
telephones were still decades away, but
the computer was taking shape on Bab-
bage’s drawing board.

Babbage (1791–1871) developed
detailed blueprints for the AE and
sketched 26 programming examples
between 1836 and 1841. The Science
Museum in London has digitized the
Babbage Archives so that today we can
inspect existing diagrams of the AE
(with first drafts from 1835 on) and the
26 programming examples from the
comfort of a home computer. In a 2021
paper titled "The Computer Programs
of Charles Babbage," I discuss the archi-
tecture of the AE and review some of its
programs.5

The design of the AE consisted of a
processor for the four arithmetic opera-
tions, called the “mill,” and a separate
memory for decimal integers, called
the “store” (Babbage once considered
building the AE to be able to store hun-
dreds of variables with 40 digits).2 This
separation of processor and memory is
typical of today’s computers. However,
the program was not stored in memo-
ry, but encoded on punched cards that
were read one at a time. One stream of
cards was used by the processor, while
a separate stream was used for the
memory (for the addresses of the ar-
guments). In this article, I sometimes
refer to the “mill” as the processor and
the “store” as the memory of the ma-
chine. When Babbage talks about the
contents of memory cells, he calls them
“variables.” The address of a variable is
its subindex. For example, the memory
cell with address 3 would be v 3 . The AE
performed all calculations using fixed-
point arithmetic. The number of digits

T H I S A R T ICL E I S a description of Charles Babbage’s
first computer program, which he sketched out almost
200 years ago, in 1837. The Analytical Engine (AE), the
computer for which the program was intended, did
not actually exist; sadly, it was to remain unfinished.
Only some portions of Babbage's calculating
machine were built during the lifetime of the English
mathematician and inventor. Had it been completed,
it would have been the world’s first computer.1,3 Of
course, many algorithms had already been described
before Babbage—for computing the greatest common
divisor (GCD), for example—but Babbage’s code is the
first attempt to specify how to mechanize complex
algorithms with a computer. This was the heyday of
the first industrial revolution, the age of steam engines
and mechanization. Electricity, light bulbs, and

The First
Computer
Program

DOI:10.1145/3624731

Mathematician and inventor Charles Babbage’s
code sketches are the first attempt to
specify how to mechanize complex algorithms
with a computer.

BY RAÚL ROJAS

78 COMMUNICATIONS OF THE ACM | JUNE 2024 | VOL. 67 | NO. 6

research and advances

 key insights
 ˽ The Analytical Engine (AE) would have

been the first computer, had it been
finished.

 ˽ The AE had a processor (“mill”) and a
separate memory (“store”).

 ˽ The AE could compute the basic arithmetic
operations and was programmed using
strings of punched cards.

 ˽ Charles Babbage wrote the first computer
program in 1837.

https://dx.doi.org/10.1145/3624731
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624731&domain=pdf&date_stamp=2024-05-23

to the right of the decimal point could
be chosen by the programmer.

For example, when the operation
punched card was read to calculate an
addition, the mill would go into the “ad-
dition” state, while the variable cards
would instruct the store to retrieve the
contents of the addresses of the two
needed arguments and send them to
the mill. Since the processor waits for
its arguments and the store waits for the
result, this automatically synchronizes
the operation and the variable cards.

Reading a variable was a destruc-
tive operation; it reset the variable to
zero. However, it was possible to store
the complement of this variable in an-
other memory address while sending it
to the mill. Re-reading this complement
and transferring it back to the origi-
nal memory address (complementing
again) restored this address to its origi-
nal contents.

The First Code Table
The program we are discussing was
written by Babbage in 1837. The title of
the sketch is “Notations and Calcula-
tions,” and the first line reads “No. 1. 4
August 1837.” This was the first of the
series of programs that Babbage decid-

ed to carefully sketch out, and we even
have the date of the program. The Bab-
bage Archive lists this program as “BAB
L1”. There is a small program for com-
puting a simple formula in the archive,
but it is undated and unnumbered (BAB
L26). The Babbage Archive dates this
code fragment to August 1837, without
further information. There is also a
sketch of how to assign coefficients of
a linear equation to memory addresses,
but no code. The date of this fragment is
given as 1836.

The program in BAB L1 deals with
the solution of a system of two linear
equations in two variables. It is easy to
find a closed formula for the result. Bab-
bage considered the two linear equa-
tions

 ax + by + c = 0
 a′x + b′y + c′= 0.

We have six parameters, the six coef-
ficients a, b, c, a′, b′, c′ , in the two equa-
tions. The solution for x is

 x = b c ′ − b ′ c _
 b ′ a − b a ′ .

Given x , the solution for y is

 y = (− ax − c) / b

In the first expression, we assume

that the denominator b′a − ba′ is non-
zero, while in the second we assume
that b is non-zero, so that the solutions
exist. Babbage did not check these two
conditions in his program.

First, Babbage assigns the six coef-
ficients a, b, c, a′, b′, c′ , to the six vari-
ables v 1 to v 6 in the AE’s memory. He
then computes successively the inter-
mediate results b′a, b ′ c, b a ′ , b c ′ , b c ′ − b ′
c,b′a − ba′ , and finally the quotient for
finding x . The complete computation
for x requires four multiplications,
two subtractions, and a final division.
That is a grand total of five “big” and
two “small” operations (as Babbage
called them).

Babbage drew up two complete ta-
bles for the calculation. Table 1 shows
the code and the order of the seven op-
erations required. The second column
shows the operation and the third col-
umn is a comment for each calculation.
The program ends when the value of x
is found.

The six memory addresses v 1 , ... ,
v 6 contain, at the beginning, the coef-
ficients of the six terms ax, by, c, a ′ x, b ′
y, c ′ . In the first multiplication, the pro-
cessor uses the variables v 1 and v 5 for
computing b ′ a . The table shows that

JUNE 2024 | VOL. 67 | NO. 6 | COMMUNICATIONS OF THE ACM 79

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 S
H

U
T

T
E

R
S

T
O

C
K

Table 2. The seven arithmetic operations
and their description, line by line.

after the first operation, both variables
are reduced to zero and the result b ′ a is
stored in v 7 . The last column is a com-
ment about the operation which has
been performed, that is, v 7 = v 5 · v 1 .

The second multiplication computes
b ′ c and stores it in v 1 . Symbolically, the
computation is v 1 ′ = v 5 · v 3 . The quote
means that the original content of v 1
has been overwritten once. However,
there is a problem.

Variable v 5 was read destructively for
the multiplication in the first line. The
arithmetic operations need two argu-
ments, in this case for the multiplica-
tion. Babbage designed the AE so that
an argument could be reused repeat-
edly. Since the first two computed terms
are b ′ a and b ′ c , the first argument b ′ can
be kept in the processor. After the mul-
tiplication with a , we only need to load
argument c to the processor. This way
of reusing an argument in the proces-
sor is not described in BAB L1, but it is
something that Babbage exploited in
other programs. In BAB L1, Babbage ex-
plicitly mentions that b ′ is reused for a
multiplication table with b ′ .

The two columns of comments,
displayed side by side, tell the whole

Table 1. Computation of x.

story for this computation (Table 2).
In a sense, this is the program that
Babbage has in mind, but what the
punched cards contain are the specific
operations and the addresses needed.
As can be seen from the code, Babbage
reuses memory addresses, and each
time a memory address is overwritten
he adds a quote to the variable’s name.
Variables 1 and 3 are reused (overwrit-
ten) twice in the program, so that their
names become v 1 ′′ and v 3 ′′ .

In other programs written after this
first one, Babbage simplified. Later, he
did not always keep track of variable re-
use (with the quotes), since it does not
affect the computation. Also, he did not
always add symbolic comments to the
tables, writing only the necessary arith-
metic operation and the addresses used.

The Second Code Table
Babbage wrote the second part of the
computation in the same document
(L26 in the Babbage archive). Having
found x with the first seven lines of the
program, we can now compute y using
the value of x . The computation for x is
the same as before, but y is then com-
puted as y = (− c − ax) / b , since the first
linear equation is ax + by + c = 0 . The
program is shown below.

There is something new in rows 1, 2,
and 3 (See Table 3). Now, Babbage has
made explicit that the coefficients a, b, c
need to be refreshed, storing their com-
plements Ca, Cb, Cc in auxiliary vari-
ables. The complement of a is stored in
v 8 , the complement of c in v 5 , and the
complement of b in v 9 . We need a , b , and
c for the computation of y .

What Babbage intended to do with
the AE was to store the value of a vari-
able, that was still needed, in another

Computation Code

1 b ′ a v 7 = v 5 · v 1

2 b ′ c v 1 ′ = v 5 · v 3

3 b a ′ v 3 ′ = v 2 · v 4

4 b c ′ v 2 ′ = v 2 · v 6

5 b c ′ − b ′ c v 4 ′ = v 2 ′ − v 1 ′

6 b ′ a − b a ′ v 1
′′ = v 7 − v 3 ′

7 b c ′ − b ′ c _ b ′ a − b a ′ v 3
′′ =

 v 4 ′
 _ v 1

′′

auxiliary variable when it was sent to
the processor. Since the AE used gears
(think of a clock face with the digits 0
to 9), storing a number was performed
by turning the gear counterclockwise,
for example, and retrieving the con-
tents was accomplished by turning it
in the opposite direction until the vari-
able was reduced to zero. For example,
suppose we stored the number '3' by
turning a gear counterclockwise three
positions (out of 10 possible positions,
one for each decimal digit). When the
number is read, the gear turns back
three positions, clockwise. Starting
from zero, a receiving auxiliary gear will
be rotated clockwise to position 7 (the
decimal complement of 3). Therefore,
the auxiliary variable will not store the
original decimal number, but its com-
plement, for each digit of the number.
If we had the number 345 in v 5 , and its
complement was saved temporarily in
v 8 , we would have 765 in the variable
v 8 . Reading back from v 8 to v 5 , we would
complement the number again, digit
by digit, and v 5 would be restored to the
original 345.

In the program, the stored comple-
ments are transferred back (comple-
menting again) to the variables v 1 , v 2 ,
and v 3 in the auxiliary steps 8, 9, and 10.
The value of y is computed in steps 11,
12, 13, and the program finally stops.
There is a mistake in the table in line 7:
Babbage writes “=x” in the column for
variable 4, which is correct, but also in
the column for variable 7, which is in-
correct.

In other programs, written after this
one, Babbage overlapped the storing of
the complement of a variable, with its
subsequent reading and complement-
ing in a single program step. That is, the

Mill Store

Numbers of Nature of in variables + ax + by + c + a ′ x + b ′ y + c ′

Operations operations variables in store v 1 v 2 v 3 v 4 v 5 v 6 v 7

1 × b ′ a 0 0 b ′ a v 7 = v 5 · v 1

2 × b ′ c b ′ c 0 v 1 ′ = v 5 · v 3

3 × b a ′ 0 b a ′ 0 v 3 ′ = v 2 · v 4

4 × b c ′ b c ′ 0 v 2 ′ = v 2 · v 6

5 − b c ′ − b ′ c 0 0 b c ′ − b ′ c v 4 ′ = v 2 ′ − v 1 ′

6 − b ′ a − b a ′ b ′ a − b a ′ 0 0 v 1
′′ = v 7 − v 3 ′

7 * ÷ b c ′ − b ′ c _ b ′ a − b a ′ 0 = x 0 x = v 3
′′ =

 v 4 ′
 _ v 1

′′

80 COMMUNICATIONS OF THE ACM | JUNE 2024 | VOL. 67 | NO. 6

research and advances

Table 4. Final set of arithmetic operations
for computing x and y and their descrip-
tion, line by line.

Table 3. Computation of x and y.

Computation Code

1 b ′ a v 7 = v 5 · v 1

2 b ′ c v 1 ′ = v 5 · v 3

3 b a ′ v 3 ′ = v 2 · v 4

4 b c ′ v 2 ′ = v 2 · v 6

5 b c ′ − b ′ c v 6 ′ = v 2 ′ − v 1 ′

6 b ′ a − b a ′ v 2
′′ = v 7 − v 3 ′

7* b c ′ − b ′ c _ b ′ a − b a ′ v 4 ′ =
 v 6 ′ _ v 2

′′

8 v 1
′′ = v 1 = a

9 v 2
′′′ = v 2 = b

10 v 3
′′ = v 3 = c

11 ax v 5
′′ = v 1

′′ · v 4 ′

12 − c − ax v 1
′′′ = − v 3

′′ − v 5
′′

13 * − c − ax _ b v 5
′′′ =

 v 1
′′′
 _ v 2

′′′

Mill Store

Numbers of Nature of in variables + ax + by + c + a ′ x + b ′ y + c ′

Operations operations variables in store v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9

1 × b ′ a 0 0 b ′ a Ca v 7 = v 5 · v 1

2 × b ′ c b ′ c 0 Cc v 1 ′ = v 5 · v 3

3 × b a ′ 0 b a ′ 0 Cb v 3 ′ = v 2 · v 4

4 × b c ′ b c ′ 0 v 2 ′ = v 2 · v 6

5 − b c ′ − b ′ c 0 0 b c ′ − b ′ c v 6 ′ = v 2 ′ − v 1 ′

6 − b ′ a − b a ′ b ′ a − b a ′ 0 0 v 2
′′ = v 7 − v 3 ′

7 * ÷ b c ′ − b ′ c

_____ b ′ a − b a ′ 0 = x 0 = x x = v 4 ′ =
 v 6 ′ _ v 2

′′

8 a 0 v 1
′′ = v 1 = a

9 b 0 v 2
′′′ = v 2 = b

10 c 0 v 3
′′ = v 3 = c

11 × ax 0 0 ax v 5
′′ = v 1

′′ · v 4 ′

12 − − c − ax − c − ax 0 0 v 1
′′′ = − v 3

′′ − v 5
′′

13 * ÷ − c − ax _ b 0 0 = y y = v 5
′′′ =

 v 1
′′′
 _ v 2

′′′

Symbolically, the complete program
written by Babbage would read as Ta-
ble 4 shows. In steps 8, 9, and 10, there is
no operation in the processor and only
the memory is active, transferring num-
bers to recover the parameters a, b, c
from their complements.

Conclusion
Solving systems of linear equations is
very useful in many areas of mathemat-
ics and engineering. It is natural that
Babbage decided to use this as a kind
of benchmark problem for the AE. It is
known that Chinese mathematicians
could solve linear systems of up to three
variables and equations more than
2,000 years ago.

In his code sketches, Babbage did
not write high-level code and then
compile the program. The annotations
in his program are more like com-
ments and the actual code would be
the strings of punched cards for the
processor and the memory. In later
programs, Babbage did not include a
symbolic comment about the computa-
tions being performed. Babbage wrote
his programs by listing the required op-
erations and the required arguments.
Both things immediately translate to
the necessary punched cards. In mod-
ern parlance, Babbage wrote his pro-
grams in “assembler.” Also, since the
operation cards are separate from the
variable cards, they can synchronize in
diverse ways, as explained in my paper.5

store would send a number to the mill,
store it temporarily as a complement,
and when the result of the computa-
tion was returned by the processor, the
stored variable could be refreshed. It is
not quite clear whether the refresh hap-
pened while the processor was busy or
after it had delivered its result to mem-
ory. The notation used by Babbage to
indicate that a variable containing the
value a , for example, kept its value, was
0 / a , indicating that the variable was re-
duced to zero and later restored, with-
out necessarily indicating the auxiliary
address used.

These complications are not present in
the program discussed in this article.
The AE was never finished, so the code
shown here could never be run. It could
only be tested following its execution
on paper. The design of the AE was very
ambitious, including also the possibil-
ity of programming loops. Babbage
changed the design several times, and
this was one of the problems that made
it very difficult to finish the machine.3

It is important to point out, although
it is obvious, that the first sketch ever
written of a computer program is not
one of those published in Menabrea.4
That publication appeared six years af-
ter Babbage had already sketched his
program “number one” for solving si-
multaneous linear equations and other
25 coding examples.

References
1. Babbage, C. Passages from the Life of a Philosopher.

Longman, London, (1864).
2. Babbage, C. On the mathematical powers of the

calculating engine, unpublished manuscript, 1837.
The Origins of Digital Computers. B. Randell (eds.),
Springer-Verlag, Berlin, (1982).

3. Bromley, A. Charles Babbage's Analytical Engine, 1838.
Annals of the History of Computing 4, 3 (July 1982).

4. Menabrea, L.F. Sketch of the Analytical Engine
Invented by Charles Babbage, translation with notes
from Ada Augusta Lovelace, (1843).

5. Rojas, R. The computer programs of Charles Babbage.
IEEE Annals of the History of Computing 43, 1 (2021),
618.

Raúl Rojas (rojas@inf.fu-berlin.de) is a professor in the
Department of Mathematics and Statistics, University
of Nevada Reno, and an emeritus professor at Freie
Universitaet Berlin, Germany.

This work is licensed under a Creative
Commons Attribution-NonCommercial-

NoDerivs International 4.0 License.

JUNE 2024 | VOL. 67 | NO. 6 | COMMUNICATIONS OF THE ACM 81

research and advances

