transformed interface tensors satisfy

ϕ>ℓL>ℓ = Λ>ℓϕ>ℓ, (14)

L<ℓ+1ϕ<ℓ+1 = ϕ<ℓ+1
(
λId−Λ>ℓ

)
(15)

for a set of diagonal matrices
{
Λ>ℓ

}
ℓ∈[d−1]

with non-increasing diagonal entries.

We provide a slightly simplified proof in appendix D.
Let us discuss the consequences of theorem 1 and see how it implies a block-sparse structure of the tensor

cores. First, notice that equation (14) is an eigenvalue equation, i.e. it states that the rows of ϕ>ℓ are left
eigenvectors of L>ℓ with eigenvalues given by the corresponding diagonal element of Λ>ℓ. Similarly,
equation (15) implies that the rows of ϕ<ℓ are right eigenvectors of L<ℓ with eigenvalues given by the
corresponding diagonal elements of Λ<ℓ := λId−Λ>ℓ−1.

Choosing any interface ℓ ∈ {2, . . . ,d− 1}, we can decompose the eigenvalue equation as

with Ω= diag(w(1), . . . ,w(p)), where the double line collects multiple indices into a single edge. Since we
assume that the TT ranks are minimal, ϕ<ℓ (ϕ>ℓ) have full column (row) rank and the eigenvalue equation
implies

If we fix the remaining physical index to i ∈ [p], we obtain the matrix equation

(λ−w(i))(Cℓ)i = Λ<ℓ (Cℓ)i +(Cℓ)i Λ
>ℓ. (18)

Therefore, for all i ∈ [p], we can assign each block-row of (Cℓ)i to a (potentially degenerate) eigenvalue of
L<ℓ by which it is multiplied in the first term on the RHS of equation (18). Similarly, we can assign each
block-column of (Cℓ)i to a (potentially degenerate) eigenvalue of L

>ℓ by which it is multiplied in the second
term on the RHS of equation (18). The block sizes are given by the degeneracy of the corresponding
eigenvalues of the interface operators. Now, equation (18) tells us that blocks of (Cℓ)i, which correspond to
eigenvalues λ<ℓ, λ>ℓ of L<ℓ and L>ℓ respectively, can be non-zero only if

λ>ℓ+λ<ℓ+w(i) = λ. (19)

Hence, each non-zero block of Cℓ connects eigenvectors of L<ℓ with eigenvectors of L>ℓ to fulfil the
eigenvalue equation Lϕ = λϕ. In this way theorem 1 implies block-sparsity of the tensor cores of an
eigenvector of L.
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In order to analyze the maximum block sizes, consider a block of Cℓ that corresponds to the eigenvalues
λ<ℓ and λ>ℓ of the interface operators. Now we need to bound the degeneracy of λ<ℓ and λ>ℓ in the spectra
of the interface operators. The interface operators are diagonal, with elements given by

∑ℓ−1
ℓ ′=1w(iℓ ′) and∑d

ℓ ′=ℓ+1w( jℓ ′), respectively, so the maximum size sℓ× tℓ of the considered block, is the number of solutions
(i1, . . . , iℓ−1) ∈ [p]ℓ−1 and ( jℓ+1, . . . , jd) ∈ [p]d−ℓ to

ℓ−1∑
ℓ ′=1

w(iℓ ′) = λ<ℓ and
d∑

ℓ ′=ℓ+1

w(iℓ ′) = λ>ℓ, (20)

respectively. Note that if we allowed w to take negative values, the maximum block sizes and number of
blocks would become very large.

To obtain a low-rank block-sparse TT, we enforce the block-sparse structure and limit the block sizes to
some maximum value ρ.

4.1. Example 1: Monomial dictionary
Consider the monomial dictionary

Ψi (x) = xi−1 , i ∈ [p] (21)

and the polynomial degree function w : i 7→ i− 1, so that Image(w) = {0, . . . ,p− 1}. For physical index i at
the ℓ-th mode, there are λ− i + 2 solutions λ<ℓ and λ>ℓ to equation (19), so the matrix (Cℓ)i has λ− i + 2
non-zero blocks. Assuming that p> λ<ℓ,λ>ℓ, a combinatorial argument shows that the number of solutions
to equation (20) is

sℓ =

(
λ<ℓ+ ℓ− 2

ℓ− 2

)
, tℓ =

(
λ>ℓ+ d− ℓ− 1

d− ℓ− 1

)
, (22)

which gives us the maximum block sizes. For concreteness, choose λ= 3 and p= 3. Now the block-sparse
structure becomes

(Cℓ)1 =


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

, (Cℓ)2 =


0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗
0 0 0 0

 ,

(Cℓ)3 =


0 0 ∗ 0
0 0 0 ∗
0 0 0 0
0 0 0 0

 ,
(23)

where ∗ indicates the non-zero blocks. Here the ith row corresponds to λ<ℓ = i− 1 and the jth column to
λ>ℓ = 4− j.

4.2. Example 2: Trigonometric dictionary
Consider the trigonometric dictionary

{1, sinx,cosx} (24)

and w(1) = 0,w(2) = 1,w(3) = 1, which counts the number of sines and cosines. Choose λ= 3 and
ℓ ∈ {4, . . . ,d− 4}. The block-sparse structure now becomes

(Cℓ)1 =


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 , (Cℓ)2 =


0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗
0 0 0 0

 ,

(Cℓ)3 =


0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗
0 0 0 0

 ,
(25)

where the ith row corresponds to λ<ℓ = i− 1 and the jth column to λ>ℓ = 4− j.
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4.3. Limiting the degree
Theorem 1 states that fixed degree functions admit a block-sparse TT representation. An often more natural
ansatz class are functions with bounded degree. Fortunately, such functions also admit a block-sparse TT, as
can be seen from the following argument.

Suppose a function f : Rd with a bounded degree λ. Hence, it can be written as a linear combination

f =
∑
j

fj, (26)

where each fj has a fixed degree⩽ λ and, hence, admits a block-sparse decomposition. The number of terms
n(λ) in this sum is bounded by the number of options for a degree⩽ λ. Suppose that each fj has a

block-sparse TT decomposition {C( j)
ℓ }ℓ∈[d]. Now we can represent the function f by a TT with tensor cores

{Cℓ}ℓ∈[d], where for each ℓ ∈ {2, . . . ,d− 1} and a value i ∈ [p] of the physical index, the corresponding

matrix (Cℓ)i is block-diagonal with blocks (C
( j)
ℓ )i, the tensor core C1 is given by concatenating C( j)

1 and the
tensor core Cd is

where C( j)
d has C( j)

d as its jth block, with all other blocks zero. We sum over the blocks corresponding to each
fj by contracting the right index of Cd with a vector of all ones 1n(λ). Hence, the TT representation of f
becomes

which is a block-sparse TT. Note that this is equivalent to the TT addition algorithm of [Ose11].

5. Efficient TT representation of dynamical laws

In this section we will show how generic properties of dynamical systems imply efficient TT representations
of their dynamical laws. We write the function f : S → Rd in equation (1) using the decomposition (4) as

fk (x) =
∑

i1,...,id

Θk;i1,...,idΦi1,...,id (x) . (29)

We call the TT decomposition ofΘk the TT representation of fk. Combining the tensors for k ∈ [d], we obtain

the tensorΘ ∈ Rd×pd , which can be written as a single TT via

providing a TT representation of the dynamical law.
In order to show that a function admits an efficient representation, we will bound its separation rank,

defined as follows.

Definition 2 (Separation rank). Suppose a multivariate function h(x) : Rd → R. We say that h(x) has separ-

ation rank s with respect to a bipartition Pk := ({x1, . . . ,xk},{xk+1, . . . ,xd}) := (P left
k ,P right

k ), if the smallest set

of functions {gleftℓ (P left
k ),grightℓ (P right

k )}ℓ∈[̃s], such that

h(x) =
∑
ℓ∈[̃s]

gleftℓ
(
P left
k

)
⊗ grightℓ

(
P right
k

)
, (31)

has s̃= s.

7
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It can be shown that the minimal ranks rk of a TT representation of a function h(x) are equal to the
separation ranks with respect to Pk. For a formal proof of this statement, see [HRS12].

The first generic property of dynamical systems that has been used in [GGR+20] to show efficient TT
representations of dynamical laws is locality in one-dimension.

Definition 3 (One dimensional interacting system, definition 4 in [GGR+20]). A dynamical system, gov-
erned by the dynamical law f : S ⊂ Rd, is one-dimensional with interaction length L and separation rank N, if

there exists a function set {gi(x)}p̃i=1 and for each k ∈ [d] an index set Ik ⊂ [p̃]2L+1 with |Ik|⩽ N, such that

fk (x) =
∑

ik−L,...,ik+L∈Ik

gik−L (xk−L) . . .gik+L (xk+L) , (32)

where we set gi = 1 for i ⩽ 0 and i ⩾ d+ 1.

By bounding the separation ranks of the dynamical laws of one dimensional interacting systems with
respect to bipartitions Pk, the authors prove the following theorem.

Theorem 4 (Efficient TT decomposition of one-dimensional interacting systems, theorem 5 in
[GGR+20]). Suppose a one dimensional interacting system with interaction length L and separation rank N,

governed by the dynamical law f(x) : S ⊂ Rpd → Rd. Then we have the following.

(a) Each fk(x) admits a TT representation with rank r⩽ N and
(b) the function f admits a TT representation with ranks rk ⩽ k− L+ 1+ 2NL.

For many systems of interest exact locality as in definition 3 is too strong of an assumption. We would
like to be able to use TTs also for systems that do not have a sharp bound on the interaction length, but where
instead the interactions decay with distance. This is formalized by the following definition.

Definition 5 (One-dimensional systems with algebraically decaying interactions). A dynamical system,
governed by the dynamical law f : [0,1)d → Rd, is one-dimensional with (χ,g)-algebraically decaying interac-
tions and separation rank N, if there exists a function set {gk,L}k,L∈[d], where for all k,L ∈ [d] the function gk,L
depends non-trivially only on xi for i ∈ [k− L,k+ L], satisfies ‖gk,L‖2 ⩽ g and has separation rank bounded
by N with respect to bipartitions Pℓ = {{xk−L, . . . ,xℓ},{xℓ+1, . . . ,xk+L}} for all ℓ ∈ {k− L, . . . ,d+ L}, such
that

fk (x) =
∑
L∈[d]

L−χgk,L (x) . (33)

Note that in this definition we demand that the state space is S = [0,1)d. This is important so that ‖gL‖2
does not change with d. Physically, in definition 5, χ is the decay parameter of the interactions, where terms
depending on modes at most L apart have a contribution that is modulated by L−χ relative to a common
force scale of the dynamical law g. For one-dimensional systems with algebraically decaying interactions we
can show the following theorem.

Theorem 6 (Approximate locality). Suppose a one-dimensional system with (χ,g)-algebraically decaying
interactions and separation rank N, governed by the dynamical law f : [0,1)d → Rd, that can be written as

fk (x) =
∑
L∈[d]

L−χgk,L (x) , (34)

where {gk,L}k,L∈[d] satisfies the assumptions of definition 5. If χ> 1, then for any L̃ ∈ [d] there exists a
one-dimensional interacting system with interaction length L̃ and separation rank NL̃, such that

‖fk (x)− f̃L̃k (x)‖2 ⩽ c1
(
χ, L̃
)
g, (35)

where

c1
(
χ, L̃
)
=
(
L̃+ 1

)−χ L̃+χ

χ − 1
=O

(
L̃1−χ

)
. (36)

The proof is given in appendix A.
Theorem 6 allows us to approximate systems with algebraically decaying interactions by strictly local systems
with bounded error, which is independent of d.6 This is formalized in the following corollary.

6 Note that if we were instead looking at the L2 error of the full function ∥f − f̃∥2, we would get an additional factor of d.
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Corollary 7 (Low rank TTs for algebraically decaying interactions). Suppose a system with
(χ,g)-algebraically decaying interactions with separation rank N governed by the dynamical law
f(x) : S ⊂ Rd → Rd. Furthermore, suppose that χ> 1. Then there exists an ε-approximate TT representation of
each fk(x) with rank

r⩽ N

[(
χ

χ− 1

g

ε

) 1
χ−1

− 1

]
. (37)

The details of the proof are given in appendix B.
Many systems of physical interest are K-mode interacting systems, formalized by the following definition.

Definition 8 (K-mode interacting systems). A dynamical system, governed by the dynamical law f : S ⊂ Rd,

isK-mode interacting with separation rank N, if there exists a function set {gi(x)}p̃i=1, for each k ∈ [d] a constant

Kk, such that for each ℓ ∈ [Kk] there are distinct subsets J (k)
ℓ = {j1, . . . , jK} ⊂ [d] with J (k)

ℓ 3 k and subsets

I(k)
ℓ ⊂ [p̃]K with |I(k)

ℓ |⩽ N, such that

fk (x) =
∑
ℓ∈[Kk]

∑
(ij1 ,...,ijK)∈I(k)

ℓ

gij1
(
xj1
)
. . .gijK

(
xjK
)
. (38)

An example of a 2-mode interacting system is, e.g. a collection of gravitationally interacting particles,
where the total force on each particle is given by the sum of pair-wise forces with respect to the remaining
particles. We will now show that if a system is K-mode interacting with K⪅ 5, it admits an efficient TT
representation.

Theorem 9 (Efficient TT representation ofK-mode interacting systems). Suppose a K-mode interacting

system with separation rank N, governed by a dynamical law f(x) : S ⊂ Rpd → Rd. Then

(1) each fk admits a TT representation with rank r⩽ N

(
d− 1
K− 1

)
= NO(dK−1) and

(2) the function f admits a TT representation with ranks

rk ⩽ c2 (N,d,k)+ k

(
k− 1
K− 1

)
+ 1, (39)

where c2(N,d,k) =O(NdK) is a combinatorial factor defined in appendix C.

To prove theorem 9, we adapt the techniques of the proof of theorem 4 from [GGR+20], see appendix C
for details.

Already for K⪆ 5, although c2(N,d,k) is polynomial in d, the polynomial degree makes working with
such TTs prohibitively expensive even for modest d. However, many systems of physical interest are known to
have K= 2,3,4 and hence admit an efficient TT representation. It is important to note that this result does
not rely on the underlying systems being one-dimensional. Finally, note that if a dynamical system has at most
K-mode interactions, it still admits an efficient TT decomposition, since the rank of a TT is sub-additive.

General conditions for the approximability of multivariate functions by a low rank TT in terms of tail
control of the singular value spectrum of the matrix unfoldings of their coefficient tensors are derived in
[BSU16]. As we discuss in appendix E, these results are in a precise sense analog to the control of MPS
approximations of quantum states based on entropy scaling conditions derived in the quantum many-body
literature [SWVC08, VC06].

6. ALS-GMWS

6.1. Self-similarity
Additional structure in the system, known prior to learning, can cause certain modes to play the same role in
dynamical laws for multiple modes, implying that we would like the corresponding tensor cores to be equal.
We call this self-similarity. The different roles each mode can play are referred to as activation types. For
example, in the case of a one-dimensional dynamical system with interaction length L, definition 3, the jth
mode plays the same role in all functions fk with k< j− L, namely that the mode is to the left and outside the
interaction range. Similarly, the role of the mode is the same for all k> j+ L. Hence, such systems have
2L+ 3 activation types.

9
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Self-similar systems with α activation types can be described by a set of dα tensor cores {C( j)
ℓ }ℓ∈[d],j∈[α].

The recipe to build the corresponding tensor train representations of the dynamical laws fk(x) can be
encoded in a selection table S ∈ [α]d×d as in

where block-sparse representation of functions with bounded degree equation (28) is used. We call such
systems S-self-similar.

In the case of one-dimensional interacting systems with interaction length L, the selection table takes the
form

SLij =


1 j < i− L,

2L+ 3 j > i+ L,

j− i+ L+ 2 otherwise.

(41)

6.2. ALS optimization of self-similar systems
In learning dynamical laws, given data (xi,yi) ∈ Rd ×Rd for i ∈ [M] with yi ≈ f(xi) ∀i, we would like to
identify an element f̂ of some ansatz class that minimizes the empirical loss

Lemp

(̂
f
)
:=
∑
i∈[M]

∥∥∥yi − f̂(xi)
∥∥∥2
2
. (42)

In the previous sections we have shown that a natural choice of an ansatz class for many dynamical systems
of interest are block-sparse low rank TTs with self-similarity given by the selection table equation (40).

Previously, in [GGR+20], alternating least squares (ALS) optimization (and a rank-adaptive variant
[GK19]) has been used to minimize Lemp over low rank TTs. In the ALS procedure, the tensor cores are
iterated over in sweeps, at each step solving a linear least squares problem to minimize the empirical loss as a
function of the given core, until convergence. The ALS algorithm can be adapted to block-sparse TT by
restricting each contraction in the algorithm to indices labeling elements that are non-zero in the
block-sparse structure [GST21].

However, optimization over systems with self-similarity requires more care. In [GGR+20] a selection
tensor approach has been taken, where the dynamical law is written as

where θk is the TT representation of fk and T is the selection tensor that, given k ∈ [d], picks the correct
activation type. In this form, block-sparse ALS can be directly applied. However, this method leads to
numerical instabilities in the optimization, limiting its scalability to d⪅ 20.

The core problem is that the unitary gauge freedom is not properly taken care of. To see this, suppose that

the ALS sweeps are performed from left to right and that the tensor core C( j)
ℓ corresponding to the mode

ℓ ∈ [d] and activation type j ∈ [α] is being optimized. The left neighbour of this tensor core can have a
different activation type in different dynamical law components k. Since each of the left neighbour activation
types has been optimized in a separate ALS step, they are each written in a different gauge. Using the form
equation (43) does not allow the gauge differences to be corrected for, and therefore we rely on the gauges to
converge as more ALS sweeps are performed, which leads to numerical instabilities.

We will now introduce a new algorithm for optimization of block-sparse low rank TTs with
self-similarity, called ALS-GMWS, that allows the left neighbour gauge to be adjusted in each step. It will be
useful to define the restricted empirical cost, which, given a subset E⊂ [d], is given by

LE
emp

(̂
f
)
:=
∑
i∈[M]

∥∥∥(yi)E − (̂f(xi))
E

∥∥∥2
2
, (44)

10
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where the notation (v)E for v ∈ Rd denotes the restriction of v to the subspace defined by the set of index
values E.

Assume without loss of generality that the ALS sweeps are performed left to right. Suppose we want to

optimize the core C( j)
ℓ , for ℓ ∈ [d] and j ∈ [α]. Let E ⊂ [d] be the set of indices of functions where this core is

used, as determined by the selection table S. If ℓ= 1, we do not need to worry about the gauge at all, since we

are optimizing left to right. We simply perform a block-sparse ALS step to find C( j)
ℓ that minimizes LE

emp(̂f)
with all the other tensor cores fixed.

Now consider ℓ⩾ 2. Among the functions labeled by e ∈ E , we are only sure that the gauge is the same in
the equivalence classes defined by the values of Se,ℓ−1, or, in other words, only if the left neighbour, the tensor
core of the ℓ− 1th mode, has the same activation type. Hence, we divide E into disjoint sets {Ea ⊂ E}a∈[α]

labeled by the activation type of ℓ− 1th mode, such that, for each a ∈ [α], Se,ℓ−1 = a for all e ∈ Ea. In order
to use the most information available, we find ã ∈ [α], such that |Eã|⩾ |Ea| ∀a ∈ [α], and perform the

block-sparse ALS step to find the C( j)
ℓ that minimizes LEã

emp(̂f), with all the other tensor cores fixed.

Now that we found the optimal C( j)
ℓ with respect to Eã, we optimize the gauge of C(a)

ℓ−1 for a 6= ã, so that
using the newly found tensor core components in all the corresponding dynamical law components is
justified. Hence, for each a ∈ [α], such that a 6= ã and |Ea| 6= 0, we want to find a gauge fixing unitary Ua that
minimizes LEa

emp(̂f) under the transformation

with all other tensor cores fixed. In order to preserve the block-sparse structure, Ua needs to be

block-diagonal with block sizes given by the block-column widths of C(a)
ℓ−1 and block-row heights of C( j)

ℓ . In
practice, we optimize over all block-diagonal matrices, although optimization over block-diagonal unitaries
is possible and could lead to improvements.

The ALS-GMWS algorithm is summarized in algorithm 1.

Algorithm 1. ALS optimization with gauge mediated weight sharing.

input:Data pairs (xi,yi) ∈ Rd×Rd, i = 1, . . . ,M, number of activation types α, selection table S, maximum block size ρ
output: dα block-sparse tensor train components.

For ℓ= [d], j = [α] randomly initialize block-sparse C( j)
ℓ with maximum block size ρ

While not converged
for ℓ= 1, . . . ,d
for k= 1, . . . ,α
Let E = {e ∈ [d] : Se,ℓ = j}
if ℓ= 1 or |E|= 1 then

Find C(k)
ℓ that minimizes LE

emp with all other tensor cores fixed;
end
else
For each a ∈ [α] let Ea = {e ∈ E : Se,ℓ−1 = a};
Choose ã ∈ [α], s.t. |Eã|⩾ |Ea| ∀a ∈ [α];

Find C(k)
ℓ that minimizes LẼa

emp with all other tensor cores fixed;
for a ∈ [α] : a ̸= ã, |Ea| ̸= 0 do
Find a block-diagonal unitary U that minimizes LEa

emp after the transformation equation (45) with all the

other tensor cores fixed Set C(a)
ℓ−1← C(a)

ℓ−1U
end

end
end

end
end
return Cℓ

k , k= 1, . . . ,d, ℓ= 1, . . . ,α.

7. Numerical experiments

We will demonstrate our method on three example dynamical systems: The Fermi–Pasta–Ulam–Tsingou
(FPUT) system, one-dimensional chain of rotating magnetic dipoles and a chain of atoms interacting via a
modified Lennard–Jones interaction. The experiments have been performed using the codebase developed
by M Götte and P Trunschke [MP22].

11
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7.1. FPUT system
The FPUT system is a chain of non-linear springs with spring constants κℓ. The dynamical law is given by

fk (x) =κk+1 (xk+1 − xk)−κk (xk − xk−1)

+βk+1 (xk+1 − xk)
3 −βk (xk − xk−1)

3

k= 1, . . . ,d,

(46)

which is a one-dimensional system with interaction length L= 1 and, using the monomial dictionary
equation (21), separation rank N = 4, such that each fk can be represented by TTs with rank bounded by
r= 4. Furthermore, the polynomial degree of the equations is bounded by 3 and, hence, we can use TTs (28)
with block-sparse structure given by equation (23) for λ= 3 and block sizes bounded by 4, to represent the
system exactly. We study two instances of this system. First, we study a translationally invariant system,
setting κk = 1,βk = 0.7 ∀k ∈ [d]. Second, to demonstrate the ability of our method to recover a disordered
system, we use an instance where each κk,βk is drawn i.i.d. randomly from the uniform distribution on [0,2]
and [0,1.4] respectively.

7.2. Rotating magnetic dipoles
Here, we have a chain of magnetic dipoles at positions Xℓ with magnetic dipole momentsMℓ and moments
of inertia Iℓ. They are free to rotate in the plane perpendicular to the chain and their angles of rotation are
xℓ ∈ [0,2π). The dynamical law is given by

fk (x) = IkMk

∑
ℓ̸=k

Mℓ

|Xk −Xℓ|3
sin(xk − xℓ) . (47)

The positions are chosen so that X1 < X2 < .. . < Xd. In fact, we setMℓ = Iℓ = 1, Xℓ = ℓ− 1 ∀ℓ ∈ [d].
According to definition 8, this is a 2-mode interacting system with separation rank N = 2, using the
trigonometric dictionary (24). Hence, it suffices to use rank r= 2(d− 1) TTs. Since the degree given by
w(1) = 0,w(1) = w(2) = 1 is bounded by 2, we can use the block-sparse structure

(Cℓ))1 =

∗ 0 0
0 ∗ 0
0 0 ∗

 , (Cℓ)2 =
0 ∗ 0
0 0 ∗
0 0 0

 ,
(Cℓ)3 =

0 ∗ 0
0 0 ∗
0 0 0

 (48)

with block sizes bounded by 2(d− 1) and represent this dynamical law exactly. However, this is also a system
with (3, 1

2
√
2π
)-algebraically decaying interactions (after rescaling xℓ 7→ (2π)−1xℓ, so that xℓ ∈ [0,1)) and

separation rank 2 according to definition 5. Hence, corollary 7 allows us to limit the block sizes to a constant
(in d) and get an approximation of the dynamical law with bounded error.

7.3. Lennard–Jones chain
The final example is a chain of particles of massesmℓ that interact via a modified Lennard–Jones potential.
This is the hardest example to learn of the three. The dynamical law for the positions xℓ of the particles along
the chain is given by

fk (x) =6mk

∑
ℓ̸=k

sign(xk − xℓ)
εk,ℓ
Rk,ℓ

(
2

(
Rk,ℓ

|xk − xℓ|

)2q+1

−
(

Rk,ℓ

|xk − xℓ|

)q+1
)
, (49)

where εk,ℓ, Rk,ℓ are parameters of the interaction between the modes k, ℓ. We set
mk = εk,ℓ = Rk,ℓ = 1 ∀k, ℓ ∈ [d] and q= 2. Since it is hard to approximate inverse functions with polynomial
dictionaries, we learn

gk (x) := (xk − xk−1)
2q+1

(xk − xk+1)
2q+1 fk (x) , (50)

instead of equation (49) from the accordingly transformed data {xi, ỹi}i∈[M].
This is a 2-mode interacting system with separation rank N= p2 with respect to polynomial dictionaries,

truncating the polynomial expansions of inverse functions to p terms. By theorem 9, we can represent the
dynamical law by TTs with rank bounded by r= p2(d− 1). For good approximations of the inverse function,
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we require large p, so for practical use-cases we would like to limit the rank more. This is justified by
corollary 7, since this is also a system with (2,g)-algebraically decaying interactions and separation rank p2, if
there is a finite amount of energy in the system and the initial conditions are chosen so that we can ensure
that the state space is S ⊂×ℓ∈[d]

Iℓ, where Iℓ are finite intervals for all ℓ ∈ [d].

The polynomial degree of equation (49) is bounded by 2p, such that we can use block-sparsity, where
each core (Cℓ)i has non-zero blocks only on the ith diagonal.

For completeness, we include the formula for the total energy in the system

E=
∑
k<ℓ

εk,ℓ

[(
Rk,ℓ

|xk (0)− xℓ (0) |

)2q

−
(

Rk,ℓ

|xk (0)− xℓ (0) |

)q
]
+
∑
k

1

2
mkẋ

2
k (0) . (51)

7.4. Results
For each of the three example systems, we randomly draw dataD = {xi}i∈[M] from the corresponding state
space S and compute yi = f(xi) or yi = f(xi)+ ησi , where the elements of ησi are drawn from the Gaussian
distribution with standard deviation σ. Unless stated otherwise, we use noiseless data with σ= 0. Therefore,
the data that we use for learning does not come from trajectories of the dynamical systems, but instead they
are random (potentially noisy) evaluations of the dynamical law f (x). This somewhat simplifies the setting,
especially since we do not have to approximate ẋ(t) or ẍ(t) in equation (1) from the trajectory, using
e.g. finite differences. However, since we can hope to learn the dynamical laws only from trajectories that
sufficiently explore the state space S , sampling S at random is not too different from using such trajectories.

For each dynamical system we set the parameters as described in the previous section. We initialize the
block sparse TT cores randomly, drawing the non-zero components from the normal distribution with zero
mean and unit standard deviation. Since we observe that our algorithm converges on the first try, we only
perform the recovery once on each training set, except for the Lennard-Jones system, where we initialize 6
times.

GivenD, we use ALS-GMWS to find an SL-self-similar low rank block-sparse TT representation of an
estimate f̂ of the dynamical law. We benchmark the quality of the estimate with respect to the true dynamical
law f via the residuum

res
(̂
f, f
)
:=

√√√√√√
∑

i∈[M ′]

∥∥∥̂f(x ′i )− f(x ′i )
∥∥∥2
2∑

j∈[M ′] ‖f
(
x ′j

)
‖22

, (52)

where {x ′i }i∈[M ′] are random samples from S , which are different to the samples used for training. In
particular, we useM ′ = 2× 104.

All experiments have been conducted on consumer grade hardware and the code has not been optimized
for speed.

The block-sparsity used for polynomial dictionaries is that non-zero blocks of (Cℓ)i are on the i-th
block-diagonal, while for the trigonometric dictionary equation (24) it is such that (Cℓ)0 is block-diagonal,
while (Cℓ)1 and (Cℓ)2 have non-zero blocks on the first block-diagonal. In both cases, if we bound the degree
by λ, the number of block-rows and block-columns is λ+ 1. The maximum block size is ρ. For all
experiments we have used self-similarity given by the selection table SL defined in equation (40).

7.4.1. FPUT system
To recover FPUT systems, equation (47), with size d= 50, we use degree 3 Legendre polynomial dictionary.
In figure 1 we show the recovery of the translationally invariant FPUT system and FPUT system with
randomly sampled spring constants, to demonstrate applicability of our method to disordered systems. We
plot the residuum achieved after 10 ALS-GMWS sweeps, using varying numbersM of training samples. Both
systems are successfully recovered using 1800 training samples.

We will now compare these results to those of [GGR+20] and demonstrate the improvement provided by
ALS-GMWS with block sparsity. Figure 5 in [GGR+20] shows the recovery of the FPUT system by two
methods—ALS and SALSA. The former algorithm achieves a recovery rate of about 90% (with 10−6 error
threshold) with 4500 samples on a d= 18 system, while SALSA has only been demonstrated on up to d= 12
systems and shows a 100% recovery rate with about 3000 samples. The authors mention that SALSA
becomes intractable for larger systems on a desktop hardware. In contrast, ALS-GMWS presented here is able
to achieve a 100% recovery rate already with about 1800 samples on a d= 50 system, almost tripling the
attainable system size. Furthermore, it only requires 10 ALS-GMWS sweeps, compared to 15 ALS sweeps and
60 SALSA iterations required to obtain the quoted results, keeping the computational cost well suited for
desktop hardware.
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Figure 1. FPUT system. Recovery of a translationally invariant (orange) and disordered (blue) d= 50 system. Residuum after 10
ALS-GMWS sweeps is plotted against the size of the learning set. We use degree 3 Legendre polynomial dictionary, maximum
block size ρ= 2 and selection table interaction length L= 5.

Figure 2.Magnetic dipole chain with trigonometric dictionary. Residuum after 8 ALS-GMWS sweeps on varying system sizes d as
a function of the size of the learning set. The maximum block size is set to ρ= 3 and the selection table interaction length to (a)
L= 5 and (b) L= 9.

7.4.2. Rotating magnetic dipoles
We perform three experiments on the rotating magnetic dipole chain.

First, we use the trigonometric dictionary to recover chains with 10⩽ d⩽ 50. In figure 2 we plot the
residua achieved using varying numbersM of training samples. We show the results for L= 5,9. For d= 50,
successful recovery requires around 4× 102 training samples for L= 5 and 9× 102 training samples for
L= 9, which however achieves around 10 times smaller residuum.

Second, we use degree 9 Legendre polynomial dictionary to recover chains with d= 10,20,30. The
residua for varying numbersM of training samples are shown in figure 3. For d= 30, we require around
1.7× 104 samples. This demonstrates the importance of choosing an appropriate dictionary, when compared
with the previous experiment.

Finally, we use trigonometric dictionary to recover chains with d= 20,50 from noisy data with varying
levels σ of noise. We plot the residua achieved using varying numbersM of training samples in figure 4. The
results show recovery of the system down to the noise level, demonstrating noise robustness of the proposed
method.

7.4.3. Lennard-Jones chain
We recover the Lennard-Jones chain equation (49) for d= 10, using degree 8 Legendre polynomial
dictionary. We set L= 5. Figure 5 shows the residua after 8 ALS-GMWS sweeps for various maximum block
sizes, as a function of the training set size. This is clearly the hardest example, requiring around 6× 103

samples for successful recovery of even such a small system. Furthermore, the plot shows three initialization
instances when the algorithm has not converged well. In practice it is therefore sometimes beneficial to run
the algorithm multiple times with different initializations.
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Figure 3.Magnetic dipole chain with Legendre polynomial dictionary. Residuum after 8 ALS-GMWS sweeps on system sizes
d= 10,20,30 is plotted as a function of the learning set size. The maximum block size is set to ρ= 3, dictionary is truncated at
degree 9 and selection table interaction length to L= 5.

Figure 4.Magnetic dipole chain from noisy data. Residuum after 8 ALS-GMWS sweeps using noisy data with varying levels of
noise σ for system sizes d= 20 (dots) and d= 50 (diamonds). We use the trigonometric dictionary, maximum block size ρ= 3
and selection table interaction length L= 5.

Figure 5. Lennard-Jones chain. The residuum after 8 sweeps of the ALS-GMWS algorithm is plotted for system size d= 10 and
maximum block sizes ρ= 4,6,8. The mean (dots) over 6 runs of the algorithm is plotted, as well as the result of the individual
instances (plus signs). We use degree 8 Legendre polynomial dictionary and set selection table interaction length to L= 5.

8. Conclusions

Learning dynamical laws from data is a key task that has been lately moving into the focus of attention. The
well-known and immensely popular SINDy approach introduces a data-driven algorithm for obtaining
dynamical systems from data. This approach allows for a reliable recovery of small systems, but is not scalable
to systems with a large number of degrees of freedom: For this, a meaningful, physically motivated restriction
of the hypothesis class is necessary. In this work, we have overcome this obstacle. We have shown that
block-sparse TT with self-similarity provide a suitable efficient ansatz class for learning dynamical laws from
data in many contexts of practical interest. In particular, we have proven that these include local
one-dimensional systems, one-dimensional systems with algebraically decaying interactions and systems
with K-body interactions in any number of spatial dimensions. For learning dynamical laws within this class,
we have developed a new variant of the ALS algorithm for block-sparse TTs, which we refer to as
ALS-GMWS, which is suitable for self-similar systems. The method has been successfully demonstrated on
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three physically relevant one-dimensional dynamical systems and robustness to Gaussian additive noise in
the data has been demonstrated.
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Appendix A. Proof of theorem 6

Theorem 6 bounds for χ> 1 the error that we obtain by representing the dynamical law of a system with
(χ,g)-algebraically decaying interactions and separation rank N by a low rank TT. The original system is
governed by the dynamical law

fk (x) =
∑
L∈[d]

L−χgk,L (x) . (53)

Suppose the approximation of this system

f̃
(L̃)
k (x) =

∑
L∈[L̃]

L−χgk,L (x) . (54)

The approximation error is bounded by

‖fk (x)− f̃
(L̃)
k (x)‖2 ⩽

d∑
L=L̃+1

L−χg (55)

⩽
∞∑

L=L̃+1

L−χg (56)

⩽ c1
(
χ, L̃
)
g (57)

=O
(
L1−χ

)
g, (58)

where we use L2 norm sub-additivity to get the first inequality and the last inequality comes from using the
upper bound

∑∞
j=N f( j)⩽ f(N)+

´∞
N f(x)dx for f (x) that decreases monotonously for all x ∈ [N,∞).

Evaluating the integral for the present case N= L̃+ 1, f(x) = x−χ with χ> 1, we get

∞∑
L=L̃+1

L−χ ⩽
(
L̃+ 1

)−χ L̃+χ

χ− 1
(59)

:= c1
(
χ, L̃
)

(60)

=O
(
L̃1−χ

)
. (61)

It remains to be shown that the truncated dynamical system corresponding to the dynamical law f̃(L̃) is
one-dimensional with interaction length L̃ and separation rank NL̃. Since all the terms in the sum
equation (54) depend trivially on xi with i /∈ [k− L̃,k+ L̃], the system has interaction length L̃ by definition.
Moreover, since it is a sum of L̃ functions with separation rank at most N with respect to any bipartition Pk,
the total separation rank is bounded by NL̃. □
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Appendix B. Proof of corollary 7

Corollary 7 shows that there exists ε-approximate low rank TT representations of dynamical systems with
(χ,g)-algebraically decaying interactions and separation rankN, if χ> 1. To prove this, use theorem 6 to find
that there exists a one-dimensional dynamical system with interaction length L̃ and separation rank NL̃,
which is governed by a dynamical law f̃, such that, for all k ∈ [d], f̃k is an ε-approximation of fk in the L2
norm, if

(
L̃+ 1

)−χ L̃+χ

χ− 1
⩽ ε

g
(62)(

L̃+ 1
)1−χ

+(χ− 1)
(
L̃+ 1

)−χ ⩽ (χ− 1)
ε

g
. (63)

This will certainly be satisfied if

(
L̃+ 1

)1−χ ⩽ χ− 1

χ

ε

g
. (64)

Rearranging, we obtain

L̃⩾
(

χ

χ− 1

g

ε

) 1
χ−1

− 1. (65)

From theorem 4 we know that in this approximation, each f̃k admits a TT representation with rank r⩾ NL̃,
so

r⩾ N

[(
χ− 1

χ

ε

g

) 1
1−χ

− 1

]
. (66)

□

Appendix C. Proof of theorem 9

Theorem 9 bounds the TT rank of the TT representation of the dynamical law f (x). In order to do this, we
need to bound the separation rank with respect to bipartitions Pk = ({x1, . . . ,xk},{xk+1, . . . ,kd}). To prove
1., first we need to show that

Kk ⩽
(

d− 1
K− 1

)
. (67)

To see this note that we require each J (k)
ℓ to be distinct and to contain k. Hence, the upper bound is the

number of ways of selecting the remaining K − 1 elements of J (k)
ℓ . Now, rewrite the decomposition of the

dynamical law of a K-mode interacting system with separation rank N as

fk (x) =
∑
ℓ∈[Kk]

∑
(ij1 ,...,ijK)∈I(k)

ℓ

gij1
(
xj1
)
. . .gijK

(
xjK
)

=
∑
ℓ∈[Kk]

∑
(ij1 ,...,ijK)∈I(k)

ℓ

d⊗
m=1

{
gim (xm) m ∈ J (k)

ℓ ,

Id
(
xjm
)

otherwise,
(68)

where Id(x) = 1. This is a sum of tensor products of single variable functions of each mode. Hence, the
separation rank of fk with respect to any Pk is upper bounded by the number of terms in the sum, which is

Kk|I(ℓ)
k |⩽ (

d− 1
K− 1

)N. Since the minimal ranks of the TT representation of fk are equal to the

corresponding separation ranks, we get that

rk ⩽ r= N

(
d− 1
K− 1

)
= NO

(
dK−1

)
. (69)
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The proof of 2. proceeds along similar lines. We write the total dynamical law f (x), which we think of in
terms of equation (30), as

f(x) =
∑
k′∈[d]

∑
ℓ∈[Kk′ ]

g̃k′,ℓ (x)⊗ ek′ , (70)

where ek′ ∈ Rd is the vector with one at the k′-th element and zeroes elsewhere. Here each g̃k′,ℓ represents a

function that depends non-trivially only on xi with i ∈ J (k ′)
ℓ and which has a separation rank at most N

with respect to any bipartition of [d], due to the assumption that f (x) is a dynamical law of a K-body
interacting system with separation rank N. Given a bipartition Pk = (P left,P right) = {{x1, . . . ,xk},
{xk+1, . . . ,xd}}, we can write

f(x) = Id1,k ⊗
∑
k′∈[d]

∑
ℓ∈[Kk′ ]:J

(k ′)
ℓ ⊂P right

k

g̃ ′k′,ℓ⊗ ek′ (71)

+
∑
k′∈[d]

∑
ℓ∈[Kk′ ]:J

(k ′)
ℓ ⊂P left

k

g̃ ′ ′k′,ℓ⊗ Idk+1,d ⊗ ek′ (72)

+
∑
k′∈[d]

∑
ℓ∈[Kk′ ]:J

(k ′)
ℓ ⊈P left,right

k

g̃k′,ℓ⊗ ek′ , (73)

where the Idk1,k2 is the one function of xk1 , . . . ,xk2 , and we abuse the subset notation in J (k ′)
ℓ ⊂ P left,right

k and

similar to indicate that xj ∈ P left,right
k for all j ∈ J (k ′)

ℓ . Furthermore, we denote by g ′k′,ℓ, g
′ ′
k′,ℓ the restriction of

gk′,ℓ onto the modes xk+1, . . . ,xd and x1, . . . ,xk respectively. Note that this is well defined since we always use
this notation in the cases where g depends trivially on the modes that we throw away.

Each term (71), (72), (73) is now written in such a way that we can read of a bound on its separation rank
with respect to Pk. The term (71) has separation rank with respect to Pk at most 1. The term (72) vanishes if
k ′ ⩾ k+ 1, since then the condition on the second sum cannot be satisfied. For each k ′ ⩽ k, the number of

terms in the sum, each of which has separation rank 1 with respect to Pk is upper bounded by

(
k− 1
K− 1

)
,

so the bound on the separation rank of equation (72) is k

(
k− 1
K− 1

)
. Finally, in the last term (73), we know

that each g̃k′,ℓ has separation rank with respect to any bipartition bounded by N. The number of ℓ ∈ [Kk′ ]

such that J (k ′)
ℓ satisfies the condition is

c2 (N,d,k) := N

[
d

(
d− 1
K− 1

)
− k

(
k− 1
K− 1

)
− (d− k)

(
d− k− 1
K− 1

)]
=O

(
NdK

)
.

(74)

Putting all the bounds together, we recover claim 2. of the theorem. □

Appendix D. Proof of theorem 1

Theorem 1 states that functions with fixed degree given by the degree map w admit a TT representation, such
that the left and right interface tensors satisfy the eigenvalue equations

ϕ>ℓL>ℓ = Λ>ℓϕ>ℓ, (75)

L<ℓ+1ϕ<ℓ+1 = ϕ<ℓ+1
(
λId−Λ>ℓ

)
. (76)

We have a TT ϕ with tensor cores {Ci}i∈[d], such that it can be written in tensor network notation as

Without loss of generality, we can assume that this TT is in left-canonical form, so that the tensor cores
satisfy equation (8), and that the ranks are minimal. If this is not the case, we can always find a gauge
transformation that puts the TT into this form. We also assume that ϕ is an eigenvector of L, such that

Lϕ = λϕ. (78)
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To prove the theorem, we will inductively gauge transform each tensor core, starting at Cd and proceeding
one-by-one towards C1, such that after transforming Cℓ, for all ℓ ′ ⩾ ℓ− 1 the right interface tensor satisfies

ϕ>ℓ
′
L>ℓ

′
= Λ>ℓ

′
ϕ>ℓ

′
. (79)

Finally, we will show that equation (76) follows from equation (75).
Base case. First, we will find an appropriate gauge transformation for Cd. We can write the eigenvalue

equation in the form

where the double line combines multiple indices into a single edge and Ω= diag(w(1), . . . ,w(d)). We can
now contract the first d− 1 physical indices with

(
ϕ<d

)∗
and use the assumption that the TT is written in

left-canonical form to obtain

which, rearranging, we can write in matrix notation as(
ϕ<d

)†
L<dϕ<dCd = Cd (λId−Ω) . (82)

Since
(
ϕ<d

)†
L<dϕ<d is Hermitian, there exists a unitary Ud and a diagonal matrix Λ<d with non-decreasing

diagonal entries, such that
(
ϕ<d

)†
L<dϕ<d = U†

dΛ
<dUd. Now we can write equation (82) as

Λ<dC̃d = C̃d (λId−Ω) , (83)

where C̃d = UdCd. Since Ud is a unitary, it defines a gauge transformation

Cd−1 7→ Ĉd−1 = Cd−1U
†
d−1 , Cd 7→ C̃d = Ud−1Cd, (84)

which leaves ϕ invariant and preserves its left-canonical form. Rewriting equation (83) as
C̃dΩ= (λId−Λ<d)C̃d and noticing that Ω= L>d−1 and C̃d = ϕ>d−1, we get

ϕ>d−1L>d−1 = Λ>d−1ϕ>d−1, (85)

where we defined Λ>d−1 = λId−Λ<d, which has non-increasing entries. This is equation (75) for ℓ= d− 1.
Induction step. Take ℓ ∈ {2, . . . ,d− 1} and assume that ϕ is in left canonical form with

ϕ>ℓ
′
L>ℓ

′
= Λ>ℓ

′
ϕ>ℓ

′
∀ℓ ′ ⩾ ℓ, (86)

where Λ>ℓ is a diagonal matrix with non-increasing entries. We can decompose the LHS of equation (78) to
get

Contracting the first ℓ− 1 physical indices with
(
ϕ<ℓ

)∗
, using the left-canonical gauge condition and

equation (86), when we fix the ℓth physical index to i, we obtain
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which we can rearrange and write in matrix notation as

(
ϕ<ℓ

)†
L<ℓϕ<ℓ (Cℓ)i = (Cℓ)i

[
(λ−w(i)) Id−Λ>ℓ

]
. (89)

Since
(
ϕ<ℓ

)†
L<ℓϕ<ℓ is Hermitian, there exists a unitary Uℓ and a diagonal matrix with non-decreasing

diagonal entries Λ<ℓ, such that
(
ϕ<ℓ

)†
L<ℓϕ<ℓ = U†

ℓΛ
<ℓUℓ. Hence, we can write equation (89) as

Λ<ℓ
(
C̃ℓ
)
i
=
(
C̃ℓ
)
i

[
(λ−w(i)) Id−Λ>ℓ

]
∀i ∈ [p] , (90)

with C̃ℓ = UℓCℓ. Furthermore, for all i ∈ [p]

where in the last equality we have used equation (90). After the gauge transformation Cℓ 7→ C̃ℓ,
Cℓ−1 7→ Cℓ−1U

†
ℓ , we can write equation (91) in matrix notation as

ϕ>ℓ−1L>ℓ−1 = Λ>ℓ−1ϕ>ℓ−1, (92)

where Λ>ℓ−1 = λId−Λ<ℓ has non-increasing entries. Hence, we are left with a left canonical tensor train,
such that the right interface vectors satisfy

ϕ>ℓ
′
L>ℓ

′
= Λ>ℓ

′
ϕ>ℓ

′
∀ℓ ′ ⩾ ℓ− 1. (93)

This is the inductive hypothesis for ℓ− 1.
Conclusion.We have found a gauge transformation that puts the tensor train into a form such that

equation (75) is satisfied. We will now show that this in fact implies equation (76). For any ℓ ∈ [d− 1] we can
write the eigenvalue equation as
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which, rearranging, can be written in matrix notation as

L<ℓ+1ϕ<ℓ+1ϕ>ℓ = ϕ<ℓ+1
(
λId−Λ>ℓ

)
ϕ>ℓ, (95)

which, since ϕ>ℓ has full row rank by the assumption of minimal ranks, implies

L<ℓ+1ϕ<ℓ+1 = ϕ<ℓ+1
(
λId−Λ>ℓ

)
, (96)

which is equation (15).
□

Appendix E. Conditions on low-rankness

We here connect the conditions on low rank TT approximate representations of multivariate functions
[BSU16] with entanglement conditions on low rank TT approximations of quantum states [SWVC08,
ECP10], known in this context as MPS.

Multivariate L2(Rd) functions can be naturally associated with ℓ2(Nd) sequences, where the ℓ2-norm is

defined by ‖u‖ℓ2 :=
√∑

i∈Nd u2i . Here, given a product basis Φi1,...,id(x1, . . . ,xd) = Ψi1(x1) . . .Ψid(xd), where

{Ψi}i∈N is an orthonormal basis of L2(R), a function

f(x1, . . . ,xd) =
∑

i1,...,id∈N
ui1,...,idΦi1,...,id (x1, . . . ,xd) ∈ L2

(
Rd
)

(97)

is associated with the sequence (ui)i∈Nd , in the sense that ‖f‖L2 = ‖u‖ℓ2 .
Let us introduce weak-ℓp-norms of sequences, defined for (an)n∈N by

|a|wℓp := sup
n∈N

n1/pãn, (98)

where (ã)n∈N is a non-increasing reordering of (|an|)n∈N. These norms satisfy

‖ · ‖ℓp′ ⩽ | · |wℓp ⩽ ‖ · ‖ℓp (99)

for p ′ < p.
Suppose a sequence (ui)i∈Nd ∈ ℓ2(Nd). For each η ∈ [d− 1] we define a linear operator

Mu
η : ℓ

2(Nd−η)→ ℓ2(Nη), which acts on (vi)i∈Nd−η as(
Mu

η (v)
)
j1,...,jη

=
∑

i1,...,id−η∈N
uj1,...,jη,i1,...,id−η

vi1,...,id−η
, (100)

which can be thought of as a matrification at the interface labeled η of the tensor corresponding to u. The
operatorMu

η has a finite Frobenius norm ‖Mu
η‖F = ‖u‖ℓ2 , so its singular values ση(u) ∈ ℓ2(N). Let us now

define the weak-ℓp∗-norm for multi-index sequences, which we define for u ∈ ℓp(Nd) (with d⩾ 2) by

‖u‖wℓp∗ := max
η∈[d−1]

|ση (u) |wℓp . (101)

By proposition 5.1 in [BSU16], the weak-ℓp∗-norm determines the approximability of functions by low
rank TTs. Suppose f ∈ L2(Rd), which is associated, through a given dictionary, with a sequence u ∈ ℓ2(Nd).
The Proposition states that, for 0< p< 2, there exists a sequence û ∈ ℓ2(Nd), associated to a function f̂, such
that

‖f − f̂‖2 = ‖u− û‖ℓ2 ⩽ C
√
d‖u‖wℓp∗

(
max
η∈[d−1]

rankη (û)

)−s

, (102)

where C> 0 is a constant, s := 1
p −

1
2 and rankη(û) counts the number of non-zero elements of ση(û). To see

the significance of this result, note that maxη∈[d−1] rankη(û) is equal to the TT rank of û, so through
equations (102) the weak-ℓp∗-norm puts limits on the existence of low rank TT approximations of f. We will
now show how this result relates to entanglement entropy scaling used in quantum physics as a condition on
low-rank MPS approximations of quantum states [SWVC08, ECP10].

Quantum states are normalized elements of a complex Hilbert spaceH (or more accurately rays inH)
associated to a given system. Many-body systems have a tensor product structure, whereH=

⊗
k∈[d]Lk,

where Lk is the local Hilbert space of a single constituent sub-system and d is the number of sub-systems.
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Suppose Lk = L for all k ∈ [d] and choose an orthonormal basis (ϕi)i for L. This allows us to represent
many-body quantum states by tensor networks, in an analogous way to how we use them to represent
multivariate functions, although for quantum states we need to allow the tensor networks to be complex.

Given a quantum state ψ, the corresponding density matrix ρ is defined as the rank-one projector onto
ψ. For each η ∈ [d− 1], we define the reduced density matrix ρη = trηρ, where trη denotes the partial trace
over all Lℓ with ℓ > η. The Rényi entropy for α ∈ [0,∞] is defined by the analytic continuation of

Sα (ρη) :=
log tr

(
ραη
)

1−α
. (103)

Suppose the singular value decomposition (SVD)Mψ
η = UΣV†, where U,V are isometries and

Σ= diag(ση(ψ)). Hence, we can write ρη = UΣ2U†, which shows that the eigenvalues of ρη are squares of
the singular values ση(ψ). Therefore, we have

tr
(
ραη
)
= ‖ση (ψ)‖2αℓ2α . (104)

In quantum many-body physics, we are interested in approximations (ψ̂d)d of families of states (ψd)d on
growing number d of sub-systems, that satisfy ‖ψd − ψ̂d‖2 ⩽ δ for all d. We call such approximations efficient
it the TT rank of ψ̂d scales at most polynomially with d. In [SWVC08] and [VC06] it is shown that efficient
approximations exist if, for some 0< α < 1, there exist c, c ′ > 0 such that for all η ∈ [d− 1] we have that
Sα(ρd,η) = c logd+ c ′, where ρd,η = trηρd and ρd is the density matrix corresponding to ψd. We will now
show that this follows from equation (102).

Equation (102) implies that polynomial bond dimension approximations are guaranteed to exist if

‖ψd‖wℓp∗ ⩽ δ√
d
(poly(d))s (105)

for some 0< p< 2. Using equation (99) and with α := p/2 we find a simpler sufficient condition

max
η∈[d−1]

‖ση (ψd)‖ℓ2α ⩽ δ√
d
(poly(d))s . (106)

Through equations (103) and (104), we can rewrite this condition, for 0< α < 1, as

max
η∈[d−1]

Sα (ρη,d)⩽
2α

1−α
log

δ√
d
(poly(d))s (107)

and hence there exist c, c ′ > 0, such that Sα(ρη,d)⩽ c logd+ c ′ for all η ∈ [d− 1], which is the result of
[SWVC08] and [VC06].
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