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Simple Summary: We investigated a new method for diagnosing and predicting outcomes in canine
pulmonary carcinoma. We developed a deep learning-based algorithm that accurately detects tumor
nuclei and subsequently measures size and shape parameters. The variation in nuclear size and shape
(nuclear pleomorphism) is a crucial malignancy criterion used in the current grading system for
canine pulmonary carcinoma. Pathologists currently evaluate it and classify it according to a three-tier
system. Manual morphometry is a more objective approach where tumor nuclei are individually
encircled and analyzed. This task can be easily performed by an algorithm. Our algorithm’s accuracy
in correctly detecting and segmenting tumor nuclei was considered good when compared to manual
morphometry. By comparing automated morphometry with conventional prognostic tests, such as
pathologists’ estimates, mitotic count, histological grading, and clinical staging, we found that our
approach was equally accurate in terms of prognostic value. The algorithm’s advantage lies in its
high reproducibility and efficiency. Automated evaluation of nuclear pleomorphism can enhance
the efficiency and reliability of canine pulmonary carcinoma diagnosis and grading, effectively
addressing issues of inter-observer reproducibility. However, further optimization of the algorithm
and validation with a larger study group is necessary to confirm our findings.

Abstract: The integration of deep learning-based tools into diagnostic workflows is increasingly
prevalent due to their efficiency and reproducibility in various settings. We investigated the utility of
automated nuclear morphometry for assessing nuclear pleomorphism (NP), a criterion of malignancy
in the current grading system in canine pulmonary carcinoma (cPC), and its prognostic implications.
We developed a deep learning-based algorithm for evaluating NP (variation in size, i.e., anisokaryosis
and/or shape) using a segmentation model. Its performance was evaluated on 46 cPC cases with
comprehensive follow-up data regarding its accuracy in nuclear segmentation and its prognostic
ability. Its assessment of NP was compared to manual morphometry and established prognostic
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tests (pathologists’ NP estimates (n = 11), mitotic count, histological grading, and TNM-stage). The
standard deviation (SD) of the nuclear area, indicative of anisokaryosis, exhibited good discriminatory
ability for tumor-specific survival, with an area under the curve (AUC) of 0.80 and a hazard ratio
(HR) of 3.38. The algorithm achieved values comparable to manual morphometry. In contrast, the
pathologists’ estimates of anisokaryosis resulted in HR values ranging from 0.86 to 34.8, with slight
inter-observer reproducibility (k = 0.204). Other conventional tests had no significant prognostic
value in our study cohort. Fully automated morphometry promises a time-efficient and reproducible
assessment of NP with a high prognostic value. Further refinement of the algorithm, particularly to
address undersegmentation, and application to a larger study population are required.

Keywords: anisokaryosis; artificial intelligence; dog; image processing; mitotic count; nuclear
pleomorphism; prognosis; pulmonary carcinoma

1. Introduction

Primary lung tumors in dogs are rare, although recognized cases have increased over
the past two decades [1,2], occurring with a lifetime incidence of up to 8.8% [3]. Among
these tumors, canine pulmonary carcinomas (cPCs) are the most prevalent [3–10]. The
most common histologic type is invasive adenocarcinoma [4,5,9]. Metastasis occurs in
17–38% of the cases by hematogenous, lymphatic, or airway routes, mainly to the tributary
(tracheobronchial) lymph nodes, other lung locations, and pleura/mediastinum [2,6,11–13].

The known relevant criteria for prognostic evaluation of cPC cases include tumor-node-
metastasis (TNM) staging [7,10,11,14], mitotic count [4,7,15], and histological grade [7,14,16,17].
A high mitotic count (defined by previous studies as the number of mitotic figures per
10 high-power fields, without a defined area) as a solitary parameter has been associated
with shorter survival and disease progression in cPC [7,15]. The median survival time of
dogs with pulmonary carcinomas has been correlated with the histological grade in two
studies. The first study by McNiel et al. [7] revealed median survival times ranging from
5 days for grade 3 tumors to 790 days for grade 1 tumors. The second study by Lee et al. [14]
showed a range of median survival times from 43 days in grade 3 tumors to 658 days in
grade 1 tumors [7,14]. Within the grading system of canine lung tumors, the overall tumor
differentiation, number of mitotic figures, and nuclear pleomorphism have been shown to
have the highest association with outcome, followed by nucleolar size, fibrosis, and degree
of invasion [7].

Nuclear pleomorphism, which describes the variation in nuclear size and/or shape, is
recognized as a prognostically relevant histological criterion in cPC (as a solitary parameter
and as part of the grading system) and in various other tumor types [7,18–21].

The current approach for assessing nuclear pleomorphism in cPC, following the
methods of the 1997 grading system [7], is the categorical estimation into three classes
based on the variation in nuclear size (anisokaryosis) and shape irregularity. Nuclear
pleomorphism estimates by pathologists are considered to be limited by low reproducibility,
as has been shown for canine mammary carcinoma [22,23] and canine cutaneous mast cell
tumors [24] and is suspected for cPC.

To improve the degree of reproducibility, alternative approaches for the assessment
of nuclear pleomorphism are of interest. Computerized measurements can be performed
either by pathologists using measurement software (manual morphometry) [23] or by the
use of image analysis algorithms (automated/algorithmic morphometry) [25,26]. While
manual morphometry performed by pathologists is too time-consuming for a routine
diagnostic setting [23,27], automated morphometry and deep learning-based algorithms
are efficient, given that an algorithm can segment and measure large numbers of nuclei
with comparatively little computing power in a short period of time. The application of
automated image analysis is becoming increasingly of interest for diagnostic laboratories
that have implemented digital microscopy in their workflow [28].
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The objective of this study was to investigate the reproducibility of nuclear pleomor-
phism estimates and the feasibility of automated nuclear morphometry for the prognostic
evaluation of cPC. We hypothesized that automated morphometry would be equivalent to
manual morphometry in terms of prognostic validity, whereas pathologists’ estimates are
hampered by insufficient inter-observer reproducibility.

We had the following hypotheses:

1. Inter-observer reproducibility of nuclear pleomorphism estimates between patholo-
gists is low in cPC, justifying the investigation of nuclear morphometry.

2. Algorithmic morphometry is able to accurately measure nuclear size and
shape parameters.

3. Algorithmic morphometry is at least equivalent to manual morphometry nuclear
pleomorphism estimates (which is impractical for a routine diagnostic test) and other
established prognostic tests with regard to prognostic ability.

2. Materials and Methods
2.1. Material (Study Cases and Datasets)

The cPC cases were obtained from the diagnostic archives of veterinary pathology
laboratories from two institutions (The Schwarzmann Animal Medical Center New York
(AMC) and University of Veterinary Medicine Vienna (VMU)), which were separated
into the ground truth dataset and outcome dataset (see below). Histological sections
were created from representative paraffin blocks and stained with hematoxylin and eosin.
Digitization of the histological sections was performed with the Pannoramics Scan II whole-
slide image (WSI) scanner (3DHistech, Budapest, Hungary) at default settings with a scan
magnification of 400× (resolution of 0.25 µm/pixel).

The selection of three (outcome dataset) regions or one (ground truth dataset) region
of interest (ROI) within each WSI was performed using the open-source viewing and
annotation software SlideRunner (Version 2.0.0) [29]. The higher number of the ROI for the
outcome cases was chosen to account for possible tumor heterogeneity during prognostic
evaluation. Each ROI had a size of 0.1185 mm2, which is equivalent to a 0.5 standard
high-power field (HPF) according to the definition of Meuten et al. [28] and an aspect ratio
of 4:3. The ROI selection was performed at low magnification intending to encompass a
representative tumor region without specific emphasis on nuclear characteristics. The areas
with necrosis, severe inflammation, large cystic spaces, and/or poor tissue preservation
were excluded, if possible. Each ROI was cropped and exported from the WSIs as TIFF files
using lossless compression.

2.1.1. Outcome Dataset

The outcome dataset was used to evaluate the inter-observer reproducibility of the
nuclear pleomorphism estimates and the prognostic value of the different tests (see below).
This dataset consisted of 19 cases from the AMC and 27 cases from VMU (total n = 46),
for which patient follow-up was available through the clinical records of the respective
institutes. The outcome information of the AMC cases was available through a previous
study currently under review (unpublished data) [30].

All the cases of cPC submitted for histological examination by the university clinic for
small animals at VMU between April 2001 and 2021, with available follow-up information,
were included in this study. The clinical records of the included cases were screened
for the following information: (1) date of surgery, (2) date of death or loss to follow-
up, (3) suspected cause of death based on clinical findings, (4) treatment regimens, and
(5) patient signalment (breed, age, and sex).

2.1.2. Ground Truth Dataset

For the modeling and testing of the developed algorithm, a ground truth dataset was
created. A total of 40 cases were selected from VMU, and 3 cases were chosen from the AMC.
For these 43 cases, the patient follow-up information was not available, and, thus, these



Vet. Sci. 2024, 11, 278 4 of 21

cases were not eligible for the outcome dataset. Consequently, these cases were used for the
development of the algorithm. The images were annotated using the software SlideRunner
(Version 2.0.0) [29]. Each nucleus of the neoplastic epithelial cells was precisely outlined
using the polygon annotation tool, resulting in 27,138 ground truth annotations (average
per ROI: 631.12, range: 295–1224). To avoid inter-observer variability, this procedure was
performed by a single annotator (IG) who was supervised by a board-certified pathologist
(CAB). The images were randomly allocated to three subsets for algorithm training (n = 30),
validation (n = 6), and testing (n = 7), while the cases within each subset varied for the three
models (see below).

2.2. Methods

The deep learning-based algorithm for nuclear morphometry was developed with
and tested against a ground truth dataset to evaluate its accuracy. Its prognostic value was
evaluated on cases with a known patient survival time (outcome dataset). As a benchmark
for the algorithm’s prognostic value, we compared it with manual morphometry, the pathol-
ogists’ estimates of nuclear pleomorphism, and additional prognostic tests (Figure 1). The
inter-observer reproducibility of the nuclear pleomorphism estimates by the pathologists
was assessed on the outcome dataset.
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Figure 1. An overview of the development of the deep learning-based nuclear morphometry
algorithm (A) and evaluation of its prognostic value (B). (A) The ground truth dataset, comprising
46 whole-slide images (WSIs) of canine pulmonary carcinoma (cPC) and the associated annotations,
was utilized for the development, and testing of a deep learning-based algorithm for nuclear mor-
phometry and the segmentation performance. (B) Independent cases with known patient survival
(outcome dataset) were analyzed using this algorithm. Additional prognostic tests, including manual
morphometry, pathologists’ estimates of nuclear pleomorphism, mitotic count, histological grade,
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and clinical stage, were performed on this dataset for comparison. *, The inter-observer reproducibility
was evaluated and compared to the estimates provided by pathologists. ROI, region of interest;
RMSE, root mean squared error; and WSI, whole slide image.

2.2.1. Pathologists’ Estimates of Nuclear Pleomorphism

Eleven veterinary pathologists from 8 different laboratories evaluated the images of
the outcome dataset (ROI 1) in a blinded manner with regard to the patient outcome and the
results of the other pathologists and morphometry. For the data analysis, the participants
were anonymized by randomly assigning a unique identification number (P1–P11). The
pathologists applied one definition for anisokaryosis and shape irregularity each, which
were modified from the grading system [7]. As compared to the previous definition, we
removed anisocytosis (variation in cellular size) and divided nuclear pleomorphism into
anisokaryosis (i.e., variation in nuclear size) and nuclear shape irregularity to allow for
a better comparison with morphometric parameters, with the SD of the area reflecting
anisokaryosis and the SD of the solidity the variation in shape.

The three anisokaryosis categories were defined as follows:

• Mild: an overall uniform nuclear size.
• Moderate: some variation in the nuclear size but with less than a two-fold difference.
• High: variation in the nuclear size with a greater than two-fold difference.

The two shape irregularity categories were defined as:

• Absent: regular (all or most round-to-oval nuclei with smooth contours).
• Present: irregular (numerous nuclei with uneven contours).

2.2.2. Supervised Deep Learning-Based Algorithm (Fully Automated Morphometry)

We trained a deep learning segmentation model to detect individual tumor nuclei,
using data augmentation techniques, followed by a morphometric analysis.

Deep Learning Segmentation Model

To detect the individual tumor nuclei, we combined semantic segmentation, i.e., the
classification of each pixel, with connected-component labeling provided by the Scikit-
Image framework [31]. As the segmentation model, we used a UNet++-based model [32]
with a RegNetY120 [33] backbone provided by the segmentation model package [34] for
Pytorch (Version 1.12.1) [35]. To be trained successfully, our model needed images and
corresponding image masks as labels. Each labeled image must provide a binary mask
with all the pixels that are part of the nuclei represented as the foreground (ones) and all
the rest marked as the background (zeros). For the training of our model, we used the
Pytorch Lightning framework (Version 1.7.2) [36] in combination with an adapted version
of the focal loss [37]. This adaptation enabled the use of a weight map [38] that supported
the model to learn how to provide a better separation of the individual nuclei. To assess the
generalization performance of the employed model architecture, three models were trained
on three different data splits, all separated into a training, validation, and test set, while
ensuring no overlap between the test sets, always represented by 7 images. The 3 models
were each trained for 2000 epochs using the training dataset. For each data split, the best
model out of these epochs was selected based on the validation loss.

In order to select the optimal model based on validation performance, we employed
the model checkpoint method of the Pytorch Lightning framework (Version 1.7.2) [36].
For monitoring the loss during the training process and saving example images and the
corresponding segmentation masks for each individual epoch, we used Tensorboard [39]
throughout the modeling process. This monitoring ensured optimal conditions for the
model training and model selection process. To artificially increase the variation within
our dataset, we applied data augmentation methods during the training steps using a
randomly selected combination of methods, including transpose, vertical/horizontal flip,
rotation, elastic transformation, grid/optical distortion, image shifting, image scaling, RGB
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color-channel shifts, and changes in brightness and contrast as well as changes in hue and
saturation, as is commonly performed.

In addition to these augmentation methods, we used random cropping to extend
our dataset artificially. Using a random selection of the regions and images to be used
for the creation of these crops, we artificially extended our dataset by a factor of 10. For
the validation dataset, the random cropping was performed once prior to training the
model. For the training dataset, new random crops were taken after each epoch. Using
the distributed data parallel (DDP) strategy of the Pytorch Lightning framework (Version
1.7.2) [36], we trained our models on two GPUs, each processing a batch of 8 image
crops during each step of each epoch, resulting in a combined batch size of 16 crops per
epoch step.

Algorithmic Morphometry

After the segmentation and localization of the individual nuclei and the filtering
of objects with an area of <7 µm2, which were considered too small to be nuclei (i.e.,
“noise”), different morphometric parameters (Table 1) were calculated using the Scikit-
Image framework [31]. The selection of these parameters is based on a previous study [40].
The nuclear area was defined by the pixel number within the segmented objects and
subsequent conversion to µm² based on the scan resolution. The standard deviation (SD)
of the nuclear area reflects the variation in the nuclear size and was therefore used as
the primary parameter for comparison with the pathologists’ anisokaryosis estimates (see
below). The percentage of large (karyomegalic) nuclei was determined by two nuclear size
thresholds (42.3 and 50.5 µm2), which represent the 90th percentile and twice the median
of the area of all the nuclei labeled in the ground truth dataset.

Table 1. List of morphometric parameters used for algorithmic and manual morphometry.

Feature Measurement Parameters

Size Area (in µm2)
Mean, median, standard deviation (SD), skewness, mean and

median of the largest 10% of the nuclei, 90th percentile
(90th P), percentage of large nuclei (>42.3 µm2 or >50.5 µm2)

Shape Eccentricity Mean, median, SD, skewness
Solidity Mean, median, SD, skewness

As indicators of the nuclear shape, we assessed the eccentricity and solidity using
the Scikit-Image framework [31]. Eccentricity describes the roundness of the object and is
determined by the ratio of the distance between the focal points of an ellipse and the length
of its major axis. A ratio nearing 1 signifies a more elongated shape, while 0 indicates the
perfect circularity of the shape.

To calculate the solidity of each segmented object, we employed the ratio of the object’s
detected area relative to the area of its convex hull. A solidity value of 1 indicates perfect
shape regularity. The closer this value is to 0, the more indentations are present and/or the
larger the indentations are. Thus, the standard deviation of solidity is a reliable indicator
for irregularity in the nuclear shape. To evaluate the prognostic significance of the mean
and median solidity, we compared the values to the shape irregularity estimates conducted
by the pathologists (see below). To ensure clarity, we inverted the values by calculating
1—the mean/median solidity value for each case—so that larger values represent increased
shape irregularity.

The final algorithm was deployed to process the images of the test subset of the ground
truth dataset and outcome dataset.

2.2.3. Benchmark Prognostic Tests

To comprehensively evaluate the prognostic value of the algorithm, we compared
its performance with the nuclear pleomorphism estimates by the pathologists, manual



Vet. Sci. 2024, 11, 278 7 of 21

morphometry, and established prognostic tests including the mitotic count, histological
grade, and clinical stage, using the outcome dataset (Figure 1).

Manual Morphometry

The manual morphometry was conducted by one author (IG) by annotating at least
100 tumor nuclei per image. An overlay featuring a 5 × 6 grid of thin black lines was
added to the TIFF files, dividing the ROI images into 30 equally sized parts. With the aid
of the annotation software SlideRunner (Version 2.0.0) [29], the annotator circled all the
nuclei in as many grids as required until 100 nuclei were labeled. After reaching 100 nuclei,
the current grid was completed, resulting in up to 137 (range 101–137 and mean = 115.91)
annotations per image. The nuclei that were cut at the margins of the image were excluded,
while the nuclei that intersected the grid lines were completely encircled (i.e., the annotation
extended to the neighboring grid). The annotations for each grid started from the upper
left corner and proceeded in a meandering pattern. The annotations were subsequently
measured using the same morphometric parameters as for the algorithmic morphometry
(Table 1).

Mitotic Count (MC)

For the MC, an ROI with the size of 2.37 mm2 at an aspect ratio of 4:3 was selected
(bounding box annotation) by one pathologist (CAB) using the software SlideRunner
(Version 2.0.0) [29], as previously described [41], in a tumor area with high mitotic activity.
The areas with marked necrosis, inflammation, poor tissue preservation, and low cellular
density were excluded from consideration, consistent with the current guidelines [28].
The area selection for the MC was independent from the area selection for the nuclear
morphometry. Within these regions, two pathologists (CAB and TAD) independently
annotated all the mitotic figures based on published morphologic criteria [42]. The number
of mitotic figures per ROI was used as the MC value, while the MCs of both pathologists
were used separately for the prognostic evaluation.

Histological Grade

The grade according to the methods described by McNiel et al. [7] (Supplementary
Table S11) was determined in the WSI of the outcome cases. Initially, the cases were
evaluated independently by CAB and TAD, and the cases with disagreement in the assigned
grades were reviewed jointly for deriving consensus. The MC as determined above by the
respective pathologist was used for grading.

Clinical Staging System

The clinical stage of the outcome cases was determined from the medical records
based on the system developed by Owen et al. [43]. The stage is based on primary tumor
features (T0–T3), regional lymph nodes (N0–N2), and distant metastasis (M0 and M1)
and is classified in four tiers, with stage 1 suggesting a favorable and stage 4 a poor
patient outcome.

2.2.4. Statistical Analysis

GraphPad Prism version 5.0 (GraphPad Software, San Diego, CA, USA), IBM SPSS
Statistics version 29.0 (IBM Corporation, Armonk, NY, USA), and R version 4.2.2 (R Foun-
dation, Vienna, Austria) were used for the statistical analysis.

Inter-Observer Reproducibility

The inter-observer reproducibility between the estimates of the study participants
on the outcome dataset was determined by Light’s Kappa (k) with an interpretation
of the k-values as follows: 0 = poor agreement, 0.01–0.20 = slight agreement,
0.21–0.40 = fair agreement, 0.41–0.60 = moderate agreement, 0.61–0.80 = substantial agree-
ment, and 0.81–1.00 = almost perfect agreement [44]. Linear regression was used to deter-
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mine the correlation between the pathologists’ anisokaryosis estimates with the algorith-
mically measured SD of the nuclear area with spline regression for the smoothing of the
resulting curves.

Test Accuracy of Algorithmic Morphometry

The test accuracy was determined on 21 images of the ground truth test subsets using
cross validation of three models. Each of the three models used 7 test images, exclud-
ing any augmentation methods or image crops. Firstly, the model’s binary segmentation
quality was determined through the Dice Coefficient. Secondly, we validated the local-
ization performance of our model in combination with connected-component labeling.
Conversely, we conducted a test to determine if all the nuclei identified in the labeled
mask were included in the segmentation result and also to detect objects falsely segmented
as nuclei. The F1 score, precision, and recall were used as quality measurements for the
localization performance.

The root mean squared error (RMSE) was calculated for the whole image, comparing
the difference between the algorithmic and manual ground truth measurements. Addi-
tionally, the RMSE-to-range ratio was calculated to describe the extent of the error in
comparison to the distribution of the data.

Prognostic Value

The prognostic value of the nuclear evaluation methods and other prognostic indica-
tors was determined based on the outcome dataset. For this, the tumor-specific survival
time (time between primary surgery and death related to the cPC) and overall survival
time (time between primary surgery and death related to any cause) were assessed. Based
on the available patient follow-up information, 250-day survival was selected as a trade-off
between a sufficiently long follow-up period and the need to exclude or censor cases with
short follow-up. While exclusion/censoring affected 11 patients for the tumor-specific
survival interval of 250 days, 21 patients would have been affected for the interval of
365 days. The patients that died of tumor-unrelated death or were lost to follow-up during
the 250-day observation period were censored or excluded, respectively, from the analysis.

The prognostic value was evaluated using numerical and categorical values. The
numerical tests (morphometry and MC) were analyzed by the area under the receiver
operating characteristic curves (AUC), univariate cox regression (hazard ratios with 95%
confidence intervals, 95% CI), and scatter plots (comparing cases with and without tumor-
specific mortality).

The categorical tests (anisokaryosis and nuclear irregularity estimates, tumor grade,
and stage) and dichotomized numerical tests were analyzed by sensitivity (Sen), specificity
(Sp), precision (Pre), Kaplan–Meier curves, and univariate cox regression (hazard ratios
with 95% CI). Dichotomization of the numerical tests was performed using scatter plots
by selecting the threshold value resulting in a Sen of 70% (i.e., correct classification of
7/10 cases with tumor-related mortality) and the highest possible Sp value. The uniform
Sen values allow for a comparison of the Sp values between the different prognostic tests.
For the mitotic count, we applied the three established thresholds of the grading system for
case categorization; a combination of these categories (1 and 2 vs. 3, and 1 vs. 2 and 3) was
used for the statistical analysis [7].

3. Results
3.1. Inter-Observer Reproducibility of Nuclear Pleomorphism Estimates

The inter-observer reproducibility was slight (k = 0.204) for the three-tier anisokaryosis
estimates and fair (k = 0.272) for the two-tier nuclear shape irregularity. Figure 2 shows
the difference between the individual pathologists in assigning an anisokaryosis or shape
irregularity category depending on the algorithmically measured SD of the nuclear area
and SD of the solidity.
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Figure 2. Linear regression curves of the individual pathologists’ three-tier anisokaryosis (A) and
two-tier shape irregularity (B) estimates with the algorithmically measured standard deviation (SD)
of the nuclear area and SD of the solidity, respectively. The curves show which anisokaryosis or shape
irregularity score would likely be assigned by the respective pathologists depending on the SD of
the nuclear size. The figure highlights the variability in the pathologists’ assessments, with different
patterns in assigning in manual estimates, emphasizing the need for objective, algorithmic measures
for consistent evaluation.

3.2. Test Accuracy of Algorithmic Morphometry

As listed in Table 2, the three segmentation models provide Dice scores (segmenta-
tion performance) above 0.7661 and F1-scores (object detection performance) above 0.8397
when combined with the connected-component labeling for detecting the individual nuclei
(Figure 3 and Supplementary Figure S1). The root mean squared error (RMSE) was consid-
ered acceptable for the majority of the measured morphometric parameters (Supplementary
Tables S1 and S2), while the RMSE values vary somewhat across the three models/test
subsets and parameters. Notably, the parameters of the nuclear shape, particularly the
SD of the solidity (range between the three test sets: 51–155%), show an overall larger
RMSE-to-range coefficient compared to the features of the nuclear size, such as the SD of the
area (range: 7.8–46.6%). Supplementary Figure S2 illustrates the positive linear correlation
between the algorithmic and ground truth measurements for the selected morphometric
parameters, combining the test cases for the three segmentation models.

Table 2. The quality measures of the three segmentation models including the segmentation and
object localization performance determined on 7 separate test images for each model.

Model Binary Segmentation Object Localization

Dice F1 Precision Recall

1 0.8073 0.8615 0.8877 0.8369
2 0.7761 0.8397 0.8726 0.8091
3 0.7801 0.8649 0.8470 0.8835
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Figure 3. An exemplary image of the algorithmic segmentation showing the nuclei detection perfor-
mance of model 1 in combination with the connected-component labeling. Each nucleus is colored
randomly to get an impression for the model’s capability to separate the individual nuclei.

3.3. Prognostic Value

The demographic characteristics of the study population are presented in the Sup-
plementary Materials. The follow-up period ranged from 1 to 1961 days, with a median
survival time or lost-to-follow-up time of 257 days. For the 15 cases, where death was
attributed to cPC, the median survival time was 151 days. At 250 days after surgery, 8 dogs
were lost to follow-up, 10 died of suspected tumor-related cause, 3 died of tumor-unrelated
cause, and 25 were alive. A total of 19 dogs received chemotherapy in addition to surgical
therapy. The clinical staging at the time of surgery identified 35 cases of stage 1, 5 cases
of stage 2, and 3 cases each of stages 3 and 4. Metastases at death were confirmed by
histology or cytology in 6 cases and suspected based on diagnostic imaging in 12 cases.
The histological grading revealed that 6 dogs were classified as grade 1, 32 as grade 2, and
3 as grade 3. The mitotic figures were counted as mitoses per 10 high-power fields (HPFs)
and scored according to the grading scheme proposed by McNiel et al. [7]. Pathologist 1
identified 23 dogs with a score of 1, 9 with a score of 2, and 7 each with scores of 3 and 4.
Pathologist 2’s assessment categorized 14 dogs with a score of 1, 11 with a score of 2, 6 with
a score of 3, and 15 with a score of 4.

While the MC of both pathologists (AUC1 = 0.474, 95%CI: 0.237–0.711; AUC2 = 0.374,
95%CI: 0.109–0.639) was unable to discriminate tumor-specific survival at 250 days, the
algorithmic and manual nuclear morphometry achieved AUC values of above 0.75 for
the nuclear area parameters, excepting skewness (Figure 4 and Supplementary Table S3).
The SD of the solidity measurements resulted in the highest AUC values of 0.82 (95%CI:
0.67–0.98) for the algorithmic morphometry; however, the SD of the solidity measurements
assessed manually was not prognostically relevant (Figure 4). The AUC values for all-cause
mortality are provided in Supplementary Table S4. Analyzing the nuclear parameters
in multiple tumor areas (one ROI vs. three ROIs) did not improve the prognostic ability
(Supplementary Figure S3 and Tables S3 and S5).
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Figure 4. Graphical presentation of the area under the ROC curve values (black dots, tumor-specific
survival at 250 days after surgery) and their 95% confidence intervals (black line) and probability
density function (blue and red area) comparing algorithmic (blue, model 1 deployed on ROI 1) and
manual nuclear morphometry (red). The analysis is based on 10 cases with tumor-specific mortality
within the first 250 days after surgery and 25 cases that survived the follow-up period. AUC, area
under the curve; SD, standard deviation.

The scatter plots for the algorithmic and manual morphometric measurements com-
paring cases with and without tumor-related death are shown in Supplementary Figure S4.
The prognostic thresholds and the corresponding Sen and Sp values for the selected mor-
phometric parameters are listed in Table 3. The categorical anisokaryosis estimates of
the 11 pathologists show similar performance compared to the algorithmic and manual
morphometry of the SD of the nuclear area but with highly variable Sen/Sp values ranging
from Sen = 7.1%/Sp = 91.7% (pathologist 7) to Sen = 78.6%/Sp = 58.3% (pathologist 8) for
anisokaryosis 1 and 2 vs. 3 and from Sen = 64.3%/Sp 50% (pathologist 2) to Sen = 100%/Sp
= 0.0% (pathologist 8) for anisokaryosis 1 vs. 2 and 3 (Figure 5 and Supplementary Table S7).
The algorithmic measurement of the SD of the solidity outperformed the manual mor-
phometry and estimates by all 11 pathologists, which had highly variable performance
ranging from Sen = 21.4%/Sp = 83.3% (pathologist 1) to Sen = 71.4%/Sp 12.5% (patholo-
gist 4; Figure 5 and Supplementary Table S8). Supplementary Table S10 shows that other
prognostic tests, such as the MC, grade, and stage, had highly variable Sen/Sp values, with
precisions ranging from 18.8% to only up to 50.0%.
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Table 3. The sensitivity, specificity, and precision regarding the tumor-related mortality at 250 days
after surgery for the selected morphometric parameters measured by algorithmic (based on model 1)
and manual morphometry in ROI 1. The analysis is based on 10 cases with tumor-specific mortality
within the first 250 days after surgery and 25 cases that survived the follow-up period.

Morphometric
Parameter Method Threshold

Value Sensitivity Specificity Precision

SD of area
Algorithmic 16 µm2 70.0% 68.0% 46.7%

Manual 10 µm2 70.0% 64.0% 43.8%

Mean area of largest
10% of the nuclei

Algorithmic 70.5 µm2 70.0% 72.0% 50.0%

Manual
53.03 µm2 70.0% 64.0% 43.8%

50 µm2 90.0% 64.0% 50.0%

Percentage of nuclei
above 42.3 µm2

Algorithmic 19% 70.0% 68.0% 46.7%
Manual 26% 70.0% 76.0% 53.8%

SD of solidity Algorithmic 0.045 70.0% 92.0% 77.8%
Manual 0.0204 70.0% 48.0% 35.0%
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Figure 5. The ROC curves for the algorithmic (blue, model 1) and manual (red) morphometry and
sensitivity/specificity values for the pathologists’ estimates (symbols) from ROI 1. (A) The curves
represent the SD of the nuclear area measurements and the symbols the three-tier anisokaryosis
estimates (dots: grade 1 + 2 vs. 3; triangle: grade 1 vs. 2 + 3). (B) The curves represent the SD of the
solidity measurements and the dots the two-tier shape irregularity estimates by the pathologists.

The results of the univariate cox regression for the categorical and dichotomized
prognostic tests are provided in Table 4 and listed in Supplementary Table S6 for the
numerical tests, showing that the hazard ratios are markedly higher for the morphometry
than for the other prognostic tests. Notably, the conventional prognostic tests showed no
discriminatory ability in the prognostication of cPC (Table 4 and Supplementary Table
S10). For the anisokaryosis and shape irregularity estimates, the hazard ratios were highly
variable between the individual pathologists (Supplementary Table S9). The Kaplan–Meier
curves show that the prognostic thresholds can distinguish the patient outcome for the
selected morphometric parameters determined by the algorithm (Figure 6) and manual
method (Supplementary Figure S5).
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Figure 6. The Kaplan–Meier curves for the tumor-specific survival time (until 250 days after surgery)
for the different nuclear size and shape parameters of the algorithmic morphometry (model 1, ROI 1).
The analysis is based on 46 cases with the censoring of the cases that were lost to follow-up or died
due to tumor-unrelated causes (n = 11). A total of 10 cases died of tumor-related causes and 25 dogs
survived the follow-up period. (A) The standard deviation (SD) of the nuclear area (log rank test:
p = 0.0615). (B) The percentage of nuclei > 42.3 µm2 (log rank test: p = 0.0658). (C) The mean area
of the largest 10% of the nuclei (log rank test: p = 0.0361). (D) The SD of the solidity (log rank test:
p < 0.0001).

Table 4. Hazard ratios (HR) with 95% confidence intervals (95%CI; univariate cox regression) for
categorical and dichotomized prognostic tests. Tumor-specific survival was tested with a follow-up
period of up to 250 days after surgery.

Prognostic Test
Algorithm Pathologists

Threshold HR (95%CI) Threshold/
Categories HR (95%CI)

Morphometry

SD of area 16 µm2 3.38 (0.87–13.1) 10 µm2 3.32 (0.85–12.9)

Mean area of largest
10% of nuclei 70.5 µm2 3.85 (0.99–15.0) 50 µm2 9.83 (1.24–78.1)

% nuclei above
42.3 µm2 19% 3.32 (0.85–12.9) 26% 4.34 (1.12–16.9)

SD of solidity 0.045 9.88 (2.52–38.7) 0.0204 1.94 (0.50–7.52)

Other

Grade
NA NA 1 vs. 2, 3 1.01 (0.12–7.98)

NA NA 1, 2 vs. 3 1.75 (0.36–8.36)

MC, pathologist 1 NA NA 1, 2 vs. 3, 4 0.79 (0.20–3.08)

MC, pathologist 2 NA NA 1, 2 vs. 3, 4 0.41 (0.10–1.61)

Stage NA NA 1 vs. 2, 3, 4 1.42 (0.36–5.49)
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4. Discussion

We were able to validate our hypotheses as follows and discuss them in detail below:

1. We have demonstrated the low inter-observer reproducibility of nuclear pleomor-
phism estimates among pathologists in cPC. Nuclear morphometry presents a reason-
able approach to overcome this limitation.

2. The algorithm’s segmentation ability was good for nuclear size parameters and ac-
ceptable for shape parameters. Future studies may benefit from implementing filters
and/or optimizing the algorithm to improve the model’s accuracy.

3. Regarding tumor-specific survival, the prognostic ability of the algorithmic morphom-
etry was similar to manual morphometry for most parameters, with the exception of
SD of solidity, and other established prognostic tests (histological grade, mitotic count,
and clinical staging). The algorithm has the advantage of efficiency as a large number
of nuclei can be measured within a few seconds and thus makes morphometry feasible
for routine diagnostic service.

4.1. Inter-Observer Reproducibility

The anisokaryosis estimates by the pathologists had a similar prognostic value to
the algorithmic and manual morphometry. The individual pathologist’s sensitivity and
specificity values were similar to the respective points of the ROC curve for morphometry.
However, the individual pathologists interpreted anisokaryosis differently, resulting in
highly variable sensitivity and specificity values. The reasons for the variable classification
of the anisokaryosis and nuclear shape between pathologists may include difficulties
with clarity/variable interpretations of the methods including the number/percentage
of nuclei that need to have two-fold size variation to warrant designation of high-score
anisokaryosis. We have shown that different pathologists associate the same degree of SD
of the nuclear area with different anisokaryosis scores and a previous study has shown
similar results for canine mast cell tumors [40]. In addition, the pathologists have variable
visual experience in nuclear size evaluation, which is particularly difficult in round-to-
oval structures, i.e., nuclei, as the diameter is not proportional to the area. Improved
methods for size and shape estimates, such as exemplary images in publications, reference
sizes in digital images, etc., as previously used in lymphoma subtype classification [45]
require further investigation in cPC. Updated definitions of the nuclear pleomorphism
categories need to be explored given that estimates remain the only method available for
light microscopy. In contrast, digital images/microscopy and nuclear morphometry hold
high potential to standardize the assessment of nuclear characteristics and enhance the
relevance of nuclear characteristics as a prognostic test, particularly when large numbers of
nuclei are measured through automated methods. Studies have demonstrated that manual
morphometry requires up to 15 min per image, which precludes its implementation in
daily diagnostic practice [23,27]. Algorithmic approaches of morphometry performed by
deep learning, as the current state of the art in nuclear segmentation, can overcome this
limitation while remaining time-efficient and with high reproducibility.

However, future studies should evaluate the heterogeneity of nuclear characteristics
throughout the tumor section and the effect on case interpretation when different ROIs are
selected for algorithmic analysis. In our study, the evaluation of one or three tumor regions
resulted in a similar ability to prognosticate patient outcome, suggesting a minor impact of
tumor heterogeneity on reproducibility, but a more thorough analysis is warranted.

4.2. Test Accuracy of Algorithmic Morphometry

The ability of a segmentation model to accurately detect and identify objects of interest,
in this case, nuclei, is crucial for its deployment in clinical use, particularly in terms of
prognostic value. While statistical metrics indicated a good segmentation performance of
the developed algorithm, the nuclear size measurements (based on the segmented nuclei)
had a high similarity to the ground truth as determined by the RSME. However, the nuclear
shape parameters (particularly solidity) were less accurate. A limitation of our study was
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the low number of test cases available for each model (n = 7), which was the motivation to
conduct a cross validation with three separately trained segmentation models, providing a
better impression of the generalization performance of our approach. A particular difficulty
for cPC seems to be the close spatial connection of neoplastic nuclei and the overlap of nuclei
in thick tissue sections, challenging algorithms to accurately separate individual nuclei. We
investigated several filters (postprocessing of algorithmic segmentation masks) to reduce
the impact of the insufficient separation of nuclei (undersegmentation). However, even
with these approaches, we were unable to improve the overall performance (unpublished
data). Filters to remove undersegmentation (i.e., several nuclei detected as one) may
potentially be based on the abnormal large size or shape of the detected objects. Both of
these features also represent the malignancy criteria of interest in the present study, thus
explaining the difficulty in developing reasonable filters. The ability of our algorithm to
distinguish neoplastic from non-neoplastic ones, such as fibrocytes and inflammatory cells,
seemed to be appropriate; however, the analyzed images were selected to contain mostly
tumor cells and a more detailed investigation is needed.

4.3. Inter-Algorithmic Reproducibility

When comparing the three algorithms based on the separately trained segmentation
models, the inter-algorithmic consistency of the prognostic ability was good, with some
variability in the AUC values for the outcome dataset. A direct comparison of the three
models on the test subset of the ground truth dataset is not possible, as different test
cases were used for each model. While the similarity on the outcome dataset confirms
the algorithm’s training effectiveness, it should be noted that the ground truth dataset
used for model development has some influence on the performance. Training a model is
a statistical process (such as the random sampling of images for training), and thus, the
variability between the models may be related to these random effects. Each model used
different test cases, and variable test performance of the models may also be related to
variable tissue quality between the different cases of the distinct subsets as proper fixation
and section thickness may play a role.

4.4. Two-Dimensional vs. Stereological Approach

Nuclear morphometry can be performed by two methods: (1) three-dimensional
(stereological) estimates of nuclear volume and (2) two-dimensional measurements of
nuclear sections. As morphometry is influenced by the position and orientation of the
nucleus, the stereological approach has been proposed as more representative [27,46]. It
has been argued that the assumption of the correct position and orientation of the nucleus
in two-dimensional measurements leads to an increased chance of measuring large nuclei
more frequently [27]. However, the stereological approach has limitations, particularly
the restriction to nuclear volume as the only assessable morphometric parameter. Thus,
we have decided to use the two-dimensional approach. Due to the high number of nuclei
available in each image, we consider the nuclei included in two-dimensional measurements
sufficiently representative, allowing for the calculation of an informative probability density
function. The advantage of two-dimensional measurements is the additional morphometric
parameters that can be extracted from the segmentation maps, such as the mean, SD, and
90th percentile of the nuclear area. Parameters such as the 90th percentile and the percent-
age of large cells may be less prone to the variability in two-dimensional measurements
depending on the orientation of the nucleus.

4.5. Prognostic Value

The morphometry of the size parameters showed good capability of discriminating
cPC patients with favorable and unfavorable outcomes. The statistical results (such as the
AUC and hazard ratios) showed a strong similarity between the algorithm and manual
measurements, indicating that the algorithm is similar to manual measurements in predict-
ing patient survival time. It should be noted that established prognostic indicators for cPC
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including the mitotic count [4,15], histological grade [7,16], and stage [7,10,14,16] had no
prognostic value in our study population, supporting the prognostic importance of nuclear
characteristics in this tumor type. In accordance with the findings of previous research
conducted by Haghofer et al. [40], our study reaffirms the superior reproducibility and
prognostic utility of automated nuclear morphometry over manual estimates by patholo-
gists. Both studies demonstrate that algorithmic approaches offer enhanced reproducibility
and time efficiency, when compared to manual morphometry, which is crucial for use in a
routine diagnostic setting. In particular, Haghofer et al. reported an AUC of 0.943 for the
SD of the nuclear area, assessed by automated morphometry, underscoring the predictive
power of different area parameters, as we also found. Development and evaluation using
similar algorithms for other aggressive tumor types should be investigated in the future.

The morphometric nuclear shape parameters mostly did not discriminate patient
outcome. It should be noted that there is a large discrepancy between the AUC and hazard
ratio values for the SD of the solidity, (i.e., shape irregularity) between the algorithm and
manual morphometry, the reason for which was not apparent to us. While the SD of the
solidity was the best prognostic test for algorithmic morphometry, it had no prognostic
relevance when determined with manual morphometry. One potential explanation for
this is that the SD of the solidity occurs locally in a specific tumor region and the manual
measurement, evaluating only a restricted area of the sample (>100 nuclei), may not capture
the SD of solidity representative for the tumor. However, discrepancies in the manual and
algorithmic delineation of nuclei cannot be ruled out, particularly considering the high
measurement error for this parameter (see above). Thus, the results of the SD of solidity
should be interpreted with caution and further investigation of this parameter is needed.

The limitations of our study with regard to the outcome analysis are the small study
population and the restriction of the outcome analysis to a follow-up period of 250 days.
The small population size is due to the rarity of cPC, which significantly limits the number
of available cases for a retrospective analysis. Our study includes all the available cases
from two large veterinary pathology archives, representing the most comprehensive dataset
we could assemble. Despite the limited sample size, our statistical analysis accounted for
this constraint and yielded significant results. The 250-day follow-up period was chosen
to account for a high lost-to-follow-up rate and to reduce competing risks in elderly dogs.
Furthermore, the majority of patients received chemotherapy based on the results of staging
and histological grading, which may have prolonged the survival time of patients with
high-grade and advanced disease. We strongly encourage future studies to validate this
newly developed diagnostic test in independent study populations with larger sample
sizes and longer follow-up periods through multi-center collaborations. This will enable
the validation and extension of our findings, which is needed before the test can be used in
a diagnostic setting.

4.6. Diagnostic Applications and Considerations

Deep learning-based tools, like nuclear morphometry algorithms, have been increas-
ingly investigated for numerous diagnostic/prognostic tasks in veterinary and human
pathology in the detection [47,48], classification [24,49–51], and grading of tumors [52,53].
These studies have proposed different ways for algorithms to be implemented into the
diagnostic workflow (fully automated and computer-assisted diagnosis). Considering the
potential error of nuclear undersegmentation, resulting in excessive nuclear size measure-
ments, we recommend verification of the segmentation mask by a trained pathologist when
these algorithms are applied to diagnostic cases. In our study, we have used uncorrected
algorithmic predictions and thus acknowledge potential errors particularly with regard
to the overestimation of large nuclei. Different levels of human–machine interaction are
imaginable to guarantee a correct prognostic interpretation of algorithmic morphometry,
which should be evaluated in future studies.
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5. Conclusions

Nuclear anisokaryosis and shape irregularity estimates by pathologists are hampered
by marked inter-observer variability. Nuclear morphometry offers the potential to enhance
the relevance of nuclear characteristics as a prognostic test for cPC by improving repro-
ducibility. In our study, algorithmic and manual nuclear morphometry had a superior
prognostic ability as compared to other histological tests. The developed algorithm (in
contrast to manual methods) enables a time efficient implementation for routine tumor
evaluation in laboratories with a digital workflow while maintaining at least a comparable
performance. However, our study faced two primary limitations: a small study population
and a short follow-up period. These new opportunities for the prognostication of the
patient outcome in cPC, revealed by this study, warrant further validation in a larger and
more diverse independent study population, as deep learning models rely heavily on data
for training. Multi-center collaborations could help increase the sample size and diversity,
thus providing a more robust validation of our findings. Furthermore, it is recommended
that the algorithm be further refined, particularly with regard to the issue of the underseg-
mentation of nuclei, in order to enhance the reliability and utility of deep learning-based
algorithms in veterinary pathology. This study establishes a foundation for future research
in the use of deep learning-based techniques in veterinary pathology. However, addressing
the identified limitations and ensuring the robustness of the used algorithm in various
settings remains a critical consideration.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vetsci11060278/s1, Figure S1. Nuclear segmentation of model
1 in an exemplary case. By applying the neural network on the original HE image (on the left),
the nuclei were segmented (binary mask on the right), which resulted in a Dice score of 0.838 as
compared to the ground truth (binary mask in the middle).; Figure S2. The comparison between
the measurements of the algorithmic nuclear morphometry (models 1–3) with the ground truth
measurements for the 21 test cases of the ground truth dataset. Scatter plots for the (A) standard
deviation (SD) of the nuclear area, (B) mean area of the largest 10% of the nuclei, (C) mean nuclear
area, (D) 90th percentile of nuclear area, (E) percentage of nuclei with an area >42.3 µm², and (D) SD of
the solidity.; Figure S3. Area under the ROC curve (AUC) values (tumor-related mortality) comparing
results for algorithmic morphometry (algorithm 1–3) of ROI 1 with morphometry (algorithms 1–3)
of ROIs 1–3 for selected parameters. SD, standard deviation.; Figure S4. The scatter plots of the
morphometric parameters comparing the cases with tumor-related mortality (TRM) at 250 days
after surgery with the cases that survived this follow-up period. The upper row (A–D) depicts the
results of the algorithmic morphometry (based on model 1) and the lower row the results of the
manual morphometry (E–H) determined in region of interest (ROI) 1. (A) and (E) are the standard
deviation (SD) of the nuclear area, (B) and (F) the mean of the largest 10% of the nuclei, (C) and (G)
the percentage of the nuclei with an area >42.2 µm², and (D) and (H) the SD of the solidity. The dotted
line represents the selected prognostic threshold values. The analysis is based on 10 cases with tumor-
specific mortality within the first 250 days after surgery and 25 cases that survived this follow-up
period.; Figure S5. The Kaplan–Meier curves for the tumor-specific survival time (until 250 days
after surgery) for the different nuclear size and shape parameters of the manual morphometry. The
analysis is based on 46 cases with the censoring of the cases that were lost to follow-up or died due
to tumor-unrelated causes (n = 11). A total of 10 cases died of tumor-related causes and 25 dogs
survived the follow-up period. A) The standard deviation (SD) of the nuclear area (log rank test:
p = 0.0658). B) The percentage of nuclei > 42.3 µm² (log rank test: p = 0.0211). C) The mean area
of the largest 10% of the nuclei (log rank test: p = 0.0080). D) The SD of the solidity (log rank test:
p = 0.3280). Table S1. The root mean square error (RMSE) of the measured morphometric nuclear
size parameters separately for the three deep learning-based algorithms (Algorithm) with 7 test cases
of the ground truth dataset used for each algorithm.; Table S2. The root mean square error (RMSE) of
the measured morphometric nuclear shape parameters separately for the three deep learning-based
algorithms with 7 test cases of the ground truth dataset used for each algorithm.; Table S3. The area
under the ROC curve (AUC) regarding the tumor-related mortality at 250 days after surgery for the
nuclear morphometry based on the three deep learning-based algorithms and manual measurements
determined in the region of interest (ROI) 1. The analysis is based on 10 cases with tumor-specific
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mortality within the first 250 days after surgery and 25 cases that survived 250 days after surgery.;
Table S4. The area under the ROC curve (AUC) regarding the all-cause mortality at 250 days after
surgery for the nuclear morphometry based on the three deep learning-based algorithms and manual
measurements determined in the region of interest (ROI) 1. The analysis is based on 13 cases with
death (any cause) within the first 250 days after surgery and 25 cases that survived 250 days after
surgery.; Table S5. The area under the ROC curve (AUC) regarding the tumor-related mortality
at 250 days after surgery for the nuclear morphometry based on the three deep learning-based
algorithms determined in the regions of interest (ROIs) 1–3. The analysis is based on 10 cases with
tumor-specific mortality within the first 250 days after surgery and 25 cases that survived 250 days
after surgery.; Table S6. The hazard ratios (determined from z-standardized * numerical values) for
the morphometric parameter measurements performed by the algorithmic model 1 and the manual
measurement in ROI 1. The analysis is based on 46 cases with the censoring of cases that were
lost to follow-up or died due to tumor-unrelated causes (n = 11). A total of 10 cases died of tumor-
related causes and 25 dogs survived the follow-up period.; Table S7. The sensitivity, specificity, and
precision regarding the tumor-related mortality at 250 days after surgery for the three-tier estimates
of anisokaryosis by 11 pathologists. The analysis is based on 10 cases with tumor-specific mortality
within the first 250 days after surgery and 25 cases that survived this follow-up period.; Table S8. The
sensitivity, specificity, and precision regarding the tumor-related mortality at 250 days after surgery
for the two-tier estimates of the nuclear shape irregularity by the pathologists. The analysis is based
on 10 cases with tumor-specific mortality within the first 250 days after surgery and 25 cases that
survived 250 days after surgery.; Table S9. Hazard ratios for estimates of anisokaryosis (three-tier)
and nuclear shape irregularity (two-tier) regarding tumor-specific survival with a follow-up period
of up to 250 days after surgery.; Table S10. The sensitivity, specificity, and precision regarding the
tumor-related mortality at 250 days after surgery for the histologic grade, mitotic count, and clinical
staging. The analysis is based on 10 cases with tumor-specific mortality within the first 250 days
after surgery and 25 cases that survived 250 days after surgery.; Table S11. Histological grading
characteristics and corresponding definitions, descriptions, and scores as suggested by McNiel et al.
(J Am Vet Med Assoc. 1997, 1;211(11):1422-7).
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