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A B S T R A C T   

Renewable and sustainable energies are vital for the near future. Hydrogen, as a clean energy carrier, is a po-
tential candidate for supplying energy in the foreseeable future. Nowadays, hydrogen storage technology has 
become a significant issue in the energy sector. In this study, ZnCo2O4/ZnO and MgCo2O4/MgO nanocomposites 
have been synthesized using the sol-gel method with stearic acid as a complexing agent. Different analyses were 
studied to examine the crystal structure, morphology, and physical properties of the as-prepared samples, 
including X-ray diffraction (XRD), Fourier transforms infrared (FT-IR), field emission scanning electron micro-
scopy (FESEM), diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). Various 
methods have been utilized for hydrogen storage technology. In a pioneering approach, the electrochemical 
hydrogen storage of samples was compared by the chronopotentiometry technique in KOH (4 M) electrolyte 
solution. The results reveal that ZnCo2O4/ZnO and MgCo2O4/MgO nanocomposites exhibit excellent discharge 
capacities of 4240 and 3529 mAh/g, respectively, after 11 cycles.   

1. Introduction 

The daily activities of human life, such as industrial, transportation, 
and residential activities, are carried out using energy. From the lighting 
of residential buildings to the production of products in factories, all 
need energy [1]. These energy sources, including oil, natural gas, and 
coal, are running out soon due to their excessive consumption [2]. It is 
necessary to find alternative energy sources to meet daily needs. 
Therefore, the use of renewable energy, such as hydrogen was proposed 
[3]. It is the most abundant element in nature, the simplest. Hydrogen 
can be the energy carrier due to having the highest gravimetric energy 
density, eco-friendly, non-toxic, and has the highest calorific value 
among all chemical fuels in the future [4]. Hydrogen, as a renewable 
energy resource, will play a crucial role in sustainable and clean energy 
systems [5]. Furthermore, it has zero carbon emissions because when 
hydrogen burns in the air, it produces only water vapor. Hydrogen is 
superior to other fuels, such as diesel (45%) or gasoline (22%), due to its 
higher efficiency (60%) and its natural compatibility with fuel cells [6, 
7]. Researchers have become interested in using hydrogen as a major 
fuel in the future, so it must be stored safely, low-costly, efficiently, and 
reversibly. Hydrogen storage systems require a wide range of 

infrastructure. Hydrogen can be stored in three different phases 
including gas, solid, and liquid, using various methods, such as liquefied 
hydrogen in cryogenic tanks (1), cryo-compressed storage (2), com-
pressed gas (3), and solid-state storage (4) [8]. The methods mentioned 
above (1–3) are not cost-effective due to high costs, safety problems, 
very low temperatures, and very high pressure. However, the solid-state 
storage method is superior to the other method mentioned because it 
does not require high pressure or low temperatures, is safe, 
cost-effective, and does not need large tanks. In this method, hydrogen 
can be adsorbed or absorbed onto solid materials through chemisorption 
or physisorption modes. Additionally, hydrogen molecules migrate in-
side the lattice of the solid material and physically enter the tiniest and 
deepest pores [9–11]. So far, several types of compounds have been 
utilized to store hydrogen, for example, complex hydrides, nano-
materials (nanoparticles, nanocomposites, nanofibers, and nanotubes), 
polymer nanocomposites, metal-organic frameworks (MOF), and metal 
hydrides [12–20]. Research on nanomaterials, specifically nano-
composites, has been gaining attention such as transition metal oxides 
containing Zinc and cobalt, for hydrogen storage materials due to their 
structural stabilities, surface area-to-volume ratios, and small size for 
absorbing/releasing hydrogen molecules. Previous studies have 
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reported that nanocomposites such as Zn3Mo2O9/ZnO and Co3O4–CeO2 
have been utilized for hydrogen storage applications because of their 
suitable discharge capacity abilities [21–23]. Recent studies on the 
physio-chemical properties of ZnCo2O4/ZnO and MgCo2O4/MgO nano-
composites have shown that these materials exhibit a good cycling 
lifetime, excellent ion diffusivity, and high specific capacitance [24,25]. 
These characteristics, make them potentially suitable for use as an 
electrochemical hydrogen storage material. The leading novelty of this 
work was the synthesis of ZnCo2O4/ZnO and MgCo2O4/MgO nano-
composites using the gel stearic acid method as an application material 
for hydrogen storage by a simple method and cost-effective. This study 
aimed to evaluate the impact of nanocomposites in the hydrogen storage 
process. Therefore, the ability of solid-state composites to absorb and 
store hydrogen atoms at moderate temperatures and pressure can 
significantly contribute to the development of hydrogen storage tech-
nologies. The measurement and evaluation of hydrogen storage capacity 
in mixed metal oxides powder using electrochemical methods present 
several challenges that must be addressed to ensure the reliability and 
accuracy of results. One limitation lies in the sensitivity of electro-
chemical techniques, which may struggle to detect subtle changes in 
hydrogen uptake, particularly at low concentrations. Additionally, var-
iations in the homogeneity of the mixed metal oxides powder can 
introduce inconsistencies in measurements, impacting the reproduc-
ibility of results. Electrode stability over repeated cycles and the kinetics 
of hydrogen adsorption and desorption processes further complicate 
accurate evaluation. Temperature and pressure dependencies, alongside 
the lack of standardized procedures for measurement, pose additional 
hurdles in achieving reliable data across different experimental setups 
and laboratories. Surface effects, such as the adsorption of contami-
nants, also require careful consideration to ensure the integrity of 
measurements. Addressing these limitations is essential for advancing 
our understanding of hydrogen storage materials and facilitating their 
practical applications in various energy storage and conversion tech-
nologies. However, to the best of our knowledge, there have been no 
reports on nanocomposites cobalt ZnCo2O4/ZnO and MgCo2O4/MgO for 
hydrogen storage. 

Nowadays, nanocomposite metal oxides are a significant research 
topic due to their superior physicochemical properties, crystal structure, 
catalytic abilities, and optical properties than other materials [26]. 
These materials have extensive applications in various fields, such as 
medical sciences, energy storage, solar cells, and H2 sensors [27,28]. 
Among many synthesized cobalt-containing nanocomposites, 
ZnCo2O4/ZnO and MgCo2O4/MgO nanocomposites have attracted wide 

attention due to their low cost, abundance, reversible capacity, 
non-toxicity, and facile synthesis [29,30]. So far, several synthesis ap-
proaches, including co-precipitation [31,32], and sol-gel [33,34] have 
been introduced for the preparation of ZnCo2O4/ZnO and 
MgCo2O4/MgO nanocomposites. In many studies of recent years, 
cobalt-containing nanocomposites have been used for various applica-
tions like photocatalysis [35], supercapacitors [36], and lithium-air 
batteries [37]. 

In this study, ZnCo2O4/ZnO and MgCo2O4/MgO nanocomposites 
have been synthesized by a sol-gel method, using stearic acid as a 
complexing agent. The crystal structure, morphology, and physical 
properties of the samples were studied using XRD, FT-IR, FESEM, DRS, 
and VSM analyses. As a novel approach, the electrochemical hydrogen 
storage performance of the samples was measured and investigated 
using chronopotentiometry (CP) analysis. 

2. Experimental 

2.1. Materials and physical measurements 

All chemical materials including zinc acetate (Zn(OAc)2.2H2O), 
magnesium acetate (Mg(OAc)2.4H2O), cobalt acetate (Co(OAc)2.4H2O), 
and stearic acid were purchased from Merck. X-ray diffraction (XRD) 
patterns of ZnCo2O4/ZnO and MgCo2O4/MgO nanocomposites were 
studied by a Philips-X’Pert Pro, X-ray diffractometer using Cu Kα radi-
ation. The FTIR spectrum of the samples was recorded with a Shimadzu 
Varian 4300 spectrophotometer by a KBr pellet technique. The FESEM 
was employed to study morphology and particle size distribution 
(FESEM, Mira Tescan 3). A vibrating sample magnetometer was used to 
measure the magnetic properties of the samples (Meghnatis Daghigh 
Kavir Co. Kashan, Iran). Ultra-violet-DRS between 220 and 720 nm was 
employed to study the energy band gap of the compounds (Shimadzu 
UV/3101 PC). The electrochemical properties of the samples were 
determined using GC-2550TG (Teif Gostar Faraz Company, Iran). 

2.2. Synthesis of ZnCo2O4/ZnO and MgCo2O4/MgO nanocomposites 

ZnCo2O4/ZnO nanocomposite was synthesized by the sol-gel 
method, using Zn2+, Co2+ (cation sources), and stearic acid 
(C16H18O2) as a complexing agent. First, 6 mmol C16H18O2 melted in a 
beaker at 75 ◦C. Then, 1 mmol zinc acetate and 2 mmol cobalt acetate 
were dissolved in distilled water. The solutions containing metallic ions 
(Zn2+, Co2+) were added to stearic acid and stirred at 70 ◦C to form a 

Scheme. 1. Schematic process of the obtained ZnCo2O4/ZnO and MgCo2O4/MgO nanocomposites by sol-gel method at 600 ◦C for 3 h.  
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viscous gel. After cooling the gel at room temperature for 4 h, it was 
heated in an oven at 90 ◦C for 12 h to dry. During the drying process of 
the gel, a homogeneous sol is formed due to the metal cations diffusion 
from the aqueous phase to the organic phase. Finally, the dried gel was 
calcined at 600 ◦C for 3 h to get ZnCo2O4/ZnO nanocomposites. All the 
above steps were repeated for the synthesis of MgCo2O4/MgO nano-
composites (Mg2+: Co2+, 1:2 mmol ratio). Scheme 1 shows a schematic 
of this procedure. 

2.3. Electrochemical studies 

The electrochemical hydrogen storage capacities of the ZnCo2O4/ 
ZnO and MgCo2O4/MgO nanocomposites was determined using the 
chronopotentiometry method. A three-electrode cell was employed 
consisting of a reference electrode (Ag/AgCl), a working electrode (a 
coated copper sheet), and a counter electrode (platinum). The solution 
electrolyte (4 M KOH) was prepared by dissolving KOH in deionized 
water. The constant current (±1 mA) was applied between the working 
and Pt electrodes, and the potential difference was measured between 
the working and Ag/AgCl electrodes. The working electrode was made 
by depositing a thin layer of the as-synthesized samples on the copper 
sheet (1 × 1 cm2). ZnCo2O4/ZnO and MgCo2O4/MgO nanocomposites 
were dispersed in ethanol for 20 min. A copper plate was coated with a 
thin layer of the samples and dried in an electric oven at 80 ◦C for 25 
min. 

3. Results and discussion 

3.1. XRD analysis 

Fig. 1 shows the X-ray diffraction patterns of ZnCo2O4/ZnO (a) and 
MgCo2O4/MgO (b) nanocomposites (b) synthesized using the sol-gel 
procedure. The XRD diffraction analysis revealed that the ZnCo2O4/ 
ZnO (JCPDS, 00-023-1390 relating to Zinc cobaltite) and MgCo2O4/ 
MgO (JCPDS, 00-002-1073 relating to Magnesium cobaltite) nano-
composites have a cubic crystal structure (group Fd-3m) with lattice 
parameters of a = b = c = 8.1080 and 8.1230 Å, respectively. Addi-
tionally, the peak index (major diffractograms) of both samples a and b 
was observed at 2θ = 37.27◦ (222) and 36.75◦ (311), respectively. 
Elemental analysis reveals the presence of partial amorphous cobalt 
oxide (Co3O4) as the third constituent in every nanocomposite. The 
average crystallite size of samples was obtained by the Scherrer formula 
(Eq. 1) [38]. 

D=
0.9λ

βCosθ
(1)  

Where, D is the average crystallite size, λ is the wavelength, β is the 
FWHM value, and θ is the Bragg angle. The average crystallite size of 

ZnCo2O4/ZnO and MgCo2O4/MgO nanocomposites was obtained to be 
12 and 26 nm by the Debye-Scherrer formula, respectively. 

3.2. FT-IR analysis 

Fig. 2 depicts the infrared spectrum of ZnCo2O4/ZnO (a) and 
MgCo2O4/MgO (b) nanocomposites via the sol-gel method. As shown in 
Fig. 2, the metal-oxygen bands in both compositions are observed at 
lower wave numbers than 1000 cm− 1. In Fig. 2 (a), two sharp bands at 
575-671 cm− 1 can be related to the Co3+-O2- and Zn2+-O2- (metal-oxy-
gen) bonds [39]. In Fig. 2 (b), the absorption bands at 580-670 cm− 1 can 
be attributed to the vibration modes of the metal-oxygen-metal bonds, 
Mg–O and Co–O [31]. The absorption bands in the range of 1620–1640 
cm− 1 and 3430–3440 cm− 1 in both compositions suggest the stretching 
vibration of the O–H group [40]. 

3.3. FESEM images 

The surface morphology of ZnCo2O4/ZnO (a) and MgCo2O4/MgO (b) 
nanocomposites produced by the sol-gel method at 600 ◦C is shown in 
Fig. 3(a–d). The morphological results showed distinct differences in 
distribution, shape, and particle size. The ZnCo2O4/ZnO (a) and 
MgCo2O4/MgO (b) nanocomposites are sphere-like and cubic-shaped, 
respectively. Additionally, the FESEM images of the samples were 
investigated using ImageJ software. The histogram of the samples is 
depicted in Fig. 3(c–d). The average particle size of ZnCo2O4/ZnO (c) 
and MgCo2O4/MgO (d) nanocomposites were obtained to be 32 and 77 
nm, respectively. 

3.4. VSM studies 

The magnetic properties of ZnCo2O4/ZnO (a) and MgCo2O4/MgO (b) 
nanocomposites produced by the sol-gel methods are shown in Fig. 4 
(a–b). The hysteresis loops in both compositions confirm the ferro-
magnetic properties [39,41]. The obtained parameters by using M − H 
curves like saturation magnetization (Ms), remanence magnetization 
(Mr), and coercivity (Hc) for both samples are as follows, which show 
the ferromagnetic properties: ZnCo2O4/ZnO parameters are Ms. = 0.25 
emu/g, Mr. = 0.031 emu/g and Hc = − 200 Oe. 

MgCo2O4/MgO are Ms. = 0.54 emu/g, Mr. = 0.025 emu/g and Hc =
− 100 Oe. 

3.5. UV-DRS study 

The optical properties of ZnCo2O4/ZnO (a) and MgCo2O4/MgO (b) 
nanocomposites synthesized using sol-gel are shown in Fig. 5(a–b). A 
strong absorption in the visible region is observed at a wavelength of 
about 340 nm in both samples, which indicates the optical band gap 

Fig. 1. XRD patterns of (a) ZnCo2O4/ZnO (b) MgCo2O4/MgO nanocomposites.  
Fig. 2. FTIR spectra of (a) ZnCo2O4/ZnO (b) MgCo2O4/MgO nanocomposites.  
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attributed to the O2− (2p) → Co3+ (3d) charge-transfer interaction. The 
optical band gap has been estimated using Tuac’s equations (Eq. 2) [2]. 

(αhʋ)n
= k (hν − Eg

)
(2)  

Where α is the absorption coefficient, k is the energy-independent con-
stant, n is the nature of transmission, h is the absorption energy, and Eg is 

the optical band gap. Therefore, the optical band gap for the absorption 
peak can be obtained by extrapolating the linear portion of the (α hʋ)n- 
hʋ curve to zero. The band gap energy of ZnCo2O4/ZnO and MgCo2O4/ 
MgO nanocomposites was obtained to be 2.6 and 2.4 (eV), respectively. 

3.6. Electrochemical properties 

Fig. 6 displays the discharge capacity curve of the copper sheet 
without the. 

ZnCo2O4/ZnO and MgCo2O4/MgO nanocomposites, which is 
approximately 3 mAhg− 1. 

Fig. 7 Depicts the electrochemical discharge capacities of (a) 
ZnCo2O4/ZnO and (b) MgCo2O4/MgO electrodes. The discharge ca-
pacity of both electrodes is shown in two separate curves over 11 cycles. 
When a thin layer of the samples is coated onto the copper sheet, the 
discharge capacity of the electrodes increases. The electrolyte solution 
was prepared by dissolving KOH in deionized water [42]. During the 
charging process, hydrogen undergoes adsorption onto the sample sur-
faces through reductive electron transfer. The accumulation and in-
crease of hydrogen on the surface of the samples leads to the migration 
of adsorbed H atoms into the interior of the ZnCo2O4/ZnO and 
MnCo2O4/MgO lattice (working electrode) [43]. The electrochemical 
reactions of the charging process are displayed in equations (3) and (4). 

H2O+ e− ⇄ H + OH− (3) 

Fig. 3. FESEM images of (a) ZnCo2O4/ZnO,(b) MgCo2O4/MgO nanocomposites, and particle size distribution(c-d).  

Fig. 4. VSM curves of ZnCo2O4/ZnO (a) and MgCo2O4/MgO (b) 
nanocomposites. 
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Samples+ xH2O+ x e− ⇄ (samples -Hads) + x O H− (4) 

The discharging process happens in the opposite way of the charging 
procedure, H atoms again convert to water in an alkaline medium (4 M 
KOH) by generating an electron (Eq. (4)). The significant enhancement 
in discharge capacity can be related to various factors such as structure, 
morphology, particle size, and the formation of novel sites for hydrogen 
desorption/absorption on the surface of the working electrode [14,44]. 
Also, the physisorption mechanisms for electrochemical hydrogen 
storage are described, based on the Heyrovsky (Eq. (6)) process and the 
Tafel reaction (Eqs. (7) and (8)) [23]. 

samples-Hads +H2O + e− ⇄ samples + H2 + O H− (6)  

samples-Hads + samples -Hads ⇄ 2 samples + H2 (7)  

H + H ⇄H2 (8) 

As shown in Fig. 8, the discharge capacity of ZnCo2O4/ZnO and 
MgCo2O4/MgO nanocomposite enhanced from 1641 to 4240 mAhg− 1 

(maximum discharge) and 1468 to 3529 mAhg− 1 after 11 cycles, 
respectively. The surface morphology, higher conductivity, enhanced 
cycle performance, smaller particle size, and superior ion diffusion 
properties of the ZnCo2O4/ZnO nanocomposite, compared to the 
MgCo2O4/MgO nanocomposite, can lead to a higher discharge capacity 
[24]. The amount of hydrogen storage in the discharge cycles can be 
obtained by the following equation (9) [2].  

Storage Capacity (SC) = td × I / m.                                                (9) 

Fig. 5. UV–vis absorption spectrum and the optical energy band gap of (a) 
ZnCo2O4/ZnO (b) MgCo2O4/MgO nanocomposites. 

Fig. 6. Diagram of discharge capacity of the blank copper sheet.  

Fig. 7. The discharge curves of (a) Cu–ZnCo2O4/ZnO and (b) Cu–MnCo2O4/ 
MgO electrodes at the current (±1 mA). 

Fig. 8. Cycling performance of (a) ZnCo2O4/ZnO (b) MgCo2O4/MgO electrodes 
at a current of 1 mA. 
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where, td, I, and m are discharge time (hours), charge/discharge current 
(mA), and active mass (g), respectively. Generating a double-layer 
charging process and Faradaic reaction is more than the equilibrium 
potential, hence, hydrogen can be absorbed/stored [45]. 

The results show that the ZnCo2O4/ZnO and MgCo2O4/MgO nano-
composites can be suitable and promising materials for electrochemical 
hydrogen storage. Table 1 shows the difference in discharge capacity of 
the as-synthesized nanocomposites with the previously reported 
materials. 

Fig. 9 displays the charging capacity of the ZnCo2O4/ZnO (a) and 
MgCo2O4/MgO (b) nanocomposite electrodes. According to Fig. 9, by 
increasing the number of charging cycles, the charging capacity of the 
electrodes (charging time) has also increased significantly. 

4. Conclusions 

In this work, ZnCo2O4/ZnO and MgCo2O4/MgO nanocomposites 
were synthesized using the sol-gel method through stearic acid as a 
complexing agent. The lattice structures of the as-synthesized nano-
composites were identified from XRD patterns. The FTIR results 
confirmed the formation of metal-oxygen and metal-metal bonds in the 
samples. The average particle size of ZnCo2O4/ZnO and MgCo2O4/MgO 
nanocomposites 32 and 77 nm were observed in microscopic analysis, 
respectively. The VSM studies showed the ferromagnetic properties of 
the samples. The combination of ferromagnetic behavior and high 
hydrogen storage capacity in the nanocomposites can lead to the 
development of efficient hydrogen storage materials for hydrogen fuel 
cell vehicles and portable power applications. These materials could 
enable compact and lightweight hydrogen storage systems with 
enhanced storage capacity and faster hydrogen uptake/release kinetics. 
The UV-DRS analysis revealed that ZnCo2O4/ZnO and MgCo2O4/MgO 
nanocomposites exhibit semiconductor properties, and their band gap 
energy was estimated to be 2.6 and 2.4 eV, respectively. This band gap 
energy range is suitable for applications in photovoltaics or photo-
catalysis. The chronopotentiometry results revealed that the samples 
have excellent discharge capacity. In particular, the ZnCo2O4/ZnO 
nanocomposite (4240 mAh/g) demonstrated a higher hydrogen storage 
capacity than the MgCo2O4/MgO nanocomposites (3529 mAh/g). The 
ability of the samples to efficiently adsorb and store hydrogen at mod-
erate temperatures and pressures could contribute to the development of 
more efficient and practical hydrogen storage technologies. Therefore, it 
can be concluded that ZnCo2O4/ZnO and MgCo2O4/MgO nano-
composites may be potentially applied for electrochemical hydrogen 
storage. 
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