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Flaviviruses can cause severe illness in humans. Effective and safe vaccines are available for some species; 
however, for many flaviviruses disease prevention or specific treatments remain unavailable. The viral repli-
cation cycle depends on the proteolytic activity of the NS2B-NS3 protease, which releases functional viral pro-
teins from a non-functional polyprotein precursor, rendering the protease a promising drug target. In this study, 
we characterised recombinant NS2B-NS3 proteases from ten flaviviruses including three unreported proteases 
from the Usutu, Kyasanur forest disease and Powassan viruses. All protease constructs comprise a covalent Gly4- 
Ser-Gly4 linker connecting the NS3 serine protease domain with its cofactor NS2B. We conducted a compre-
hensive cleavage site analysis revealing areas of high conversion. While all proteases were active in enzymatic 
assays, we noted a 1000-fold difference in catalytic efficiency across proteases from different flaviviruses. Two 
bicyclic peptide inhibitors displayed anti-pan-flaviviral protease activity with inhibition constants ranging from 
10 to 1000 nM.   

Flaviviruses are arthropod-borne single-stranded RNA viruses that 
can cause severe illness in humans (Pierson and Diamond, 2020). 
Prominent examples include the dengue, Zika and Yellow fever viruses. 
For some flaviviruses effective and safe vaccines protecting from dis-
eases like Yellow fever, Japanese encephalitis and tick-borne encepha-
litis are available and well established (Heinz and Stiasny, 2012; 
Ishikawa et al., 2014). Others, for example dengue (dengvaxia), face 
challenges like antibody-dependent enhancement of disease severity in 
areas of co-circulating viruses or serotypes (Halstead and Deen, 2002; 
Wilder-Smith et al., 2019). A next-generation dengue vaccine (TAK-003) 
raises hopes to overcome previous limitations, demonstrating efficacy 
and safety against serotypes 1 and 2 in dengue-naïve patients in phase III 
clinical trials (Biswal et al., 2019; Thomas, 2023; Tricou et al., 2024). 
Specific anti-flaviviral drugs are not approved to date, highlighting the 
importance of drug development campaigns (Pierson and Diamond, 
2020). 

Flaviviruses are composed of three structural and seven non- 
structural (NS) proteins. The viral replication cycle depends on the 
catalytic activity of NS2B-NS3, a viral protease which processes a non- 
functional polyprotein precursor into functional proteins. NS2B is 
anchored into the membrane of the endoplasmatic reticulum. It 

constitutes a hydrophilic loop, which extends into the cytoplasm where 
it interacts with the catalytically active serine protease domain of NS3 
(Fig. 1a/b) (Neufeldt et al., 2018). Structural and functional details of 
NS2B-NS3 have been reviewed previously (Barrows et al., 2018; Nitsche, 
2019). 

Most constructs used in biochemical assays and structure elucidation 
rely on the hydrophilic core motif of NS2B (Nitsche, 2019), excluding 
membrane associated regions and hence avoiding the need for artificial 
lipid membranes. While reports of these truncated constructs include 
variations with and without covalent linker between NS2B and NS3 (de 
la Cruz et al., 2014; Li et al., 2014; Phoo et al., 2016); a Gly4-Ser-Gly4 
linker between the C-terminus of NS2B and the N-terminus of NS3 is the 
most frequently used construct due its robustness with respect to E. coli 
expression, purification and overall stability (Lei et al., 2016; Leung 
et al., 2001; Li et al., 2005; Nall et al., 2004). 

In this study we set out to design, express and characterise a library 
of ten recombinant NS2B-NS3 proteases and assess the prospects for pan- 
flaviviral protease inhibitors. In order to cover a broad range of well- 
studied, neglected, mosquito- and tick-borne viruses, we selected Zika 
(ZIKV) (Voss and Nitsche, 2020), dengue (DENV) (Nitsche et al., 2014), 
West Nile (WNV) (Voss and Nitsche, 2021), Murray Valley encephalitis 

* Corresponding author. 
E-mail address: christoph.nitsche@anu.edu.au (C. Nitsche).  

Contents lists available at ScienceDirect 

Antiviral Research 

journal homepage: www.elsevier.com/locate/antiviral 

https://doi.org/10.1016/j.antiviral.2024.105878 
Received 31 December 2023; Received in revised form 29 February 2024; Accepted 31 March 2024   

mailto:christoph.nitsche@anu.edu.au
www.sciencedirect.com/science/journal/01663542
https://www.elsevier.com/locate/antiviral
https://doi.org/10.1016/j.antiviral.2024.105878
https://doi.org/10.1016/j.antiviral.2024.105878
https://doi.org/10.1016/j.antiviral.2024.105878
http://crossmark.crossref.org/dialog/?doi=10.1016/j.antiviral.2024.105878&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Antiviral Research 226 (2024) 105878

2

(MVEV) (Joy et al., 2010), Japanese encephalitis (JEV) (Junaid et al., 
2012), Usutu (USUV) (Cle et al., 2019), Yellow fever (YFV) (Kondo et al., 
2011), tick-borne encephalitis (TBEV) (Akaberi et al., 2021), Kyasanur 
forest disease (KFDV) (Holbrook, 2012), and Powassan (POWV) 
(Kemenesi and Banyai, 2019) viruses. 

Although individual flaviviruses may differ in their pathogenesis, we 
hypothesise that the underlying replication machinery, particularly the 
viral protease, is highly conserved. Thus, this study aims to characterise 
ten flavivirus proteases and explores the possibility of broad-spectrum 
protease inhibitors for flaviviruses. While many previous studies and 
drug discovery campaigns mainly focused on single viruses (often even 
limited to a single serotype, e.g., DENV serotype 2) or on a limited subset 
of prominent examples like dengue, Zika or West Nile viruses, this study 
follows a more comprehensive approach, taking the bigger picture into 
account. 

We first aligned full length NS2B and NS3 protein sequences of each 

virus with known constructs of ZIKV, DENV-2 and WNV proteases to 
identify regions of interest (Chen et al., 2014; de la Cruz et al., 2011, 
2014; Mahawaththa et al., 2017; Su et al., 2009a, 2009b). This align-
ment indicated that the hydrophilic core motif of NS2B corresponds to 
residues 45’/46′ to 96’/97’ of NS2B and residues 1 to 177 of the NS3 
protease domain (Fig. 1a, Fig. S1). We then selected the same regions for 
each virus to ensure a consistent construct architecture for direct com-
parison. In order to develop protein constructs that could later be used 
for X-ray crystallography, we decided to place a His6 affinity tag at the 
N-terminus followed by a TEV (tobacco etch virus) protease cleavage 
site. 

Next, we examined sequence similarities of the truncated NS2B and 
NS3 residues (Fig. 1c). The results suggest two major groups which align 
with reported phylograms (Kuno et al., 1998). The first group includes 
WNV, MVEV, JEV and USUV with similarity of 73–83%. All four are 
mosquito-borne and share the same clade. The second group comprises 

Fig. 1. Overview of flavivirus NS2B-NS3 proteases used in this study. (a) Model of NS2B-NS3 as part of the flaviviral polyprotein embedded into the membrane of the 
endoplasmic reticulum (ER). NS2B is shown in dark blue and NS3 is magenta. The hydrophilic loop of NS2B (residues 46′–97′(WNV)) and the protease domain of NS3 
residues 1–177 are highlighted. b) X-ray crystal structure of the West Nile virus protease NS2B-NS3 in absence of its co-crystalised ligand (PDB ID: 2YOL) (Hammamy 
et al., 2013). The figure was generated using USCF Chimera (Pettersen et al., 2004) c) Sequence similarity analysis of truncated NS2B (46′–97′) and NS3 (1–177). 
Sequence similarities in (%) were calculated using T-COFFEE (Di Tommaso et al., 2011). Values (%) are visualised as heatmap: blue =high sequence similarity; white 
=low sequence similarity. d) Analysis of polyprotein cleavage sites processed by NS2B-NS3. Residues covering P4–P4’ are shown. Full-length sequences from human 
isolates reported in the NCBI protein data bank were analysed (Brister et al., 2015). The consensus sequence for each cleavage site is shown. The overall consensus 
sequence over all cleavage sites was plotted using WebLogo (Crooks et al., 2004). 
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TBEV, KFDV and POWV with sequence similarities of 73–80%. These 
three tick-borne viruses, which also share a clade, align only to a lesser 
extend (35–41%) with the remaining proteases, indicating their distant 
origins. The proteases of ZIKV, DENV and YFV do not appear to clearly 
align with either of these clusters which agrees with phylogenetic 
studies in which neither one shares a clade with any other selected 
species. 

All proteases were expressed in E. coli BL21(DE3) and were purified 
from the soluble fraction of the cell lysate using Ni-NTA affinity chro-
matography. For most constructs, we observed high expression yields in 
E. coli ranging from 20 to 50 mg protein per litre cell culture (Table 1). 
While the ZIKV protease overexpressed exceptionally well (120 mg/l), 
USUV NS2B-NS3 showed an exceptionally low expression level (9 mg/l). 
Identity of all protease samples was confirmed by intact protein mass 
spectrometry (Figs. S2–S12). Analysis by SDS-PAGE revealed that the 
constructs for ZIKV, WNV, MVEV, USUV, YFV, TBEV and KFDV 

proteases yielded exclusively the expected covalently linked recombi-
nant protein (Fig. 2), whereas the proteases of JEV and POWV showed a 
tendency for autoproteolysis at the junction of NS2B and NS3 as 
confirmed by mass spectrometry (Figs. S6, S11, S12). In both cases, the 
resulting unlinked construct represents the dominant population. In 
contrast to these autocleavages at the junction of NS2B and NS3, mass 
spectrometry analysis also revealed autoproteolysis within the NS2B 
domain of DENV and the NS3 domain of POWV (Figs. S3, S11, S12). 

We analysed the conservation of substrate sequences across flavivi-
ruses to inform the generation of pan-flavivirus proteases inhibitors. We 
examined the peptide sequence covering P4 to P4’ residues (Schechter 
and Berger, 1967) of full-length human isolates (Fig. 1d). The data 
reveal full conversion of arginine in P1 across all ten proteases and a 
strong preference for a second basic residue (lysine/arginine) in P2 
(except for the NS4A/2K cleavage site). Based on the P2 preference for 
either lysine or arginine, three groups can be identified, which corre-
spond to our sequence similarity studies. The first group includes WNV, 
MVEV, JEV and USUV which all demonstrate a clear preference for 
lysine in P2. The second group shows a preference for arginine in P2 and 
is composed of TBEV, KFDV, POWV and, in contrast to our sequence 
similarity analysis, also YFV. The third group is comprised of ZIKV and 
DENV which tolerate both lysine and arginine in P2. In the prime site, 
only P1’ shows a noticeable preference for small residues like glycine or 
serine. The overall high conversion of the major recognition motif 
P2–P1’ across all examined sequences is remarkable and raises hopes 
that pan-flaviviral protease inhibitors can be generated. 

Based on our cleavage site analysis, we selected the established 
fluorescent substrates Boc-Gly-Lys-Arg-AMC and Bz-Nle-Lys-Arg-Arg- 
AMC (Nle, L-norleucine; AMC, 7-amino-4-methylcoumarin) for enzy-
matic assays (Steuer et al., 2009). We first examined proteolytic activ-
ities of all ten proteases using Boc-Gly-Lys-Arg-AMC. The tick-borne 
species TBEV, KFDV and POWV, which all indicated a preference for 
arginine in P2, displayed no measurable activity with this substrate (data 
not shown). These examples required the longer substrate 
Bz-Nle-Lys-Arg-Arg-AMC with arginine residues in P1 and P2 to display 
measurable proteolytic activity with KM values between 9 and 16 μM 
(Table 1). Michaelis-Menten constants (KM) for the other seven proteases 
ranged from 20 to 80 μM except for USUV (160 μM). Given significant 
differences in observed turnover numbers, the overall catalytic effi-
ciencies among flavivirus proteases differ by three orders of magnitude, 
with ZIKV protease demonstrating highest fidelity as previously 
described (Lei et al., 2016). At the other end of the spectrum is the 
protease of USUV, which showed a 1000-fold lower catalytic efficiency 

Table 1 
Experimental parameters of NS2B-NS3 constructs linked by a G4SG4 linker.  

Flavivirus Yield (mg/l)[a] Tm (◦C)[b] kcat (s− 1)[c] KM (μM)[d] kcat/KM (M− 1 s− 1)[e] Ki (μM)[f] 

BPTI[g] Cpd. 1 Cpd. 2 

ZIKV 123 53.0 0.630 [h] 19.1[h] 33,000 [h] 0.017 [h] 0.009 [h] 0.026 [h] 

DENV 45.0 55.1 0.016 [h] 81.9 [h] 197 [h] 0.063 [h] 0.424 [h] 1.066 [h] 

WNV 52.7 52.6 0.562 [h] 59.8 [h] 9,390 [h] 0.065 [h] 0.100 [h] 0.050 [h] 

MVEV 42.2 51.8 0.353 [h] 76.1 [h] 4,562 [h] 1.055 [h] 0.061[h] 0.170 [h] 

JEV 21.2 48.9 0.051 [h] 25.3 [h] 2,012 [h] 0.245 [h] 0.087 [h] 0.093 [h] 

USUV 9.1 44.4 0.005 [h] 160 [h] 33.8 [h] 0.195 [h] 0.084 [h] 0.260 [h] 

YFV 47.6 46.0 0.005 [h] 36.1 [h] 125 [h] 0.067 [h] 0.227 [h] 0.209 [h] 

TBEV 23.8 46.7 0.002 [i] 8.9 [i] 191 [i] 0.033 [i] 0.106 [i] 0.132 [i] 

KFDV 31.2 45.7 0.001 [i] 16.2 [i] 24.7 [i] 0.171 [i] 0.164 [i] 0.283 [i] 

POWV 35.8 49.9 0.006 [i] 10.9 [i] 550 [i] 0.186 [i] 0.233 [i] 0.252 [i]  

a Expression yields are based on single experiments from 1 litre cell culture. 
b Denaturation midpoint determined by differential scanning fluorimetry. 
c Turnover number. 
d Michaelis-Menten constant. 
e Catalytic efficiency. 
f Inhibition constant. 
g Estimated inhibition constants of bovine pancreatic trypsin inhibitor (BPTI) calculated from IC50 values using the Cheng-Prusoff equation. 
h Boc-Gly-Lys-Arg-AMC was used as substrate. 
i Bz-Nle-Lys-Arg-Arg-AMC was used as substrate. 

Fig. 2. SDS-PAGE of recombinant covalently linked N2SB-NS3 proteases. The 
asterisk (*) indicates the autoproteolytic cleavage product of DENV NS3 
(Fig. S3). The hash (#) indicates truncated NS3 cleavage product of POWV 
following autoproteolysis. The caret (^) indicates elongated autoproteolytic 
cleavage product of NS2B (including the G4SG4 linker and residues 1–16 of 
NS3) of POWV (Fig. S11). 
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than ZIKV for the identical substrate and with similar cleavage prefer-
ence (Tables S3 and S4, Figs. S26–30). 

Our final objective was to demonstrate pan-flaviviral protease inhi-
bition. We used two inhibitors, 1 and 2, available in our laboratory 
which were previously discovered as ZIKV and WNV NS2B-NS3 in-
hibitors (Voss et al., 2022, 2023). Both compounds are bicyclic peptides 
that utilise the binding of bismuth(III) to three cysteines in a peptide 
chain to constrain its structure. This chemical modification can result in 
remarkable potencies likely related to the reduced entropic penalty 
associated with preorganisation. Polybasic substrate analogues are 
known inhibitors of several NS2B-NS3 proteases (Boldescu et al., 2017). 
Hence, compounds 1 and 2 contained different polybasic sequences 
(including arginine, lysine and ornithine) that were hypothesised to fit 
well into the substrate binding pockets (Fig. 3). We determined inhibi-
tion constants (Ki) of 1 and 2 (assuming competitive inhibition models) 
for all ten proteases by recording Michaelis-Menten kinetics at different 
inhibitor and substrate concentrations (Tables S5-S8, Figs. S31-S40). 
Compound 1 inhibited all proteases with sub-micromolar inhibition 
constants ranging from 0.01 to 0.4 μM (Table 1). Compound 2 showed 
slightly higher inhibition constants between 0.03 and 1.1 μM. 

Additionally, we measured half-maximal inhibitory concentrations 
of the bovine pancreatic trypsin inhibitor (BPTI; aprotinin), known as a 
potent inhibitor of NS2B-NS3 and other serine proteases (Chen et al., 
2014). The estimated inhibition constants, calculated based on the 
Cheng-Prusoff equation (Cheng and Prusoff, 1973), are within the same 
order of magnitude as previously reported inhibition constants for 
dengue (0.026 μM), Zika (0.076 μM) and West Nile (0.016 μM) viruses 
NS2B-NS3 (Mueller et al., 2007; Phoo et al., 2016). The data suggest that 
BPTI is a potent inhibitor of all tested proteases (Ki = 0.02–0.25 μM), 
except for MVEV (Ki ~ 1.1 μM), which is a remarkable observation given 
the broad activity of BPTI across serine proteases (Tables S9 and S10, 
Figs. S41–S45). 

All inhibition data are summarised in Table 1. Interestingly, com-
pounds 1 and 2 as well as BPTI displayed strongest inhibition against 
ZIKV protease, which is also the most active flavivirus protease reported. 
Overall, there appears to be a loose relationship between KM values of 
substrates and Ki values of inhibitors (Table 1), indicating substrate-like 
binding. While these results establish the groundwork for the develop-
ment of pan-flaviviral protease inhibitors, certain limitations are 
inherent in the exact quantification of inhibition constants through the 
measurement of Michaelis-Menten kinetics at various inhibitor con-
centrations (Figs. S31–S40). In certain instances, the lowest inhibitor 
concentration approaches or falls below the enzyme concentration, for 
which tight binding kinetics might apply (Morrison, 1969). 

In conclusion, we report three new recombinant NS2B-NS3 protease 
constructs of Usutu, Kyasanur forest disease and Powassan viruses. 
Alongside these three recombinant proteases, we expressed seven 
additional proteases based on an identical linked construct architecture, 
making this the most comprehensive direct comparison of NS2B-NS3 

proteases reported. We further conducted a comprehensive cleavage 
site analysis which assisted in the selection of suitable substrates for 
enzymatic assays. We showed that all constructs yielded proteolytically 
active proteins and report their kinetic parameters. Finally, we explored 
the avenue of pan-flaviviral protease inhibition by demonstrating that 
highly basic substrate-based peptides can display nanomolar activity 
against most flavivirus proteases. 

Our findings may contribute to the development of protease in-
hibitors against Usutu, Kyasanur forest disease and Powassan viruses. 
The comprehensive collection of NS2B-NS3 proteases from various fla-
viviruses may also assist in the development of pan-flavivirus protease 
inhibitors, which seem within reach. The rational approach described 
herein, which capitalised on two decades of intensive research into 
flavivirus proteases, may also allow for the rapid development of re-
combinant NS2B-NS3 variants against emerging flaviviruses for future 
screening campaigns. 
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