
telephones were still decades away, but 
the computer was taking shape on Bab-
bage’s drawing board.

Babbage (1791–1871) developed 
detailed blueprints for the AE and 
sketched 26 programming examples 
between 1836 and 1841. The Science 
Museum in London has digitized the 
Babbage Archives so that today we can 
inspect existing diagrams of the AE 
(with first drafts from 1835 on) and the 
26 programming examples from the 
comfort of a home computer. In a 2021 
paper titled "The Computer Programs 
of Charles Babbage," I discuss the archi-
tecture of the AE and review some of its 
programs.5

The design of the AE consisted of a 
processor for the four arithmetic opera-
tions, called the “mill,” and a separate 
memory for decimal integers, called 
the “store” (Babbage once considered 
building the AE to be able to store hun-
dreds of variables with 40 digits).2 This 
separation of processor and memory is 
typical of today’s computers. However, 
the program was not stored in memo-
ry, but encoded on punched cards that 
were read one at a time. One stream of 
cards was used by the processor, while 
a separate stream was used for the 
memory (for the addresses of the ar-
guments). In this article, I sometimes 
refer to the “mill” as the processor and 
the “store” as the memory of the ma-
chine. When Babbage talks about the 
contents of memory cells, he calls them 
“variables.” The address of a variable is 
its subindex. For example, the memory 
cell with address 3 would be ​​v​ 3​​​. The AE 
performed all calculations using fixed-
point arithmetic. The number of digits 

T H I S A R T ICL E I S  a description of Charles Babbage’s 
first computer program, which he sketched out almost 
200 years ago, in 1837. The Analytical Engine (AE), the 
computer for which the program was intended, did 
not actually exist; sadly, it was to remain unfinished. 
Only some portions of Babbage's calculating 
machine were built during the lifetime of the English 
mathematician and inventor. Had it been completed, 
it would have been the world’s first computer.1,3 Of 
course, many algorithms had already been described 
before Babbage—for computing the greatest common 
divisor (GCD), for example—but Babbage’s code is the 
first attempt to specify how to mechanize complex 
algorithms with a computer. This was the heyday of 
the first industrial revolution, the age of steam engines 
and mechanization. Electricity, light bulbs, and 
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specify how to mechanize complex algorithms 
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 key insights
	˽ The Analytical Engine (AE) would have 

been the first computer, had it been 
finished.

	˽ The AE had a processor (“mill”) and a 
separate memory (“store”).

	˽ The AE could compute the basic arithmetic 
operations and was programmed using 
strings of punched cards.

	˽ Charles Babbage wrote the first computer 
program in 1837.
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to the right of the decimal point could 
be chosen by the programmer.

For example, when the operation 
punched card was read to calculate an 
addition, the mill would go into the “ad-
dition” state, while the variable cards 
would instruct the store to retrieve the 
contents of the addresses of the two 
needed arguments and send them to 
the mill. Since the processor waits for 
its arguments and the store waits for the 
result, this automatically synchronizes 
the operation and the variable cards.

Reading a variable was a destruc-
tive operation; it reset the variable to 
zero. However, it was possible to store 
the complement of this variable in an-
other memory address while sending it 
to the mill. Re-reading this complement 
and transferring it back to the origi-
nal memory address (complementing 
again) restored this address to its origi-
nal contents.

The First Code Table
The program we are discussing was 
written by Babbage in 1837. The title of 
the sketch is “Notations and Calcula-
tions,” and the first line reads “No. 1. 4 
August 1837.” This was the first of the 
series of programs that Babbage decid-

ed to carefully sketch out, and we even 
have the date of the program. The Bab-
bage Archive lists this program as “BAB 
L1”. There is a small program for com-
puting a simple formula in the archive, 
but it is undated and unnumbered (BAB 
L26). The Babbage Archive dates this 
code fragment to August 1837, without 
further information. There is also a 
sketch of how to assign coefficients of 
a linear equation to memory addresses, 
but no code. The date of this fragment is 
given as 1836.

The program in BAB L1 deals with 
the solution of a system of two linear 
equations in two variables. It is easy to 
find a closed formula for the result. Bab-
bage considered the two linear equa-
tions

​ax + by + c  =  0​
​a′x + b′y + c′= 0.​

We have six parameters, the six coef-
ficients ​a, b, c, a′, b′, c′​, in the two equa-
tions. The solution for ​x​ is

​x  = ​  b​c ′ ​ − ​b ′ ​c _ 
​b ′ ​a − b​a ′ ​ ​.​

Given ​x​, the solution for ​y​ is

​​y  = ​ (​​ − ax − c​)​​ / b​​

In the first expression, we assume 

that the denominator ​b′a − ba′​ is non-
zero, while in the second we assume 
that ​b​ is non-zero, so that the solutions 
exist. Babbage did not check these two 
conditions in his program.

First, Babbage assigns the six coef-
ficients ​a, b, c, a′, b′, c′​, to the six vari-
ables ​​v​ 1​​​ to ​​v​ 6​​​ in the AE’s memory. He 
then computes successively the inter-
mediate results ​b′a, ​b ′ ​c, b​a ′ ​, b​c ′ ​, b​c ′ ​ − ​b ′ ​
c,b′a − ba′​, and finally the quotient for 
finding ​x​. The complete computation 
for ​x​ requires four multiplications, 
two subtractions, and a final division. 
That is a grand total of five “big” and 
two “small” operations (as Babbage 
called them).

Babbage drew up two complete ta-
bles for the calculation. Table  1 shows 
the code and the order of the seven op-
erations required. The second column 
shows the operation and the third col-
umn is a comment for each calculation. 
The program ends when the value of ​x​ 
is found.

The six memory addresses ​​v​ 1​​, ... , ​
v​ 6​​​ contain, at the beginning, the coef-
ficients of the six terms ​ax, by, c, ​a ′ ​x, ​b ′ ​
y, ​c ′ ​​. In the first multiplication, the pro-
cessor uses the variables ​​v​ 1​​​ and ​​v​ 5​​​ for 
computing ​​b ′ ​a​. The table shows that 
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Table 2. The seven arithmetic operations 
and their description, line by line.

after the first operation, both variables 
are reduced to zero and the result ​​b ′ ​a​ is 
stored in ​​v​ 7​​​. The last column is a com-
ment about the operation which has 
been performed, that is, ​​v​ 7​​  = ​ v​ 5​​ · ​v​ 1​​​.

The second multiplication computes ​​
b ′ ​c​ and stores it in ​​v​ 1​​​. Symbolically, the 
computation is ​​v​ 1​ ′ ​  = ​ v​ 5​​ · ​v​ 3​​​. The quote 
means that the original content of ​​v​ 1​​​ 
has been overwritten once. However, 
there is a problem.

Variable ​​v​ 5​​​ was read destructively for 
the multiplication in the first line. The 
arithmetic operations need two argu-
ments, in this case for the multiplica-
tion. Babbage designed the AE so that 
an argument could be reused repeat-
edly. Since the first two computed terms 
are ​​b ′ ​a​ and ​​b ′ ​c​, the first argument ​​b ′ ​​ can 
be kept in the processor. After the mul-
tiplication with ​a​, we only need to load 
argument ​c​ to the processor. This way 
of reusing an argument in the proces-
sor is not described in BAB L1, but it is 
something that Babbage exploited in 
other programs. In BAB L1, Babbage ex-
plicitly mentions that ​​b ′ ​​ is reused for a 
multiplication table with ​​b ′ ​​.

The two columns of comments, 
displayed side by side, tell the whole 

Table 1. Computation of x.

story for this computation (Table  2). 
In a sense, this is the program that 
Babbage has in mind, but what the 
punched cards contain are the specific 
operations and the addresses needed. 
As can be seen from the code, Babbage 
reuses memory addresses, and each 
time a memory address is overwritten 
he adds a quote to the variable’s name. 
Variables 1 and 3 are reused (overwrit-
ten) twice in the program, so that their 
names become ​​v​ 1​ ′′​​ and ​​v​ 3​ ′′​​.

In other programs written after this 
first one, Babbage simplified. Later, he 
did not always keep track of variable re-
use (with the quotes), since it does not 
affect the computation. Also, he did not 
always add symbolic comments to the 
tables, writing only the necessary arith-
metic operation and the addresses used.

The Second Code Table
Babbage wrote the second part of the 
computation in the same document 
(L26 in the Babbage archive). Having 
found ​x​ with the first seven lines of the 
program, we can now compute ​y​ using 
the value of ​x​. The computation for ​x​ is 
the same as before, but ​y​ is then com-
puted as ​​y  = ​ (​​ − c − ax​)​​ / b​​, since the first 
linear equation is ​ax + by + c  =  0​. The 
program is shown below.

There is something new in rows 1, 2, 
and 3 (See Table 3). Now, Babbage has 
made explicit that the coefficients ​a, b, c​ 
need to be refreshed, storing their com-
plements ​Ca, Cb, Cc​ in auxiliary vari-
ables. The complement of ​a​ is stored in ​​
v​ 8​​​, the complement of ​c​ in ​​v​ 5​​​, and the 
complement of ​b​ in ​​v​ 9​​​. We need ​a​, ​b​, and ​
c​ for the computation of ​y​.

What Babbage intended to do with 
the AE was to store the value of a vari-
able, that was still needed, in another 

Computation Code

1 ​​b ′ ​a​ ​​v​ 7​​  =  ​v​ 5​​ · ​v​ 1​​​

2 ​​b ′ ​c​ ​​v​ 1​ ′ ​  =  ​v​ 5​​ · ​v​ 3​​​

3 ​b​a ′ ​​ ​​v​ 3​ ′ ​  =  ​v​ 2​​ · ​v​ 4​​​

4 ​b​c ′ ​​ ​​v​ 2​ ′ ​  =  ​v​ 2​​ · ​v​ 6​​​

5 ​b​c ′ ​ − ​b ′ ​c​ ​​v​ 4​ ′ ​  =  ​v​ 2​ ′ ​ − ​v​ 1​ ′ ​​

6 ​​b ′ ​a − b​a ′ ​​ ​​v​ 1​ 
′′​  =  ​v​ 7​​ − ​v​ 3​ ′ ​​

7 ​​ b​c ′ ​ − ​b ′ ​c _ ​b ′ ​a − b​a ′ ​​​ ​​v​ 3​ 
′′​  =  ​ 

​v​ 4​ ′ ​
 _ ​v​ 1​ 

′′​​​

auxiliary variable when it was sent to 
the processor. Since the AE used gears 
(think of a clock face with the digits 0 
to 9), storing a number was performed 
by turning the gear counterclockwise, 
for example, and retrieving the con-
tents was accomplished by turning it 
in the opposite direction until the vari-
able was reduced to zero. For example, 
suppose we stored the number '3' by 
turning a gear counterclockwise three 
positions (out of 10 possible positions, 
one for each decimal digit). When the 
number is read, the gear turns back 
three positions, clockwise. Starting 
from zero, a receiving auxiliary gear will 
be rotated clockwise to position 7 (the 
decimal complement of 3). Therefore, 
the auxiliary variable will not store the 
original decimal number, but its com-
plement, for each digit of the number. 
If we had the number 345 in ​​v​ 5​​​, and its 
complement was saved temporarily in ​​
v​ 8​​​, we would have 765 in the variable ​​
v​ 8​. Reading back from ​​v​ 8​​​ to ​​v​ 5​​​, we would 
complement the number again, digit 
by digit, and ​​v​ 5​​​ would be restored to the 
original 345.

In the program, the stored comple-
ments are transferred back (comple-
menting again) to the variables ​​v​ 1​​​, ​​v​ 2​​​, 
and ​​v​ 3​​​ in the auxiliary steps 8, 9, and 10. 
The value of ​y​ is computed in steps 11, 
12, 13, and the program finally stops. 
There is a mistake in the table in line 7: 
Babbage writes “=x” in the column for 
variable 4, which is correct, but also in 
the column for variable 7, which is in-
correct.

In other programs, written after this 
one, Babbage overlapped the storing of 
the complement of a variable, with its 
subsequent reading and complement-
ing in a single program step. That is, the 

Mill Store

Numbers of Nature of  in variables ​ + ax​ ​+ by​ ​+ c​ ​+ ​a ′ ​x​ ​+ ​b ′ ​y​ ​+ ​c ′ ​​

Operations operations variables in store ​​v​ 1​​​ ​​v​ 2​​​ ​​v​ 3​​​ ​​v​ 4​​​ ​​v​ 5​​​ ​​v​ 6​​​ ​​v​ 7​​​

1 ​×​ ​​b ′ ​a​ 0 0 ​​b ′ ​a​ ​​v​ 7​​  = ​ v​ 5​​ · ​v​ 1​​​

2 ​×​ ​​b ′ ​c​ ​​b ′ ​c​ 0 ​​v​ 1​ ′ ​  = ​ v​ 5​​ · ​v​ 3​​​

3 ​×​ ​b​a ′ ​​ 0 ​b​a ′ ​​ 0 ​​v​ 3​ ′ ​  = ​ v​ 2​​ · ​v​ 4​​​

4 ​×​ ​b​c ′ ​​ ​b​c ′ ​​ 0 ​​v​ 2​ ′ ​  = ​ v​ 2​​ · ​v​ 6​​​ 

5 ​−​ ​b​c ′ ​ − ​b ′ ​c​ 0 0 ​b​c ′ ​ − ​b ′ ​c​ ​​v​ 4​ ′ ​  = ​ v​ 2​ ′ ​ − ​v​ 1​ ′ ​​

6 ​−​ ​​b ′ ​a − b​a ′ ​​ ​​b ′ ​a − b​a ′ ​​ 0 0 ​​v​ 1​ 
′′​  = ​ v​ 7​​ − ​v​ 3​ ′ ​​

7​*​ ​÷​ ​​ b​c ′ ​ − ​b ′ ​c _ ​b ′ ​a − b​a ′ ​​​ 0 ​= x​ 0 ​x  = ​ v​ 3​ 
′′​  = ​ 

​v​ 4​ ′ ​
 _ ​v​ 1​ 

′′​​​
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Table 4. Final set of arithmetic operations 
for computing x and y and their descrip-
tion, line by line.

Table 3. Computation of x and y.

Computation Code

1 ​​b ′ ​a​ ​​v​ 7​​  = ​ v​ 5​​ · ​v​ 1​​​

2 ​​b ′ ​c​ ​​v​ 1​ ′ ​  = ​ v​ 5​​ · ​v​ 3​​​

3 ​b​a ′ ​​ ​​v​ 3​ ′ ​  = ​ v​ 2​​ · ​v​ 4​​​

4 ​b​c ′ ​​ ​​v​ 2​ ′ ​  = ​ v​ 2​​ · ​v​ 6​​​

5 ​b​c ′ ​ − ​b ′ ​c​ ​​v​ 6​ ′ ​  = ​ v​ 2​ ′ ​ − ​v​ 1​ ′ ​​

6 ​​b ′ ​a − b​a ′ ​​ ​​v​ 2​ 
′′​  = ​ v​ 7​​ − ​v​ 3​ ′ ​​

7* ​​​​ b​c ′ ​ − ​b ′ ​c _ ​b ′ ​a − b​a ′ ​​​ ​​v​ 4​ ′ ​  = ​ 
​v​ 6​ ′ ​ _ ​v​ 2​ 

′′​​​

8 ​​v​ 1​ 
′′​  = ​ v​ 1​​  =  a​

9 ​​v​ 2​ 
′′′​  = ​ v​ 2​​  =  b​

10 ​​v​ 3​ 
′′​  = ​ v​ 3​​  =  c​

11 ​ax​ ​​v​ 5​ 
′′​  = ​ v​ 1​ 

′′​ · ​v​ 4​ ′ ​​

12 ​− c − ax​ ​​v​ 1​ 
′′′​  =  − ​v​ 3​ 

′′​ − ​v​ 5​ 
′′​​

13​*​ ​​− c − ax _ b  ​​ ​​v​ 5​ 
′′′​  = ​

​v​ 1​ 
′′′​
 _ ​v​ 2​ 

′′′​ ​​

Mill Store

Numbers of Nature of in variables ​+ ax​ ​+ by​ ​+ c​ ​+ ​a ′ ​x​ ​+ ​b ′ ​y​ ​+ ​c ′ ​​

Operations operations variables in store ​​v​ 1​​​ ​​v​ 2​​​ ​​v​ 3​​​ ​​v​ 4​​​ ​​v​ 5​​​ ​​v​ 6​​​ ​​v​ 7​​​ ​​v​ 8​​​ ​​v​ 9​​​

1 ​×​ ​​b ′ ​a​ 0 0 ​​b ′ ​a​ ​Ca​ ​​v​ 7​​  =  ​v​ 5​​ · ​v​ 1​​​

2 ​×​ ​​b ′ ​c​ ​​b ′ ​c​ 0 ​Cc​ ​​v​ 1​ ′ ​  =  ​v​ 5​​ · ​v​ 3​​​

3 ​×​ ​b​a ′ ​​ 0 ​b​a ′ ​​ 0 ​Cb​ ​​v​ 3​ ′ ​  =  ​v​ 2​​ · ​v​ 4​​​

4 ​×​ ​b​c ′ ​​ ​b​c ′ ​​ 0 ​​v​ 2​ ′ ​  =  ​v​ 2​​ · ​v​ 6​​​

5 ​−​ ​b​c ′ ​ − ​b ′ ​c​ 0 0 ​b​c ′ ​ − ​b ′ ​c​ ​​v​ 6​ ′ ​  =  ​v​ 2​ ′ ​ − ​v​ 1​ ′ ​​

6 ​−​ ​​b ′ ​a − b​a ′ ​​ ​​b ′ ​a − b​a ′ ​​ 0 0 ​​v​ 2​ 
′′​  =  ​v​ 7​​ − ​v​ 3​ ′ ​​

7​*​ ​÷​ ​​ b​c ′ ​ − ​b ′ ​c
 

_____ ​b ′ ​a − b​a ′ ​​​ 0 ​= x​ 0 ​= x​ ​x  =  ​v​ 4​ ′ ​  =  ​ 
​v​ 6​ ′ ​ _ ​v​ 2​ 

′′​​​

8 ​a​ 0 ​​v​ 1​ 
′′​  =  ​v​ 1​​  =  a​ 

9 ​b​ 0 ​​v​ 2​ 
′′′​  =  ​v​ 2​​  =  b​

10 ​c​ 0 ​​v​ 3​ 
′′​  =  ​v​ 3​​  =  c​

11 ​×​ ​ax​ 0 0 ​ax​ ​​v​ 5​ 
′′​  =  ​v​ 1​ 

′′​ · ​v​ 4​ ′ ​​

12 ​−​ ​− c − ax​ ​− c − ax​ 0 0 ​​v​ 1​ 
′′′​  =  − ​v​ 3​ 

′′​ − ​v​ 5​ 
′′​​

13​*​ ​÷​ ​​− c − ax _ b  ​​ 0 0 ​= y​ ​y  =  ​v​ 5​ 
′′′​  =  ​

​v​ 1​ 
′′′​
 _ ​v​ 2​ 

′′′​ ​​

Symbolically, the complete program 
written by Babbage would read as Ta-
ble 4 shows. In steps 8, 9, and 10, there is 
no operation in the processor and only 
the memory is active, transferring num-
bers to recover the parameters ​a, b, c​ 
from their complements.

Conclusion
Solving systems of linear equations is 
very useful in many areas of mathemat-
ics and engineering. It is natural that 
Babbage decided to use this as a kind 
of benchmark problem for the AE. It is 
known that Chinese mathematicians 
could solve linear systems of up to three 
variables and equations more than 
2,000 years ago.

In his code sketches, Babbage did 
not write high-level code and then 
compile the program. The annotations 
in his program are more like com-
ments and the actual code would be 
the strings of punched cards for the 
processor and the memory. In later 
programs, Babbage did not include a 
symbolic comment about the computa-
tions being performed. Babbage wrote 
his programs by listing the required op-
erations and the required arguments. 
Both things immediately translate to 
the necessary punched cards. In mod-
ern parlance, Babbage wrote his pro-
grams in “assembler.” Also, since the 
operation cards are separate from the 
variable cards, they can synchronize in 
diverse ways, as explained in my paper.5 

store would send a number to the mill, 
store it temporarily as a complement, 
and when the result of the computa-
tion was returned by the processor, the 
stored variable could be refreshed. It is 
not quite clear whether the refresh hap-
pened while the processor was busy or 
after it had delivered its result to mem-
ory. The notation used by Babbage to 
indicate that a variable containing the 
value ​a​, for example, kept its value, was ​
0 / a​, indicating that the variable was re-
duced to zero and later restored, with-
out necessarily indicating the auxiliary 
address used.

These complications are not present in 
the program discussed in this article. 
The AE was never finished, so the code 
shown here could never be run. It could 
only be tested following its execution 
on paper. The design of the AE was very 
ambitious, including also the possibil-
ity of programming loops. Babbage 
changed the design several times, and 
this was one of the problems that made 
it very difficult to finish the machine.3

It is important to point out, although 
it is obvious, that the first sketch ever 
written of a computer program is not 
one of those published in Menabrea.4 
That publication appeared six years af-
ter Babbage had already sketched his 
program “number one” for solving si-
multaneous linear equations and other 
25 coding examples. 
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