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Preface

The first part of the thesis (Chapter 4) was published in the journal PLOS Genetics
in 2011 entitled ”The Cardiac Transcription Network Modulated by Gata4, Mef2a,
Nkx2.5, Srf, Histone Modifications, and MicroRNAs”!. The small RNA read map-
ping tool MicroRazerS and its evaluation in Chapter 3 and 4 appeared in the journal
Bioinformatics in 2009 with the title ”MicroRazerS: Rapid alignment of small RNA
reads ”2. The last part about genomic sequence alterations, gene expression and mi-
croRNA profiling in patients with Tetralogy of Fallot has not been published yet, but
a manuscript describing the oligogenic basis of isolated Tetralogy of Fallot is under
review?. A follow-up manuscript about the impact of the found sequence variation on
gene expression as well as an integrative analysis of gene and microRNA expression

profiles in patients with Tetralogy of Fallot is in preparation.

The full study, which is described in parts in Chapter 4, integrates mRNA profiles with
DNA-binding events of key cardiac transcription factors (Gata4, Mef2a, Nkx2.5, Srf),
activating histone modifications (H3ac, H4ac, H3K4me2 and H3K4me3) and microRNA
profiles in wildtype and siRNA-mediated knockdown. My contribution to this paper
was the analysis of the ChIP-seq (Srf and H3ac) and microRNA-seq (after Srf knock-
down) data. This includes the ChIP-seq read mapping and peak calling as well as the
small RNA read mapping. I was involved in the analysis of overlapping transcription
factor binding sites between ChIP-chip and ChIP-seq. I contributed in the analysis re-
garding the influence of H3ac and Srf marks on gene expression in the Srf knockdown.
I compared microRNA expression profiles in HL-1 cells (cardiomyocytes cell line) to
human normal hearts described in Chapter 2.2.1. I also constructed the Srf centered
transcription network. For MicroRazerS, I was involved in the development and I did
the evaluation as well as successful application of MicroRazerS to human and mouse
small RNA-seq data. For the study described in Chapter 5, I carried out the complete

computational analysis of targeted resequencing, mRNA-seq and microRNA-seq data.



I was further involved in the statistical assessment.
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Chapter 1

Introduction

1.1 DNA, Gene Expression and MicroRNAs

The genetic information in the deoxyribonucleic acid (DNA) is stored as a sequence
of bases (or nucleotides) and the order of the nucleotides determines the genetic infor-
mation. Each DNA strand consists of the four nucleotides adenine (A), cytosine (C),
thymine (T) and guanine (G), arranged in a double helix. In eukaryotes, DNA is orga-
nized into chromosomes and located in the nucleus of each cell. For example, in human
there are 23 chromosome pairs (one of each pair from both the mother and the father)
representing approximately 3 billion base pairs, giving a total of 46 chromosomes per
cell. The central dogma of molecular biology states the flow of genetic information
in biological systems: Coding regions of DNA are transcribed into ribonucleic acid
(RNA), which is then translated into proteins*. Unlike DNA, most RNA molecules are
single-stranded and the nucleotide thymine is replaced by uracil (U), which differs from

thymine by lacking a methyl group.

A gene, a contiguous region of DNA, corresponds to one transcribed unit which in turn
is translated to one or more chains of amino acids called polypeptides of related or
different functions®. When a gene is activated, the DNA strands separate and one of
them serves as a template for copying a messenger RNA (mRNA). The complete gene
region is first transcribed into a precursor mRNA (pre-mRNA) molecule that consists
of coding exons alternating with non-coding introns, which is subsequently spliced into

mRNA (whose sequence encodes the polypeptide).

In eukaryotes, transcription of protein-coding genes is carried out by RNA polymerase

IT (Pol IT), a complex of 12 different proteins. A number of proteins is crucial for success-
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ful localization of Pol II to the transcription start sites (T'SS) and mRNA transcription
including the general transcription factor and co-factors®”. General transcription fac-
tors like TFIIB or TFIID (complexes consisting of the TATA-binding protein and other
associated factors) bind in close proximity to the T'SS and are involved in the separa-
tion of the DNA strands as well as the recruitment of Pol II. In addition to the general
transcription factors, sequence-specific DNA binding transcription factors (TFs) can
regulate gene transcription by interacting with this core transcriptional machinery 8.
They bind to one or multiple factor specific cis-regulatory elements located on the DNA
called transcription factor binding sites (TFBS). These TFBS can be found in the core
and proximal promotor regions (directly up- and downstream to the T'SS), within exons
and introns, in 5’ and 3’ untranslated regions of mRNAs, and even as far as 10 kilobases
(kb) away from the respective genes!?. Based on the regulatory function of TFs, cis-
acting elements are classified into enhancers (activator) or silencers (repressor)!!.

The ability of transcription factors to bind cis-regulatory elements is highly dependent
on their accessibility. In all eukaryotic cell nuclei, DNA is highly condensed into a
structure called chromatin by the use of highly conserved proteins known as histones.
Histones form complexes comprising two of each of the four core histone proteins (H2A,
H2B, H3, and H4). The DNA double-helix is wrapped in approximately 1.75 turns
around such an histone octamer to form the nucleosomes, which are connected through
short linker-DNA of different length that is stabilized by the so-called linker histone
protein H1'2. Highly condensed DNA regions (heterochromatin) aggravates or hinders
the binding of TFs and therefore they are associated with inactive gene transcription.
On the other hand, less condensed or open DNA regions (euchromatin) are easily acces-
sible by the transcriptional machinery and thus associated with an active transcription
of genes. Changes and thus the associated degree of condensation in chromatin struc-
ture are dynamically controlled by epigenetic mechanisms like chromatin remodeling '3,
DNA methylation'* and histone tail modifications!?.

Covalent post-translational modifications of histone tails including acetylation, methy-
lation, phosphorylation, ribosylation, sumoylation and ubiquitination can e.g. influence
the wrapping of DNA around the histone octamer and thereby lead to an altered tran-
scriptional accessibility 6. For example, acetylation is a modification that neutralizes
positively charged histone tails and therefore lowers the electrochemical coupling be-
tween the histone octamer and the wrapped DNA, which is thus more accessible!”.

This modification is catalyzed by a group of enzymes called histone acetyltransferases



1.1 DNA, gene expression and microRNAs

(HATs). Histone acetylation, which is associated with an increased transcriptions,
can be reversed by histone deacetylases (HDACs), which in turn are associated to a
decreased expression level. Consequently, the interplay between HATs and HDACs
activities regulates histone acetylation levels in the cells 19,

After transcription, gene expression is further controlled on a post-transcriptional level
by RNA binding proteins. These proteins regulate RNA splicing, RNA processing,
nuclear export and nuclear degradation. RNA splicing is the process that removes in-
tron sequences from the pre-mRNA. Introns usually contain a clear signal for splicing,
namely short sequences called splice sites?”. Alternative splicing is the mechanism by
which a pre-mRNA molecule produces different mRNA variants, by skipping, includ-
ing, extending or shortening exon sequences, or retaining intron sequences. Besides
alternative splicing, polyadenylation of pre-mRNA molecules and differential promoter
usage can produce multiple transcript isoforms whose respective expression levels are
regulated in a spatial and temporal manner. It has been estimated that 75-92% of
human genes give rise to multiple isoforms?''?2. The cellular abundance of mRNA
molecules is of particular importance as it regulates the rate of protein synthesis. Be-
sides transcription, RNA degradation directly determines the amount of mRNA. One
way to regulate the decay of a mRNA molecule is the shortening of its poly-A tail,

consisting of a series of adenine nucleotides, by specialized exonucleases.

MicroRNAs (or miRNAs) are short, single-stranded RNA molecules, usually ranging
from 19 to 25 nucleotides (nt) in length, which regulate expression of target genes and
thereby play an essential role in many biological processes. The first miRNA lin-4 was
discovered in 1993 in Caenorhabditis elegans (C.elegans), and seven years later a second
one, let-7, was found to regulate later developmental stages of C. elegans in a similar
manner to lin-42324, It was soon realized that both lin-4 and let-7 were evolutionarily
conserved in the genomes of eukaryotes, implicating a more universal role for these

24,25 Since then, several hundreds of miRNAs present in both

d 25-32

small RNA molecules
plant and animal genomes were reveale . Yet until now only a limited number
of these have been characterized in depth33. Most miRNAs are found in intergenic
regions and contain their own miRNA gene promoter and regulatory units?>2%28. Ap-
proximately 40% of the miRNAs lie in introns of protein and non-protein coding genes,
or even in exons>*. These miRNAs are usually found in sense orientation and thus they

are regulated together with their host genes3437.

Generally, a miRNA is transcribed into a RNA hairpin loop by RNA Polymerase 11
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Figure 1.1: Genomic organization, biogenesis and function of miRNAs. Figure taken
from Fazi and Nervi®® and modified.

or ITT and capped to form the primary miRNA transcript (pri-miRNA). The following
cleavage of the pri-miRNA by ribonucleases Drosha and DGCRS in the nucleus yields a
stem-loop structure of approximately 70-100 nucleotides. This precursor hairpin (pre-
miRNA) is transported in the cytoplasm by Exportin-5, where it is further cleaved by
the Dicer protein into the miRNA/miRNA* duplex (Figure 1.1). The guide strand of
the miRNA is then loaded together with Argonaute (Ago2) proteins into the RNA-
induced silencing complex (RISC). After assembly of the RISC complex, the mature
miRNA binds to a short recognition sequence at the 5" end, the so-called seed region,
to mRNAs with complementary sequence in their 3’ untranslated region (UTR) usually
resulting in mRNA cleavage, translational repression or mRNA degradation. The pas-
senger strand, the minor product denoted by a star, is commonly degraded, though this
is not always the case3. Both strands of the miRNA /miRNA* duplex can potentially

act as a functional miRNA, but only one is finally incorporated into the RISC complex.

As mentioned before, miRNAs usually silences their target mRNAs and in line with



1.2 Next-generation sequencing

this, genome-wide computational and transcriptome analyses showed that the expres-
sion of miRNAs is more positively than negatively correlated with that of their target
mRNAs4042 Moreover, miRNAs may themselves be mediators of default repression?,
also suggested by the growing evidence for a high abundance of miRNAs in the cell.
The current release (v.18) of miRBase®3, the primary online repository for miRNA
sequences and annotation, contains over 18,000 hairpin precursor miRNAs, expressing
over 21,600 mature miRNAs, in 168 species. The database was established in 2002
with 218 entries and the number of miRNA sequences deposited in miRBase has risen
approximately exponentially - in the last 3 years the number has almost tripled*®. For
human, the current miRBase version contains 1,527 hairpin precursor miRNAs and
1,921 mature miRNAs. Further, over 60% of all human protein-coding genes are pre-
dicted to be regulated by miRNAs#*, with one miRNA regulating hundreds of mRNAs
each 4746

1.2 Next-Generation Sequencing

The primary method of sequencing DNA referred to as chain-termination sequenc-
ing is commonly known as Sanger sequencing®’. It was first developed by Frederick
Sanger in 197748, Driven by the goal of deciphering complete gene sequences (later en-
tire genomes like the human) and based on the associated throughput requirements of
DNA sequencing, the Sanger method has almost exclusively been carried out with semi-
automated capillary electrophoresis (Figure 1.2A)4%59. Moreover, the semi-automated
implementations of the Sanger biochemistry has become the 'gold standard’ in terms of
both sequence read length (up to ~1,000 bp) and sequencing accuracy (per-base raw’
accuracy as high as 99.999%)°%51, In the last years, various second generation or, more
commonly, next-generation sequencing (NGS) technologies have been developed, which
will be still rapidly further developed. These parallel processing techniques are able
to generate several orders of magnitude more sequence output and have significantly
reduced the cost of DNA sequencing compared to conventional Sanger sequencing. Al-
though the technologies differ in their biochemistry they all follow the principle of
cyclic-array sequencing, where a dense array of DNA features is sequenced by itera-
tive cycles of enzymatic reactions combined with imaging-based data detection (Figure
1.2B).

The different NGS technologies have been released as commercial products, with the

most popular being the Solexa Genome Analyzer (Illumina), the 454 Genome Se-
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Solexa | Bridge amplification
Polymerase-based sequencing-by-synthesis 50-54
Read length: 36 to 150 bp
Error rate: 1% per bp
Error rate increases preferentially at the 3’ end of reads
Dominant error type: substitutions
454 Emulsion PCR
Polymerase-based pyrosequencing 50-52,55-57
Relatively long read length: 250 to >400 bp
Error rate: 0.5% per 250 bp and 0.1% per 400 bp
Dominant type of error: insertions or deletions
Long single ANTP strings (homopolymer repeats) unreliable
(8 bp linearity)
SOLiD | Emulsion PCR,
Ligase-based sequencing (octamers with two-base encoding) | 505258
Read length: 50 to 75 bp
Low error rate: <0.1% per bp
Dominant error type: substitutions (colour shift)
Two-base encoding provides inherent error correction
Helicos | Single molecule
Polymerase-based sequencing (asynchronous extension) 50-52,59,60
Read length: 25 to 55 bp (35 bp in average)
Error rate: <1% per bp
(Substitution 0.2%, Insertion 1.5%, Deletion 3.0%)
Dominant error type: deletions
No PCR amplification (high reproducibility)

Table 1.1: Next-generation sequencing technologies with they current properties. For
all platforms single- and paired-end read sequencing modes are available. The indicated
lengths are for single reads.

quencers (Roche Applied Science), the SOLiD platform (Applied Biosystems) and the
HeliScope Single Molecule Sequencer technology (Helicos). There are important differ-
ences among these platforms themselves that result in advantages but also in disadvan-
tages with respect to specific applications (Table 1.1). Some applications, e.g. genomic
resequencing, are more tolerant regarding short sequence fragment (read) lengths than
others such as de novo assembly. For applications relying on counting sequence tags,
e.g. the quantification of protein-DNA interactions, the given amount of sequencing
should be split into as many reads as possible, whose length are above some minimum
that allows the exact placement to a reference. In general, a high number of reads pro-
vides greater depth and therefore, sequence confidence. Finally, the overall accuracy as
well as specific error distribution of individual technologies, such as the propensity for

systematic errors, are also important®C.
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A DNA fragmentation B DNA fragmentation
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...CTGATCTAT /.
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...CTGATCTATGC p
Polymerase ...CTGATCTATGCT
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Electrophorsesis Cyclic array sequencing
(1 read/capillary) (>106 reads/array)
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Figure 1.2: Sanger sequencing compared to next-generation sequencing. (A) With
high-throughput shotgun Sanger sequencing, genomic DNA is fragmented and after-
wards cloned into a plasmid vector and transformed into bacteria (e.g. E. coli). A
single bacterial colony is selected and the plasmid DNA is isolated. Each cycle se-
quencing reaction generates a ladder of dye-labeled products, which are subjected to
high-resolution electrophoretic separation in one sequencing run. The fluorescence la-
beled fragments of discrete sizes pass a detector generating a four-channel emission
spectrum, which is finally used for the sequencing trace. (B) In next-generation shot-
gun sequencing methods, common adaptors are ligated to fragmented genomic DNA,
which is then treated to create an array of millions of immobilized PCR colonies, called
polonies. Each polony contains many copies of a single shotgun library fragment. In
cyclic reactions, sequencing and imaging-based detection of fluorescence labels build up
a contiguous sequencing read for each polony. Figure taken from Shendure and Ji®°.

One key finding of the Human Genome Project is that any two human individuals
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are nearly 99.9% identical in their genomic DNA sequence. The residual 0.1% leads
to several million differences, with some of these variations giving rise to certain dis-
eases, drug responses and other complex phenotypes. The first differences observed in
the human genome were mainly rare changes in the quantity and structure of chro-
mosomes, called structural variants. Structural variants are genomic alterations that
involve segments of DNA that are usually larger than 1 kb, and can be microscopicly
detectabled. There are different types of structural variations including copy number
variations (CNVs), segmental duplication or low-copy repeat (LCR) and chromosomal
rearrangements such as inversions and translocations. CNVs are alterations that result
in a copy number change of one or more sections of the DNA including duplications,
insertions and deletions. A CNV that occurs in more than 1% of the population is

called a polymorphism.

In addition to structural variations, there are smaller and more abundant alterations.
Such local variations include single nucleotide variations or polymorphisms (SNVs or
SNPs, respectively) as well as small (usually <50 bp) InDels, which includes both in-
sertions, deletions, and the combination thereof. A SNP, a variation at a single site in
DNA, is the most frequent type of genetic variations in the (human) genome. They
are highly conserved within a population and make excellent genetic markers. Early
estimates predicted that there are at least 10 million SNPs within the human popu-

lation 6t

, meaning that SNPs occur in 1 of 300 base pairs, on average, among the ~3
billion base pairs of the human genome®2. Due to the efforts of the 1000 Genomes
Project the number of known human SNPs currently exceeds 35 million%3. In addition,
there are around 100-200 novel mutations (single base changes) in the human genome
per generation. This is equivalent to one mutation in every 30 million base pairs. Most
of these are benign and have no apparent effect on the health or phenotype, and only
very few mutations are accumulated over several generations, which can lead to certain

diseases%4.

Alleles are forms of a gene, which are located in the DNA of an organism. The human
genome has thousands of genes with different sets of alleles and not necessary all genes
will only have two possible alleles since there are only two homologous chromosomes
for a diploid organism. For example, in human blood types there are three possible
alleles (i.e. A, B and 0). Alleles are often composed of one or more SNPs and therefore,
the most commonly called base, which is not the reference base, for a given position in

the reference based sequence alignment is often defined as alternate allele. If the alter-
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nate allele frequency is between 20% and 80%, the genomic position is usually called
as a heterozygous variation, and homozygous if the frequency is over 80%°!. Further,
the minor allele frequency (MAF) is the ratio of chromosomes in the given population
carrying the less common (rare) variant to those with the more common variant. By

definition the MAF is less or equal to one.

1.3 The Human Heart and Congenital Heart Disease

The heart is one of the most important organs in the human body. It pumps the blood,
which is essential for nutrition and oxygen supply of all living cells, throughout the
body by repeated, rhythmic contractions. In human, deoxygenated blood from the
body is transported through the venae cavae (superior and inferior, respectively) into
the right atrium, though the tricuspid valve into the right ventricle, and finally through
the pulmonary valve into the pulmonary artery and further into the lung. The oxy-
genated blood returns from the lung into the left atrium and through the mitral valve
into the left ventricle from where it is pumped through the aortic valve to the aorta
and further back into the body (Figure 1.3). The heart is the first organ to form and
function during embrogenesis and starts beating after 20 days of gestation in human%°.
The complex development of the heart involves the spatial and temporal orchestration
of various molecular pathways and complex morphogenetic changes, which are precisely
controlled by an evolutionarily conserved gene program. The mammalian cardiogene-
sis requires a diverse set of cell types including cardiomyocytes, cells of the conduction
system, smooth muscle cells, endothelial and valvular cells%. The formation of these
various cardiovascular cell lineages has its basis in the existence of a closely related set
of multi-potent progenitors in the early embryonic heart field, which can be divided into
the primary heart field (or first heart field; FHF) and secondary heart field (SHF)67:68.
After around eight weeks of gestation the four-chambered human heart is completely
developed %, the left ventricle was formed by precursor cells of the FHF, while the out-
flow tract, the right ventricle and most of the atria will have been formed by precursor
cells of the SHF 70,

The molecular network underlying cardiogenesis is evolutionarily conserved from simple
model organisms to higher vertebrates and comprises regulatory interactions between
numerous transcription factors, their downstream target genes and upstream signal-
ing pathways”®. A core set of conserved DNA-binding transcription factors, including

Gata, Hand, Nkx2, Mef2, Thx-factors and Srf, regulates heart development in a decisive
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Figure 1.3: Schematic representation of the mature four-chambered human heart.
Oxygen-rich blood is indicated in red and oxygen-poor blood is indicated in blue.
Figure taken from M. Ruiz”' and modified.

manner. They play pivotal roles for the differentiation, maturation and homeostasis of
cardiomyocytes and can directly interact providing cooperative regulation of individ-
ual target genes. For example, the homeobox transcription factor Nkx2.5 physically
interacts with Gatad and Tbxb to synergistically activate several downstream target
genes 3. The zinc-finger transcription factor Gatad on the other hand can physically
interact with Hand2"™, Nkx2.57%, Mef276, Tbx577 and Srf’®.

The widely expressed serum response factor (Srf) is important for heart and muscle
development and is well-known to bind to the CArG-box motif [CC(A/T)sGG], a DNA
consensus sequence, in promotors of its target genes ™ and moreover auto-regulates its
own expression®’. Srf is involved in the regulation of the cell cycle, apoptosis, muscle
cell differentiation and cellular growth, as well as in the actin cytosketon. It regulates
the expression of structural muscle genes such as actins and myosins, which belong to

78,79.81-83  Furthermore, Srf is known to interact with both

the contractile apparatus
positive and negative co-regulators. For example, together with Gatad and Nkx2.5, Srf
directs early cardiac gene activity®*. Since Srf is ubiquitously expressed, it alone cannot

account for smooth muscle-specific gene expression but through the association with

10



1.3 The human heart and congenital heart disease

e.g. Myocardin (Myocd), a smooth muscle and cardiac muscle-specific transcriptional

co-activator, it can activate muscle gene expression3%%.

All these transcription factors also regulate each others expression, thereby reinforcing

72,86

and stabilizing the cardiac gene program For example, the cardiac T-box factor

Tbx20 interacts with Gatad to activate both Mef2c and Nkx2-5 enhancers®’. However,
they do not regulate on direct transcriptional level, but indirectly by influencing the
chromatin status of their target genes. For example, Mef2 proteins can act as tran-

scriptional activators and repressors through the interaction with HATs and HDACs,

88,89

respectively It has been reported that the Srf-cofactor Myocardin recruits the

HAT p300 to Srf binding sites whereby histone 3 acetylation (H3ac) is induced and
gene expression enhanced?. The HAT p300 not only acetylates lysine residues on

histone 3 but also on Gata4, thereby enhancing its DNA-binding and its activating

191, Further, Srf as well as Gata4, Mef2c and Nkx2.5 are negatively regulated

by interaction with HDAC4, a transcriptional repressor of muscle gene expression®?.

potentia

Like the interaction between genetic and epigenetic factors, miRNAs are interacting
with all regulatory levels, leading to complex regulatory networks that maintain cor-
rect cardiac morphogenesis. For example, Srf regulates the transcription of miRNAs
such as the smooth muscle relevant miR-143 and miR-1453. Feedback loops between
Srf/Mef2 and muscle-specific miR-133/miR-1 have been described and both miRNAs
are expressed throughout heart development playing important roles in muscle prolifer-

ation and differentiation 9497

. Furthermore, miR-1 promotes myogenesis by targeting
HDAC4% and thus represents a connection to histone acetylation. The loss of func-
tion of any of these transcription factors, their cofactors or miRNAs can dramatically
affect the regulatory cascades with consequences for cardiovascular development and

congenital heart disease.

Congenital heart disease (CHD) are the most common birth defects in human with an
estimated incidence of around 1% in all live births®®. They range from minor or even
subclinical defects to complex malformations. Due to the significant advances in car-
diac care with regard to cardiac surgery and interventions, the mortality of congenital
heart disease has significantly reduced over the last decades. Recently it was estimated
that nearly 760,000 individuals with CHD born after 1990 will be alive by the year
202099, Almost all parts of the heart can be affected and the disease phenotype can be
classified into septation, left-sided obstruction and cyanotic heart defects™. Septation
defects are e.g. the atrial septal defect (ASD), the ventricular septal defect (VSD) or

11
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Figure 1.4: Schematic representation of a normal human heart (left) and a heart with
the ‘Tetralogy of Fallot’ phenotype (right) depicting the four clinical features. Oxygen-
rich blood is indicated in red and oxygen-poor blood is indicated in blue. Figure taken
from M. Ruiz".

the atrioventricular septal defect (AVSD). Typical, left-side obstruction defects are the
aortic stenosis and an interrupted aortic arch. Cyanotic heart defects result from the
mixing of oxygenated and deoxygenated blood and cause a blue skin color, also referred
as "blue baby syndrome”. Examples for such defects are a transposition of the great
arteries (TGA), tricuspid atresia, Ebstein’s anomaly of the tricuspid value, the persis-
tent ductus arteriosus (PDA) and Tetralogy of Fallot (TOF). TOF is the most common
form of cyanotic defects and if untreated it ultimately leads to cardiac failure with a
survival rate of around 60% after four years'?%. It is a complex disease with four dis-
tinct clinical features: A VSD, a right ventricular outflow track obstruction (narrowing
at or just below the pulmonary valve), a right ventricular hypertrophy (thickening of
the right ventricular wall) and an overriding aorta, a biventricular origin of the aortic

valve (Figure 1.4).

Approximately 20-30% of CHD occur in association with other birth defects as part
of a syndrome, such as DiGeorge syndrome or Holt-Oram syndrome, and in many of

101,102

them chromosomal (e.g. loss of one copy of TBX1 in DiGeorge syndrome as

well as gene mutations (e.g. TBX5 mutation in Holt-Oram syndrome!%3194) could be

12



1.3 The human heart and congenital heart disease

identified as causative for the defect. Only a minority of CHD are monogenic disorders
that follow a clear Mendelian inheritance. Linkage analysis in non-syndromic families
with Mendelian inheritance pattern identified several gene mutations in the etiology of
human CHD such as ACTC1 (ASD!%%), GATA4 (ASD'%) JAG1 (TOF1!°7), MYH6
(ASD19%) MYH11 (PDA %) NKX2.5 (ASD %) NOTCHI1 (bicuspid aortic valve and
aortic stenosis!'!) and ZIC3 (TGA%®). However, the majority of CHD do not seg-
regate in Mendelian ratios, although they show familial aggregation suggesting that
genetic factors play a role in their development'2. Some disease-associated mutations
have been found in genes which control cardiac development including CITED2!12,
GATA4'3 NKX2.51M4 NOTCH1M5, TBX1'6 and TBX20''7. Nevertheless, the ge-
netic mechanisms underlying non-chromosomal or non-Mendelian ”sporadic” defects
are poorly understood '8, Typically, the gene mutations of sporadic CHD are individ-

118

ually unique, resulting in allelic heterogeneity **°. Furthermore, mutations are always

heterozygous and as in the case reported, the defects were transmitted by an unaffected

parent, indicating that these rare mutations are incompletely penetrant 1.

Beside the genetic influence, it is long known that prenatal environmental factors such
as alcohol, anti-depressants, anti-epileptic drugs, deficiency of zinc or vitamin A, her-
bicides, diabetes, obesity or infection like rubella significantly enhance the probability
of CHD'20°126 " One of the first publications regarding the etiology of CHD was in-
troduced by James Nora in 1968. Nora already proposed CHD to be multifactorial
disorder caused by genetic and environmental influences'?”. In 1976, he published the
first study showing a familial recurrence risk of 2-5%, which underlines the genetic

128 Our current understanding is

background but clearly points to additional factors
that of an oligo- or multigenic background (i.e. 3-8 or even more mutations). There are
international projects ongoing (e.g. HeartRepair, CardioGeNet or CHeartED), which
study genomic variations at a large scale in several cohorts of CHD. With respect to
preliminary data, CHD are most likely caused by a panel of genetic variations. At least
a subset of these mutations is inherited from parents. Probably each mutation only
modestly effect protein function or expression and manifestation of the disease occurs
only when combined with additional genetic, epigenetic (miRNAs, histone modifica-
tions or DNA methylation changes) or environmental insults. Epigenetic mechanisms
might represent the mechanism by which environmental factors impact on the disease

and its trans-generational transmission.
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1.4 Purpose and Aims

In the last years, next-generation sequencing has revolutionized almost all fields of ge-
netics and has become the method of choice for genome analysis. The emergence of
NGS platforms requires increasing demands on statistical methods and bioinformatic
approaches for the analysis and the management of the huge amounts of sequence data
generated in a very short time scale by these technologies. Moreover, there is a wide
range of NGS applications, rapidly developing, making the computational analysis of

their associated datasets very challenging.

This thesis aimed to develop novel computational approaches and bioinformatics tools
for the analysis of NGS datasets generated within the group as well as publicly available

and eventually answer biological questions regarding cardiac function and disease.

In human, a large number of transcription factors, different histone modifications and
post-transcriptional regulators like miRNAs modulate the mRNA profile correspond-
ing to thousands of protein-coding genes. However, we lack data showing interactions
between these levels of regulation since in the past insights were obtained by focus-
ing on each level independently. The first study in this thesis aimed to elucidate the
combinatorial regulation of cardiac DNA-binding transcriptions factors (ChIP-seq of
Srf) influenced by histone modifications (histone 3 acetylation) and regulatory miR-
NAs (miRNA-seq) in cell culture. To gain insight into the transcriptional regulation of
cardiac mRNA profiles, the different modulators need to be viewed in context to each
other.

Tetralogy of Fallot accounts for 7-10% of all congenital heart disease, which are the
most common birth defect in human. CHD are most likely caused by a panel of genetic
variations with each effecting expression or protein function only modestly and mani-
fest as disease only when combined with additional genetic, epigenetic or environmental
alterations. In the past, the discovery of oligo- or multigenic disorders has been less
amenable to conventional genetic techniques. The second project aimed to identify the
genetic basis of TOF performing a multilevel study comprising targeted resequencing of
heart- and muscle-relevant genes and miRNAs in patients with TOF, parents and con-
trols as well as whole transcriptome (mRNA-seq) and miRNome (miRNA-seq) analysis

in TOF cases and healthy unaffected individuals using the latest NGS techniques.
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Chapter 2

Next-Generation Sequencing

Applications and Datasets

2.1 Applications

In the last few years, the application of semi-automated Sanger sequencing for the
genome analysis has been replaced by next-generation sequencing (NGS) methods.
The ability to sequence millions of DNA fragments in less than one day is the major
advance offered by NGS. For gene expression analysis the conventional microarrays are
now being replaced by sequenced-based methods, which can identify and quantify rare
transcripts without prior knowledge of a particular gene. In summary, the huge amount
of low-cost reads makes NGS technologies useful for several application. There is an
impressive range of NGS applications, rapidly developing. This includes the sequenc-
ing of expressed mRNAs and miRNAs, the identification of genome-wide protein-DNA
interactions such as transcription factor binding sites or chromatin histone mark, and
the detection of sequence alterations. The applications and their associated datasets,

computational analyzed in this thesis, are described in following.

2.1.1 Genome-wide Mapping of Protein-DNA Interactions

A powerful technique for genome-wide identification of protein-DNA interactions such

130,131 132,133 is chro-

as transcription factor binding sites or chromatin histone marks
matin immunoprecipitation (ChIP) followed by either microarray detection (ChIP-chip)
or, more recently, next-generation sequencing (ChIP-seq). In a ChIP experiment, pro-

teins and protein complexes are cross-linked to DNA via formaldehyde. Afterwards,
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Figure 2.1: Schematic representation of a chromatin immunoprecipitation (ChIP) ex-
periment followed by microarray detection (ChIP-chip) or next-generation sequencing

(ChIP-seq). Figure taken from Visel et al.!?.

chromatin is shared by sonication (ultrasound) into small fragments, which are 200-
600 bp in length'3*. In the next step, the DNA fragments bound to the protein of
interest are enriched using an antibody specific to the protein. The DNA fragments

which are not bound to the protein will be washed away. After reverse cross-linking
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and purification of the DNA to remove the proteins, an enriched DNA sample called
‘ChIP sample’ is obtained. In many studies, an additional sample, also known as ’In-
put sample’ or just 'Input’, is prepared in parallel which is not immunoprecipitated to
measure the experimental background. Finally, after size selection (typically in range
of ~150-300 bp'34) and further processing (e.g. additional amplification if the amount
of enriched DNA fragments is too low), the DNA fragments are determined to measure
protein-DNA binding regions. Previously, ChIP-chip was the most common technique
to study these protein-DNA interactions!3%!36, In ChIP-chip the enriched DNA frag-
ments are hybridized to a microarray, e.g. genome tiling arrays for organisms with
small genomes or custom designed arrays for certain regions of interest such as pro-
moters for a selected number of genes. In the last few years, ChIP-seq, which combines
ChIP with high-throughput massively parallel sequencing, is increasingly being used
for mapping protein-DNA interactions in vivo on a genome-wide scale. In ChIP-seq,
tens of millions of short DNA fragments, or sequence reads, are sequenced directly from
both ends instead of being hybridized on an array. By computationally mapping these
sequence reads to a reference genome and looking for genomic regions (peaks) where
they are enriched, genome-wide mapping locations of protein-DNA interactions can be
identified (Figure 2.1).

Compared to ChIP-chip, ChIP-seq offers several advantages. In general, it has higher
resolution, fewer artefacts, greater coverage and a much broader dynamic range'3*.
The main improvement is probably the base pair resolution. ChIP-seq provides sin-
gle nucleotide resolution by measuring enrichment based on tag (read) counts whereas
ChIP-chip measures enrichment by intensities of hybridization which may saturate at
high signal, i.e. the intensity signal measured on arrays is not linear over its entire
range. Moreover, the resolution in ChIP-chip is array-specific, generally in 30-100 bp
range, and for example, high density tiling arrays require a large number of probes and

137 " In addition, ChIP-seq does not suffer from

are very expensive for large genomes
biases and noise caused by cross-hybridization including varying GC content, length,
concentration or secondary structure of the target and probe sequence 4. Further, only
DNA fragments that are unique in the genome are spotted especially on the microar-
ray which exclude highly repetitive regions which have already been shown to contain
regulatory sites 138139 Moreover, only 48% of the human genome is non-repetitive, but
using ChIP followed by next-generation sequencing 80% is mappable with 30 bp reads
and 89% with 70 bp reads!%’. In addition, the fraction of reads that can be uniquely

mapped to the genome decrease after ~25-35 bp and is marginal beyond 70-100 bp '4!.
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Likewise ChIP-seq also has some disadvantages. For example, there are sequencing
errors, especially towards the end of each read, although they have been reduced sub-
stantially as the technologies have improved. There is also a bias in GC-rich regions,
both in library preparation and in amplification before and during sequencing 3%142:143,
Moreover, there is a loss of sensitivity and specificity in the detections of enriched re-
gions when an insufficient number of sequence reads is generated'®*. Nevertheless,
ChIP-seq has become the method of choice for almost all ChIP experiments, not only

because of the rapidly decreasing costs of sequencing.

2.1.2 Quantification of Gene Expression and MicroRNA Profiling

The transcriptome is the pool of all transcribed elements in a given cell and RNA
sequencing (RNA-seq) is a developed ultra high-throughput sequencing technology
that enables researchers to discover, profile and quantify RNA transcripts across the
entire transcriptome including mRNAs, non-coding RNAs and small RNAg!44148
RNA-seq provides in-depth information on the transcriptional landscape with unprece-

t21. It enables to outperform the previous sequence-

dented sensitivity and throughpu
based approaches starting with the analysis of expressed sequence tags (ESTs 149’149)
to high-throughput tag-based methods including serial analysis of gene expression
(SAGE10:151) " cap analysis of gene expression (CAGE %) and massively parallel sig-

nature sequencing (MPSS1%3).

In general, polyadenylated RNAs (poly(A)+) in a biological sample are extracted and
converted into more stable cDNA fragments which are randomly sheared by either neb-
ulization or sonication. After size selection, the fragments are amplified and adapters
are ligated to one or both ends of the fragments. Finally, each fragment is sequenced
using an NGS approach to obtain short reads from one end (single-end sequencing)
or both ends (pair-end sequencing). Depending on the NGS technology, the reads
are typically 30-400 bp in range'44. There are several RNA-seq protocols varying in
extracting mRNAs or other small RNAs like miRNAs (small RNA-seq or, according
to miRNA profiling, miRNA-seq) as well as other non-coding RNAs, such as piwi-
interacting RNAs (piRNAs) and short interfering RNAs (siRNAs). These small RNAs
may be shorter than the sequenced reads and the sequencing process can reach into
the adapter. As a consequence, the ends of the reads may contain variable lengths of
adapter sequence. For example, miRNAs and siRNAs are ~21-23 nucleotides in length

and piRNAs are ~25-35 nucleotides long whereas the minimum read lengths of the

18



2.1 Applications

different NGS technologies are usually longer (Table 1.1). In addition, small RNAs
can be directly sequenced after adapter ligation, larger mRNAs must be fragmented
into smaller fragments (~200-500 bp) to be compatible with most of the NGS tech-
nologies'*4. Another key consideration in the library construction is whether or not to
prepare strand-specific libraries 8. The basic RNA-seq protocol is not strand-specific,
meaning that the orientation of the reads is lost. The orientation is important for the

annotation, especially for regions with overlapping genes from opposite directions.

2.1.3 Targeted Resequencing of Genomic DNA

Whole-genome sequencing of complex organisms such as human allows to gain a deeper
understanding of the full range of genetic variations and to define the role of such
sequencing routine in phenotypic variations as well as the pathogenesis of complex

154 However, due to high costs and time exposure it is not yet feasible to se-

traits
quence complex genomes in their entirety. For example, to obtain a 30-fold coverage
of the full human genome, 90 Gb (gigabases) must be sequenced. Consequently, tar-
get enrichment methods have been developed, in which genomic regions of interest are
isolated from a DNA sample before sequencing, focusing on these targets and their
genomic variations. Targeted resequencing of genomic DNA is more time- and cost-
effective. The resulting data are considerable less costly to analyze'®*. Furthermore,
target sequencing has been shown to detect variants that are missed by whole-genome
sequencing, suggesting that deep-targeted sequencing affords greater sensitivity than

even genome coverage 5.

Several methods for target enrichment are available®” 60 The approach used in this

study relies on an array-based hybridization capture method 61163

. This technology
was first adapt to be compatible with next-generation sequencing by Roche Nimble-
Gen. As a first step, a sequence capture array is made against that target regions in the
genome. For example, NimbleGen sequence capture arrays are available that capture
up to 5 Mb (385K array) or up to 50 Mb (2.1M array). Afterwards, a shot-gun sequenc-
ing library is build from genomic DNA by sonication or nebulization and hybridized
to the sequence capture array. The unbound fragments are removed by washing and
the enriched fragments are eluted and recovered from the array. The enriched frag-
ments are then amplified by ligation-mediated polymerase chain reaction (LM-PCR)
and the success is measured by quantitative PCR (qPCR) at control loci. Finally, a

sequencing library enriched for target regions is ready for high-throughput sequencing
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using the Roche 454 Genome Sequencer (Figure 2.2)!%6. Just recently, modifications

and optimizations of the original protocol enables the usage of the Illumina Genome
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2.2 Datasets

2.2 Datasets

The experimental datasets described in the following were generated in the group of
Silke R. Sperling (Cardiovascular Genetics) at Max Planck Institute for Molecular Ge-
netics. All NGS datasets have been computational analyzed in this study (see Chapter
4 and Chapter 5 for results). The experiments were conducted to study individual com-
ponents of the transcriptional regulatory network of the vertebrate heart. Moreover,
considering the opportunities of next-generation sequencing technologies, we aimed to
gain deeper insights into the genetic causes of congenital heart disease. Next-generation
sequencing was performed by the group of Bernd Timmermann (Next Generation Se-
quencing Service) at the Max Planck Institute for Molecular Genetics and by ATLAS
Biolabs GmbH.

2.2.1 ChlIP-seq Data of Srf and Histone 3 Acetylation in Cell Culture

The murine cardiomyocyte cell line HL-1 was used in all ChIP experiments described
in the following. This cell line is a feasible model to study cardiomyocytes, as mRNA
and miRNA expression profiles obtained from HL-1 cells are highly comparable to the
one observed in mouse hearts right after birth (Pearson correlation coefficient of 0.95,
Figure 2.3A) and human right ventricle (Pearson correlation coefficient of 0.90, Figure
2.3B). See Schlesinger et al.! for more information regarding the data and its compar-

ison.

To study cardiac regulatory networks the initial step was the observation of the binding
of the key transcription factors Gatad, Mef2a, Nkx2.5 and Srf to promoters of target
genes using ChIP-chip. These transcription factors play pivotal roles for the differen-
tiation, maturation and homeostasis of cardiomyocytes. The ChIP experiments were
performed and previously analyzed in our group (see Schlesinger et al.'). With the
focus on Srf, several hundreds of transcription factor binding sites could be identified
(in total 1,335), which were related to 1,150 Srf target genes!. In addition, ChIP-chip
data regarding the four activating histone modifications histone 3 acetylation (H3ac),
histone 4 acetylation (H4ac) and histone 3 di- and trimethylation (H3K4me2/3) was
used. These four histone modifications were described to promote an open chromatin

164-167 and were generated and previously analyzed in our group also using ChIP-

state
chip techniques and linear modeling'%®. With the focus on H3ac, 3,453 target genes

were defined to be associated to 3,210 H3ac peaks in ChIP-chip68.
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Figure 2.3: HL-1 mRNA and miRNA expression profiles are highly comparable to
the ones observed in human and mouse hearts. (A) Gene expression levels obtained
from HL-1 cells and P0.5 of C57/BL6 mouse heart. (B) Rank-transformed miRNA
expression levels in HL-1 cells and human right ventricle.

To confirm and further investigate results from the analysis of the ChIP-chip data,
additional ChIP-seq experiments were performed in this study, again using HL-1 car-
diomyocytes now measuring Srf binding and H3ac sites on a genome-wide scale. Sample
preparation was performed according the Illumina library preparation procedure. Two
independent ChIP samples were profiled. After ChIP, DNA fragments bound by Srf or
modified with H3ac in HL-1 cells were sequenced using the next-generation sequencing
technology of the Illumina Genome Analyzer with short single-end reads of 36 bp in
length. Sequencing was performed in-house at the Max Planck Institute for Molecu-
lar Genetics according to manufacturers’ protocols. Analysis of the resulting images
and successive base calling was done using the open source Firecrest and Bustard ap-
plications. Finally, deep sequencing of the ChIP libraries resulted in 6,967,318 and
8,364,328 reads obtained in the Srf and H3ac ChIP-seq experiment, respectively. The
corresponding datasets have been analyzed in this study (see Chapter 4.2).

2.2.2 MicroRNA-seq after Srf Knockdown in Cell Culture

Considering that only a small proportion of differentially expressed genes in loss-of-
function experiments are direct targets of the respective transcription factors, we stud-

ied the potential impact of miRNAs as secondary effectors (see Chapter 4.3). Again
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Srf siRNA-1 | Srf siRNA-2 siNon
Total number of reads 14,911,499 14,518,157 | 14,742,382
Non-redundant read sequences 5,634,650 5,503,661 5,674,429

Table 2.1: Deep sequencing results of small RNA libraries of RNAi mediated knockdown
of Srf (Srf siRNA-1/2) and non-specific siRNA (siNon) in HL-1 cardiomyocytes.

we focused on the transcription factor Srf, which is known to regulate cardiac-relevant
miRNAs like miR-1 and miR-133%%169 To study if a significant reduction of the Srf
protein in cardiomyocytes would affect the expression of associated miRNAs, a siRNA
experiment was carried out using two siRNAs against Srf (Srf siRNA-1/2) and one non-
specific siRNA (siNon) but now followed by miRNA quantification again using the NGS
technology of the Illumina Genome Analyzer. Sequencing libraries were generated using
a non-strand specific library construction method. Sequencing was performed in-house
at the Max Planck Institute for Molecular Genetics according to manufacturers’ pro-
tocols. Image analysis and base calling was performed using the open source Firecrest
and Bustard applications. Deep sequencing of the small RNA libraries of RNAi medi-
ated knockdown of Srf (Srf siRNA-1/2) and non-specific siRNA (siNon) control in HL-1
cardiomyocytes resulted in a huge amount of sequenced single-end reads of 36 bases in

length, with much less unique (i.e. non-redundant) read sequences (Table 2.1).

2.2.3 MicroRNA-seq Data From Human Normal Heart

To evaluate MicroRazerS we used a dataset derived from three human normal heart (left
ventricle) samples (see Chapter 4.3.1 for evaluation results). Small RNAs were isolated
from total RNA using TRIzol (Invitrogen, Germany), pooled (3 times ~ 3.5ug total
RNA was extracted and subsequently pooled) and prepared for Illumina GA sequencing
according to the manufacturer’s protocol. The sequencing library was generated using a
non-strand specific library construction method. Sequencing was performed in-house at
the Max Planck Institute for Molecular Genetics according to manufacturers’ protocols.
Image analysis and base calling was performed using the open source Firecrest and
Bustard applications. Deep sequencing of the small RNA library produced 9,286,222
sequenced single-end reads of 36 bases in length, yielding 2,402,361 unique (i.e. non-

redundant) read sequences.
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2.2.4 RNA-seq, MicroRNA-seq and Genomic DNA-seq Data in Pa-
tients with Tetralogy of Fallot

In collaboration with the German Heart Center Berlin a broad panel of cardiac and
blood samples from patients with congenital heart disease (CHD) as well as healthy
individuals was collected. Each patient (sample) was phenotyped based on 250 anatom-
ical and morphological characteristics. To identify key regulators in the cardiac devel-
opment process and to investigate the interplay between different regulatory layers
leading to CHD an integrative analysis of cardiac samples from patients with Tetralogy
of Fallot (TOF), affected families and healthy unaffected individuals was performed.
Syndromic cases and families with Mendelian inheritance were excluded. This analysis
comprises the quantification of expressed mRNAs and miRNAs in patients with TOF
as well as healthy individuals and targeted resequencing of a subset of cardiac samples

and additional families with recurrent CHD. The results are given in Chapter 5.

mRNA and miRNA profiles were gathered from right ventricles of 22 patients with TOF
as well as from left and right ventricle (LV and RV, respectively) of four healthy unaf-
fected individuals (in total eight normal heart samples). The 22 cases of isolated TOF
were selected out of a broad collection sampled in the German Heart Center Berlin,
also balancing for age and gender (Figure 2.5). Total RNA was isolated using TRI-
zol (Invitrogen, Germany). mRNAs and miRNAs were isolated from total RNA and
prepared for sequencing according to the manufacturer’s protocol. Sequencing libraries
were generated using a non-strand specific library construction method. Purified DNA
fragments were used directly for cluster generation and 36 bp single-end read sequenc-
ing was performed using Illumina Genome Analyzer resulting in ~19 million and ~15
million reads per sample on average for mRNA and miRNA sequencing, respectively
(Table 2.2).

Targeted resequencing was performed for 18 patients with TOF of which 13 are unre-
lated sporadic cases with very similar phenotype based on annotated disease character-
istics and five are members of distinct families with recurrent CHD. Additionally, nine
family members were sequenced consisting of seven healthy parents and two siblings
affected with dextro-transposition of the great arteries (d-TGA) and tricuspid insuffi-
ciency (TI), respectively (pedigrees are shown in Figure 2.4). Genomic DNA (gDNA)
was extracted from 14 out of 18 TOF patients as well as all family members from whole
blood and for four TOF patients from right ventricle using standard protocols. The

quality of gDNA was assessed on agarose gel and spectrophotometer. 3-5 ug of gDNA
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Figure 2.4: Pedigrees of four distinct families with recurrent congenital heart disease
(CHD). Targeted sequencing of gDNA was performed for five Tetralogy of Fallot (TOF)
patients and additionally for nine family members consisting of seven healthy parents
and two siblings affected with dextro-transposition of the great arteries (d-TGA) and
tricuspid insufficiency (TI), respectively. The numbers in the entities represent the
sample identifiers (i.e. NH-{ID} for the healthy parents, TOF-{ID} and CHD-{ID},
respectively, for the affected children).

were used for Roche NimbleGen sequence capturing using 365K arrays. For resequenc-
ing we selected 867 heart- and muscle-relevant genes as well as 167 miRNAs based
on knowledge gained in various related projects 170172 For sequence enrichment we
applied NimbleGen sequence capturing using 365K arrays. For array design 12,910
exonic targets were selected representing 4,616,651 initial target bases, of which 97%
(4,470,649 target bases) could be covered. DNA enriched after NimbleGen sequence
capturing was pyrosequenced for 10 TOF patients using the 454 Genome Sequencer
(GS) FLX instrument from Roche/454 Life Sciences using Titanium chemistry (~430
bp reads), while the remaining samples were sequenced by Illumina Genome Analyzer
(GA) IIx (36 bp paired-end reads). Sequencing was performed in-house at the Max
Planck Institute for Molecular Genetics and by Atlas Biolabs (Berlin, Germany) accord-
ing to manufacturers’ protocols. The family samples were collected and prepared for
target enrichment by the Competence Network for Congenital Heart Defects in Berlin.
On average sequencing resulted in ~13,271,000 read pairs and ~759,000 single-end
reads per sample for Illumina and Roche/454, respectively (Table 2.2).
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MRNA & miRNA
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Figure 2.5: Overview about RNA-seq, miRNA-seq and gDNA-seq data in patients
with Tetralogy of Fallot (TOF), affected families and healthy unaffected individuals
(87 samples). Targeted resequencing was performed for 18 patients with TOF of which
13 are unrelated sporadic cases and five are members of distinct families with recurrent
congenital heart disease. Additionally, nine family members were sequenced consist-
ing of seven healthy parents and two siblings affected with dextro-transposition of the
great arteries (d-TGA) and tricuspid insufficiency (TI), respectively. Cardiac samples
were obtained from left and right ventricle (LV and RV, respectively), whereas most
of the gDNA samples were obtained from blood. Next-generation sequencing was per-
formed using different platforms including the Illumina Genome Analyzer (GA), the
Genome Analyzer IIx (GAIIx) and the 454 Genome Sequencer (GS) FLX instrument
from Roche/454 Life Science.
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ID Mal- Family Gender Age Source Single-end Single-end Paired-end Single-end
form- aggre- (Male/ category for lib 36 bp read 36 bp read 36 bp read 400 bp read
ation gation Female) (years) prep counts in counts in counts in counts in

mRNA-seq miRNA-seq gDNA-seq gDNA-seq
(GA) (GA) (GAIIx) (GS FLX)
NH-01 Normal - M Adult (25) LV 14,737,495 14,111,358 - -
NH-02 Normal - M Adult (25) RV 20,106,950 16,270,049 - -
NH-03 Normal - F Adult (18) LV 16,004,150 12,230,279 - -
NH-04 Normal - F Adult (18) RV 12,961,101 12,940,172 - -
NH-05 Normal - M Adult (20) LV 24,075,301 13,936,063 - -
NH-06 Normal - M Adult (20) RV 20,296,818 14,475,968 - -
NH-07 Normal - F Adult (34) LV 22,089,909 14,794,093 - -
NH-08 Normal - F Adult (34) RV 23,597,799 14,890,970 - -
NH-09 Normal Fam 1 M Adult B - - 16,353,288 -
NH-10 Normal Fam 1 F Adult B - - 11,512,571 -
NH-11 Normal Fam 2 M Adult B - - 12,113,657 -
NH-12 Normal Fam 2 F Adult B - - 15,134,005 -
NH-13 Normal Fam 3 M Adult B - - 13,173,704 -
NH-14 Normal Fam 3 F Adult B - - 12,178,506 -
NH-15 Normal Fam 4 F Adult B - - 11,816,249 -
TOF-01 TOF - M 1-3 years RV 10,888,508 15,618,489 15,971,391 -
TOF-02 TOF - F 1-3 years RV 19,907,118 14,247,548 13,485,340 -
TOF-03 TOF - M Infant RV 21,882,581 16,154,319 - -
TOF-04 TOF - M Infant RV 23,167,354 13,530,942 - 806,632
TOF-05 TOF - M Infant RV 14,570,039 13,178,983 - -
TOF-06 TOF - F 1-3 years RV/B 21,750,958 15,681,483 - 772,217
TOF-07 TOF - F Infant RV/B 18,392,413 14,459,386 - 833,654
TOF-08 TOF - F Infant RV/B 15,106,033 14,893,149 - 862,774
TOF-09 TOF - M Infant RV/B 23,512,940 16,226,821 - 744,316
TOF-10 TOF - F Infant RV/B 23,026,631 15,467,857 - 675,167
TOF-11 TOF - M Infant RV/B 17,430,948 14,989,342 - 850,429
TOF-12 TOF - F Infant RV/B 13,437,909 14,684,351 - 663,464
TOF-13 TOF - M Infant RV/B 21,026,718 15,412,115 - 663,583
TOF-14 TOF - M Infant RV/B 16,936,456 14,722,727 - 713,218
TOF-15 TOF - M 1-3years RV 21,409,551 14,982,308 - -
TOF-16 TOF - F Infant RV 16,813,107 16,914,098 - -
TOF-17 TOF - F Infant RV 24,364,507 15,860,118 - -
TOF-18 TOF - F Infant RV 20,193,649 16,542,142 12,738,154 -
TOF-19 TOF - M Infant RV 15,564,794 14,560,854 - -
TOF-20 TOF - F Infant RV 21,553,557 17,891,078 - -
TOF-21 TOF - M Infant RV 17,564,630 14,033,794 - -
TOF-22 TOF - M Infant RV 24,353,916 16,296,019 - -
TOF-23 TOF Fam 1 M Infant B - - 10,442,596 -
TOF-24 TOF Fam 2 M Infant B - - 12,741,583 -
TOF-25 TOF Fam 3 M Infant B - - 15,275,837 -
TOF-26 TOF Fam 4 F Infant B - - 13,939,375 -
TOF-27 TOF Fam 4 F Infant B - - 12,059,011 -
CHD-01 d-TGA Fam 2 M Infant B - - 12,380,168 -
CHD-02 TI Fam 3 M Infant B - - 14,297,978 -

Table 2.2: Sample information and raw read counts obtained from RNA-seq, miRNA-
seq and gDNA-seq in patients with Tetralogy of Fallot (TOF), affected families and
healthy unaffected individuals. For library preparation, total RNA was isolated from
left and right ventricle (LV and RV, respectively) of human heart samples and genomic
DNA was obtained from blood (B) or RV. For sequencing different next-generation
sequencing platforms were used including the Illumina Genome Analyzer (GA), the
Numina Genome Analyzer IIx (GAIIx) and the Genome Sequencer FLX (GS FLX)
from Roche/454 Life Science.
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Chapter 3

Computational Analysis of

Next-(Generation Sequencing
Data

3.1 Mapping of Short Sequence Reads to a Reference

Genome

Next-generation sequencing techniques support many applications including sequencing
of chromatin-immunoprecipitated DNA for the identification of DNA binding sites and
histone modification patterns, RNA sequencing for gene expression and small RNA
profiling, and target resequencing for detection of genomic variations (Chapter 2.1).
For all these applications, a vast amount of DNA is analyzed in terms of short se-
quences called reads, which represent fragments from a usually longer DNA molecule
present in the sequencing sample. In contrast to whole-genome assembly, in which the
sequence reads are assembled together to reconstruct a previously unknown genome,
for these applications a reference genome is usually given'™. One of the first compu-
tational challenges for analyzing the data of such applications is the mapping of all
sequence reads to the reference genome. This read mapping problem can be formalized
as follows: given a set of read sequences R, a reference sequence G and a distance
d € N, find all substrings ¢ of G that are within distance d to a read r € R'™. The
occurrences of these substrings are called matches. Common distance measures are
Hamming distance (mismatches and no InDels) and edit distance (mismatches and In-

Dels) ™. The mapping process is complicated by several factors including sequencing

28



3.1 Read mapping

errors, genetic variations in the population, short read length and the huge amount of
reads to be mapped!™. Therefore, many algorithms have been developed specifically
for the purpose of mapping short reads (e.g. Bowtie!™, BWA!"", Eland'"®, Maq'™,
Novoalign %0, RazerS'™, SOAP2'®¥! SHRiMP #2 and ZOOM 83).

The majority of the existing read mapping approaches use a filtration method followed
by a verification step. The filtration method is first applied to identify candidate re-
gions that possibly contain a match. In the following verification step these regions are
examined for real matches. Often an index data structure, either on the set of reads

174 " Several very successful filtering

or on the reference sequence, is build for filtration
approaches use the g-gram counting strategy based on the g-gram lemma 84185 which

states that two sequences of length [ with Hamming distance d share at least

t=1+1—-(d+1)q

common substrings of length ¢, so-called g-grams. This g-gram lemma can also be
generalized to the edit distance if [ is the length of the larger sequence!™. Burkhardt
and Kirkkiinen have described an extension that uses gapped g-grams'®. The idea is
to model insertions and deletions by additional g-grams. For example, with the basic
shape 'N-N’ applied the string, the pattern 'N-N’, ’N--N’ and "NN’ will be used. All
three shapes in the pattern are compared to the ¢-grams of the basic shape in the string
and therefore, matching ¢-grams can be found in the presence of InDels. The ¢-gram
counting strategy was first used in QUASAR'™" and an improvement of this algorithm
is the SWIFT filter algorithm !®8, which relies on the g-gram filter for matches of error
rate € and a given minimum length ly. Using an error rate rather than an absolute
error threshold is more appropriate since the length of a local alignment is not known

in advance.

Another algorithm which uses the g-gram filtering technique is SHRiMP 182, However,
the implemented default g-gram counting strategy in SHRiMP does not guarantee to
be lossless. Therefore, Weese et al.'™ developed the short read mapping tool RazerS,
which is implemented within the C++4 library SeqAn'8. It is also based on the g-gram
counting strategy that builds an index over the reads and uses an implementation of the
SWIFT filter algorithm to scan over the reference and efficiently filter regions contain-
ing possible read matches. These regions are identified by a certain minimal number ¢
of g-grams. Filter efficiency is determined by the parameters g and . For read-reference

alignments that are not allowed to have gaps, i.e. if only Hamming distance mapping is
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considered, filter sensitivity can be strongly increased by using gapped ¢-grams. RazerS
can map sequence reads using Hamming or edit distance in the filtering phase and in the
verification step without any restrictions. Moreover, given a user-defined loss rate (e.g.
0 making the mapping process exact), parameters are selected by the algorithm such
that the chosen loss rate is not exceeded in expectation'™. To map paired-end reads
the reference genome is scanned from left to right in parallel with two SWIFT filters,
which have the distance of the library (insert) size minus a tolerated deviation. Both
filter search for potential matches of one of the two ends of all read pairs. In addition,
all matches of the left filter within a distance of the doubled tolerated deviation are
stored in a queue and if the right filter finds a potential match with corresponding stored
by mate both potential matches are verified. To reduce the running time the verifi-

cation process is only done if both potential matches are within the correct distance ™.

3.1.1 Small RNA Read Mapping Using MicroRazerS

Deep sequencing has become the method of choice for determining the small RNA con-
tent of a cell. Mapping the sequenced reads onto their reference genome serves as the
basic for all further analyses, namely identification and quantification. Although spe-

190,191

cific short read mapping tools exists, several large-scale studies have used the less

192 que to the special re-

sensitive and very time-consuming Mega BLAST algorithm
quirements of small RNA read mapping. Usually, a high quality 5’ end with an exactly
matching seed sequence and trailing mismatches at the 3’ end is expected. As small
RNAs may be shorter than the sequenced reads, the sequencing process can reach into
the adapter. As a consequence, the 3’ ends of the reads may contain variable lengths of
adapter sequence causing mismatches in the read-to-reference alignment. If the adapter
sequence is known, the 3’ ends can be trimmed, but this process is imperfect and further

complicated by the presence of sequencing errors occurring especially at the 3’ end.

A promissing strategy for small RNA read mapping is therefore to search for the longest
possible prefix-match of each read, i.e. the longest contiguous match starting at the
first read base. Mega BLAST aligns all reads to the reference genome with a minimum
word size. Its output needs to be further filtered for matches meeting the above crite-
ria discarding all matches with lower than 100% identity in the 5’ seed sequence and
afterwards only retaining the longest match(es) for each read %191, The resulting set
of matches usually constitutes only a small fraction of the raw Mega BLAST output

and moreover, this strategy is unnecessarily slow and inconvenient. However, there had
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Figure 3.1: MicroRazerS strategy for the alignment of small RNA reads. The strategy
is to search for the longest possible prefix-match of each read, i.e. the longest contiguous
match starting at the first read base.

been no short read aligner that directly implements this strategy but there are tools
employing similar strategies like the BWT-based aligners SOAP2'8! and Bowtie!"®,
which allow to set a minimum 5’ seed length. Therefore, a read mapping tool, called
MicroRazerS, specifically tailored to the needs of short RNA read mapping has been
developed during this study?. MicroRazerS is robust to possible adapter sequence at
the 3’ end of a read and requires no adapter trimming. It can map millions of reads
within a few minutes and is not only much easier to handle than Mega BLAST, but also
more sensitive, especially in the presence of sequencing errors and SNPs. Moreover, no

extensive filtering is required after mapping.

Like RazerS, MicroRazerS employs the gapped g-gram method in conjunction with
the SWIFT parallelogram filter to detect with 100% sensitivity all read matches with
a predefined read prefix of length s containing 0 or 1 mismatch. Seed matches are
subsequently extended to the right (3’ end) until the first mismatch is encountered.
MicroRazerS thereby guarantees to find for each read the match that has (i) the low-
est number of mismatches in the seed and (ii) can be extended furthest to the right.
If multiple best matches exist, all of them are detected. The balance between speed
and sensitivity can be controlled by the recognition rate parameter. The higher the
recognition rate the more sensitive is MicroRazerS. The lower the recognition rate the
faster runs the mapping tool (default 100). MicroRazerS supports seed length values
from 10 to 26, a parameter that can be adjusted via the command line. If multiple
best matches exist, a user-defined maximum number of hits is reported, optionally

discarding all reads having more best hits than this number. An additional feature
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of MicroRazerS is its option to map reads with at most one or no error in the seed
sequence. Especially if one is interested in finding miRNAs at low abundance where
robustness towards sequencing errors or SNPs might be crucial, the 100% identity cri-
terium has to be dropped. A schematic representation of the MicroRazerS strategy
for the alignment of small RNA reads onto a reference genome is shown Figure 3.1.
Moreover, an evaluation of MicroRazerS in comparison to other short read mapping

tools using similar strategies is described in Chapter 4.3.1.

3.2 Analysis of Protein-DNA Interactions from ChIP-seq
Data

ChIP-seq has become the method of choise to investigate genome-wide in vivo bind-
ing patterns of transcription factors and chromatin histone marks. The analyses of
protein-DNA interactions using ChIP-seq data is divided into (i) mapping of the ob-
tained sequenced reads to the reference genome, (ii) normalization of read counts to
account for experimental differences between different sequencing runs and (iii) call-
ing of enriched sites (peaks). In this study ChIP-seq experiments using only a single
sequencing run per experiment were performed. Therefore, no normalization of the
resulting reads had to be performed. The read mapping is described in Chapter 3.1,
and the peak calling with the corresponding discovery of sequence binding motifs is

described in the following.

3.2.1 Peak Calling

After read mapping to the reference genome, the next step is to identify regions that
are significantly more enriched than what would be expected by chance. For this task
many peak calling algorithms have been developed mostly based on a sliding window
approach. If a window of a given size contains a number of reads that exceeds a defined
significance threshold, then this region is called a peak. There are algorithms that
determine the background distribution (noise) from a control sample if available!93 197
while others model the background distribution from the ChIP sample itself!3%198  Fur-
thermore, a number of algorithms use the directionality of the reads, taking advantage
of the fact that DNA fragments from a ChIP experiment are sequenced from the 5’

end. The location of mapped reads should therefore form two peaks, one on the posi-
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Figure 3.2: ChlIP-seq peak scoring. The left ChIP peak is not statistically significant
because the enrichment ratio between the ChIP and control sample is low (1.5) and the
number of read counts (shown under the peak curves) is also low. The middle and the
right peaks represent two ways in which a peak can be statistically significant. In the
middle, the enrichment ratio between between the ChIP and control sample is high,
although the number of read counts is low. On the right, the peaks have the same
enrichment ratio as those on the left but have a larger number of read counts. Figure
taken from Park et al.'®* and modified.

tive strand and one on the negative strand, with a constant distance between them 34

Either by shifting each distribution towards the centre or by extending each region into
an appropriately oriented fragment and then adding the fragments together a smoothed
profile of each strand is constructed and the combined profile is computed 4. This ap-

proach is used either to increase the statistical power of the peak detection ?4196:198 o

to reduce the number of false positive peaks subsequently 1?3

Based on the combined profile, a simple way to score a peak is a fold ratio of the reads
from the ChIP sample relative to those of the control sample around the peak. This
approach provides important information but nevertheless it is statistically not suffi-
cient (Figure 3.2). Thus, the Poisson distribution has frequently been used to derive
significantly enriched windows 4195 In addition, it can also be modified to account for
regional biases in the read density due to chromatin structure, CNV or amplification

132,140,196 However, Ji et al. have shown that the Poisson distribution does not

bias
perform well to model the background variability in real data'®. They showed that a
negative binomial (NB) distribution is much better suited than a Poisson distribution
to model background distribution in the absence of a control sample by modeling both
distributions on ChIP-seq data from mouse embryonic stems cells and comparing it
to the observed control data. For peak calling, they used a sliding window approach

to count the number of reads n in all non-overlapping windows of length w over the
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genome. The Poisson distribution defines the probability of finding a number of &k reads

mapped to the window as

Prin=k)= )‘kgi,q
Using a fixed rate A Poisson model assumes that background reads are uniform dis-
tributed across all genomic loci. Ji et al. showed that this assumption does not fit well
with the real data. Thus, they defined A itself to be a random variable by assuming A

of window ¢ to be gamma distributed

() = Ao,
where I'(«) is the gamma function. If « is a positive integer I'(a) = (o — 1)!. For
positive integer values as in ChIP-seq count data, exchanging the constant A with ()

is equal to the negative binomial distribution N B(«, ) with probability

Pr(n = k) = (107 (527 (29)7,

where o and (3 are estimated to define the background distribution using counts for

134 The observed number

windows containing no or only a very low number of reads
that a window contains k reads is compared with the expected number according to a
null model. The ratio between the two numbers is used to calculate the false discovery
rate (FDR) which is dependent on the window size. For peak calling a user-defined
maximum FDR is chosen as cutoff determining a minimal read count per window. All

windows that have a read count that exceeds this threshold are called enriched.

Difficulties in the identification of enriched regions are the different peak types includ-
ing sharp and broad peaks (Figure 3.2). In general, sharp peaks are found for TFBS
or histone modifications at regulatory elements, whereas broad peaks are often asso-
ciated with histone modifications that mark domains such as transcribed or repressed

134 " The algorithm by Ji et al. implemented in the CisGenome software has

regions
been designed to handle both types of peaks by different sliding window approaches.
In detail, a negative binomial distribution is used as the background model to esti-
mate false discovery rates and this used error model allows the definition of a minimal

FDR. CisGenome scans the reference genome with a sliding window of specified length
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and identifies regions with a read count greater than a user-defined cut-off that do
not exceed a specified FDR. Overlapping windows are subsequently merged into peaks.
Moreover, CisGenome includes optional post-processing steps to enhance the peak de-
tection. To obtain precise peak localization, localization boundary refinement can be
applied. Reads coming from the forward and reverse strand are separated and the
maxima of the individual strand-specific peaks are used to predict better boundaries
for the enriched sites. Moreover, single-strand filtering can be applied which removes

5’ without corresponding 3’ peaks or vice versa 3.

3.2.2 Discovery of Sequence Binding Motifs

To determine binding characteristics and as a proof of principle, the analysis of protein-
DNA binding experiments is often followed by a discovery of potentially causative bind-
ing sequence motifs. Based on the biochemical process of transcription factor binding
to cis-regulatory elements in the promoter of their target genes, binding descriptors
have been gathered for a large number of TFs!??290 The most common form to rep-
resent these motifs are position weight matrices (PWMs). PWMs represent motifs in
a matrix form with one row per symbol of the alphabet A = {A,C,G,T} and one
column i € {1,..., L} for each position in a pattern of length L. Each combination of
symbol and position has a score assigned which typically represents the log-likelihood
or, if a background nucleotide distribution is incorporated, the log-odds of observing
that symbol at this position in the pattern. As a PWM assumes independence between
positions in the pattern, the score between the PWM and the site with same length
on the DNA sequence can be calculated as the sum of the individual symbol-position
combinations. A common graphical representation for a PWM is the sequence logo2°!.
In Figure 3.3 an example for a PWM, its sequence logo and real DNA binding site is
given. PWMs can be used to predict the binding of a TF to the promoter sequence of
their target genes. Two different approaches have been suggested. The more common
approach uses predefined score cutoffs or PWM-derived statistics to predict individual
binding sites for the TF. Examples are the MATCH program?®3, the matching algo-
rithm proposed by Rahmann et al.?°* provided by TRANSFAC' or the matrix-scan
program 2%, The second approach biophysically models the binding of a TF to the full
promoter sequence and predicts an affinity score which can be used to find likely bound
promoters for each TF. This approach has been implemented in the TRAP algorithm
by Roider et al.206.
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Figure 3.3: Different representations of a cis-regulatory element. (A) An example of six
sequences corresponding to the -10 region of E. coli promoters. (B) The position weight
matrix (PWM) of the same region using a large number of sequences. The best scoring
nucleotide in each position is colored in gray and corresponds to the consensus sequence
(TATAAT). (C) The sequence logo. The example is taken from Bulyk et al.202.

The main drawback of computational approaches is the low signal-to-noise ratio which
is commonly present in promoters of genes and leads to many false positive predictions.
This problem is further aggravated by large distance between the actual binding site
and the TSS. A common way to increase the signal-to-noise ratio is the use of infor-
mation based on sequence conservation, e.g. obtained from alignments between the
sequence of interest and an orthologous sequence from one or multiple related species.
The idea is that regions with a strong regulatory impact are positively selected against
mutations and therefore regions that show high variability can be discarded from the

prediction of functional binding sites.

3.3 mRNA and Small RNA Profiling

RNA-seq is rapidly becoming the standard method for transcriptome analysis. A sensi-
tive and accurate identification and quantification of known mRNA and miRNAs from
mRNA-seq and small RNA-seq, respectively, is a key challenge to many of the appli-
cations of RNA-seq. The handling of sequenced reads that map to multiple genes or
isoforms is an exemplary problem in the gene quantification, which is described in the

following.
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3.3.1 Quantification of mRNA Expression Levels

To measure a gene’s (g) expression level by NGS reads (r), an obvious way is to deter-
mine its read count c(g,r), which is the number of reads mapping to the set F of all
its exons ey, ...,e,. Appropriated gene model can be derived from databases such as
ENSEMBL2%7 or RefSeq?%8.

6(97 T) = Zeég C(ea Texonic) + Zeég C(ea Tjunction)a

where rezonic is the number of reads that are fully included in exons, called exonic reads,
of protein-coding genes and 7junction is the number of assigned junctions reads to an
exon. Junction reads overlap two or more exons and are often assigned proportionately
to each of their overlapping exons. For genes encoding multiple isoforms, the number
of hits (i.e. exonic and junction reads) per gene is determined as the sum of all hits

over all possible exons.

One of the main problems with mapping short reads is the significant number of reads
that map to multiple positions in the reference genome, mostly attributed to paralogous
genes, low complexity and repetitive sequences 7. The fraction of these multi-mapping
reads varies and depends on the transcriptome and read length. As an example, for
the datasets analyzed by Li et al. this fraction ranged between 17% (mouse) and
52% (maize) for 25 bp reads, representing a significant proportion of RNA-seq data?%?.
However, longer reads do not decrease the number of multi-mapping reads as much as
expected. The simulations on mouse transcriptome in Li et al. showed that single-end
and paired-end (200 bp insert) reads with length of 75 bp give rise to 10% and 8%

multi-mapping reads, respectively2%?.

There are different approaches in the handling of multi-mapping reads including keep-
ing only uniquely mapped reads, mappability methods, rescue methods and statistical
models. The most straightforward approach is to discard multi-mapping reads. This
has been often done in the first RNA-seq studies?!%2!1, Keeping only uniquely mapped
reads can introduce experimental bias including an underestimated expression of repet-
itive genes. A more sophisticated method using only uniquely mapped reads adjusts
the read count for each exon by its mappability, i.e. an essentially fraction of exon po-
sitions that give rise to uniquely mapping reads'#®. Consider a given genomic position
1 and let s; be an n-mer subsequence that starts at this genomic position. Let P; be
the set of positions to which the n-mer s; maps. If the n-mer is unique, its position set

contains a single entry P; = {i}. For multi-mapping positions of the n-mer |P;| > 1.
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Let u; = 1 if P; = {i} and u; = 0 otherwise. Let @; be the set of all genomic positions
that neighbor on position ¢ and start an n-mer that overlaps with genomic position 3.

The mappability m; is defined for each i as the fraction

EjeQi Uj

m’L: n y

which results in the number of unique mappable n-mers that overlap position i145. The
mappability is one if each n-mer that overlaps with position ¢ is unique in the refer-
ence genome. However, this mappability method also introduce experimental bias by

discarding sequencing data although it corrects for repetitive sequence bias!4?.

One strategy that uses all sequencing data is to rescue multi-mapping reads by al-
locating fractions of them to genes in proportion to coverage by uniquely mapping
reads??Y. In the rescue method implemented in the ERANGE (Enhanced Read Analy-
sis of Gene Expression) package multi-mapping reads are assigned fractionally to their
different possible locations based on using the calculated initial expression levels from

147 This rescue method has been

the unique reads of their respective gene models
implemented for gene-level expression only. Another rescue method, shown to be not
as sensitive to errors in gene annotation, is based on a local window approach. In
the MuMRescue approach multi-mapping reads are proportionately assigned to each of
their mapping locations based on unique coincidences with uniquely mapped and other
multi-mapping reads?'?2!3. This is archived by counting the uniquely mapped reads
that occur in a specific window around each locus occupied by a multi-mapping read
divided by the total number of uniquely mapped reads proximal to genomic locations
associated with that multi-mapping read?'?. Both rescue strategies have been shown

to improve correlation with microarray data47.

Among reads that map to multiple positions in a reference genome, it is also possible
that reads map to a single gene but multiple isoforms, called isoform multi-mapping
reads. A method that handles isoform multi-mapping reads by explicitly estimating
isoform expression levels but not handling gene multi-mapping reads was published by

214" They used the Poisson distribution and the maximum likelihood

Jiang and Wong
estimation via coordinate-wise hill climbing to determine isoform expression levels.
The individual parameters are optimized until convergence and confidence intervals
are estimated using an importance sampling approach?'. Finally, a statistical model

has recently been suggested to estimate individual isoform expression levels and more-
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Figure 3.4: Graphical model for RNA-seq data. Figure taken from Li et al.?%.

over, incorporate gene multi-mapping reads?%?. Interestingly, it has been shown that
previous rescue methods are approximately equivalent to one iteration of Expectation-
Maximization (EM) algorithm?%. A Bayesian network (Figure 3.4) is used to estimate
gene and isoform expression levels. The model generates N independent identically
distributed reads of length L. The sequence reads (observed data) are represented by
the R,, random variables and each read is associated with three hidden random vari-
ables, G,, (isoform), S, (start position) and O,, (orientation) from which the read was
derived. The primary parameters of the model ©® = [Oy, ..., 0O)/] correspond to the
expression levels, assuming that all M isoforms present in the transcriptome are given.
The full data likelihood for this model is

P(g,s,0,7|0) = 1—[7];/:1 P(gn|®)P(5n‘gn)P(0nygn)P(Tn|gn)P(Tn|gn7Smon)'mg

The random variable G,, takes a value from 0 to M, with 0 representing noise, i.e. reads
that do not map to known transcripts. The random variable S,, takes a values from
1 to max;l;, where l; is the length of isoform i. The random variable O, is binary
and indicates if a read is in the same orientation as the parent isoform or the reverse
complement. The hidden random variables for the n-th reads can be summarized with
a set of indicator random variables Z,;;r, where Zy;p = 1 if (G, Sp, On) = (i, 4, k).
For strand-specific protocols the variables Z,;; = Zy,;jo are used. To find the maximum
likelihood values for © the EM algorithm is used. In general, in the expectation (E) step
the expected values of Z,;;; random variables, given the current parameter values ©,
are computed. For a strand-specific protocol and a uniform read start position distribu-

tion (assuming that reads are generated uniformly across isoforms), this computation is

Fopr oy = < O/l)P(rn]Znij=1) __ 209
Z|r,© > /(O 1) P(rnl Zpy i =1)"

ni’j
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After computing the expected read counts in the E-step, the following maximization
(M) step computes expression values maximizing likelihood given expected read counts.
The parameter-estimates are then used to determine the distribution of the hidden vari-
ables in the next E-step. Both steps, the E- and M-step, respectively, are repeated until
convergence. The model estimates maximum likelihood expression levels using the EM

algorithm21°.

3.3.1.1 Isoform Quantification using POEM

In this study a proportion estimation (POEM) method?! that enables the relative
quantification of known isoforms using model assumptions similar to those of Jiang
and Wong?' was used and in addition, optimized for analyzing the RNA-seq datasets
described in Chapter 2.2.4. The POEM method is implemented in Solas, a package
for the statistical language R. In general, the algorithm was designed to estimate the
abundance of each known isoform based on a probabilistic model that integrates the
number of reads in exons and the information pertaining to annotated isoforms such
as the sequence read mappability of their related exons?!'. The total number of reads

R covering an isoform j is determined by a Poisson process

R; ~ Poisson(\ - s; - p;),

where s is the total length of the isoform, p is the relative proportion and X is a nor-
malizing factor related to the sampling depth. Especially for low-coverage datasets the
Poisson model serves as a bettter approximation than the normal distribution?'6. More-
over, this distribution has already been proposed for abundance of expressed sequence
tags (EST data)?!” and SAGE libraries?!®. To infer the non-observed proportions p;

of the isoforms again the EM algorithm is used.

The analysis of alternative splicing events showed that frequent splicing events are
occurring on the most 3’- or 5- exons and therefore, the first and last exon of every
transcript is artificially removed before POEM estimation?!. Moreover, due to different
3’UTRs or alternative exons lengths, there are overlapping exons between the differ-
ent isoforms of a gene. For correct POEM estimation, these exons should be removed
in order to get only regions which non-ambiguously describe every isoform. However,

removing overlapping exons results in under- or overestimation of specific isoforms de-
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Isoform A 5 '—' ' 3
———— e ———
Isoform B 5 — ]——-[ l—,‘j‘
——————— ——

subexons 5 — o . 3

(Sub-) Exonic reads —|_ _

Junction reads —_

(Sub-) Exon read counts { 1.5 6.5 1 4.5 3.5

Figure 3.5: Modified gene model for isoform estimation using the POEM method.
Example of a gene with 4 exons and 2 isoforms. All overlapping exons are cut down
into subexons, i.e. the two overlapping exons A; and Bj produce three subexons
S1, Sz, and Ss for the gene model. For the final read count of an exon or subexon
the (sub-)exonic and junction reads are counted. Subexonic and junction reads are
proportionately assigned to each of their overlapping (sub-)exons.

pending on their exonic read counts.

To apply the POEM method to a gene, two information have to be specified including
(i) the description of the gene model (i.e. exon coordinates and isoform structures) and
(ii) the read counts observed within the exons. To optimize the estimation both infor-
mation are modified in this study to keep overlapping exons and moreover, to integrate
splice junction counts for the estimation of isoform proportions, which is also missing in
the original POEM estimation. In a first step, all overlapping exons are cut down into
subexons. For instance, two exons partially overlapping should produce three subexons
for the gene model (Figure 3.5). In a second step, the read counts observed within the
exons and subexons are (re-)defined. For all non-overlapping exons the number of reads
that are fully included in the exon boundaries are counted as described above. In addi-
tion, junction reads that overlap two or more exons are also included in the read count
of an exon in the way that these are proportionately assigned to each of the overlapped
exons. For the subexons, the number of reads that are overlapping their boundaries by
at least one base are counted by proportional assignment to all overlapped subexons.
This counting approach includes subexonic reads that are fully included in the subexon
boundaries as well as their junction reads that overlap two or more subexons. Finally,
the read counts observed within the exons comprises reads of exons and overlapping

exons as well as junction reads between exon as well as between subexons. However,
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the model can be extended to include junction reads in more probabilistic way instead

of adjusting just the corresponding exonic read counts.

3.3.2 Quantification of MicroRNA Expression Levels

After mapping small RNA reads to the reference genome the genomic mapping infor-
mation of each read are used for small RNA annotation. Reads are annotated based on
their overlap to known genome annotations including miRNAs, other non-coding RN As,
repeating elements and protein-coding regions. Annotations are obtained from UCSC
database (GenBank mRNA, RepeatMasker and sno/miRNA tracks)?!? and miRBase
(miRNAs) 3.

If a read overlaps to a known mature miRNA sequence (or known precursor hairpin
sequence) in the correct orientation, then it is assumed to be a sequencing product of
this miRNA and is added to its read count. Multi-mapping reads are proportionally

assigned to each of their loci or miRNAs.

A typical small RNA-seq sample consists of a number of other non-coding RNAs be-
sides miRNAs including transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small
cytoplasmic RNAs (scRNAs), small nuclear RNAs (snRNAs), small nucleolar RNAs
(snoRNAs), miscellaneous RNAs (miscRNAs), mitochondrial tRNA-derived pseudo-
genes (mt-tRNAs) and 5S ribosomal RNAs (5S rRNAs). Commonly, the most abundant
classes of small RNAs besides miRNAs in a given sample are rRNAs and tRNAs. The

5S TRNA is commonly used for normalization in miRNA qRT-PCR experiments 220222,

However, Peltier et al.??” showed that these and other commonly used reference RNAs
used in miRNA qRT-PCR experiments, such as 5S rRNA, U6 snRNA or total RNA
were the least stable against the most consistently expressed miRNAs across 13 dis-
crete normal human tissues. Their data suggests that total RNA is inferior to the most
consistently expressed miRNAs and 5S or U6 were the two least stable RNA species.
The standard deviation across all tissue samples when normalized to 5S rRNA was the
highest followed by those from U6 snRNA 220, Besides small non-coding RNAs reads are
further mapping to different classes of repeating elements including short interspersed
nuclear elements (SINE), long interspersed nuclear elements (LINE), long terminal
repeat elements (LTR), DNA repeat elements, simple repeats (micro-satellites), low
complexity repeats and satellite repeats. In mammals, the most common elements are
LINEs and SINEs (including ALUs).
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The different kinds of small RNA annotations can be used as an additional information
to evaluate the quality of the underlying small RNA library preparation for NGS. For
example, a low number of reads that corresponds to small non-coding RNAs except
miRNAs indicates an accurate library preparation and a low number of mRNA reads

points to a low contamination of the total small RNA sample.

3.4 Differential Expression Analysis

3.4.1 Quality Control

Before normalization and computation of differential expression, the samples should be
examined to identify possible outliers. Eliminating the impact of outliers can signifi-
cantly improve the precision of normalization and a good quality control analysis can

cope with technical artifacts and variance in the experiments.

Among others the principle component analysis (PCA) can be used to examine the
global patterns across samples. PCA is a statistical technique for exploring the struc-
ture of high dimensional data, such as those generated from NGS experiments. In sim-
ple terms PCA reducing data dimensionality by searching for dimensions with highest
variance and subsequent projection which allows to visualize sample relationships in
the context of experimental factors. Thus, factors can be inferred which are the key to
the variances in the observations (e.g. gene or miRNA expression)?23. Potential infer-
ences can be drawn according to e.g. the library preparation and contamination of the
RNA-seq libraries. Another common dimension reduction method is multi-dimensional
scaling (MDS). While PCA finds linear combinations of the variables to get the most
variation in multivariate data, MDS aims to preserve proximity and distance between
pairs of cases. Classical MDS is identical to PCA for most datasets, however, if one
dimension is fixed, the samples can be place in an arrangement that is often more rep-

resentative of true distances?2%.

In RNA-seq experiments library preparation and sequencing can introduce systematic
biases and artefacts like over-amplification of GC-rich regions and generation of dupli-
cate sequences. Unfortunately, it is difficult to distinguish between reads that represent
potential PCR artefacts and normal duplicate reads. It might be that stacks of exactly
duplicated reads (pile-ups) indicate mapping or PCR problems, or they could reflect

a true signal. Thereby, removing all duplicate reads might causes underestimation of
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the true (real) read count level. However, in particular cases, duplicated reads must
be removed, an example being the detection of SNPs, fusion transcripts or to get the
real depth of coverage for a genomic region. In a diverse sequencing library most se-
quences are expected to occur only once in the dataset. A low level of duplication may
therefore indicate a very high level of coverage of the target sequence, yet a high level
of duplication is more likely to indicate some kind of enrichment bias such as PCR
over-amplification. In summary, the level of duplication in a sequencing library should
be examined individually and also in comparison to other libraries, potentially resulting

in resequencing of the library.

3.4.2 Normalization

For accurate estimation and detection of differential expression, normalization is a crit-
ical step which aims to remove any systemic technical effects that might occur in the
data to ensure that technical bias has as low impact as possible on the results. In RNA-
seq experiments, RNA systematic technical bias originated by the reverse transcription
reaction, RNA ligase preferences and PCR based amplification during library prepa-
ration are frequent as well as composition bias due to relying on library size?25226,
Small RNA-seq experiments are strongly biased towards certain small RNAs largely
independent of the sequencing platform but strongly determined by small RNA library

preparation method 226,

To normalize data between samples typically the total number of reads in a given lane or
library is scaled to a common value across all sequenced libraries in the experiment. For
example, in many approaches the observed counts for a gene are modeled by the mean
and an additional factor modeling the total number of reads in the library 211227228 For
LongSAGE-seq data, the square root of scaled counts??? or the beta-binomial model 23
is used, both using the total number of observed read counts??®. Mortazavi et al. ad-

just the counts to reads per KB per million mapped reads (RPKM), defined as

RPKM = 10°-%&

NL>

where C is the number of mappable reads that fell onto the gene’s exons, N is the total
number of mappable reads in the experiment and L is the sum of the exons in base

pairs 7. By contrast, Cloonan et al.'® log-transform the gene length-normalized read
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count data and apply quantile normalization and moderated t-statistics as in microar-
ray normalization?2>. Sultan et al.?3! normalize read counts by the virtual length of the
gene, the number of unique k-mers in exonic sequence as well as by the total number
of sequenced reads??>. Bullard et al. used an upper-quartile normalization method, in
which counts are divided by upper-quartile of counts for transcripts with at least one

read 232,

For small RNA-seq experiments library size scaling is a common procedure for nor-
malization. Following this method the reads assigned to a miRNA (or small RNA) are
divided by the total number of small RNA-seq reads mapped to the reference genome?33.
Alternatively, the relative frequency of miRNAs is determined by normalizing miRNA

226,234 ow-

reads against the total number of reads that mapped to known miRNAs
ever, this normalization approach has its limitations for datasets with markedly different
RNA compositions which could be affect this number?25:233. Therefore, Robinson and
Oshlack suggested the trimmed mean of M-values (TMM) normalization method to
remove RNA composition bias. They argue that the number of reads for a RNA or
small RNA is dependent not only on its expression level and length, but also on the

225 For the sample framework Robinson and

RNA population from which it originates
Oshlack define Yy, as the observed read count for gene g (or miRNA) in library &, pigs
as the true but unknown expression level, L, as the length of g and Ny as total number

of reads for library k. Then they model the expected value of Yy, as

EYg] = —“g;fg N,

where S), = 25:1 frgr Lg. 2%

The total RNA output of a sample is represented by Si. While N is known, Sy is
unknown and can vary widely from sample to sample, depending on the RNA com-
position. If a RNA population has a larger total output, then RNA-seq experiments
will under-sample e.g. miRNAs or mRNAs, relative to another sample??°. Since the
expression levels and the true length of every gene is unknown, S; cannot be estimated
directly. However, the relative RNA population of two samples f = Sj/S), can be esti-
mated by using a weighted trimmed mean of the log expression values. For sequencing

data, Robinson and Oshlack define the gene-wise log-fold changes as
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and the absolute expression levels as
Ay =1 10gs(Yyi /Ny, ® Yy /Nyy) for Yye £ 0.22

Both the M values and the A values are trimmed before taking the weighted average.
The TMM method assumes that the majority of genes or small RNAs common to both
samples, are not differentially expressed. Conducted simulation studies have shown that
the method is robust against deviations to this assumption up to approximately 30%

225,235 The Bioconductor package edgeR 30

of differential expression in one direction
comprises e.g. RNA composition adjustment by TMM and quantile-to-quantile count
adjustment. This approach is used to adjust the observed counts up or down depend-
ing on whether the corresponding library sizes are below or above the geometric mean
(called CML for quantile adjusted conditional maximum likelihood) which creates ap-

proximately identically distributed read counts (pseudodata).

3.4.3 Defining Differential Expression

Early methods for differential expression between two or more sequencing libraries
pooled the libraries in each class and used a standard two-sample difference in pro-
portions test or Fisher’s exact test?3”. Yet, this pooling deals inadequately with the

2387240 Moreover, for each class (i.e. consider a two-sample

within-class variability
comparison, e.g. patients versus healthy individuals) the number of pooled libraries
must be equal. A more flexible model computed two-sample t-statistics on the propor-
tions?*!, thereby taking into account the library-to-library variability. More natural
choices for a statistical model of tag counts may be Poisson or Binomial. However, in
practice there are library-to-library variations which are not well captured by these dis-
tributions. The mean-variance relationship of either Poisson (assuming that the mean
is equal to the variance) or Binomial distribution may not provide enough flexibility,
i.e. more variability exists than can be explained by the model (this is called overdis-
persion). A better fit therefore requires the specification of extra model parameters.
More recent methods have explored the use of beta-binomial?3%23? and gamma-Poisson

240 models. Lu et al. showed via simulation studies that the nega-

tive binomial model seem to performs superior 240,

(negative binomial)
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There are several R packages available from Bioconductor that allow to analyze differ-
ential expression in digital gene (or miRNA) expression datasets. These include edgeR
and DESeq, which use an exact test based on NB distribution 236242, DEGseq which im-
plements MA-plots using random sampling model or technical replicates and assumes
normal distribution of M given A2%3245 and baySeq which uses an estimation of the
posterior likelihood of differential expression via empirical Bayesian methods based on
Poisson or NB distributions?46. The main differences between each package is how the

dispersion (or variance) is calculated.

In this study the gene and miRNA expression datasets have been analyzed in respect
to differential expression using the edgeR implementation based on a negative binomial

model for count data. It states

Y;'j ~ NB(Mij>¢)
with E(Y};) = pi; and Var(Y;;) = ¢ + ¢N§j,

where ¢ is the dispersion (for ¢ = 0 this resembles the Poisson distribution) and Yj; is
the observed count for class ¢ and library j for a particular tag. If A; is the true relative
abundance of this tag in RNA of class ¢ then p;; = m;;j\; where m;; is the library size
for sample j. Differences in relative abundance are assessed for each tag by testing the
null hypothesis Hy : A1 = Ao against the two-sided alternative Hy : A1 # Ao. In detail,
there are two alternatives. First, assuming that all tags have the same dispersion, all
tags are used for estimation (hard shrinkage), or second, the estimate of individual
tag dispersions is modulated by sharing information among all tags (soft shrinkage or
weighted likelihood)237.

In most methods the inference is done one-tag-at-a-time, which is equivalent to gene-
wise t-test for differential expression in microarray studies. In the extreme case two
libraries vs. one, one-tag-at-a-time inference would require the estimation of three pa-
rameters from three observations. Moreover, Robinson and Smyth have observed that
the estimation of the overdispersion ¢ can be problematic, especially in very small
samples?¥7. Therefore, they share information over all tags to improve the inference
using a procedure analogous to the empirical Bayesian method implemented in the
limma package. As a result, the standard t-statistic is replaced with a moderated t-

statistic247.
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For SAGE data Robinson and Smyth discuss a common dispersion model, which uses
all tags to estimate a common dispersion. The conditional likelihood for a single tag is
formed by conditioning on the sum of counts for each class, where the sum of identically
distributed NB random variables also follows NB. However, in the frequent situation of
unequal library sizes, the counts are not identically distributed. Therefore, they used
qCML normalization which creates pseudodata that can be inserted into the equation
for the single-tag conditional log-likelihood for ¢, summed over all tags and maximized
with respect to ¢, resulting in a common estimate. For statistical testing the difference
in expression between two conditions like patients versus healthy individuals they used

t237. The assumption of a common dispersion offers a

the above described exact tes
significant stabilization, compared with a tag-wise estimation, especially for very small
samples. However, in reality not each tag has the same dispersion, implying that in-
ference can be improved by a less strong stabilization. Therefore, instead of enforcing
a common dispersion on all tags, they proposed to squeeze each tag-wise dispersion
(i.e. individual estimate denoted as ¢4) towards common dispersion estimate (similar
to empirical Bayesian). They define the weighted log (conditional) likelihood WL (¢g)

to be a weighted combination of the individual and common likelihoods as

WL(¢9) = l9(¢g) + al0(¢g)a

where « is the weight given to the common likelihood?37. If o = 0 this formula resem-
bles the tag-wise qCML estimates, meaning that the common dispersion was sufficient.
For a >> 1, the contributions from any individual log-likelihood is outweighed by the
common likelihood and the result is a common dispersion. If the true dispersion is
quite variable, @ ~ 1, and if a large number of samples is given, sufficient individual
estimates can be obtained. Improved dispersion estimation enhances inference of dif-
ferential expression (i.e. requires an approximate level of squeezing «). One possibility

is to select o tag-wise, as some tags may need more squeezing.

3.5 Correction for Multiple Testing

Analyzing large-scale biological data like involves the repeated performance of statis-
tical tests. A p-value without correction for multiple testing is only statistically valid

when a single score or a very low number of scores is computed. For example, if a
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single gene had been tested to be differentially expressed between two conditions, the
p-value could be used directly as a statistical confidence measure. However, performing
the same test 10,000 times, one would expect 10,000 - 0.01 = 100 of them to have a
p-value < 0.01, even in a completely random situtation. Due to thousands of hypothe-
ses that are tested simultaneously (multiplicity problem) the chance of false positives
significantly increases. Therefore, we need to adjust for multiple testing based on the
number of tests performed when assessing the statistical significance of analyses of

high-throughput datasets.

To correct for the increase in false positives classical methods aims to ensure a least
overall family-wise error rate by adjusting the individual hypothesis significance levels.
The most widely used method of multiple testing correction is the Bonferroni adjust-
ment, which distributes the significance threshold « evenly on all separately performed
tests n by requiring a significance threshold of at least a/n. However, this method is
too conservative, especially for the analysis of high-throughput data where the number
of tests can easily exceed many thousands resulting in only very low numbers of signif-
icant tests24®. For these kind of analysis methods that control the false discovery rate
(FDR), which is the expected proportion of false discoveries among all significant tests,
are more valid. The method to control the FDR in this study was originally intro-
duced by Benjamini and Hochberg?#? for independent p-values and was later adapted

by Benjamini and YekutieliZ?0.

To ensure that an expected FDR is less than a given 6 both methods (Benjamini-
Hochberg and Benjamini-Yekutieli) sort the p-values P, ..., P, resulting from m dif-

ferent hypothesis tests in increasing order and then find the largest index k£ € ¢ where

[}

b= m-c(m) 0.

Subsequently, all the hypothesis tests with p-values less than or equal to Py are re-
jected. The two methods differ in the definition of ¢(m). While the original Benjamini-
Hochberg method used ¢(m) = 1, Benjamini and Yekutieli showed that this is only valid
for independent p-values. Therefore they proposed a more conservative estimations of

the FDR

c(m) = 325, /i,
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which does not require independency of the p-values?4%:2°0, Finally, Benjamini- Yekutieli
FDR-adjusted p-values can be computed using a step-wise procedure, each representing
the lowest level of FDR, where the appropriate hypothesis belongs to the set of rejected

hypothesis for the first time?251:252,

3.6 MicroRNA Target Prediction

MicroRNAs are involved in the regulation of protein expression in plants and animals.
Predominantly, they bind to the 3’UTR of mRNAs to inhibit translation or to induce
cleavage. MicroRNAs can have hundreds of different targets in a cell and most miRNAs
in plants show near perfect complementarity to their targets2°3 25, In animals miRNA-
target prediction was shown to be more complex because only few miRNAs are perfectly
complementary to their targets. Different computational methods have been developed
for miRNA target prediction and in the following utilized prediction tools and their

principles are presented.

3.6.1 Principles of Target Prediction

The probably most important factor for miRNA target prediction is the Watson-Crick
paring to the 5’ region of the miRNA centered on nucleotides 2-7, which is called the
miRNA seed??%. Requiring a Watson-Crick seed pairing substantially improves the
performance of computational target prediction and reduces notably the occurrence of
false positives. Most miRNA targets have only a single 7 nt match to that miRNA seed
region. Either nucleotides 2-8 build base pairs (7mer-m8; Figure 3.6D) or nucleotides
2-7 build base pairs combined with an A across position 1 (7mer-Al; Figure 3.6C). The

257 and moreover,

A-anchor across nucleotide 1 is shown to be conserved in vertebrates
there is experimental evidence that the 7Tmer-A1 sites outperform others with a Watson-
Crick match to position 12°%:2%9, Requiring perfect 8 nt seed pairing (8mer; Figure 3.6E)
increases specificity, whereas 6 nt pairing (6mer; Figure 3.6A-B) increases sensitivity.
Thus, the site efficacy can be ranked as follows: 8mer >> 7Tmer-m8 >> 7Tmer-Al >>
6mer > no site, with the 6mer differing only slightly from no site at all256:259:260  Tp ad-
dition to the 5’ seed pairing, pairing to the 3’ end of miRNAs also plays a role, although
a minor ones, in target recognition?*®. The miRNA usually supplements seed pairing to
improve binding specificity and affinity. Such 3’-supplementary pairing ideally centers

on miRNA nucleotides 13-16 with at least 3-4 contiguous pairs and the UTR region
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Figure 3.6: Different types of miRNA target sites. (A-B) Marginal, 6 nt sites matching
the seed region. (C-E) Canonical, 7-8 nt sites matching the seed region. (F-G) Atypical
sites with 3’ supplementary and compensatory pairing, respectively. The pictures are
taken from David Bartel2°6.

directly opposite this segments (Figure 3.6F). However, supplementary 3’ pairings are
very rare and play a modest role in target recognition. Moreover, pairing to the 3’
region of the miRNA can also compensate for a single nucleotide bulge or mismatch
in the seed region®?. These are called 3’-compensatory sites and the pairing centered
on miRNA nucleotides 13-17 extends to at least nine consecutive Watson-Crick pairs
(Figure 3.6G). 3’-compensatory sites are rare and probably emerge only when a spe-
cific member of a miRNA family is required for regulation. However, the primacy of
seed paring can be explained by how the protein of the silencing complex (Argonaute)
presents the 5’ region of the miRNA preorganized to prefer pairing to the mRNA. To
enhance both the affinity and specificity for matched mRNA regions, the RISC should
present nucleotides 2-8 of the miRNA preorganized in the shape of an A-form helix to
the mRNA 256,261

MicroRNA binding sites that are conserved across species are much more likely to be

biologically functional. The use of conserved binding sites reduces the false positive rate
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Chapter 3 Computational analysis of next-generation sequencing data

of prediction tools significantly. However, there are many mRNAs with non-conserved
7 nt sites for each miRNA and the set of mRNAs that are coexpressed with a miRNA
constitute a large number, yielding the possibility for much non-conserved targeting262.
Thus, target prediction tools without any considering site conservation?6%:263 or both

with and without conservation cutoffs2°7:264:265 have been developed.

Considering the thermodynamic stability by using the free energy of a miRNA-target
duplex (AGgupiesz) is also important in the miRNA target prediction. An energetically
more stable state is given when two complementary RNA strands are hybridized. The
lower the free energy of two paired RNA strands (miRNA-mRNA), the more energy is
needed to separate this duplex formation. Therefore, a miRNA has a higher affinity
to bind to a mRNA, when the resulting RNA duplex has a low free energy. Moreover,
for the identification of miRNA targets the secondary structure of mRNAs should be
considered. The target site has to be accessible (open or unpaired) for miRNA binding,
revealed by a defined energetic cost AGpen. Further, additional nucleotides upstream
and downstream of the target site, respectively, are also required to be unpaired?64.
The total free energy change, AAG, of the binding process is determined by the dif-
ference between the free energy gained by the miRNA-mRNA binding, AGgypies, and
the free energy lost by unpairing the target-site nucleotides, AGpen, and represents
an energy-based score for the accessibility of the target site and the probability for a

miRNA-target interaction264:266,

Not only sequences of target sites can explain much of targeting specificity but also the
UTR context 296260 Features of the UTR context have influence on the site efficacy.
For example, the site has to be located within the 3’'UTR at least 15 nt from the stop
codon and away from the center of long UTRs, because in the center the site might
be less accessible to the silencing complex. Moreover, high local AU content near a
site increases its accessibility due to the weaker mRNA secondary structure. These as-
sumptions are supported by the analysis of orthologous 3’'UTRs and conserved 7-mers
in general26%:267_ In addition, proximity to binding sites of coexpressed miRNAs boosts
site efficacy, as two sites that are close together (within 40 nt, but no closer than 8 nt)

tend to act cooperatively 260,268
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3.6 MicroRNA target prediction

3.6.2 Correlation to Expression Profiles

When transfecting miRNAs into cells or by their overexpression it has been shown
that a large number of mRNAs are downregulated, which indicates that these mR-
NAs are likely targets to the individual miRNAs“6. Therefore, lowly expressed genes
within a tissue in which a specific miRNA is highly expressed are potential targets
to the miRNA. MicroRNAs can have hundreds of different targets in a cell and, at
low expression levels, the miRNA may have minimal impact on any one of its target
genes. However, genome-wide computational and transcriptome analyses showed that
the expression of miRNAs is more positively than negatively correlated with that of
their targets?%4!. Moreover, Arvey et al. hypothesize that miRNAs that have a higher
number of available targets will downregulate each individual target gene to a lesser

extent than those with a lower number of targets*2.

3.6.3 Prediction Tools

In this study three different target prediction tools have been used including miRanda,
PicTar and TargetScan(S). In general, the predictions given by different tools are di-
verse and the amount of overlapping miRNA-target predictions is quite small. Reasons
for largely non-overlapping predictions are for instance the level of stringent seed pair-
ing, alignment artifacts, the use of slightly different UTR databases, the use of different
miRNA sequences or intrinsic to the prediction algorithms themselves such as the treat-

ment of the target nucleotide opposite to the first miRNA nucleotide?36.

The target predictions available from microRNA.org are based on an implementation

269270 For each miRNA, target genes are selected on the

of the miRanda algorithm
basis of three properties: sequence complementary, free energies of miRNA-mRNA du-
plexes and conservation of target sites in related genomes. First, miRanda analyzes
the sequence complementary between a given mRNA and a set of miRNAs using a
position-weighted local alignment algorithm. A weighted sum of scores for matches
and mismatches of base pairs is computed, thereby the weights are position dependent.
G-U wobble base pairs are allowed but scored less than perfect matching base pairs.
Scores for base pairing at positions 2-8 have a greater weight and, in addition, base
pairings in the 3’ regions are also weighted higher in regard to e.g. 3’ compensatory
matches. Second, the free energy of the miRNA-mRNA duplex is estimated by using
the Vienna RNA folding approach?”'. Finally, the conservation of target sites based
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272 is considered to filter out less conserved predicted targets. In

on PhastCons score
any additional step, the target sites predicted by miRanda are scored for likelihood
of mRNA downregulation using mirSVR?73, a regression model that is trained on se-

quence and contextual features of the predicted miRNA-mRNA duplex?%.

Another popular algorithm used for the identification of miRNA targets is PicTar. It
identifies potential targets for single miRNAs and moreover, PicTar ranks target genes

274 In

by considering whether the mRNA is targeted by combinations of miRNAs
each cell type different miRNAs are coexpressed, which suggest a tissue-specific target
gene regulation. Therefore, PicTar needs a set of miRNAs and a group of orthol-
ogous 3’UTRs from multiple species to determine common targets for the miRNAs.
These miRNAs are then ranked by their likelihood. For single miRNAs perfect 7mer
seed matches (either nucleotides 1-7 or 2-8) are required. The results are then fil-
tered by checking the conservation of target sites and evaluating the free energy of the
miRNA-mRNA duplex using RNAhybrid?”. To each remaining target site a proba-
bility score is assigned corresponding to their likelihood of being functional?™*. The
final probability scores are used in the sequence scoring algorithm, which computes
a maximum-likelihood score for each species using a Hidden Markov Model (HMM).
The final (combinded) score describes the likelihood of a gene being target to the given
miRNA set 274276,

The first version of the TargetScan prediction tool searched for seed pairing and ranked
the resulting sites by evaluating thermodynamic stability. The results for multiple
species are combined to get the predictions for conserved target sites?%®. A more sim-
plified method called TargetScanS was later published?®”, which searched for pairing
to a 6-nt miRNA seed with an additional base pair at nucleotide 8 or a 1A-anchor.
Furthermore, a method for evaluating site conservation was introduced** and target
sites with imperfect seed matches but 3’ compensatory pairing are also predicted. In
mammals the efficiencies of the target sites are assessed by observing the UTR context
of the target sites?60.

54



3.7 Analysis of genomic sequence alterations

3.7 Analysis of Genomic Sequence Alterations

3.7.1 Identification of Local Variations

In the last years, several computational strategies have been developed to identify local
(SNVs and InDels) and structural (e.g. CNVs) variations after mapping DNA se-
quencing reads to the reference genome. This study implemented the identification of
local variations using two applications, namely the Roche GS Reference Mapper®” and
VarScan?"" for 454/Roche pyrosequencing reads and Illumina sequencing-by-synthesis

reads, respectively.

The GS Reference Mapper (Newbler) application aligns pyrosequencing reads against
a reference sequence and generates consensus sequences of the reads that align against
the reference. In addition, Newbler also computes statistics for variations found in the
reads, relative to the reference, and evaluate these lists of putative variations to iden-
tify so-called high-confidence nucleotide differences (HCDiffs). The application uses a
combination of flow signal information, quality score information and difference type
information to determine if a difference is high-confidence. In general, there must be
at least 3 non-duplicate reads with at least one from the forward and reverse strand
showing the difference, unless there are at least 5 reads with quality scores over 20 or
30 if the difference involves a homopolymer of 5 or more nucleotides®’. Pyrosequencing
uses the fluorescent signal strength of incorporated nucleotides in a homopolymer to
estimate its length. The signal strength for homopolymer stretches is only linear for up
to eight consecutive nucleotides, resulting in a higher error rate for larger homopolymer
stretches2”®. However, the usage of the flow signal information in the Newbler applica-
tion significantly improves resolving homopolymeric stretches of a sequence and thus,
for pyrosequencing reads, Newbler performs better for SNV and InDel calling than all
other methods.

Given a file with read alignments, the VarScan application scores and sorts the align-
ments on a per-read basis, discarding reads that aligned with low identity or to multiple
locations in the reference sequence. The single best alignment for each read is then
checked for sequence variations and variations detected in multiple reads are combined
together into unique SNVs and InDels. For each predicted variation, VarScan deter-
mines the overall coverage, the number of supporting reads, average base quality and
number of strands observed for each allele. After filtering, in which thresholds for cov-

erage, quality, etc. can be set automatically or manually, VarScan reports SNVs and
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Figure 3.7: Annotation and functional characterization of local variations.

InDels with their chromosomal coordinates, alleles, flanking sequence and supporting

read counts?77.

3.7.2 Annotation and Functional Characterization

After local variation calling one of the first postprocessing steps is their annotation and
functional characterization. Variations are annotated based on different resources in-
cluding databases from UCSC?2!, NCBI?%® (e.g. Genbank?™, dbSNP 2?80 and OMIM ?81),
ENSEMBL??" and UniProt from EBI?®2. The annotation includes genomic locations
(exonic, intronic, intergenic), gene names and their exonic locations (5'UTR, CDS, and
3'UTR important for miRNA binding), dbSNP entries (known or novel variations),
SNV and InDel functions (nonsense, missense, frameshift, splice site affecting), protein

272)

positions and amino-acid changes, conservation scores (e.g. PhastCons and clini-

cal associations (e.g. OMIM). For all missense SNVs it is possible to predict whether
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3.7 Analysis of genomic sequence alterations

they reside in an amino acid substitution affecting the protein function. For example,
PolyPhen-2 is a tool which predicts possible impact of an amino acid substitution on
the structure and function of a human protein using physical and comparative consider-
ations?®3. Another prediction tool is SIFT, which is based on the degree of conservation
of amino acid residues in sequence alignments derived from closely related sequences 284,
An overview about the genomic annotations and possible functional characterization

of local variations is given in Figure 3.7.

3.7.3 Filtering

To find out which of the identified local variations might be functional and moreover,
to reduce the search space of possible disease associated variations, different filtering
steps can be applied. Most straightforward is the filtering by coverage, supporting
reads, variation allele frequency, average base quality and supporting strands. For
example, if the allele frequency range is 20-80% the variation is called heterozygous,

51

and for more than 80% homozygous®*, meaning that local variations with less than

20% allele frequency might not be functional and thus, should be filtered out.

In general, false positives during local variation calling arise from two phenomena,
sequencing errors and alignment artifacts. Errors on the Roche/454 platform are not
dependent on read position, but tend to cluster around homopolymeric sequences that

d?™ resulting in reads that contain gaps relative to the

are often under- or overcalle
reference sequence. The second origin are alignment artifacts due to relatively short
read length from NGS platforms and complexity of the (human) reference genome. For
example, paralogous sequences and low-copy repeats that differ by only few bases can
give rise to reads that, when aligned incorrectly, appear to support a local variation
at the same position. These errors can manifest even in regions of high coverage. A
window-based filtering approach that identifies clusters on SNV calls (i.e. three SNVs

285 Moreover, local

within 10 bp) might be useful to remove some of these artifacts
variations with excessively high read depth are usually caused by structural variations or
alignment artifacts and should also be filtered out by, for example, setting a maximum

read depth according to the average coverage.

Finally, variation not predicted to be damaging, nonsense, frame-shifting or splice site
affecting can also be removed because they might not be functional. In addition, the

final set of filtered variations can be subsequently reduced to novel variations using
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dbSNP annotations or annotations of polymorphic regions from other projects such as
the 1000 Genomes Project®® or the Danish exome resequencing project?®”. Filtering
for variations not in dbSNP can reduce the search space by 2-10 fold. However, when
discarding known variations, in general rare variations, which might be pathogenic or
known to be disease associated, are also filtered out. Therefore, variations with a known
MAF of less than or equal to 0.01 or known disease associated variations present in the
OMIM database were retained in this study.
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Chapter 4

The Cardiac Transcription
Network Modulated by the
Transcription Factor Srf, Histone
3 Acetylation, and MicroRNAs

4.1 General Purpose and Previous Analysis

In this study we investigated the interplay of transcription factor binding, co-occurring
histone modifications and miRNAs in regulating cardiac transcription networks. The
ailm was to understand how these molecular levels are involved in regulating cardiac

transcription profiles and how they are connected to each other.

First, we focused on the four key TFs Gatad, Mef2a, Nkx2.5 and Srf and performed
ChIP-chip experiments to determine their direct target genes. Several hundreds of TF
binding sites could be identified for each factor (Chapter 2.2.1). Moreover, it has been
shown that the four TFs analyzed have common binding pattern and can partially

compensate each others function?.

The expression of genes is mostly regulated by multiple TFs. To study the potential
functional consequence of the frequent co-binding, siRNA knockdown experiments of
the respective factors were performed in our group (data not shown). For Srf, we found
519 significantly differentially expressed transcripts in the siRNA-mediated knockdown,
most of them being upregulated (in total 468) and only few downregulated (in total
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51). Only transcripts that had a Benjamini-Yekutieli corrected p-value (see Chapter
3.5) of less than or equal to 0.05 in two knockdowns of Srf using different siRNAs when
compared to non-specific siRNA (often called ’siNon’) were considered to be signifi-
cantly differentially expressed. The additional measurement of a non-specific siRNA is
crucial for every siRNA experiment to access consequences on the cellular transcription
profile that are caused by the RNAi experiment itself and not by the induced siRNA.
In general all TFs are mainly transcriptional activators with 70-90% downregulated
transcripts in siRNA knockdown. Most interestingly, genes bound by multiple factors
are significantly less likely differentially expressed in siRNA knockdown than expected.

This shows a buffering or compensation effect between the studied factors®.

To investigate the influence of histone modifications as an epigenetic mechanism to mod-
ulate gene expression, we analyzed our TF binding data in correlation of co-occurring
with four activating histone marks (H3ac, H4ac, H3K4me2/3; Chapter 2.2.1). With the
focus on H3ac we found that ~60% of observed histone 3 acetylation co-localize with
binding events of the studied transcription factors. This is significantly more than what
would be expected in a random situation (i.e. only 23% are expected to co-occur). Fur-
ther, it was shown that the presence of H3ac marks has a significant impact on target
gene expression. Genes marked by Mef2a or Nkx2.5 show significant increased expres-
sion levels compared to non-marked genes independent of co-occurrence of H3ac or not.
In contrast, target genes directly bound by Gata4 or Srf were only significantly higher
expressed when they were additionally marked by H3ac!. The Srf cofactor Myocardin
has been reported to recruit histone acetyltransferase p300 to Srf binding sites whereby

H3ac is induced and gene expression enhanced .

Our previous analyses are based on ChIP-chip as well as siRNA knockdown experiments
(see Schlesinger et al.! for more information). To validate and further investigate the
correlation of H3ac and Srf target gene expression, we performed genome-wide ChIP-
seq experiments in HL-1 cardiomyocytes in our group. The resulting ChIP-seq data
(Chapter 2.2.1) have been analyzed in this study and the results are shown in the
following. Most interesting, it is shown that H3ac tags have the potential to buffer
downregulation of direct Srf targets in an siRNA mediated knockdown. In addition,

the influence of miRNAs on the Srf driven regulatory network is shown.
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4.2 Analysis of ChIP-seq data for Srf and H3ac

Srf H3ac
Total number of sequenced reads | 6,967,318 8,364,328
Number of low quality reads 156,845 (2%) 183,557 (2%)
Number of perfect matches 4,096,439 (59%) | 5,531,016 (66%)
Number of 1-error matches 350,057 (5%) 487,420  (6%)
Number of 2-error matches 97,138  (1%) 122,708  (1%)
Number of unmatched reads 2,266,839 (33%) | 2,039,627 (24%)
Number of called peaks 2,190 10,486

Table 4.1: Number of ChIP-seq read matches and called peaks for Srf and H3ac. Only
uniquely mapped reads without any error (perfect matches), with one error (1-error
matches) and with two errors (2-error matches) were retained for peak calling. Reads
that could not be mapped to the mouse genome or mapped to multiple genomic loca-
tions (summarized as unmatched reads) or with of low quality (containing one or more
ambiguous bases) were discarded from further analysis. Percentages are computed in
respect to the total number of sequenced reads.

4.2 Analysis of ChIP-seq Data for Srf and Histone 3 Acety-

lation

To confirm and further investigate the impact of H3ac on Srf target gene expression,
ChIP-seq experiments were performed using HL-1 cardiomyocytes measuring Srf bind-
ing and histone 3 acetylated sites on a genome-wide scale. Deep sequencing of the in-
dividual ChIP experiments resulted in 6,967,318 and 8,364,328 reads for Srf and H3ac,
respectively (see Chapter 2.2.1). Thereof, 4,543,634 reads (65.2%) for Srf and 6,141,144
reads (73.4%) for H3ac could be mapped to the mouse reference genome (NCBI v37;
mm9) using the read mapping tool RazerS'™ (Chapter 3.1). Only uniquely mapped
36 bp reads with at most two mismatches were retained for peak calling. The mapping
results indicate good experimental qualities (error distribution of reads for both exper-

iments is given in Table 4.1).

To identify Srf and H3ac binding sites, the one-sample approach implemented by the
CisGenome 34 software (Chapter 3.2.1) was used for several reasons. Most importantly,
no Input sample was measured and thus, the used peak calling algorithm had to es-
timate the null distribution from the ChIP sample itself. For the Srf ChIP-seq data
CisGenome was used with a window size of 100 bp, a step size of 25 bp for the sliding
and a minimal read count level of 10, ensuring a FDR lower than 2% for significant
called peaks. As histone enriched sites were shown to be broader than transcription

factor peaks, a window size of 250 bp, a step size of 50 bp for the sliding and a minimal
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Figure 4.1: Identified target genes of Srf and H3ac in ChIP-chip and ChIP-seq.
(A+B) Overlap between genes associated to (A) H3ac and (B) Srf peaks in ChIP-chip
compared to ChIP-seq. (C) Overlap between Srf and H3ac target genes in ChIP-seq.

read count level of 10 was used for the H3ac ChIP-seq data, ensuring a FDR lower than
5% for significant called peaks.

After the peak calling procedure, the described boundary refinement (Srf and H3ac) and
single-strand filtering (only H3ac) were applied. After manual inspection of individual
peaks, application of single-strand filtering for the Srf ChIP-seq data was omitted as it
resulted in a great loss of Srf binding sites because the majority of peaks was not equally
represented on the 3’ strand. The most likely reason for this is an insufficient shearing
of the genomic DNA during the ChIP procedure leading to DNA fragments of non-

134) for the sequencing. To substantiate

optimal size (typically in range of ~150-300 bp
this assumption the resulting fragments were further analyzed by gel electrophoreses.
The gel showed a heterogenous size distribution with a proportion of fragments longer
than optimal for ChIP analysis (data not shown). Finally, the ChIP-seq approach
identified 2,190 and 10,486 peaks for Srf and H3ac, respectively, on the whole mouse

genome (Table 4.1).

4.2.1 Comparison of ChlIP-seq versus ChIP-chip

As the ChIP-seq and the ChIP-chip approach both aim to measure the same enriched
binding sites but use different techniques with different sensitivities, the overlap based

on target genes between these two techniques was analyzed.

For ChIP-seq, 1,902 and 10,689 target genes were defined to be associated to the identi-

fied peaks (described above) for Srf and H3ac, respectively. In contrast to the genome-
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wide ChIP-seq approach, as expected, a much lower number of target genes and asso-
ciated peaks were found in ChIP-chip (see Chapter 2.2.1). In total, 1,150 and 3,453
target genes were associated to Srf and H3ac peaks, respectively, in ChIP-chip. Out of
the 3,453 target genes associated to ChIP-chip H3ac peaks, 91% overlapped with the
ChIP-seq data (Figure 4.1A). However, for the 1,150 genes associated to ChIP-chip Srf
peaks the overlap was only 18% (Figure 4.1B). Finally, most (86%) of the Srf target

genes were found to have an additional H3ac modified site (Figure 4.1C).

4.2.2 Confirmation of Histone 3 Acetylation Dependent Expression
of Srf Targets

Based on ChIP-chip, it was shown that the presence of H3ac marks has a significant
impact on Gatad and Srf target gene expression (see Chapter 4.1). To validate and
further investigate the correlation of H3ac with Srf target gene expression, we analyzed
the ChIP-seq data in the same way as the ChIP-chip data, despite the differences in
the actual peaks (described above). In summary, we found a similar synergistic effect
of H3ac and Srf binding when compared to non-bound genes or genes solely bound by
either of both (Figure 4.2A).

The influence of H3ac marks was further substantiated by integrating the ChIP-seq
results with the RNAi knockdown data (described in Chapter 4.1) of Srf in HL-1 cells.
In accordance to its mainly activating function, we found a significant decrease in
expression levels of genes bound by Srf without any H3ac marks. However, this decrease
was significantly smaller in genes that were additionally marked by H3ac in the wildtype
pointing to a buffering effect of H3ac on Srf target gene expression after reduction of
Srf protein (Figure 4.2B).

4.3 Impact of MicroRNAs on the Srf-Driven Transcrip-

tion Network

Considering that only a small proportion of differentially expressed genes in loss-of-
function experiments are direct targets of the respective transcription factors, we stud-
ied the potential impact of miRNAs. We asked whether the transcription factor Srf reg-
ulates miRNAs, because Srf is known to regulate cardiac-relevant miRNAs like miR-1
and miR-13395:169,
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Figure 4.2: Confirmation of H3ac dependent expression of Srf targets by ChIP-seq. (A)
Boxplots of expression levels of transcripts grouped according to H3ac and /or Srf bind-
ing close to the transcriptional start site (TSS < 1.5 kb). (B) Boxplots of fold changes
relative to siNon control (non-specific siRNA) of downregulated transcripts after Srf
knockdown grouped according to H3ac and/or Srf binding close to the transcriptional
start site (TSS < 1.5 kb). (A+B) Genes showing neither binding of investigated tran-
scription factors nor H3ac are used as reference. The resulting p-values are indicated:
p<0.01 (**) and p<0.05 (*).

For analyzing the direct regulation of miRNAs it was not possible to use or integrate
the Srf ChIP-chip data, as it relies on a pre-designed array, which was built to represent
gene but not miRNA promoters. Therefore, we used the Srf ChIP-seq data (Chapter
2.2.1) to detect direct Srf regulation of miRNAs. Moreover, for analyzing the indirect
regulation of miRNAs, we used the miRNA-seq data described in Chapter 2.2.2.

First, to find direct Srf regulation of miRNAs, the 2,190 peaks from the ChIP-seq
experiment were used to map binding sites of Srf potentially regulating miRNAs. Us-
ing the known miRNAs annotations in mouse (retrieved from the miRBase*3 database
v14.0) 22 miRNAs were predicted with a direct Srf binding site within a region of 10 kb
(based on the ChIP-seq peaks). Among these miRNAs, we found several well-known
cardiac-relevant miRNAs like miR-1, miR-~125b, miR-133, miR-143 and miR-145 (Sup-
plementary Table S1).
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Figure 4.3: Promoter Analysis of mmu-miR-125b-1. Srf ChIP-seq analysis revealed an
Srf binding region downstream of mmu-miR-125b-1. Shown are the positions of mmu-
miR-125b-1 and the Srf binding motif with its core sequence in red. The Srf ChIP-seq
peak region was cloned as mmu-miR-~125b-1 promoter into the pGL3basic vector for
luciferase reporter gene assay. Srf alone and in combination with its cofactor Myocardin
(Myocd) significantly increased the activation of the luciferase beyond activation driven
by endogenous Srf. Mutation of the core sequence (GCCA to TAGT) of the Srf binding
motif (Mut) abolished activation by Srf and Myocd compared to the wildtype (WT).

Out of the 22 miRNAs with direct Srf binding sites, one site in the regulatory re-
gion of mouse miR-~125b-1 was selected and also experimentally validated in our group
using luciferase reporter gene assays. Mmu-miR-125b is known to be deregulated in
heart diseases?®® and was found to be differentially expressed in Srf siRNA knockdown.
Figure 4.3 shows the Srf binding motif and respective Srf ChIP-seq peak within the
regulatory region of miR-125b-1. Luciferase reporter gene assays with wildtype and
mutated fusion constructs confirmed its functionality. Mutation of the potential Srf
binding sequence (CAGCCAAC to CATAGTAC) significantly reduced the transcrip-

tional activity of the reporter gene.

Second, to study if a significant reduction of the Srf protein in cardiomyocytes would
affect the expression of associated miRNAs (indirect regulation), another siRNA ex-
periment was carried out again using two siRNAs against Srf (Srf siRNA-1/2) and
one non-specific siRNA (siNon) but now followed by miRNA quantification using next-

generation sequencing (Chapter 2.2.2). In this study, MicroRazerS (Chapter 3.1) was
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used to map the sequenced reads to the mouse reference genome (NCBI v37; mm9). An
evaluation of MicroRazerS in comparison with other short read mapping tools based
on small RNA reads from human heart samples (Chapter 2.2.3) is given in Chapter
4.3.1. Using MicroRazerS with a seed length of 16 bp, a maximal number of 20 best
hits and at most one mismatch and no InDels in the seed length resulted in 5,449,988
(96.7% for Srf siRNA-1), 5,296,564 (96.2% for Srf siRNA-2) and 5,475,045 (96.5% for
siNon) unique read sequences that could be mapped to the mouse genome representing
97.3% (14,504,934 for Srf siRNA-1), 96.8% (14,053,178 for Srf siRNA-2) and 97.1%
(14,307,881 for siNon) of the sequenced reads. The seed length of 16 bp was found
to be optimal when searching for miRNAs which have a length of 19-25 nucleotides.
Using the annotation from the miRBase*3 database (v14.0), the reads could be mapped
to 349 (Srf siRNA-1), 365 (Srf siRNA-2) and 363 (siNon) known miRNAs. Using the
miRNA-seq approach followed by the described mapping process, in total 370 miRNAs
could be identified. To subsequently test if any miRNA showed differential expres-
sion between siNon and Srf knockdown, Fisher’s exact test was applied comparing the
number of reads mapped to a single miRNA between the siNon and the knockdown
samples normalized by the total number of reads that could be mapped to any miRNA
in the respective samples. Using a Benjamini-Yekutieli corrected p-value (see Chapter
3.5) of less than or equal to 0.05 as significance threshold, 42 miRNAs (49 loci) were
found to be differentially expressed in both siRNA knockdown experiments, including
heart-relevant miRNAs such as miR-208, miR-125b and miR-21 (Supplementary Table
S2). We found that most of the significantly differentially expressed miRNAs (78%)

were downregulated supporting the role of Srf as a miRNA activator.

To explore the potential regulatory effect of differentially expressed miRNAs on the
Srf network, miRNA target prediction was performed for 77 differentially expressed
miRNAs including the 42 previous miRNAs and 35 additional miRNAs that were dif-
ferentially expressed in only one sample (Srf siRNA-1 or Srf siRNA-2, respectively).
The miRanda?%%2" algorithm (Chapter 3.6.3) was applied to 3'UTR sequences. Very
restrictive parameters including a score cut-off > 140 (default = 50), a gap open penalty
of -9 and a gap extension penalty of -4 were used to ensure a low number of false pos-
itives. Using these parameters, the target prediction revealed 192 of 429 differentially
expressed genes to be potential direct targets of a differentially expressed miRNA. Ap-
plying Fisher’s exact test, this number was found to be significant when compared
to all possible target genes (p = 1.77x107°). Compared to all predicted differentially

expressed genes, we found a higher fraction of upregulated genes (57% of all upregu-
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Figure 4.4: Impact of miRNAs on the Srf-driven cardiac transcription network. (A)
siRNA knockdown of Srf in HL-1 cardiomyocytes results in 77 differentially expressed
miRNAs. Target gene prediction of these mostly downregulated miRNAs revealed 192
differentially expressed genes, with a higher fraction of upregulated genes (57% of all
upregulated genes) than downregulated genes (44% of all downregulated genes). (B)
Direct Srf targets represent only a small fraction of all differentially expressed genes in
Srf knockdown (orange and blue). Targets of differentially expressed miRNAs impact
45% (dark gray) with a partial overlap of direct Srf targets (orange). Approximately
50% of differential expression is driven by other secondary effectors (light gray). (C)
Exemplary network of potential indirect gene regulation by miRNAs. The genes Igfbp5,
Nfic and Ctnnall, which are no direct targets of Srf, are predicted targets for a set of
downregulated miRNAs and are found to be upregulated in the Srf knockdown.

lated genes) compared to downregulated genes (44% of all downregulated genes) to be
miRNA targets (Figure 4.4A).

Thus, the differential expression of miRNAs in the Srf knockdown has the potential to
impact up to 45% of all differentially expressed genes directly. Nevertheless, the cur-
rent miRNA target prediction tools are still quite unreliable to predict real regulatory
dependencies with high accuracy. However, given that the miRNA targets found in
this study might themselves be transcriptional regulators, miRNAs very likely provide
a substantial explanation for the observed consequences on the transcriptional portrait
(Figure 4.4B). A representative example of an indirect TF regulation through miRNAs
is shown in Figure 4.4C. It comprises the three genes Igftbp5 (insulin-like growth factor
binding protein 5), Nfic (nuclear factor I/C) and Ctnnall (catenin alpha-like 1). None
of these genes has an associated direct Srf binding site in ChIP-chip/seq but all are
found to be upregulated in the Srf siRNA-mediated knockdown experiment. Strikingly,

all are predicted targets of several miRNAs downregulated in the same knockdown.
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4.3.1 Evaluation of MicroRazerS

MicroRazerS has been developed within this study and to evaluate our short read map-
ping tool we used a dataset derived from three human normal heart samples (see Chap-
ter 2.2.3). Deep sequencing of the small RNA library produced 9,286,222 sequenced
single-end reads of 36 bases in length, yielding 2,402,361 unique (i.e. non-redundant)
read sequences. These unique reads were mapped to the human genome (NCBI v36.1;
hgl8) using Mega BLAST %2, SOAP2'8!, Bowtie!™ and MicroRazerS. The mapping
results are shown in Table 4.2. The running time was measured on an AMD Opteron
2384 with 32 GB memory running a 64-bit Linux system. In the test setting, Micro-
RazerS was nine times (170 min) faster than Mega BLAST and 20 min slower than
SOAP2 or Bowtie. However, SOAP2 took 84 min and Bowtie 206 min to build a BWT
index for the human reference genome. Moreover, Mega BLAST and SOAP2 produced
huge output files that need to be filtered, i.e. in both cases additionally ~30 minutes

were needed for post-processing and filtering after mapping.

MicroRazerS Mega BLAST SOAP2 Bowtie

Running time (min) 24 194 6 5
Buidling index (min) - - 84 206
Output size (GB) 0.1 8.6 6.8 0.7
Memory usage (GB) 3.4 14 8.3 2.3
Unique sequence aligned 1,319,218 891,215 1,318,504 1,184,590
Mappable reads 7,743,516 7,001,832 7,742,266 7,410,239
Reads annotated

as miRNA 5,819,189 5,746,588 5,819,184 5,667,027
Total number of miRNAs 381 372 381 372
- miRNAs with read count >150 101 96 101 99

Table 4.2: A query dataset of ~2.4M non-redundant read sequences of length 36 bp
representing a total of ~9.3M reads was used. Using MicroRazerS the parameters were
set as follows: -m 20 (maximum number of best matches), -pa (purge ambiguous reads
having more than 20 equally best hits) and -sL 16 (seed length). A seed length of 16
bp (100% identity) was used for all mapping tools. In the case of MicroRazerS, no
mismatches in the read prefix were allowed. For SOAP2, 20 mismatches in one read
were allowed but only exact matches in the seed region. For Bowtie, a quality cutoff
-e 500 was used, which corresponds to allowing 20 mismatches, as each base quality in
all reads was set to Phred score quality of 25. The resulting alignments except those
from MicroRazerS were filtered to get the best (longest) hits with at most 20 positions
in the human genome.
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To annotate the sequence reads with known miRNAs, we checked for overlaps with
positions of precursor hairpin miRNAs annotated by the miRBase database (release
13.0). Of note, MicroRazerS was able to map a higher number of reads than all other
programs. While in this dataset almost no differences in miRNA predictions between
SOAP2 and MicroRazerS were observed, the slightly lower sensitivity of SOAP2 could
lead to missing miRNA measurement in other datasets. Allowing to map reads with at
most one error in the seed sequence to be robust in the presence of possible sequencing
errors and SNVs, we observe that indeed a higher number of reads can be annotated as
miRNAs. Using this option, MicroRazerS mapped 97% of all unique sequences to the

human genome representing 99% of the total reads, resulting in 414 known miRNAs.

4.4 An Srf Centered Transcription Network

In addition to a genome-wide perspective, the analysis also provides useful informa-
tion on the level of individual genes. An extensive literature search was conducted
and an Srf centered transcription network was build, where the findings from the Srf
and H3ac ChIP-chip/seq and Srf siRNA-mediated knockdown experiments were subse-
quently integrated (Figure 4.5). Thus, our data add regulatory content to the nodes,
which are connected by referenced interactions. The network shows the common reg-
ulation by Srf and H3ac as well as the impact of the post-transcriptional modulation
of expression levels by miRNAs. Target genes important in the cardiovascular context
are grouped according to their biological roles like ‘regulation in muscle contractility’
or ‘cardiac growth’ and ‘cardiac conduction’. As an example for the interplay between
these different regulatory levels, the apoptotic machinery is regulated at all three levels
(direct Srf binding, H3ac and miRNA post-transcriptional modulation) through sev-
eral pathways involving pro-apoptotic (Casp3, miR-320, Hsp20/a8/a5, Bax) as well as
anti-apoptotic (miR-21, Bcl2, Mcll) regulators.
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Figure 4.5: Srf centered transcription network integrating Srf binding events, H3ac,
miRNAs and differential expression in Srf knockdown. The shown transcription network

is based on an extensive literature search! and integration of our own findings. Data
based on Illumina expression arrays, ChIP-chip/seq, miRNA-seq and gPCR. Srf binding

and H3ac occurrence are depicted in small boxes and up (red) or down regulation

(green) in Srf knockdown is further indicated.
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Chapter 5

Dissecting Congenital Heart
Disease - Genomic Sequence

Alterations, (Gene Expression and

MicroRNA Profiling in Patients
with Tetralogy of Fallot

5.1 General Purpose

Tetralogy of Fallot (TOF) accounts for 7-10% of all congenital heart disease (CHD),
which are the most common birth defects in human. Considering the background
hypothesis of CHD, most of them are likely caused by a panel of genetic variations with
each effecting protein function or expression only modestly and manifest as disease only

when combined with additional genetic, epigenetic or environmental alterations.

In the past, the discovery of oligogenic disorders has been less amenable to conventional
genetic techniques. In this study we used next-generation sequencing techniques to
discover sequence alterations in over thousand heart- and muscle-relevant genes and
miRNAs in patients with TOF, parents and controls. The genetic architecture of
TOF with an oligogenic mutation pattern is shown characterized by a combination of
inherited and novel, common and rare alleles showing a high dependency of functionally
interacting yet individual mutations. Further, we investigated genome-wide mRNA and

miRNA levels in TOF patients and healthy unaffected individuals and combined gene
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Chapter 5 Dissecting Congenital Heart Disease

expression profiles with miRNA target predictions.

5.2 The Genetic Basis of Tetralogy of Fallot

To identify genomic sequence alterations and to analyze a potential oligogenic basis of
TOF, we performed targeted resequencing of 18 patients with TOF of which 13 are
unrelated sporadic cases and five are members of distinct families with recurrent CHD
(see Chapter 2.2.4, Figure 2.5). To study the pattern of inherited and novel mutations
we additionally sequenced nine family members consisting of seven healthy parents
and two siblings affected with dextro-transposition of the great arteries (d-TGA) and
tricuspid insufficiency (TI). The samples were sequenced by the 454 GS FLX instru-
ment from Roche/454 and the Illumina GAIIx. On average sequencing resulted in
~13,271,000 read pairs and ~759,000 single-end reads per sample for Illumina and
Roche/454, respectively (see Chapter 2.2.4, Table 2.2). Reads resulting from Illumina
sequencing were mapped to the human reference genome (NCBI v36.1; hgl8) using the
Burrows-Wheeler alignment (BWA) tool'”” v0.5.9 with 'sampe’ command and default
parameters. SNV and InDel calling was performed using VarScan?’" v2.2.3 with a
minimum of three supporting reads, a minimum base quality of 20 (Phred score) and
a minimum variant allele frequency threshold of 0.2. Mapping as well as SNV and
InDel calling for reads resulting from Roche/454 sequencing were performed using the
Roche GS Reference Mapper (Newbler) v2.5.3 with default parameters leading to high
confidence differences (HCDiffs). Ambiguously mapped reads were discarded from the

289 y0.1.12a in case of Illumina reads or the Newbler soft-

analysis either using Samtools
ware for 454 reads. On average ~9,744,000 (73.4%) read pairs (36 bp) and ~755,000
(99.5%) single-end reads (~400 bp) per sample for Illumina and Roche/454, respec-
tively, were mapped to the human reference genome, with high average base quality

and read coverage (Supplementary Figure S1).

Additional filtering of found local variations was performed for both techniques to en-
sure a minimum variant allele frequency threshold of 0.2 and a minimum coverage of five
and ten sequenced reads for Roche/454 and Illumina, respectively. Moreover, sequence
variations were functionally annotated using SIFT 2% and PolyPhen-2283. Afterwards,
we filtered for local variations predicted to be missense, nonsense, frame-shifting, or
affecting splice or miRNA binding sites. Only those missense SNVs were retained,
which were predicted to be damaging or unknown, while tolerated variations were dis-

carded. The final set of filtered variations was subsequently reduced to novel variations
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Figure 5.1: Filtering pipeline for local variations. 454 and GAII reads were mapped
and used for SNP and InDel calling. After quality control, variations were functionally
annotated, filtered and reduced to novel variations, variations with a minor allele fre-
quency of less than or equal to 0.02 using dbSNP (v130) and known disease-associated
variations. After manual assessment, high confidence local variations were statistically
tested against the control population. *Variations in TOF genes were additionally
examined using dbSNP (v135).
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or variations with a MAF of less than or equal to 0.01 using dbSNP 280 (v130) anno-
tations. Known disease associated variations present in the OMIM?®! database were
retained irrespective of their MAF. To ensure high confidence, the local variations of
TOF patients and family members were further manually assessed for potential bio-
logical function comprising gene as well as protein annotations, splice site alterations,
technical biases and effective amino acid changes. The individual filtering steps are

shown in Figure 5.1.

As a quality control we compared the gene length to the number of called SNVs and
found no obvious correlation, meaning that some short genes have a high number of
unique SNVs while long genes can have only few SNVs (Supplementary Figure S2).
Furthermore, affected genes are equally distributed over all chromosomes (Figure 5.2).
To technically confirm the genomic variations and to gain insights into the respective
gene expression profiles in the heart, we gathered mRNA profiles from right ventricles
of 22 patients with TOF as well as four healthy individuals. The description of the
mRNA datasets and the gene expression analysis is given in detail in Chapter 2.2.4 and
Chapter 5.3, respectively. We gathered all mRNA-seq reads which mapped to found
local variations. A variation was defined to be validated if at least one mRNA-seq
read mapping to the same genomic location showed the identical sequence alteration.
Thereby, we were able to validate approximately 76% of local variations covered by
mRNA-seq (on average over all individuals). Increasing the minimal mRNA-seq cover-
age resulted in an increased number of validated local variations. For example, using a
minimal coverage of ten mRNA-seq reads ~96% of local variations could be validated

(Supplementary Figure S3 and S4).

Copy number variations (CNVs) have been examined within the ten TOF samples py-
rosequenced by the Roche/454 technology. CNV calling for the long 454 reads resulting
from Roche/454 sequencing was performed using the Roche GS Reference Mapper ap-
plication v2.5.3 with default parameters resulting in high confidence rearrangement
points and regions. High confidence structural variations (HCStructVars) were further

filtered to be novel and manually assessed for biological function.

To enable the statistical assessment of found sequence variations, a Danish exome SNV
dataset was incorporated as a large control cohort comprising 200 individuals (controls)
of close genetic origins to the analyzed German individuals?®”. Using such a close con-
trol population is mandatory as exonic variations below 1% allele frequency show a

286

high population-specificity Moreover, the selected control dataset further shows
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Figure 5.2: Genomic positions of affected genes. Chromosome length is represented by
horizontal lines. Heart- and muscle-relevant genes initially selected for the study are
shown in gray. The final set of genes with detected SNVs and InDels are marked by a
black bar above or below the line, respectively. The 16 defined TOF genes are shown
in red. The box above each affected gene indicates the number of TOF patients, which
have at least one local variation in that gene. Dots below genes indicate known human
cardiac phenotypes curated from literature.

75



Chapter 5 Dissecting Congenital Heart Disease

A o
® S
S8 &
25 1 ©
(7] o
(]
c
& 207 _—T _ o
3 T
%) o]
2 151 T
®
o
3 —
e}
£
=]
P4 5
: : 3
‘ » & S
Q0 Q° ¥
B C
-1 0 1 2 3 -0.5 0.0 05 1.0 1.5 2.0 25
] ] ] ] 1 1 1 1 1 1 1 1
0.5 0.2
FBN2 L - GNAS CACNAIC
€ F5 3 S NDUEﬁER PKD1Parents L 1.0
g 0.4 c MYH6'COL6A3 gpc27
S cbc27 9 01 L 05
g 034 L2 E :
9 Health o E -
S 024 ealthy 5 00 LAMA5 HFE 0.0
S - 1 -3 COX10 o5
T 0.1 2 01 TOF TOF (families)|
£ e 3 ACADS 10
2 0.01 -0 © MKI67 TTN '
2 TOF (all) S 02 FLNB L
§ -0.14 Parents ] e
S TTNACADS -1 @ NOTCH1 --2.0
T T T T T T 1 -0.3 T T T T )
0100 01 02 03 04 05 01 00 01 02 03 04
First principal component First principal component

Figure 5.3: (A) Boxplot based on the number of affected genes in patients with Tetral-
ogy of Fallot [TOF (all)], their parents and control individuals [healthy]. Data is based
on SNVs only. TOF patients and their parents are enriched for genes with SNVs com-
pared to healthy individuals. (B-C) Biplot of principal component analysis based on
gene-wise SNV frequencies for patients with Tetralogy of Fallot (TOF), the analyzed
parents (Parents) and the control population (Healthy). Genes with a high distance
from zero in both components are indicated by their name. (B) Principal component
analysis based on all three groups. (C) Principal component analysis based on TOF
patients and analyzed parents. The patients have further been divided into individuals
taken from the analyzed families [TOF (families)] and all other TOF patients [TOF].
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Figure 5.4: Scatterplot showing the number of genes with SN'Vs in respect to the defined
set of significantly affected genes (TOF genes) versus all other genes (non-TOF genes).
TOF patients and healthy individuals are represented by blue dots and red diamonds,
respectively. TOF patients show a clear enrichment in mutations in the selected gene
set. Distributions over the number of affected TOF and non-TOF genes per individual
are given as box-plots. P-values are based on Wilcoxon rank sum test.

high similarity in experimental and analytical procedure ensuring high comparability.
The retained total number of SNVs in this control population was subsequently filtered

using the same pipeline established for our own variations.

SNV and InDel calling and filtering in TOF patients resulted in a total of 398 local
variations altering the coding sequence of 237 genes classified as damaging (233), non-
sense (6), frameshift (140) or splice site (14) mutations as well as amino acid InDels
(5). CNV calling and filtering in ten TOF patients sequenced with Roche/454 technol-
ogy resulted in three high confidence CNVs altering the coding sequence of three genes
(Supplementary Table S3). No relevant mutations were observed in miRNA mature
sequences, i.e. we found only few miRNA mutations and these are not located within
the seed region (Supplementary Table S4). Variations in three genes (SGCA, MTPN
and ZFPM2) were found in non-coding sequences related to predicted binding sites of
five co-expressed miRNAs (hsa-miR-548j, hsa-miR-15a, hsa-miR-16, hsa-miR-195 and
hsa-miR-873). These genes also showed genotype-specific expression in related cardiac

biopsies (details are given in Chapter 5.5).

Further, the impact of differential splicing as a potential disease-causing mechanism
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was evaluated. We found 1,765 significantly differentially expressed transcripts in TOF
compared to normal heart (see Chapter 5.3), of which only 50 are related to differential
splicing events. These transcripts were found with a different abundance (based on
POEM estimation; see Chapter 3.3.1.1) between TOF and normal heart (RV) samples,
i.e. with an average fold change greater than or equal to 2.0 or less than or equal to -2.0.
Moreover, no deleterious sequence variations was found in a splicing factors. Looking at
non-exonic mutations we found only few effective splice site mutations (Supplementary

Table S5). Thus differential splicing is unlikely to be a TOF-associated mechanism.

In total, we found 237 deleterious mutations in genes of TOF subjects (based on lo-
cal variations). 134 genes harbor exclusively SNVs, 36 genes SNVs and InDels and
67 genes only InDels. On average 16 and 26 genes per patient were affected based
on SNVs only and all local variations including InDels, respectively. An even higher
average number of affected genes were found in the analyzed parents (Figure 5.3A). In
comparison, only 10 genes on average were found to contain potentially effective SNVs
in the controls. In respect to this, the simple numeric excess of genes appears to favor
the disease phenotype or the chance to give birth to affected children, respectively.
Yet, the most extreme control individual showed effective SNVs in 25 genes, indicating
that the specific type and pattern of mutation rather than the overall number is more
important. Differences in the genetic background between TOF patients, parents and
healthy controls were further delineated by a principal component analysis based on
gene-wise SNV frequencies (data on InDels are not available in controls). Controls are
characterized by SNVs in different genes than TOF patients and their parents (Figure
5.3B). Although patients and parents are more similar to each other than to the con-
trols, they show a clear distinction studied separately (Figure 5.3C). Importantly, TOF
patients are characterized by a common set of mutated genes, independent of whether

they are members of the CHD families or represent unrelated sporadic cases.

A critical result of exome projects is the finding that a high number of potentially
pathogenic variations can be observed in any healthy individual?®6:287. Most likely the
combination of subsets of variations or their co-occurrence with external influences de-
fine the development of a disease state. Thus it is crucial to identify genetic variations
relevant for the pathophysiology of a given disease. Using a permutation approach
we assessed genes showing a significantly higher mutation rate (based on SNVs only
to ensure comparability to the control dataset) in patients with TOF in comparison

to healthy individuals (Danish controls). This resulted in 16 genes, which we defined
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Figure 5.5: Distribution of TOF genes among cases. (A) Distribution of local variations
(SNVs and InDels) found in the 16 significantly affected TOF genes (corrected p-value
< 0.05) in TOF patients (above) and healthy parents (below). Genes are ordered by
significance from left to right. Gene-wise frequencies of local variants are represented
by blue bars. Corresponding frequencies of SNVs in the control population (200 cases)
are indicated in gray. (B) Distribution of local variations found in 21 potential TOF
genes comprising genes not targeted in the controls (left) and genes with InDels only
(right). (A and B) Familiar assignment is given after the sample identifier (F1 to
F4). The number of local variations per gene is color-coded. Homozygous variations
are additionally marked by a white dot. Genes marked with an asterisk have known
associations with human disease affecting the heart, those marked with a cross show a
cardiac phenotype when mutated or knocked out in mice.

as "TOF genes’. First the observed ratio of each gene’s mutation frequency (given as
the total number of individuals that have at least one mutation in that gene) in TOF

patients compared to healthy individuals (controls) was computed. A pseudocount of

79



Chapter 5 Dissecting Congenital Heart Disease

1x10~% was added to every frequency to avoid zero counts. Afterwards, all individuals
were randomly reassigned to individual mutation patterns to access a gene-wise distri-
bution of mutation frequency ratios under random conditions. Following this approach,
empirical p-values were derived by counting the number of random trials, where the
found ratio exceeded the observed ratio, normalized by the number of trials. We used
100,000 and 10,000 random trials for gene- and SNV-wise significance, respectively,
to ensure a high level of accuracy. Finally, only genes with Benjamini-Hochberg cor-
rected (see Chapter 3.5) empirical p-value of less than or equal to 0.05 were defined
as ‘TOF genes’. These genes distinguish the TOF patients from the healthy controls,
and moreover they are explanatory for the difference in the numerical excess of affected
genes overall compared to the controls (Figure 5.4). Out of the 16 TOF genes, eight
genes have known associations with human disease affecting the heart and ten genes
show a cardiac phenotype when mutated or knocked out in mice (Figure 5.5A). Four
of the TOF genes had not previously been associated with a heart phenotype. For
further substantiation, we compared the mutation frequency of TOF genes to the cen-
tral European population subgroup contained in the 1000 Genomes Project (exon Pilot

t286)

datase . Using the same filtering criteria we found just one gene (PKD1) to contain

potentially effective mutations.

Out of our 237 affected genes (based on local variations), 30 genes were not targeted in
the controls. In addition, we found 67 genes harboring exclusively InDels (Supplemen-
tary Figure S5). The extraction of TOF-relevant genes out of this set (non-targeted
and InDels only) is currently hindered by the lack of a control dataset. However, it is
likely that additional genes out of this set will turn out to be relevant to TOF. Out
of these 97 genes, we found 21 genes affected in at least two TOF patients, which we
defined as potential TOF genes (Figure 5.5B). On average we found four TOF genes
per patient (Figure 5.5A) with the majority of variations being SNVs and a minor
proportion of InDels. For the patient TOF-06 no local variation could be found in the
TOF genes. However, we found five variation in the potential TOF genes (Figure 5.5B)

emphasizing their relevance to TOF.

To assess the significance of the mutation pattern that was found over the analyzed
TOF patients, we compared the mutation frequency pattern found in the ten most
significant genes against the control population. Based on the mutation frequencies
in TOF, we defined three rules describing the observed (SNV-based) pattern: namely
(A) two genes with a mutation frequency of at least 50%, (B) three genes with at least
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Figure 5.6: Statistical assessment of the mutation pattern of the ten most significant
genes shows that the pattern is very unlikely to occur in a control population. Sets
of 16 genes and 18 subjects of the control cohort were randomly drawn in comparison
to the mutation pattern of the 10 most significant TOF genes. The bars indicate the
average number of sets over ten times 10° draws which full-filled the defined rules (A)
two genes showing a mutation frequency of at least 50%, (B) three genes showing a
mutation frequency of at least 20%, which are not included in first, and (C) five genes
showing a mutation frequency of at least 10%, which are not included in first or second.
Additionally, the average number of sets is indicated which full-filled any, two or three
of these rules.

20%, which are not included in first, and (C) five genes with at least 10% which are
not included in first or second. An empirical p-value was derived from 10 times 10°
randomly drawing groups choosing 16 genes (in accordance to the total number of de-
fined TOF genes) and 18 individuals from the control population (in accordance to the
number of analyzed TOF patients), a calculation of the resulting mutation frequen-
cies and by comparison to the defined rules (average corrected empirical p-value for
randomly drawn groups is given in Table 5.1). On average, the combinations fulfilling
any individual rule were found 213 times and none of the cases exhibited two or all
three rules (Figure 5.6). Choosing 37 genes (considering the significant and potential
TOF genes) and 18 individuals, any individual rule was found 1,758 times, two rules
were found six times and again, none of the cases exhibited all three rules. Thus, the
observed mutation pattern in the TOF patients is very unlikely to occur in a healthy
control subject. We further compared the individual mutation pattern of each of our
TOF patients to controls and healthy parents and found no healthy individual showing

exactly the same combination of affected genes.

To validate the pathological relevance of the variations observed in TOF genes, we
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Rule Average p-value

First 8.69e-04
Second 5.50e-04
Third 1.16e-04
Any 1.54e-03

Two  <1/100,000
Al <1/100,000

Table 5.1: Average empirical p-value for randomly drawn groups.

studied histological endomyocardial biopsy specimens (Figure 5.7A). For the patient
TOF-08 only a single variation could be found. However, this variation is a homozygous
deletion (5419delA, ENST00000252999) in the extracellular matrix gene laminin alpha
5 (LAMAS) and results in a frameshift leading to a truncated protein with loss of three
essential protein domains (Figure 5.7B). The histological analysis in a respective right
ventricular endomyocardial biopsy of the patient shows an abnormal configuration of

myocyte alignment with branching fibers (Figure 5.7A).

The two most frequently affected genes (see Figure 5.5A) with an incidence of more
than 50% of patients are mitochondrial short-chain specific acyl-CoA dehydrogenase
(ACADS, also known as SCAD, Figure 5.7B) and titin (TTN). Two of the observed
ACADS mutations that were observed, 625G>A (Gly209Ser, rs1799958) and 511C>T
(Argl71Trp, rs1800556) are already known. For three cases carrying the 625G>A mu-
tation (TOF-07, TOF-09 and TOF-11), we were able to study cardiac biopsies. Their
histological analysis shows altered periodic acid schiff (PAS) staining, a feature which
suggests a potential deficiency in mitochondrial function (Figure 5.7A). Titin is a key
component of the sarcomere. All the TTN mutations observed in our TOF patients are
heterozygous and occur in combination with other variations. For example they occur
in combination with homozygous mutations of collagen VI alpha-2 (COL6A2, Figure
5.7B). Three of our TOF patients harbor mutations in the COL6A2 gene. Two are
homozygous (TOF-10 and TOF-14 with 2096G>T [Gly699Val], ENST00000300527)
and one is heterozygous with an allele frequency of 0.62 (TOF-12 with 1268C>T
[Pro423Leu]|, ENST00000300527), which could also be validated by RNA-seq. Their
potential impact can be observed by an increased assembly of collagen fibers in histo-

logical sections of respective cardiac biopsies (Figure 5.7A).

An overview of all genetic interactions of TOF genes together with their cellular func-

tion and localization is given in Figure 5.8. The latter were manually curated based
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Figure 5.7: Functional consequences of mutations in TOF genes. (A) Histopathological
assessment of right ventricular biopsies from selected TOF cases shows altered PAS
staining (increase of PAS-positive granules), misalignment of the cardiac myocytes and
increased interstitial fibrosis. Related mutations in TOF genes are listed for each sub-
ject. Those affecting genes relevant for the histological alterations are marked in bold
and further depicted in (B). Variations marked with an asterisk are homozygous in
the indicated case. (B) Location of the sequence variations in the protein structure of
selected TOF genes. Coding exons are shown as grey boxes. Protein domains affected
by variations are indicated as black lines, unaffected ones as grey lines. ACADS varia-
tions marked with an asterisk have been shown to reduce the protein’s activity??°. aa:
amino acids.

on literature and the UniProt database (Supplementary Figure S6). The cellular local-
ization for the TOF gene’s proteins was first derived from the Swiss Prot annotation
information (from the cellular component field) and for genes/proteins, which do not
have cellular localization annotations, ConLoc and Proteome Analyst were used for the
prediction of cellular localizations?’!. We analyzed cellular localizations of any genes
showing SNVs and found no difference in the distribution between the TOF patients,
their parents and healthy control individuals. However, an overrepresented propor-
tion of TOF genes function in signal transduction pathways and are localized to the

membrane, which highlights a role for TOF genes in regulatory signaling pathways.
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Figure 5.8: Genetic interaction network of TOF genes. Edges connect frequently pair-
wise mutated genes with a minimal normalized co-mutation frequency of 33%. Fre-
quency is indicated by the line width. Manually curated functional categorizations of
genes are color-coded. A red and blue border marks genes localized to the cell mem-
brane and nucleus, respectively. The full list of functional characterizations and cellular
localizations is given in Supplementary Figure S6.

To define genes of likely genetic interaction, the pairwise frequency of co-mutation as
shown in Figure 5.8 was defined as the number of TOF patients showing mutations in
both genes normalized by the number of patients, which showed a mutation of at least

one of the two genes.

TOF is a developmental disorder and thus, causative genes have to be functional during
embryonic development. To further verify the relevance of the identified TOF genes

and potential TOF genes, a thorough literature analysis was performed, gathering data
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Figure 5.9: Expression of significant TOF genes in human and mouse. RNA-seq: av-
erage RPKM normalized expression levels in postnatal TOF and healthy unaffected
individuals measured using mRNA-seq. Mouse Atlas: SAGE expression tag data of
different developmental stages taken from Mouse Atlas of Gene Expression. If sev-
eral different heart tissues have been measured, the maximum expression is shown.
SAGE level is grouped into no (0), low (1-3), medium (4-7) and high (>7) expression.
Literature: availability of published mRNA or protein expression data sets in mouse
embryonic stages (E8.5 to E15.5) based on literature search including in situ hybridiza-
tion (ISH)/immunohistochemistry (IHC) or other techniques (PCR, qPCR, Northern
Blot and beta-galactosidase assay). The full list of data sets and corresponding publi-
cations can be found in Supplemental Figure S7. Quantitative real-time PCR: mRNA
expression measurements in isolated mouse hearts of different embryonic and postnatal
stages performed using qPCR. Expression values are normalized to housekeeping gene
Hprt.

on mRNA and protein expression profiles based on techniques such as in situ hybridiza-
tion or immunohistochemistry in human and mouse hearts at embryonic stages crucial
for the development of TOF (week 3 to 10, E8.5 to E15.5, Figure 5.9 and Figure 5.10).
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Figure 5.10: Expression of potential TOF genes in human and mouse. RNA-seq: av-
erage RPKM normalized expression levels in postnatal TOF and healthy unaffected
individuals measured using mRNA-seq. Mouse Atlas: SAGE expression tag data of
different developmental stages taken from Mouse Atlas of Gene Expression. If several
different heart tissues have been measured, the maximum expression is shown. SAGE
level is grouped into no (0), low (1-3), medium (4-7) and high (>7) expression. Liter-
ature: availability of published mRNA or protein expression data sets in human (week
3 to 10) and mouse (E8.5 to E15.5) embryonic stages based on literature search in-
cluding in situ hybridization (ISH)/immunohistochemistry (IHC) or other techniques
(PCR, qPCR, Northern Blot and beta-galactosidase assay). The full list of data sets
and corresponding publications can be found in Supplemental Figure S7. Quantitative
real-time PCR: mRNA expression measurements in isolated mouse hearts of different
embryonic and postnatal stages performed using qPCR. Expression values are normal-
ized to housekeeping gene Hprt. In situ hybridization: mRNA expression in E9.5 mouse
embryo.
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In addition, we evaluated embryonic gene expression profiles of the TOF genes using

SAGE data from the Mouse Atlas of Gene Expression project 29?2

. This combined ap-
proach revealed only six genes (one TOF gene and five potential TOF genes) that were
not already known to be expressed during the embryonic development of the mouse
heart, and one (CLTCL; potential TOF gene) lacks a mouse homolog altogether. To
further extend these data, quantitative real-time PCR (qRT-PCR) was performed in
our group for six genes in mouse hearts at the developmental stages E9.5 to E18.5, post-
natal at P0.5 and P4.5 as well as at adulthood (Figure 5.9 and Figure 5.10). Strikingly,
all of these genes show an embryonic expression at the crucial developmental phase
and all have a biphasic profile with continued expression postnatal and at adulthood.
The cardiac expression of Cacnalc during development was further demonstrated us-
ing whole mount in situ hybridization at E9.5 mouse embryos (Figure 5.10). Based on
gene expression profiles obtained by RNA-seq (see the following Chapter 5.3), we found
the majority of genes being expressed (RPKM>1; gene expression analysis is given in
the following Chapter 5.3) in the human right ventricle of TOF patients as well as in
normal adult hearts (Figure 5.9 and Figure 5.10). As the RPKM value as measured by
RNA-seq should be proportional to the average mRNA numbers per cell, genes can be
defined as lowly expressed (RPKM<1) or highly expressed genes (RPKM>1), respec-
tively 293,

Finally, we were interested in the segregation of identified mutations in TOF genes
within our studied families. We observed a combination of novel and inherited muta-
tions in these genes in the affected family members (Supplementary Figure S8), which
is in line with a non-Mendelian inheritance. The finding that a certain number of
mutations are inherited underlines our observation of the general numeric excess of

mutations in parents compared to other healthy individuals.
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5.3 Gene Expression Analysis

For expression analysis RNA profiles were gathered from right ventricle of 22 patients
with TOF as well as from left and right ventricle (LV and RV, respectively) of four
healthy unaffected individuals. Deep sequencing of the mRNA libraries resulted in
~19,224,000 single-end reads (36 bp) per sample on average (see Chapter 2.2.4). The
reads were mapped to the human reference genome (NCBI v36.1, hgl8) using Raz-
erS'™ allowing at most 10 equally-best hits and two mismatches (no InDels) per read.
On average, ~14,736,000 reads per sample were mapped to the whole human reference
genome. Approximately 9,431,000 reads (64%) per sample could be mapped to unique
genomic locations and ~5,304,000 reads (36%) matched to multiple regions (2-10 ge-
nomic locations). Multi-matched reads were proportionately assigned to each of their

212 approach with a window size of 200

mapping locations using the MuMRescueLite
bp. The distribution of the read counts over all patients and healthy individuals after
sequencing and mapping is given in Figure 5.11. Reads that were found in unique or
multiple positions in the human genome were assigned to genes if their mapped location
is inside of exon boundaries as defined by ENSEMBL?%7 (v54). Finally, the number
of reads that were fully included in exons was counted. On average 79% (+4%) of the
mapped reads could be assigned to known exons. A high percentage of the mapped
reads (25+4%) was assigned to exons located on the mitochondrial chromosome. This is
in line with the fact that the heart muscle is rich in mitochondria, which are responsible
for the energy metabolism of the cell. The mitochondrial genome encodes several sub-
units of the mitochondrial respiratory chain such as cytochrome c¢ oxidase and NADH
dehydrogenase. To further assign unmapped reads, a gene-wise splice junction sequence
library was produced from pairwise connection of exon sequences corresponding to all
known 5’ to 3’ splice junctions (supported by the analysis of aligned EST and ¢cDNA
sequences). Over all samples 21.8% of the previously unmapped reads were mapped on
average to the set of known splice junction sequences using RazerS allowing at most

two mismatches (no InDels) and only unique best matches.

Read count normalization for mRNAs was performed using the RNA composition ad-
justment by trimmed mean of M-values (TMM) and quantile-to-quantile count adjust-
ment implemented in the edgeR ?3¢ package (see Chapter 3.4.2). For quality assessment
manual inspection of multi-dimensional scaling (MDS) plots and existence of pile-up
effects were performed. First, a plot showing the sample relations based on multidimen-

sional scaling was produced (Figure 5.12). The distance between each pair of samples
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Figure 5.11: Distribution of read counts over 22 TOF patients and left as well right
ventricle of four healthy individuals after mRNA sequencing and mapping to the human
reference genome.

was calculated based on the square root of the common dispersion for the top 5,000
genes which best distinguish that pair of samples. These genes were selected according
to the tag-wise dispersion of all the samples. From this plot, four samples (TOF-11,
TOF-14, TOF-18 and TOF-19) were identified as outliers due to their large distance to
the other TOF samples in the first dimension. For the healthy individuals two samples
from the left (NH-07) and right (NH-08) ventricle from one individual appear to be
separated from the other normal heart samples in the second dimension. However, the
distances between the normal heart samples are relatively small, thus we did not treat
these samples as outliers. Second, we examined the number of duplicated sequencing
reads before and after read mapping to identify possible mapping or PCR problems. On
average 52% (+8%) of the sequencing reads over all samples are represented by unique
sequences (i.e. one read represents one sequence but this sequence can be represented
by n other reads) and 87% (+2.9%) of these unique sequences are represented by one
read and 12% (£2.6%) by 2-10 reads (Supplementary Figure S9). After read map-
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Figure 5.12: Multidimensional scaling (MDS) plot based on gene expression levels (top
5,000 genes which best distinguish that pair of samples) for the RNA-seq data obtained
from mRNA libraries of patients with Tetralogy of Fallot (TOF) and healthy unaffected
individuals (normal heart, NH).

ping we checked for the uniquely mapped reads the total number of perfectly identical
start/end sites and found two samples (TOF-18 and TOF-19) with a significantly lower
number of start/end sites represented by one read and a significantly higher number
of start/end sites represented by more than 1,000 reads (Supplementary Figure S10).
Interestingly, the mRNA library of TOF-18 had to be sequenced three times to obtain
the necessary sequencing quality and output. In addition, the samples TOF-11 and
TOF-14 also showed pile-up effects in the unique read mapping process, in particu-
lar for start/end sites represented by 101-1000 reads (Supplementary Figure S10). In
summary, all four samples identified as outliers in the MDS plot (TOF-11, TOF-14,
TOF-18 and TOF-19, Figure 5.12) were removed from further analysis.

To define differential expression between affected and healthy individuals, an signif-
icance test based on the negative binomial distribution for tag-wise dispersion (see
Chapter 3.4.3) also implemented in the edgeR package was applied to genes with a
minimal read count of 100 over all analyzed samples. Since it is not possible to achieve

statistical significance with very low total counts, we discarded those genes, thereby
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TOF vs. RV TOF vs. LV RV vs. LV

Sig. diff. expressed genes 1,514 1,788 182
- upregulated genes 633 (42%) 864 (48%) 89 (48%)
- downregulated genes 881 (58%) 924 (52%) 93 (52%)
Sig. diff. expressed transcripts 1,765 2,036 208
(corresponding genes) (1,390) (1,607) (208)
- upregulated transcripts 616 (35%) 818 (40%) 107 (51%)

- downregulated transcripts 1,149 (65%) 1,218 (60%) 101 (49%)

Table 5.2:  Significantly differentially expressed genes and transcripts with
p-value < 0.05 after adjustment for multiple testing in 18 patients with Tetralogy of
Fallot (TOF) versus left (LV) and right (RV) ventricle of four healthy individuals as
well as RV versus LV.

excluding lowly expressed mRNAs that only contribute to noise. In total, 26,522 genes
were found to be expressed with at least one exonic or junction read over all analyzed
mRNA-seq samples. Almost half of these genes (48.6%) are lowly expressed accord-
ing to their RPKM value, i.e. RPKM<1 on average over all analyzed samples. After
discarding the lowly expressed genes based on the raw read count level, 17,184 genes
were used for differential gene expression analysis. However, based on RPKM values in-
stead of read count levels there were still lowly expressed genes (21.5%) but the median
RPKM value over the retained genes could be increased from 1.1 to 3.9. Moreover, the
RPKM value for the lower quantile could be increased from 0.1 to 1.2 (i.e. from lowly

293) and for the higher quantile from

to highly expressed according to Hebenstreit et al.
6.2 to 11.6. Using the tag-wise dispersions we found 1,514 genes (8.8% of all analyzed
genes) to be significantly differentially expressed between right ventricle of 18 TOF pa-
tients and four healthy individuals (RV) with a Benjamini-Hochberg corrected p-value
(see Chapter 3.5) of less than 0.05. Of these genes, 881 (58%) were upregulated in TOF
versus RV and 633 (42%) were downregulated. In addition, we performed differential
gene expression analysis between TOF and left ventricle of the four healthy individuals

(LV) as well as RV versus LV (Table 5.2).

Further, we analyzed the gene expression similarity between TOF and RV of all ex-
pressed genes measured by normalized Euclidean distance. The level of expression
similarity is high within the individual groups (~0.5 for RV and ~0.7 for TOF). How-
ever, the similarity between the two groups is low (~0.35), indicating a commonly
changed expression profile in TOF patients (Figure 5.13). We analyzed this in more
detail including also LV. The gene expression similarity was again measured by nor-

malized Euclidean distance and repeatedly, TOF against TOF was most similar. In
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Figure 5.13: Average gene expression similarity measured by normalized FEuclidean
distance between TOF patients and right ventricle of healthy individuals (RV).
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Figure 5.14: Boxplots for pairwise gene expression similarity measured by normalized

Euclidean distance over all individuals in either TOF, healthy right ventricle (RV),
healthy left ventricle (LV) or between these groups.

addition, TOF against LV has a higher similarity level than TOF against RV (Figure
5.14).

Beside genes, we also computed the differential expression of transcripts, whose read
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Genes from
Genes Transcripts
(non-POEM) (POEM)
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Lowly expressed (RPKM<1)

Figure 5.15: Overlap of significantly differentially expressed genes (in total 1,514 non-
POEM genes) and genes (in total 1,390) representing significantly differentially ex-
pressed transcripts (POEM-genes) in TOF patients versus RV as well as their overlap
to lowly expressed genes (RPKM<1) over all analyzed samples.

counts were adjusted using the POEM method described in Chapter 3.3.1.1. As for the
genes, the read counts were normalized using the TMM normalization method followed
by quantile-to-quantile count adjustment (see Chapter 3.4.2). Again, the correspond-
ing MDS plot was evaluated for quality assessment, leading to the exclusion of three
samples (TOF-14, TOF-18 and TOF-19) for further analysis. The negative binomial
distribution test for tag-wise dispersion (see Chapter 3.4.3) was applied to transcripts
with a minimal read count of 100 over all analyzed samples to define differential expres-
sion between TOF and healthy individuals. Finally, 1,765 transcripts were found to be
significantly differentially expressed between TOF and RV with a Benjamini-Hocherg
corrected p-value (see Chapter 3.5) of less than 0.05 (Table 5.2). These transcripts
refer to 1,390 genes, which we called 'POEM genes’. We compared these POEM genes
with the 1,514 significantly differentially expressed genes and as expected found a high
overlap of 81% (Figure 5.15). 45% of the non-overlapping non-POEM genes and only
13% of the non-overlapping POEM genes are lowly expressed. This suggests that dif-
ferential expression of genes with low expression levels is detected more frequently by
the gene-based approach than by the isoform-based approach, which is likely depended
on lower read counts. To detect differential expression of genes with high expression
(RPKM>1) both the gene- and isoform-based approach are reliable. However, there
are non-overlapping highly expressed genes, but they are mostly borderline significant.
For example, 62% of the 215 non-overlapping non-POEM genes with p-value less than
0.05 overlap to POEM-genes with increased FDR (10%). In summary, the significantly
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Figure 5.16: (A) Comparison of fold changes between RNA-seq and qPCR data mea-
sured by the Lightcycler 1536 system and (B) their number of genes significantly dif-
ferentially expressed between TOF patients and right ventricle of healthy individuals.
To compare the qPCR results to the mRNA-seq data the number of genes was reduced
to those measured in both experiments.

differentially expressed genes quantified by the gene-based approach are used for fur-

ther analysis.

We further compared differential expression in TOF against RV measured by RNA-
seq to data generated in a previous study using the Roche LightCycler 1536 system
for high-throughput quantitative real-time PCR2%. Briefly, using the Lightcycler 245
genes were measured in triplicates in the same human heart samples from TOF patients
and healthy individuals (RV) as in our RNA-seq data. The average expression value
was calculated for each set of triplicates after manual outliers removal. The expression
levels were further normalized using the geometric mean of three housekeeping genes
(HPRT, B2M and GAPDH). Finally, we calculated differential expression for the nor-
malized expression values between TOF patients and healthy individuals. We found 70
significantly differentially expressed genes with a Benjamini-Hocherg corrected p-value
(see Chapter 3.5) of less than 0.05 using a t-test. In contrast to mRNA-seq, most of
the genes (94%) measured by qPCR are upregulated (in total 66 genes) and only few
are downregulated (in total 4 genes). To compare the results to the mRNA-seq data we
reduced the number of genes to those measured in both experiments. In general, the

measured fold changes between mRNA-seq and qPCR data are well correlated (Pearson
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correlation coefficient of ~0.8, Figure 5.16A). However, the actual sets of genes that
were commonly found to be differentially expressed had a rather modest overlap with
a high number of genes that were only differentially expressed in qPCR but not in
mRNA-seq (Figure 5.16B).

Finally, after mapping all previously unmapped reads to known splice junction se-
quences, we mapped the remaining reads to a set of candidate novel splice junctions,
which correspond to all hypothetical additional 5’ to 3’ pairings of splice sites in the
same set of genes. Over all samples 45,430 candidate novel splice junctions with at
least one mapped sequencing read could be identified. Increasing the number of junc-
tion reads to at least 10 over all samples resulted in 4,278 previously unknown splice
junctions and 1,175 novel splice junctions with at least 50 mapped reads. Searching
for novel splice junctions with more than 10 mapped reads on average over all samples
in either TOF, RV or in both, we found alternative splicing events in 216 genes repre-
senting 279 potential novel splice junctions. Among these genes are several sarcomeric
genes such as cardiac troponin T (TNNT2), cardiac troponin I (TNNI1) and myosin
heavy chain 7 (MYHT). It has been shown that associated changes in mRNA splicing of
these three genes were significantly altered in patients with ischemic cardiomyopathy,
dilated cardiomyopathy and aortic stenosis??. We selected five identified candidate
novel splice sites in the genes TNNI1, MYL7, PPARG and PDLIM3 (Table 5.3) for
reverse transcription PCR (RT-PCR) validation in one healthy individual (NH-04) and
three TOF patients (TOF-03, TOF-06 and TOF-11).

In detail, TNNI1 is expressed in cardiac and skeletal muscle in early development but
restricted to slow twitch skeletal muscle fibers in adults??®. The candidate novel splice
site in TNNI1 located 4 amino acids downstream of the start codon generates a tran-
script which is composed of one incomplete (missing the 5’"UTR) and one well annotated
transcript (Figure 5.17). The splice site generates a frameshift that leads to an altered
amino acid sequence and to a termination of the protein 16 amino acids after the splice
site, resulting in a non-functional protein. In line with our mRNA-seq data, the ex-
pression of the alternative transcript measured by RT-PCR was stronger in the TOF

patients than in the healthy individual.

MYHT encodes the cardiac muscle beta (or slow) isoform of myosin and changes in
the relative abundance of MYHT correlate with the contractile velocity of cardiac mus-
cle?. In addition, we found an upregulation of the atrial myosin regulatory light chain

in the hypertrophic ventricle of our TOF patients. The identified novel splice site in

95



Chapter 5 Dissecting Congenital Heart Disease

TNNI

' H1—41

ENST00000361379

ENST00000413495
|

MYL7

m . w ENST00000223364
v I

PDLIM3

1 ENST00000284770
i

1 HUF ENST00000284771
v

Figure 5.17: Schematic representation of candidate novel splice junctions in the genes
TNNI1, MYH7 and PDLIM3 (based on Ensembl v59 and not drawn to scale) identified
by RNA-seq in either TOF patients, healthy individuals or in both. Details for the
individuals splice junctions (I-IV) are given in Table 5.3.

MYL7 removes an exon from a well annotated transcript (Figure 5.17). The splice
site could be detected in human heart cDNA (validated by sequencing of the PCR
products). Moreover, the RT-PCR also showed a weak upregulation of MYL7 in TOF
patients and a slightly stronger expression of the novel splice site in TOF compared
to normal heart. This splice site leads to a truncation of the second EF hand domain
and in addition, a frameshift generates a stop codon very shortly (6 aa) after the novel
splice site. The PDZ and LIM domain protein 3 (PDLIM3, also known as ALP) is
involved in cytoskeletal assembly and has two major isoforms. Both isoforms were
measured by RNA-seq in our healthy individuals with 64% (ENST00000284771) and
31% (ENST00000284770) of the transcripts according to our POEM estimations. Each
transcript has a different tissue-specific ZM motif. The two novel splice sites remove
exons from the two major isoforms (Figure 5.17). The expression of both splice sites as
well as the known transcripts could be validated by sequencing of the PCR products.
The RT-PCR showed the downregulation of PDLIM3 in TOF patients. Moreover, a
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ID  Gene Ensembl Mean Mean Mean Mean P-value
exon-exon junction junction | RPKM RPKM | TOF vs.
junctions reads in readsin | in RV  in TOF RV

RV TOF

I TNNI1 ENSE00001510261- 0.3 17.2 4 167 5e-14
ENSE00001350131

I MYL7 ENSE00001176203- 45.3 143.2 1,187 3,135 0.02
ENSE00000680788

IIT PDLIM3 ENSE00002526712- 13.5 14 124 30 3e-07
ENSE00002536022

IV PDLIM3 ENSE00002526712- 0.5 0.5 124 30 3e-07
ENSE00002464627

- PPARG ENSE00001527052- 9.3 10.8 3.2 1.2 0.004
ENSE00001527016

Table 5.3: Candidate novel splice junctions in the genes TNNI1, MYH7, PDLIM3
and PPARG identified by RNA-seq in TOF patients and right ventricle of healthy
individuals (RV). Except for PPARG the Ensembl exon IDs are based on release v65
(hgl9). For PPARG the transcript ENST00000397003 with exon ENSE00001527016
was removed from Ensembl v65, therefore the IDs for Ensembl v54 (hgl8) are provided.
The splice junction I-IV could be validated by RT-PCR and correspond to identifiers
used in Figure 5.17.

shift in the ratio of the two known major isoforms from 2:1 in the healthy individual
to 15:1 in the TOF patients was observed as well as a higher expression of the novel
spice sites in the healthy individual compared to TOF. The splice site III (Figure 5.17
and Table 5.3) leads to a deletion of the ZASP domain in the major transcript. While
the splice site III generates an intact protein, the splice site IV (Figure 5.17 and Table
5.3) causes a frameshift that leads to the termination of the protein (21 aa after the
novel splice site). Notably, the ZASP domain is important for binding the rod region
of alpha-actinin?%8.

The peroxisome proliferator-activated receptor gamma (PPARG) is a nuclear receptor
that regulates adipocyte differentiation. It has been implicated in the pathology of
numerous diseases including obesity, diabetes, atherosclerosis and cancer. The can-
didate novel splice site joins two incompletely annotated transcripts, of which one
(ENST00000397003) is even removed from the current Ensembl version 65. The splice
site could not be validated by RT-PCR, but the downregulation of the gene in TOF
patients could be shown. In summary, four out of five selected candidate novel splice
sites could be validated by RT-PCR, with the quality of the transcript annotation being

a possible indicator for the validation success.
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5.4 MicroRNA Profiling

Deep sequencing of small RNA libraries from 22 TOF patients and left (LV) as well
as right ventricle (RV) of four healthy unaffected individuals produced approximately
450 million raw reads of 36 bp in length (on average ~15 million reads per sample;
see Chapter 2.2.4). To prevent multiple mapping of identical small RNA sequences,
redundancy was removed meaning that reads with an identical sequence were repre-
sented with a single entry storing the number of sequence counts. This yielded ~170
million non-redundant (unique) read sequences (on average ~5.6 million per sample).
The unique read sequences were mapped to the human reference genome (NCBI v36.1;
hgl18) using MicroRazerS (Chapter 3.1). The parameters were set as follows: -m 20
(maximum number of best matches), -pa (purge ambiguous reads having more than
20 equally-best hits) and -sL 18 (seed length). Searching for miRNAs having a length
of 19-25 nt, we found a minimal length of 18 nt to be good seeds to start the read
mapping process. In addition, we allowed to map reads with at most one error in
the seed sequence to be robust towards possible sequencing errors and sequence vari-
ations. On average ~4,754,960 unique sequences per sample could be mapped to the
human reference genome representing 91% of the total reads (~13,595,423) per sample.
Multi-matched reads were proportionally assigned to their loci. Using annotations from
miRBase?? database (v14), 53% of all mapped reads (on average ~7,254,323 reads per
sample) could be assigned to known mature miRNA sequences, which we called miRNA
reads (Figure 5.18). Searching for reads overlapping with known precursor miRNA se-
quences we found only few additionally mapped reads (on average ~7,388,436 reads per
sample) indicating that almost all miRNA read sequences are products of functional

miRNA strands (Supplementary Figure S11).

Total reads 449,996,875

Mapped reads 407,862,701

- miRNAs 221,653,090 | 54.3%
- other small RNAs 5,293,886 | 1.3%
- mRNA 8,886,443 | 2.2%
- repeats 49,889,283 | 12.2%
- unknown 122,139,999 | 29.9%

Table 5.4: Total number of reads over all samples after RNA sequencing and mapping
to the human reference genome and their distribution to known miRNAs, other small
non-coding RNAs, mRNA sequences and genomic repeats.
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Figure 5.18: Small RNA read counts for TOF patients and healthy individuals (normal
heart, NH) after sequencing, mapping and annotation.

The mapped small RNA read sequences show a bimodal length distribution with two
distinct peaks representing miRNAs as well as other non-coding RNAs (Figure 5.19A).
However, after annotation we found a length distribution representative for miRNA
sequences, i.e. 18-25 nucleotides with a single peak near the average mapped read
length of 22.3 nucleotides (Figure 5.19B).

After annotation to known human miRNAs, we assigned the remaining mapped reads
to other known non-coding RNAs, mRNA sequences and genomic repeats using anno-
tations from the UCSC?2! database (Figure 5.20A and Table 5.4). On average over all
analyzed samples we found that the most abundant classes of non-coding RNAs except
miRNAs are rRNAs and tRNAs (Figure 5.20B). However, we observed only a low num-
ber of other small non-coding RNAs (1.3%) and mRNA sequences (2.2%) indicating an
accurate library preparation and low contamination over all small RNA-seq libraries.
The relatively high number of reads assigned to genomic repeats could be explained by
ambiguously mapped reads due to the relatively loose criteria of a 18 bp seed and the

number of equal-best hits (at most 20) in the read mapping process.
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Figure 5.19: Lengths of (A) mapped small RNA read sequences and (B) annotated
miRNA read sequences over all analyzed samples.

Finally, small RNA-seq revealed on average 396 expressed miRNAs per sample repre-
senting 450 loci. A higher number of expressed miRNAs was found in the TOF patients
(on average 413 miRNAs per sample representing 463 loci) compared to the healthy
individuals (on average 363 miRNA per sample representing 407 loci). For miRNA read
count normalization we used the TMM normalization method followed by quantile-to-

quantile count adjustment (see Chapter 3.4.2). After miRNA quantification and read

miRNAs

snoRNA scaRNA
L other small RNAs
(1.5%) Mt-tRNA o snRNA

(12%) isc_RNA
misc,
" genomic repeats 1Se

mRNASs (2%)

unknown tRNA

Figure 5.20: (A) Annotation of read sequences over all analyzed small RNA-seq samples
and (B) annotations of small non-coding RNAs except miRNAs.
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Figure 5.21: Multidimensional scaling (MDS) plot based on miRNA expression levels
for the miRNA-seq data obtained from small RNA libraries of patients with Tetralogy
of Fallot (TOF) and healthy unaffected individuals (normal heart, NH).

count normalization we assessed the sample relations based on multidimensional scal-
ing, resulting in the exclusion of two samples for further analysis. From the MDS plot
(Figure 5.21) we identified the normal heart sample NH-03 as an outlier because it
was clearly separated from the other normal heart samples in the first dimension. For
the TOF patients the sample TOF-09 may be identified as an outlier but the distance
between this sample and the other TOF samples is relatively small in both dimension
(Figure 5.21). Thus, we additionally did a classical principal component analysis which
identified this sample as a clear outlier. In addition, the TOF-09 sample had a signifi-
cantly lower number of annotated miRNA reads than the other TOF samples (Figure
5.18) and moreover, a much higher number of reads was assigned to known mRNAs
as well as genomic repeats. In summary, besides NH-03 the sample TOF-09 was also

removed from further analysis.

To further analyze the miRNA expression profiles we calculated the pairwise miRNA
expression similarity measured by Euclidean distance over all individuals in either TOF,
healthy right ventricle (RV), healthy left ventricle (LV) or between these groups (Fig-
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Figure 5.22: Boxplots for pairwise miRNA expression similarity measured by Euclidean
distance over all individuals in either TOF, healthy right ventricle (RV), healthy left
ventricle (LV) or between these groups.

ure 5.22). We found the TOF patients to be most similar to each other. However,
compared to the gene expression similarity (Figure 5.14) TOF against LV loses the
similarity. Moreover, we considered the average correlation in expression over all TOF
patients and healthy individuals between miRNAs residing in the same family. As ex-
pected, miRNAs belonging to the same family show a high positive correlation (average

Pearson correlation coefficient of 0.64 + 0.2 over 54 miRNA families).

In summary, we found 626 expressed miRNAs with at least one read over all samples.
To define differential expression between healthy and affected individuals, the negative
binomial distribution test for tag-wise dispersion (see Chapter 3.4.3) was applied to
miRNAs with a minimal tag count of more than 100 over all analyzed samples. The
analysis revealed 103 significantly differentially expressed miRNAs (33.1% of all ana-
lyzed miRNAs) between TOF and healthy individuals (RV) with a Benjamini-Hochberg
corrected p-value see Chapter 3.5) of less than 0.05 (Supplementary Table S6). Most of
these miRNAs (in total 93) were upregulated in TOF versus RV including several heart-
and muscle-relevant miRNAs (e.g. let-7b/c, miR-221, mirR-222, miR-378, miR-10a,
miR-127, miR-30b and miR-15b). Only few miRNAs (in total 10) were downregulated
in TOF patients including the muscle-specific miR-133b as well as miR-29b/c, which

are involved in the control of cardiac fibrosis via mRNA repression of collagens, fibrillins
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and elastin?%’. The downregulation of miR-29 induces the expression of these mRNAs
and enhances the fibrotic response. After searching for differential expression in TOF
versus RV, we also observed 72 significantly differentially expressed miRNAs between
TOF and LV. Many of them are significantly upregulated (in total 60) and only few
are significantly downregulated (in total 12) in TOF compared to LV. Most of these
miRNAs (88%) overlap with those significantly differentially expressed in TOF com-
pared to RV, i.e. 55 of 60 upregulated miRNAs and 8 of 12 downregulated miRNAs.
Differential expression analysis between right and left ventricle of healthy individuals
revealed only three significant miRNAs namely the downregulated miR-223 and miR-
142 as well as the upregulated miR-215 in RV compared to LV. miR-223 was also found
most significantly downregulated in TOF versus LV. This miRNA regulates glucose
transporter 4 (Glut4) protein expression and cardiomyocyte glucose metabolism3%.
miRNA-215 is significantly upregulated in RV versus LV and significantly downregu-
lated in TOF compared to RV and can target WNK13%!. It was shown that WNK1

302

ablation causes cardiovascular developmental defects®’“. Moreover, an essential role

of endothelial WNKI1 in the control of blood pressure and postnatal angiogenesis and

cardiac growth was indicated by Xie et al.302.

5.4.1 Novel MicroRNA Prediction

Approximately 30% of the mapped small RNA-seq reads could not be assigned to known
miRNAs, other small non-coding RNAs, mRNAs or genomic repeats. Therefore, we
searched for novel miRNAs over all samples using a fold- and scoring-based approach
based on the miRDeep!? package. Briefly, for novel miRNA prediction we used all
sequences with a mapped read length of less or equal than 25 nucleotides (longer se-
quences are unlikely to represent mature miRNA sequences) as well as a sequence count
of more than 25 (removing noise) which are not annotated to known miRNAs or other
small non-coding RNAs resulting in ~43 million reads representing ~206,000 unique

sequences.

To find novel miRNA candidates we used miRDeep considering clusters of reads that
align along the reference genome, i.e. alignment pattern of the miRNA precursor
sequence (mature miRNA sequence — loop sequence — star sequence) expected from
miRNA processing. If such an alignment pattern was found, two potential precursor

sequences (flanking regions of a mature miRNA sequence) were cut from the human
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Figure 5.23: An example for a novel miRNA precursor sequence (located on
chrX:69159420-69159516 based on NCBI v36.1, hgl8). This miRNA precursor shows a
good structure prediction by RNAfold (optimal secondary structure with a minimum
free energy of -36.70 kcal/mol is given on top) and mammalian conservation based
on PhastCons scores (conservation track from UCSC genome browser is given on the
lower panel). In total, 230 reads (representing unique sequences with count > 25)
could be mapped to this miRNA precursor sequence, i.e. 183 reads correspond to one
distinct mature RNA and 47 reads correspond to one distinct mature* RNA. The ma-
ture/mature* duplex shows the typical 3’ overhang. For the 5’ arm, one read that has
the correct position for a moRNA (directly adjacent to the mature* sequence) has been
detected. For the 3’ arm, no moRNA reads were found, but the conservation pattern
indicates that there might be a conserved moRNA but not expressed in our samples
(see conserved block 3’ of the mature miRNA).

reference genome assuming that the mature sequence locates to the 5’ arm or to the
3’arm of the RNA hairpin. Each potential miRNA precursor sequence was assessed after
folding into a hairpin structure using the RNA folding algorithm from the Vienna3%
package. Furthermore, miRDeep searches for potential cleavage sites of Drosha and
Dicer and uses the phylogenetic conservation as well as the filtering of other known
small non-coding RNA species to improve the predictions. The stability of potential
precursors sequences is tested using Randfold®?? v2.0. In summary, each potential
miRNA precursor sequence was scored based on its read signature, secondary structure
(e.g. multi-loops or a high minimum free energy decrease the score), cleavage, con-
servation and overlap to known small non-coding RNAs. In total, we found 100 novel

miRNA candidates, of which 56 have annotated miRNA homologs in other species.

The novel miRNA candidates were further assessed by manual inspection. We searched
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for well-formed secondary structures that contain a hairpin loop or only few bulges or
internal loops. If both the mature and mature star sequence are detected, the processed
~22 nt duplex should have a 3’ overhang which is characteristic for Dicer processing.
Additionally, a high percentage (>75%) of reads should correspond to one or more
distinct miRNA /miRNA* duplex showing a precise excision3"”. An exact 5’ end pro-
cessing is important especially since the nucleotides 2-7 comprise the seed sequence of
the mature miRNA3%, Potential miRNA loci were also checked for the expression of
miRNA offset RNAs (moRNAs). These ~20 nt RNAs are generated at a low level from
sequences immediately adjacent to the mature miRNA and miRNA* (or even overlap-
ping by few nucleotides). MoRNAs are especially found in evolutionary old miRNAs307.
In addition, the conservation of the potential precursor sequences was evaluated using
PhastCons conservation scores. Ideally, miRNAs show a high conservation for the arms
and a lower conservation for the hairpin loop. Although conservation is widely consid-
ered as an important feature of miRNAs, it is not absolutely necessary for annotation.
For example, Ambros et al. defined five expression and biogenesis criteria for annota-
tion of miRNAs3%. They stated that phylogenetic conservation is a stronger evidence
for miRNA biogenesis than the prediction of a fold-back precursor. If only a predicted
precursor but no conservation can be found, a miRNA can nevertheless be annotated
if it is supported by strong expression data. In plants, Meyer et al. also showed that
conservation is not necessary for annotation of miRNAs, although it provides especially

05 There is only one criterion that has to

strong evidence in favor of an annotation?®
be fulfilled, i.e. that a 21 nt microRNA /microRNA* duplex is precisely excised from
the stem of a single stranded, stem-loop precursor. As mentioned before, excision can
be regarded as precise when more than 75% of observed small RNA abundance corre-

sponds to one or more distinct miRNA /miRNA* duplexes.

Finally, we identified 33 potential novel precursor sequences (high confidence novel
miRNAs) based on their frequency in human heart samples (e.g. there is one miRNA
precursor sequence with over ~50,000 mapped reads), predicted secondary structure
and conservation (Supplementary Figure S12). An example for a high confidence novel
miRNA precursor sequence is given in Figure 5.23. In addition, we examined their
differential expression between TOF patients and right ventricle of healthy individuals.
For the differential expression analysis the mapped reads of all samples were initially
annotated by miRBase v14 and all novel miRNA annotations. Afterwards, we again
performed differential expression analysis between TOF and RV and observed that al-

most all novel miRNAs were also upregulated in TOF. From our high confidence novel
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miRNAs 16 are significantly upregulated in TOF versus RV (corrected p-value<0.05)
and only two are significantly downregulated (Supplementary Figure S12). Because
the miRBase repository is constantly updated in regular intervals, sequences will be
updated or revised and new sequences will be added. Therefore, we checked whether
our high confidence novel miRNAs are present in a newer version of miRBase and
found that seven high confidence novel miRNAs are annotated in miRBase v15. This
indicates that the performed novel miRNA prediction as well as our manual inspection
revealed good results according to possible real novel miRNAs. However, the presence
of predicted high confidence novel miRNAs should be further validated experimentally
by e.g. qRT-PCR.

5.5 MicroRNA Target Prediction and Correlation Anal-
ysis

MicroRNA target prediction was performed for the 103 miRNAs which are significantly
differentially expressed (corrected p-value<0.05) between TOF patients and right ven-
tricle of healthy individuals. For prediction, we used the available predictions from
three different tools including miRanda?%?, PicTar?™ and TargetScan?®’. As all tools
use quite different approaches (see Chapter 3.6.3) and sets of 3'UTR regions, the over-
lap between their target predictions is relatively small. In summary, we found 40,257,
15,206 and 18,418 predicted target transcripts for miRanda, PicTar and TargetScan,
respectively. The miRanda algorithm uses more relaxed criteria (presumably resulting
in a higher false positive rate but a lower false negative rate) as compared to Pic-
Tar or TargetScan, which accounts for the higher number of predictions for miRanda.
In addition, more miRNAs were represented in miRanda over PicTar or TargetScan
(80 miRNAs compared with 56 and 77 miRNAs, respectively). Searching for tran-
scripts predicted by at least two of the three prediction tools resulted in 18,524 target
transcripts for 78 miRNAs. For example, miR-215 was predicted by miRanda and
TargetScan to target the WNK1 3’UTR. To further decrease the false positive rate
we only looked at transcripts predicted by all three tools and found 8,875 transcripts
representing 3,332 target genes of 54 miRNAs (10,071 miRNA-mRNA pairs). However,
the number of predicted miRNA-mRNA pairs was still high. Therefore, we reduced
this number further by searching for significantly differentially expressed mRNAs in
TOF compared to RV and found 657 predicted miRNA-mRNA pairs representing 48
miRNAs and 216 mRNAs.
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Figure 5.24: Correlation of miRNAs and (A) their host genes as well as (B) validated
target genes. For Pearson correlation coefficient between expression levels in miRNA
and their host or target genes all TOF patients with healthy individuals were used. Sig-
nificance of miRNA-gene correlation (p<0.05) was assessed using random experiments
in which expression values were shuffled across all individuals.

Of our 16 significant TOF genes (see Chapter 5.2, Figure 5.5A) only one gene is sig-
nificantly differentially expressed (downregulated), namely the endothelin converting
enzyme 2 (ECE2). ECE2 is a predicted target (by all three prediction tools used in this
study) of the significantly upregulated miR-27b. This miRNA is differentially expressed
from early stages of ventricular chamber formation®% and promotes angiogenesis®!°.
Moreover, it was shown that miR-27b targets NOTCH13'!, a critical determinant of
cardiac stem cell growth and differentiation®?. NOTCHI is also one of our potential
TOF genes (see Chapter 5.2, Figure 5.5B) and downregulated in TOF compared to

RV, although not statistically significant but with a fold change of 0.88.

In the past it has been shown that the expression level of many miRNAs can be both
positively and negatively correlated with their target mRNAs*!. For example, val-
idated targets of miR-27b are CYP1B13'® and MEF2¢3%°. CYPI1B1 is significantly
downregulated in our TOF patients versus RV. In contrast, MEF2c, an essential reg-
ulator of cardiac myogenesis and right ventricular development?3, is upregulated in
TOF with a fold change of 1.34. For miR-~19b there is a number of validated target
genes showing differential expression between TOF and RV including SOCS-131® (down-
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Figure 5.25: Examples for negative correlation based on the Pearson correlation co-
efficient (PCC) in scaled expression of miRNAs and genes over all individuals. The
miRNA expression level is shown in red. Genes with a predicted binding site for the
miRNA are shown in blue, otherwise in black. Differential expression between TOF
patients and healthy individuals (normal heart, NH) is indicated by the false discov-
ery rate (FDR). Significance was defined as FDR<0.05 after adjustment for multiple
testing.

regulated with FC=0.71; prevents TNF-alpha-induced apoptosis in cardiac myocytes
via ERK1/2 pathway activation'®), PTEN3!7 (upregulated with FC=1.1; involved in
heart failure, myocardial hypertrophy and contractility3!®), VEGFA3'Y (upregulated
with FC=1.23; mutations are associated with congenital left ventricular outflow tract
obstruction®?’) and ERalpha3?! (downregulated with FC=0.74; protective against the
development of cardiac hypertrophy?32?). For further analysis, we computed Pearson
correlation coefficients between expression levels of miRNAs and target or host genes

using all TOF patients together with the healthy individuals. In general, the miRNAs
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Figure 5.26: An example for a positive correlation in scaled expression of miR-~145 (in
red) and its target gene SLITRK4 (in blue) over all individuals. Differential expression
between TOF patients and healthy individuals (normal heart, NH) is indicated by the
false discovery rate (FDR). Significance was defined as FDR<0.05 after adjustment for

multiple testing.

and their host genes (miRNA-host pair) show higher positive correlation in comparison
to any miRNA-mRNA pairing (Figure 5.24A), although individual miRNA-host pairs
can also show negative or no correlation. Looking at the correlation between miRNAs
and validated human targets (based on miRecords?®?? v3.0, TarBase®?* v5.0 and miR-
TarBase?®) we found a broad variety of correlation ranging from significant positive
to significant negative correlation (Figure 5.24B). Significance of miRNA-gene correla-
tion (p<0.05) was assessed using random experiments in which expression values were
shuffled across all individuals. Compared to any miRNA-mRNA pair, no clear shift to
negative correlations was observed over all miRNAs. Looking at the (scaled) expression
of individuals miRNAs and genes, we found pairings with both high negative as well as
high positive correlation. miR-1 for example, which is highly expressed in skeletal mus-
cle and heart, shows a very high negative correlation (Pearson correlation coefficient of
-0.83) to PARVA and MR1 (Figure 5.25A). Both PARVA, which encodes a member of
the parvin family of actin-binding proteins, and the myofibrillogenesis regulator MR-1
are also highly expressed in skeletal muscle and heart. But like miR-1, they are not
significantly differentially expressed in TOF compared to RV due to different expression
levels within one group. Only for PARVA a 3’UTR target site for miR-1 was predicted.

A very high negative correlation (Pearson correlation coefficient of -0.87) was also ob-
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miRNAs with

negative correlation to
their validated targets
(neg. targets / all targets)

miRNAs with

negative correlation to
their predicted targets
(neg. targets / all targets)

miR-1 (90/173)
miR-27b (3/4)

miR-29b (9/10)
miR-29¢ (12/14)
miR-204 (7/14)

miR-29a (169/269)
miR-29b (206//268)
miR-29¢ (212//269)
miR-33a (14/41)
miR-133b (96,/124)
miR-302b (169,/195 )

miRNAs with

positive correlation to
their validated targets
(pos. targets / all targets)

miRNAs with

positive correlation to
their predicted targets
(pos. targets / all targets)

miR-9 (6/7)
miR-21 (30/41)

let-7b (137/227)
let-7i (158,/228)
miR-9 (225/320)
miR-27b (178/289)
miR-92b (133/181)
miR-101 (117/156)
miR-130a (188/261)
miR-152 (132/182)
miR-181b (181/264)
miR-203 (79/124)
miR-208b (2/3)
miR-218 (128/203)
miR-221 (45/74)
miR-222 (49/73)

Table 5.5: MicroRNAs with overall correlation in (scaled) expression to their validated
(left column) and predicted (right column) target genes. For each miRNA the number
of positively (pos.) or negatively (neg.) validated (based on miRecords, TarBase and /or
miRTarBase) or predicted (by miRanda, PicTar and/or TargetScan) targets is given.
Significant difference between targets and all genes (non-targets) is indicated by a t-
test p-value, i.e. distribution over all pos. or neg. correlated miRNA-target pairs in
comparison to all miRNA-non-target pairs. For the given miRNAs all p-values are
smaller than 0.05.

served between miR-181b and PSD4 (Figure 5.25B). Moreover, the expression levels
within one group (i.e. healthy or affected) are nearly equally distributed and both are
differentially expressed (i.e. highly versus lowly expressed). Accordingly, this is associ-
ated with significant differential expression level between TOF and RV. Nevertheless,
there is no prediction that the upregulated miR-181b targets the downregulated PSDA4.

An example for a very high positive correlation (Pearson correlation coefficient of 0.89)
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Figure 5.27: Local variations in predicted miRNA binding sites validated by Sanger
sequencing in TOF patients as well as right ventricle of healthy individuals that poten-
tially lead to a significant expression alteration between individuals with and without
the local variation (Wilcoxon test with p<0.05). Expression levels are based on mRNA-
seq data. (A) A single nucleotide variation (SNV) in PCSK6 (chr15:99662447, C>T,
position based on NCBI v36.1, hgl8) leads to loss of a binding site for miR-485 (mi-
Randa prediction score without SNV = 142 and with SNV = 110). (B) A deletion in
ZFPM2 (chr8:106885176, delGTTAT, position based on NCBI v36.1, hgl8) leads to
a novel binding site for miR-548j (miRanda prediction score without SNV = 125 and
with SNV = 146).

in expression is miR-145 and its target gene SLITRK4 (Figure 5.26). They are highly
positively correlated in their expression levels in both healthy and affected group. This
miRNA-mRNA pair could be predicted by all three tools. Finally, we analyzed if cer-
tain miRNAs show an overall tendency to be negatively or positively correlated to their

predicted as well as validated targets and found examples for both groups (Table 5.5).

After miRNA target prediction and correlation analysis we also searched for local vari-
ations in predicted miRNA binding sites that could lead to a significant gene expression
alteration in patients showing a specific mutation compared to those not having the

mutation in that gene (t-test with p<0.05). We examined all local variations found in
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3’UTRs of genes over the 13 TOF patients with DNA, mRNA and miRNA sequencing
data. For each mutation we searched for miRNAs with sufficient different miRanda
prediction score in the reference sequence compared to the mutated sequence. The
score was computed using a small window around the mutation (£20 bp) for both
the reference and mutated sequence of the predicted target gene. A sufficient different
miRanda prediction score was found if the score was greater or equal than 140 for one
of the sequences and smaller for the other one and if the difference between both pre-
diction scores (i.e. reference versus mutated sequence) was greater than 20. Finally,
we found 85 local variations in predicted miRNA binding sites that lead to significant
expression alterations, representing 99 miRNAs (all expressed in TOF, RV or in both)
targeting 72 affected genes.

After manual assessment we selected two local variations (one SNV and one deletion)
for validation by Sanger sequencing now in all 22 TOF patients (TOF-01 to TOF-
22) and right ventricle of three healthy individuals (NH-02, NH-04 and NH-06) with
available gene expression data (see Chapter 2.2.4, Table 2.2). First, a known SNV in
PCSKG6 was found that leads to loss of a binding site for miR-485 (miRanda prediction
score without SNV = 142 and with SNV = 110). A significant expression alteration
between individuals with and without this variation could be observed. Interestingly,
instead of upregulation we found a significant downregulation of PCSK6 in individu-
als with this variation and the associated loss of the predicted binding site compared
to the other individuals (average gene expression level in mRNA-seq of 170 mapped
reads for individuals with the SNV and 290 mapped reads without the SNV; Figure
5.27A). This should be further analyzed and experimental validated by e.g. luciferase
arrays. Second, a novel deletion in ZFPM2 leads to a novel binding site for miR-548;
(miRanda prediction score without SNV = 125 and with SNV = 146). The predicted
novel binding site leads to a significant downregulation of ZFPM2 in individuals with
compared to those without such a deletion (average gene expression level in mRNA-seq
of 136 mapped reads for individuals with the deletion and 256 mapped reads without
the deletion; Figure 5.27B).

Finally, filtering all 85 local variations to be novel or with a MAF of less than or equal
to 0.01 or present in OMIM resulted in just three local variations (one deletion and 2
SNVs) in three genes (SGCA, MTPN and ZFPM2). These novel variations were found
in non-coding sequences related to predicted binding sites of five miRNAs (hsa-miR-
548j, hsa-miR-15a, hsa-miR-16, hsa-miR-~195 and hsa-miR-873).
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Discussion

The first part of this work represents a systematic in vivo analysis of three levels regu-
lating cardiac mRNA profiles, namely regulation of gene transcription by epigenetic and
genetic factors as well as post-transcriptional regulation by small non-coding RNAs.
In detail, genome-wide binding of the key cardiac transcription factor Srf was analyzed
in conjunction with functional consequences of RNAi mediated knockdown of Srf in
cell culture, leading to new insights into its individual binding behavior and function.
Further, Srf co-occurrence with histone 3 acetylation as well as the potential regulatory

impact of miRNAs was studied.

In human and mouse approximately 2,000 transcription factors, more than 100 differ-
ent modifications of histone residues and a large number of post-transcriptional reg-
ulators comprising over 1,000 miRNAs modulate the mRNA profile corresponding to
20,000-25,000 protein-coding genes. Major insights have been gained into the regu-
lation of the transcriptional process by DNA-binding transcription factors and their
modulators 7326327 In addition, the role of histone modifications in establishing and
maintaining the chromatin status and their function as protein interaction partners
has been discovered®?8330, More recently, the impact of miRNAs on mRNA profiles
and their function as inhibitors of the translational process has emerged 169:3317333 ag
initial insights were obtained by focusing on each level independently. However, we lack
data showing the interaction between these levels of regulation since the initial insights
were obtained by focusing on each level independently. While it was long thought that
transcription factors are the main driving force, results of this and other studies favor a
comparable impact for all three regulatory levels with a high degree of interdependency

leading to a fine-tuned balance of gene expression.

113



Chapter 6 Discussion

Investigating the influence of histone modifications as an epigenetic mechanism to mod-
ulate gene expression, we showed that the transcriptional activity of Srf in the mouse
cardiomyocyte cell line HL-1 is highly depending on the co-occurrence of histone 3
acetylation. Using ChIP-chip it was previously shown by us that genes showing H3ac
are less likely differentially expressed pointing to a buffering effect. To confirm this
finding, we repeated the ChIP-chip experiments using the more sensitive ChIP-seq.
Our data also revealed that the presence of H3ac tags had a buffering effect on the

expression of Srf targets even after knockdown of this TF.

Interestingly, while both ChIP-chip and ChIP-seq approaches aim to measure the same
enriched binding sites, a low overlap between the peak positions was found in Srf ChIP-
chip compared to ChIP-seq data. This low overlap can have different reasons which

288,334,335 For example, a comparison of

have been further addressed in the community
neuron-restrictive silencer factor (NRSF) peaks showed that only 22% of their ChIP-
chip peaks overlapped with ChIP-seq peaks. However, the overlapping peaks had a
much higher number of observed motifs than those that occurred only in ChIP-chip
or ChIP-seq'3. Summarizing this and other studies, the two methods show a clearly
different behavior in terms of sensitivity and specificity with potentially additive in-
formation content. While ChIP-seq peaks tend to form regions that are much sharper
than those in ChIP-chip due to its superior resolution, ChIP-chip peaks might addi-
tionally cover binding events with more moderate significance. This would fit to our
observation, that the overlap of Srf peaks was much smaller than those of H3ac peaks,
as the latter exhibit much stronger signals in the ChIP experiment. Besides the dif-
ferent experimental techniques, differences in the detected binding sites are also based
on the algorithmic approaches used for peak calling. However, this explanation is un-
likely as we observed a high overlap of 91% that was observed for H3ac. For ChIP-seq,
no negative control sample was measured and thus, the background distribution was
modeled from the ChIP sample itself using the negative binomial distribution. This
distribution is more accurate than earlier approaches and it was shown that for a one-
sample analysis, where only a ChIP sample is sequenced, reasonable FDR estimates

d193

can be provide . Nevertheless, the repetitive analysis using ChIP-seq data revealed

the same overall results as for the ChIP-chip data.

As mentioned before, Srf target gene activation was shown to be highly dependent on
histone modifications. Histone modifying enzymes represent an important group of

direct downstream targets of Srf as found in both ChIP-chip and ChIP-seq. For ex-
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ample the histone demethylases containing a Jumonji domain such as Jmjdlc, Jmjd2b,
Jmjd3, Jmjd4 and Jmjd5 were all found to be direct targets of Srf. A similar picture
could be drawn for the relationship of miRNAs and Srf such that Argonaute proteins
Eif2¢2 (Ago2) and Eif2c (Ago3), which are direct Srf targets, play a key role for miRNA
mediated-mRNA cleavage via the RISC complex336. In line with this, we found a panel
of miRNAs deregulated in Srf knockdown, explaining three times more differentially
expressed genes than Srf binding events alone could do. This further reflects the high

degree of interdependency between the different levels.

The observed impact of H3ac on the activating potential of transcription factors like
Srf underlines the beneficial effects seen for HDAC inhibitors for a variety of disease
states®®. Further, results from this study favor the view that modulation by histone
modification as well as buffering by co-binding transcription factors might be a plausible
explanation for incomplete penetrance or phenotypic diversity as frequently observed
in mouse models with identical genetic background or in human disease such as con-
genital heart disease. Here, a distinct gene mutation can lead to a broad portfolio of
phenotypes, such as mutations in Cited-2 resulting in various cardiac malformations in-

t 112337 The acetylation of histone 3 mediated

cluding atrial and ventricular septal defec
via the histone acetyltransferase p300 provides an explanation for the observed high
target gene expression of Srf. The correlation between Srf, p300 and H3ac was further
investigated in wvivo using ChIP-qPCR in a time-series during cardiac maturation in
mouse?3®. In summary, a strong correlation between the occurrence of H3ac marks as
well as Srf and p300 binding at potent regulatory regions of heart- and muscle-relevant
genes was found. This points to a common regulatory mechanism which is triggered

by Srf and resulted in H3ac that depends to a certain degree on the HAT p300338.

In accordance with others, we observed that the overwhelming proportion of differen-
tially expressed genes in our RNAi experiments were indirect targets of Srf. Compu-
tational studies suggest that up to 30% of all human genes are regulated by miRNAs,

339340 Our in vivo data

while each miRNA may control hundreds of target genes
highlight the global impact of miRNAs on expression profile alterations seen in tran-
scription factor loss-of-function studies. Significantly differentially expressed miRNAs
in Srf knockdown potentially explain up to 45% of the altered mRNA profile in our
study. Over the last years a panel of miRNAs was discovered having a significant im-
pact on the cardiac development and function. Differentially expressed miRNAs in Srf

knockdown have been linked to vital processes such as arrhythmia (miR-1, miR-133),
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apoptosis (miR-21, miR-~195), contractility (miR-208), hypertrophy (miR-1, miR-21,
miR-133, miR-195, miR-208) and fibrosis (miR-21)34347. Furthermore, miR-1 pro-
motes myogenesis by targeting HDAC4%, a transcriptional repressor of muscle gene

expression and thus represents an interface to histone acetylation.

To analyze miRNA-seq data, we developed MicroRazerS, a filter-based algorithm to
map deep sequenced small RNAs to a reference genome. With the exponentially grow-
ing output of emerging deep sequencing platforms, fast and effective mapping of reads
is a basic problem conserning a large community of researchers. MicroRazerS was com-
pared with other short read mapping tools incorporating Mega BLAST 2 and the two
possible best competitors Bowtie 7 and SOAP2'81. We found MicroRazerS an order of
magnitude faster or at least comparable in speed to the other short read mapping tools.
In addition, it is more sensitive and easy to handle and adjust. Just recently it was
shown that within six alignment tools tested, specifically devoted to miRNA detection,
SHRiMP '¥2 and MicroRazerS showed the highest sensitivity3*®. Some useful options

S1™ are supplied like the option that counts uncalled nucleotides

inherited from Razer
as automatic matches or the option that discards reads that map more than a desig-
nated number of times to the reference genome. Hence, MicroRazerS is an even more
useful tool. Further, given the heterogenous nature of the small RNA types and the
various output of sequencing platforms, it can be expected that mapping tools can to

some degree work complementary thereby offering optimal solutions to distinct tasks.

In the second part of the work we studied Tetralogy of Fallot. TOF accounts for up to
10% of all CHD, which are the most common birth defects in human. Considering the
background hypothesis of congenital heart disease, CHD are most likely caused by a
panel of genetic variations with each effecting protein function or expression only mod-
estly and manifest as disease only when combined with additional genetic, epigenetic
or environmental alterations. To provide proof for this hypothesis we used latest next-
generation sequencing techniques to discover genetic alterations in the cardiovascular
exome and transcriptome of TOF cases, parents and controls. Further, we investigated
genome-wide mRNA and miRNA levels in TOF cases and healthy unaffected individ-

uals and combined gene expression profiles with miRNA target predictions.

Oligogenic disorders potentially represent a broad and significant number of diseases in
general, which have been less accessible for conventional genetic studies. Therefore, only
limited insight has been gained so far. Examples of known oligogenic disease are iso-

lated gonadotropin-releasing hormone (GnRH) deficiency, Bardet-Biedl syndrome and
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349-351 " Tp this work, we show an oligogenic architecture of TOF

neural tube defects
with a mutation pattern characterized by a combination of common and rare alleles.
We show that the observed mutation pattern in the TOF patients is very unlikely to
occur in healthy controls. This provides a strong significant hint that the genes defined
in the study are indeed reflecting the genetic background associated with the disease.
Comparing the individual mutation pattern of each of our TOF patients to the control
group revealed no healthy individual showing exactly the same combination of affected

genes. This further underlines the importance of functionally interacting variations.

We identified SNVs and InDels in 16 genes that discriminate isolated TOF genotypes
from those of healthy controls. These genes show a significantly higher mutation rate
in TOF subjects compared to controls. On average, four TOF genes show deleterious
mutations in an individual patient comprising novel and inherited mutations. This
defines TOF as an oligogenic disorder. We found a characteristic mutation pattern
in the TOF population. Out of 16 TOF genes two are affected in >50% of subjects,
six genes in >20% and eight genes in >10% of subjects. We statistically assessed this
pattern focusing on the ten most significant genes by a random permutation approach.
We were unable to find any comparable mutation pattern in the control population,
showing its statistical significance. Affected TOF genes harbor common and rare alleles
showing a high dependency of functionally interacting yet individual mutations which
lead grossly to the same phenotypic outcome during development. We postulate that
these mutant alleles produce a genetic interaction network with abnormal properties
that causes TOF.

To ascertain the complex genetic background of isolated TOF, we applied large-scale
next-generation sequencing. The availability of control populations and the statistical
assessment are key elements to extract indeed disease-relevant variations. Beside the
significant TOF genes, we identified deleterious mutations in 221 additional genes of
which 124 genes are mutated at a similar or higher frequency in controls compared to
TOF patients and therefore are unlikely to be disease-causing. In total 97 genes were
not assessable for statistical measures of which 30 genes were not targeted in controls
and 67 harbor only InDels not studied in controls. It is likely that additional genes out
of the set will turn out to be relevant to TOF and we described all genes affected in at
least two TOF patients as potential TOF genes (in total 21).

The two most important modifier genes found were mitochondrial short-chain specific
acyl-CoA dehydrogenase (ACADS, also known as SCAD) and titin, both well-known
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genes in terms of mitochondropathy and cardiomyopathy3°23%4. The two observed and
already known variations in ACADS show only a modest reduction in the enzymatic
activity, but do not lead to clinically relevant SCAD deficiency on their own?290:355
However, in combination with other genetic factors, the enzymatic activity could per se
drop below the functionally needed critical threshold. In this study we provide evidence
that this might be the situation in the affected patients, which show an altered PAS
staining in their heart tissue, potentially suggesting a mitochondrial deficiency. TTN
mutations on the other hand are associated with a panel of cardiomyopathies such as
dilated or hypertrophic cardiomyopathy 336357, Like ACADS, all observed TTN muta-
tions in our TOF patients occur in combination with other variations, suggesting that
TTN as well as ACADS are important modifier genes. They occurred e.g. in com-
bination with mutations of COL6A2. Variations in the COL6A1/COLG6A2 cluster on
chromosome 21 are associated with CHD in trisomy 213%8. It was recently shown that
overexpression of COL6A2 in combination with Down syndrome cell adhesion molecule

(DSCAM) as a modifier gene can induce cardiac malformations in mouse>®°.

A literature and database analysis as well as qRT-PCR and in situ hybridization of
mouse hearts demonstrate the expression of TOF genes during heart development.
This is essential to the hypothesis that TOF genes have a causative effect on abnor-
mal cardiac development. Interestingly, in addition to the expression of TOF genes
in embryonic development, we demonstrate a continued relevance during the postnatal
period and adulthood. This is intriguing in respect to the differences that have been
reported in the clinical outcome of TOF linked to the genetic background in syndromic

cases 360.

Studying families with recurrent CHD, we show that respective mutations in TOF
genes can be either novel or inherited, which explains incomplete penetrance in familiar
cases 97, Moreover, the genotype of healthy parents holds a significantly higher number
of deleterious mutations compared to healthy non-CHD related controls. These data
suggest that sequencing approaches can be integrated into genetic counseling for TOF
to help determine risk profiles for individuals and families. The a priori identification
of a risk profile in parents of offspring with TOF needs further exploration, particu-
larly if this profile can be associated with other risk factors such as maternal diabetes

120,121 © Our data show that multiple genes provide the disease associated

or obesity
genetic background, and it frequently involves a disruption of signal transduction and

metabolic pathways. For example, it has been shown previously that Nos3 (nitric oxide
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synthase 3) genetically interacts with Tbx5 and plays a role in the development of atrial
septal defects in Thx5 knockout mice®5'. We show that NOS3 genetically interacts in
TOF cases with the transcription factor TCF25 as well as plexin A2 (PLXNA2). NOS3
is regulated by many CHD risk factors including diabetes and provides an example how
gene-environment interaction might interfere with human birth defects such as CHD.
The impact of metabolic or environmental factors in combination with the parent geno-
type might permit the development of individual preventive strategies. Further studies
are warranted to gather insights into key nodes and modulators of the genetic interac-

tion network perturbed by TOF genes.

Digital gene expression information provided by RNA-seq can be used to validate lo-
cal variations in coding regions and simultaneously assess the impact of such genetic
variations on gene expression®®. We gathered all mRNA-seq reads which mapped to
found local variations and could validate ~96% of them when using a minimal cover-
age of 10x in mRNA-seq, indicating high confidence local variations. Gene expression
analysis revealed slightly more downregulated than upregulated genes in TOF patients
compared to right ventricle of healthy individuals. Analyzing the gene expression simi-
larity within the individual groups and between groups indicates a commonly changed
expression profile in TOF patients. Further, we found TOF patients to be more similar
in their gene expression to left ventricle of healthy individuals. This is in line with the
results from Kaynak et al., where the expression of several genes in right ventricular
hypertrophy was similar to the expression in LV. A significant positive correlation was
found, indicating that the genes dysregulated in right ventricular hypertrophy have a

tendency to behave similarly in the disease state as in normal LV tissue!°.

Based on our gene expression profiles, we found the majority of the significant and
potential TOF genes being expressed (RPKM>1), but only few of them significantly
differentially expressed in TOF compared to normal heart. Genetic variations influenc-
ing gene expression may reside within the regulatory sequences, splice sites, secondary

62 Especially se-

structure motifs and promoters or enhancers of the affected gene?
quence variations in promotor, enhancer and insulators (non-coding) regions should
come into our focus for further studies as a putative cause of disturbed transcriptional

regulation leading to congenital heart disease.

RNA-seq has been shown to be more sensitive compared to microarrays, both in terms

144,211

of detection of lowly expressed and differentially expressed genes In fact, we

found a high number of lowly expressed genes (RPKM<1), which are also significantly
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differentially expressed. However, these genes are more or less irrelevant, though they
show randomly some significant differences in expression. The lowly expressed genes
are expressed at less than one copy per cell on average and moreover, they are likely
to correspond to ‘leaky’ expression, producing non-functional transcripts???. In many
cases, differential regulation induces only small changes in expression levels, which
probably serves to fine-tune expression???. However, many genes have a low and rather

constant expression across tissues363

, indicating that our measured expression might
be affected by subpopulations of cells. Using RNA-seq on single-cell level like in the
study by Tang et al.3%*, it will be possible to identify the core set of expressed genes

in every individual cell.

Extracting biological insights from transcript-level RNA-seq analysis is challenging.
Therefore, we also quantified isoforms using the POEM model comprising junction
reads in the exonic read counts. However, the model can be extended to include junc-
tion reads in a more probabilistic way instead of adjusting just the corresponding

214,365 - Overall we found a high overlap between the gene-level and

exonic read counts
transcript-level results, although less significantly differentially lowly expressed genes
(due to the lower read count) were observed based on the transcript-level analysis. This
is in line with the fact that very lowly expressed transcripts in respect to their assigned
read counts are discarded after POEM estimation, before they are tested for differential
expression (low read count over all analyzed samples, i.e. they are very unlikely to be

expressed).

Changes in the splicing machinery can be the cause of human diseases36%:367 Analyzing
alternative splicing in our RNA-seq data, we found novel splicing events in several sar-
comeric genes. Among these genes it has been shown for e.g. TNNI1 and MYH?7 that
associated changes in mRNA splicing were significantly altered in patients with ischemic
cardiomyopathy, dilated cardiomyopathy and aortic stenosis??>. Moreover, mutations
in MYH? are associated with familial hypertrophic cardiomyopathy3%®. The candidate
novel splice sites in both genes could be validated by RT-PCR as well as for PDLIM3,
which is involved in cytoskeletal assembly and colocalizes with alpha-actinin-2 (ACTN2)
at the Z lines of skeletal muscle3®?. PDLIM3 regulates SRF activity and isoform ratios
play a role in muscle cell differentiation37?. However, we evaluated the overall impact
of differential splicing as a potential disease-causing mechanism and found only few
significantly differentially transcripts related to differential splicing events. Moreover,

no deleterious mutations was found on a splicing factor.
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Post-transcriptional regulation of gene expression by miRNAs plays an important role
in multiple cellular pathways and diseases. Deep sequencing of miRNAs in TOF pa-
tients revealed mostly upregulated miRNAs compared to normal heart. In heart failure
the majority of miRNAs was also found to be upregulated and the expression profile was
found to be similar to fetal hearts37!. Several heart- and muscle-relevant miRNAs could
be identified as significantly differentially expressed like in other studies investigating
heart diseases344347371372 - Ap important feature of miRNAs is the ability to regulate
the produced protein level of a multitude of mRNAs. Several computational tools have

256 Unfortunately, all prediction tools

been developed for predicting miRNA targets
use different approaches and sets of 3’'UTRs. Consequently, the amount of overlapping
miRNA-mRNA predictions is often low, although each of the tools can identify a large
number of potential miRNA targets. Using the overlap of three commonly used predic-
tion tools for only significantly differentially expressed miRNAs and mRNAs in TOF
patients compared to normal heart we found a reasonable number of miRNA-mRNA
pairs. This number was further reduced if we only retain pairs with negatively corre-
lated expression levels. However, it has been shown that the expression level on many
miRNAs can be both positively and negatively correlated with their individual target
genes*!. Looking at the correlation between miRNAs and validated targets we found
both significant positive and negative correlation. Compared to any miRNA-mRNA
pair, no clear tendency to negative correlation was observed over all miRNAs. Looking
at the expression of individual miRNAs and target genes, we again found predicted
pairings with both high negative and high positive correlation, although the positively

correlated pairs were slightly predominate.

Finally, we searched for local variations in predicted miRNA binding sites that lead
to a significant gene expression alteration in the affected TOF patients compared to
those without the mutation. We found an already known single nucleotide variation
in PCSK6 that potentially leads to the loss of a predicted binding site for miR-485.
Interestingly, we found a significant downregulation of PCSK6 in the TOF patients
with this variation, which should be further analyzed. PCSKG6 is a serine endoprotease
that can cleave precursor proteins and it has been shown that its knockout in mouse
leads to severe cardiac defects like persistent truncus arteriosus, ventricle septum de-
fect and abnormal heart looping®73. We also found and validated a novel deletion in
ZFPM2 that leads to a predicted novel binding site for miR-548j. TOF patients with
this deletion showed a significant downregulation of ZFPM2 in our mRNA-seq data.
ZFPM2 (or FOG-2) is a zink finger protein that regulates activity of GATA transcrip-
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tion factors. Moreover, ZFPM2 is essential for heart morphogenesis. ZEPM2 knockout
embryos die at midgestation with a cardiac defect characterized by a thin ventricular
myocardium, common atrioventricular canal and TOF malformation37®. The relevance
of both predicted miRNA binding sites needs to be further analyzed.

Compared to microarrays, expression values obtained from mRNA-seq correlate better
with protein levels. However, the expression levels correlate not perfectly due to post-
transcriptional regulation®”®. In this work we searched for genetic alterations in coding
regions of over ~1,000 heart- and muscle-relevant genes and miRNAs and combined
genome-wide data from mRNA and small RNA sequencing to identify potential TOF
genes and miRNAs as their post-transcriptional modifiers. In the future we need to
look not only at the RNA level but also at the protein level, because the relationship
between RNA levels and protein levels varies37%377. It has been shown that there is

378,379 and moreover,

380

a correlation between mRNA levels and protein concentrations
we could try to model the contribution of general sequence features®®”. However, as
these predictions are so far only partially reliable for a meaningful statement we have

to measure protein levels.

In this thesis next-generation sequencing technologies have been extensively used to
discover different players of gene expression. Prospectively however, NGS technolo-
gies will be replaced more and more by single-molecule sequencing approaches (third-
generation sequencing)38:382 that will further increase throughput with even longer
reads (promising more than 1 kbp) than any other technology at present. Longer reads
will improve the data quality including read mapping, base calling (polymorphism de-
tection) and de novo assembly. With higher dimensional data we may evolve an even
more complete understanding of living systems and complex phenotypes like congenital
heart disease. However, we provide proof for the long-standing hypothesis that CHD
are in part caused by an underlying oligogenic background and report an advance for
analyzing oligo- or multigenic disorders using the recent NGS technologies. Studying
TOF, we used a small cohort of patients and families with recurrent CHD. To further
substantiate our findings, future studies should incorporate a larger number of patients
and families. Nevertheless, we are convinced that our analysis strategy and bioinfor-
matics approach provides valuable insights into the causes of CHD and can be applied

to other oligo- or multigenic disorders in general.
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Zusammenfassung

Im Bereich der Genanalyse hat es in den vergangenen Jahren eine wesentliche Abkehr
von der Anwendung der halbautomatisierten Sanger-Sequenzierung hin zur sogenannten
Next-Generation-Sequenzierung (NGS) gegeben. Der Hauptvorteil dieser NGS-Metho-
den liegt vor allem in der Fahigkeit Millionen von DNS-Fragmenten in sehr kurzer Zeit
zu sequenzieren. Insgesamt gibt es eine breite Palette von NGS-Anwendungen, die
sich schnell weiterentwickeln, was die computergestiitzte Analyse der damit verbunde-
nen Datenmengen sehr anspruchsvoll macht. In der Genexpressionsanalyse werden die
friher herkémmlichen Microarrays mehr und mehr durch sequenzbasierte Methoden
ersetzt, die kodierenden und nicht-kodierenden Transkripte ohne deren vorherige Ken-
ntnis identifizieren und quantifizieren kénnen. Die Sequenzierung eines ganzen Genoms
oder bestimmter Sequenzen (gezielte Resequenzierung) erméglicht die Identifizierung

von genomischen Variationen auf einer breiten Basis.

Diese Dissertation beschéftigt sich mit den Herausforderungen, die sich im Zusammen-
hang mit der Anwendung von NGS-Technologien ergeben. Das beinhaltet die gezielte
DNA-Resequenzierung, die Sequenzierung von exprimierten mRNAs (RNA-seq) und
microRNAs (miRNA-seq) sowie die Identifizierung von Protein-DNA-Wechselwirkungen,
wie Bindungsstellen fiir Transkriptionsfaktoren oder Histonmodifikationen (ChIP-seq).
Die innerhalb der Arbeitsgruppe generierten sowie offentlich verfligbaren, experiment-
ellen Datensdtze wurden verwendet, um neuartige, computergestiitzte Ansétze und
Methoden der Bioinformatik fiir die Analyse von NGS-Datensétzen zu entwickeln und
schlieBlich biologische Fragen hinsichtlich der Herzfunktion und -krankheit zu beant-

worten.

Eine erste Studie konzentriert sich auf die kombinatorische Regulation von kardialen,
DNA-bindenden Transkriptionsfaktoren (ChIP-seq von Srf) beeinflusst von Histon-
modifikationen (Histon 3 Acetylierung) und regulatorischen miRNAs (miRNA-seq).

Wie in PLoS Genetics im Jahr 2011 veroffentlicht, haben diese verschiedenen reg-
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ulierenden Ebenen von mRNA-Profilen ein hohes Mafl an Wechselwirkung und das
Potenzial sich gegenseitig zu modulieren. Zum Beispiel wird die Wirkung von Srf
maflgeblich durch das gleichzeitige Auftreten von Histon 3 Acetylierungsmarkierun-
gen beeinflusst. Dariiber hinaus konnen 45% aller differentiell exprimierten mRNAs
im Srf Knockdown durch die unterschiedliche Expression von microRNAs erklart wer-
den. Ungefahr die Hélfte aller differentiell exprimierten mRNAs wird durch andere
sekundire Effekte beeinflusst. Um daher ein vollsténdiges Bild des regulatorischen
Transkriptionsnetzwerkes und der zugrundeliegenden Funktion von Kardiomyozyten
(Herzmuskelzellen) zu erhalten, miissen die verschiedenen Modulatoren in Zusammen-
hang miteinander betrachtet werden. Im Rahmen dieser Studie wurde das Programm
MicroRazerS entwickelt (verdffentlicht in Bioinformatics 2010). MicroRazerS ist op-
timiert fiir das Mappen kleiner RNA-Sequenzen, wie zum Beispiel microRNAs oder
andere kleine nicht-codierende RNAs, zu einem Referenz-Genom. Es zeichnet sich
durch eine héhere Sensitivitat und zumindest vergleichbare Geschwindigkeit im Vergle-
ich zu anderen Mapping-Programmen aus. Die Ergebnisse zeigen, dass MicroRazerS das
Auffinden und die Entdeckung von microRNAs in Hochdurchsatz-Sequenzierungdaten

wesentlich erleichtern kann.

Fin zweites Projekt zielte darauf ab, die genetische Grundlage der Fallot’schen Tetralo-
gie (TOF) zu identifizieren. TOF tritt in bis zu 10% aller angeborenen Herzerkrankun-
gen auf, die die grofte Gruppe der angeborenen Fehlbildungen des Menschen darstellen.
Diese Studie zeigt erstmals, dass TOF eine oligogenetische Erkrankung ist (Grunert et
al. Manuskript unter Begutachtung). Wir haben eine mehrstufige Studie durchgefiihrt,
darunter die gezielte Resequenzierung von iiber 1.000 herz- und muskelrelevanten Genen
und microRNAs in TOF Patienten, Eltern und Kontrollen sowie die Analyse des ganzen
Transkriptoms und miRNomes in TOF Patienten und gesunden Personen unter der
Verwendung von NGS-Technologies (87 Proben). Gene wurden nach dem Vorhan-
densein von schadlichen Variationen und ihrer Mutationsrate in den TOF-Patienten
im Vergleich zu gesunden Kontrollen (200 Fille) beurteilt. Eine Menge von 16 so-
genannten TOF-Genen wurde identifiziert, von denen durchschnittlich vier Gene pro
TOF-Patient mutiert sind und die die TOF-Patienten von den Kontrollen unterschei-
den. Im Allgemeinen stellt die in dieser Studie entwickelte Analysestrategie und der
verwendete Bioinformatikansatz eine neue Perspektive fir die Analyse von oligo- oder

multigenetische Erkrankungen dar.
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Over the past years, there has been a fundamental shift away from the application
of semi-automated Sanger sequencing for genome analysis to so-called next-generation
sequencing (NGS). The main advantage offered by NGS is the ability to sequence mil-
lions of DNA fragments in a very short time scale. There is a wide range of NGS
applications, rapidly developing, making the computational analysis of their associated
datasets very challenging. For gene expression analysis microarrays are more and more
being replaced by sequenced-based methods, which can identify and quantify coding
and non-coding transcripts without prior knowledge. Genome sequencing either at a
whole or for particular sequences (targeted resequencing) enable the identification of

genomic variations at a broad scale.

This thesis approaches computational challenges of NGS technologies applied for tar-
geted DNA resequencing, sequencing of expressed mRNAs (RNA-seq) and miRNAs
(miRNA-seq) as well as the identification of protein-DNA interactions such as tran-
scription factor binding sites or chromatin histone marks (ChIP-seq). Experimental
datasets generated within the group as well as publicly available were used to de-
velop novel computational approaches and bioinformatics tools for the analysis of NGS
datasets and eventually answer biological questions regarding cardiac function and dis-

ease.

A first study is focused on the combinatorial regulation of cardiac DNA-binding tran-
scription factors (ChIP-seq of Srf) influenced by histone modifications (histone 3 acety-
lation) and regulatory miRNAs (miRNA-seq). As published in PLoS Genetics in 2011
these different levels regulating mRNA profiles have a high degree of interdependency
and the potential to modulate each other. For example the effect of Srf binding is
significantly influenced by the co-occurrence of histone 3 acetylation marks. Further-
more, differential expression of miRNAs can explain 45% of all differentially expressed

mRNAs in Srf knockdown and approximately 50% of differential expression is driven
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by other secondary effects. Thus, to obtain a full picture of the regulatory transcrip-
tion network underlying cardiomyocyte function, the different modulators need to be
viewed in context to each other. Within this project the tool MicroRazerS was devel-
oped (published in Bioinformatics 2010). MicroRazerS is optimized for mapping small
RNAs such as miRNAs or other small non-coding RNAs onto a reference genome. It is
characterized by a higher sensitivity and an at least comparable speed to other short
read mapping tools. The results suggest that MicroRazerS can substantially facilitate

the profiling and discovery of miRNAs obtained from high-throughput sequencing.

A second project aimed to identify the genetic basis of Tetralogy of Fallot (TOF). TOF
accounts for up to 10% of all congenital heart disease, which are the most common
birth defect in human. This study shows first time that TOF is an oligogenic disorder
(Grunert et al. manuscript under review). We performed a multilevel study including
targeted resequencing of over 1,000 heart- and muscle-relevant genes and miRNAs in
TOF cases, parents and controls as well as whole transcriptome and miRNome analysis
in TOF cases and healthy unaffected individuals using NGS techniques (87 samples).
Genes were assessed according to the presence of deleterious variations and their rate
of mutation in TOF subjects compared to healthy controls (200 cases). A set of 16
TOF genes was identified of which on average four genes per TOF subject are mutated
and which discriminate TOF cases from controls. The computational approach devel-
oped within this study opens a new perspective for the analysis of oligo- or multigenic

disorders in general.
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Appendix A - The Srf

Transcription Network

miRNA Genomic location Strand | Srf ChIP-seq peak position
mmu-miR-1-1 chr2:180123753-180123829 + chr2:180120064-180120390
mmu-miR-1190 chr12:102259883-102260003 - chr12:102267550-102267699
mmu-miR-1-2 chr18:10785479-10785550 - chrl8:10787723-10787902
mmu-miR-125b-1 | chr9:41390009-41390085 chr9:41390294-41390404
mmu-miR-1306 chr16:18284301-18284371 - chr16:18289279-18289438
mmu-miR-133a-1 | chrl18:10782907-10782974 - chr18:10787723-10787902
mmu-miR-143 chr18:61808850-61808912 - chr18:61811989-61812308
mmu-miR-145 chrl8:61807479-61807548 - chrl8:61811989-61812308
mmu-miR-150 chr7:52377127-52377191 + chr7:52384390-52384574
mmu-miR-1903 chr8:130883141-130883220 + chr8:130882606-130882799
mmu-miR-1905 chr3:88340223-88340304 - chr3:88330193-88330429
mmu-miR-191 chr9:108470650-108470723 + chr9:108469232-108469334
mmu-miR-1934 chr11:69476545-69476627 + chr11:69475763-69475992;
chr11:69476189-69476343
mmu-miR-1966 chr8:108139366-108139473 + chr8:108146258-108146513
mmu-miR-1967 chr8:126546541-126546622 + chr8:126545158-126545460
mmu-miR-208b chr14:55594537-55594613 - chr14:55585452-55585748;
chr14:55587192-55587412
mmu-miR-210 chr7:148407283-148407392 - chr7:148414495-148414619
mmu-miR-2133-1 | chr6:3151217-3151307 + chr6: 3151462-3151625
mmu-miR-219-1 chr17:34161928-34162037 - chr17:34168530-34168632
mmu-miR-688 chr15:102502223-102502297 - chr15:102501312-102501743
mmu-miR-715 chr17:39981081-39981190 + chr17:39979928-39983732;
chr17:39984647-39985880
mmu-miR-9-3 chr7:86650150-86650239 + chr7:86641075-86641194

Table S1: MicroRNAs with Srf binding events. ChIP-seq analysis revealed 22 miRNAs
with at least one Srf binding event within a genomic region of £10kb. Srf-ChIP peaks
and miRNA positions based on mouse genome NCBI v37 (mm9).
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miRNA Reads Reads Reads Norm Norm Norm Upll]/ Upl1]/ P-value P-value
(mmu) in in in siNon Srf-sil Srf-si2 down[-1] down[-1] Srf-sil/ Srf-si2/

siNon Srf-sil Srf-si2 (Srf-sil/ (Srf-si2/ siNon siNon

siNon) siNon)

let-7d 30071 36690 54076 54,1 56,9 94,9 1 1 1.86E-09 0
let-7f-1 54979 59720 52368 98,9 92,5 91,9 -1 -1 3.74E-28 1.02E-227
let-7£-2 424277 495423 463067 763,5 767,7 812,6 1 1 0,04 3.35E-173
miR-101a 13748 14011 11760 24,7 21,7 20,6 -1 -1 2.54E-26 7.81E-130
miR-107 22797 29471 42243 41 45,7 74,1 1 1 9.57E-33 0
miR-125a 5335 5487 5155 9,6 8,5 9,1 -1 -1 2.18E-09 4.30E-20
miR-125b-2 1866 1896 1864 3,4 2,9 3,3 -1 -1 0 1.96E-05
miR-140 56373 60849 51693 101,4 94,3 90,7 -1 -1 2.79E-34 0
miR-146b 950 767 938 1,7 1,2 1,7 -1 -1 6.37E-13 0
miR-148a 1108 1152 1109 2 1,8 2 -1 -1 0,03 0
miR-148b 770 750 773 1,4 1,2 1,4 -1 -1 0 0,01
miR-151 1820 1545 1686 3,3 2,4 3 -1 -1 1.33E-18 1.41E-10
miR-152 15320 15940 13205 27,6 24,7 23,2 -1 -1 4.01E-21 5.30E-138
miR-16-1 1670 1683 1653 3 2,6 2,9 -1 -1 0 1.87E-05
miR-16-2 1337 1410 1291 2,4 2,2 2,3 -1 -1 0,04 1.06E-05
miR-182 1133 641 1090 2 1 1,9 -1 -1 9.50E-49 3.94E-05
miR-186 2736 2262 2321 4,9 3,5 4,1 -1 -1 6.62E-32 6.56E-28
miR-192 2410 2408 2200 4,3 3,7 3,9 -1 -1 1.29E-06 2.40E-15
miR-1937b 202 181 172 0,4 0,3 0,3 -1 -1 0,04 0,01
miR-195 709 706 614 1,3 1,1 1,1 -1 -1 0,02 4.84E-07
miR-196b 445 281 419 0,8 0,4 0,7 -1 -1 5.66E-15 0,01
miR-208b 1278 1110 1103 2,3 1,7 1,9 -1 -1 1.43E-11 3.14E-12
miR-21 45059 44580 39651 81,1 69,1 69,6 -1 -1 1.56E-124 0
miR-2134-1 117 600 1456 0,2 0,9 2,6 1 1 8.52E-63 1.34E-251
miR-2134-2 139 622 1436 0,3 1 2,5 1 1 1.44E-57 2.06E-230
miR-2134-3 8692 9705 7480 15,6 15 13,1 -1 -1 0,03 1.57E-79
miR-2134-4 147 634 1490 0,3 1 2,6 1 1 1.03E-56 4.97E-237
miR-2143-1 71 124 121 0,1 0,2 0,2 1 1 0,03 0,03
miR-2144 2252 3044 2405 4,1 4,7 4,2 1 1 3.05E-07 0,01
miR-22 8820 9705 8391 15,9 15 14,7 -1 -1 0 5.32E-38
miR-221 30791 37198 31657 55,4 57,6 55,6 1 1 2.10E-06 6.18E-51
miR-25 29288 23629 27014 52,7 36,6 47,4 -1 -1 0 2.68E-162
miR-26a-1 6802 6950 6676 12,2 10,8 11,7 -1 -1 6.37E-13 1.47E-21
miR-26a-2 6801 6954 6684 12,2 10,8 11,7 -1 -1 8.68E-13 3.18E-21
miR-27a 4853 6208 4993 8,7 9,6 8,8 1 1 2.80E-06 1.09E-08
miR-27b 14113 14742 13559 25,4 22,8 23,8 -1 -1 3.30E-18 8.16E-55
miR-28 739 674 749 1,3 1 1,3 -1 -1 3.72E-05 0,03
miR-29b-1 506 499 417 0,9 0,8 0,7 -1 -1 0,04 9.90E-07
miR-29b-2 907 929 889 1,6 1,4 1,6 1 -1 0,03 0
miR-29¢ 8699 9685 7773 15,7 15 13,6 -1 -1 0,02 3.16E-62
miR-30a 31715 29834 32326 57,1 46,2 56,7 -1 -1 4.39E-148 9.39E-60
miR-30e 10280 9463 10226 18,5 14,7 18 -1 -1 2.34E-58 1.67E-27
miR-361 266 123 151 0,5 0,2 0,3 -1 -1 1.76E-17 5.66E-12
miR-378 103389 103695 88749 186,1 160,7 155,7 -1 -1 7.41E-238 0
miR-499 96808 104700 87731 174,2 162,2 154 -1 -1 4.75E-55 0
miR-532 2095 1968 1859 3,8 3,1 3,3 -1 -1 1.23E-10 2.23E-16
miR-689-2 429 611 939 0,8 1 1,7 1 1 0,01 3.70E-28
miR-92a-2 702 611 524 1,3 1 0,9 -1 -1 1.26E-06 8.74E-14
miR-93 1122 904 1121 2 1,4 2 -1 -1 2.53E-15 0

Table S2: Significantly deregulated miRNAs in Srf knockdown. 42 miRNAs (49 loci)
were differentially expressed in Srf knockdown compared to control (siNon). miRNA
loci based on mouse genome NCBI v37 (mm9). Matched reads to hairpin miRNA
sequence based on miRBase annotations (release 14.0). P-values based on Fisher’s exact
test with p-value less than 0.05 after adjustment for multiple testing using Benjamini
and Hochberg method for controlling the FDR.
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Figure S1: Scatterplot indicating average base quality (Phred scores) and coverage for
samples measured using (A) Illumina Genome Analyzer IIx and (B) Roche/454 Genome

Sequencer.
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Figure S2: Quality control of found local variations. Scatterplot showing the number
of found unique SNVs per gene against the gene (cDNA) lengths averaged over all
transcripts for (A) all affected genes with the TOF genes marked in red and (B) only
the 16 TOF genes. The number of SNVs per gene and the gene length shows no
correlation, i.e. some short genes have a high number of unique SNVs while long genes
can have only few SNVs. TTN (19 unique SNVs, ~82 kb) was removed from the plot

due to its length.
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Gene  Genomic location Patients Notes
EXO1 chrl:240090785-240092165 TOF-07 1,379 bp deletion, located over one exon
FLII chr17:18096625-18097629  TOF-07 1,003 bp deletion, located over 2 exons,

cuts 10th exon and
a small part of 9th exon

HCN2  chr19:556300-559434 TOF-04, TOF-06, 3,134 bp deletion, cuts 4th exon and
TOF-07, TOF-12  a large part of intron

Table S3: Identified copy number variations (CNVs) within the ten TOF samples
pyrosequenced by the Roche/454 technology. Genomic locations based on NCBI v36.1
(hg18).

miRNA Genomic location Ref Var Gene dbSNP ID  Sample ID(s)
miR-320b chr1:222511382 - AC NVL - TOF-04
miR-412 chr14:100601607 A G - rs61992671 TOF-01, TOF-02,

TOF-07, TOF-12,
TOF-13, TOF-14,
TOF-18, TOF-25,
TOF-26, TOF-27,
NH-11, NH-12, NH-13,
NH-15, CHD-01, CHD-02
miR-499-3p chr20:33041912 A G MYH7B 1s3746444 TOF-06, TOF-09,
TOF-14, NH-12, CHD-01
miR-532-3p  chrX:49654571 - G  CLCN5 - TOF-06, TOF-07, TOF-11

Table S4: Identified local variations in human mature miRNA sequences. Genomic
locations based on NCBI v36.1 (hgl8).
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Figure S4: Verification of DNA sequencing (DNA-seq) results by RNA sequencing
(RNA-seq). Scatterplot of the difference in local variance frequency measured by DNA-
seq and RNA-seq dependent on the RNA-seq coverage. The higher the RNA-seq cov-
erage the lower the distance between the two techniques. Data based on the average
over all samples. The green line indicates a lowess fit of the data.
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Gene Genomic location Ref Var dbSNP ID  Sample ID(s)

CACNA1B chr9:139892491 A T - TOF-27, NH-11, NH-12

CHFR chr12:131959055 - A - TOF-07, TOF-11

DYSF chr2:71592561 T G - TOF-02, TOF-18,
TOF-24, NH-09, NH-12,
NH-13, CHD-01

FLNA chrX:153247868 A C - TOF-01, TOF-23,
NH-10, NH-12, NH-13,
CHD-01

IA4 chr2:182082779 A - - TOF-10

IL15 chr4:142870449 - T - TOF-06

LAMBI1 chr7:107363338 CT AC - TOF-10, TOF-11,
TOF-13, TOF-14

PAXS chr2:113710770 T C - TOF-26, NH-09, NH-12,
NH-13, NH-15, CHD-01

PMM2 chr16:8849080 A G - TOF-11

S100A13 chr1:151867220 - C - TOF-26

SMYD1 chr2:88174191 T C - TOF-07

SPEG chr2:220050753 T G - TOF-01, TOF-26

THRAP4 chr17:35433175 - G - TOF-09

TTN chr2:179122448 - A - TOF-11

Table S5: Identified splice site mutations of high confidence local variations. Genomic
locations based on NCBI v36.1 (hgl8).
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Figure S5: Distribution of InDels for affected genes with InDels only. Familial assign-
ment is given after the sample identifier (F1 to F4). The number of InDels per gene is
color-coded. Homozygous InDels are additionally marked by a white dot. Gene-wise
frequencies of InDels are represented by blue bars. Gens marked with an asterisk have
known associations with human disease affecting the heart, those marked with a cross
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show a cardiac phenotype when mutated or knocked out in mice.
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Figure S6: Heatmap of functional annotations (upper panel) and cellular localizations

(lower panel) for the 16 affected TOF genes.

Functional annotations have been

assigned by literature curation. Cellular localizations were retrieved from the UniProt
database. The frequency of each annotation in the 16 TOF genes (dark gray) as well

as all affected genes (light gray) is shown on the right.

“Membrane“ are clearly overrepresented in the TOF genes.

“Signal transduction®“ and
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References for TOF genes.

JAG2 ISH IHC 17332426; 17273555
PKD1 BG 11593033

ECE2 ISH 10811845

TCF25 ISH, NB 12107429

HSPG2 IHC IHC IHC IHC 18694874; 10352025
COL6A2 IHC IHC IHC IHC 9520112

DPP3

References for potential TOF genes.

CACNA1C PCR PCR PCR PCR PCR 12900400; 21079360
NOTCH1 ISH ISH IHC PCR  ISH,PCR  PCR PCR PCR 17332426; 14701881; 12244553

Figure S7: References for expression datasets. Published mRNA or protein expression
data sets of TOF genes and potential TOF genes in developmental stages based on
literature search. PCR: PCR or (quantitative) real-time PCR; ISH: in situ hybridisa-
tion; IHC: immunohistochemistry; BG: beta-galactosidase assay; NB: Northern Blot.
CLTCL1 has no mouse homolog.
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Family 1 Family 2

COX10 His418Pro  +|- By ACADS Val401Gly
ECE2 Ser194Ala COX10 His418Pro
HSPG2 Thr1747Pro JAG2 Thr708Pro
PLXNA2 Cys826Gly PLXNA2 Cys826Gly
TBX20 Val171Gly TCF25 Ser390Phe
TTN Gly5624Arg - |- -I-
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COX10 His418Pro  +| - COX10 His418Pro |- +)-

ECE2 Ser194Ala  + - JAG2 Thr708Pro  +)- -

HSPG2 Thr1747Pro +| - PLXNA2 Cys826Gly +|- -|-

PLXNA2 Cy58266|y +| - TCF25 Ser390Phe -|- |-
TBX20 Val171Gly 4| -
TTN Gly5624Arg +| -

Family 3 Family 4
ACADS Gly209Ser  +]- - ACADS Arg171Trp +|-
COX10 His418Pro  +|- - |- COX10 His418Pro -1-

GNAS Thr225Pro -1- +l- ECE2 Ser194Ala

GNAS Arg600Gly LAMAS5 Asp371Asn
KCNH2 Val533Gly -1- - NOS3 Thryr357Asp

LAMAS Phe152Leu TCF25 Ser390Phe
LAMA5 Arg2001GIin - TTN Gly16602Arg
PKD1 Thr1558Met TTN 32604delSer

TBX20 Val171Gly -1- - |- TTN Gly20706Asp

TTN Trp13903Cys +|- -1-
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ACADS Gly209Ser  +|- +|- ACADS Arg171Trp  +|- +|-
COX10 His418Pro - F- COX10 His418Pro -l- |-
GNAS Thr225Pro - |- ECE2 Ser194Ala -|- +|-
GNAS Arg600Gly - |- LAMA5 Asp371Asn -|- +|-
KCNH2 Val533Gly - -]- NOS3 Thryr357Asp - |- +|-
LAMA5 Phe152Leu +|- - |- TCF25 Ser390Phe -|- +|-
LAMA5 Arg3165GIn  +|- - |- TTN Gly16602Arg -|- +|-
PKD1 Thr1558Met +|(- +|- TTN 32604delSer +|- +|-
TBX20 Val171Gly - +|- TTN Gly20706Asp +|- +|-
TTN Trp13903Cys +|- +|-

Figure S8: Pedigrees of the four analyzed families showing inherited and non-inherited
local variations found in any of the 18 TOF patients.
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Figure S9: RNA-seq reads and their unique sequences obtained from mRNA libraries
of patients with Tetralogy of Fallot (TOF) and healthy unaffected individuals (normal
heart, NH).
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Figure S10: Perfectly identical pileups (reads with perfectly identical start/end sites)
after unique mapping of RNA-seq reads obtained from mRNA libraries of patients with
Tetralogy of Fallot (TOF) and healthy unaffected individuals (normal heart, NH).
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Read count

Figure S11: Mature and precursor miRNA read counts for TOF patients and healthy
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unaffected individuals (normal heart, NH).

Downregulated miRNAs

miR-10a, miR-29b, miR-29¢, miR-98, miR-133b,
miR-135a, miR-139-3p, miR-139-5p, miR-215, miR-1280,

Upregulated miRNAs

let-7b, let-7c, let-7i, miR-9, miR-15a, miR-15b, miR-17,
miR-~19b, miR-20a, miR-20b miR-~23b, miR-26b, miR-27b, miR-28-3p,
miR-30b, miR-32, miR-33a, miR-33b, miR-34a, miR-92a, miR-95,
miR-101, miR-106a, miR-127-3p, miR-127-5p, miR-~129-5p, miR-130a,
miR-130b, miR-134, miR-136, miR-140-5p, miR-~146a, miR-154, miR-181a,
miR-181b, miR-181c, miR-181d, miR-~186, miR-~187, miR-~192, miR-~193a-5p,
miR-204, miR-206, miR-210, miR-221, miR-222, miR-299-3p, miR-301a,
miR-320a, miR-324-5p, miR-342-5p, miR-34c-5p, miR-361-5p, miR-362-5p,
miR-363, miR-372, miR-376¢c, miR-378, miR-381, miR-382, miR-421,
miR-422a, miR-423-3p, miR-424, miR-432, miR-433, miR-450a, miR-451,
miR-452, miR-454, miR-~455-5p, miR-499-3p, miR-504, miR-509-3-5p,
miR-542-3p, miR-551b, miR-584 miR-590-5p, miR-618, miR-629, miR-651,
miR-708, miR-769-5p, miR-886-5p, miR-887, miR-1185, miR-1246,
miR-1259, miR-1261, miR-1262, miR-1285, miR-1287, miR-1977

Table S6: Significantly differentially expressed miRNAs (p<0.05) in TOF patients com-

pared to right ventricle of healthy unaffected individuals.
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Figure S12
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