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A B S T R A C T   

Polycyclic aromatic hydrocarbons (PAH) are persistent environmental pollutants, which occasionally appear as 
contaminants in consumer products. Upon dermal contact, transfer of PAH into the stratum corneum (s.c.) and 
migration through the skin may occur, resulting in this class of highly toxic compounds to become bioavailable. 
In this study, dermal penetration through human and porcine skin of 24 PAH, comprising broad molar mass 
(M: 152–302 g/mol) and octanol-water partition coefficient (logP: 3.9–7.3) ranges, was evaluated via Franz 
diffusion cell in vitro assays. More lipophilic and potentially more toxic PAH had decreased permeation rates 
through the rather lipophilic s.c. into the more hydrophilic viable (epi-)dermis. Furthermore, human skin was 
less permeable than pigskin, a commonly used surrogate in skin penetration studies. In particular, the s.c. of 
human skin retains a greater share of PAH, an effect that is more pronounced for smaller PAH. Additionally, we 
compared the skin permeation kinetics of different PAH in pigskin. While small PAH (M < 230 g/mol, logP < 6) 
permeate the skin quickly and are detected in the receptor fluid after 2 h, large PAH (M > 252 g/mol, logP ≥ 6) 
do not fully permeate the skin up to 48 h. This indicates that highly lipophilic PAH do not become bioavailable as 
readily as their smaller congeners when transferred to the skin surface. Our data suggest that pigskin could be 
used as a surrogate for worst case scenario estimates of dermal PAH permeation through human skin.   

1. Introduction 

Polycyclic aromatic hydrocarbons (PAH) are associated with 
numerous health risks (Kamal et al., 2015). Many PAH are considered to 
be potentially carcinogenic (IARC, 2010, 2018; Kamal et al., 2015; Kim 
et al., 2013; Rocha et al., 2021; WHO, 2010), including the risk of 
inducing skin cancer after dermal exposure (Boffetta et al., 1997). For 
example, benzo[a]pyrene (B[a]P) is classified as a class 1 carcinogen, 
whereas certain dibenzopyrenes are suspected to be even more potent 
toxins (Collins et al., 1998). Apart from cancer, PAH are also linked to 
endocrine disruption (Zhang et al., 2016), heart disease (Burstyn et al., 

2005) and immunosuppression (van Grevenynghe et al., 2005), among 
other adverse effects (Sousa et al., 2022; WHO, 2010). Hence, multiple 
regulations have been implemented to limit the exposure to PAH (EC, 
2006; EC, 2013; EC, 2023; US-EPA, 2021). Nonetheless, as persistent 
organic pollutants, PAH are ubiquitous in the environment (Haney et al., 
2020; Hutzler et al., 2011; Lao et al. 2018a, 2018b; Whitehead et al., 
2011) and occasionally also found as contaminants in consumer prod-
ucts, in particular those containing carbon black or extender oils (Alawi 
et al., 2018; Bartsch et al., 2017; Folgado de Lucena et al., 2018). When 
PAH come into contact with skin, they can become bioavailable by 
diffusion through the stratum corneum (s.c.) into the viable epidermis 
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and dermis layers (Bartsch, 2018; Bartsch et al., 2016; Simon et al., 
2023b). 

Skin penetration is investigated either in vivo or in vitro. In vivo 
studies come with the drawback of exposing humans or animals to 
harmful substances and avoidable risks. Hence, in vitro studies involving 
the well-established Franz diffusion cell (FDC) assay remain an impor-
tant pillar of skin penetration research (Franz, 1975; Ng et al., 2010). 
The FDC provides a simple set-up where the target substance, usually 
embedded or dissolved in a matrix, is spiked onto skin or skin models. 
The receptor chamber beneath is filled with a water-based fluid to mimic 
the subcutaneous layers and to provide a reservoir for fully permeating 
substances. The distribution of the substance within the skin and its 
concentration in the receptor compartment after specified incubation 
times give insights into the skin permeability. 

The gold standard for FDC assays is human skin. However, human 
skin is not always readily available because it must be donated from 
plastic surgery patients (Bartsch et al., 2016; Hagvall et al., 2021) or 
corpses (Ellison et al., 2020, 2021). Synthetic or lab-grown skin models 
are alternatives that find increasing utilization in research (Lemoine 
et al., 2021; Ng et al., 2010), but are not yet recommended for skin 
permeation studies within a regulatory context (OECD, 2011). Pigskin is 
the most common alternative to human skin because it shares crucial 
properties with human skin. Thus, pigskin often provides comparable 
results for penetration-relevant parameters such as lag time and diffu-
sion or partition coefficients (Gerstel et al., 2016; Herkenne et al., 2006; 
Rothe et al., 2017; SCCS, 2010). In addition, its procurement is relatively 
easy (Hopf et al., 2020). Yet, differences between human and pigskin 
remain (Khiao In et al., 2019). Studies have shown that pigskin is more 
permeable for certain substances than human skin (Barbero and Frasch, 
2009; Rothe et al., 2017). A comprehensive comparison of the pene-
tration of PAH into human and pigskin has not yet been reported. 

It has been suggested that higher molecular mass (M) PAH (five or 
more rings: large PAH) feature lower penetration rates and fluxes 
through the skin than PAH with lower M (two to three rings: small PAH, 
Moody et al., 2011; Sartorelli et al. 1998, 1999, 2001). However, these 
studies either rely on small sample sizes (n ≤ 2), involved non-human 
skin or reported PAH concentrations only in the receptor fluid, thus 
lacking information about the distribution profiles within individual 
skin compartments. 

Here, we compiled the data of several FDC assays from a set of 24 
dermally applied PAH of various ring numbers (2.5–6, M = 152–302 g/ 
mol, Table A1 and Figure A1 in the Supporting Information (SI) A). 
Human and pigskin were incubated with PAH solutions in acetonitrile 
for 24 h. Pigskin was additionally incubated for various incubation times 
(2 h, 4 h, 16 h, 48 h), yielding insights into the migration kinetics. 
Subsequently, the five upper s.c. layers of treated skin samples were 
tape-stripped to analyze them separately from the remaining skin and 
the receptor fluid for their PAH content. Quantification was realized by 
gas chromatography coupled to tandem mass spectrometry (GC-MS/ 
MS). Finally, the distribution of PAH in the skin layers was correlated to 
their logarithmic octanol-water partition coefficients (logP). 

2. Methods 

The data presented here is a compilation of quality controls which 
were run in parallel to FDC assays aiming to investigate dermal PAH 
penetration from consumer products with foreseeable skin contact 
(Bartsch et al., 2016). The concentration of each PAH applied to the skin 
specimens in acetonitrile was set at 1000 ng/ml. The method used and 
the materials and chemicals applied were published in the former study. 
Below, the method is briefly summarized for clarity. 

2.1. Skin 

Human skin was obtained from plastic surgery at Charité, Berlin and 
originated from female abdomen. The proposal to conduct permeation 

studies with human skin samples was reviewed and approved by an 
independent ethics committee (Ethics Commission Charité, Berlin, No. 
EA2/090/14, July 22, 2014). Flank pigskin was obtained from VION 
food GmbH (Perleberg, Germany) and delivered on ice. The un-scalded 
skin was taken from deceased pigs that would have not been used for 
food production. Both skin types were stored at − 20 ◦C until use. 

2.2. Franz diffusion cell assay 

An FDC consists of a donor chamber for the application of a target 
substance in a matrix and a receptor chamber. The receptor chamber is 
filled with a liquid and jacketed by a water circulation system to keep 
the skin at a constant temperature. The skin or skin model is placed over 
the receptor chamber and fixed by the donor chamber cap with a clamp. 
Substances that reach the receptor fluid can be considered to become 
bioavailable. In the present study, the temperature of the receptor 
compartment was held at 33 ± 1 ◦C, which corresponds to average skin 
surface temperature of 32–35 ◦C (Lee et al., 2019). The receptor 
chamber was filled with an isotonic saline solution (9 g/l sodium chlo-
ride), which is considered to be a good approximation for hypodermal 
bodily fluids (Hoorn, 2017). 

The skin was cut with a dermatome to a thickness of 300 μm and 
placed atop the receptor chamber. The donor cap was fixed onto the 
skin, resulting in an exposure area of 1.76 cm2. The trans-epidermal 
water loss (TEWL) was measured to ensure skin integrity according to 
guideline 428 of the Organisation for Economic Co-operation and 
Development ( OECD, 2004). If the TEWL of a skin sample was greater 
than 30% of the mean TEWL for the specific skin type as previously 
confirmed by validation experiments, the skin specimen was eliminated 
from the study (Bartsch et al., 2016). 50 μl of a solution containing a 
mixture of PAH in acetonitrile (1000 ng/ml, see Table A1 of SI A for a list 
of all 24 PAH) were applied onto the skin (corresponding to a dermal 
dose of 28 ng/cm2) and incubated for the denoted time intervals (2–48 
h, Table 1). For negative controls, 50 μl of pure acetonitrile were 
applied. 

After the specified incubation times, all samples were spiked with 
internal standards (selected deuterated PAH, assignment of analytes to 
internal standards: Table A1 of SI A). The donor chamber was rinsed 
with saline solution (9 g/l sodium chloride), and the skin was removed 
from the assembly and stripped with five tape strips, which were then 
pooled. One tape strip was shown to remove one layer of the s.c. (Simon 
et al., 2023a), thus, the five upper s.c. layers were analyzed collectively. 
The tape strips were extracted using acetonitrile, which was re-extracted 
with n-hexane. This double extraction proved beneficial in minimizing 
matrix effects caused by the extraction of adhesive from the tape. The 
remaining skin was extracted using ethyl acetate and the receptor fluid 
was subjected to a solid phase extraction (reversed phase C18) followed 
by elution of the PAH with dichloromethane. All obtained extracts were 
then concentrated under a nitrogen stream, re-dissolved in acetonitrile 
and analyzed for their PAH content by GC-MS/MS. Further details on the 
measurement procedure are provided in a previous publication (Bartsch 
et al., 2016). This yielded PAH concentrations in three compartments: (i) 
upper s.c. (derived from five tape strips), (ii) remaining skin and (iii) 
receptor fluid. 

Table 1 
Number of replicates (n) of Franz diffusion cell assays performed per skin type 
and incubation time.  

Incubation time Origin of skin n 

2 h pig 3 
4 h pig 3 
16 h pig 3 
24 h pig 9 
24 h human 13 
48 h pig 3  
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2.3. Data analysis 

The data were analyzed using the statistical programming language 
R (version 4.2.2). Data were subjected to a Shapiro-Wilk normality test. 
If the data was not normally distributed, the data was tested for outliers 
using the Grubb’s outlier test. If the test was positive, the outlier was 
removed. The mean and standard deviation for each PAH, skin species, 
compartment and incubation time were calculated from the purged data 
set. The results of all statistical tests are summarized in the SI B (sheets 1 
and 2). Based on the amount of each PAH that penetrated into the skin 
(sum of all compartments, including the receptor fluid), the distribution 
ratio of the PAH in each compartment was calculated. 

Equation (1) was used to fit the data and highlight the relationship of 
two variables, y and x, with u and w as regression parameters: 

y = u⋅e− x + w. (1)  

3. Results and discussion 

We compared the migration of a broad range of PAH from acetoni-
trile into human skin and one of its most common surrogates in skin 
penetration studies, pigskin (SCCS, 2010; Simon and Maibach, 2000). 
Furthermore, PAH were incubated on pigskin for different periods to 
produce a kinetic profile for each of the investigated PAH. The smallest 
and least lipophilic PAH in this study are acenaphthylene (M = 152 
g/mol, logP = 4.0, Lu et al., 2008) and acenaphthene (M = 154 g/mol, 
logP = 3.9, Lu et al., 2008), the largest and most lipophilic PAH are the 
dibenzopyrenes (M = 302 g/mol, logP = 7.2–7.3, PubChem, 2023b, c, d, 
e; US-EPA, 2012). A comprehensive list of all 24 investigated PAH is 
provided in Table A1 and Figure A1 (SI A). For the investigated PAH, 
logP and M are linearly related (Figure A2 and equation (A.1), SI A). The 
data comprising the quantified mass, amount and ratio of each PAH at 
each incubation time for both species and all compartments are sum-
marized in Sheet 3 of SI B. 

The regulatory limit of the PAH content in consumer products with 
prolonged or repetitive short-term dermal contact is 1 mg/kg (0.5 mg/ 
kg for toys) in the European Union (EC, 2023). However, significantly 
higher values in the range of up to ca. 50–270 mg/kg were measured in 
certain consumer products in the past (Bartsch et al., 2017; BVL, 2017). 
When these products are in contact with skin, dermal exposure in the 
range of the spiked PAH doses applied in this study (28 ng/cm2) are 
expected (for example, after 24 h of skin contact, a hammer handle 
containing 166 mg/kg B[a]P released 102 ng/cm2 of this PAH, Bartsch 
et al., 2016). In different exposure scenarios, certain sub-populations 
such as firefighters can be dermally exposed to even higher amounts 
of airborne PAH (between 4 and 1200 ng/cm2, Sousa et al., 2022). 

Previous research has shown that high concentrations of multiple 
PAH as well as rather complex matrices as application media (Bourgart 
et al., 2019; Hopf et al., 2018) can both diminish dermal penetration 
rates of PAH. However, the applied doses in the present study were 
50-fold (Bourgart et al., 2019) and 5000-fold (Hopf et al., 2018) lower 
than in those studies and PAH were applied in solvent-based solutions, 
not in complex mixtures. Here, we investigated the relative distribution 
in the different skin compartments. Hence, in the following sections, we 
base our discussion on relative amounts normalized to the total amounts 
of each PAH that penetrated into the skin. This also allows for a better 
comparison between individual PAH in the different compartments. In 
addition, it compensates for the relatively high deviations that were 
occasionally observed in the recoveries for PAHs detected in the skin and 
receptor compartments compared to the amounts applied to the skin 
(Sheet 3 of SI B). 

3.1. Distribution of dermally applied polycyclic aromatic hydrocarbons in 
human and pigskin 

The more lipophilic the PAH, the more it is retained by the s.c. (see 
Fig. 1 for incubation time of 24 h; for other incubation times in pigskin, 
see Figure A.3, SI A). When skin migration of B[a]P and dibenzopyrenes 
was compared in a previous study, a similar effect was observed (Bartsch 
et al., 2016). Since logP and M of the investigated PAH are correlated 
linearly, these results can be equally interpreted for the molar mass. 
However, since hydrophilic substances exceeding M of the most massive 
PAH investigated in this study were shown to efficiently permeate the 
skin (Ellison et al., 2020, 2021; Potts and Guy, 1992), lipophilicity is 
presumably a more relevant factor. 

We recently demonstrated that partition coefficients characterizing 
the distribution of PAH between squalane and the s.c. are dependent on 
M and logP of the respective PAH (Simon et al., 2023b). Highly lipo-
philic PAH partition more readily from this lipophilic matrix (logP =
15.6, ACD/Labs, 2021) into the s.c. Therefore, a similar but more pro-
nounced trend is expected for acetonitrile (logP = − 0.3, PubChem, 
2023a), since more lipophilic compounds should partition more readily 
from this rather polar solvent into the hydrophobic s.c. Similarly, 
partition coefficients of a wide range of lipophilic (logP > 3) substances 
for aqueous matrices and the s.c. were shown to positively correlate with 
logP (Figure A.4 in SI A). Regarding PAH permeation into deeper skin 
layers, the influence of the application medium should be less relevant. 
However, during incubation, acetonitrile could have penetrated into the 
skin, selectively enhancing the permeation of smaller, less lipophilic 
PAH. 

Since the s.c. is a relatively lipophilic matrix (Raykar et al., 1988), 
more lipophilic PAH should also be retained more efficiently by the s.c. 

Fig. 1. Distribution ratio of polycyclic aromatic hydrocarbons in each compartment to total amount found in the skin (stratum corneum (s.c.), remaining skin) and 
receptor fluid after 24 h incubation time versus logarithmic octanol-water partition coefficient (logP). Means ± standard deviation. Curves represent data fitted to 
equation (1). a) Human skin (n = 13). b) Pigskin (n = 9). For other incubation times in pigskin (n = 3), see SI A, Figure A3. 
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at the s.c./viable epidermis boundary layer. This was confirmed exper-
imentally: after 24 h incubation time, PAH with lower logP permeate the 
entire viable (epi-)dermis and are detected predominantly in the re-
ceptor fluid of the FDC. This effect is stronger for pigskin than for human 
skin. Contrarily, large PAH do not permeate the skin completely within 
the investigated time frame and were not found in the receptor fluid. 
Alternative receptor solutions that include solubility enhancers such as, 
for example, albumin might better dissolve these highly lipophilic PAH. 
Nonetheless, only minor permeation was observed even at very high 
applied dermal doses in the range of 6 μg/cm2 when 50 mg/ml BSA were 
included in the receptor solution (Simon et al., 2023b). Since the rather 
aqueous layers of the viable epidermis and dermis are localized below 
the s.c., lipophilic substances would still have to overcome this barrier. 

The ratio of the amount of each PAH in the three compartments — 
upper s.c., remaining skin and receptor fluid — can be approximated by 
fitting equation (1) to the data (Fig. 1; parameters: SI B, Sheet 4). When 
plotted, these curves help visualize the dependence of individual dis-
tribution ratios on logP. Furthermore, they show that the distribution 
ratios of PAH in each compartment approach a limit at about logP = 6.0. 
The distribution does not further change for larger PAH, regardless of 
the biological species (pig or human). A possible explanation could be 
favored partitioning of more lipophilic PAH into the rather lipophilic s.c. 
as opposed to the more aqueous epidermis beneath. Another hypothesis 
is a difference in the interaction with skin proteins. If larger PAH have 
higher affinities to these proteins, they would also be retained stronger. 
In principle, further physico-chemical properties could also modulate 
the penetration process. For example, it was shown that the molecular 
volume correlates with the flux of PAH through the skin, although we 
found no statistically relevant differences in our data (Alalaiwe et al., 
2020). 

The fraction detected in the remaining skin does not change sub-
stantially with logP values for either human or pigskin. The applied tape 
stripping procedure involving five tape strips only removes the five 
upper s.c. layers from the remaining skin (Simon et al., 2023a), which 
thus contains a large part of the s.c. as well as the s.c./viable epidermis 
boundary layer. Hence, both small and medium PAH that penetrate into 
the viable epidermis as well as large PAH, that are predominantly 
retained in the s.c. are found in this compartment. 

3.2. Comparison of PAH permeation through human and pigskin 

Human skin retains small PAH more effectively than pigskin. This is 
reflected in the greater share of small PAH in the receptor fluid after an 
incubation time of 24 h in pigskin than in human skin (Fig. 1). The same 
is true for the amount residing in the remaining skin, which on average is 
lower for human skin. These results are in accordance with previous 
studies on lipophilic compounds. For example, a study on heptane, 
hexadecane and xylene (logP > 3) found higher permeability co-
efficients for these three substances in pigskin than in human skin (Singh 
et al., 2002). 

The regression curve (equation (1)), fitting the ratios of the relative 
amounts of PAH detected in human versus porcine s.c. as a function of 
logP asymptotically reaches a limit at 0.60 for highly lipophilic PAH 
(Fig. 2; values: Sheet 5, parameters of fit: Sheet 6 of SI B). Hence, for 
more lipophilic PAH, porcine s.c. better emulates human s.c. It was 
formerly demonstrated that lipids in the human s.c. are packed differ-
ently (orthorhombic lateral packing) and denser than in porcine s.c. 
(hexagonal lateral packing) even though the molar ratio of different 
lipids is approximately equal (Caussin et al., 2008). These more closely 
packed lipids could slow down the diffusion of smaller PAH in human s. 
c. Larger PAH, on the other hand, are retained more similarly by the s.c. 
of both species and the difference is less pronounced. We previously 
determined diffusion coefficients of PAH in porcine s.c., which were 
similar for PAH with logP > 4, while naphthalene (logP = 3.4) showed a 
significantly higher diffusion coefficient (Simon et al., 2023b). This 
might hint to a change of the diffusion mechanism above a given logP 

value and thus more closely related diffusion rates in human and porcine 
s.c. 

The anatomical site where the skin samples were obtained, however, 
does not seem to play a significant role in the composition of the s.c., as 
previous studies have shown (Khiao In et al., 2019). Furthermore, it has 
been reported that freezing does not significantly alter the penetration 
characteristics of human skin (Jacques-Jamin et al., 2017). Contrarily, 
pigskin was shown to be affected: freezing and storage at − 20 ◦C 
increased the permeability up to 25% compared to fresh skin of the 
lipophilic model substance methyl salicylate (Morin et al., 2023). This is 
supported by a direct comparison of rat, rabbit and pigskin revealing the 
latter to be especially vulnerable to freezing (Sintov and Greenberg, 
2014). Since we used frozen skin specimens, this effect could add to the 
observed higher permeation rates of PAH through pigskin compared to 
human skin. 

3.3. Skin penetration kinetics of polycyclic aromatic hydrocarbons 

In general, less lipophilic PAH permeate the skin faster than more 
lipophilic PAH. This is evident from the relatively high amounts of small 
PAH detected in the receptor compartment after incubation times of 
only 2 h, whereas large PAH are mostly retained by the upper s.c. up to 
48 h and do not permeate into the receptor fluid at all. For example, after 
2 h almost 60% of the amount of acenaphthene (a small, 2.5-ringed PAH, 
Fig. 3a) recovered from the skin and receptor compartments is detected 
in the receptor fluid and less than 20% remain in the upper s.c. 
Contrarily, after the same incubation time, dibenzo[a,l]pyrene (a large, 
6-ringed PAH, Fig. 3c) is recovered to more than 75% in the upper s.c. 
and levels out at about 70% after 4 h, whereas it was not detectable in 
the receptor fluid even after 48 h. Because no considerable change in the 
distribution pattern was detected over a period of more than 40 h, we 
suspect that large PAH would not fully permeate the skin even after 
extended incubation times. Of note, such long exposure times are less 
likely to reflect realistic exposure scenarios involving PAH transfer via 
dermal contact to consumer products. Nonetheless, PAH that accumu-
late in the s.c. but do not penetrate deeper in the investigated time frame 
could form a reservoir from where migration into the skin at later time 
points seems possible. The turnover of s.c. cell layers is about 14 days, 
which leaves up to two weeks for an accumulated compound to partition 
into the viable skin (Milstone, 2004). 

The kinetic analysis for medium PAH such as pyrene (Fig. 3b) 
revealed that after 2 h, only about 4% of the anmount of pyrene that 
penetrated into the skin reach the receptor fluid, nearly 70% are 
retained by the upper s.c. and 28% reside in the remaining skin. After 16 

Fig. 2. Ratio of the relative amount of polycyclic aromatic hydrocarbons (PAH) 
found in human stratum corneum (s.c.) to the amount found in porcine s.c. at 24 
h incubation time versus the logarithmic octanol-water partition coefficient 
(logP) of PAH. Means ± standard deviation. Curve represents data fitted to 
equation (1). Upper limit of fluorene standard deviation: 1.45. 
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h, however, 14% reach the receptor fluid and the rest is about evenly 
distributed between upper s.c. and the remaining skin. After 48 h, almost 
a quarter of the amount of pyrene migrates into the receptor fluid. Re-
sults for skin penetration kinetics of all other investigated PAH are 
presented in Figures A.5–A.7 (SI A) and show similar trends. 

4. Conclusion 

By means of in vitro FDC assays involving human and pigskin, we 
showed that skin penetration efficiency of a broad range of PAH depends 
largely on logP, and thus, also correlates with M. At incubation times 
resembling time frames realistic for dermal exposure to consumer 
products that may be contaminated with PAH, small and to a lesser 
extent also medium PAH were found to reach the receptor fluid rela-
tively fast (for example, within 2–4 h). For highly lipophilic PAH, on the 
other hand, the upper s.c. represents the most important barrier for 
permeation of PAH through the skin. These larger PAH do not partition 
significantly from the rather lipophilic s.c. into the more aqueous viable 
epidermis, and are retained effectively by the s.c. up to 48 h. This is 
supported by their recovery in the upper s.c. and the remaining skin, 
which contains a large fraction of the s.c. Since large PAH did not reach 
the receptor fluid in FDC assays, they would presumably not be trans-
ferred into systemic circulation in vivo, but eventually be removed over 
time by desquamation of the contaminated layers. On the other hand, 
formation of a reservoir in the s.c. and subsequent migration into the 
skin over a longer period cannot be ruled out. Furthermore, we showed 
that pigskin is more permeable for PAH than human skin, whereas this 
difference is more pronounced for small and less lipophilic PAH. 
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