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Unravelling quantum dynamics using flow 
equations

S. J. Thomson    1,3   & J. Eisert    1,2 

The study of many-body quantum dynamics in strongly correlated systems 
is extremely challenging. To date, few numerical methods exist that are 
capable of simulating the non-equilibrium dynamics of two-dimensional 
quantum systems, which is partly due to complexity theoretic obstructions. 
In this work, we present a technique able to overcome this obstacle, by 
combining continuous unitary flow techniques with the newly developed 
method of scrambling transforms. We overcome the assumption that 
approximately diagonalizing the Hamiltonian cannot lead to reliable 
predictions for relatively long times. Rather, we show that the method 
achieves good accuracy in both localized and delocalized phases 
and makes reliable predictions for a number of quantities including 
infinite-temperature autocorrelation functions. We complement our 
findings with rigorous incremental bounds on the truncation error. Our 
approach shows that, in practice, the exploration of intermediate-scale time 
evolution may be more feasible than is commonly assumed, challenging 
near-term quantum simulators.

Taming the exponential complexity of many-body quantum systems 
remains one of the biggest challenges in modern physics. Exact numerical  
simulations provide the gold standard in accuracy. However, the 
computational cost quickly becomes prohibitive above a few tens of 
particles, and even rapid developments in computing power cannot 
outpace the exponential scaling of the complexity of fully solving a 
many-body quantum system. Although there are efficient methods 
for estimating the ground states of various quantum systems captured 
by local Hamiltonians, complexity becomes even more of an obstacle 
for time evolution. The time evolution of a given quantum state under 
the action of a local Hamiltonian is BQP complete in the worst case 
complexity. For this reason, one cannot hope to find universal classical 
methods that can accurately and efficiently simulate this evolution for 
all time and all local Hamiltonians1. Although the ultimate goal may be 
the development of flexible and reliable quantum simulators2–4 able 
to directly realize many models of interest, in the near term we must 
continue to rely upon classical computers to simulate quantum matter.

To that end, many highly effective numerical techniques have 
been developed for studying many-body quantum systems subject 
to controlled and clear approximations. Leading the charge are tensor 

network methods5,6, which are instances of variational methods that 
build on tensor networks, particularly matrix product states in one 
dimension and projected entangled pair states in two dimensions. 
These methods work well for ground states and the short-time evo-
lution of generic non-integrable systems, but are limited in how 
they can capture dynamics, a state of affairs sometimes dubbed the 
‘entanglement barrier’. One may encounter indefinite oscillations 
and can, hence, capture long-time dynamics only for some specific 
and fine-tuned instances of weak ergodicity breaking7. Disorder will 
also assist in lessening the burden of long-time dynamics with tensor 
network methods8,9. That said, the core limitation stems from the 
generation of entanglement, as highly entangled systems require large 
bond dimensions, giving rise to computationally intractable situations, 
particularly in two dimensions. Quantum Monte Carlo techniques10 are 
also widely used, including for non-equilibrium dynamics11,12. However, 
they suffer from the well-known sign problem and stability issues. 
Dynamical mean-field theory can also capture quantum dynamics13,14, 
but again stability matters arise. Recently, machine learning has been 
used to capture many-body dynamics, which constitutes a strikingly 
interesting approach15–17, but here, questions about the predictive 
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matrix with O(L2) entries and H(4) as a tensor of order four with O(L4) 
real entries, and we employ a similar procedure for the generator 
η(l) =: η(2)(l) + η(4)(l). This allows the relevant commutators to be com-
puted efficiently as the sum of all one-point contractions of pairs of 
matrices or tensors26, at a cost polynomial in system size. In all of the 
following, we truncate at fourth order, 𝒪𝒪𝒪L4). The main consequence 
of fermionic statistics is the minus signs, which arise when computing 
the contractions. The method can be applied to bosons with minor 
changes.

A common choice of generator is η(l) ≔ [H0, V(l)], where H0(l)  
and V(l) are, respectively, the diagonal and off-diagonal parts of  
the Hamiltonian. In the following, we use the symbol V for off-diagonal 
elements. This is often known as the Wegner generator23,24. The  
diagonalization can be seen because the squared ∥ V𝒪l)∥22  is non- 
increasing in the fictitious time l as d ∥ V𝒪l)∥22/dl = −2 ∥ η𝒪l)∥22 ≤ 0 (see, 
for example, ref. 27). Convergence relies upon the model in question 
having a clear separation of energy scales in the initial basis. Models 
where this is not true (such as homogeneous systems and disordered 
systems with many near-degeneracies) cannot be fully diagonalized 
by this generator, as they act like unstable fixed points. Perturbing the 
Hamiltonian away from this fixed point can allow the flow to begin. 
However, small perturbations can result in long convergence times, 
whereas large perturbations improve convergence but risk changing 
the underlying physics. Here, we resolve this by introducing scrambling 
transforms, which are targeted unitary transforms aimed at lifting 
degeneracies, which the Wegner procedure alone is unable to resolve. 
As they are unitary, they cannot change the underlying physics. They 
simply act to ‘prepare’ the Hamiltonian in a basis more amenable to 
being diagonalized by the conventional Wegner flow (Fig. 1). The (infini-
tesimal) scrambling transform takes the form dS𝒪l) = exp𝒪−λ𝒪l)dl) , 
with a generator λ(l) given by

λij𝒪l) ∶= {
sgn𝒪i − j )H (2)

ij 𝒪l) ∶ c†i c j ∶, if H (2)
ij 𝒪l) ≥ δh,

0, otherwise,
(2)

with δh = ε|H (2)
ii 𝒪l) − H (2)

jj 𝒪l)|, where ε > 0 is the threshold parameter, 

which controls how easily the scrambling transform triggers. For ε = 0, 
this reduces to the Toda–Mielke generator27,28. Here, we use ε = 0.5. The 
full scrambling transform S(l) can be written as a time-ordered integral 
over dS(l). It is employed at the beginning of the flow and during  
the diagonalization procedure if degeneracies are encountered (see 
Supplementary Fig. 1 for details).

The scrambling transform used here is quadratic and does not 
induce any new higher-order terms. However, the action of the Wegner 
generator will typically lead to the generation of new terms contain-
ing six or more fermionic operators, like the way that such terms arise 
in renormalization group procedures. The central approximation 
of the CUT technique is that the Hamiltonian must be truncated and 
terms above a certain order neglected. We shall present rigorous error 
bounds later; for the moment, we emphasize that in cases where the 
method is insufficiently exact, higher-order terms can be systematically 

power and the explanatory value emerge. These obstacles all reflect  
the computational hardness of the task and highlight the need  
for thinking about tools for many-body dynamics that are entirely 
different altogether.

In this work, we develop a radically different approach to time evo-
lution in closed quantum systems. Combining the established method 
of continuous unitary transforms (CUTs), which are also known as ‘flow 
equations’18–25, with the newly developed method of scrambling trans-
forms (sketched in Fig. 1), we present a flexible and powerful approach 
to diagonalizing large Hamiltonians and computing time evolution 
to very long times. The key ingredient in our work is the use of scram-
bling transforms to improve the convergence properties of CUT-based 
methods, as this significantly improves their accuracy and validity. We 
demonstrate the potential of this technique by computing the dynamics 
of disordered quantum systems in one and two dimensions. The limita-
tion is very different compared to tensor network approaches. Here, it 
is not entanglement that provides the limitation but the accuracy of the 
approximate transform used. Heuristically, we find that in practice, this 
restriction is less severe than overcoming the entanglement barrier.

We will focus on a generic system of interacting fermions,  
captured as

H = ∑
i, j∈ℒ

H (2)
ij ∶ c†i c j ∶ + ∑

i, j,k,q∈ℒ
H (4)

ijkq ∶ c†i c jc†kcq ∶,

=∶ H (2) + H (4),
(1)

where : . . . : represents normal ordering with respect to the vacuum, 
and |ℒ| =∶ L  is the system size. We make no assumptions as to the form 
of the couplings nor the dimensionality of the system. The complexity 
of the calculation is set by the total number of lattice sites L, not by 
their geometry or the size of the local Hilbert spaces. A two-dimensional 
(2D) or three-dimensional system can be unfolded onto a one- 
dimensional (1D) system with long-range hopping, as sketched in Fig. 2, 
which does not pose a problem for CUT-based techniques.

Flow equation methods diagonalize the Hamiltonian by succes-
sively applying infinitesimal unitary transforms dU𝒪l) = exp𝒪−η𝒪l)dl) =
1 − η𝒪l)dl , where η(l) is the generator and l represents a fictitious  
‘flow time’ such that l = 0 is the initial Hamiltonian. The parameterized  
Hamiltonian H(l) ≔ U†(l)HU(l) becomes diagonal in the limit l → ∞,  
where the full unitary transform U𝒪l) = is a time-ordered integral over 
flow time l. The diagonalization procedure can be recast as solving the 
equation of motion dH/dl = [η(l), H(l)] (refs. 23,24). We store H(2) as a 

H (l = 0) H (l → ∞)

H (l = 0) H (l → ∞)

U† HU

a

b

S† HS U† S† HSU

Initial Hamiltonian Final Hamiltonian

Scrambled Hamiltonian

Fig. 1 | Cartoon illustration of the scrambling process. a, The conventional CUT 
process, which uses a single unitary transform U to diagonalize a Hamiltonian 
H, smoothly transforming it from the initial basis (l = 0) to the diagonal basis 
(l → ∞). b, The scrambling transform S first induces ‘effective disorder’, even in 
completely clean systems, which allows established CUT techniques to then take 
over and efficiently diagonalize the scrambled Hamiltonian S†HS with a second 
unitary transform U.

Fig. 2 | Unfolding a two-dimensional system. Illustration of how a 2D lattice can 
be mapped onto a 1D chain with correlated long-range hopping, which can be 
easily handled with CUT-based techniques.

http://www.nature.com/naturephysics


Nature Physics | Volume 20 | September 2024 | 1401–1406 1403

Article https://doi.org/10.1038/s41567-024-02549-2

included until the desired precision is reached, at a cost polynomial in 
the system size.

We will investigate initial local Hamiltonians of the form H = ∑i∈ℒ
[hi ∶ ni ∶ +J𝒪∶ c†i ci+1 ∶ + H.c.) + Δ0 ∶ nini+1 ∶], using open boundary 
conditions, with J = 1 and Δ0 = 0.1. In one dimension, this Hamiltonian 
maps onto the XXZ chain by a Jordan–Wigner transform. We diago
nalize these Hamiltonians in both one and two dimensions, for two 
different choices of hi: random disorder (hi ∈ [−d, d]) and quasi- 
periodic potentials (QP). For the latter, in one spatial dimension, 
hi ∶= d cos 𝒪2πi/ϕ + θ), with ϕ ∶= 𝒪1 +√5)/2 and θ a (real) randomly  
chosen phase that plays the role of a ‘disorder realization’. In two dimen-
sions, hi ∶= d𝒪cos𝒪2πix/ϕ + θ) + cos𝒪2πiy/ϕ2 + θ2)), where (ix, iy) repre

sent the coordinates of lattice site i, ϕ2 = 1 +√2  and θ2 is another  
random phase. For simplicity, we refer to d as the ‘disorder strength’  
in both cases. This model (and its spin chain equivalent) has been 
extensively studied in the context of many-body localization in the 
presence of both random and QP potentials, particularly in one dimen-
sion29–32 but also in two dimensions33. The end point is an (approxi-
mately) diagonal Hamiltonian:

H̃ = ∑
i∈ℒ

̃hi ∶ ̃ni ∶ + ∑
i, j∈ℒ

Δij ∶ ̃ni ̃n j ∶ +ℛ, (3)

where ℛ represents neglected higher-order terms, typically of order 
O𝒪Δ2

0) and higher. The interaction coefficients decay exponentially 
with distance in strongly (quasi)disordered systems, Δij ∝ e−∣i−j∣/ξ  
(refs. 26,33–37), where the ̃ni operators are known as local integrals  
of motion. We emphasize, however, that the form of equation (3) does 
not assume localization or the existence of local integrals of motion. 
This construction is equally valid whether the unitary transform is 
quasilocal (as for many-body localization) or entirely non-local.

Once the Hamiltonian has been diagonalized, it is possible to 
obtain a closed-form solution (within a given truncation scheme) to 
the Heisenberg equation of motion for any operator O expressed in 
the diagonal basis. The operator must first be transformed accord
ing to the flow equation dO/dl = [η𝒪l ),O𝒪l )], where η𝒪l ) collectively  
denotes both the scrambling and Wegner generators. This transformed 
operator also contains valuable information about the locality of the 
unitary transform and can be used to extract both a localization length 
and a measure of the ‘complexity’ of the diagonalization procedure, 
which can be linked to the existence of Lieb–Robinson bounds in  
flow time38. Specifically, the transformed creation operator takes  
the form c†i = ∑ j A

(i)
j ̃c†j +∑ j,k,qB

(i)
jkq ̃c†j ̃c

†
k ̃cq, and higher-order terms are  

neglected. A measure of the complexity of the transformed operators 
is given by the fraction of non-zero terms in this operator expansion. 
Intuitively, we would expect c†i  to remain sparse in a localized phase 
but not in a delocalized phase. Supporting analysis is shown in  
Supplementary Information Section 3. In practice, we choose a cutoff 
value ϵ = 10−6 below which we consider terms to be zero. The complexity 
is defined as

χ𝒪ϵ) = |{x ∈ 𝒪A ∪ B)|x2 > ϵ2}|
|{x ∈ 𝒪A ∪ B)}| , (4)

where (A ∪ B) represents the set of all coefficients Ai and Bijk in the 
operator expansion of c†i . We also define χ𝒪ϵ) = |{x ∈ 𝒪A ∪ B)|x2 > ϵ2}|. 
The results in Fig. 3 demonstrate a qualitative difference between one 
and two spatial dimensions. In one dimension, we find a phase where 
χ𝒪ϵ)  tends to a constant and χ(ϵ) ∝ (1/L)3 for large system sizes, indicat-

ing a ‘low complexity’ situation at strong disorder, as well as a higher  
complexity phase at small values of d where χ𝒪ϵ)  increases rapidly  
with system size, suggestive of thermalization. In two dimensions,  
we find that χ𝒪ϵ)  always increases, although for a quasi-periodic  
potential at large values of d, it increases sufficiently slowly that the 
normalized complexity χ(ϵ) still vanishes. By contrast, for small values 

of d in two dimensions, the complexity χ(ϵ) remains much larger than 
zero for all system sizes studied here. This suggests a slow crossover 
from a high complexity phase (consistent with the expectation of  
thermalization at small values of d) to a low complexity phase with 
anomalous thermalization properties. This notion of complexity is 
reminiscent of circuit complexity39,40.

Previous works that used CUT methods to compute non- 
equilibrium dynamics33,36,41 employed a computationally costly inver-
sion of the unitary transform to obtain time-evolved operators in the 
original basis. Here, we circumvent this limitation and directly obtain 
the infinite-temperature autocorrelation function. This highly 
non-trivial quantity fully characterizes the transport properties of the 
system. The thermal expectation value of any arbitrary operator O  
is given by ⟨O⟩ = Tr[exp𝒪−βH)O]/Tr[exp𝒪−βH)], where β = 1/T is the 
inverse temperature (in units of kB = 1). In the limit T → ∞, the expecta-
tion value becomes a uniform average over eigenstates, which in the 
diagonal basis are trivial product states. We approximate this average 
for large systems by randomly sampling 𝒩𝒩s ∈ [50, 256] half-filled eigen-
states. Specifically, we compute

C𝒪t) = 4⟨𝒪ni𝒪t) − 1/2)𝒪ni𝒪0) − 1/2)⟩. (5)

To minimize boundary effects, we choose i to be in the centre of the 
system. This is a highly demanding quantity that can be extremely 
challenging to compute with other methods but can be obtained very 
efficiently with the flow equation approach. Results for system size 
L = 100 (L2 = 10 × 10 for two dimensions) are shown in Fig. 4. The results 
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Fig. 3 | The complexity χ of the transformed creation operator c†i  in the 
middle of the system. a–d, Results are averaged over disorder realizations, with 
Ns ∈ [20, 1,024] samples depending on system size (Supplementary Information). 
Error bars show the standard deviation. a,b, Results in one dimension 
(L = 8, 10, 12, 16, 24, 36, 48, 64, 100) for random (a) and QP potentials (b). c,d, The 
same in two dimensions (L2 = 9, 16, 25, 36, 49, 64, 100) for random (c) and QP 
potentials (d). Dashed black lines close to the origin in a and b are fits with the 
form χ ∝ 1/L3, which suggests localization and is valid for large systems and strong 
disorder. Insets show the unnormalized complexity (that is, the numerator of 
equation (4)), which tends to a constant in strongly disordered 1D chains but 
grows in two dimensions even for strong disorder.
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remain reasonable far beyond the naive expectation that the accuracy  
should break down beyond timescales tJ ≈ 1/Δ2

0 , corresponding to  
the typical inverse magnitude of the terms cut off by the truncation, 
as verified by comparison with exact diagonalization (Supplementary 
Fig. 7). Figure 5 shows results for system sizes up to L = 100 (L2 = 10 × 10 
in two dimensions), along with a linear fit indicating the L → ∞ behaviour. 
Strikingly, very little dependence on system size is observed in one 
dimension, although in two dimensions there is a slow trend towards 
decreasing values of C(t) as the system size increases, except for strong 
QP potentials. This is consistent with the expectation that many-body 
localization may be ultimately unstable in two dimensions. For weak 
random disorder in two dimensions, the linear fit for large values of L 
breaks down, suggesting that our results probably overestimate the 
long-time value of C(t) as L → ∞. Additionally, at any finite order of trun-
cation, there may still exist higher-order processes that could contrib-
ute to thermalization on very long timescales. Nonetheless, for a given 
truncation scheme, we can make precise statements about the validity 
of this technique.

To do so, we develop an incremental bound on the error in the 
unitary transform. If at each flow time step we discard all newly gener-
ated terms above fourth order, we obtain

H𝒪l + dl) = H𝒪l) + dl[η𝒪l),H𝒪l)]

=∶ H𝒪l) + dl𝒪dH𝒪l) + A𝒪l)),
(6)

where dH(l) = [η(2)(l), H(2)(l)] + [η(2)(l), H(4)(l)] + [η(4)(l), H(2)(l)] represents 
the terms of the flow that are kept and A𝒪l) = [η(4)𝒪l),H (4)𝒪l)] + 𝒯𝒯   
represents the truncation error, where the higher-order terms 𝒯𝒯   
are assumed to be negligible in what follows. The norm of the trunca-
tion error A(l) at each infinitesimal time step is upper bounded by

‖A𝒪l)‖2 = ‖
‖[η

(4)𝒪l),H(4)𝒪l)]‖‖2
≤ √2 ‖‖η

(4)𝒪l)‖‖2
‖
‖H

(4)𝒪l)‖‖2
≤ 2 ‖‖H

(4)
0 𝒪l)‖‖2

‖
‖V

(2)𝒪l)‖‖2
‖
‖H

(4)𝒪l)‖‖2

(7)

using the submultiplicativity of the ∥.∥2 norm42. The total truncation 
error in flow time can be written as an integral of equation (7):

εlmax
T ≤ 2∫

0
dl ‖‖H

(4)
0 𝒪l)‖‖

(2)

2
‖
‖V𝒪l)

‖
‖
(4)

2
‖
‖H𝒪l)

‖
‖2 (8)

over l. Typical values of V(2)(l) decay exponentially in flow time,  
that is, [V (2)𝒪l)]ij ∝ exp𝒪−𝒪hi − h j)

2l)[V (2)𝒪0)]ij . Assuming random dis-
order drawn from a box distribution of width [−d, d] such that the mean 
value of this squared energy difference is 2d2/3 and that the largest 
parts of the interaction tensor remain proportional to the initial inter-
action strength (as new terms induced by the flow should always be 
smaller than the initial interactions), the error can be approximated as

εT ∝ J0Δ2
0∫

lmax

0
dl e−l2d 2/3 = 3

2
JΔ2

0
d 2 as lmax →∞. (9)

For weak (quasi)disorder, the disorder bandwidth d is replaced by  
the effective bandwidth ̃d ≥ d  induced by the scrambling transform 
(Supplementary Fig. 2). A numerical analogue can be computed by 
replacing the Hilbert–Schmidt (or Frobenius) norms in equation (7) 
with tensor Frobenius norms; the typical truncation error at each flow 
time step is well below 1% (Supplementary Fig. 6).

The above analysis indicates that energy differences below 
 cannot be reliably resolved, implying that the method will 

break down on timescales of the order t ∝ d 2/𝒪 JΔ2
0) when oscillations 

at corresponding frequencies ω ≈ O𝒪 JΔ2
0/d

2)  become relevant for  
the dynamics. The accuracy of the method can be systematically 
improved by incorporating additional higher-order terms into the 
truncated Hamiltonian, which allows accurate simulations of quantum 
dynamics to even longer times (proportional to 1/Δ3

0 at the next order 
of approximation) with a computational cost that remains polynomial 
in the system size. Future developments in massively parallel implementa-
tions of the tensor flow equation method26 used in this work, as well as 
advances in computer hardware, will facilitate the extension of this 
method to larger system sizes, longer timescales, stronger interactions 
and additional physical systems (including both driven37,43 and dissipa-
tive44 systems, which have been previously studied with CUT-based tech-
niques). Scrambling transforms may be of interest in a variety of other 
contexts, as they are essentially a way of transforming a highly entangled 
system into a simpler representation that is easier to simulate.

We end the discussion by briefly comparing our findings with 
those of tensor network methods. Standard tensor network methods 
are challenged in time evolution by the exponentially growing bond 
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Fig. 4 | Infinite-temperature correlation functions shown for a variety of 
disorder types, strengths, and dimensionalities. a–d, Infinite-temperature 
correlation functions: a, 1D, random, L = 100; b, 1D, QP, L = 100; c, 2D, random, 
L2 = 10 × 10; d, 2D, QP, L2 = 10 × 10. Grey dot-dashed vertical lines indicate the 
approximate timescale beyond which accuracy cannot be guaranteed. However, 
the results typically remain reasonable until much longer timescales. Black 
dashed lines show the long-time average computed directly without explicit time 

evolution, which is valid at strong (quasi)disorder only. The results are averaged 
over Ns ∈ [50, 128] disorder realizations. Error bars indicate the variance over 
disorder realizations. For both D = 1 and D = 2, the QP potential exhibits most 
much robust localization at large values of d/J, but by contrast also exhibits more 
complete thermalization at low values of d/J due to the underlying single-particle 
phase transition at d/J = 2.
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dimension that is requ ired to accommodate states faithfully in time. 
Some steps have already been taken to allow tensor networks to access 
longer times45–48, for example, with folding techniques47 or adaptive 
mode transformations46. The ideas introduced here show that one can 
go further than that, as we find that the fermionic mode transforma-
tions do not have to be linear. There are good reasons to believe that 
this is a favourable way to reach long simulation times. In fact, once the 
Hamiltonian is diagonalized, in principle, all times are available and the 
accumulating errors can be upper bounded. First connections between 
flow equation and tensor network methods have been made49, in antici-
pation of the time-dependent variational principle based on a differ-
ential geometric picture50. It is conceivable that the ideas introduced 
here can be further merged with tensor network techniques, as one 
could think of final Hamiltonians that are not treated as fully diagonal 
ones. There is also the intriguing possibility of combining scrambling 
transforms and other CUT-based techniques with tensor network 
approaches, such as entanglement-based CUTs51, which may allow 
tensor network methods to break through the entanglement barrier.

In this work, we have introduced a flow-based method equipped 
with scrambling transforms that can simulate interacting fermionic 
quantum many-body systems to good accuracy for intermediate 
and long times. Such a classical development can also be seen as a 
challenge to dynamical quantum simulators2,4, which aim to probe 
non-equilibrium properties of quantum matter beyond the reach of 
classical computers. These are exciting avenues for future progress.
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Methods
Computing and integrating the flow equation
All commutators computed in this work follow the scheme of ref. 26, 
in which the representation of the Hamiltonian in terms of a quadratic 
component (stored in memory as a matrix) and quartic component 
(stored as a tensor) allow the commutators to be recast in terms of 
matrix/tensor contractions, which are highly optimized linear algebra 
operations that can be performed efficiently on modern computing 
hardware. A complete description is contained in Supplementary 
Information Section 2. We used vacuum normal ordering such that 
higher-order terms in the running Hamiltonian have no feedback onto 
lower-order terms. The incorporation of additional non-perturbative 
corrections due to different choices of normal ordering has previously 
been done for the time-independent scenario52, but has been left for 
future work in the non-equilibrium setting. This would require specify-
ing a particular reference state with respect to which the corrections 
are computed. Calculations for all system sizes with more than a total 
of 16 lattice sites were performed on graphics processing units (GPUs; 
specifically, NVIDIA RTX A5000 GPUs with 24 Gb RAM and NVIDIA 
RTX 2080Ti GPUs with 12 Gb RAM) using single-precision arithmetic.

The flow equation dHl/dl = [η𝒪l),H𝒪l)]  was solved using a mixed 
fourth- and fifth-order Runge–Kutta integration method as imple-
mented in the JAX library53, which applies an adaptive step-size algo-
rithm. The maximum integration time was lmax = 1,000 , and the 
integration was stopped before then if the Hamiltonian was diagonal-
ized to the target accuracy, which we chose to be when max[|V (2)|] < 10−6 
and max[|V (4)|] < 10−3. Results for longer integration times showed no 
significant increase in accuracy, despite incurring a significantly higher 
computational cost. This is because the running Hamiltonian H(l) 
approaches full diagonalization only asymptotically at large values of 
l, so using larger values of lmax leads to diminishing returns.

Computing the dynamics
The transformed number operator was reconstructed from the trans-
formed creation and annihilation operators for large fictitious time:

ni𝒪l →∞) = c†i 𝒪l →∞) × ci𝒪l →∞), (10)

with the creation operator given by transformed creation and annihila-
tion operators:

c†i 𝒪l →∞) = ∑
j
A(i)j ̃c†j + ∑

j,k,q
B(i)jkq ̃c†j ̃c

†
k ̃cq (11)

and the annihilation operator obtained by taking its Hermitian conju-
gate ci𝒪l →∞) = 𝒪c†i 𝒪l →∞))

†
. Multiplying these together allowed us to 

reconstruct the number operator, including terms up to sixth-order 
in the fermionic creation/annihilation operators for the diagonal basis, 
̃c†i  and ̃ci. The number operator was then evolved in time in the diagonal 

basis according to the Heisenberg equation of motion, while neglecting 
newly generated higher-order terms, resulting in a closed-form solu-
tion. This step was performed on CPUs rather than GPUs due to memory 
limitations and is a prime candidate for future efficiency improve-
ments. At long times, near-degenerate single-particle eigenvalues can 
still lead to divergent terms in this solution (consistent with the expec-
tation that the simulation of a BQP-hard problem will eventually run 
into accuracy issues on a classical computer). However, these terms 
were strongly suppressed, arising only very rarely and at very long 
times. To prevent these rare scenarios from dominating the averaged 
data, we excluded disorder realizations when the maximum value of 
∣C(t)∣ > 1.1. (Alternatively, we could have used the typical rather than 
mean value of C(t).) See Supplementary Information for full details of 
the calculation and for where divergent terms arise from. In one dimen-
sion, the divergent terms were rare enough to have essentially no effect. 
The long-time average was obtained directly by setting all off-diagonal 

terms in the transformed number operator to zero (as when time- 
evolved, they acquire oscillating phases that average to zero). For 
systems with greater than 36 lattice sites in total, we neglected the 
sixth-order contributions and kept only the quadratic and quartic 
terms when computing the dynamics. For the systems considered here, 
the sixth-order terms have a negligible effect, which can be seen from 
the qualitative agreement between small and larger systems.

Rescaling the correlation function
As the norm of the number operator ni is not precisely conserved by 
the unitary transform, we rescaled the correlation function for each 
disorder realization according to the ansatz C(t) ↦ c1(C(t) − c2), where 
c1 and c2 are determined by minimizing the error with respect to the 
short-time dynamics of the non-interacting system (as many-body 
interactions are essentially irrelevant at very short times). This 
is computationally efficient, as we get the exact dynamics of the 
non-interacting system essentially for free in this formalism by just 
retaining the quadratic components of the Hamiltonian and rele-
vant observables. The rescaling employed in this work is justified 
a posteriori by the clear agreement between the rescaled C(t) and 
the exact result, which were computed for system sizes small enough 
for the comparison to be practical. Further analysis may be found in 
Supplementary Information Section 9. For small enough systems, an 
alternative would be to construct the operator as a matrix in the full 
Hilbert space and renormalize it by hand. However, this is not practical 
for systems as large as those considered here. We emphasize that the 
norm is preserved to high accuracy for sufficiently strong disorder, 
and the effects of this rescaling are most important for weakly dis-
ordered systems. This is independent of any error introduced in the 
eigenvalues and reflects the difficulty in simultaneously preserving the 
unitary evolution of both the Hamiltonian and the number operator 
within the same truncation scheme. The norm of the operator could, 
in principle, be exactly preserved by constructing the unitary trans-
forms subject to additional constraints24. However, in practice this is 
challenging to implement. This underscores the need for further work 
in developing more flexible generators for the types of CUT devel-
oped here, perhaps in concert with machine learning approaches to 
design data-driven generators tailored for specific problems subject to  
specific hard-to-satisfy constraints.
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