Research

A black-box attack on fixed-unitary quantum encryption schemes

Cezary Pilaszewicz¹ · Lea R. Muth¹ · Marian Margraf¹

Received: 19 April 2024 / Accepted: 18 June 2024 Published online: 22 June 2024 © The Author(s), under exclusive licence to Springer Nature B.V. 2024 OPEN

Abstract

We show how fixed-unitary quantum encryption schemes can be attacked in a black-box setting. We use an efficient technique to invert a unitary transformation on a quantum computer to retrieve an encrypted secret quantum state $|\psi\rangle$. This attack has a success rate of 100% and can be executed in constant time. We name a vulnerable scheme which security is fully broken by our attack and suggest how to improve the scheme to invalidate this attack. The proposed attack highlights the importance of carefully designing quantum encryption schemes to ensure their security against quantum adversaries, even in a black-box setting. We point to the faulty assumption and name a criterion for future quantum cipher design to prevent similar vulnerabilities.

 $\textit{Keywords} \ \ Quantum \ cryptography \cdot Black-box \ attack \cdot Quantum \ cryptanalysis \cdot Quantum \ circuits$

1 Introduction

The constant development of quantum computers has made encryption methods increasingly relevant in this field. Particularly, quantum-based synergy effects are presenting new security challenges to classical methods. In this paper, an attack on a previously proposed quantum encryption scheme (QES) is carried out to demonstrate the cryptographic insecurity of this scheme. The attack fully breaks the QES scheme, invalidating its security guarantees. Note that this is not quantum encryption in the classical sense, e.g., Quantum Key Distribution (QKD), as the scheme is a new approach by the authors of [1].

In [1], the authors proposed the problem of sending a qubit in a secret state $|\psi\rangle$ from one entity (Bob) to another (Alice). The qubit can be described as a state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, where $\alpha, \beta \in \mathbb{C}$ are arbitrary but have to obey the equality $|\alpha|^2 + |\beta|^2 = 1$. One cannot determine the values of α and β deterministically by only having access to the qubit, but the qubit can be used for computation by Alice. The objective of the protocol is to transfer a qubit in such a way, that no adversary has access to the secret state $|\psi\rangle$. In particular, it should not be possible for any party other than Alice and Bob to use $|\psi\rangle$ for computation. Instead, when the qubit is transferred, it should be altered to a different state. [1] proposes a quantum public-key encryption scheme to accomplish this. The setting can be seen as an alteration of blind quantum computing [2, 3] or secret qubit preparation [4, 5].

Software developers who are not trained in cryptography may have the impression that a peer-reviewed encryption scheme is absolutely secure. Further, they may overlook the fact that the authors of the publications themselves don't necessarily incorporate updates of known vulnerabilities into the publications or appended source code due to project

Cezary Pilaszewicz, cezary.pilaszewicz@gmail.com; Lea R. Muth, lea.muth@fu-berlin.de; Marian Margraf, marian.margraf@fu-berlin.de |
¹Department of Mathematics and Computer Science, Freie Universität Berlin, Takustr. 9, 14195 Berlin, Germany.

limitations or general time constraints. Raising attention to the above-named circumstances is important to prevent future possible vulnerabilities.

The main contribution of this paper is a new attack on the quantum encryption scheme from [1]. In our attack, we abuse the deterministic part of the QES protocol to create an oracle for the private key application performed by the receiver (Alice). We apply the method of [6] to invert Alice's transformation and retrieve the qubit $|\psi\rangle$. The attack has a constant runtime and a success probability of 100%.

Due to our knowledge, no encryption schemes other than the one described in this paper are susceptible to our attack. However, we want to highlight that any quantum scheme implementing a fixed unitary transformation as an encryption scheme could be attacked with a similar method. The results also transfer to schemes defined on more than a single qubit [7]. We are not aware of any instances of QES being deployed and under threat of this attack.

The paper is structured as follows: First, we explain the encryption scheme proposed by [1]. In Sect. 3, a technique described in [6] to invert a black-box unitary is proposed. In Sect. 4, we use the technique to attack the QES scheme. Finally, we mention how the protocol could be improved to prevent this attack.

2 Encryption scheme

This chapter introduces the QES proposed in [1]. The scheme's aim is to secretly transmit a single qubit in an arbitrary state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ from the sender (Bob) to the receiver (Alice). To accomplish this, Alice implements the public-key cryptosystem QES.

The scheme starts with Alice generating her public and private keys. To build the private key, Alice chooses the random numbers $a, b \in \mathbb{C}$, $\varphi \in \mathbb{R}$ with $|a|^2 + |b|^2 = 1$. She uses those numbers to build a unitary matrix $U_0 = \begin{pmatrix} a & b \\ -e^{i\varphi}b^* & e^{i\varphi}a^* \end{pmatrix}$ [1]. She then generates *n*-many *t*-bit numbers $p_1, ..., p_n$ and computes:

$$U_i = U_0^{p_i} \quad \forall 1 \le i \le n.$$

The authors of [1] consider *n* and *t* as security parameters. The exponentiated matrices build the public key PubK := $\{U_1, ..., U_n\}$, while the secret key PrivK := U_0 is the original matrix. The protocol is presented as follows:

1. Bob begins by generating an arbitrary valid single qubit state

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle,$$

with $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$ which he wants to send to Alice. He then chooses a subset $R \subset [n]$, and uses Alice's PubK to construct the first transformation:

$$U_R = \prod_{i \in R} U_i.$$

He applies U_R to $|\psi\rangle$ to get the encrypted state, $|\phi_1\rangle = U_R |\psi\rangle$ which he then transmits to Alice.

- 2. Alice applies U_0 to $|\phi_1\rangle$ to obtain $|\phi_2\rangle$. In the original work ([1]), the authors suggest that Alice applies $U_T = \prod_{i=0}^n U_i$ instead. However, we want to emphasize that there is no benefit in using U_T over U_0 . For all $i \neq 0$, U_i is public knowledge, and an attacker can easily build the inverse U_i^{\dagger} . Alice then sends $|\phi_2\rangle$ back to Bob.
- 3. Bob uncomputes his transformation U_R to get the state $|\phi_3\rangle$. He can produce the inverse transformation by simply combining the inverses of the partial matrices $U_R^{\dagger} = \prod_{i \in R} U_i^{\dagger}$. Based on the fact that all U_i 's are multiples of U_0 , we know that U_i 's commute. This allows the following:

$$|\phi_{3}\rangle = U_{R}^{\dagger} \cdot U_{0} \cdot U_{R}|\psi\rangle = U_{R}^{\dagger} \cdot U_{R} \cdot U_{0}|\psi\rangle = U_{0}|\psi\rangle$$

The state $|\phi_3\rangle$ is then sent to Alice.

4. Alice can uncompute U_0 by simply applying U_0^{\dagger} :

$$U_0^{\dagger} |\phi_3\rangle = U_0^{\dagger} \cdot U_0 |\psi\rangle = |\psi\rangle$$

With this, Alice recovered the original secret quantum state $|\psi\rangle$.

3 Inverting black-box unitaries

A matrix U is called unitary iff:

$$U \cdot U^{\dagger} = U^{\dagger} \cdot U = Id,$$

where U^{\dagger} is the conjugate transpose of the matrix U. Thus, in a white-box setting, finding the inverse of the matrix U is trivial, and the runtime of the inversion depends only on the size of U. Also, in a classical black-box setting, with access to a chosen plaintext U-oracle, determining the matrix U (and therefore also U^{\dagger}) is rather simple. For an $N \times N$ matrix, one can just query N-many unit vectors $(e_i)_{i=1,\dots,N}$ and reconstruct U as:

$$U = \begin{pmatrix} | & | & | \\ U(e_1) & U(e_2) & \cdots & U(e_N) \\ | & | & | \end{pmatrix}$$

The problem becomes more challenging in the quantum setting. Assuming U was applied to a quantum state $|\psi\rangle$, we cannot determine the amplitudes of $U|\psi\rangle$. In fact, we cannot even differentiate between the states $|0\rangle$ and $i|0\rangle$ since the global amplitude has no impact on the result of the measurement (cf. [8, p. 87]). With this in mind, the problem of finding a pre-image of a quantum state under a matrix U comes into play:

Problem 1 Given a quantum state $|\tilde{\psi}\rangle$ and a black-box access to a unitary matrix U, find $|\psi\rangle$ such that:

$$U|\psi
angle = | ilde{\psi}
angle$$

In other words, we want to find the state $U^{\dagger}|\tilde{\psi}\rangle$. It is important to differentiate between two very close cases. To solve Problem 1, we do not expect the attacker to determine the amplitudes of the quantum states. Rather, he has to have access to a qubit in state $|\psi\rangle$. To achieve this, [9] proposed an exact protocol, with runtime dependent on the matrix's size. Another approach is to perform process tomography [10].

In this paper, we are not interested in inverting arbitrary unitaries. Instead, we focus on 2×2 matrices as present in Sect. 2. One general expression for 2×2 unitary matrices is the form already mentioned above:

$$U = \begin{pmatrix} a & b \\ -e^{i\varphi}b^* & e^{i\varphi}a^* \end{pmatrix}$$
 ,

with $a, b \in \mathbb{C}$, $\varphi \in \mathbb{R}$ and $|a|^2 + |b|^2 = 1$. In [6], the authors describe how to reverse an arbitrary single-qubit gate in constant time. The procedure calls the oracle U four times and applies two unitary operations V^1 and V^2 . V^1 and V^2 are constructed using Clebsch-Gordan transforms (for detail, see [11]). The circuit can be seen in Fig. 2 and it outputs the state $U^{-1}|\tilde{\psi}\rangle$ for an arbitrary 2 × 2 unitary U and an arbitrary initial state $|\tilde{\psi}\rangle$. Additionally, [6] provides an implementation of the method for a random unitary matrix and a random initial single qubit state $|\tilde{\psi}\rangle$ in Qiskit¹ code.

4 Black-box attack

In this Section, we will explain how to attack the QES described in Sect. 2 with the technique from Sect. 3. The QES protocol's aim is to secretly transfer a qubit $|\psi\rangle$ from Bob to Alice. We assume the attack is successful whenever the attacker can obtain the qubit $|\psi\rangle$.

The attack begins with Eve intercepting the qubit $|\phi_3\rangle = U_0 |\psi\rangle$ being transmitted from Bob to Alice. This takes place within step 3 of the QES protocol. At this point, the U_R transformation of Bob has already been uncomputed (cf. Figure 1).

¹ https://qiskit.org/

Next, we use $|\Phi\rangle = |\phi_3\rangle |\Psi^-\rangle |0\rangle^{\otimes 4}$ as input to the algorithm described in Fig. 2. At this point, we need to specify how Eve will achieve access to the unitary *U*. We observe that Alice, when being sent a qubit $|\phi_1\rangle$, in step 1 of the QES protocol, is not able to differentiate between a valid qubit of form $U_R |\psi\rangle$, and a qubit in an arbitrary state $|\tilde{\phi_1}\rangle$. This means she will apply *U* to any qubit that is being sent to her. We will abuse this fact and use Alice as an oracle for the function *U*. Whenever the algorithm from Fig. 2 needs to apply *U*, we send the second qubit of $|\Phi\rangle$ to Alice, pretending it is a valid initial message of the QES protocol (cf. Eve message in Fig. 1).

Finally, the transformations V^1 and V^2 are fixed, therefore, not dependent on U, and can be easily implemented in the quantum framework (cf. [6] for Qiskit code). The whole attack consists of a fixed amount of steps (four protocol calls to Alice and four applications of fixed unitary matrices V^1 and V^2). The success rate is 100%. The desired secret state $|\psi\rangle$ is now the third qubit of $|\Phi\rangle$.

5 Design criteria for quantum encryption schemes

In this Section, we want to investigate which part of the QES protocol leads to the faulty security properties. A wellestablished property of security protocols, in general, is the need for randomness. Here, [1] incorporates randomness in the process of Bob selecting the U_R . This approach is similar to classical schemes such as OAEP or PKCS#1, where the party which encrypts the message has to include the randomness in the encryption process to get a probabilistic encryption scheme.

In the case of QES, there is, however, the second part of the encryption process, which Alice performs. This is the step which is vulnerable to the attack mentioned in this paper. The deterministic nature of Alice's encryption is the property which we use to attack and break the scheme. We point to the fact that the attacker needs to restart the protocol four times after he obtains the state $|\phi_3\rangle$. If there would be randomness used on Alice's side, the transformation she performs would differ in each protocol call. One suggestion to prevent this vulnerability is to alter the map which Alice applies. Instead of just applying U_0 , similar to Bob, Alice also picks a random subset of PubK and applies it to the qubit. In the last step, she remembers the used randomness and can uncompute each rotation. The randomness guarantees that the oracle can perform only a single operation before it becomes unusable.

Design criterion An encryption scheme should use randomness for each party that performs computation.

As mentioned in [1], the number k (the size of the subset R of rotations used by Bob) is a security parameter. Our alteration to the QES explicitly mentions using the same size k for both sets R and T. Therefore, all security assessments from [1] for a brute-force attack on the set R used by Bob, also hold for the set T used by Alice. Choosing k = n/2 would result in the attacker

having $\binom{n}{n/2}^{-1} \in \mathcal{O}(\frac{n}{2^n})$ probability of guessing the correct subset *T*.

Here, we want to highlight an essential result from [12]. They mention a no-go theorem which states, that it is not possible to implement the inverse operation U^{-1} deterministically and exactly with a single call of the *U*-oracle, invalidating this attack. The updated scheme is presented in Fig. 3.

6 Conclusion

In this paper, we presented an attack on a quantum encryption scheme introduced in [1]. Our attack has a constant runtime and a 100% success probability. The QES is therefore fully broken and should not me implemented nor used. To achieve it, we use a technique of black-box single-qubit unitary inversion proposed in [6]. However, we highlight that our attack can also be applied to multiple-qubit schemes if combined with other methods. Further, a mitigation is proposed which when integrated into the protocol fully prevents the attack presented in this paper. We also include a design criterion for future encryption schemes - the protocol authors should ensure that the randomness is used by each party that performs computation. It is an open question if there exist other encryption schemes that are also susceptible to similar attacks. Due to the novelty of the field and its expected future impact, it is necessary to guarantee that the foundations of protocols and primitives developed now are fully understood.

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

Author contributions Cezary Pilaszewicz and Lea R. Muth came with the idea and did the paper writing. Cezary Pilaszewicz did the computation. Marian Margraf did the reviewing.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Plesa M-I, Togan M. A new quantum encryption scheme. Adv J Grad Res. 2018;4:59–67. https://doi.org/10.21467/ajgr.4.1.59-67.

- 2. Fitzsimons JF. Private quantum computation: an introduction to blind quantum computing and related protocols. npj Quantum Inf. 2017;3(1):1–11. https://doi.org/10.1038/s41534-017-0025-3.
- 3. Broadbent A, Fitzsimons J, Kashefi E. Universal blind quantum computation. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science. 2009;pp. 517–526. https://doi.org/10.1109/FOCS.2009.36
- 4. Cojocaru A, Colisson L, Kashefi E, Wallden P. QFactory: Classically-Instructed Remote Secret Qubits Preparation. In: Galbraith, S.D., Moriai, S. (eds.) Advances in Cryptology ASIACRYPT 2019. 2019;pp. 615–645. Springer, Cham. https://doi.org/10.1007/978-3-030-34578-5_22
- 5. Gheorghiu A, Metger T, Poremba A. Quantum cryptography with classical communication: parallel remote state preparation for copyprotection, verification, and more. 2022;arXiv. https://doi.org/10.48550/arXiv.2201.13445
- 6. Yoshida S, Soeda A, Murao M. Reversing unknown qubit-unitary operation, deterministically and exactly. Phys Rev Lett. 2023;131(12): 120602. https://doi.org/10.1103/PhysRevLett.131.120602.
- 7. Chen Y-A, Mo Y, Liu Y, Zhang L, Wang X. quantum advantage in reversing unknown unitary evolutions. 2024;arXiv.
- 8. Nielsen MA. Quantum computation and quantum information / Michael A. Nielsen & Isaak L. Chuang., 10th anniversary ed. edn. Cambridge Univversity Press, Cambridge [u.a. 2010.
- 9. Quintino MT, Dong Q, Shimbo A, Soeda A, Murao M. Reversing unknown quantum transformations: universal quantum circuit for inverting general unitary operations. Phys Rev Lett. 2019;123(21): 210502. https://doi.org/10.1103/PhysRevLett.123.210502. arxiv:1810.06944 [quant-ph].
- 10. Chuang IL, Nielsen MA. Prescription for experimental determination of the dynamics of a quantum black box. J Modern Optics. 1997;44(11–12):2455–67. https://doi.org/10.1080/09500349708231894. arxiv:quant-ph/9610001.
- 11. Yoshida S, Soeda A, Murao M. Supplemental Material for "Reversing Unknown Qubit-Unitary Operation, Deterministically and Exactly"
- 12. Chiribella G, Ebler D. Optimal quantum networks and one-shot entropies. New J Phys. 2016;18(9): 093053. https://doi.org/10.1088/1367-2630/18/9/093053.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

