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Abstract 1

Abstract

Background: Arterial hypertension (increased arterial blood pressure) is one of the most
important predictors of adverse cardiovascular events and frequent cause for medical
intervention. There is a steadily increasing number blood pressure monitors available,
based on conventional or novel technical approaches. However, the large heterogeneity
of validation studies and lack of an easily understandable metric of true measurement
performance poses a grave issue for the reliable evaluation of blood pressure monitors.
Objective: It was our goal to create a novel, easily interpretable, and accessible metric
for the true measurement performance of blood pressure monitors: The B-Score.
Methods: We designed the B-Score to compare the absolute performance of a blood
pressure monitor with the difficulty (e.g., variability) of the dataset it was tested upon. This
creates a metric of relative performance, directly comparably to B-Scores calculated on
other devices. Following its design, we tested the B-Score on a variety of simulated and
real-world datasets to assess it for its mathematical properties, as well as interpretability
and real-world applicability.

Results: The B-Score proved mathematically predictable behaviour and strong discrimi-
nation between different performing blood pressure measurement systems when tested
on simulated data. Further, we were able to show that the B-Score can be easily calcu-
lated for challenging real-world data and provides important and intuitively understanda-
ble insights.

Conclusion: The B-Score is a novel, powerful tool for the evaluation of blood pressure
measurement systems. It allows the direct comparison of different blood pressure moni-

tors, even if tested on heterogenous data.
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Zusammenfassung

Hintergrund: Die arterielle Hypertension (erhdhter arterieller Blutdruck) ist einer der be-
deutsamsten Pradiktoren fur adverse kardiovaskulare Ereignisse und ist einer der hau-
figsten Initialgeber fir eine pharmakologische Intervention. Die Menge der Verfluigbaren
Blutdruckmesssysteme wachst stetig — basierend auf sowohl konventionellen als auch
neuen Messtechniken. Dabei stellt die grol3e Heterogenitat zwischen den Validierungs-
studien und das Fehlen einer einfachen Metrik fur die wahre Messgenauigkeit ein grof3es
Hindernis fur die Bewertung der vorhandenen Systeme dar.

Zielsetzung: Es war unser Ziel eine neuartige, einfach zu interpretierende und zugéng-
liche Metrik zu entwickeln, um die wahre Messgenauigkeit von Blutdruckmessgenauig-
keiten abzubilden: Den B-Score.

Methoden: Der B-Score vergleicht die absolute Messungenauigkeit eines Geréats mit der
Schwierigkeit (z.B. Variabilitat) der Daten, gegen die es getestet wurde. Das Ergebnis ist
eine Metrik, die die relative Genauigkeit eines Gerats angibt und direkt mit den Ergebnis-
sen anderer Gerate vergleichbar ist. Im Anschluss an die Entwicklung haben wir den B-
Score an einer Vielzahl simulierter und echter Datensatze getestet, um das mathemati-
sche Verhalten, die Interpretierbarkeit und die Anwendbarkeit in der echten Welt zu tes-
ten.

Ergebnisse: Unsere Tests des B-Scores mit simulierten Daten zeigten ein mathematisch
erwartbares Verhalten sowie eine starke Unterscheidung zwischen unterschiedlich ge-
nauen Messsystemen. Weiterhin konnten wir zeigen, dass der B-Score auch fur die Be-
rechnung mit Echtweltdaten geeignet ist und dabei wichtige und intuitiv zu interpretie-
rende Ergebnisse liefert.

Schlussfolgerung: Der B-Score ist eine neue, leistungsstarke Metrik fur die Bewertung
von Blutdruckmesssystemen. Er ermdglicht den direkten Vergleich verschiedener Sys-

teme, selbst wenn mit unterschiedlichen Daten getestet wurden.
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1 Introduction

1.1 Modern medicine and the importance of arterial hypertension

Modern medicine is diverse and highly specialized. Advances in almost all fields of med-
icine over the last decades have led to the emergence of ever more mature, effective,
and increasingly personalized diagnoses and treatments.[1-3] At the same time, in clini-
cal practice, many diagnoses and treatment decisions are based upon well-known, tried-
and-trusted examinations.

Arterial hypertension (HT) is the medical condition leading to the most premature deaths
worldwide.[4] The estimated prevalence of HT, defined as a pathologically increased ar-
terial blood pressure (BP), is between 30-45% of the adult western population.[4,5] Sub-
sequently, an antihypertensive pill is the most prescribed medication in the United States,
followed by five more agents for mitigating the risk of HT and the associated metabolic
syndrome.[6] Followingly, assessing patients’ BP levels correctly is not only a frequent

but extremely important task in everyday medicine.

1.2 Current hypertension diagnostics and treatment management

The American and European Societies for Hypertension have been publishing and up-
dating guidelines for the correct assessment auf HT. These guidelines uniformly recom-
mend the measurement of brachial BP with a validated cuff-based device, either via aus-
cultation or automated. The gold standard for HT diagnostics and treatment monitoring is
the 24-hour, ambulatory BP measurement, performed via an automated, commonly os-
cillometric device.[7-9] This is reasonable, as the 24-hour and especially the nocturnal
BP have been identified as the most predictive marker for cardiovascular events and
mortality.[10-12]

1.3 The disadvantages of automated, cuff-based devices for blood pressure

measurement

Unfortunately, there are drawbacks to cuff-based BP measurement devices. The cuff-
based measurement paradigm is dependent on the intermitted in- and subsequent defla-

tion of the cuff to determine the BP, which leads to multiple disadvantages:
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1. Discontinuity: Cuff-based BP measurement can only provide one measurement
per inflation, typically ever 15-30 minutes. Therefore, short-term alterations of the
BP are only detected by chance and can most likely not be adequately inter-
preted.[5]

2. Patient discomfort and sleep impairment: The repeated cuff inflations can be per-
ceived as disturbing and sometimes painful. Especially during the night, this can
lead to arousal reactions which themselves influence the BP level. This limits the
reliability of nocturnal BP measurements.[13-15]

3. Measurement artefacts: Cuff-based BP measurement is prone to measurement
artefacts. Movements during the measurement process or arrhythmic events can
lead to errors in the BP determination and therefore greatly influence the meas-
urement results.[16-18]

4. Insufficient validation: Cuff-based devices have been used for 24-hour, ambulatory
BP measurement for decades. However, these devices are validated in a short-
term, laboratory setting in seated subjects at total rest. There is no widely accepted
24-hour validation protocol, nor a reliable estimation of the measurement accuracy
of cuff-based devices.[19] Worryingly, there are investigations showing the limited

reproducibility of ambulatory BP measurement results.[20,21]

1.4 Cuff-less blood pressure measurement as an alternative?

The described limitations of the cuff-based technique have led to a growing interest in
alternative methodologies for BP measurement. These new devices, most commonly
based on the correlation between the BP and surrogate parameters of vessel stiffness
(e.g., pulse-wave-velocity), are designed to measure the BP non-invasively, continuously
and without the drawbacks of repeated cuff inflations.[5] However, as for the cuff-based
devices, there is no agreed upon validation protocol. Further, unlike for the cuff-based
devices, there is no decade-long clinical experience, which is leading to a fair bit of scep-
ticism towards these new devices. Consequently, the European Society of Hypertension
has stated that cuff-less BP measurement devices are a promising development but there

is as of now not enough clinical evidence to support its broad clinical application.[9,22]
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1.5 Theissue of evaluating blood pressure measurement devices

As of now, evaluating the performance of BP measurement devices is difficult. There is a
plethora of devices in development, most of which by scientist. In an ideal world, there
would be clinical outcome studies for all these devices. However, such studies consist of
thousands of patients, have years of follow-up time and cost millions.

As clinical outcome studies are unfeasible, researchers had to find alternatives. There-
fore, proposed devices are tested under very heterogenous conditions, with inconsistent
cohort characteristics and in a multitude of scenarios. The results of such studies are
mostly reported as measurement error between the proposed and a reference device
(e.g., a cuff-less (test) and a cuff-based (reference) device), mostly in form of the mean
deviation or mean absolute error. This has led to a situation in which there is a multitude
of studies which are impossible to compare:

A study might show a given measurement error for a device (A) tested in young subjects
who were put under physical load on a bike ergometer — a highly dynamic scenario with
large BP fluctuations. Another device (B) might show the same measurement error but
was tested on middle-aged subjects during short-term study at total rest (e.g., validation
protocol for cuff-based devices). Device (C) may yet again show the same mean absolute
error but was tested in a 24-hour ambulatory BP measurement setting in children and
adolescents. Device (D) could have been tested on an intensive care unit, with an intraar-
terial BP measurement as reference. Even though devices (A) — (D) might show the same
absolute measurement error, it would be a fallacy to conclude that all devices are equally
good at measuring BP.

As of now there is no way of comparing the true performance of BP measurement devices
which is why it is impossible to provide the evidence demanded by the European Society
of Hypertension to promote continuous BP measurement into broad clinical application.

1.6 The B-Score: Evaluating the true measurement performance of blood pres-

sure measurement devices

My work focusses on solving the described problem and developing a way of enabling
the comparison of true measurement performances across different devices and studies.

To do so, it was the goal of our working group and me personally to develop a score
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which depicts the true performance of a given device and which any researcher can easily
calculate and report for their own data.

For this, we created a measure which sets the absolute measurement error of a device
(measurement error between tested and reference device) in contrast to dataset charac-
teristics, such as inter- and intraindividual dataset variability and overall predictive diffi-
culty (assessed via a standardized Deep Leaning application) of the dataset:. The B-
Score.[23]

Here, | describe the rationale behind the B-Score, its development, mathematical and
computational properties, its testing on simulated and real-world data and its possible

future applications.[23]
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2 Methods

2.1 Conceptualizing the B-Score

2.1.1 A measure of relative blood pressure measurement performance

Quantifying the true performance of BP measurement devices is difficult. Given that de-
vices can be based on very different physiological and/or mathematical approaches and
that they are developed and tested by various research groups, there is no chance of
directly comparing all interesting devices in one large investigation.

Comparing the reported measures of absolute measurement errors (e.g., mean absolute
error, standard deviation) is equally futile, as the devices are tested on very different da-
tasets.

To solve this problem, we decided to develop a measure of relative measurement perfor-
mance. By setting the absolute measurement errors of any given device in relation to the
difficulty the dataset is tested upon, we were able to make devices comparable, even if
tested on very different datasets. The B-Score is designed to be calculated independently
for systolic and diastolic BP values and therefore allow separate interpretation of a de-

vice’s systolic and diastolic measurement performance.[23]

2.1.2 The root mean squared error as the foundation of the B-Score

Relative scores are created by setting absolute measures in contrast to each other.
Therefore, choosing the right metric of absolute measurement error was fundamental for
the B-Score’s reliability and meaningfulness.

We decided on the root mean squared error (RMSE) as our fundamental measure of
absolute measurement performance. The RMSE is a well-established and widely adopted
metric, which possesses properties especially desirable for evaluating BP measurement

devices.

n
1
RMSE = - Z (prediction — reference value)?
i=1

n = number of samples in the dataset.

We chose the RMSE because in BP measurement there is no linear relationship between

a measurement error and the gravity of the mistake. A measurement error of 10 mmHg
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is not only twice a measurement error of 5 mmHg but much more harmful, as enlarged
measurement errors can and will likely lead to bad treatment decisions and subsequently
unnecessary harm done to patients. The RMSE reflects this consideration, as it penalizes
larger measurement errors more rigorously than other metrics such as the mean absolute

error.

2.1.3Base performances for dataset characterization

After choosing the RMSE as fundamental metric for the B-Score calculation, we had to
design dataset dependent RMSE values to which we could set in relation to the absolute
model performance of the tested model as RMSE (T-RMSE). (Figure 1)

Absolute measurement performance (T-RMSE)
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Figure 1: Absolute measurement performance (T-RMSE): The calculation of the T-RMSE is
graphically displayed. On the left-hand side of the figure shows the measurement differences
between a reference and a tested device for systolic BP values. The datapoints are ordered by
increasing reference The grey, vertical lines indicate the disagreement for each individual meas-
urement. On the right-hand side of the figure displays the mathematical formulas for calculating
the T-RMSE. The figure depicts original data from the “dobutamine dataset” as published in the

original B-Score article.[23] Source: Own illustration.

We named these dataset dependent RMSE values “base performances” of the tested
dataset. The base performances are designed to reflect how difficult it is for a tested
device to retrieve a high absolute measurement accuracy on the used dataset. To achieve
this, the base performances are reflective of the inter- and intraindividual BP variability in
the dataset as well as the overall dataset difficulty, which we assessed by a standardized
Deep Learning application. (Figure 2)



Methods

Base performances as B-Score foundation
(a) Inter-individual blood pressure variability (B1-RMSE)
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(b) Intra-individual blood pressure variability (B2-RMSE)
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(c) Sstandardized Deep Learning Model (M-RMSE)
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Figure 2: Base performances as B-Score foundation: The figure displays the calculation for all

three base performances. Panel (a) depicts the calculation of the B1-RMSE, a measure of inter-

individual BP variability. The shown data is ordered by increasing reference BP values. Panel (b)

depicts the calculation of the B2-RMSE, a measure of the intra-individual BP variability. The data

is ordered by subjects and increasing reference values. The grey, vertical lines indicate the disa-

greement for each individual measurement in (a) and (b). Panel (c) depicts the calculation of the
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M-RMSE, a measure of the overall difficulty of creating a BP estimation model for the given da-
taset. A graphical representation of the standardized Deep Learning model is shown on the left-
hand side. All panels (a) — (c) provide the mathematical formulas for calculating the respective
base performance. Panels (a) and (b) depict original data from the “dobutamine dataset” as pub-
lished in the original B-Score article.[23] Panel (c) shows an adaptation of a figure first published

in the original B-Score article (modified from Bothe et al., 2022).[23] Source: Own illustration.

In total, we created three base performance measures, each reflecting one of the de-
scribed dataset properties:

1. B1-RMSE: A measure of interindividual BP variability. The B1-RMSE is the RMSE
value derived from comparing each reference value to the mean BP value of the
whole dataset. This equates to a RMSE value a BP measurement device would
achieve if it estimated the population mean at every measurement instance.

2. B2-RMSE: A measure of intraindividual BP variability. The B2-RMSE is the RMSE
value derived from comparing each patients’ reference value to the first reference
BP value of the given patient in the dataset. This equates to a RMSE value a BP
measurement device would achieve if it estimated a patient specific calibration
value (e.g., office measurement) at every measurement instance.

3. M-RMSE: A measure of how difficult it is to derive a BP model for the given da-
taset. The M-RMSE is the RMSE value derived from comparing each reference
value to the BP output value of a standardized Deep Leaning (model (M)) appli-
cation. This Deep Leaning model is designed to intake information available in
any BP measurement study (heart rate, time of measurement, age, sex and a
calibration (first measurement) time, heart rate and BP). This equates to a RMSE
value a simplified BP estimation model (e.g., integrable in a smartwatch) would
achieve.

These base performance RMSE values each calculated and serve as the building blocks

for the subsequent B-Score calculation. (Figure 2)
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2.1.4B-Score calculation and characteristics

The B-Score is calculated by setting the absolute measurement performance of a tested
device (T-RMSE) in contrast to the base performances which provide deep information
about the dataset’s structure.

We designed the B-Score in a way so that an increased B-Score represents increased
predictive performance. Therefore, the B-Score increases with increased base perfor-

mances and a reduced T-RMSE.

B1RMSE - M RMSE\ /B2 RMSE - M RMSE
B Score = logio ( T RMSE? ) ' ( T RMSE? )

Per our definition, the B-Score can only be calculated if the T-RMSE is smaller than all
three base performances (T-RMSE < min(base performances)). In any other case, the B-
Score should be reported as “B-Score < 0.00”.[23]

To ensure reliable and reproducible results, we decided to integrate a process of repeated
base performance calculations per dataset with re-shuffled and re-sampled versions of
the dataset. Afterwards, the results are merged and averaged to guarantee minimal cal-

culation insecurity.

2.2 Testing the B-Score with simulated blood pressure datasets

2.2.1The rationale for using simulated datasets

It was important to us to show that the B-Score does have the desired mathematical
properties before testing it on possibly noisy real-world data. Therefore, we decided to
simulate three distinct datasets (each consisting of systolic and diastolic BP values). We
did this to “stress-test” the B-Score calculation and provided code with large datasets.
Further, as we controlled the datasets, we were able to test whether our assumptions
about the B-Score are correct (the B-Score increased with increasing model perfor-

mance).

2.2.2 Simulated blood pressure datasets

We created the simulated datasets with a self-developed, simplified BP model. Our model
comprised the most important BP fluctuations during a 24-hour cycle. Consequently, we
were able to model a close approximation of the circadian (24 hours)[24], the Traube-

Hering-Meyer rhythms (about 7-10 seconds)[25], as well as overall BP variability (as
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added deviation from the mean BP value) and a modelled, device specific measurement
uncertainty. (Figure 3)
Data simulation example (24-h Normal dataset)
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Figure 3: Data simulation example: The top of the figure depicts a subset (30,000 samples) of
one of the datasets simulated for testing the B-Score. It shows an adaptation of a figure first
published in the original B-Score article (modified from Bothe et al., 2022).[23] The blue points
indicate individual BP values over a simulated 24-hour measurement regime. The red line indi-
cates an exemplary BP profile of a single, simulated patient. The bottom of the figure shows the
mathematical formula used for simulating the BP datasets. The green, yellow, and red boxes
indicate which parameters have been adapted at what stage to simulate the dataset. Source:

Own lllustration.

In this way, we were able to create datasets (systolic and diastolic each) modelling three
distinct real-word application. We modelled a short-term (30 minutes, ‘Lab’) dataset, rep-
resentative of a laboratory study and two 24-hour datasets with increasing difficulty ("24-
h Normal’, '24-h Hard’). We modelled the dataset in a way to represent an increasing BP
prediction difficulty from ‘Lab’ to '24-h Normal’ to '24-h Hard’. Each dataset consisted of
500,000 samples (10,000 patients x 50 BP samples).
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We further created additional datasets (50,000 samples) with strictly increasing standard
deviations of BP values to test for the predictability of the base performances under mod-

ulated BP variability.

2.2.3Testing the B-Score for desired properties

Following the creation of the datasets, we calculated the B-Score for all six datasets to
assess whether the B-Score would show the desired behaviour. To do so, we chose an
arbitrary T-RMSE value of 4.0 mmHg and validated that the resulting B-Scores increased
with increasing dataset difficulty in the ‘Lab’, ’24-Normal’ and ’24-Hard’ datasets.

Further, we analysed the base performances’ predictability under increasing BP variabil-
ity. Concludingly, we also analysed the B-Score’s behaviour with varying T-RMSE values
to confirm a predictable and reliable increase of the B-Score under improving T-RMSE

values.

2.3 Testing the B-Score in an extreme real-world environment

2.3.1 Real-world datasets for testing the B-Score

To test the B-Score in a real-world scenario, we decided to use the B-Score in its intended
purpose. We therefore chose an already published study of a continuous BP measure-
ment device and calculated the B-Score for it. Subsequently, we calculated what perfor-
mance an alternative BP measurement device would need to achieve on an already pre-
sent dataset to be able to claim coequal measurement performance.

The B-Score allows this analysis by rearranging the B-Score equation[23]:

+|B1 RMSE - B2 RMSE - M RMSE?
T RMSE =
10(2 B Score)

Since we aimed at testing the B-Score in the most rigorous way possible, we made the
decision to compare two very different datasets, both at the very extreme spectrum of
available datasets.

As published validation study, we chose a study consisting of only 107 individual BP
measurements (twelve subjects), comparing a continuous BP measurement device with
an intraarterial (invasive) BP measurement during a dobutamine stress test.[26] The da-
taset was generated in a short-term and highly dynamic BP environment and called the

“dobutamine” dataset in the original B-Score publication.[23]
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To allow the most extreme comparison possible, we used the MIMIC 1V clinical dataset,
which consists of millions of datapoints from ICU patients, gathered in North Amer-
ica.[27,28]. The MIMIC |V dataset is the, to our knowledge, largest available dataset for
real-world, clinical BP data. After pre-processing and cleaning the dataset, we retrieved

a systolic and diastolic dataset with more than 2.3 million individual BP entries each.

2.3.2 Testing the B-Score on real-world data

We calculated the B-Score for the dobutamine dataset, by calculating the base perfor-
mances and the T-RMSE value for the tested device from the original data. Subsequently,
we interpreted the results from the tested device and analysed the base performance to
gain further insights into the device’s performance.

To complete our real-world B-Score test, we calculated the base performances for the
MIMIC 1V dataset. Followingly, we used the rearranged B-Score formula to calculate the
T-RMSE a fictional BP estimation device or model would need to reach on the MIMIC IV
database to be considered of coequal predictive performance to the device tested on the

dobutamine dataset.

2.3.3 Analysing the time complexity of the B-Score calculation

As it was of utmost importance to us that the B-Score is not only providing an intuitively
interpretable measure of relative model performance but that it is easily and quickly for
researchers. Followingly, we assessed the B-Scores computational performance by
measuring the time needed for calculation on increasingly larger subsets of the MIMIC IV

dataset.

2.3.4 Code availability and programming architecture of the B-Score

We wrote the B-Score’s code in Python 3, using a multitude of data scientifical, statistical,
graphical and Deep Learning libraries.[29-33] To develop the B-Score as a tool available
to all interested researchers, it was at all timepoint throughout the design prospect our
goal to make the B-Score code publicly available. Therefore, we streamlined the code
into an easily applicable script which is available under a GNU General Public Licence
(v3.0) on GitHub.[23]
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3. Results

3.1 The B-Score’s mathematical behavior tested with simulated datasets

3.1.1. Characteristics under increasing standard deviation of blood pressure

Testing the base performances as well as the B-Score with subsets of the MIMIC IV da-
taset revealed a high stability and interpretability under increasing standard deviations of
BP. Accordingly, all three base performances increased under increasing BP variability.
In addition to that, we were able to show that the B-Score increases with increasing base
performance RMSE values. Finalizing the analysis of the B-Score’s mathematical pre-
dictability, we were able to show that the B-Score changes with changing T-RMSE values.

The B-Score rose for smaller and fell for larger T-RMSE values. (Figure 4)
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Figure 4: Predictability of the B-Score’s behavior: Panel (a) shows the behavior of the three base
performance RMSE values when calculated for simulated datasets with increasing standard de-
viation. All three RMSE values increase strictly under increasing blood pressure variability. Panel
(b) shows the B-Score under increasing blood pressure variability. Following the base perfor-
mance measures, the B-Score increases with increasing blood pressure variability (dataset diffi-
culty). Further, three different T-RMSE values are depicted. The B-Score increases with a de-
creasing T-RMSE value. Source: Modified from Bothe et al. (2022).[23]

3.1.2 Testing the assessment of true measurement performance on simulated datasets

After assessing the B-Score for its desired properties on the smaller, simulated datasets,
we continued to test the B-Score on the six large, simulated datasets. We calculated the
base performances of all six datasets and calculated the B-Score with our arbitrary T-
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RMSE value of 4.0 mmHg. The B-Score discriminated between the datasets, increasing

with increasing base performances and modelled dataset difficulty. (Figure 5)

Simulated dataset B-Scores
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Figure 5: Simulated dataset B-Scores: Panel (a) and (b) show the calculated base performance
RMSE values for all six simulated datasets. The black arrow indicates the increasing dataset
difficulty, depicted by the increasing base performance measures. In the second row, panels (c)
and (d) depict the increasing B-Score resulting from the base performances’ reaction to the in-
creased dataset difficulty. The resulting B-Score increase is a direct measure of increased meas-
urement performance, as indicated by the black arrow. Source: Modified from Bothe et al

(2022).[23]
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3.2 Testing the B-Score in a real-world scenario

3.2.1 Assessing the measurement performance on a small, real-world dataset

We were able to calculate the B-Score for the dobutamine dataset for both systolic and
diastolic BP values. For systolic values, the tested device greatly outperformed the cal-
culated base performances, leading to a B-Score of 0.94. However, the tested device did
not outperform the base performances for diastolic BP measurements, leading to a B-

Score of < 0.0 as per the B-Score’s definition.[23] (Figure 6)
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Figure 6: Dobutamine dataset base performances: The figure shows the calculated base perfor-
mances for both systolic (left) and diastolic (right) BP values of the dobutamine dataset. The base
performances are displayed in blue (B1-RMSE, B2-RMSE) and green (M-RMSE). The absolute
measurement inaccuracy of the tested device is displayed in red (T-RMSE). The resulting B-
Scores are 0.94 (systolic) and < 0.0 (diastolic). Source: From Bothe et al. (2022)[23]

3.2.2 Comparing the results to the largest available dataset

As for the dobutamine dataset, we calculated the base performances for the MIMIC IV
dataset. Similarly, we found decreasing base performance measures (from B1-RMSE to
M-RMSE) for systolic but this time also for diastolic BP measurements. (Figure 7)
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Figure 7: Base performances for the MIMIC |V dataset: The figure shows the base performances
calculated for the MIMIC IV dataset. The base performances are displayed in blue (B1-RMSE,
B2-RMSE) and green (M-RMSE). Source: From Bothe et al. (2022)[23]

Subsequently, we were able to use the derived base performances to calculate the T-
RMSE value needed for any device (or BP estimation model) tested on the MIMIC IV
dataset to claim coequal measurement performance to the device tested on the dobuta-
mine dataset. We identified a T-RMSE of 6.98 mmHg as the point of coequal measure-
ment performance. Smaller T-RMSE values would indicate a superior performance and
higher T-RMSE values would vice versa result in a lower true measurement performance.
(Figure 8) As the device tested on the dobutamine dataset did not reach a B-Score of
over zero for diastolic values, the resulting goal for the MIMIC IV dataset would be to
outperform the M-RMSE base performance of 10.18 mmHg. (Figure 8)
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B-Scores for MIMIC IV T-RMSE values
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Figure 8: B-Scores for MIMIC IV T-RMSE values: The figure shows the B-Scores calculated for
the MIMIC IV dataset for various systolic T-RMSE values. The red dot is defined as the point of
coequal measurement performance to the dobutamine dataset (same B-Score, horizontal red
line) and retrieves the T-RMSE needed to reach the same relative performance on the MIMIC IV
dataset (vertical red line). Source: From Bothe et al. (2022)[23]

3.3 Analysing the time needed for calculating the B-Score

Calculating the B-Score for increasingly larger subsets of the MIMIC IV dataset allowed
us to assess the time needed for B-Score. We derived a U-shaped time complexity with
a minimum calculation time of 3 minutes for medium sized datasets (around 50,000 BP
values). The U-shape is a result of the B-Score code conducting more re-calculations for
smaller datasets to ensure reliable results. On the other side, very large datasets are
more computationally demanding per dataset and therefore as well lead to an increased

calculation time. (Figure 9)



Results 20

B-Score time complexity calculated for MIMIC subsets
Single core CPU (Intel i9-12900K)
50 -

40 1

30 1

Time in minutes

10 1

103 10 108 106
Number of samples in MIMIC subset

Figure 9: B-Score time complexity calculated for MIMIC subsets: The figure shows the B-Score’s
time complexity for calculations conducted on subsets of the MIMIC IV dataset. The U-shaped
form is a consequence of the increased demand or re-calculations for smaller datasets (to ensure

reliable results) and the increased computational load per calculation for larger datasets. Source:
From Bothe et al. (2022)[23]

By conducting this analysis, we were further able to show that there is a M-RMSE inse-
curity of less than 3 mmHg for all and less than 1 mmHg for MIMIC |V subsets larger than
1,250 samples.[23]
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4. Discussion

4.1 Summary and interpretation

In our analysis, the B-Score showed the desired mathematical properties, both when

tested on simulated as well as on real-world datasets.

4.1.1Interpretation of the results from the simulated dataset analyses

The B-Score’s base performances increased under increasing BP variability in our anal-
ysis with simulated datasets. Similarly, the B-Score increased under increasing BP vari-
ability (with constant T-RMSE) and was modulated as expected by varying the T-RMSE
value (increasing B-Score with decreasing T-RMSE).

Our subsequent test with the six large, simulated dataset yielded equally promising re-
sults: The base performance metrics showed an increased dataset difficulty (B1-, B2-,
and M-RMSE) for increasingly difficult datasets. Following from this, we were able to cal-
culate strongly differing B-Scores for the six datasets with the highest B-Score achieved
on the most difficult dataset ('24-Hard’). This was the hoped-for result, as we calculated
the B-Scores for a constant T-RMSE value.

4.1.2 Interpretation of the results from the real-world dataset analyses

After we conducted on the real-world datasets after confirming the B-Score’s desired
mathematical and practical properties with simulated data, we wanted to provide a real-
world application example. To test the B-Score in the most extreme environment possible,
we selected a very small dataset, generated in a highly dynamic environment, and com-
pared it to an extremely large database of intensive care unit BP measurements.

The results for the dobutamine dataset are a picture-perfect example for why it is not only
possible to calculate the B-Score on real-world data but moreover extremely important.
When comparing the absolute measurement error for the systolic and diastolic BP values
for the proposed device tested on the dobutamine dataset, there seems to be little differ-
ence (both around 10 mmHg). However, after calculating the base performance it became
evident that, while the systolic T-RMSE greatly outperforms the base performances, the
diastolic T-RMSE cannot even reach any of the base performance metrics. This led to a

high B-Score for systolic but a B-Score below zero for diastolic values.
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With traditional metrics for interpreting BP measurement performance, this divergence
between systolic and diastolic performance would not have been detected. The B-Score
easily allowed the discrimination between the well-performing systolic BP measurement

and the very limited diastolic measurement performance.

Comparing these results with the base performances calculated for the MIMIC IV dataset
retrieved the T-RMSE needed to claim coequal measurement performance to the device
proposed in the dobutamine publication. The calculation is straightforwardly conducted
by inversing the B-Score formula. In this way, we created a tool for researchers to analyse
their datasets, retrieve the respective base performances and successively retrieve a T-
RMSE value which they can set as a goal for their BP measurement models. This will be
especially helpful for scientists working in the growing field of data-driven, continuous BP

measurement.[5]

Finally, we were able to ensure that the B-Score can be computed quickly and with ease
by showing the B-Score’s time complexity and providing a user-friendly script which al-
lows researchers to compute their own B-Scores, even with no or very limited program-
ming expertise. Our time complexity analysis showed that the B-Score can be computed
in under an hour for any available dataset size when run on a single core of a capable
CPU. As the B-Score script can be run simultaneously for systolic and diastolic values on
multi-core CPUs (nowadays the standard even for low-budget devices), we can confi-
dently conclude that the B-Score can be calculated in one working day by any interested

researcher on any moderately modern computer.

4.2 Strengths of the B-Score

In the B-Score, we created a metric suited for comparing BP measurement systems and
models across a wide range of paradigmatic approaches and validation scenarios. To our
knowledge, the B-Score is the first attempt to achieve a broadly applicable and easily

interpretable metric for the evaluation of BP measurement devices.

4.2.1Insights provided by the B-Score

In our work, we were able to develop the B-Score into a mathematical reliable metric

which showed expected outcomes for a wide range of simulated data. Further, we were
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able to provide an extreme example of a real-world use case for the B-Score by compar-
ing to vastly different datasets. Moreover, we were not only capable of demonstrating the
B-Score’s readiness for real-world application but were able to highlight the value added
by calculating the B-Score by revealing large performance differences for systolic and
diastolic BP measurement in the dobutamine dataset. Notably, these differences would
have stayed unnoticed without the B-Score as a measure of true, relative model perfor-

mance.

4.2.2 A tool freely available to researchers around the world

The B-Score is designed as a tool for comparing BP measurement devices across publi-
cations and will only unlock its full potential if it gets widely adopted by the scientific com-
munity. Keeping this in mind, it was our focus during the development of the B-Score to
provide a metric which can be quickly and easily calculated by researchers with all kinds
(including none) of programming experience and with access to a wide range of compu-
tational hardware. Achieving this was a challenge, as we wanted to include a standard-
ized Deep Learning model (as M-RMSE reference) into the B-Score.

The resulting B-Score can be easily calculated on any modern computational hardware
within one working day — this is true for systolic and diastolic BP values at the same time
when using an industry-standard multi-core CPU. Further, we published an easy-to-un-
derstand, which can be freely accessed by researchers and used to calculate their own
B-Scores with little to no programming experience needed.[23]

We consider the level of transparency and user-oriented design as one of the main

achievements of the B-Score — equally important to the invaluable insights it provides.

4.2.3The chance of transforming hypertension diagnostics

When taking all of it into account, it becomes evident that the B-Score has the potential
to revolutionize the way researchers and clinicians think about BP measurement — and
therefore ultimately greatly affect the way patients are diagnosed and subsequently
treated.

We created a tool which allows researchers to quickly evaluate their devices’ and models’
true measurement performances and to report them in an easily understandable and most
importantly straightforwardly comparable way. Following from this, incorporating the B-
Score allows scientists, clinicians and ultimately patients alike to evaluate immediately

which device has the highest predictive value. This is an invaluable leap forward from the
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situation today — in which those devices show the lowest absolute measurement error
which have been tested on the easiest dataset.

In the future, scientists will be able to analyse and optimize their own devices and models
in direct comparison to already published approaches, even when working with a vastly
different patients and/or datasets. Beyond that, scientists will easily be able to conduct
secondary analyses of already published approaches to BP measurement and identify
promising trends in the scientific literature (e.g., a measurement paradigm achieving
above-average B-Scores in multiple different publications).

This could lead the scientific community to invest more energy into truly promising ap-
proaches and reduce the time spent on underperforming paradigms. In particular, the
highly diverse field of continuous BP measurement could benefit from separating the chaff
from the wheat and focussing on the most promising approaches.[5] Subsequently, the
B-Score provide the push needed for alternative BP measurement approaches to reach
the evidence of measurement performance as demanded by the European Society of
Hypertension [22] — which would constitute the biggest paradigmatic advance in hyper-
tension diagnostics since the adoption of automated BP monitors.

4.3 Limitations of the B-Score and this work

However convinced we are to have solved an issue present in hypertension research for
decades by developing tool for actually comparing true BP measurement performance,
both the B-Score and this work have clear limitations.

4.3.1 The B-Score’s limitations

The B-Score is a metric for evaluating the true performance of BP measurement systems.
As any metric, the B-Score has limitations, stemming from its conceptual design, mathe-
matical properties, and data it is applied upon.

We designed the B-Score to compare a tested system (device / model) with a reference
method, such as a validated BP monitor, auscultatory or intraarterial measurement. Un-
fortunately, therein lies a fundamental issue: Any reference method itself has a build in,
hardly determinable measurement error. This is especially true for automated, cuff-based
BP monitors, very frequently used as comparison for novel measurement ap-

proaches.[5,15-17]. Consequently, the B-Score might be ideally suited to evaluate the
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error between a tested and a reference device but cannot discriminate whether the ob-
served measurement error is due to a flawed proposed design or errors of the reference
method.

However, choosing a bad reference method will in all likelihood lead to a deteriorated B-
Score results. Therefore, the B-Score serves as an incentive to use the most precise
reference method available. While this does not completely eradicate the issue at hand it

likely is the most any metric can do.

Further, while the B-Score is the only metric which enables the comparison of very differ-
ent approaches and datasets in the realm of BP measurement, there are some caveats
with its interpretation. If the any given device shows differing B-Scores in different studies,
it would be too easy to conclude that the B-Score is not working properly. To the contrary,
it is plausible that one given BP measurement device does indeed perform differently well
under different circumstances and in different patient collectives. A device developed on
healthy, athletic young adults will most likely perform better in this subpopulation than in
frail, elderly, multi-morbid patients. Any single study can therefore only be an indication
of true BP measurement performance, even when enhanced by the B-Score. However, if
a device can score above-average B-Scores in different studies, possibly conducted on
different patient collectives, additional confidence in the devices general validity for BP

measurement is warranted.

Lastly, the B-Score has a built-in feature, which is a mathematical limitation by design.
Because of the issue of inherent measurement errors in every reference method there is
a lower bound for the T-RMSE value - even if the tested device would measure BP per-
fectly accurately, there still would be a disagreement with the reference method. Conse-
qguently, for very easy datasets there is a natural limit to the achievable B-Score. This is
the case, because for very easy dataset most BP measurement devices will score similar
(in the order of magnitude of the reference method’s error) T-RMSE values, even if their
true maximum performance might be very different.

As a solution, researchers are forced to test their datasets in dynamic measurement cir-
cumstances, ideally in a heterogenous patient collective, to increase overall BP variability
and dataset difficulty and ultimately increase the datasets base performances. This in
turn would allow promising BP measurement devices to outperform competitors an

achieve higher B-Scores.
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We wilfully accepted this circumstance during the B-Score’s design, as we consider an
incentive for developing and testing novel approaches for BP measurement on difficult
and heterogenous datasets a feature. Devices which perform well on such data are more
likely to perform well under a wide variety of circumstances and warrant increased confi-

dence in the study’s results.

4.3.2 Limitations of this work

Our work up to this point and especially this work and the original B-Score publication
[23] are clearly limited by their methodological character. We have developed and thor-
oughly tested a novel score for the evaluation of the true performance of BP measurement
systems. While we consider this an important step towards the advancement of BP meas-
urement, we were not yet able to provide deep insights by applying the B-Score on a wide
range of already existing systems.

There are two reasons why we refrained from trying to incorporate a larger, real-world
analysis using the B-Score at this stage of our research.

Firstly, while the B-Score is designed to be easily interpretable, its internal concepts and
mathematical underpinning is complex. We made a great effort to present our results in
a comprehensive and understandable manner but are aware that understanding all de-
tails of the B-Score’s design can be challenging. Adding a full-scale analysis of multiple,
additional datasets would have further increased the complexity of the B-Score publica-
tion and would have been unsuited for a first publication, aimed at presenting, and explain
the B-Score’s features and use-cases.

Secondly, researchers are rightfully sceptical to share their data with other researchers,
if they do not understand what kind of analysis is planned with their data. Therefore, ac-
cessing third-party data is a challenge of its own, greatly aggravated when proposing a
novel, unknown and unpublished score. Consequently, in accordance with the reasons
stated above, we decided to first publish a methodological paper with a limited, real-world
example. Naturally, it was and still is our ambition to build on that foundation and provide

larger analyses of multiple datasets and approaches based on the B-Score.

4.4 A perspective on the future of the B-Score and our work

Time will tell whether the B-Score is able to reach its full potential and become an integral

part of how research on BP measurement is conducted and discussed. We are aware
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that the B-Score’s utility is strongly connected to its rate of adoption. The more research-
ers use the B-Score and publish their results, the more points-of-reference are out in the
scientific literature.

To propel the B-Score’s adoption as much as possible, we as a group and especially me
personally are taking actions to integrate the B-Score in projects and discussions with
researchers around the world. Lastly, we want to make further efforts to reduce the bar-
riers for calculating the B-Score. In this sense, we are working on providing a down-
loadable application (“B-Score App”) which will greatly further simplify the process of cal-

culating the B-Score.

Besides applying the B-Score directly, we are engaged in providing further insights into
issues arising in the field of BP measurement in general. We are greatly concerned by
the unknown extent of hidden measurement error in reference devices (devices in every-
day clinical use). Consequently, we are conducting large-scale experiments to quantify
those measurement errors and therefore provide even more insights into how BP meas-

urement accuracy should be assessed could be improved.
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5. Conclusion

The B-Score is a novel tool for evaluating the BP measurement devices and comparing
their true measurement performance across a wide range of datasets. We developed the
B-Score to set a device’s performance in contrast to the difficulty of the dataset it was
tested upon. By doing so, we are able to derive a single metric depicting the device’s true

BP measurement performance.

We tested the B-Score on a variety of simulated dataset of different difficulty and size and
were able to confirm the B-Score’s mathematical predictability and desired properties.
Further, we tested the B-Score in an extreme real-world scenario and highlighted the

additional insights provided by the B-Score over conventional metrics.

In the future, we want to build on the published results and establish the B-Score as a
tool for evaluating BP measurement systems and want to provide further insights into
trends in the latest scientific literature. Further, we are working on various other projects
in the realm of improving BP measurement both in our working group and with research-

ers from around the globe.
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The B-Score is a novel metric

for measuring the true performance
of blood pressure estimation
models

Tomas L. Bothe*, Andreas Patzak & Niklas Pilz

We aimed to develop and test a novel metric for the relative performance of blood pressure estimation
systems (B-Score). The B-Score sets absolute blood pressure estimation model performance in
contrast to the dataset the model is tested upon. We calculate the B-Score based on inter- and
intrapersonal variabilities within the dataset. To test the B-Score for reliable results and desired
properties, we designed generic datasets with differing inter- and intrapersonal blood pressure
variability. We then tested the B-Score’s real-world functionality with a small, published dataset

and the largest available blood pressure dataset (MIMIC IV). The B-Score demonstrated reliable and
desired properties. The real-world test provided allowed the direct comparison of different datasets
and revealed insights hidden from absolute performance measures. The B-Score is a functional, novel,
and easy to interpret measure of relative blood pressure estimation system performance. It is easily
calculated for any dataset and enables the direct comparison of various systems tested on different
datasets. We created a metric for direct blood pressure estimation system performance. The B-Score
allows researchers to detect promising trends quickly and reliably in the scientific literature. It further
allows researchers and engineers to quickly assess and compare performances of various systems and
algorithms, even when tested on different datasets.

High arterial blood pressure (BP) levels lead to higher numbers of cardiovascular events and all-cause mortality'?.
Cuff-based BP measurement devices have dominated the field of arterial BP determination for over one century.
There has been substantial recent interest in alternative, cuff-less and continuous BP measurement devices'*.
Cuff-less BP measurement has the advantage of being possibly less disturbing (night BP) and providing beat-
to-beat BP data. More data points benefit secondary parameter calculation, such as the BP variability’-'*. The
growing interest manifests itself in a multitude of research papers, proposing various options for cuff-less BP
estimation'>~2",

Model performance has been assessed in a multitude of ways. Unfortunately, the performance of proposed BP
estimation models is only evaluated by absolute metrics. Used absolute metrics include the mean value deviation,
standard deviation, mean absolute error, root mean squared error (RMSE), and many more. Regrettably, these
absolute values depend not only on the BP model’s sophistication but also on what dataset it is used on. Datasets
can be very different: Compare 24 h ambulatory BP measurements of clinical patients with measurements taken
at rest in a laboratory setting amongst the young and healthy. Clinical patients are a heterogeneous group and
therefore BP values differ more between individual patients than between young and healthy subjects (inter-
personal variability). Further, 24 h measurements are less stable than measurements taken at rest within single
patients (intrapersonal variability). This results in a critical problem: A given absolute value (e.g., mean value
deviation) does not provide information about the true model performance. In reverse, model performances
cannot be compared when not tested on the same dataset. Absolute metrics will show better results for “easier”
(lower variability) datasets. Two options remain: Testing every model on the same dataset or creating a metric
able to depict dataset-adjusted performance. Option one seems to be nearly impossible due to various reasons
(e.g., proposed models use very different input data)”?!-%*. In consequence, a new metric of dataset-adjusted
(relative) model performance is needed. Such metric would allow easy and reliable comparison between models
even when tested on different datasets.

Charité — Universitdtsmedizin Berlin, Corporate Member of Freie Universitat Berlin and Humboldt-Universitat zu
Berlin, Institute of Translational Physiology, Chariteplatz 1, 10117 Berlin, Germany. ““email: tomas-lucca.bothe @
charite.de
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After realizing this lack of comparability between different BP estimation model performances, we decided
to develop a metric of relative model performance, the Base-Score (B-Score). The B-Score is designed to be
intuitively understandable. It allows direct and easy evaluation of model performance, as higher B-Scores equal
better dataset-adjusted (relative) model performance.

We tested the B-Score on generic datasets and further provide a real-world application example of comparing
two very different datasets in this work. We used a published model tested on a small dataset and set it in contrast
to the MIMIC IV clinical database, the to our knowledge largest dataset available**?>.

Methods

The B-Score is calculated by comparing a proposed model’s absolute performance to dataset specific base-perfor-
mances (B1, B2). These base performances are: The B1-performance, measuring the interpersonal variability, the
B2-performance, measuring the intrapersonal variability, and the M-performance, measuring the performance
of a minimalistic BP estimation model (M). Setting the absolute performance of the researcher’s model (T) into
contrast with the three base performances (B1, B2 and M) results in a novel measure of relative performance.
The B-Score for systolic and diastolic estimations are calculated separately, allowing a differentiated analysis of
systolic and diastolic performance.

B-Score calculation.  Root mean squared error (RMSE). The B-Score to evaluates relative model perfor-
mance based on absolute performance measures. The metric of absolute model performance on which the B-
Score is based on is the root mean squared error (RMSE). We chose the RMSE for a specific reason: It is a meas-
ure of average differences between a researcher’s values and a reference method but also takes the reliability of
those differences into account. This becomes evident when comparing the RMSE to another measure of absolute
performance (e.g., the mean absolute error). Being off 4 mmHg in every measurement leads to a mean absolute
error of 4.0. If every second measurement is perfectly accurate but every other measurement is off by 8 mmHg
the mean absolute error stays 4.0. In scenario one the RMSE equates to 4.0 as well but changes to 5.66 in the
second case. The RMSE provides additional information about the measurement consistency which is important
for any BP estimation. Further, it also provides information about the absolute error, combining the advantages
of pure absolute measures (e.g., mean absolute error) and pure measures of proportionality (e.g., correlation
coefficient)

n

1
RMSE = | — Z (prediction — reference value)z,
=

n=number of samples.
Test-RMSE.  The Test-RMSE (T-RMSE) is the measure of absolute performance which we designed the B-Score

to base upon. It is the RMSE between the BP estimations a researcher’s model derived values and the reference
values provided in the study.

1 n
TRMSE = , [ - Z (researcher’model prediction — reference value)z,
n

i=1

n=number of samples.

BI-RSME. The B1-RMSE is the measure of interpersonal variability in the researcher’s dataset. The BI-RMSE
is calculated as the RMSE between the mean of all reference BP values and every single reference value. This is
closely connected to the dataset’s standard deviation but not entirely equal. The reason for choosing the RMSE
are explained above.

1 n
BIRMSE = | = (cohort mean — reference value)?,
n

i=1

n=number of samples.

B2-RMSE.  'The B2-RMSE is the measure of intrapersonal variability in the researcher dataset. The first meas-
urement for every subject is defined as their personal “calibration value”. The B2-RMSE is calculated as the RMSE
between the calibration value (subject specific) and every single reference value. This equates to estimating a
subjects first measurement result for every upcoming measurement.

1 n
B2RMSE = | — Z (“calibration” value — reference value)z.
n

=]

n=number of samples.
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Minimalistic Deep Learning Architecture (M)
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Figure 1. Minimalistic Deep Learning architecture used for M-RMSE calculation. It is a five-layer feed-forward
Neural Network with Dropout and L2-Regression for ensuring reliable results. The system must be retrained for
every dataset and provides BP estimations which are needed to M-RMSE calculation. For further information
please see Supplementary Appendix 1/2.

M-RMSE. 'The M-RMSE is the measure of how easy it is to derive a well-performing BP estimation model for
the researcher’s dataset. To assess this, we created a minimalistic Deep Learning architecture. This architecture
does not change but must be retrained for every given dataset (as well as for systolic and diastolic values). We
designed the architecture to ensure reliable results and therefore applicability for almost all datasets.

This minimalistic tool intakes parameters present in every BP dataset: The subjects age, sex, the time of
measurement, the heart rate, a calibration BP (see B2-RMSE), the time of calibration, the calibration heart rate,
and the mean of all reference values (see B1-RMSE). The system then estimates BP values (Fig. 1).

The M-RMSE is calculated as the RMSE between the systen’s estimations and every single reference value.
Detailed insight into the Deep Learning architecture can be found in the Supplementary Appendix and the
provided code (Supplementary Appendix 1/2).

1 n
MRMSE = | — Z (minimalistic model predictions — reference Value)z,
n

n=number of samples.

As the M-RMSE is only based on a single BP calibration and subsequent monitoring of heart rate and time,
it would be easily implemented using a singular cuff measurement and subsequent “smartwatch” monitoring.
The M-RMSE is therefore a reasonable minimal standard for any BP estimation model to beat.

B-Score.  To retrieve a measure of relative performance the B-Score sets the T-RMSE (absolute performance of
researcher’s model) in relation to the three presented, dataset-specific RMSE values (B1, B2, M). The B-Score
is designed to increase with increasing model performance. To achieve this, it rises the more the tested model
(T-RMSE) outperforms the base performances (B1-, B2- and M-RMSE):

BIRMSE - M RMSE B2 RMSE - M RMSE
BScore = logy, . ;

T RMSE? T RMSE?

We defined the B-Score for all instances in which the T-RMSE is smaller than the M-RMSE. If this is not the
case the proposed model performs worse than the minimalistic Deep Learning architecture and possibly worse
than B1 or B2. We recommend to report “B-Score < 0.00” for every case that the T-RMSE is greater than any base
performance (B1-, B2-, M-RMSE). The B-Score should be reported rounded to two decimal places.

A minimum of three patients with at least three measurements per patient are needed for B-Score calculation.
We do not recommend calculating the B-Score for datasets containing less than 100 distinct BP measurements
to ensure reliable results.

Reliable B-Score results. In line with the best practices of Machine Learning the M-RMSE is calculated via
k-fold evaluation. To ensure reliable results, the calculation is repeated, resampled, and averaged, depending on
the datasets size. In some cases, the M-RMSE might be larger than other base performances because of measures
taken to ensure generalized model behaviour (e.g., Dropout, L2-regularization). Specific information is available
in the provided code (Supplementary Appendix 2).

Testing the B-Score for desired properties. We tested the B-Score to confirm reliable results and
desired properties of identifying superior BP estimation systems on generic datasets.

Scientific Reports |
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Figure 2. Plot of 30,000 samples from the systolic “24-h Normal” dataset. The normally distributed circadian
rhythm is displayed.

Dataset generation. We created three datasets (3 x systolic + diastolic) to test the B-Score. The datasets
display basic characteristics of BP profiles. Short-time and long-time fluctuation rhythms primarily influence
BP fluctuations, which themselves are based on the Traube-Hering-Mayer- and circadian rhythms®*-*. Based
on these rhythms we modelled two (2 x systolic + diastolic) 24-h BP datasets. The datasets differ in inter- and
intrapersonal variability and are therefore named “Normal 24-h” and “Hard 24-h” datasets. We further mod-
elled one dataset (systolic + diastolic) to be a 30-min dataset, replicating a laboratory measurement setting. It is
named the “Lab” dataset. Additional information about the dataset generation is presented in the Supplementary
Appendix 3.

For every dataset, 10,000 subjects with 50 measurements each were simulated, resulting in datasets with
500,000 single measurement entries (Fig. 2).

We set a fictional T-RMSE value of 4 mmHg and calculated the B-Score accordingly for all six datasets. The
B-Score can be considered functional if calculation is trouble-free and the retrieved B-Scores clearly rank the
datasets from lowest (easiest, “Lab") to highest (hardest, “24-h Hard”).

B-Score under increasing standard deviation. We further simulated smaller (50,000 BP values) generic data-
sets with increasing BP standard deviation. Followingly, we calculated the base performances (B1-, B2- and
M-RMSE) and B-Scores for all datasets and plotted the results against the BP standard deviation.

Published small dataset. We used a small dataset published by Patzak et al. in 2015 to test the B-Score at
the lower boundary of dataset size. The dataset consists of 12 patients with a total of 107 (each systolic and dias-
tolic) measurements. The authors validated a pulse-wave-velocity-based BP estimation device against intraarte-
rial measurements taken during dobutamine induced BP increases®. We calculated the systolic and diastolic
B-Score for the proposed device and dataset.

MIMIC IV dataset. The MIMIC IV clinical dataset is the latest iteration of the to our knowledge largest
available clinical dataset providing BP data. Data are descended from mainly ICU patients***. We used the
MIMIC IV dataset to stress test the B-Score for applicability for the largest available dataset.

Data cleaning. We pre-processed the dataset to only hold data point suitable for the B-Score. Specifically, we
kept data points which provided BP information as well as information about the additional input parameters
(time of measurement, heart rate, sex, age) the M-RMSE requires. We kept BP data points within 3 standard
deviations of the mean (=99.8%) to mitigate the effect of stray-bullet measurements. We reduced the MIMIC IV
dataset from nearly 330 million data points to a systolic and diastolic dataset (>2.3 million entries each).

B-Score interpretation. We calculated the B1-, B2- and M-RMSE for both the systolic and diastolic MIMIC
IV dataset. We were then able to interpret the results from the dobutamine-dataset in respect to the MIMIC IV
dataset. More specifically, we were able to calculate a T-RMSE value of equal B-Scores. Reaching this T-RMSE
value (on the MIMIC IV dataset) coequals the system performance proposed by Patzak et al.2’. The calculation is
easily obtained by transposing the B-Score equation. It is available in the Supplementary Appendix and directly
computed in the provided code (Supplementary Appendix 2/4).
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Generic dataset B-Scores
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Figure 3. RMSE values (upper panel) and calculated B-Scores (lower panel) for all systolic (left) and diastolic
(right) generated datasets. As expected, the “24-h Hard” dataset generated the highest B-Score for a fictional
T-RMSE. The RMSE values indicate differences in dataset complexity (“Lab” easy to “24-h Hard” hard) which
are reflected in the associated B-Scores.

Time complexity analysis. We split the MIMIC IV dataset into smaller subsets to analyse the time needed for
B-Score calculations depending on the dataset size. The calculation was performed on a single core of an Intel
i9 12900K CPU.

Programming packagesandcode. Programmingpackages. Wewrote our programs in Python 3 (3.7.10)
and primarily used the NumPy (1.19.5) and pandas (1.1.5) libraries for dataset cleaning and processing®*’. For
model creation and evaluation, we relied on the Tensorflow2 (2.4.1) and sklearn (0.22.2) libraries®*?. We used
the Matplotlib (3.2.2) library and NN-SVG for visualization®>*.

Code. 'The code for B-Score calculation is provided as an Supplementary Appendix to this article (Supplemen-
tary Appendix 2).

Results

B-Score test with generic datasets. The created development datasets showed expected normal distri-

butions, with highest variability in the “24-h Hard” and lowest in the “Lab” dataset (Supplementary Appendix 5).
We calculated the base performances (B1-, B2-, M-RMSE) values for each of the six datasets. We then calcu-

lated the B-Scores for all datasets with an assumed T-RMSE of 4.0 mmHg,. Large differences between the T-RMSE

and the base performances resulted in increased B-Scores. The B-Score scored highest for the “24-h Hard” dataset

(as expected with constant T-RMSE; Fig. 3).
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Figure 4. Base performances and B-Scores plotted against increasing standard deviations of simulated datasets.
The upper panel shows rising base performance values (B1-, B2- and M-RMSE) for increasing standard
deviation. Accordingly, the lower panel shows increasing B-Scores for constant T-RMSE values and increasing
standard deviation. The B-Score discriminates between three tested T-RMSE values.

With the base-performance values calculated, we were able to calculate the B-Scores for each development
dataset. Visual intuition about model performance based on base-performance values correlates with the cal-
culated B-Scores (Fig. 3).

B-Score under increasing standard deviation. Simulating generic datasets with increasing BP stand-
ard deviation revealed a clear connection between increasing base performance values and increasing standard
deviation. Subsequently, B-Scores rose with increasing BP standard deviation under constant T-RMSE values.
The B-Score discriminated well between different tested T-RMSE values (Fig. 4).

Published small dataset (dobutamine). We calculated the B-Score for the “dobutamine”-dataset. For
diastolic values, the proposed device’s T-RMSE was larger than the M-RMSE. According to the B-Score’s defini-
tion this results in a B-Score of < 0.00. The systolic B-Score was 0.94 (Fig. 5).

MIMIC IV dataset. We calculated the base performances (B1-, B2-, M-RMSE) for the systolic and diastolic
MIMIC IV datasets (Fig. 6).

We used these base performance values to calculate the systolic and diastolic T-RMSE value. A new BP
estimation would need to reach a systolic T-RMSE of 6.98 on the MIMIC IV dataset to perform coequally to
the system proposed in the publication of the “dobutamine” dataset®’. Smaller T-RMSE values would indicate a
novel system outperforming the proposed device (Fig. 7).

We did not calculate a diastolic T-RMSE, as any T-RMSE smaller than the MIMIC IV B1-, B2- and M-RMSE
values would be sufficient. Therefore, a T-RMSE smaller than the diastolic MIMIC IV M-RMSE (10.18, Fig. 5)
outperforms the device tested on the “dobutamine” dataset.

Time complexity analysis. The time complexity analysis revealed a U-shaped dependency between data-
set size and time needed for B-Score calculation. Calculation times were between 3 min for medium sized data-
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Figure 5. RMSE values calculated for the “dobutamine” dataset. The resulting systolic B-Score was 0.943. The
diastolic B-Score is <0.00 as the T-RMSE is not smaller than the M-RMSE. Diverging systolic and diastolic
relative performances are apparent. The systolic RMSE values were B1 =32.25, B2=28.71, M=26.83, T=9.64.
The diastolic RMSE values were B1 =8.98, B2=7.86, M=7.95, T =10.35.
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Figure 6. Base performances (B1-, B2-, M-RMSE) calculated for the systolic and diastolic MIMIC IV dataset.
Systolic data variance is higher than diastolic. The M-RMSE shows a predictive benefit over the B1- and
B2-RMSE for both systolic and diastolic values. The systolic RMSE values were Bl =22.96, B2=21.97, M=19.07.
The diastolic RMSE values were B1=12.91, B2=11.74, M=10.18.

sets (50,000 BP values) and 50 min for very small (250 BP values) and extremely large (2.3 million BP samples)
(Fig. 8).

On multicore processors, systolic and diastolic B-Scores can be calculated simultaneously without notice-
able time delay. Noticeable, GPU acceleration does negatively affect calculation times. The standard deviation
of dataset reshuffles (which are averaged for M-RMSE calculation) was below 3 mmHg for all subsamples and
below 1 mmHg for all samples with more than 1250 samples.

Discussion

The B-Score is a tool for comparing the relative performances of BP estimation systems. It sets measures of
absolute model performance (regularly reported) in contrast to dataset specific parameters (base performances).
It is based on the RMSE, combining insights about absolute error (cf. mean-absolute error) and measurement
consistency (cf. correlation coefficient). The B-Score allows the comparison of performances between various
systems tested on different datasets as higher B-Scores equal better relative performance.
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Figure 7. B-Scores calculated for various systolic MIMIC IV T-RMSE values (black line). The red dot indicates
the T-RMSE which reaches a coequal performance to the device proposed by Patzak et al. The red dashed lines
indicate the B-Score (0.96) and T-RMSE (6.98) of coequality.
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Figure 8. Time complexity analysis for B-Score calculation derived from MIMIC IV subsamples increasing in
size. The x-axis is scaled logarithmically to allow visual interpretation.

We ensured reliable B-Score results and have shown its applicability by using generic datasets with differing
inter- and intrapersonal BP variability. Further, the B-Score discriminated correctly between “easy” (“Lab”) and
“hard” (“24 h Hard”) datasets, for a set fictional T-RMSE (= same absolute performance for all datasets). Further,
the B-Score showed expected results for generic datasets with increasing BP standard deviation. It discriminated
between different tested T-RMSE values for increasing base performance values.

To test the B-Score in real-world data, we used a small, published dataset with a proposed device for BP
estimation (“dobutamine” dataset) and the to our knowledge largest available BP dataset (“MIMIC IV”). We
calculated the B-Score for the “dobutamine” dataset and retrieved greatly differing results for systolic and diastolic
performance. The B-Score revealed a markedly better systolic performance even though the absolute performance
measures were largely the same between systolic and diastolic values. This illustrated the important additional
information provided by a measure of relative performance (B-Score).

Further, we calculated the base performances (B1-, B2-, M-RMSE) for the MIMIC IV dataset. These param-
eters allowed us to calculate the T-RMSE value a new system would need to reach on the MIMIC IV dataset to
provide coequal performance to the device tested by Patzak et al. (“dobutamine” dataset). The inter- and intrap-
ersonal BP variability in the MIMIC IV dataset was smaller than in the “dobutamine” dataset. Consequently, the
needed T-RMSE to reach coequal relative performance was lower than the one derived from the “dobutamine”
dataset.

This analysis revealed important insights into the described datasets but more importantly proved that the
B-Score is easily calculatable even in extreme (comparing very small vs. very large datasets) real-world use cases.
This is further underlined by the quick calculation times which allows to derive the B-Score within one hour on
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using a modern CPU. This is true for virtually all dataset sizes, with minimum calculation times for medium-
sized datasets. The U-shaped time complexity curve is product of increasing calculation time per training episode
for larger datasets and simultaneous reduction of repeated and reshuffled calculations due to increased trust in
result reliability. We consider the resulting calculation times reasonable, especially noting that the calculation
time needed only applies once per dataset, as the base performances can be used to recalculate the B-Score for
any new model using the same dataset within seconds.

Additionally, time complexity analysis revealed narrow standard deviations between reshuffles, even for
small datasets. This supports the assumption the B-Score calculation generates reliable and repeatable results.

We designed the B-Score to be intuitively understandable (higher B-Scores equal better relative performance)
and easily calculable. Any researcher using a modern machine can calculate the B-Score for their data within 1
workday using the provided code (Supplementary Appendix 2).

As the B-Score is partly determined by inter- and intrapersonal BP variability within a given dataset, research-
ers aiming for high B-Scores are incentivized to develop their models for high variability datasets. This is impor-
tant, because systems which perform well on heterogenous data are more likely to generalize to real-world
applicability.

We envision investigators in the field of BP estimation devices to calculate base performance (B1-, B2-,
M-RMSE) and B-Score values for their respective datasets and proposed systems. This will allow intuitive com-
parability between the plethora of systems available and under development.

We did not create the B-Score to replace validation studies and standardized validation protocols. These serve
an important role in guaranteeing methodological comparability, which cannot be displaced by the B-Score.

We anticipate the B-Score to be an important tool for systems and devices which have not yet reached the
stage of full-on clinical validation. It empowers researchers and engineers to quickly assess their system’s relative
performance on whichever dataset they have available. Researchers will be able to detect promising trends in
the scientific literature more quickly and securely when B-Score are reported in the scientific literature during
early stages of development. Further, the B-Score can become a tool for advanced, post-validation system testing.
It allows to compare performances for distinct groups (e.g., pregnant women, children, etc.) or under special
circumstances (e.g., sport) which are not covered by validation protocols.

Conclusion
The B-Score is a novel, functional measure of relative BP estimation performance. We proved its reliable results,
ease of calculation even for large datasets and desired properties with generated datasets. Followingly, the B-Score
revealed important insights in an extreme, real-world use case (comparing a very small vs. very large dataset).
The B-Score is easily interpreted and quickly calculated for any given dataset. We envision the B-Score to
be used in pre-validation studies for system development and in advanced, post-validation analyses for special
subgroups or measurement circumstances.
We hope that the B-Score will in the future become a useful and broadly applied tool for model performance
comparison. It enables the quick and secure detection of promising trends in the scientific literature and allows
scientists and engineers to quickly assess the performance of their systems.

Data availability

The “dobutamine” dataset is a re-analysis of already published data (Ref.’) and is available from the corre-
sponding author of this publication upon reasonable request. The MIMIC IV dataset is available following the
instructions from reference 25. The Code mentioned in the article is openly available in a public repository (Sup-
plementary Appendix 2). For further information about data availability, please contact the corresponding author.
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