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Molecular encodings and their usage in machine learning models have demonstrated significant breakthroughs 
in biomedical applications, particularly in the classification of peptides and proteins. To this end, we propose a 
new encoding method: Interpretable Carbon-based Array of Neighborhoods (iCAN). Designed to address machine 
learning models’ need for more structured and less flexible input, it captures the neighborhoods of carbon 
atoms in a counting array and improves the utility of the resulting encodings for machine learning models. 
The iCAN method provides interpretable molecular encodings and representations, enabling the comparison of 
molecular neighborhoods, identification of repeating patterns, and visualization of relevance heat maps for a 
given data set. When reproducing a large biomedical peptide classification study, it outperforms its predecessor 
encoding. When extended to proteins, it outperforms a lead structure-based encoding on 71% of the data sets. Our 
method offers interpretable encodings that can be applied to all organic molecules, including exotic amino acids, 
cyclic peptides, and larger proteins, making it highly versatile across various domains and data sets. This work 
establishes a promising new direction for machine learning in peptide and protein classification in biomedicine 
and healthcare, potentially accelerating advances in drug discovery and disease diagnosis.
1. Introduction

Molecular fingerprinting is a cornerstone of in silico molecular stud-
ies, virtual screening and machine learning (ML) applications in the 
field of molecular sciences [1]. Specifically, a molecular fingerprint 
encodes a molecule by converting its molecular structure into a bit 
string, which enables the application of various mathematical and 
computational methods to process, analyze and visually represent the 
molecule [2]. In the context of ML, encoding a molecule into a machine-
readable format allows ML models to effectively capture and learn its 
inherent chemical structure and properties.

Despite the widespread use of molecular fingerprinting, there is 
a growing need for alternative encoding methods that can improve 
the performance of ML models in various molecular science applica-
tions. The current vast biomedical space and the limited existence of 
labeled and balanced data already pose challenges to most ML meth-
ods. Moreover, the lack of interpretable molecular encodings hinders 
the interpretability of models in biomedical research and applications. 
This poses significant limitations that need to be addressed, particu-
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larly in the development of novel interpretable molecular representa-
tions for ML, a concept that has not been extensively explored in the 
existing literature. In response to these changes, we propose an inter-
pretable encoder to advance the field of molecular fingerprinting and 
its application in various domain applications by demonstrating a new 
encoding method that improves performance in the ML application do-
main.

The efficient use of molecular fingerprints relies on the “similar 
property principle”, i.e., structurally similar molecules tend to have 
similar properties and similar molecules exert similar biological activi-
ties [3–5]. At its core, the principle implies that molecules with analo-
gous structural features often interact with biological systems or phys-
ical environments in comparable ways. For example, molecules with 
similar shapes or functional groups may bind to the same receptors in 
biological systems, leading to similar pharmacological effects. Similarly, 
molecules with comparable chemical compositions may exhibit similar 
behaviors in environmental processes such as degradation or transport. 
This principle finds wide-ranging applications, including drug discov-
ery [6], peptide similarity analysis [7], toxicology screening [8,9], and 
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Quantitative Structure-Activity Relationship (QSAR) modeling [10,11]. 
Among their use in a variety of tasks and domains, molecular finger-
prints or encodings provide valuable predictive capabilities enabled by 
ML algorithms trained on labeled data from encoded compounds [12,7]. 
For example, knowing whether a peptide can permeate or penetrate the 
cell membrane.

Two categories of molecular encodings have been investigated so 
far: sequence-based encodings and structure-based encodings. Sequ-
ence-based encodings represent molecules as a sequence of atoms or 
amino acids, while structure-based encodings represent molecules as 
three-dimensional structures. The landscape in the literature shows that 
both sequence- and structure-based encodings are often highly special-
ized and most often lack interpretability. A large-scale comparative 
study on peptide encodings by Spänig et al. [13] found QSAR as the only 
structure-based encoding effective enough for the biomedical classifica-
tion task. Although there are many sequence-based encodings available, 
their effectiveness can vary significantly due to factors such as data class 
imbalance or the method used to create the encoding.

In recent years, there has been an explosion of research into the 
application of ML, particularly to the prediction of specific molecular 
properties and structures for amino acid sequences of varying lengths. 
For instance, molecular embeddings have been proposed to learn molec-
ular representations of peptide and protein sequences. This involves 
feature learning to identify the best abstraction level for a successful ML 
task. Deep learning techniques, such as convolutional neural networks, 
can be used to learn molecular embeddings and obtain protein feature 
representations by utilizing their sequence representation [14]. This 
has been made possible by considering different molecular abstractions 
(e.g., amino acid) and methods (e.g., molecular graph convolutions) 
which have expanded interest in molecular encodings; some of which 
inspired researchers to go beyond fingerprints [15]. This is exempli-
fied by models such as AlphaFold and ESMFold, which even attempt to 
predict tertiary structures [16,17].

Indeed, an overarching feature of all organic molecules lies in their 
fundamental composition, centered around carbon atoms as the pri-
mary building blocks of the biochemical structure. These molecules 
typically exhibit a carbon chain forming either a linear backbone or 
cyclic structures. Extending from this backbone are side chains which 
bestow diverse biological and chemical properties to the molecules. 
Drawing upon this universal principle, Hattab et al. [18] devised a para-
metric fingerprinting method that systematically traverses the carbon 
chain and captures the multi-level neighborhoods of the carbon atoms. 
Demonstrating remarkable resource-efficiency, this method achieves ac-
curacy rates comparable to sequence- and structure-based encodings, 
within the comparative frame of peptide encodings in the aforemen-
tioned study. However, unlike existing sequence- and structure-based 
encodings, it can handle molecules with cycles and unnatural or exotic 
amino acids, making it widely applicable.

Despite its advantages, the data-driven format in which the atom 
neighborhoods were recorded hindered its full potential for ML tasks. 
To tackle this issue, we present the interpretable Carbon-based Array 
of Neighborhoods (iCAN). Like its predecessor, iCAN adheres to the 
concept of capturing information about the neighborhoods of the main 
backbone or the carbon chain. In addition to offering users the choice 
of only the immediate first neighborhood level, the second level can 
be added. However, it organizes this information into counting arrays, 
reminiscent of distribution (frequency) tables, with each column corre-
sponding to a carbon atom in the chain. The encoding array effectively 
preserves the spatial nature of traversing the carbon backbone, ensuring 
consistency in the information encoded by each feature. Additionally, 
the array offers the advantage of visual comprehension, as it can be 
parsed as a gray scale image. Indeed, the representation of the encod-
ing can be either an array or an image.

Moreover, we offer customizable molecular encodings that afford 
domain experts the ability to customize the encoding based on their 
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specific considerations for the occurrence of atoms. The user can spec-
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ify one of three encoding modes based on atomic elements, including 
the five most common or abundant atoms, i.e., Carbon (C), Nitrogen 
(N), Oxygen (O), Sulfur (S), and hydrogen (H), the four most common 
atoms excluding hydrogen, or all atoms present in the data set. The 
image representation helps users visually compare molecular neighbor-
hoods and identify repeating patterns in the encoding. We introduce an 
explanatory dimension through the use of relevance heat maps, giving 
users an intuitive understanding of the selected encoding and its con-
tent.

Our method emphasizes the value of both sequence and graph-
based information in molecular fingerprinting algorithms, as well as 
the benefits of visually encoding molecular fingerprints and provid-
ing interpretable representations to enhance user insight. By requiring 
only the chemical sequence of the compound, which may include non-
standard amino acids that other encodings are not designed to handle, 
iCAN extends its applicability to a broader range of domains compared 
to commonly used encodings.

We demonstrate that our encoding method yields significant per-
formance improvements over its predecessor in the task of property 
prediction for peptides across 90% of the data. When extended to pro-
teins and dealing with data from previously unexplored domains, iCAN 
performs robustly. It provides the best encodings for fourteen data 
sets and outperforms the lead structure-based encoding for 71% of the 
data. Furthermore, it achieves comparable performance to specialized 
encodings and even surpasses them in predictive accuracy. We show 
not only that it outperforms its predecessor, but that it is indeed the 
most versatile method for encodings with no data set or domain affini-
ties.

In the following sections, we present the results and the methodol-
ogy of iCAN. Its effectiveness is demonstrated with three experiments 
which focus on peptide and protein classification. While the first ex-
periment compares iCAN to its predecessor using an extended 62 data 
sets, the second experiment evaluates iCAN using the golden standard 
on biomedical peptide classification [13]. The third and last experiment 
evaluates iCAN on extended domains where other methods fail. This in-
cludes but is not limited to data sets with synthetic peptides, unnatural 
amino acids, etc. We evaluate iCAN to showcase its performance and 
versatility.

2. Results

We present our results in four subsections, each covering an im-
portant aspect of molecular encodings — their structural differentia-
tion and their interpretability. In particular, while previous work has 
overlooked the latter, we recognize its importance, especially when 
ML models are used in molecular science applications. Additionally, 
as the proposed iCAN builds upon its predecessor the Carbon-based 
Multi-level Atomic NeiGhborhOod EncodingS (CMANGOES), we fur-
ther subdivide our results section on the differentiating property of 
encodings. Specifically, we analyze and compare these two meth-
ods, then with other encoding methods from the literature, and later 
with an extended list of data sets. This characterizes three experi-
ments.

Indeed, to broaden the domain application of our encoding method, 
we supplemented the data of the golden standard with 12 data sets 
from various domains, including but not limited to synthetic peptides 
or foldamers, membrane permeability of cyclic peptides, and toxicity of 
peptides and proteins, each with different sizes, imbalance ratios, and 
biomedical properties.

A comprehensive overview of all classification tasks and the corre-
sponding data sets is shown in Table 2. By default, all reported results 
include both levels of neighborhood information, as our experiments 
showed that using both first- and second-level neighborhood informa-
tion leads to better performance in the classification task than using 

only first-level information.
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Fig. 1. Log-log scatter plot of the encoding time for data sets relative to the size of the original FASTA file. As the file size increases, the encoding time grows linearly. 
The median encoding time when including first and second level neighborhood information is 1.67 𝑚𝑠 per byte.
2.1. Experiment 1. Comparison to the baseline

To demonstrate the effectiveness of iCAN as a new alternative in 
downstream ML tasks and ensure a fair comparison with the Base-
line [18], we used the golden standard provided by the PeptideRe-
actor [13] which runs classification via Random Forest classifiers on 
the encodings and records the corresponding 𝐹1-score. We adhered to 
an equivalent configuration with default hyper-parameters in the well-
known scikit-learn library [19]. For the data splits, we employ 
a cross-validation using the RepeatedStratifiedKFold implementation 
of [19] with a fixed random seed, 5 folds and 10 repeats.

When we considered using iCAN with the third encoding mode, 
where all atoms present in the data sets, the results show that it out-
performed the Baseline across the majority of data sets.

When examining the 𝐹1-scores for the Baseline and the Alternative, 
we observed that the 𝐹1-scores for the Alternative were better. How-
ever, the question is whether this is due to chance or whether the 
𝐹1-scores for iCAN are actually higher on average than the Baseline. 
iCAN yields significant performance improvements over its predecessor 
in the task of property prediction on the golden standard across 90% 
of the data. By using the Mann-Whitney U test, we compared the dis-
tributions of the 𝐹1-scores for both methods. iCAN encodings gave a 
significantly better performance for 54 of the data sets at a 95% con-
fidence. Conversely, it shows a decrease in performance on only three 
data sets, while no discernible significant difference is observed on the 
remaining five data sets.

To assess iCAN’s resource consumption and scalability, we con-
ducted tests to benchmark the encoding time and the size of the result-
ing encoded files. In order to ensure reliable measurements, we repeated 
the encoding process five times and reported the median run time, tak-
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ing into account any short-term fluctuations in the processing capacity 
of the machine. The results are presented in Fig. 1. Benchmarking set-
tings are detailed in the supplementary material. We noted that the run 
time of iCAN increases linearly with the original data set size. On av-
erage, iCAN was more efficient in terms of run time than the baseline, 
taking 1.67 milliseconds (ms) on median to encode 1 byte.

2.2. Experiment 2. Comparison to other methods

The proposed encoding method is flexible in terms of the degree of 
inclusion of atomic neighborhoods and the specific atoms to be taken 
into account. We evaluated three modes for the elemental alphabet to 
comprehensively demonstrate the performance differences with respect 
to other established encoding methods. The first mode included hydro-
gen, carbon, nitrogen, oxygen, and sulfur. The second mode included 
carbon, nitrogen, oxygen, and sulfur. The third and last mode included 
all atoms present in the data set and characterized a data-driven mode.

By systematically exploring different encoding parameters, we 
gained valuable insight into how different configurations affect per-
formance in the context of binary peptide classification and how iCAN 
compares to other state-of-the-art encodings. Our results are presented 
in Fig. 2. iCAN achieves similar performances for all three modes. This 
is likely due to the fact that the peptides presented here consist only 
of the twenty standard amino acids and thus there is little difference 
between the data driven mode 3 and the modes collecting the frequen-
cies of standard elements such as mode 1 and 2. Across all datasets, the 
performance of iCAN is consistently comparable to the best perform-
ing encodings, indicating that its performance achieves state-of-the-art 
standards but does not manage to overcome the challenges posed by 
particularly difficult datasets such as hiv_protease. However, it 
does also perform well on datasets where many encodings fail, such as 

the particularly unbalanced datasets pip_pipel and tce_zhao iCAN 
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Fig. 2. Experiment 2. Heat map comparing 𝐹1-scores for the binary prediction task on three iCAN encodings versus 45 state-of-the-art peptide encodings on 50 data 
sets with different imbalance ratios. All three iCAN encodings use first- and second-level-neighborhood information, for the element alphabet they use the five most 
abundant elements including hydrogen (iCAN_1), excluding hydrogen (iCAN_2) or collect all elements that appear in the data (iCAN_3).
reached the highest 𝐹1-scores among all 45 encodings of the golden 
standard on two data sets, i.e., amp_fernandes and cpp_mixed.

2.3. Experiment 3. Comparison with extended domains

After having supplemented the data to a total of 62 data sets to 
include more domain applications, iCAN outperformed the Quantitative 
Structure-Activity Relationship (QSAR) method on all data sets except 
the HIV and the acp_mlcap data set; accounting for 71% of the data. 
In addition and as a highlight, the proposed methodology proved to 
be very robust across the larger and more diverse domain applications 
range and furthermore the only encoding able to handle all datasets.

Table 1 showcases iCAN as the best encoding for 14 data sets with 
the highest generalizability and was able to handle unnatural and exotic 
amino acids and molecules with cycles. These data sets covered the do-
main applications of antimicrobial peptides, cell penetrating peptides, 
𝛽-peptide foldamers with unnatural amino acids, soluble E.coli pro-
teins, protein toxicity, antiviral peptides, amyloidogenic hexapeptide 
sequences, fungal and oomycete effector proteins. The supplementary 
materials give a general review of data sets for which iCAN appears in 
the top 3 encoding methods.

2.4. Interpretability

iCAN facilitated the creation of interpretable molecular encodings 
and representations. For one, the array and image representations of 
the resulting encodings are easily exportable, as seen in the example of 
the phenol molecule in Fig. 3.

The image representations of the molecular encodings are used to 
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easily spot patterns and identify repeating signals in the encodings.
One such pattern was easily seen in the case of two peptides coming 
from the cpp_mixed data set. The peptides shown in Fig. 4a and Fig. 4b 
have similar FASTA representations, a property also reflected in the 
image representations of their respective encodings. By closely inspect-
ing the figures, we observed a repetition of carbon molecules with 
almost exactly the same side chains consisting of oxygen and nitrogen 
atoms. The lack of sulfur atoms on the side chains was another notable 
observation. Another example relevance heat map is provided in the 
supplementary material for the ace_vaxinpad data set.

Relevance heat maps, in turn, can be created by graphically map-
ping measures of feature importance into the image space. One such 
heat map of the cpp_mixed data set is presented in Fig. 4c. These heat 
maps visually show which parts of a molecule are relevant to the pre-
diction of a particular property, indicating that these parts are indeed 
relevant to the presence of that property in the compound. While a re-
cent study used relevance heat maps [21], the relevance of certain parts 
of molecular fingerprints was determined without linking this relevance 
back to the molecules. This connection makes it easier for users and do-
main experts to investigate which molecular parts or molecules play an 
important role in the ML task.

3. Conclusion

The interpretable Carbon-based Array of Neighborhoods (iCAN) 
presents a versatile method for molecular encodings and representa-
tions, applicable to peptides, proteins, and molecules with exotic amino 
acids and cycles. With its efficient runtime, scaling linearly with dataset 
size, iCAN proves suitable for large datasets without significant compu-

tational overhead. Encodings can be visually interpreted from grayscale 
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Table 1

Experiment 3. Overview of the best performing encoding method by alphabetical 
order. Data sets are aggregated per encoding. A total of 62 data sets is presented. 
F1 values are rounded. Data sets marked with an asterisk (∗) and bolded could 
only be encoded using the iCAN method.

Encoding Data set(s) 𝐹1

aainde tce_zhao 0.67
apaac_ acp_anticp, hem_hemopi 0.89, 0.93
cksaag atb_antitbp 0.83
cksaap ace_vaxinpad, afp_amppred, amp_antibp, 

amp_modlamp, atb_iantitb, avp_amppred, 
avp_avppred, cpp_kelmcpp, cpp_mlcpp, 
nep_neuropipred

0.96, 0.91, 0.96, 
0.93, 0.8, 0.88, 
0.87, 0.85, 0.85, 
0.88

dde aip_aippred, aip_antiinflam, bce_ibce, 
isp_il10pred, pip_pipel

0.62, 0.67, 0.65, 
0.68, 0.56

dist_f afp_antifp, amp_csamp, amp_iamp2l, cpp_cellppd, 
cpp_cellppdmod, cpp_cppredfl, cpp_mlcppue, 
cpp_sanders

0.9, 0.98, 0.82, 0.9, 
0.93, 0.91, 0.7, 
0.89

gdpc amp_gonzales 0.89
amp_fernandes, cpp_mixed 0.82, 0.89

iCAN
2pred∗, foldamer_b∗, sol_ecoli∗, toxinpred2∗, 
ai4avp_2∗, amy_hex∗, effectorp∗, amy_albase∗, 
cppsite2∗, perm_cyc∗, toxinpred_swissprot∗, 
toxinpred_trembl∗

0.73, 0.97, 0.72, 
0.75, 0.72, 0.69, 
0.57, 0.93, 0.84, 
0.85, 0.84, 0.77

ngram_ hiv_protease 0.79
paac_l acp_iacp 0.9
qsar hiv_3tc, hiv_abc, hiv_apv, hiv_azt, hiv_bevirimat, 

hiv_d4t, hiv_ddi, hiv_dlv, hiv_efv, hiv_idv, hiv_lpv, 
hiv_nfv, hiv_nvp, hiv_rtv, hiv_sqv, hiv_v3

0.97, 0.97, 0.99, 
0.98, 1.0, 0.99, 
0.98, 0.98, 0.98, 
0.99, 0.99, 0.99, 
0.98, 0.99, 0.99, 
0.99

qsorde acp_mlacp, amp_antibp2 0.76, 0.92

Fig. 3. Example array and image representation of the phenol molecule. Left: Phenol or C6H6O has the SMILES specification: C1=CC=C(C=C1)O. The phenol has a 
stable conjugated system with a hybrid resonance due to the delocalized or free electrons in the aromatic cycle. Middle: The array of the encoded phenol molecule 
created by the iCAN method using the first mode, including the hydrogen atoms. The table collects the frequencies of hydrogen, carbon, oxygen, natrium and sulfur 
in the neighborhoods of all carbon atoms in the molecules backbone. Right: The image representation of the frequency table corresponding to the encoded phenol 
molecule which may be used for additional interpretability of the encoding through the visual channel.
images, highlighting molecular similarities. Moreover, iCAN outper-
forms its predecessor CMANGOES on 54 out of 62 datasets and com-
petes with state-of-the-art methods outperforming all 45 encodings on 
two data sets. It demonstrates superior generalization across diverse 
domain applications and accommodates exotic amino acids and cyclic 
molecules. Notably, iCAN stands as the first sequence-based encod-
ing to compete with structure-based encodings. It preserves the spatial 
characteristics of molecular data and provides visual comprehension 
through image representations. Its customizable nature enables users 
to tailor encoding modes based on atomic elements, widening its ap-
plicability across diverse domains. Consequently, researchers in bioin-
formatics, cheminformatics, and molecular biology can benefit from 
iCAN’s accuracy and interpretability in molecular data analysis. More-
over, the pharmaceutical and biotechnology industries can utilize iCAN 
in drug discovery and development, leveraging its predictive capabil-
ities for identifying potential candidates and assessing their efficacy 
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and safety. The interpretability feature also enhances regulatory sub-
missions where understanding the model’s decision-making process is 
pivotal.

4. Discussion

First, our experiments show that iCAN is very competitive with state-
of-the-art encodings, while being resource-efficient and allowing for a 
wider range of applications, such as molecules with exotic or unnatural 
amino acids or molecules with cycles.

Second, previous research has suggested that the use of a single 
encoding of a molecule is inferior to an ensemble of different encod-
ings, each of which captures different aspects of the molecule. Because 
the resulting encodings and representations capture atomic-level infor-
mation, we think it would be a good extension to models capturing 
information that the encoding might ignore, such as physical distance 
of parts in the molecule or three-dimensional structure. For this pur-

pose, it would be interesting to analyze the correlation between the 
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Table 2

Overview of the domain applications and their associated 62 data sets. Explanations are provided for each classification task in the 
given domain application. A total of 62 data sets are reported.

Domain Explanation No. data sets References

A-cell epitopes Prediction of peptides for modulating antigen presenting cells (modulating/non 
modulating).

1 [28]

Anticancer peptides Prediction of peptides with cytotoxic efficiency against cancer cells 
(cytotoxic/non-cytotoxic).

3 [29], [30], [31]

Antifungal peptides Prediction of peptides with anti-fungal efficiency (anti-fungal/not anti-fungal). 2 [32], [33]
Anti-inflammatory 
peptides

Prediction of therapeutic peptides against inflammatory diseases 
(anti-inflammatory/not anti-inflammatory).

2 [34], [35]

Antimicrobial 
peptides

Prediction of peptides with anti-microbial efficiency (antimicrobial/not 
anti-microbial).

7 [36], [37], [38],
[39], [40], [41],
[42]

Amyloidogenic 
peptides

Prediction whether peptides produce amyloid deposits, which may be deposited 
in organs or tissues under unnatural conditions such as Alzheimer’s disease.

2 [43]

Antitubercular 
peptides

Prediction of peptides with anti-mycobacterial efficiency (antitubercular/not 
anti-tubercular).

2 [44], [45]

Antiviral peptides Prediction of peptides with anti-viral efficiency (anti-viral/not anti-viral). 4 [46], [47], [48]
Linear B-cell 
epitopes

Prediction of B-cell epitopes (B-cell epitope/no B-cell epitope). 1 [49]

Cell-penetrating 
peptides

Prediction of peptides with penetration capability of cell membranes 
(cell-penetrating/non cell-penetrating).

10 [20], [50], [51],
[52], [53], [54],
[55], [56], [57],
[58]

𝛽-peptide foldamers Prediction whether peptides are 𝛽-amino acid oligomers and can adopt stable 
secondary structures.

1 [59]

Hemolytic peptides Prediction of peptides with hemolytic susceptibility (susceptible/resistant). 1 [60]
Human 
Immunodeficiency 
Virus (HIV)

Prediction with the HIV peptides show drug resistance to various drugs. 17 [61], [62], [63],
[64]

Immuno-
suppressive 
peptides

Prediction whether peptides reduce the activation or efficacy of the immune 
system.

1 [65]

Neuro-peptides Prediction whether peptides are synthesized and released by neurons. 1 [66]
Permeability of 
cyclic peptides

Prediction of membrane permeability in cyclic peptides. 1 [67]

Pro-inflammatory 
inducing peptides

Prediction whether peptides can increase inflammatory reaction as defense 
against pathogens.

1 [68]

Soluble E.coli

proteins
Prediction whether an E.coli protein is soluble or aggregation-prone. 1 [43]

Linear T-cell 
epitopes

Prediction whether a peptide is an antigenic determinant, which is recognized 
by T-cells.

1 [69]

Toxic peptides Prediction whether peptides are toxic. 2 [70]
Toxic proteins Prediction whether proteins are toxic. 1 [71]
predictions based on different encodings to determine the potential of 
ensemble encoding [21]. For example, stereo-isometric information is 
not currently encoded and may prove useful in various molecular fin-
gerprinting tasks.

Third, a few notes on the use of the two most important parame-
ters of the encodings: Number of Neighborhood Levels and choosing 
the Element Alphabet. The best choice for the given data sets was 
the inclusion of first- and second-level neighborhood information. This 
is likely due to the relatively short length of side chains for peptides, 
resulting in the information of nearly every atom of an amino acid in-
cluded in these levels. Preliminary results for compounds with longer 
side chains indicate that it is advisable to choose all neighborhood lev-
els. This will ensure that most of the atoms are covered by the encoded 
carbon neighborhoods. With respect to the choice of the element al-
phabet, there was no clear evidence that the exclusion of the hydrogen 
atom improves the prediction accuracy of the encodings. In addition, 
adapting the data-driven alphabet mode has its own advantages and 
disadvantages. Indeed, including all atoms in the data set increases the 
amount of information in the encoding and may reasonably improve 
prediction accuracy. However, there will be problems with the compar-
ison of the encodings of different data sets, which may therefore have 
used different element alphabets in the encoding. Similarly, the addi-
tion of new data points (i.e., organic molecules) to a data set would 
require verification that no new atoms have been added. If not, a com-
plete re-encoding of the entire data set would be required in order to 
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capture new atoms in the element alphabet.
Fourth, the ability to represent the encoding as a gray scale image 
opened up the possibility of using the image representation to visually 
explain the decisions made by a classifier through relevance heat maps. 
Researchers and users can verify that the model works as intended. 
The relevance heat map uses the image representation of the encod-
ing to shed a light on which region in the encoding attributed most to 
the classification decision. Similarly to artificial neural networks, where 
individual pixels in the input image are identified with the highest ac-
tivations, it allows us to identify the highest signal contribution. To our 
knowledge, this is the first time an interpretable dimension has been 
proposed. This greater level of visual detail is afforded by our inter-
pretable method. On one hand, the image representations can aid the 
users both in the understanding of the encoding and the comparison of 
different molecules through the visual medium. On the other hand, the 
relevance heat map allows the identification of signal contribution at a 
data set level.

Fifth, the use of a data set-level relevance heat map can help mit-
igate potential misuse in the design and testing of in silico peptides 
and proteins. Future work may focus on the addition of a peptide-
or protein-level relevance heat map, where the visual representation 
would allow researchers to assess the signal contribution of a peptide 
or protein. This can be seen as part of a testing process that can help to 
understand the properties of peptides and proteins and ultimately con-
tribute to the development of more reliable and effective biologically 

active compounds.
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Fig. 4. Example interpretable molecular encodings and representations from the cpp_mixed data set. Example image representations of two encoded peptides are 
shown. Cropped example of the relevance heat map. iCAN was employed using the second mode to create the encodings, excluding the hydrogen atoms.
Sixth, the over representation of HIV-specific data sets in Table 2 is 
important to note. When browsing the classification results of the best 
encoding per data set in Table 1, the over representation of these data 
sets leads to the over representation of the QSAR method best suited 
for the HIV-specific data. Thus, the question arises whether the QSAR 
method has an affinity for a particular data set or domain. Answering 
this question was outside the scope of this work but will be the subject 
of further investigation. However, it is important to note that the asso-
ciated data sets represent a major challenge for all other sequence- and 
structure-based encoding.

Seventh and last, while the current methodology focuses on carbon 
chains for peptides, proteins, and other organics, its ideas can easily 
be extended to molecules with a backbone of one or more non-carbon 
elements. For example, polysiloxanes whose backbones consist of al-
ternating silicon-oxygen bonds, or even polyphosphoesters supported 
by alternating phosphorus-oxygen bonds. Indeed, its proven domain-
agnostic nature is a very promising stepping stone.

5. Methods

In this section, we elucidate the fundamental principles and algo-
rithm of iCAN, highlighting its encoding core concept. Additionally, 
we expand upon the experimental framework devised for evaluating 
the efficacy of iCAN in the context of peptide classification across di-
verse domains. Furthermore, we provide a comprehensive account of 
the methodology employed in generating interpretable relevant heat 
maps, which allow domain-specific experts to leverage these heat maps 
to systematically explore and discern intrinsic characteristics of the data 
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set, thereby gaining valuable insights.
5.1. Encoding creation

The proposed encoding iCAN, like its predecessor, centers on the 
pivotal role of the carbon chain as the fundamental backbone in nu-
merous organic molecules, notably within proteins and peptides. This 
property underscores the foundation of our study. Within these carbon 
frameworks, pivotal connections to side chains exert substantial influ-
ence on the inherent properties of the molecules [22]. Distinguishing 
our work is the innovative representation of neighborhood information 
through the utilization of a counting array. This approach meticulously 
preserves the spatial arrangement of the carbon chain augmenting the 
representation of the molecules. The resulting structural rigidity proves 
to be advantageous for ML classifiers, facilitating the streamlined iden-
tification of intricate patterns that correlate with specific biochemical 
properties. To effectuate the encoding of the provided data sets, a se-
quence of operations is carefully followed.

5.1.1. Data preparation

Before starting with the encoding, the algorithm transforms the in-
put data into the correct format, builds a graphical representation, 
optionally collects all unique elements in the input and collects the con-
nectivity information from the graph in a neighbor directory.

Data format transformation: Initially, the method accommodates a 
broad spectrum of molecules including proteins, and more broadly, any 
organic compound (i.e., carbohydrates, lipids or fats, proteins, and nu-
cleic acids) featuring a carbon chain, encompassing cyclic structures 
and branching chains. The input data can be provided in either the
FASTA or SMILES format. However, if the data is in FASTA format, it 
transforms to SMILES format leveraging the provided function con-

vert_fasta_to_smiles. This conversion step is crucial for subse-

quent processing and encoding with iCAN.
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Conversion to Graph Representation: Upon reception of a molecule, 
the method leverages the pysmiles package for the conversion pro-
cess, transforming the molecule into a graph representation. In this 
graphical depiction, atoms within the molecule are denoted as nodes. 
Each node is annotated with the elemental abbreviation corresponding 
to the atom it represents (e.g., C for carbon, H for hydrogen).

Optional Unique Element Collection: The algorithm collects all 
unique elements that appear in the input data. This is only done if the 
third mode is used, in which we choose to count the frequencies of all 
elements which appear in the data.

Atom Identification: In order to ensure a deterministic algorithm and 
preserve the correct sequential arrangement within the carbon chain, a 
unique numerical index is assigned to each carbon atom. Consequently, 
a neighbor directory is established containing the neighboring vertices 
as a list for each level. This directory serves to encapsulate the con-
nectivity information of each atom within the molecule. Subsequently, 
another directory is generated based on the neighbor directory. This 
directory facilitates the conversion of vertices into corresponding ele-
mental representations. Together, these two directories play a pivotal 
role in maintaining the structural integrity of the molecule during the 
processing stages.

5.1.2. Configuration and algorithm

In presenting three distinct options for iCAN, the constitution of the
Element Alphabet is contingent upon the user’s input. This alphabet 
encompasses the selective elements to be counted for each carbon in 
the molecules, whose frequencies are documented in the counting array 
while excluding other types of atoms. Users are afforded the flexibility 
to choose from three distinct modes:

1. The first mode involves the five most abundant elements found 
in proteins: hydrogen (H), carbon (C), oxygen (O), sulfur (S), and 
nitrogen (N).

2. The second mode entails excluding hydrogen and limiting the ele-
ment alphabet to carbon (C), oxygen (O), sulfur (S), and nitrogen 
(N).

3. The third mode entails adopting, where all peptides in the data 
sets are parsed, and all unique atoms are included in the counting 
array.

The most common elements in organic compounds are hydrogen, car-
bon, oxygen, nitrogen, and sulfur, with first four elements being the 
most prevalent [23].

Furthermore, following the choice of the selective elements mode, 
it is imperative to define the neighboring level, denoting the extent to 
which neighboring elements linked to carbon atoms will be taken into 
account. This configuration determines the depth of information inte-
grated around the carbon atoms.

Post-configuration, the algorithm systematically gathers information 
regarding the carbon neighborhoods based on the specified mode or the 
element alphabet and neighboring level. Starting from the graph created 
in the data preparation step, the carbon chain is sequentially traversed. 
In the case of a branching in the backbone, one path is followed first to 
its end, then the second path is traversed from the point of the branch-
ing. Cycles are opened so that they may be seen simply as a linear 
part of the backbone. The algorithm proceeds to walk down the carbon 
chain from the start to finish, and at each step, it counts the number of 
atoms of each element present in the carbon’s neighborhood. The num-
ber of neighborhood levels considered depends on the user’s input. For 
instance, first-level neighbors are atoms directly bonded to the original 
carbon, while 𝑛-th level neighbors are atoms connected to the original 
carbon in the graph by a shortest path of length 𝑛.

The algorithmic procedure involves converting the neighborhood in-
formation into a numerical representation or a counting array. This two-
dimensional array is illustrated in Fig. 3. In this process, the columns 
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of the array correspond to the carbons of the peptide, where the 𝑛-th 
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column contains information about the 𝑛-th carbon in the chain. Rows 
in the array represent the unique elements in the element alphabet. 
For example, in the case where the element alphabet comprises hydro-
gen, carbon, nitrogen, oxygen, and sulfur, the counting array’s first row 
records the number of hydrogen atoms sharing a bond with the corre-
sponding carbon. The second row counts how many other carbons are 
adjacent to the given carbon atom. The third row indicates the count of 
nitrogen atoms which are immediate neighbors in the molecular graph, 
the fourth row displays the number of oxygen atoms, and the fifth row 
shows the number of sulfur atoms. Following one iteration through the 
entire alphabet, the information about second-level neighborhoods is 
recorded. For instance, the sixth row would contain the count of hydro-
gen atoms connected to the carbon atom by a shortest path of length 
two. This process continues for every element in the element alphabet 
and every level of neighborhood, up to the maximal level specified by 
the user. The result is a set of arrays, one for each compound in the data 
set, where the number of columns equals the length of the molecule’s 
carbon chain, and the number of rows is equal to the product of the 
number of elements in the element alphabet and the maximum number 
of neighborhood levels chosen by the user. To facilitate easier data stor-
age, these counting arrays are flattened column-by-column into single 
vectors and padded with zeroes, ensuring that all vectors in the data set 
have the same length for seamless processing by ML algorithms in sub-
sequent tasks. For a given data set, these vectors are consolidated into 
a common data frame, where each row corresponds to the flattened 
counting array of the respective data points into a vector. The entire 
post-configuration procedure is also described in Algorithm 1.

Algorithm 1 Post-configuration Procedure.

Require: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡_𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 ∈ {𝑚𝑜𝑑𝑒_1, 𝑚𝑜𝑑𝑒_2, 𝑚𝑜𝑑𝑒_3}
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔_𝑙𝑒𝑣𝑒𝑙 ∈ {1, 2} ⊳ The element alphabet constitutes the ele-
ments for which the algorithm collects the frequencies. This may be the 
five most abundant elements (H, C, N, O, S), either including hydrogen 
(mode 1) or excluding hydrogen (mode 2), or all elements which appear 
in the data as a data-driven approach (mode 3).

Ensure: 𝑖𝑛𝑝𝑢𝑡_𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 is not 𝑁𝑜𝑛𝑒 ⊳ The molecule is previously converted to 
SMILES format.

1: 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟_𝑔𝑟𝑎𝑝ℎ ← CREATE_GRAPH(𝑖𝑛𝑝𝑢𝑡_𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒)
2: 2𝐷_𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔_𝑡𝑎𝑏𝑙𝑒 ← CREATE_EMPTY_TABLE

(𝑒𝑙𝑒𝑚𝑒𝑛𝑡_𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔_𝑙𝑒𝑣𝑒𝑙) ⊳ Initialize an 
empty 2D array with the number of rows depending on the arguments.

3: for all 𝑐𝑎𝑟𝑏𝑜𝑛_𝑎𝑡𝑜𝑚 in 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟_𝑔𝑟𝑎𝑝ℎ do

4: 𝑛𝑒𝑤_𝑐𝑜𝑙𝑢𝑚𝑛 ← [] ⊳ New empty column for each new carbon atom.

5: 𝑐𝑎𝑟𝑏𝑜𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← GET_NEIGHBORS(𝑐𝑎𝑟𝑏𝑜𝑛_𝑎𝑡𝑜𝑚)
6: for all 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 in 𝑐𝑎𝑟𝑏𝑜𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do

7: 𝑛𝑒𝑤_𝑐𝑜𝑙𝑢𝑚𝑛 ← UPDATE_NEIGHBOR_FREQUENCY

(𝑛𝑒𝑤_𝑐𝑜𝑙𝑢𝑚𝑛, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡_𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔_𝑙𝑒𝑣𝑒𝑙)
8: 2𝐷_𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔_𝑡𝑎𝑏𝑙𝑒 ← UPDATE_TABLE

(2𝐷_𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔_𝑡𝑎𝑏𝑙𝑒, 𝑛𝑒𝑤_𝑐𝑜𝑙𝑢𝑚𝑛)
9: return 2𝐷_𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔_𝑡𝑎𝑏𝑙𝑒

5.2. Interpretability

The original counting array for a selected peptide in the data set can 
be converted into a gray scale image. Initially, the array is normalized 
by dividing each cell by the highest entry in the array. Next, the cell 
entries are mapped to shades of gray with varying intensities, based on 
the cell’s value, where 0 is represented by white and 1 is represented by 
black. The resulting array is then saved as a gray scale image, enabling 
the user to visually analyze samples of peptides and identify patterns.

Over the past years, there has been a push in the ML community 
to develop methods that use artificial intelligence in a more explicable 
way [24,1]. More specifically, the method used to determine the im-
portance of features when encoding molecular structures into machine 
readable input. First, it can help users debug their model, as under-

standing which features learners are basing their decisions on allows 
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users to check whether they are relying on circumstantial artifacts that 
may be related to the label for the given data set, but not in the real 
world. Second, an understanding of the features that a model considers 
to be relevant for the prediction of certain properties can support our 
biological understanding of why certain compounds may exhibit these 
properties.

How feature importance can be calculated depends on the model 
that is used for the prediction task. In the case of Random Forest Clas-
sifiers, measures of feature importance for the entire data set such as 
decrease of impurity, permutation-based feature importance, or Shap-
ley values [25,26] can be calculated straightforwardly and are already 
included in the standard packages. If an interpretation of the feature 
importance for a specific data point is wanted or other models such as 
Deep Neural Networks, Support Vector Machines or k-Means Clustering 
are used, we may opt to use Layer-wise Relevance Propagation [27]. 
In the case of iCAN, they are computed as the average accumulation of 
the impurity decreases within each tree provided by the fitted attribute
feature_importances_ in the RandomForestClassifier class.

Feature importance measures are mapped into the image space to 
create relevance heat maps. The heat maps visually display which parts 
of the molecule are relevant in the prediction of a certain property and 
may thus indicate that these parts are indeed relevant for the existence 
of said property in the compound. While relevance heat maps have been 
used in a study very recently [21], here the relevance of certain bits of 
the molecular fingerprints has been determined without linking this im-
portance back to the molecular graph. To our knowledge, the potential 
for insight on a sequence-level has not been leveraged in molecular fin-
gerprints to date.

Code availability

The code is written in Python to guarantee high compatibility with 
existing methods in the bioinformatics and machine learning domains 
in general and molecular fingerprinting in specific. The code is available 
at https://github .com /ghattab /iCAN.
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