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Abstract

We show how fixed-unitary quantum encryption schemes can be attacked in a black-box setting. We use an efficient
technique to invert a unitary transformation on a quantum computer to retrieve an encrypted secret quantum state
|y ). This attack has a success rate of 100% and can be executed in constant time. We name a vulnerable scheme which
security is fully broken by our attack and suggest how to improve the scheme to invalidate this attack. The proposed
attack highlights the importance of carefully designing quantum encryption schemes to ensure their security against
quantum adversaries, even in a black-box setting. We point to the faulty assumption and name a criterion for future
quantum cipher design to prevent similar vulnerabilities.
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1 Introduction

The constant development of quantum computers has made encryption methods increasingly relevant in this field.
Particularly, quantum-based synergy effects are presenting new security challenges to classical methods. In this paper,
an attack on a previously proposed quantum encryption scheme (QES) is carried out to demonstrate the cryptographic
insecurity of this scheme. The attack fully breaks the QES scheme, invalidating its security guarantees. Note that this is
not quantum encryption in the classical sense, e.g., Quantum Key Distribution (QKD), as the scheme is a new approach
by the authors of [1].

In [1], the authors proposed the problem of sending a qubit in a secret state |y ) from one entity (Bob) to another
(Alice). The qubit can be described as a state|y) = «|0) + f|1), where a, § € C are arbitrary but have to obey the equal-
ity ||? + | #|?> = 1. One cannot determine the values of « and § deterministically by only having access to the qubit, but
the qubit can be used for computation by Alice. The objective of the protocol is to transfer a qubit in such a way, that no
adversary has access to the secret state [y). In particular, it should not be possible for any party other than Alice and Bob
to use |y ) for computation. Instead, when the qubit is transferred, it should be altered to a different state. [1] proposes
a quantum public-key encryption scheme to accomplish this. The setting can be seen as an alteration of blind quantum
computing [2, 3] or secret qubit preparation [4, 5].

Software developers who are not trained in cryptography may have the impression that a peer-reviewed encryption
scheme is absolutely secure. Further, they may overlook the fact that the authors of the publications themselves don't
necessarily incorporate updates of known vulnerabilities into the publications or appended source code due to project
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limitations or general time constraints. Raising attention to the above-named circumstances is important to prevent
future possible vulnerabilities.

The main contribution of this paper is a new attack on the quantum encryption scheme from [1]. In our attack, we
abuse the deterministic part of the QES protocol to create an oracle for the private key application performed by the
receiver (Alice). We apply the method of [6] to invert Alice’s transformation and retrieve the qubit [y ). The attack has a
constant runtime and a success probability of 100%.

Due to our knowledge, no encryption schemes other than the one described in this paper are susceptible to our attack.
However, we want to highlight that any quantum scheme implementing a fixed unitary transformation as an encryption
scheme could be attacked with a similar method. The results also transfer to schemes defined on more than a single qubit
[7]. We are not aware of any instances of QES being deployed and under threat of this attack.

The paper is structured as follows: First, we explain the encryption scheme proposed by [1]. In Sect. 3, a technique
described in [6] to invert a black-box unitary is proposed. In Sect. 4, we use the technique to attack the QES scheme.
Finally, we mention how the protocol could be improved to prevent this attack.

2 Encryption scheme

This chapter introduces the QES proposed in [1]. The scheme’s aim is to secretly transmit a single qubit in an arbitrary
state|y) = a|0) + B|1) from the sender (Bob) to the receiver (Alice). To accomplish this, Alice implements the public-key
cryptosystem QES.

The scheme starts with Alice generating her public and private keys. To build the private key, Alice chooses the random

numbersa,b € C,p € R with|a|? + |b]?> = 1. She uses those numbers to build a unitary matrix U, = (—egﬂb* e"fa*>

[1]. She then generates n-many t-bit numbers p,, .., p, and computes:
U=Uvi<i<n

The authors of [1] consider n and t as security parameters. The exponentiated matrices build the public key
PubK := {U,,... U,}, while the secret key PrivK := U, is the original matrix. The protocol is presented as follows:

1. Bob begins by generating an arbitrary valid single qubit state
lw) = a|0) + A1),

witha, f € Cand|a|? + |§|? = Twhich he wants to send to Alice. He then chooses a subset R C [n], and uses Alice’s
PubK to construct the first transformation:
UR = H Ui'

ieR

He applies U, to|y) to get the encrypted state, |¢,) = Ugz|y) which he then transmits to Alice.

2. Alice applies U, to|¢;) to obtain |¢,). In the original work ( [1]), the authors suggest that Alice applies U; = H;’:O U,
instead. However, we want to emphasize that there is no benefit in using U; over U,. For all i # 0, U; is public knowl-
edge, and an attacker can easily build the inverse U,.T. Alice then sends|¢,) back to Bob.

3. Bob uncomputes his transformation U, to get the state|¢;). He can produce the inverse transformation by simply
combining the inverses of the partial matrices U; =11 U,T. Based on the fact that all U;'s are multiples of U,, we

know that U;'s commute. This allows the following:

i€eR

lp3) = U} - Uy - Upl) = Uj - Up - Uplyr) = Ugly)

The state|¢;) is then sent to Alice.
4. Alice can uncompute U, by simply applying U(")':

Ullgs) = Ul - Uglw) = ly)
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With this, Alice recovered the original secret quantum state [y ).

3 Inverting black-box unitaries

A matrix U is called unitary iff:
Uu-Ur=ut-u=1d,

where UT is the conjugate transpose of the matrix U. Thus, in a white-box setting, finding the inverse of the matrix U is
trivial, and the runtime of the inversion depends only on the size of U. Also, in a classical black-box setting, with access
to a chosen plaintext U-oracle, determining the matrix U (and therefore also U") is rather simple. For an N x N matrix, one

.....

I I I
U=|U(e) Ue,) - Uey)

The problem becomes more challenging in the quantum setting. Assuming U was applied to a quantum state |y), we
cannot determine the amplitudes of U|y ). In fact, we cannot even differentiate between the states|0) and i|0) since the
global amplitude has no impact on the result of the measurement (cf. [8, p. 87]). With this in mind, the problem of finding
a pre-image of a quantum state under a matrix U comes into play:

Problem 1 Given a quantum state|{) and a black-box access to a unitary matrix U, find |y ) such that:
Uly) = )

In other words, we want to find the state UT|{). It is important to differentiate between two very close cases. To solve
Problem 1, we do not expect the attacker to determine the amplitudes of the quantum states. Rather, he has to have
access to a qubit in state |y ). To achieve this, [9] proposed an exact protocol, with runtime dependent on the matrix’s
size. Another approach is to perform process tomography [10].

In this paper, we are not interested in inverting arbitrary unitaries. Instead, we focus on 2 X 2 matrices as present in
Sect. 2. One general expression for 2 x 2 unitary matrices is the form already mentioned above:

a b
U - (_ei(pb* ei(pa*> ’

witha,b € C,p € Rand|a|? + |b|?> = 1.In [6], the authors describe how to reverse an arbitrary single-qubit gate in
constant time. The procedure calls the oracle U four times and applies two unitary operations V'and V2. V'and V2 are
constructed using Clebsch-Gordan transforms (for detail, see [11]). The circuit can be seen in Fig. 2 and it outputs the
state U~ ) for an arbitrary 2 x 2 unitary U and an arbitrary initial state | ). Additionally, [6] provides an implementation
of the method for a random unitary matrix and a random initial single qubit state |7} in Qiskit' code.

4 Black-box attack

In this Section, we will explain how to attack the QES described in Sect. 2 with the technique from Sect. 3. The QES pro-
tocol’s aim is to secretly transfer a qubit |y ) from Bob to Alice. We assume the attack is successful whenever the attacker
can obtain the qubit |y ).

The attack begins with Eve intercepting the qubit|¢;) = Uy|y ) being transmitted from Bob to Alice. This takes place
within step 3 of the QES protocol. At this point, the U, transformation of Bob has already been uncomputed (cf. Figure 1).

! https:/qiskit.org/
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Fig. 1 The quantum encryp- Private Uy Public {U4,...,U,} Secret |1))
tion scheme. In red, we
denoted the dangerous part

R:={r1,...,r} & [n] /

\ ‘¢1> Ur = Hf:l Ul"i 4
Alice ( [d2) [#1) = Ur [v) Bob
‘L‘)2> = U() |()1> ‘¢3) >
§ : |¢3) = Uk [¢2)
4) = U§ #s)

|¢1)

Uo \0';] )

Fig.2 The algorithm to revert |z§>
an arbitrary unitary, as

proposed in [6]. The state %%
Py 1= (j01) = 1 _._ _._ _._ _._ -

| > \/E(lo ) | 0>)and _ Vl V2 Vl V2
|¥,)is defined as ) "
|#,) := UQ® Id|¥~)and can — UL |y)
be further reused

|0) = — 10)

Next, we use |®@) = |<,1>3)|5P‘)|0)®4 as input to the algorithm described in Fig. 2. At this point, we need to specify
how Eve will achieve access to the unitary U. We observe that Alice, when being sent a qubit |¢,), in step 1 of the
QES protocol, is not able to differentiate between a valid qubit of form Ug|w), and a qubit in an arbitrary state |, ).
This means she will apply U to any qubit that is being sent to her. We will abuse this fact and use Alice as an oracle
for the function U. Whenever the algorithm from Fig. 2 needs to apply U, we send the second qubit of |®@) to Alice,
pretending it is a valid initial message of the QES protocol (cf. Eve message in Fig. 1).

Finally, the transformations V'and V2 are fixed, therefore, not dependent on U, and can be easily implemented in
the quantum framework (cf. [6] for Qiskit code). The whole attack consists of a fixed amount of steps (four protocol
calls to Alice and four applications of fixed unitary matrices V'and V?). The success rate is 100%. The desired secret
state |y) is now the third qubit of |®).

5 Design criteria for quantum encryption schemes

In this Section, we want to investigate which part of the QES protocol leads to the faulty security properties. A well-
established property of security protocols, in general, is the need for randomness. Here, [1] incorporates randomness
in the process of Bob selecting the Uy. This approach is similar to classical schemes such as OAEP or PKCS#1, where
the party which encrypts the message has to include the randomness in the encryption process to get a probabilistic
encryption scheme.

In the case of QES, there is, however, the second part of the encryption process, which Alice performs. This is the
step which is vulnerable to the attack mentioned in this paper. The deterministic nature of Alice’s encryption is the
property which we use to attack and break the scheme. We point to the fact that the attacker needs to restart the
protocol four times after he obtains the state |¢;). If there would be randomness used on Alice’s side, the transforma-
tion she performs would differ in each protocol call. One suggestion to prevent this vulnerability is to alter the map
which Alice applies. Instead of just applying U,, similar to Bob, Alice also picks a random subset of PubK and applies
it to the qubit. In the last step, she remembers the used randomness and can uncompute each rotation. The random-
ness guarantees that the oracle can perform only a single operation before it becomes unusable.

Design criterion An encryption scheme should use randomness for each party that performs computation.
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Fig.3 The adjusted quantum Private Uy Public {Uy, ..Uy} Secret |1))
encryption scheme )

Ti={t1, .t} & n) = {r, i} & /
\ Ur = H?:l Uy, |é1) UR = Ht 1 Ur,
Alice ) |p2) [#1) = Ur [v) Bob
|p2) = Ur - Ug |¢1) T)
¢ |6) = Uk | 62)

) = Uk - U] |¢s)

As mentioned in [1], the number k (the size of the subset R of rotations used by Bob) is a security parameter. Our alteration
to the QES explicitly mentions using the same size k for both sets R and T. Therefore, all security assessments from [1] for a
brute-force attack on the set R used by Bob, also hold for the set T used by Alice. Choosing k = n/2would result in the attacker

-1
having ( (n;2) > € O(5;) probability of guessing the correct subset T.

Here, we want to highlight an essential result from [12]. They mention a no-go theorem which states, that it is not possible
to implement the inverse operation U~'deterministically and exactly with a single call of the U-oracle, invalidating this attack.
The updated scheme is presented in Fig. 3.

6 Conclusion

In this paper, we presented an attack on a quantum encryption scheme introduced in [1]. Our attack has a constant runtime
and a 100% success probability. The QES is therefore fully broken and should not me implemented nor used. To achieve it,
we use a technique of black-box single-qubit unitary inversion proposed in [6]. However, we highlight that our attack can
also be applied to multiple-qubit schemes if combined with other methods. Further, a mitigation is proposed which when
integrated into the protocol fully prevents the attack presented in this paper. We also include a design criterion for future
encryption schemes - the protocol authors should ensure that the randomness is used by each party that performs com-
putation. It is an open question if there exist other encryption schemes that are also susceptible to similar attacks. Due to
the novelty of the field and its expected future impact, it is necessary to guarantee that the foundations of protocols and
primitives developed now are fully understood.
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