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Abstract

In this thesis, I present my contributions to three publications in the field of translational
precision oncology. What all three presented studies have in common is that they elucidate
mechanisms that influence drug resistance, which is one of the major reasons why cancer
ultimately proves lethal. Through technical and methodical advances, understanding of the
inner workings of cancer cells is continuously improving even after decades of research. This
progress allows for better treatment, tailored specifically for every patient. But as treatment
puts pressure onto a tumor, resistance might eventually develop and the tumor relapses. For
optimal treatment outcome, it is therefore important to use an effective drug while at the
same time monitoring for the emergence of resistance and counteract it.

The first publication, Distinct immune evasion in APOBEC-enriched, HPV-negative HNSCC,
is the result of our interest in identifying possible markers for immune checkpoint inhibition
in head and neck tumors, an area of study at Charité Comprehensive Cancer Center. Using
open data from TCGA, we analyzed 496 tumors and evaluated their HPV status, mutational
signatures, gene expression signatures as well as mutational load. We were able to define
a subgroup with a distinct immune profile in HPV-negative tumors that shows increased
inflammation, which correlates with the footprint of APOBEC3-associated single-nucleotide
mutations. Further, in these tumors we observed a higher frequency in mutations that allow
immune-evasion. In a separate single cell expression dataset, we show mRNA expression
of APOBEC3 family members in tumor cells for the first time. Previously, it was not
clear if APOBEC3 was expressed by the tumor cells or only in the surrounding tumor
micro-environment, as APOBEC3 proteins are notoriously difficult to stain with antibodies.

The publication by Akpa et al., Acquired resistance to DZNep-mediated apoptosis is associated
with copy number gains of AHCY in a B-cell lymphoma model, describes how we engineered
a B-cell lymphoma cell line to become resistant against the drug DZnep. By analyzing
whole-exome data and comparing the resistant with sensitive cells, we were able to pinpoint
a gene amplification of the gene AHCY, which is exactly the gene inhibited by DZnep. Thus,
we have shown one possible avenue for development of resistance even before DZnep has been
used in clinical studies.

The final publication by Dorel et al., Neuroblastoma signaling models unveil combination
therapies targeting feedback-mediated resistance, describes our efforts to model Ras/MAPK
pathway activity in a panel of nine cell lines representative of high risk neuroblastoma.
Through molecular characterization and pathway modeling on perturbation-response data we
were able to formulate new treatment strategies that work by vertical inhibition on multiple
pathway targets. By combining targeted drugs in such a deliberate manner, treatment
outcomes will improve in the future.
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Zusammenfassung

In dieser Arbeit stelle ich meine Beiträge zu drei Veröffentlichungen im Bereich der transla-
tionalen Präzisionsonkologie vor. Allen drei Studien ist gemeinsam, dass sie Mechanismen
aufklären, die Arzneimittelresistenzen beeinflussen. Durch technische und methodische
Fortschritte wird das Wissen über das Innenleben von Krebszellen auch nach Jahrzehnten
der Forschung immer besser. Dieser Fortschritt ermöglicht eine Behandlung, die speziell auf
jeden Patienten zugeschnitten ist. Da die Behandlung jedoch Druck auf den Tumor ausübt,
kann sich schließlich eine Resistenz entwickeln. Für ein optimales Behandlungsergebnis ist es
daher wichtig, ein wirksames Medikament einzusetzen und gleichzeitig die Entstehung von
Resistenzen zu überwachen und ihnen entgegenzuwirken.

Die erste Publikation, Distinct immune evasion in APOBEC-enriched, HPV-negative HNSCC,
beschreibt einen möglichen Marker für die Antwort auf Immun-Checkpoint-Inhibition bei
Kopf-Hals-Tumoren. Wir analysierten 496 Tumore und werteten ihren HPV-Status, Muta-
tionssignaturen, Genexpressionssignaturen sowie die Mutationslast aus. Wir definieren eine
Untergruppe mit einem ausgeprägten Immunprofil in HPV-negativen Tumoren, die erhöhte
Entzündungswerte aufweist, welche mit APOBEC3-assoziierten Einzelnukleotidmutationen
korreliert. Außerdem beobachteten wir in diesen Tumoren eine höhere Häufigkeit von Muta-
tionen, die eine Umgehung des Immunsystems ermöglichen. In einem separaten single-cell
Datensatz zeigen wir mRNA-Expression von APOBEC3 in Tumorzellen. Bisher war nicht
klar, ob APOBEC3 von den Tumorzellen oder nur in der Tumorumgebung exprimiert wird,
da APOBEC3-Proteine mit Antikörpern schwer zu färben sind.

Die Veröffentlichung von Akpa et al, Erworbene Resistenz gegen DZNep-vermittelte Apoptose
steht in Verbindung mit Kopienzahlgewinnen von AHCY in einem B-Zell-Lymphom-Modell,
beschreibt, wie wir eine B-Zell-Lymphom-Zelllinie so verändert haben, dass sie gegen das
Medikament DZnep resistent wurde. Durch die Analyse von Whole-Exom-Daten und den
Vergleich der resistenten mit den empfindlichen Zellen konnten wir eine Genamplifikation
des Gens AHCY nachweisen, das genau das Gen ist, das von DZnep gehemmt wird. Damit
haben wir einen möglichen Weg für die Entwicklung einer Resistenz aufgezeigt, noch bevor
DZnep in klinischen Studien eingesetzt wurde.

Die letzte Veröffentlichung von Dorel et al, Neuroblastoma signaling models unveil combination
therapies targeting feedback-mediated resistance, beschreibt unsere Bemühungen, die Aktivität
des Ras/MAPK-Signalwegs in einer Gruppe von neun Zelllinien zu modellieren, die für
das Hochrisiko-Neuroblastom repräsentativ sind. Durch molekulare Charakterisierung und
Modellierung der Signalwege auf der Grundlage von Perturbationsdaten waren wir in der
Lage, neue Behandlungsstrategien zu formulieren, die durch vertikale Hemmung mehrerer
Targets wirken. Durch eine solche gezielte Kombination von Medikamenten werden sich die
Behandlungsergebnisse in Zukunft verbessern.
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Chapter 1

Introduction

In this dissertation, I present my contributions to three publications in the field of translational
precision medicine where omics data analysis was used to pinpoint characteristics of cancer
cells to help understand treatment resistance. In this chapter, I introduce key concepts
and methods in precision oncology (Sec. 1.1), treatment resistance (Sec. 1.2), biomarkers
(Sec. 1.3), and translational research (Sec. 1.4). Then follow three chapters, each based
on a peer-reviewed publication. In Chapter 2, we show how a subgroup of HPV-negative
tumors of the head and neck have high proportions of APOBEC3-associated mutations that
potentially influence sensitivity to immunotherapy. In Chapter 3, we discuss how analysis of
whole-exome data helped to identify an escape mechanism to EZH2 inhibition treatment in
a lymphoma cell line. In Chapter 4, I present my contributions to a study concerning the
genetic makeup of neuroblastoma cell lines and how it influences treatment response for a
selected panel of drugs targeting the Ras/MAPK pathway. The final chapter concludes the
thesis with an extended discussion.

1.1 Precision medicine in oncology
Precision medicine in the context of oncology means to treat each patient’s tumor based
on its respective characteristics such as mutations, fusion genes, or hyper-active pathways.
While these aberrations give the tumor its vigor in the first place, they can also be prime
targets for treatment (Lassen et al., 2021). This approach requires interdisciplinary decision
making and close collaboration between oncologists, pathologists, molecular biologists, and
more recently, bioinformaticians. This team effort is necessary because how to treat a cancer
patient is not an easy decision to take. Primarily, for optimal outcome, one wants to select
the treatment that works best, e.g. the one with the highest chance to either cure the cancer,
shrink the tumor or stop progression. Secondly, drugs have unwanted side-effects, so one
would only chose a drug if one can be reasonably sure that the advantages outweigh the
downsides. And lastly, time is of the essence. It is a waste of money, and worse, the patient’s
time, to try a drug that does not work. Even giving the “correct” drug later will not correct
the outcome as disease will have progressed.

1.1.1 Cancer treatment
Over time, the preferred cancer treatment options have shifted from unspecific cytostatic or
cytotoxic agents, colloquially called chemotherapy, to targeted drugs (Kummar et al., 2006).

5



6 CHAPTER 1. INTRODUCTION

One drawback of unspecific agents is that they usually have more side effects and higher
toxicity as they affect both healthy and tumor cells. On the other hand, targeted agents
interfere with a molecular target that is in some way involved in processes such as cancer
growth, survival, or metabolism (Hanahan and Weinberg, 2000). In other words, it means to
attack a process that is vital for one tumor specifically.

To name one example, the first targeted drug approved by the U.S. Food and Drug Adminis-
tration (FDA) was Tamoxifen (Yan et al., 2011). It competes with estrogen when binding
to the estrogen receptor (ER). For breast cancer, depending on the cohort between ca. 65
and 80 percent of tumors are estrogen receptor-positive (Kohler et al., 2015), which makes
these tumors susceptible to treatment with Tamoxifen. On the other hand, tumors that are
not addicted to the constant signaling downstream of ER should be treated differently. It
is therefore imperative to match known biomarkers of each tumor with available drugs for
optimal treatment responses. A dedicated section on biomarkers (sec. 1.3) gives a formal
definition of what a biomarker is and discusses which types of biomarkers are commonly used
in the clinic.

1.1.2 Making cancer treatment decisions
To understand why researchers try to find new biomarkers, it is beneficial to briefly look
at the treatment decision process in practice. We have documented our own experience
on how to support decision making at the Molecular Tumor Board (MTB) of the Charité
Comprehensive Cancer Center (Lamping et al., 2020), and I want to give a brief summary
here. During our meetings, for every patient known tumor characteristics were presented,
e.g. surgical and pathology reports as well as molecular readouts. This was followed by a
discussion on which treatment course to choose. The following steps had to be completed to
arrive at a recommendation:

1) Identify molecular aberrations in the tumor.

2) Match all identified aberrations to drugs, including information on sensitivity or
resistance based on prior knowledge.

3) Discuss and rank all options and decide which drug to give.

Generally, based on whole-exome sequencing data, most tumors show a large number of
mutations or copy number changes that do not have corresponding information in any of the
consulted databases yet. Without this information, aberrations cannot be used in decision
making yet.

1.2 Treatment resistance
Treatment resistance in the context of cancer means that the tumor is or becomes tolerant to
the treatment, rendering it ineffective. This means that the disease will progress and that
other options will need to be pursued, given that not all alternatives have been exhausted
already. As discussed in the ER example (sec. 1.1.1), it is imperative to pick a treatment that
has a high chance of success in the first place, given everything one knows about a particular
tumor. While most tumors respond at first, they are a dynamic system that can and will
evolve under pressure to escape treatment (Haider et al., 2020). This is called “acquired
resistance” and the theory of its origin draws from ideas developed in evolutionary biology,
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cf. the landmark paper by Nowell (1976). Every tumor consists of an ecosystem of cells that
appear similar when compared to normal cells of the respective tissue, but they will not be
genetically identical. Some cells for instance will share mutations picked up by an ancestor
that other tumor cells might not carry. Given this genetic diversity, selection processes such
as pressure from the immune system or drug treatment will select populations of cells that
carry mutations that increase their fitness in this environment (Greaves and Maley, 2012).
Unsurprisingly, tumors with a high level of heterogeneity tend to have worse clinical outcomes
due to development of drug resistance (Crucitta et al., 2022; Dagogo-Jack and Shaw, 2018).
Common mechanisms of drug resistance include increased drug efflux, mutations of the drug
target, activation of survival, and inactivation of apoptotic pathways (Bukowski et al., 2020;
Housman et al., 2014). Indeed, resistance and relapse are major barriers to curing cancer
(Vasan et al., 2019). Therefore, we need to understand better what drives resistance, how to
monitor for its emergence and lastly, what to do when it happens.

1.3 Biomarkers
The Biomarkers Definitions Working Group defines a biomarker as follows (Atkinson et al.,
2001):

“Biological marker (biomarker): A characteristic that is objectively measured and
evaluated as an indicator of normal biological processes, pathogenic processes, or
pharmacologic responses to a therapeutic intervention.”

While biomarkers in medicine can also be of physiologic, histologic or radiographic nature,
precision oncology is dominated by molecular biomarkers. Further, biomarkers are commonly
grouped into different categories based on what they are useful for. The FDA-NIH Biomarker
Working Group gives the following definitions:

“Diagnostic biomarker: A biomarker used to detect or confirm presence of a
disease or condition of interest or to identify individuals with a subtype of the
disease.” (FDA-NIH Biomarker Working Group, 2016a)

“Prognostic biomarker: A biomarker used to identify likelihood of a clinical event,
disease recurrence or progression in patients who have the disease or medical
condition of interest.” (FDA-NIH Biomarker Working Group, 2016b)

“Predictive biomarker: A biomarker used to identify individuals who are more
likely than similar individuals without the biomarker to experience a favorable
or unfavorable effect from exposure to a medical product or an environmental
agent.” (FDA-NIH Biomarker Working Group, 2016c)

Although Sechidis et al. (2018) argue that most biomarkers have prognostic as well as
predictive value to some extend, the work we have published is clearly concerned with
predictive biomarkers, i.e. we want to predict the effectiveness of a treatment given some
knowledge about the tumor like genomic or transcriptomic changes.

1.3.1 Omics data analysis
Commonly used types of omics data in translational cancer research are genomics and
transcriptomics data, with other approaches that require mass spectronomy being less
common. In each of the three studies that I will present, we analyzed whole-exome data
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generated on sequencing machines manufactured by Illumina as well as RNA-seq data for
two of the studies (Dorel et al., 2021; Messerschmidt et al., 2020). The concrete analysis
steps are described in the methods section of the respective chapters. Below, I will discuss
some general points concerning small somatic variants (Sec. 1.3.2), copy number variation
(Sec. 1.3.3), and two types of signatures (Sec. 1.3.4).

1.3.2 Small somatic variants
Small somatic variants are genomic changes where only one or a few base pairs are changed
compared to a reference, i.e. the healthy normal control in the case of cancer cells. Single
nucleotide variants (SNVs) and small insertions or deletions (Indels) might only change a
tiny fraction of the DNA sequence, but these changes can have dramatic effects downstream.
Drawing from the Pan-Cancer Analysis of Whole Genomes (PCAWG) study (Campbell et
al., 2020), the most recurrent SNVs in this cohort are in the tumor suppressor gene TP53
(33.6 %) and in the proto-oncogene KRAS (10.2 %, according to cbioportal.org, accessed
2022-06-07). To find small somatic variants, researchers use software methods to compare
sequencing data from a tumor to a reference of the same patient. The latter is often derived
from white blood cells (“buffy coat”) as they are easily accessible, or from non-cancerous
tissue parts of a tumor biopsy (“near tumor normal”).

1.3.3 Copy number variation
Healthy somatic human cells have a diploid genome. That means that each cell has two
homologous copies of each autosomes, one from the mother and one from the father. In
cancer, this balance is often destabilized, leading to either losses or gains of stretches of DNA,
together with the genes encoded on them (Shlien and Malkin, 2009). Gene expression is
tightly regulated in normal cells, and having fewer or more copies of certain genes can be a
survival advantage for the cell that carries them. Because beneficial copy number variations
(CNVs) are selected for, specific recurrent CNVs can be observed in most cancer entities
(Harbers et al., 2021). One example is the amplification of the transcription factor MYCN in
high risk neuroblastoma, discussed in more depth in Sec. 4.1.2. How CNV calling was used
in one of our projects is described in Sec. 3.2.2.

1.3.4 Signatures
The term “signature” is not always clearly defined and has different meanings depending on
the context. We made use of two different classes of signatures for the project presented in
Chapter 2. We used a so-called mutational signature to assess the activity of a mutational
process, in this case of the AID/APOBEC family of enzymes. For a more in-depth overview,
see Sec. 2.1.4 and Sec. 2.1.5.

Another type of signature we used is the IFN-γ signature to assess inflammation in tumors,
i.e. a gene expression signature. This is a score based on gene expression measurements
in a sample, based on a gene set. Gene sets have been defined for many processes and
pathways (Liberzon et al., 2015; Schubert et al., 2018) and have been quite popular since
the introduction of gene set enrichment analysis (Subramanian et al., 2005). In this setting,
the coordinated expression of some genes might be considered a signature for a process or
biological state.
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1.4 Translational research enables better precision
medicine

Translational research aims to bring new insights generated by basic research into practical
clinical application. Here, often the slogan “From the bench to the bedside” is cited,
presumably used for the first time by Spencer B. King III (1996). Feedback from bedside
back to bench is a crucial feature (Cohrs et al., 2015). The discovery of new biomarkers is one
application where insights from basic research can be used to improve treatment of patients
(Hartl et al., 2021). Marrying the two concepts of precision medicine and translational
research, the community aims to

1. Select the best treatment based on the available information on the patient and the
tumor.

2. Introduce new biomarkers (cf. sec. 1.3) into the clinical practice to help with 1.

Research by Dubois and Kyle (2016) shows that novel cancer treatments are associated with
a decline in mortality. Additionally, biomarker testing and a greater selection of treatment
options improve survival of patients (D’Avo Luís and Seo, 2021).

1.4.1 Cancer models
Model organisms are the most studied organisms in biology, e.g. Drosophila melanogaster,
Arabidopsis thaliana, Caenorhabditis elegans, and Mus musculus. Insights from experiments in
models are assumed to translate to other related organisms. For example, mouse experiments
might be used if such research would be unethical or not practical in humans. Knock-out
experiments come to mind or other forms of genome editing. However, models also have
drawbacks as they are not the entity that they represent, and crucial differences remain
between mice and men (Junhee Seok et al., 2013; Perlman, 2016).

Models also exist for cancer, among them cancer cell lines, organoids or mice harboring a
tumor, e.g. from a patient-derived xenograft (PDX). The simplest model are cancer cell lines,
which are cultures of cancer cells derived from tumors growing and dividing in a dish in a
laboratory. Kept under the right conditions, these cells are immortal - consider the HeLa cell
line, which was derived from cervical cancer cells of Henrietta Lacks in 1951 (Skloot, 2011).
Obvious drawbacks of cancer cell lines are the lack of heterogeneity and cell hierarchy as well
as the missing tumor micro-environment. In vivo, immune cells and stromal cells interact
with the tumor and vice versa. Nevertheless, these models can be studied to gain new insights
as in the experiments described in chapters 3 and 4. By correlating drug sensitivity with
readouts of accompanying omics datasets, researchers are able to find new biomarkers that
can then be studied in more elaborate models and finally in patient cohorts and in clinical
trials.
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Chapter 2

Distinct immune evasion in
APOBEC-enriched, HPV-negative
HNSCC

2.1 Introduction

2.1.1 Overview and contributions
The following chapter is based on the work published by Messerschmidt et al. (2020) in the
International Journal of Cancer. In this paper, we delineate a subgroup of human papilloma
virus-negative squamous cell tumors of the head and neck that exhibit an enrichment of
mutations associated with activity of the family of APOBEC3 enzymes. This subgroup
exhibits a number of characteristics that make it an interesting target to study in the context
of immune checkpoint inhibitors, as these tumors show higher inflammation, more immune
escape variants and higher expression of important checkpoint genes.

My contributions to the publication were as follows:

• I contributed to conception and planning of the project.

• I co-developed the in-house bioinformatics pipeline called snappy for the analysis of
high-throughput sequencing data.

• I executed the complete bioinformatics analysis of all data from the TCGA and DKTK
Master cohorts.

• I contributed to the single cell transcriptomics analysis.

• I created Figures 1A, 1B, 2, 3, 4, 5A, 6.

• I created Table 1.

• I co-wrote the manuscript and was responsible for all communication with the editor
during the submission and the revision process.

This paper won a prize for re-use of open data, awarded by the QUEST center for Responsible
Research of the Berlin Institute of Health.

11
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2.1.2 Head and neck squamous cell cancer
The term “head and neck cancer” refers to a diverse set of tumors that develop from tissue of
the lip, mouth, throat or skin. The majority of these tumors are originating from squamous
cells (Chow, 2020), in contrast to rarer tumors originating for instance from the salivary
glands (Son et al., 2018). Squamous cells are a cell type that can be found on the surface of
skin, and the lining of inner organs. A common abbreviation of head and neck squamous cell
carcinoma is HNSCC, as used in The Cancer Genome Atlas (Lawrence et al., 2015).

One well known cause of cell transformation of squamous cells is infection with human
papilloma virus (HPV), where the virus proteins E6 and E7 act as oncoproteins (Yim and
Park, 2005). Compared to patients with HPV-negative tumors, those with HPV-positive
tumors are generally younger and have no history of smoking, but statistically had a higher
number of sex partners (Young et al., 2015). For HPV-negative head and neck tumors, tobacco
and alcohol are among the known risk factors, as well as betel quid chewing as practiced in
some areas of Asia (Su et al., 2016). Although originating from the same tissue, it is known
that HPV-positive and HPV-negative tumors are quite different in their characteristics (Rieke
et al., 2016). Their respective expression patterns are specific, as well as clinical outcomes as
HPV-positive patients have more favorable survival rates (Keck et al., 2015).

2.1.3 Immune checkpoint inhibition
One relatively recent treatment option with great promise are immune-checkpoint inhibitors
(ICI), sometimes called immune-checkpoint blockade. ICI therapies work through monoclonal
antibodies targeting surface proteins on either immune or tumor cells that mediate the
suppression of the immune response against the tumor. These surface proteins are called
immune checkpoints. For the basic research enabling these therapies, James Allison and
Tasuku Honjo received the Nobel Prize in Physiology or Medicine (2018). Ferris et al. (2016)
showed that ICI results in significantly longer overall survival compared to standard therapy.
However, it is not entirely clear which patients will benefit from the treatment. Because
treatment costs are high, selecting likely responders upfront is an active topic of research.
In previous publications, different biomarkers for ICI response were proposed, for example
tumor mutational burden (Cristescu et al., 2018; Van Allen et al., 2015), inflammation (Ayers
et al., 2017; Seiwert et al., 2016), and expression of the immune checkpoint PD-L1 (Bila et
al., 2022; Ferris et al., 2016). It remains unclear which of the proposed biomarkers offers the
best predictive performance, however (Oliva et al., 2019).

2.1.4 APOBEC3 enzymes and their mutational patterns
The enzymes of the APOBEC3 (apolipoprotein B mRNA editing enzyme, catalytic
polypeptide-like 3) family, i.e. APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D,
APOBEC3F, APOBEC3G, and APOBEC3H, possess the ability to deaminate cytidine
to uridine in single stranded DNA. They are part of the innate response to infection with
retroviruses (Uriu et al., 2021). Due to replication stress, cells in some tumors exhibit
elevated levels of single stranded DNA (Trenner and Sartori, 2019), which is the substrate of
APOBEC3. The genomes of those tumor cells then bear traces of APOBEC3 mutational
activity. This phenomenon can sometimes be observed even independently of viral infection
(Burns et al., 2013). What currently remains unclear is why APOBEC3 might get activated
in these cases, as no causal insult is known yet (cf. Fig. 2.1).
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Figure 2.1: Sketch of a simple model of APOBEC3 activation as a self-reinforcing process.
After APOBEC3 expression is activated by a trigger such as viral infection, immunogenic
TCW mutations lead to inflammation, which in turn upregulates APOBEC3 expression.

APOBEC3-catalyzed mutations are usually single base changes from cytosine to either
guanine or thymine. Importantly, the context of the mutations is mostly either TCT or TCA,
which can be shortened to TCW in IUPAC notation. An accumulation of mutations in this
TCW motif can be used to identify tumors with high APOBEC3 activity.

2.1.5 Signatures for mutational processes
In 2013, Alexandrov et al. (2013) published a seminal study in Cell Reports, describing an
approach to decipher mutational signatures from catalogs of somatic variants. A signature
based on single nucleotide variants describes the respective percentages of six substitution
subtypes, i.e. C>A, C>G, C>T, T>A, T>C, and T>G, for every possible combination of
preceding (5’) and succeeding (3’) bases - 96 classes in total. The base change is represented
by the pyrimidine base of the DNA, so C>A is equivalent to a G>T substitution. Alexandrov
et al. found signatures that can be attributed to effects such as aging, exposure to UV light,
alcohol and tobacco use, and APOBEC3 activity. Their method further enables researchers to
assign contribution scores of mutagenic processes to a tumor mutational profile. An extension
of the initial method to estimate per-signature error bars through bootstrapping of the input
profile that we developed is available as an R package (Schumann et al., 2019).

Two signatures in the corpus of signatures published by Cosmic (https://cancer.sanger.ac
.uk/signatures/signatures_v2/) are currently attributed to APOBEC activity. Those are
signature 2 (cf. Fig. 2.2, C>T preference) and signature 13 (cf. Fig. 2.3, C>G preference).

2.2 Data
In total, data from three different sources were used. The main findings were generated
using data from the HNSCC cohort of TCGA, while data from the German DKTK Master
cohort and from a single cell dataset from the BROAD Institute were analyzed to support
the findings.

2.2.1 The Cancer Genome Atlas: HNSCC cohort
The Cancer Genome Atlas (TCGA) includes the largest HNSCC cohort publicly available for
researchers. At the time of analysis, the cohort comprised of 502 patients, with 496 having

https://cancer.sanger.ac.uk/signatures/signatures_v2/
https://cancer.sanger.ac.uk/signatures/signatures_v2/
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Figure 2.2: Mutational probabilities for signature 2 from COSMIC mutational signatures,
with enrichment of C>T variants in the TCW motif and attributed to APOBEC3 activity.
From https://cancer.sanger.ac.uk/signatures/signatures_v2. Reprinted with permission.

Figure 2.3: Mutational probabilities for signature 13 from COSMIC mutational signatures,
with enrichment of C>G variants in the TCW motif and attributed to APOBEC3 activity.
From https://cancer.sanger.ac.uk/signatures/signatures_v2. Reprinted with permission.
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complete sequencing profiles of whole-exome sequencing (WES) for tumor and normal and
tumor mRNA-seq.

Data were downloaded from a range of sources. Non-aggregated mRNA-seq data (bam files)
were downloaded from the Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov).
Variant calls were downloaded from BROAD firehose portal (https://gdac.broadinstitute.org)
in MAF format. Aggregated expression data for select genes were additionally downloaded
from cbioportal.org (Gao et al., 2013).

2.2.2 DKTK Master cohort
The “MASTER” programme of DKTK (Deutsches Konsortium für Translationale Krebs-
forschung) aims to support treatment decision making by offering molecular insights for
each tumor. For this project, we used data from all patients with squamous cell head and
neck tumors who had WES and mRNA-seq data available at the time of analysis (n =
10). Raw sequencing data were downloaded from the sequencing facility in Heidelberg and
processed using our in-house pipeline, consisting of read mapping, somatic variant calling
and annotation as well as gene expression quantification for mRNA data.

2.2.3 Single cell transcriptomics dataset
Transcriptome profiling data of ca. 6000 cells from 18 HNSCC patients were published by
Puram et al. (2017). The data also contain cell type annotations and another coarser level,
defining malignant and non-malignant cells. Data were downloaded from Gene Expression
Omnibus (GEO) under accession ID GSE103322.

2.3 Methods

2.3.1 HPV status
To assign HPV status to each sample in TCGA, we used the mRNA-seq data of each patient.
As cells infected with HPV show expression of viral genes, we assigned HPV status based on
the presence of HPV transcripts that were detectable besides all transcripts of human origin.
For that, we collected the number of transcripts mapping to the most common HPV genomes
that were included in genome release 38. If a sample had more than 3500 reads mapping to
HPV, we labeled it HPV-positive. Note that the distribution of viral reads in the cohort is
bimodal, i.e. negative samples have fewer than 10 reads.

To check for correctness, we compared the results to prior work by (Tang et al., 2013), TCGA
clinical meta data and a published HPV gene expression signature (Buitrago-Pérez et al.,
2009), which were in agreement for the samples shared.

2.3.2 TCW mutation enrichment
As the proportion of contribution of each signature reported by the method of Alexandrov
et al. (2013) is hard to compare between samples, we opted for another simpler procedure.
The method has been previously used by Roberts et al. (Roberts et al., 2013) and looks at
the proportion of all TCW mutations to C mutations compared to the occurrence of C’s
and the motif TCW in the genome. Then, we use a Fisher’s exact test to determine if the
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number of C mutations in the TCW context is bigger than expected by chance. P-values were
Holm-Bonferroni corrected and all samples with p’<0.05 were labeled APOBEC-enriched.

2.3.3 Inflammation scoring of tumors
A gene expression signature, also called a “gene set”, consists of a list of genes, a label,
and optionally, weights for each gene. The final signature score might be computed as the
(weighted) sum or mean of expression values for all genes in the list. To assess inflammation
in tumor samples, we used a published gene expression signature, termed IFN-γ or IFNG
signature (Ayers et al., 2017). This gene set consists of IFNG, IDO1, CXCL9, CXCL10,
HLA-DRA, and STAT1. To compute the IFNG signature score, we used the TPM values
(labeled “RNA Seq V2 RSEM”) downloaded from cbioportal.org for the TCGA HNSCC
cohort as the mean of the log2-transformed expression values per sample.

2.3.4 Differential expression analysis
Expression data (“RNA-seq V2 RSEM” from cbioportal.org) was subset to all samples with
mutational data and differential expression analyzed for groups of interest using a Wilcoxon
rank test in R for immune checkpoint genes CD274, CTLA4, LAG3, PDCD1 and VTCN1.
To compare APOBEC3 expression between groups, expression values of all APOBEC3 genes
were summed up before testing.

2.3.5 Analysis of immunotherapy relevant genes
A list of immunotherapy-relevant genes has been published by Patel et al. (2017). They used
a two cell type (2CT) CRISPR assay. The assay consisted of melanoma cells and engineered
CD8+ cells targeting HLA-A*02-restricted antigen. In a genome-wide CRISPR screen, genes
that led to significantly improved survival of the melanoma cells when knocked out were
included as relevant for immunotherapy success. The final list consists of 554 genes.

To identify an over-representation of mutations in immunotherapy-relevant genes, we used a
Fisher’s exact test, comparing the sum of mutations in each subgroup and the number of
cases, respectively.

2.3.6 Single cell transcriptomics analysis
Based on the digital expression matrix provided by Puram et al., cells were visualized
with t-distributed stochastic neighbor embedding (t-SNE). Cells were colored either by the
malignant/non-malignant annotation provided by the authors or by APOBEC3 expression.

2.4 Results
The first question we wanted to look at was if total mutational burden (TMB) was associated
with inflammation in HNSCC as it has been proposed as a marker for ICI response before.
In the TCGA cohort, no correlation was observed between these two measures (Fig. 2.4A).
However, the number of TCW mutations shows a positive correlation with inflammation, but
only in the group of HPV-negative samples (Fig. 2.4B).
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Figure 2.4: IFNG signature score is not associated with number of total mutations, but
with number of TCW mutations in the TCGA HNSCC cohort. A Scatter plot of the 6-gene
IFNG signature score and log10 of total mutations (n = 496). No significant correlation
was found. B Scatter plot of the IFNG signature score and number of TCW mutations
by HPV status (red: HPV-negative, n = 423, blue: HPV-positive, n = 64). A significant
Pearson correlation was identified (p = 1 ∗ 10−4). C The frequency of base exchanges
of the 96 possible mutations types was compared between samples of the highest and
lowest quintile of the IFNG signature score. The top 20 percent showed preference for the
APOBEC3-associated TCW mutations. Figure from “Distinct immune evasion in APOBEC-
enriched, HPV-negative HNSCC” by Messerschmidt et al. (2020), licensed under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/)
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Comparing HPV-positive vs HPV-negative cases, we reproduced a set of known differences.
Firstly, HPV-negative cases tend to have more point mutations overall (p = 0.00017, Fig. 2.5A).
On the other hand, HPV-positive cases had higher inflammation as measured by IFNG
signature (p = 3.7e-05, Fig. 2.5B). And finally, HPV-positive samples have a higher share of
TCW mutations (p = 0.0026, Fig. 2.5C).

Figure 2.5: HPV status is an important variable in HNSCC. A HPV-negative tumors
have higher total mutation count (p = 1.7 ∗ 10−4). B HPV-positive tumors show higher
inflammation as measured by IFNG signature score (p = 3.7 ∗ 10−5). C HPV-positive tumors
have a higher ratio of TCW to all mutations (p = 2.6 ∗ 10−3). Figure from “Distinct immune
evasion in APOBEC-enriched, HPV-negative HNSCC” by Messerschmidt et al. (2020),
licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)

To group HPV-negative samples regarding their APOBEC activity, we used a Fisher’s exact
test to find all samples that had a higher proportion of TCW mutations than expected. These
samples were labeled HPV-negative/APOBEC-enriched. The other remaining subgroup
was labeled HPV-negative/APOBEC-negative. Comparing the new subgroups, we show
three key observations that make the HPV-negative/APOBEC-enriched group special. Not
only does the group have higher inflammation on average (Fig. 2.6A), but it also exhibits
differential expression in key checkpoint genes (Fig. 2.6B). Further, we observe significantly
more mutations in genes that are immuno-therapy relevant as previously identified by Patel
et al. (2017), cf. Tbl. 2.1.

Table 2.1: Results of Fisher exact tests for enrichment of
mutations in immunotherapy-relevant genes as defined by
Patel et al., once with HLA genes and once without to
exclude possible false positive variant calls in these loci.

HPV-negative/
APOBEC-
enriched

HPV-negative/
APOBEC-
negative

P-
Value

No. of Cases 84 348
No. of hits (collapsed to genes)/No. of cases 7.6 (638 total) 4.7 (1643 total) 1.80E-

04
No. of hits with functional impact (collapsed to
genes)/No. of cases

5.7 (476 total) 3.7 (1277 total) 8.80E-
04
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HPV-negative/
APOBEC-
enriched

HPV-negative/
APOBEC-
negative

P-
Value

No. of hits (collapsed to genes), without HLA
genes/No. of cases

7.3 (617 total) 4.7 (1623 total) 4.10E-
04

No. of hits with functional impact (collapsed to
genes, without HLA genes)/No. of cases

5.5 (461 total) 3.6 (1259 total) 1.60E-
03

To replicate our findings in an independent cohort, we collected data from all HPV-negative
HNSCC patients in the DKTK Master study (n = 10). Samples were annotated with HPV
and APOBEC status as described above for TCGA. IFNG scores were computed as for
TCGA, i.e. the mean of log2(TPM + 1) of the six genes in the signature. TPM values
were generated with salmon (Patro et al., 2017). There was only one case qualifying as
HPV-negative/APOBEC-enriched, but among the ten samples it had the highest IFNG score
(cf. Fig. 2.8).
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Figure 2.6: HPV-negative/APOBEC3-enriched tumors show higher inflammation, differential
checkpoint inhibition when compared to other HPV-negative tumors. A Boxplot of IGFN
signature score, grouped by HPV and APOBEC3 status. HPV-negative/APOBEC3-enriched
tumors show higher inflammation compared to HPV-negative/APOBEC3-negative tumors
(p = 1.5 ∗ 10−4). No significant difference was observed between HPV-positive and HPV-
negative/APOBEC3-enriched tumors. B Gene expression of five immune checkpoints was com-
pared between HPV-negative/APOBEC3-enriched and HPV-negative/APOBEC3-negative
tumors. CD274, CTLA4, LAG3 and PDCD1 were higher expressed in APOBEC3-enriched
cases, VTCN1 in APOBEC3-negative cases (p < 0.05 after Bonferroni correction.) Figure from
“Distinct immune evasion in APOBEC-enriched, HPV-negative HNSCC” by Messerschmidt
et al. (2020), licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)
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Figure 2.7: Single cell expression data from an independent cohort demonstrates APOBEC3
expression in tumor cells. A Aggregated APOBEC3 expression by group for HPV-positive,
APOBEC-enriched/HPV-negative cases, and APOBEC-negative/HPV-negative cases from
TCGA. While HPV-positive cases have the highest expression, APOBEC3-enriched cases
have higher expression among HPV-negative tumors. B tSNE projection of all cells from 17
donors profiled by Puram et al., annotated as malignant (red) or non-malignant (blue). C
Violin plots of six APOBEC3 genes, comparing malignant (red) and non-malignant (blue)
cells. D tSNE projections of all cells as in B. APOBEC3B, APOBEC3C, APOBEC3F,
APOBEC3G expression strength indicated by color intensity, with malignant cells in red,
non-malignant in blue and gray cells having no expression. Figure from “Distinct immune
evasion in APOBEC-enriched, HPV-negative HNSCC” by Messerschmidt et al. (2020),
licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)
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Figure 2.8: Analysis of IFNG score by APOBEC status in HPV-negative DKTK
Master patients. The one identified APOBEC3-enriched case showed the highest
IFNG signature score. Figure from “Distinct immune evasion in APOBEC-enriched,
HPV-negative HNSCC” by Messerschmidt et al. (2020), licensed under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/)

2.5 Discussion
In this publication, we defined a subgroup of HPV-negative tumors that show higher in-
flammation, enrichment of APOBEC3-associated mutations in the exome, significantly more
mutations in immunotherapy-relevant genes, and differential expression in some key checkpoint
genes such as CD274, CTLA4 and PDCD1. Taken together, these findings suggest differences
in ICI response when compared to the HPV-negative, APOBEC3-negative subgroup. The
main limitation of this study is that we did not have response data for immune checkpoint
inhibition, but that we had to rely on the IFNG signature as proxy for tumor inflammation
and T-cell infiltration. Further, it was difficult to acquire the data necessary for validation in
a ICI-treated cohort and we had to rely on a small cohort from DKTK Master.

The most important question remaining is which among all proposed biomarkers for ICI
response does perform best in practice. For instance, both a T-cell inflamed phenotype and a
high mutational burden have been linked to ICI response (Ayers et al., 2017; Van Allen et
al., 2015). Yet, in our analysis we found no significant correlation between the two. Early
evidence suggests that tumors with APOBEC activity respond better to ICI (Miao et al.,
2018; Wang et al., 2018). APOBEC activation without viral infection is proposed to occur
later in the tumor life cycle, inducing branched evolution in lung cancer (McGranahan et al.,
2015). It is unclear what drives APOBEC activation in these cases, but elevated levels of
single stranded DNA are a candidate. Ultimately, we hope that the APOBEC3 status of a
HPV-negative head and neck tumor can be used to direct ICI treatment in the future.



Chapter 3

Acquired resistance to
DZNep-mediated apoptosis is
associated with copy number gains of
AHCY in a B-cell lymphoma model

3.1 Introduction

3.1.1 Overview and contributions
The following chapter is based on the work published by Akpa et al. in BMC Cancer (2020),
where we found an acquired copy number change in the gene AHCY that was the cause for
resistance to DZnep treatment in a B-cell lymphoma cell line. For this work, I contributed
the following:

• I analyzed the whole-exome sequencing data, including quality control of raw sequencing
data and read alignment on genome reference GRCh37.

• I called and annotated copy number variants genome-wide and suggested the AHCY
amplification as the likeliest candidate for the acquisition of DZNep resistance.

• I created Figure 2A and wrote the manuscript sections describing the whole-exome
analysis and reviewed the final manuscript.

3.1.2 Molecular characteristics of Burkitt lymphoma
Lymphoma are a type of tumor that arise from a transformed population of lymphocytes.
Depending on which cell type gave rise to this population, lymphoma can be coarsely grouped
into subclasses like B-cell or T-cell lymphoma, which in turn can be subdivided again into
multiple specific subtypes. The cell line analyzed in this project is a model for Burkitt
lymphoma, a type of B-cell lymphoma that was first described by Denis Burkitt (1958).

The common aberration that all Burkitt lymphoma share is dysregulation of the gene MYC
(MYC Proto-Oncogene, BHLH Transcription Factor) (Nguyen et al., 2017). This is most
commonly caused by a genetic variant called (chromosomal) translocation where parts of
a chromosome relocate to a different position by breaking off and reattaching somewhere
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else, e.g. another chromosome. The majority of Burkitt lymphoma tumors harbor a t(8;14)
translocation, linking MYC to the IgH (immunoglobulin heavy chain) locus on chromosome 14
(Hoffman et al., 2017). As a consequence, expression of MYC is not controlled by regulatory
elements on chromosome 8 as in healthy cells anymore, but will be regulated like the Ig heavy
chain gene, which is strongly expressed in antibody-producing B cells. This genetic change
leads to overexpression of MYC in these cells specifically. Because MYC is a transcription
factor, its overexpression has consequences on the cellular level, among them increased
proliferation (Bretones et al., 2015), changes in metabolism (Miller et al., 2012) and apoptosis
(Hoffman and Liebermann, 2008). While MYC is also deregulated in many other cancer
types, specific treatments that directly target MYC are currently not available (Chen et al.,
2018), although work in this area is ongoing (Duffy et al., 2021).

3.1.3 EZH2 inhibition
EZH2 inhibition is another recently proposed treatment option for B-cell lymphoma. The drug
3-Deazaneplanocin A (DZnep) has been shown to inhibit cancer growth in vitro in a number
of cancer entities like Burkitt Lymphoma and DLBCL (Akpa et al., 2019). DZnep indirectly
targets EZH2 (Enhancer of zeste homolog 2), which is part of polycomb repressor complex
2 (PRC2) (Kim and Roberts, 2016). EZH2 is a histone methyltransferase, i.e. an enzyme
that can catalyze the trimethylation of lysine 27 on histone 3 (H3K27me3). H3K27me3 is
a repressive histone modification, and generally leads to downregulation of gene expression
through denser packaging of DNA (Francis et al., 2004). This way, it is possible to repress
genes like tumor suppressors that regulate apoptosis, cell cycle or differentiation (Gan et
al., 2018; Tian et al., 2016). By counteracting this gene repression, DZnep is acting on the
epigenetic level and reprogramming the transcriptome.

On the biochemical level, DZnep inhibits another enzyme called AHCY (S-Adenosyl-L-
Homocysteine Hydrolase, also Adenosylhomocysteinase). AHCY catalyzes the reversible
hydrolysis of S-adenosylhomocysteine (SAH) to adenosine and L-homocysteine, and thereby
regulates SAH concentration in the cell. When this reaction is inhibited, SAH accumulates
and this causes inhibition of methyltransferases like EZH2 because SAH is also a product of
the methylation reaction (cf. Fig. 3.1 for the strucutal similarities between DZnep and SAH).

Figure 3.1: Structural similarity of a DZnep and b S-adenosylhomocysteine (SAH).
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Given that DZnep is used in preclinical trials and could be used as a cancer treatment in the
future (Kim and Roberts, 2016), it is valuable to explore possible resistance mechanisms that
would allow a tumor to escape the treatment. Our aim is to find a plausible mechanism for
engineered EZH2 inhibition resistance in vitro.

3.2 Data and Methods

3.2.1 Generation of a DZnep resistant cell line
A culture of a cancer cell line called BLUE-1 (sporadic Burkitt lymphoma) was split into a
control culture and a treatment culture. The treatment culture was then over the course of
seven months treated with DZnep, while increasing concentration of the drug from 200 nM
to 2000 nM (cf. Fig. 1 in the original publication). Finally, we arrived at two cell cultures, a
DZnep-sensitive one cultured in parallel (“K10”) as well as the resistant one, labeled “R10”.
The exact protocol is described in detail in the methods section of our paper.

3.2.2 Whole-exome sequencing analysis
After genomic DNA was isolated from the respective cell cultures, libraries were generated
with the SureSelect XT Human All Exon v4 kit by Agilent and sequenced on a Illumina
HiSeq 2000 machine. Reads were aligned using BWA-mem version 0.7.12 (Li, 2013) against
reference genome GRCh37 with decoy sequences (hs37d5.fa). Samblaster version 0.1.22 (Faust
and Hall, 2014) was used to mark duplicate reads.

3.2.3 Copy number analysis
We used the software CNVkit version 0.7.10 (Talevich et al., 2016) to compare the read depth
profiles of R10 vs K10, using the alignment files as inputs. CNV segments were annotated
with genes as described in the CNVkit manual. Copy number variants were prioritized
according to their log2 fold change and plots generated with CNVkit. To estimate the average
copy number per cell given the log2 fold change, the following formula was used:

log2FC = log2

(
p ∗ n + (1 − p) ∗ 2

2

)
(3.1)

where p is the purity or fraction of cancer cells in a sample and n the average number of
copies of a gene or segment in the cancer cells. We assume the ploidy of healthy cells to be 2.

3.3 Results
Two segments in particular showed prominent copy number changes with log2 fold changes
of ca. 4.9, on chromosome 6 and 20, respectively (cf. Fig. 3.2a for the CNV on chromosome
20). The amplified segments were circa 1.5 Mb and 150 kb in size, respectively.

To estimate the copy number n from the log2 fold change of 4.9, we re-arrange eq. 3.1 and
set p = 1 as we assume the cell culture to be clonal.
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Figure 3.2: AHCY copy number amplification found in the DZnep-resistant cell culture.
A Copy number profile of Blue1-R10 when compared to Blue1-K10 around the AHCY
locus. The normalized ratio of reads is shown on log2 scale, with gray dots depicting bins,
orange lines segments and yellow stripes annotated genes. B Evolution of the copy number
amplification through succession of culture generation for K and R based on TaqMan assay.
Beginning with culture Blue1-R6, the copy number amplification around AHCY can be
observed. C Validation of AHCY copy number gain, circled in red, using methylation arrays.
Figure from “Acquired resistance to DZNep-mediated apoptosis is associated with copy
number gains of AHCY in a B-cell lymphoma model” by Akpa et al. (2020), licensed under
CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)
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log2FC ≈ 4.9

24.9 ≈ n

2

n ≈ 60

We arrive at an estimated average copy number of ~ 60 for the gene AHCY and the proximal
part of the gene ITCH. The same applies to the genes SNHG5, SMIM11P1, HTR1E, and
CGA on chromosome 6. As discussed in sec. 3.1.3, AHCY is the enzyme that is inhibited
by DZnep. Therefore, it was the primary target for validation of the WES results. We
were able to recapitulate the copy number amplification of AHCY with a TaqMan assay.
Beginning with culture R6 after 5 months of DZnep treatment, we observe high levels of
AHCY amplification in the range of 50 copies (cf. Fig. 3.2b). Subsequent cultures (R11, R12)
show up to 400 copies in this assay. We further showed that mRNA expression and protein
expression are also elevated to similar levels as predicted by the copy number analysis (Fig.
3b and Fig. 4 in the original publication).

3.4 Discussion
For this publication, we engineered a DZnep-resistant cell culture and proposed that the most
likely cause for resistance was a prominent focal copy number amplification and overexpression
of AHCY, which is the enzyme inhibited by DZnep. This suggests that cancer cells can
successfully regulate SAH concentration even in the presence of DZnep when expressing
AHCY in large enough levels.

CNVs have long been recognized for the role they sometimes play when cells develop drug
resistance (Corcoran et al., 2010; Schimke et al., 1978). Krijgsman et al. (2014) propose that
focal CNVs are especially significant as they are the results of many selection events during
tumor evolution, giving these cells a fitness advantage. One example has been demonstrated
by Beroukhim et al. (2010), who showed that focal amplification of anti-apoptotic genes
MCL1 and BCL2L1 would lead to increased expression of these genes and protected tumor
cells from chemotherapy.

While we found one plausible mechanism for DZnep resistance, others might be possible.
We do not know which mechanism will arise in tumors in vivo when treated with DZnep.
These data will only be forthcoming if DZnep is used in more trials in the future. Our
findings suggest that AHCY status could be monitored during treatment with DZnep to
catch development of resistance in clinical practice, but it remains unclear how treatment
should be changed when observing such an event, i.e. which alternative agents to follow up
with. Optimizing treatment schedule thus remains an open question.
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Chapter 4

Neuroblastoma signaling models unveil
combination therapies targeting
feedback-mediated resistance

4.1 Introduction

4.1.1 Overview and contributions
The following chapter is based on the work published by Dorel et al. in PLoS Computational
Biology (2021). In this paper, we molecularly characterized a panel of nine high risk neurob-
lastoma cell lines and analyzed their sensitivity to agents targeting the Ras/MAPK pathway.
Using mathematical modeling based on perturbation data as well as phosphoproteomics data,
we found two possible modes of MEK inhibitor resistance. Depending on the routing of the
feedback in the signaling network, MEK inhibition might be combined with inhibition of
either RAF or IGFR to overcome resistance. The predictions were tested experimentally and
predictions were found to be correct in 2 out of 3 cases.

For this work, I contributed the following:

• I analyzed the whole-exome sequencing data, including quality control of raw sequencing
data, read alignment on genome reference GRCh37, variant calling, variant annotation
and variant prioritization.

• I uploaded these results to our self-hosted cbioportal instance to make them conveniently
accessible for collaborators.

• I compared the mutation profile of each cell line with public databases to make sure
that cell lines identities were correct and matched prior knowledge regarding driver
mutations.

4.1.2 Neuroblastoma
Neuroblastoma is a pediatric cancer that develops from cells of the sympathetic nervous
system. The disease has large variability in outcome, ranging from spontaneous regression
to death. Tumors are grouped into risk categories (low, intermediate, high), taking into
account a number of parameters like stage, age, tumor differentiation, MYCN (MYCN
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Proto-Oncogene, BHLH Transcription Factor) status, or TERT status. The outlook for
patients with low-risk neuroblastoma is rather good. They have a 5-year survival rate of
greater than 95 percent and usually receive surgery only. On the other end of the spectrum,
high risk neuroblastoma are much more challenging to treat and are responsible for up to 15
percent of total childhood cancer deaths (Park et al., 2008). Understanding the disease on a
molecular level is therefore important, as this influences optimal treatment and prognosis.

There are two well known molecular biomarkers whose importance for neuroblastoma classifi-
cation is established in the field. Most important is the MYCN amplification status, which is
also a parameter in risk classification. MYCN, like MYC, is a master transcription factor and
its copy number amplification has consequences for many downstream processes, as discussed
in sec. 3.1.2. Therefore, its importance has long been recognized (Brodeur et al., 1984).

Another feature that influences a tumor cell’s fitness is how well they can maintain telomere
length. The telomeres are particular sections of DNA at the end of each chromosome arm.
Like a protection cap, they ensure the integrity of the chromosome. Additionally, each
cell division leads to slightly shorter telomeres in healthy somatic cells. Demonstrated
by Leonard Hayflick (1961), human fetal cells in culture would divide ca. 40 to 60 times
before entering senescence. This phenomenon was termed the “Hayflick limit” or “Hayflick
hypothesis”. To keep proliferating, cancer cells can acquire traits found in stem cells to
maintain telomere length. One way, found in high risk neuroblastoma, are structural
rearrangements of TERT (Telomerase Reverse Transcriptase), leading to overexpression
of TERT (Peifer et al., 2015). While TERT is normally repressed in somatic cells, this
deregulation allows telomere maintenance in cancer cells.

4.1.3 The Ras/MAPK pathway
Familiar to any cancer researcher, the Ras/MAPK pathway is among the most important
and well studied signaling pathways. The pathway is regulating several cellular response
programs such as proliferation, differentiation, and apoptosis (Mlakar et al., 2021). Variants
in the Ras/MAPK pathway have recently attracted attention from neuroblastoma researchers
as its permanent activation is a well-known cancer driver.

Conceptually, a signaling pathway works by propagating a stimulus, e.g. from a receptor on
the cell surface, through a network of proteins. The final recipient of the signal might then
be a transcription factor in the nucleus like c-MYC, which in turn initiates transcription
of genes that promote cell growth. Most building blocks of a signaling cascade are protein
kinases. They are enzymes that modify the confirmation and activity of other proteins by
adding phosphate groups to phosphorylation sites. For instance in the Ras/MAPK pathway,
the following steps might occur for a signal from the cell membrane to reach the nucleus: A
ligand like Epidermal growth factor (EGF) binds to the epidermic growth factor receptor
(EGFR, also called ErbB1). This leads to dimerization of the receptor, which in turn allows
for kinase activity and autophosphorylation near the C-terminus (Downward et al., 1984).
The adaptor protein Grb2 then recruits guanine nucleotide exchange factors (GEFs) such
as Sos to the cell membrane. This close contact allows activation of Ras proteins (KRAS,
HRAS, NRAS) by releasing GDP for GTP (Molina and Adjei, 2006). Ras activation leads to
Raf recruitment and binding. The Raf family comprises of A-RAF, B-RAF and c-Raf, which
are so-called MAP kinase kinase kinases (MAP3K). That means that they phosphorylate
MAP kinase kinases (MAP2K) like MAP2K1 (MEK1) or MAP1K2 (MEK2), which in turn
phosphorylate MAP kinases (MAPK) like extracellular signal-regulated kinase 1 (ERK1) or
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2 (ERK2).

However, the preceding description glances over one important aspect, i.e. that the signal is
not just propagated from top to bottom like in a waterfall, but the pathway is a network with
feedback loops (cf. Fig. 4.1). For example, ERK inhibits Raf upstream (Lake et al., 2016).
This feedback can lead to signaling reactivation when MEK is inhibited (Fritsche-Guenther
et al., 2011), leading to resistance.

4.1.4 Mutations in MAPK signaling in high risk neuroblastoma

For signaling to become corrupted, usually one of the kinases involved either acquires an
activating mutation or is overexpressed due to a copy number amplification of the respective
gene. Just to put into perspective how often such events occur, consider the frequency
with which mutations in the RAS gene family occur. Taking a pan-cancer view, Prior et
al. estimate that ca. 18.7 percent of cancer patients will have a tumor with a KRAS, HRAS
or NRAS mutation, i.e. over 260 000 patients annually in the United States alone (Prior et
al., 2020).

Mutations that affect the Ras/MAPK signaling pathway also occur in a subset of high
risk neuroblastoma, with an enrichment after relapse as shown by Eleveld et al. (2015),
who observed such events in 18 out of 23 relapsed tumors. Another kinase upstream of
the Ras/MAPK axis is Anaplastic lymphoma kinase (ALK). In high risk neuroblastoma,
one review estimated that ca. 14 % of tumors harbor a gain-of-function mutation in ALK
(Trigg and Turner, 2018). These findings provide a strong rationale for targeted treatment
approaches in high risk neuroblastoma harboring alterations in the Ras/MAPK pathway.
However, over many years of investigation it has become clear that there will be no easy
success stories, as the development of resistance leads to relapse (Mlakar et al., 2021). Thus,
better approaches to target the Ras/MAPK pathway are still needed.

4.1.5 Cell line identification

One of the risks that researchers face when working with cancer cell lines is misidentification
or contamination. It is therefore important to make sure that one is indeed working with the
correct cells, because otherwise findings are baseless. One famous example is the confusion
regarding the cell line MDA-MB-435, which was in fact derived from melanoma cells when
researchers were using it as a model for breast cancer (Rae et al., 2007). It is therefore critical
that all cell cultures used in a study are identified correctly.

4.2 Methods

4.2.1 Cell lines

A panel of nine cell lines, representative for high risk neuroblastoma, was selected. We chose
the following cell lines: LAN6, SKNSH, NBEBC1, IMR32, N206, SKNAS, KELLY, NGP,
CHP212. Cultures of the cell lines were obtained as part of the Terminate-NB project.
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4.2.2 Sequencing
Before sequencing, DNA was extracted from the respective cell line cultures. Libraries were
prepared with Agilent Human All Exon v7 kit and sequenced on Illumina Hiseq 4000 or
Novaseq 6000 machines. Sequencing data quality control was done using FASTQC (Andrews
et al., 2010). The raw sequencing data is available from the European Nucleotide Archive
(ENA) under Project ID PRJEB40670.

4.2.3 Read mapping and variant calling
FASTQ files were aligned to the human genome (versions GRCh37 and GRCh38) with
BWA-mem (Li, 2013) and duplicates removed with Samblaster (Faust and Hall, 2014). Single
nucleotide variants were called with Strelka (Kim et al., 2018).

4.2.4 Matching cell lines with public databases
Public databases like the Broad Institute’s Cancer Cell Line Encyclopedia (CCLE, Barretina
et al. (2012)) or the Cell Line Project (CLP, Tate et al. (2019)) by the Wellcome Sanger
Institute collect extensive information on most cell lines used in cancer research. By using
the genomic variants published, researchers can make sure that they are indeed working with
the correct cells in culture.

One method to match variants from a cell line with the databases mentioned above is called
Uniquorn (Otto et al., 2019). After variant calling, the genomic variants of each cell lines in
the form of a variant call file (VCF) are given to Uniquorn as input, with tables denoting the
best matching cell lines in the catalog as outputs.

4.2.5 Prioritization of cancer-related variants
Contrary to most settings where a normal sample can be used to filter germline variants
from the tumor sample, this is not possible with cell lines. Variant calling will produce a
list of variants with a mix of germline and somatic ones. Most of these variants will be of
germline origin and thus not interesting for this research topic. To find cancer-related genes,
there are typically two approaches: Firstly, prioritize all variants annotated in databases as
cancer-specific drivers, e.g. using Cosmic (Tate et al., 2019) or CIViC (Griffith et al., 2017).
Or secondly, filter out all variants that occur with greater frequency than some very low
frequency, e.g. > .01 %, in a cohort of healthy people. The reasoning behind the second
approach is that a variant that is prevalent in healthy people cannot be pathogenic (on its
own). For so-called driver mutations like in the Ras/MAPK pathway, the first approach is
more direct though, as most are known already. We used both approaches consecutively to
generate a list of putative driver mutations impacting the Ras/MAPK pathway. Besides
making variant calls available in VCF format, I also provided an accessible way to explore
the data in our in-house cbioportal instance for all collaborators.

4.2.6 Drug sensitivity screen and signaling modeling
We selected 6 of 9 cell lines and designed perturbation-response experiments. These included
stimulation for 30 minutes with 4 different growth factors (IGF1, EGF, NGF, and PDGF)
and inhibition of ASK1, AKT, mTORC, MEK, RAF, PI3K for 90 minutes with 7 different
agents. Activation of six different phosphoproteins (AKT, MEK, ERK, S6K, cJUN, p38)

https://www.ebi.ac.uk/ena/browser/view/PRJEB40670
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was measured, yielding 240 data points per cell line (cf. Fig 2c in the original publication).
These data were used to model signaling responses with the R package STASNet (Dorel et
al., 2018) based on a literature pathway map (Fig. 4.1).

Figure 4.1: Ras/MAPK pathway representation extracted from the literature for model-
ing. IGF1, EGF, NGF and PDGF were used for stimulation of cells, red circles denote
inhibited kinases and yellow fill denotes measured phosphoproteins in our perturbation
experiments. Figure from “Neuroblastoma signaling models unveil combination therapies
targeting feedback-mediated resistance” by Dorel et al. (2021), licensed under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

4.3 Results
We used Uniquorn to match all variant profiles to the Cosmic database of somatic mutations in
cancer (Tate et al., 2019). For 5 ouf of 9 cell lines, we were able to confirm their identity, while
NBEBC1, N206, NGP, CHP212 were not part of the databases used for identification. One
exemplary output table generated with Uniquorn for the cell line LAN6 is shown in Tbl. 4.1.
Using the cellosaurus web tool (https://web.expasy.org/cellosaurus/), we additionally checked
that driver mutations matched public knowledge.

Table 4.1: Top Uniquorn results for cell line LAN6 when
compared to the COSMIC cell line database.

Cancer Cell Line Matches Library
LAN-6 316 COSMIC
CA46 3 COSMIC
PC-3 2 COSMIC
ML-2 2 COSMIC
OS-RC-2 2 COSMIC
STS-0421 2 COSMIC
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Cancer Cell Line Matches Library
HDQ-P1 2 COSMIC

We found that each cell line in our panel harbored at least one mutation in genes of the
Ras/MAPK pathway (Fig. 4.2A). Most prevalently were mutations in ATRX (67 % of cell
lines), followed by ALK, ATM, KRAS, NF1, NRAS and PRKDC, which were each mutated
in 3 cell lines. Results of the drug sensitivity screens showed that response to the MEK
inhibitor AZD6244 was the most variable (Fig. 4.2B) along with Rapamycin. We observe
6 cell lines being resistant (IC50 > 10µM) to AZD6244, with the 3 remaining ones being
sensitive (Fig. 4.2C). We found no significant associations when correlating drug sensitivity
of AZD6244 with mutations.

4.4 Discussion
Many high risk neuroblastoma tumors rely on increased signaling in the Ras/MAPK pathway.
Our analysis of nine neuroblastoma cell lines showed that each had at least one mutation
in the Ras/MAPK pathway. We observed that the mutational profile was not sufficient to
explain drug response to MEK inhibition. Using mathematical modeling on drug perturbation
data, we showed that negative feedback loops explain pathway re-activation and propose cell
line specific combinatorial treatments.

One limitation of the study is that the response-perturbation data only was measured at
one time point close to intervention. However, previous work showed these results to be
transferable to chronic tumors (Schubert et al., 2018). Based on the literature network,
signaling differences will be attributed to apparent feedback within the network, without
consideration for other effects like non-linear interactions or cross-talk.

Future work might investigate if results hold up in vivo when tumors relapse on treatment.
The mechanistic insights presented here can be used to design new trials with combinatorial
treatments, i.e. multiple inhibitors. For clinical application, finding the optimal combination
of drugs in high risk, Ras/MAPK active neuroblastoma without pathway readouts upon
perturbation will be challenging. The application of ex-vivo models, so-called avatars might
be needed in practice to test treatment options as proposed by Saez-Rodriguez and Blüthgen
(2020).
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Figure 4.2: Mutations insufficiently explain drug sensitivity in high risk neuroblastoma
cell lines. A Oncoprint for driver mutations in nine neuroblastoma cell lines. MYCN
and TERT status based on mRNA expression. B Heatmap of relative IC50 values for
six drugs from the same cell lines. C Cell viability assay curves for the MEK inhibitor
AZD6244. Intersection of each fitted curve with the dotted line (50 % viability) represents
the IC50. Figure from “Neuroblastoma signaling models unveil combination therapies
targeting feedback-mediated resistance” by Dorel et al. (2021), licensed under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/)
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Chapter 5

Extended Discussion

In this thesis, I presented my contributions to three publications in the field of translational
precision oncology. The projects covered different cancer entities, i.e. head and neck squamous
cell carcinoma, Burkitt lymphoma and neuroblastoma, respectively. In each setting, we
sought to discover molecular biomarkers that would explain resistance against a specific drug
or class of drugs. In Chapter 2, I presented our evidence for potentially distinct immune
evasion in a subgroup of APOBEC-enriched, HPV-negative HNSCC based on our publication
in the International Journal of Cancer (Messerschmidt et al., 2021). Chapter 3 covers our
analysis of a lymphoma cell line engineered for resistance against the drug DZnep, where
we found a copy number amplification of the gene AHCY, which is the target of DZnep.
Finally, Chapter 4 gives an overview of our work on modeling the signaling dynamics in the
Ras/MAPK pathway of high risk neuroblastoma cell lines given perturbation-response data.

5.1 Translation in precision oncology
In day-to-day practice, challenges in preclinical translational research are often the same as
in basic research. Incomplete datasets, incomplete or incompatible metadata variables, or
limited availability of specimen clashing with experimental design considerations are among
the problems that researchers encounter. These problems are often less severe when working
with tumor models, where sample availability might be constrained by time or money only.
Getting data from human tumors can be considerably harder, to the point where either the
data does not exist, one does not know it exists or one cannot get access to it. Unsurprisingly,
among all sequencing data that were used in the three projects only ten datasets (matched
WES and RNA-seq per tumor) were from cancer patients in Germany as part of DKTK
Master. For the rest of our analyses, we relied on data from cancer cell cultures and open
data (cf. Sec. 5.2.1).

Each of our projects was set at a different stage of the translational setting, although all were
preclinical. Furthest from clinical application is our work in lymphoma (Akpa et al., 2020).
Although we have found a new mechanism for cancer cells to become resistant to DZnep, it
remains unclear if this is how a tumor would evolve in practice. One of the reasons is that
a tumor has many possibilities to escape the treatment as discussed in Sec. 1.2. Therefore,
we need more evidence of an AHCY amplification in other systems and ultimately in real
tumors treated with DZnep in clinical trials.
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Closer to clinical practice were our contributions in Messerschmidt et al. (2021) and Dorel
et al. (2021), which do enable planning of prospective clinical trials for the biomarkers
identified. To collect more evidence regarding our hypothesis of an association between the
APOBEC3-induced mutation pattern, an analysis of a ICI-treated cohort with available
genomic sequencing data would have been necessary. For this project, we tried actively to
get access to an independent validation cohort, which we knew existed at a US-American
university. Most researchers in the field are quite protective of the data they generate,
especially before publishing on it themselves. Ultimately, no agreement could be reached
and we proceeded with our own cohort of ten patients. At the time of writing, our work has
not been cited in publication trying to validate our findings, but was picked up in a number
of review articles (Affolter et al., 2022; Stampe et al., 2021; Warren et al., 2022). At least
theoretically, the path forward is clear and analyses can be conducted as more data becomes
available. DKTK Master continuously adds more data, so that now 68 cases with either
HNSCC or salivary gland carcinoma are available for analysis (Horak et al., 2021).

What makes adoption of the mathematical model in Dorel et al. in a routine clinical setting
hard is the need for perturbation experiments on patient-derived models. This is still a
hurdle, as it takes not only time and money, but additionally needs established processes
and interfaces to work. The use of short-term cell cultures to explore sensitivity to drug
combinations remains an area of active research (Bosdriesz et al., 2022) that is likely to make
its way into clinical practice at some point.

5.2 Reproducibility in translational research
Translational medicine is not immune to the problem known as the reproducibility crisis,
sometimes also called replication crisis. In an alarming publication, researchers at Bayer
showed that only 20 to 25% of selected studies on drug targets could be replicated in-
house (Prinz et al., 2011). Another current meta-analysis of 193 experiments in preclinical
cancer biology from 53 publications showed that information was only sufficient to repeat
50 experiments and of those, the median effect sizes were 85% lower than initially reported
(Errington et al., 2021).

In translational cancer research, work might be done initially in cell lines, organoids, or other
models like tumors in immunosuppressed mice. These models are compromised regarding the
degree to which they can represent a real tumor. In vivo tumors can take years or decades
to grow for instance (Fearon and Vogelstein, 1990), which means that tumor models have
entirely different time-scales and dynamics. They also interface with the immune system and
adjacent normal cells, which means the complexity is higher than in tumor models (Bożyk
et al., 2022). Additionally, no tumor is clonal, i.e. there often is a considerable degree of
genetic heterogeneity between tumor cells (McGranahan et al., 2015). What is therefore
needed is not just reproducibility of an experiment, but generalization (Yarkoni, 2022). A
gene or signature that is proposed as a biomarker in cancer needs to be predictive not only in
cell cultures, organoids or mice, but in multiple cohorts, possibly in multiple (related) tumor
entities, before it should be considered a good candidate for application in the clinic.

5.2.1 Open research: open access, open data, open source
Making data available to other researchers as part of a publication is important because it
allows for three things. First, it makes the data that led to the conclusions in the paper part
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of the scientific record. That in turn allows others to replicate the analysis. Finally, these
data can be incorporated into new analyses or used as validation data in other studies. The
gold standard for open data is described in the FAIR Guiding Principles (Wilkinson et al.,
2016). FAIR stands for Findable, Accessible, Interoperable, and Reusable. Making data
user-friendly to access and re-use, these principles go beyond open data. Initiatives such as
The Cancer Genome Atlas show how much value accessible data can generate, as its data has
been used in countless publications to this day and will in the future. National initiatives
in Germany such as GHGA (“The german human genome-phenome archive,” 2020) and
genomDE (“genomDE - nationale strategie für genommedizin,” 2022) will establish central
repositories for medical data that offer researchers access to medical data for their research.

Showing our commitment to the principles of open research, the three selected publications
presented in this dissertation were published open access, i.e. under the CC-BY 4 license by
Creative Commons (creativecommons.org). The sequencing data for the panel of neuroblas-
toma cell lines is available from the European Sequencing Archive (ENA) under accession
PRJEB40670 for other researchers to download and re-use.

The third component of open research in addition to open access publication and open data is
software and code. By sharing the code that their analyses relied on, researchers are enabling
others to follow and comprehend each step unambiguously, which would not be the case
when reading a description of said software in the methods part of a publication. Further,
Vandewalle (2012) could show that sharing code was associated with research impact. In this
spirit, we try to make most of the software we develop at the BIH Core Unit Bioinformatics
publicly available, such as our pipeline snappy for processing of high-throughput sequencing
data (https://github.com/bihealth/snappy-pipeline), our tool to detect sample swaps based on
HLA types (https://github.com/bihealth/hlama, Messerschmidt et al. (2017)) or our system
to demultiplex Illumina sequencing data (https://github.com/bihealth/digestiflow-demux,
Holtgrewe et al. (2019)).

https://www.ebi.ac.uk/ena/browser/view/PRJEB40670
https://github.com/bihealth/snappy-pipeline
https://github.com/bihealth/hlama
https://github.com/bihealth/digestiflow-demux
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Abstract

Immune checkpoint inhibition leads to response in some patients with head and

neck squamous cell carcinoma (HNSCC). Robust biomarkers are lacking to date. We

analyzed viral status, gene expression signatures, mutational load and mutational

signatures in whole exome and RNA-sequencing data of the HNSCC TCGA dataset

(n = 496) and a validation set (DKTK MASTER cohort, n = 10). Public single-cell

gene expression data from 17 HPV-negative HNSCC were separately reanalyzed.

APOBEC3-associated TCW motif mutations but not total single nucleotide variant

burden were significantly associated with inflammation. This association was

restricted to HPV-negative HNSCC samples. An APOBEC-enriched, HPV-negative

subgroup was identified, that showed higher T-cell inflammation and immune

checkpoint expression, as well as expression of APOBEC3 genes. Mutations in

immune-evasion pathways were also enriched in these tumors. Analysis of single-

cell sequencing data identified expression of APOBEC3B and 3C genes in malignant

cells. We identified an APOBEC-enriched subgroup of HPV-negative HNSCC with

a distinct immunogenic phenotype, potentially mediating response to

immunotherapy.

K E YWORD S

immune checkpoint inhibition, head and neck cancer, APOBEC, mutational signature, tumor

inflammation

1 | INTRODUCTION

Cancer is a disease of the genome in that cancer cells have acquired

somatic variants that prove advantageous for their growth. These muta-

tions lead to changes in affected proteins and eventually cellular trans-

formation. Altered proteins can be recognized by the immune system

through presentation of peptides by the major histocompatibility com-

plex (MHC), which allows for eradication of the tumor. Immune evasion

is therefore considered one of the hallmarks of cancer.1 Immune check-

point inhibitors (ICI), improving immune recognition and T-cell activa-

tion, are an effective treatment option in a subgroup of patients in

several cancer types including head and neck squamous cell carcinoma

(HNSCC).2 The presence of an interferon-gamma inflamed gene expres-

sion signature (IFNG signature or T-cell inflamed phenotype3,4), expres-

sion of immune checkpoint PD-L12 and tumor mutational burden are

associated with response.5,6 However, effective predictive biomarkers

to guide ICI treatment in the clinic are lacking to date.

HNSCC is a common cancer type worldwide. It is mainly caused

by tobacco and alcohol consumption, as well as infection with the

human papilloma virus (HPV).7 These two groups (HPV-positive and

HPV-negative) are distinct entities with different outcome and differ-

ent tumor biology.8 A better responsiveness of HPV-associated

tumors to ICI has been suggested by early clinical data3 but not con-

firmed in other studies.2,9 Immune activation due to immunological

“foreignness” in virally induced cancers is a potential mechanism of

differential immune activation.10 Additionally, an intracellular antiviral

response mediated by the APOBEC3-family of proteins leads to the

accumulation of mutations and tumorigenesis.11 In several cancer

types, APOBEC-mediated tumorigenesis is increasingly recognized as

an important mechanism, even when independent of viral infec-

tions.12,13 APOBEC activity can be inferred from an analysis of muta-

tional signatures in the tumor genome. A so-called TCW motif has

been identified as an APOBEC-specific mutational signature.14 The

role of APOBEC-induced mutations in HPV-negative HNSCC and its

What's new?

Head and neck squamous cell carcinoma (HNSCC) is some-

times susceptible to immune checkpoint inhibitors, and bio-

markers are needed to help identify which tumors are most

likely to respond. Using the Cancer Genome Atlas, these

authors evaluated 496 HSNCCs by HPV status, gene expres-

sion signatures, mutational load, and mutational signatures.

They found that increased inflammation was associated with

APOBEC3-induced mutations in HPV-negative cancers. This

newly identified APOBEC-enriched, HPV-negative subgroup

showed higher immune checkpoint expression, and also

more mutations in immune-evasion pathways, suggesting

this may be a way to identify candidates for immune check-

point inhibitor therapy.
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association with immune activation is unclear. We analyzed muta-

tional signatures to uncover mechanisms driving tumor inflammation

in HNSCC.

2 | MATERIALS AND METHODS

2.1 | TCGA datasets

TCGA mutation data sets were downloaded for HNSCC15 (n = 502),

lung adenocarcinoma16 (LUAD, n = 542), urothelial bladder carci-

noma17 (BLCA, n = 395) and lung squamous cell carcinoma18 (LUSCC,

n = 178) from BROAD firehose in MAF format.

2.2 | Identification of an APOBEC-induced
subgroup and APOBEC mutational signature

Somatic mutation data in a MAF file was split into separate VCF files,

one per TCGA sample. To annotate putative APOBEC induced muta-

tions, we used the method described by Roberts et al,19 annotating

C>T and C>G variants in TCW (TCA, TCT) motifs and their reverse

complements, respectively. The number of cytosine mutations in the

TCW motif and outside of it in each sample were compared to the

respective occurrences of C/G and the TCW motif on chr1 of the

human genome with Fisher's exact test.

Values of P were subsequently Holm-Bonferroni corrected and all

cases with P0 < .05 were labeled APOBEC-enriched.

COSMIC single base substitution (SBS) signature contributions

for the mutational profile of each tumor sample were downloaded

from msignaturedb.20 Samples were grouped and a Wilcoxon rank

test was used to test for differences between groups.

2.3 | HPV status

HPV status was assigned based on the number of reads mapping to

HPV genomes, which are included as separate contigs in the bam files

(genome release 38) available from GDC Portal. We used a cutoff of

3500 reads to label a sample as HPV-positive. Results were checked

against the HPV expression signature described by Buitrago-Pérez et

al21 and a derived reduced signature containing only gene CDKN2A

and SYCP2 as well as prior results by Tang et al22 and TCGA clinical

annotation for consistency.

2.4 | Expression data analysis and IFNG signature

Expression data for sets of genes (“RNA Seq V2 RSEM”) was down-

loaded from the HNSCC TCGA provisional cohort15 from cbioPortal.

org.23 Samples that lacked either mutational or expression data were

excluded. The IFNG signature was computed as the mean of the log2-

transformed RSEM v2 expression values per sample.

2.5 | Identification of gene expression subtypes

HNSCC samples were attributed to gene expression subtypes. Basal,

Classical and Inflamed/Mesenchymal cluster centroids were down-

loaded from the supplementary material of Keck et al.8 Normalized

RSEM expression values from TCGA were log2-transformed and scaled.

The nearest centroid in terms of Euclidean distance was then assigned

as the label of a sample. To test for independence of variables between

Keck classes and APOBEC groups Fisher's exact test was used.

2.6 | Immune population metagene analysis

Gene expression signatures, also called metagenes, for tumor-infiltrat-

ing immune populations were acquired from The Cancer Immunome

Database24 (TCIA.at). Enrichment of signatures was computed for

each immune population in each sample with the R package GSVA

using the method gsva25. Differential metagene expression was

assessed with limma.26

2.7 | Analysis of immunotherapy-essential genes

We analyzed mutations in 554 genes which have been shown to be

essential for cancer immunotherapy in a CRISPR assay.27 To identify

enrichment of mutations in these genes, we used a Fisher exact test

considering the number of cases in HPV-negative/APOBEC-enriched

and HPV-negative/APOBEC-negative respectively, and the number of

mutated genes from the aforementioned gene set in each group. Vari-

ant effect was annotated with Jannovar.28

2.8 | Analysis of APOBEC timing

Variant allele fractions (VAF) of TCW mutations compared to all other

variants were used to infer the timing of APOBEC activity. Patients

harboring significantly distinct variant allele fractions for TCW vari-

ants compared to all other variants of a given case were classified as

early APOBEC activation, if the TCW variants had higher VAF, or as

late activation, if they had lower overall VAF compared to all other

variants. Patients with no difference or too few variants were grouped

as “no preference”. The false-positive rate was controlled with the R

package q value,29 using a threshold of 0.2.

2.9 | Single-cell expression

This analysis was based on the digital expression matrix, holding the

expression values of 23 686 genes for 5902 cells of 17 tumor samples

(GSE103322), together with a classification into malignant and various

nonmalignant cell types provided by the authors.30 Data were projec-

ted into tSNE coordinates using the standard Seurat workflow31 and

visualized using feature plots and violin plots.
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2.10 | Independent validation of IFNG signature
scores

Patients with advanced cancers, an ECOG performance status of 0–1

and an age < 50 years were eligible for enrollment in the DKTK-MAS-

TER program across cancer centers in Germany. The DKTK-MASTER

trial was approved by local ethics committees (Heidelberg and Berlin).

Written informed consent was obtained from all participating patients.

Whole-exome and RNA sequencing were performed on fresh-frozen

tissues. From RNA-seq data for all cases, HPV status was predicted as

described above. IFNG signature was computed as described above

after generating transcript abundances with salmon32 against

ENSEMBL v75. The mapping of gene symbols used and their respec-

tive ENSEMBL ids are shown in Table S1.

3 | RESULTS

3.1 | Identification of inflammation-associated
mutational signatures

Mutation and gene expression data from head and neck squamous cell

carcinoma samples were downloaded from The Cancer Genome Atlas

(n = 496). The presence of a T-cell inflamed microenvironment was

F IGURE 1 Inflammation as measured by an Interferon-gamma signature score is associated with APOBEC activity, not total variant count. A,

Relationship between total single nucleotide variant count and the six-gene IFNG signature. No significant correlation was found between these
measures (R = −0.03 ± 0.08). B, Relationship between the six-gene IFNG signature and the number of C>T and C>G mutations in TCW motifs.
Colors indicate HPV-status (red: HPV-negative, n = 432, blue: HPV-positive, n = 64). A significant correlation between TCW mutations and the
IFNG signature was identified in HPV negative cases (R = 0.18, P = 1 × 10−4). C, The frequency of base exchange motifs (eg, C>A substitution
with incorporation of the bases at the 50 and 30 end, thus allowing 96 potential mutation types) was compared between the patients with the
highest and lowest IFNG signature within the TCGA cohort. The top 20% of inflamed cases showed a significant enrichment of variants in the
APOBEC3-associated TCW context (*P < .05, **P < .01, all P values were Bonferroni corrected) [Color figure can be viewed at
wileyonlinelibrary.com]
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assessed in the samples by analysis of a six-gene IFNG signature.33

Total count of single nucleotide variants (SNV) did not correlate signif-

icantly with the IFNG signature (Figure 1A). Next, we analyzed associ-

ations between the T-cell inflamed gene expression phenotype and

mutational signatures. C>T and C>G mutations are referred to as

TCW mutations, as they preferentially occur in TCA and TCT contexts

(TCW motif), indicating APOBEC3-induced mutagenesis. TCW muta-

tions were significantly enriched in patients with high expression of

the IFNG signature (Figure 1C).

3.2 | Analysis of HPV-status on inflammation and
mutational signatures

HNSCC consists of biologically distinct HPV-positive and -negative

subgroups. We identified 64 HPV-positive (53 HPV16, 8 HPV33 and

3 HPV35) and 432 HPV-negative samples in the TCGA dataset.

IFNG signature score, total SNV count, counts of TCW mutations

and the ratio of the number of TCW mutations compared to the num-

ber of total mutations (TCW ratio) were assessed in both groups.

Mutational load was significantly more pronounced in HPV-negative

samples than in HPV-positive (Figure 2A, P = 1.7 × 10−4), whereas the

IFNG signature was significantly higher in HPV-positive samples (Fig-

ure 2B, P = 3.7 × 10−5). Further, we compared the ratio of the number

of TCW mutations/number of total mutations as a surrogate measure

for APOBEC3 mutational activity, which was significantly higher in

HPV-positive tumors (Figure 2C, P = 2.6 × 10−3). We then analyzed

the association between TCW mutations and inflammation in HPV-

positive and HPV-negative HNSCC and found a significant correlation

only among HPV-negative HNSCC (Figure 1B). An association

between APOBEC-induced TCW-mutations and the IFNG signature

could be validated in independent LSCC, LUAD and BLCA datasets

(Figure S1).

3.3 | Identification of an APOBEC-enriched HPV-
negative subgroup

Since the association between APOBEC-induced mutations (TCW

mutations) and the T-cell inflamed phenotype was restricted to HPV-

negative samples, we grouped the HPV-negative samples into

APOBEC-enriched (n = 84) and APOBEC-negative (n = 348) cases. This

newly defined HPV-negative, APOBEC-enriched subgroup showed a

higher relative contribution for both APOBEC-associated mutational

Signatures 2 and 13 (Figure S2A). Further, the scores of Signatures 2

and 13 ranked higher in the APOBEC-enriched group when compared

among the other COSMIC SBS signatures per sample (Figure S2B).

We observed that the HPV-negative subgroup with an enrich-

ment of APOBEC-induced mutations showed a significantly higher

IFNG signature score compared to all other HPV-negative cases

(HPV-negative, APOBEC-negative; Figure 3A). To exclude the possi-

bility that this signal came from samples falsely classified as HPV-neg-

ative, we repeated the analysis by removing all HPV-negative cases

with more than five reads mapping to any of the HPV contigs without

a change in results (Figure S4).

In addition to differences observed regarding overall inflammation,

HPV-negative, APOBEC-enriched cases also exhibited higher predicted

infiltration of myeloid-derived suppressor cells (MDSC), Type 17T-

helper cell and effector memory CD8+-cell gene expression signatures

(Figure S5). Further, differential expression of immune checkpoints was

analyzed between groups. A significantly higher gene expression was

identified for CD274 (PD-L1), CTLA4, LAG3 and PDCD1 (PD-1) in

APOBEC-enriched cases. Only VTCN1 showed a significantly lower

gene expression in APOBEC-enriched cases (Figure 3B).

Previous analyses have established different HNSCC subgroups

based on gene expression.8 The APOBEC-enriched HPV-negative

samples were assigned to these subgroups and were significantly

enriched in the inflamed/mesenchymal cluster (Table S2).

F IGURE 2 HPV status is an important variable in HNSCC. A, Boxplot of total single nucleotide variant count, grouped by HPV status. Total
single nucleotide variant count was significantly higher in HPV-negative cases (P = 1.7 × 10−4). B, Boxplot of INFG signature score, grouped by
HPV status. The six-gene IFNG signature score was significantly higher in HPV-positive samples (P = 3.7 × 10−5). C, Boxplot of ratio of TCW
variants to total single nucleotide variant count, grouped by HPV status. The TCW-ratio was significantly higher in HPV-positive samples
(P = 2.6 × 10−3)
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We additionally analyzed mutations in immunotherapy-relevant

genes.27 The APOBEC-enriched subgroup showed significantly more

variants with functional impact in immunotherapy-essential genes

(Table 1, P = 1.8 × 10−4). Among those genes, HLA-A showed the

highest relative enrichment among APOBEC-enriched cases and

remained significant after correcting for multiple testing (Table S3).

Among HPV-negative samples, smokers were significantly under-

represented (P = .02, Table S4) in the APOBEC-enriched group, no sig-

nificant differences were observed for alcohol consumption. Further,

we observe nonrandom associations between tumor site and HPV/

APOBEC group (P < .05, Table S5) with an enrichment of APOBEC-

associated cases in tumor arising from the oral cavity and alveolar

ridge but an underrepresentation of laryngeal tumors and tumors of

the oral tongue. No difference in overall survival was identified

between HPV-negative APOBEC-enriched and APOBEC-negative

groups (Figure S3).

F IGURE 3 HPV-negative, APOBEC-enriched tumors exhibit
higher inflammation, higher immune checkpoint expression. A, IFNG
signature scores, grouped by HPV status and APOBEC enrichment for
HPV-negative cases. HPV negative, APOBEC-enriched HNSCC
showed a significantly higher IFNG signature than APOBEC-negative
samples (P = 1.5 × 10−4). No significant difference between HPV-
positive and HPV-negative/APOBEC-enriched samples was found. B,
Gene expression of five immune checkpoints was significantly
different between APOBEC-enriched and APOBEC-negative HPV-
negative samples (P0 < .05 after Benjamini-Hochberg correction). All
but VTCN1 showed significantly higher expression among APOBEC-
enriched cases [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 HPV-negative APOBEC-enriched and APOBEC-negative groups with counts of hits in gene set identified by Patel et al

HPV-negative/APOBEC-enriched HPV-negative/APOBEC-negative P value

No. of cases 84 348

No. of hits (collapsed to genes)/No. of cases 7.6 (638 total) 4.7 (1643 total) 1.8E−4

No. of hits with functional impact (collapsed to

genes)/No. of cases

5.7 (476 total) 3.7 (1277 total) 8.8E−4

No. of hits (collapsed to genes), without HLA genes/

No. of cases

7.3 (617 total) 4.7 (1623 total) 4.1E−4

No. of hits with functional impact (collapsed to

genes), without HLA genes/No. of cases

5.5 (461 total) 3.6 (1259 total) 1.6E−3

Note: Two sets of Fisher exact tests were carried out, first considering a gene mutated if any variant was found. Second, only mutations with putative func-

tional impact (MODERATE, HIGH flags as returned by Jannovar, eg, missense or stop gain variants) were considered. Both times, the APOBEC-enriched

group showed a significant enrichment for mutations in immunotherapy related genes compared to the APOBEC-negative group. Tests were re-done with-

out variants in HLA genes to exclude possible false-positive calls from variant calling.

F IGURE 4 Cases with early APOBEC-activation show higher
inflammation. IFNG signature score in HPV-negative cases for each
group of APOBEC3 activity timing. n (APOBEC early) = 15, n
(APOBEC late) = 50, n (no preference) = 367
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3.4 | APOBEC activation is an early event in some
HNSCC

To identify temporal patterns of APOBEC activation during tumor

evolution, we analyzed the variant allele frequency (VAF) of TCW

mutations in HNSCC. Cases with early TCW variants exhibited a sig-

nificantly higher IFNG signature score compared to late TCW activa-

tion (Figure 4). We repeated the analysis for the TCGA cohorts of

BLCA and LUAD. For BLCA, we did not observe any difference

between the groups. However, in LUAD, we observed the opposite

effect. Cases with early APOBEC activation were found to exhibit

lower inflammation scores than the other two groups, which has been

described before34 (Figure S6).

3.5 | Identification of APOBEC3B and APOBEC3C
expression in HNSCC

Gene expression of APOBEC3 family genes was analyzed in the TCGA

cohort. HPV-positive samples exhibited significantly higher total

APOBEC3 gene expression than HPV-negative samples (Figure 5A).

Among HPV-negative samples, the APOBEC-enriched subgroup

showed significantly higher expression of APOBEC genes than the

APOBEC-negative subgroup. When analyzing APOBEC gene expres-

sion by gene, APOBEC3A was most prominently overexpressed in

HPV-negative, APOBEC-enriched samples (Figure S7). Since bulk gene

expression analyses do not differentiate between tumor and stroma,

we analyzed gene expression data in single-cell transcriptome data of

HPV-negative HNSCC30 (GSE103322).

F IGURE 5 Independent single-cell expression data demonstrates the expression of APOBEC3C and APOBEC3B in tumor cells. A, Aggregated

expression of APOBEC3 family genes for the three groups HPV-positive, HPV-negative/APOBEC-enriched, HPV-negative/APOBEC-negative.
HPV-positive cases show significantly higher APOBEC3 expression than HPV-negative cases. Among those, the APOBEC-enriched subgroup
exhibits significantly higher APOBEC3 gene expression. B, tSNE projection of all cells from 17 single-cell transcriptomics-profiled cases,30

grouped into cell types. C, Violin plots of APOBEC3 gene expression between malignant (red) and nonmalignant cells (blue). APOBEC3B and
APOBEC3C gene expression were detected in tumor cells. D, tSNE plots with projected expression of genes in the APOBEC3 family in 17 single-
cell data sets of HPV-negative cases.30 Biomarker-based groups of malignant (red) and nonmalignant cells (blue). Expression strength indicated by
color intensity, with gray indicating that no expression was detected [Color figure can be viewed at wileyonlinelibrary.com]
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Among those, APOBEC3B and APOBEC3C gene expression were

highest in malignant cells (Figure 5B-D).

3.6 | Independent validation of findings

In an independent cohort of 10 HPV-negative cases of HNSCC,

sequenced for the DKTK MASTER program from six cancer centers in

Germany, we set out to validate these findings. We identified one

HPV-negative patient with an APOBEC-enriched mutational signa-

ture. Again, we computed the IFNG signature score and compared it

between the already defined groups (Figure 6). The HPV-negative

case with APOBEC enrichment (Figure S8, data available in Table S6)

showed the highest inflammation in this cohort.

4 | DISCUSSION

Immune checkpoint inhibition has become an important treatment

option in HNSCC, providing a benefit in a subset of patients.35 The

predictive value of a T-cell inflamed phenotype, as defined by an IFNG

expression signature, has been shown in HNSCC and other tumor

types.3,4 Additionally, a high mutational load is correlated with

response to immune checkpoint inhibition.5 Yet, in our and other ana-

lyses, no clinically useful correlation between those two predictive

markers was shown.6

To better understand differential immune activation and evasion in

HNSCC, we analyzed the relationship between different mutational sig-

natures and inflammation in HNSCC. An APOBEC-induced TCW muta-

tional signature was significantly associated with a T-cell inflamed

phenotype. This association could be validated in other tumor types,

including lung and bladder cancer. Previous studies also support the

role of APOBEC-induced mutational signatures in immune activation in

several cancer types.36,37 Among tumors with a high APOBEC muta-

tional burden, Faden et al described HNSCC to have the highest IFNG

levels, especially among HPV-positive cases.38 In addition to these ana-

lyses, we show that, despite overall high levels of inflammation and

APOBEC mutagenesis in HPV-positive HNSCC, a dose-dependent

association between TCW mutations and inflammation is restricted to

HPV-negative cases, thus leading to the establishment of an APOBEC-

associated subgroup with differential immune activation among HPV-

negative samples. We attribute the difference between HPV-positive

and HPV-negative cases to the overall high impact of APOBEC-induced

tumorigenesis in HPV-positive HNSCC11 and a generally higher level of

IFNG activation in these tumors. The activation of APOBEC in non-

virally associated tumors has also been shown across cancer types.14

This signature has been proposed to occur later in tumorigenesis and to

induce branched evolution in lung cancer.34,39

Our own analyses in HNSCC rather suggest an early APOBEC

activation in a subset of HPV-negative HNSCC with an immunogenic

phenotype, thus proposing a different oncogenic mechanism in

HNSCC, further supporting the idea of a distinct subgroup. It is cur-

rently unclear what drives this APOBEC activation. Previous analyses

have suggested a link with single strand exposure and DNA repair

defects.40,41 It is also conceivable that short-term viral exposure

induces APOBEC activation and carcinogenesis without genomic viral

integration in some patients. Faden et al also suggested a potential

role of germline APOBEC polymorphisms in mutagenesis.38

A subgroup of HPV-negative oral squamous cell carcinoma patients

in never-smokers, never-drinkers with high tumor inflammation has

been described in the literature.42 This agrees with our observation,

since smokers were underrepresented in the APOBEC-associated sub-

group that was also enriched for tumors arising from the oral cavity.

Further research focusing on the impact of short-term viral exposure

and APOBEC-activation or virus-independent mechanisms of APOBEC-

activation, especially in this hard-to-treat subgroup, are of interest.

We were not able to immunohistochemically analyze APOBEC

protein expression in HNSCC and HNSCC patient-derived xenograft

models, a well-known problem with currently available APOBEC3

antibodies.12 In the TCGA data, APOBEC3A was most prominently

expressed in the APOBEC-enriched subgroup. However, the tumor

microenvironment poses a challenge in the analysis of bulk data.

Inflammatory signatures, such as the IFNG signature, are associated

with more immune infiltration and lower tumor purity. We therefore

resorted to a re-analysis of publicly available single-cell gene expres-

sion data. Doing so, we were able to circumvent the bias of measuring

APOBEC3 activity in the tumor microenvironment.43 Here, expression

of APOBEC3 subtypes 3B and 3C was most prominent among malig-

nant cells. APOBEC3B has also been identified in previous publica-

tions on APOBEC activation in cancer, including HNSCC,13,37 whereas

the role of APOBEC3C remains less well defined. Since transient

expression of APOBEC3 subtypes has been described,44 short term

activity of other APOBEC3-subtypes might cause mutations in the

absence of APOBEC gene expression in later analyses, thus poten-

tially explaining the observed differences. The observed different

F IGURE 6 Independent analysis in a clinical cohort. IFNG
signature score in the head-and-neck DKTK Master cohort grouped
by APOBEC status for all HPV-negative cases. The only identified
HPV-negative/APOBEC-enriched sample harbored the highest IFNG
gene expression signature score
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contributions of APOBEC mutational Signatures 2 and 13 between

HPV-positive and HPV-negative samples might also reflect different

underlying APOBEC3-activity.

It is currently unclear what causes the T-cell inflamed phenotype

in APOBEC-induced cancers. We were able to show that these

tumors, despite harboring the same overall mutational load, show a

distinct immune escape, represented by an enrichment for mutations

in immunotherapy-essential genes (such as HLA-A), expression of reg-

ulatory immune signatures, including myeloid-derived, as well as

expression of immune checkpoint molecules. Furthermore, these sam-

ples cluster in the immunogenic mesenchymal/inflamed subgroup.8 It

is possible that APOBEC-induced mutations are more prone to detec-

tion by the immune system, due to their association with viral infec-

tions. Yet, our own analyses in APOBEC-induced cancers did not

show an increase in bioinformatically predicted neo-antigens (data not

shown). Therefore, the reasons for the different mechanisms of

immune evasion in APOBEC-associated HPV-negative HNSCC are

not known but might also be relevant in other tumor types including

urothelial45,46 or lung cancer.37 Does APOBEC-activity translate into

differential response to immune checkpoint inhibition? Early studies

suggest that APOBEC-associated tumors might indeed respond better

to ICI therapy.37,47 We were able to find some supporting evidence

for the differential immune activation also within the recurrent/meta-

static DKTK-MASTER cohort. However, this cohort is small and does

not represent the demographics of the majority of HNSCC patients.

Thus, further research is required to analyze this association, espe-

cially in patient cohorts treated with immune checkpoint inhibition.

Mutational signatures inferred from DNA sequencing and specifically

APOBEC3-associated motifs should be further investigated as a

potentially predictive biomarker for immune checkpoint inhibition in

HPV-negative HNSCC.

ACKNOWLEDGEMENTS

This work was funded by a grant awarded by Berliner

Krebsgesellschaft e.V. to DTR, FK and DB. DTR is a participant in the

Berlin Institute of Health - Charité Clinical Scientist Program funded

by the Charité - Universitätsmedizin Berlin and the Berlin Institute of

Health. The DKTK MASTER trial is funded by the German Cancer

Consortium (DKTK). The results shown here are in part based upon

data generated by the TCGA Research Network: http://

cancergenome.nih.gov/

CONFLICT OF INTEREST

A. S. reports receiving research funding from Chugai, BMS, Ventana

Roche and honoraria from Bayer, Novartis, BMS, AstraZeneca, Roche,

Takeda, ThermoFisher, Illumina (Advisory Board) and Takeda, Roche,

BMS, Illumina, AstraZeneca, Novartis, ThermoFisher, Bayer, MSD, Lilly

(Speaker). W. W. reported honoraria unrelated to the current work

(speaker's bureau and advisory board) from AstraZeneca, MSD, BMS,

Bayer, Roche, Pfizer, Merck, Lilly, Novartis, Takeda, Amgen, Astellas

and Research Funding from Bruker, MSD, BMS and Roche. The other

authors report no potential conflict of interest that is relevant to

this work.

DATA ACCESSIBILITY

Data sources and handling of the publicly available data used in our

study are described in the Materials and Methods. The other data and

further details are available from the corresponding author upon

request.

ETHICS STATEMENT

The DKTK MASTER trial was approved by the local ethics commit-

tees. Written, informed consent was obtained from all participating

patients.

ORCID

Clemens Messerschmidt https://orcid.org/0000-0001-8632-656X

Benedikt Obermayer https://orcid.org/0000-0002-9116-630X

Konrad Klinghammer https://orcid.org/0000-0001-6425-4833

Sebastian Ochsenreither https://orcid.org/0000-0001-6024-4312

Denise Treue https://orcid.org/0000-0002-0657-5505

Albrecht Stenzinger https://orcid.org/0000-0003-1001-103X

Stefan Fröhling https://orcid.org/0000-0001-7907-4595

Christian H. Brandts https://orcid.org/0000-0003-1732-2535

Ingeborg Tinhofer https://orcid.org/0000-0002-0512-549X

Ulrich Keilholz https://orcid.org/0000-0001-6773-9406

Dieter Beule https://orcid.org/0000-0002-3284-0632

Damian T. Rieke https://orcid.org/0000-0003-0027-7977

REFERENCES

1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation.

Cell. 2011;144:646-674.

2. Ferris RL, Blumenschein G, Fayette J, et al. Nivolumab for recurrent

squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;

375:1856-1867.

3. Seiwert TY, Burtness B, Mehra R, et al. Safety and clinical activity of

pembrolizumab for treatment of recurrent or metastatic squamous

cell carcinoma of the head and neck (KEYNOTE-012): an open-label,

multicentre, phase 1b trial. Lancet Oncol. 2016;17:956-965.

4. Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ-related mRNA profile

predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127:

2930-2940.

5. van Allen EM, Miao D, Schilling B, et al. Genomic correlates of

response to CTLA-4 blockade in metastatic melanoma. Science (80- ).

2015;350:207-211.

6. Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers

for PD-1 checkpoint blockade–based immunotherapy. Science (80- ).

2018;362:eaar3593.

7. Rieke DT, Klinghammer K, Keilholz U. Targeted therapy of head and

neck cancer. Oncol Res Treat. 2016;39:780-786.

8. Keck MK, Zuo Z, Khattri A, et al. Integrative analysis of head and neck

cancer identifies two biologically distinct HPV and three non-HPV

subtypes. Clin Cancer Res. 2015;21:870-881.

9. Mehra R, Seiwert TY, Gupta S, et al. Efficacy and safety of

pembrolizumab in recurrent/metastatic head and neck squamous cell

carcinoma: pooled analyses after long-term follow-up in KEYNOTE-

012. Br J Cancer. 2018;119:153-159.

10. Blank CU, Haanen JB, Ribas A, Schumacher TN. The cancer immuno-

gram. Science (80-). 2016;352:658-660.

11. Henderson S, Chakravarthy A, Su X, Boshoff C, Fenton TR. APOBEC-

mediated cytosine deamination links PIK3CA helical domain muta-

tions to human papillomavirus-driven tumor development. Cell Rep.

2014;7(6):1833-1841. https://doi.org/10.1016/j.celrep.2014.05.012

MESSERSCHMIDT ET AL. 2301



12. Venkatesan S, Rosenthal R, Kanu N, et al. Perspective: APOBEC

mutagenesis in drug resistance and immune escape in HIV and cancer

evolution. Ann Oncol. 2018;29:563-572.

13. Burns MB, Temiz NA, Harris RS. Evidence for APOBEC3B mutagene-

sis in multiple human cancers. Nat Genet. 2013;45:977-983.

14. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of muta-

tional processes in human cancer. Nature. 2013;500:415-421.

15. Lawrence MS, Sougnez C, Lichtenstein L, et al. Comprehensive geno-

mic characterization of head and neck squamous cell carcinomas.

Nature. 2015;517:576-582.

16. Collisson EA, Campbell JD, Brooks AN, et al. Comprehensive molecu-

lar profiling of lung adenocarcinoma. Nature. 2014;511:543-550.

17. Weinstein JN, Akbani R, Broom BM, et al. Comprehensive molecular

characterization of urothelial bladder carcinoma. Nature. 2014;507

(7492):315-322. https://doi.org/10.1038/nature12965

18. Hammerman PS, Voet D, Lawrence MS, et al. Comprehensive geno-

mic characterization of squamous cell lung cancers. Nature. 2012;

489:519-525.

19. Roberts SA, Lawrence MS, Klimczak LJ, et al. An APOBEC cytidine

deaminase mutagenesis pattern is widespread in human cancers. Nat

Genet. 2013;45:970-976.

20. Huang PJ, Chiu LY, Lee CC, et al. MSignatureDB: a database for deci-

phering mutational signatures in human cancers. Nucleic Acids Res.

2018;46(D1):D964-D970. https://doi.org/10.1093/nar/gkx1133

21. Buitrago-Pérez A, Garaulet G, Vázquez-Carballo A, Paramio JM,

García-Escudero R. Molecular signature of HPV-induced carcinogene-

sis: pRb, p53 and gene expression profiling. Curr Genomics. 2009;10:

26-34.

22. Tang K-W, Alaei-Mahabadi B, Samuelsson T, Lindh M, Larsson E. The

landscape of viral expression and host gene fusion and adaptation in

human cancer. Nat Commun. 2013;4:2513.

23. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex

cancer genomics and clinical profiles using the cBioPortal. Sci Signal.

2013;6:pl1-pl1.

24. Charoentong P, Finotello F, Angelova M, et al. Pan-cancer Immuno-

genomic analyses reveal genotype-Immunophenotype relationships

and predictors of response to checkpoint blockade. Cell Rep. 2017;18:

248-262.

25. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analy-

sis for microarray and RNA-Seq data. BMC Bioinformatics. 2013;14:7.

https://doi.org/10.1186/1471-2105-14-7

26. Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expres-

sion analyses for RNA-sequencing and microarray studies. Nucleic

Acids Res. 2015;43(7):e47. https://doi.org/10.1093/nar/gkv007

27. Patel SJ, Sanjana NE, Kishton RJ, et al. Identification of essential

genes for cancer immunotherapy. Nature. 2017;548:537-542.

28. Jäger M, Wang K, Bauer S, Smedley D, Krawitz P, Robinson PN. Jan-

novar: a Java library for exome annotation. Hum Mutat. 2014;35:

548-555.

29. Storey J. qvalue: Q-Value estimation for false discovery rate control.

R package version 2.0.0. 2015. DOI: https://doi.org/10.18129/B9.

bioc.qvalue

30. Puram SV, Tirosh I, Parikh AS, et al. Single-cell transcriptomic analysis

of primary and metastatic tumor ecosystems in head and neck cancer.

Cell. 2017;171:1611-1624.e24.

31. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating sin-

gle-cell transcriptomic data across different conditions, technologies,

and species. Nat Biotechnol. 2018;36:411-420.

32. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides

fast and bias-aware quantification of transcript expression. Nat

Methods. 2017;14:417-419.

33. Chow LQM, Mehra R, Haddad RI, et al. Biomarkers and response to

pembrolizumab (pembro) in recurrent/metastatic head and neck squa-

mous cell carcinoma (R/M HNSCC). J Clin Oncol. 2016;34:6010-

6010.

34. McGranahan N, Favero F, de Bruin EC, Birkbak NJ, Szallasi Z, Swanton C.

Clonal status of actionable driver events and the timing of mutational

processes in cancer evolution. Sci Transl Med. 2015;7:283ra54.

35. Burtness B, Harrington KJ, , , et al. KEYNOTE-048: phase III study of

first-line pembrolizumab (P) for recurrent/metastatic head and neck

squamous cell carcinoma (R/M HNSCC). Ann Oncol. 2018;29(Suppl.

8):viii729–viii729. https://doi.org/10.1093/annonc/mdy424.045

36. Budczies J, Seidel A, Christopoulos P, et al. Integrated analysis of the

immunological and genetic status in and across cancer types: impact

of mutational signatures beyond tumor mutational burden.

Oncoimmunology. 2018;7:e1526613. https://doi.org/10.1080/

2162402X.2018.1526613

37. Wang S, Jia M, He Z, Liu X-S. APOBEC3B and APOBEC mutational

signature as potential predictive markers for immunotherapy

response in non-small cell lung cancer. Oncogene. 2018;37:3924-

3936.

38. Faden DL, Ding F, Lin Y, et al. APOBEC mutagenesis is tightly linked

to the immune landscape and immunotherapy biomarkers in head and

neck squamous cell carcinoma. Oral Oncol. 2019;96:140-147.

39. Swanton C, McGranahan N, Starrett GJ, Harris RS. APOBEC

enzymes: mutagenic fuel for cancer evolution and heterogeneity.

Cancer Discov. 2015;5:704-712.

40. Chen J, Miller BF, Furano AV. Repair of naturally occurring mis-

matches can induce mutations in flanking DNA. Elife. 2014;3:e02001.

https://doi.org/10.7554/eLife.02001

41. Taylor BJ, Nik-Zainal S, Wu YL, et al. DNA deaminases induce break-

associated mutation showers with implication of APOBEC3B and 3A

in breast cancer kataegis. Elife. 2013;2:e00534. https://doi.org/10.

7554/eLife.00534

42. Foy J-P, Bertolus C, Michallet M-C, et al. The immune microenviron-

ment of HPV-negative oral squamous cell carcinoma from never-

smokers and never-drinkers patients suggests higher clinical benefit

of IDO1 and PD1/PD-L1 blockade. Ann Oncol. 2017;28:1934-1941.

43. Leonard B, Starrett GJ, Maurer MJ, et al. APOBEC3G expression cor-

relates with T-cell infiltration and improved clinical outcomes in high-

grade serous ovarian carcinoma. Clin Cancer Res. 2016;22:4746-

4755.

44. Petljak M, Alexandrov LB, Brammeld JS, et al. Characterizing muta-

tional signatures in human cancer cell lines reveals episodic APOBEC

mutagenesis. Cell. 2019;176:1282-1294.e20. https://doi.org/10.

1016/j.cell.2019.02.012

45. Mullane SA, Werner L, Rosenberg J, et al. Correlation of Apobec

Mrna expression with overall survival and pd-l1 expression in

urothelial carcinoma. Sci Rep. 2016;6:27702.

46. Glaser AP, Fantini D, Wang Y, et al. APOBEC-mediated mutagenesis

in urothelial carcinoma is associated with improved survival, muta-

tions in DNA damage response genes, and immune response.

Oncotarget. 2018;9:4537-4548.

47. Miao D, Margolis CA, Vokes NI, et al. Genomic correlates of response

to immune checkpoint blockade in microsatellite-stable solid tumors.

Nat Genet. 2018;50:1271-1281.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Messerschmidt C, Obermayer B,

Klinghammer K, et al. Distinct immune evasion in

APOBEC-enriched, HPV-negative HNSCC. Int. J. Cancer.

2020;147:2293–2302. https://doi.org/10.1002/ijc.33123

2302 MESSERSCHMIDT ET AL.



72 DRUCKEXEMPLAR DER PUBLIKATION MESSERSCHMIDT ET AL. 2020



Druckexemplar der Publikation Akpa
et al. 2020

73



RESEARCH ARTICLE Open Access

Acquired resistance to DZNep-mediated
apoptosis is associated with copy number
gains of AHCY in a B-cell lymphoma model
Chidimma Agatha Akpa1,2*, Karsten Kleo1, Elisabeth Oker1, Nancy Tomaszewski1, Clemens Messerschmidt3,
Cristina López4, Rabea Wagener4, Kathrin Oehl-Huber4, Katja Dettmer5, Anne Schoeler6,7, Dido Lenze1,
Peter J. Oefner2, Dieter Beule3, Reiner Siebert4, David Capper2,6,7, Lora Dimitrova1 and Michael Hummel1,2

Abstract

Background: Enhancer of zeste homolog 2 (EZH2) is considered an important driver of tumor development and
progression by its histone modifying capabilities. Inhibition of EZH2 activity is thought to be a potent treatment
option for eligible cancer patients with an aberrant EZH2 expression profile, thus the indirect EZH2 inhibitor 3-
Deazaneplanocin A (DZNep) is currently under evaluation for its clinical utility. Although DZNep blocks proliferation
and induces apoptosis in different tumor types including lymphomas, acquired resistance to DZNep may limit its
clinical application.

Methods: To investigate possible mechanisms of acquired DZNep resistance in B-cell lymphomas, we generated a
DZNep-resistant clone from a previously DZNep-sensitive B-cell lymphoma cell line by long-term treatment with
increasing concentrations of DZNep (ranging from 200 to 2000 nM) and compared the molecular profiles of resistant
and wild-type clones. This comparison was done using molecular techniques such as flow cytometry, copy number
variation assay (OncoScan and TaqMan assays), fluorescence in situ hybridization, Western blot, immunohistochemistry
and metabolomics analysis.

Results: Whole exome sequencing did not indicate the acquisition of biologically meaningful single nucleotide
variants. Analysis of copy number alterations, however, demonstrated among other acquired imbalances an
amplification (about 30 times) of the S-adenosyl-L-homocysteine hydrolase (AHCY) gene in the resistant clone. AHCY is
a direct target of DZNep and is critically involved in the biological methylation process, where it catalyzes the reversible
hydrolysis of S-adenosyl-L-homocysteine to L-homocysteine and adenosine. The amplification of the AHCY gene is
paralleled by strong overexpression of AHCY at both the transcriptional and protein level, and persists upon culturing
the resistant clone in a DZNep-free medium.
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Conclusions: This study reveals one possible molecular mechanism how B-cell lymphomas can acquire resistance to
DZNep, and proposes AHCY as a potential biomarker for investigation during the administration of EZH2-targeted
therapy with DZNep.

Keywords: 3- Deazaneplanocin a (DZNep), B-cell lymphoma, Enhancer of zeste homolog 2 (EZH2), S-adenosyl-L-
homocysteine hydrolase (AHCY)

Background
The development of drug resistance to cancer chemo-
therapeutics remains a major concern in most treatment
regimens. Several epigenetic-based therapies are under
investigation or being employed for treatment of patients
with lymphomas of B-cell origin. This is due to the im-
portant role that epigenetic alterations play in promoting
tumor development and progression via downregulation
of tumor suppressor genes [1]. These epigenetic modifi-
cations may involve covalent post-translational modifica-
tions at the N-termini of histones or changes in the
methylation pattern of cytosine bases within the DNA,
especially at CpG sites [2]. Histones are important struc-
tural components of the cell that package and organize
DNA into nucleosomal units and various post-
translational modifications of histones are known to
contribute to transcriptional gene activity in conjunction
with other mechanisms [3–8].
Enhancer of zeste homolog 2 (EZH2) is a histone methyl-

transferase that is involved in cellular differentiation and de-
velopment in both health and disease. EZH2 promotes
transcriptional repression by catalyzing the trimethylation of
lysine 27 on histone 3 (H3K27me3) - a repressive histone
mark. In lymphoma and other malignancies, EZH2 gain-of-
function mutations and overexpression are considered im-
portant drivers of oncogenesis because of their role in
silencing tumor suppressor genes regulating apoptosis, cell
cycle regulation, proliferation, migration and differentiation
[9–14]. Due to its oncogenic role, the targeting of EZH2
might be a promising approach for lymphoma therapy. 3-
Deazaneplanocin A (DZNep) is an indirect inhibitor of
EZH2 currently in the pre-clinical phase of drug develop-
ment and has been shown to promote apoptosis in various
primary tumor cells and cancer cell lines [15–20]. The apop-
totic effects mediated by DZNep application are more pro-
nounced in cancer cells, with minimal effects on normal
cells, and are fostered by the inhibition of the repressive
H3K27me3 mark [15, 18, 21].
DZNep directly inhibits the enzyme S-adenosyl-L-

homocysteine hydrolase (AHCY) that catalyzes the re-
versible hydrolysis of S-adenosyl-L-homocysteine (SAH)
to L-homocysteine and adenosine. The direct inhibition
of AHCY by DZNep leads to the build-up of the sub-
strate SAH, which in turn causes a negative feedback in-
hibition of methyltransferases such as EZH2 [22]. Proper

functioning of AHCY is essential for the efficient main-
tenance of histone methylation levels in the cell [23]. Al-
terations in AHCY function have been linked to cancer
with varying outcomes depending on the cancer entity
involved. For example, with lowered AHCY activity, the
invasiveness of breast cancer and glioblastoma cell lines
decreases [24, 25]. Furthermore, in hepatocellular carcin-
oma cells, reduced AHCY activity is associated with cell
cycle inhibition and a lowered proliferation rate [23]. In
esophageal squamous cell carcinoma, however, elevated
AHCY levels had no effect on cell proliferation but pro-
moted apoptosis and inhibited cell migration and adhe-
sion [26]. Besides, aberrant AHCY expression has been
observed with the transformation of follicular lymphoma
to diffuse large B-cell lymphoma [27].
In this study, we investigated the underlying molecular

mechanism of resistance of a B-cell lymphoma model to
DZNep using a DZNep-resistant clone generated from a
DZNep-sensitive cell line. We identified AHCY as a po-
tential biomarker that could be of predictive relevance
for therapeutic inhibition of EZH2 using DZNep.

Methods
Drug, cell lines and culture conditions
DZNep (Selleckchem, Germany) was dissolved in sterile
water following the manufacturer’s recommendation as
previously described [20].
The sporadic Burkitt lymphoma cell line BLUE-1

(ACC-594, from German Collection of Microorganisms
and Cell Cultures (DSMZ) Germany) was cultured in
RPMI 1640 (ThermoFisher Scientific, Germany) medium
enriched with 20% fetal calf serum (PAN-Biotech,
Germany). Cell lines were tested and confirmed myco-
plasma negative with the MycoAlert Mycoplasma Detec-
tion kit (Lonza, Germany). All cell lines were incubated
at 37 °C at 5% CO2.
Generation of a DZNep resistant clone was achieved

by splitting the BLUE-1 culture into a control group and
a treatment group (Fig. 1a). The treated group received
increasing concentrations of DZNep starting from 200
nM up to 2000 nM over a period of 7 months. The cells
were split 3 times a week and fresh medium without or
with DZNep was added to the control and treated cells,
respectively. Vital cells were counted each time by flow
cytometry before the cells were split. Cryostocks were
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made every third to fourth week from both cell cultures.
At 7 months, DZNep pressure on cultures of the treated
group was removed by growing both untreated (BLUE-1
K10) and treated (BLUE-1R10) cells in medium without
DZNep. About 4 months later, both cell cultures were
harvested (BLUE-1 K12 and BLUE-1R12) and frozen.
Prior to further use, frozen cells were thawed and main-
tained in a DZNep-free medium for at least 1 week.

Flow cytometry
The BD Accuri C6 flow cytometer (Becton Dickinson
Biosciences, USA) was used for the measurement of
apoptotic cells and determination of the doubling time
of cells. Measurement of apoptosis was performed after
staining 3 × 105 cells from the cell cultures with a mix-
ture of Annexin V (Biolegend, USA) and propidium iod-
ide (Biolegend, USA). Doubling time was determined by

Fig. 1 Generation and characterization of a DZNep-resistant clone. a Scheme of the generation of the DZNep-resistant clone and its control. b
Comparison of the apoptotic response of BLUE-1 K10 (control) and BLUE-1R10 to DZNep. Above: The cell lines BLUE-1R10 and BLUE-1 K10 were
either treated with 5 μM DZNep or untreated for 72 h. Cells were harvested and the percentage of apoptotic cells was determined by flow
cytometry. Data is shown as mean plus standard deviation (SD) of three biological replicates. Below: Western blot analysis was performed using
total protein lysates from both cell lines either untreated or treated with 2 μM and 5 μM DZNep, respectively. GAPDH was used as a loading
control for the Western blot. The full-length blot is presented in Additional file 6: Fig. S5. The FUSION-CAP Software was used for Western blot
image analysis. c Comparison of the doubling time of BLUE-1, BLUE-1 K10 and BLUE-1R10. The three cell lines were cultivated at a seeding
density of 2 × 105 cells in 6-well culture plates. The number of vital cells were measured at 24 h, 48 h and 72 h by flow cytometry. Doubling time
is shown as mean plus SD of triplicate measurements. ns: not significant
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seeding the cells in 6-well plates at a cell density of 2 ×
10^5 cells/ml. The number of vital cells were counted
after 24 h, 48 h and 72 h by flow cytometry. The doub-
ling time during the exponential growth phase was sub-
sequently calculated using the formula DT = Tln2/ln(Xe/
Xb) (https://www.atcc.org/~/media/PDFs/Culture%2
0Guides/AnimCellCulture_Guide.ashx), where DT rep-
resents the doubling time (in hours), T symbolizes the
incubation time (in hours), Xe indicates the cell number
at the end of the incubation time, and Xb is the cell
number at the beginning of the incubation time.

Western blotting, RNA isolation and real-time reverse
transcriptase polymerase chain reaction (RT-PCR)
Cell lysis and Western blot were carried out as described
previously [20]. Twelve percent Expedeon RunBlue SDS
protein gels (Biozol Diagnostica Vertrieb GmbH,
Germany) were utilized for the run. The primary and
secondary antibodies used for Western blot are shown
in Table 1.
RNA was isolated using the RNeasy Midi Kit (Qiagen,

Germany) adhering to the manufacturer’s recommenda-
tions and reverse transcribed to cDNA using TaqMan
Reverse Transcription reagents (ThermoFisher Scientific,
Germany) on a T3 thermocycler (Biometra GmbH,
Germany). Real-time RT-PCR was carried out using
TaqMan Gene Expression Assays and TaqMan Gene Ex-
pression Master Mix (ThermoFisher Scientific,
Germany) following the manufacturer’s protocol on the
StepOnePlus Real-Time PCR System (ThermoFisher Sci-
entific, Germany). Beta-2 microglobulin (B2M) and suc-
cinate dehydrogenase (SDHA) genes were used as
endogenous controls and the ΔΔCt method [28] was
followed for relative mRNA quantification. Details of the
respective TaqMan assays used are listed in Table 2.

DNA isolation, whole exome sequencing (WES), copy
number variation (CNV) assay and OncoScan CNV assay
Genomic DNA was isolated from the cell lines using
QIAamp DNA Mini Kit (Qiagen, Germany), following

the manufacturer’s instructions. WES was performed on
genomic DNA at the Berlin Institute of Health core fa-
cility Genomics, Berlin, Germany. Sequencing libraries
were prepared with the SureSelectXT Human All Exon
v4 library kit (Agilent, Germany) following the manufac-
turer’s instructions. Cluster Generation was done with
the aid of TruSeq PE Cluster Kit v4 (Illumina, USA) and
the resulting templates sequenced on an Illumina
HiSeq2000 sequencer (at least 150 million reads with a
sequencing depth of greater than 160x) using the Illu-
mina HiSeq SBS 250 cycle kit v4.
Data analysis was performed using BWA-MEM [29] to

map each whole-exome data set against the reference
genome GRCh37. Samblaster [30] was used to mark du-
plicates. To detect copy number changes, DNA profiles
from the respective cell lines were compared (BLUE-
1R10 against BLUE-1 K10) with CNVkit [31]. The copy
number changes were prioritized according to their log2
fold-change and custom plots of amplified regions cre-
ated using CNVkit plotting functions.
CNV analysis was performed on genomic DNA from

the respective BLUE-1 cell lines, controls and patient
samples by applying the TaqMan copy number assay
(assay ID: Hs02422126_cn) to the AHCY gene on
chromosome 20. The assay covers intron 7 and exon 8
on the reference genome GRCh37 and was performed
according to the manufacturer’s recommendations. Data

Table 1 List of antibodies

Target Protein Primary antibody

Application Company Clone name / catalogue number

Western blot Immunohistochemistry

GAPDH ✓ Cell Signaling Technology 14C10

Histone 3 ✓ Cell Signaling Technology 96C10

Cleaved PARP ✓ Cell Signaling Technology Asp214

AHCY ✓ ✓ OriGene TA332593

Secondary antibody

Anti-rabbit HRP-conjugated ✓ GE Healthcare NA934V

Anti-mouse HRP-conjugated ✓ Agilent P0447

Table 2 TaqMan assays used for gene expression and copy
number variation (CNV) analysis

TaqMan Assays

Targets Assay ID Type Company

cDNA
target

AHCY Hs00898137_g1 Gene expression
assay

ThermoFisher
Scientific

B2M Hs00984230_m1 Gene expression
assay

ThermoFisher
Scientific

SDHA Hs00417200_m1 Gene expression
assay

ThermoFisher
Scientific

gDNA
target

AHCY Hs02422126_cn CNV assay ThermoFisher
Scientific
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analysis was done using the CopyCaller software version
2.1 (ThermoFisher Scientific, Germany).
OncoScan CNV assay Kit was also used to perform

copy number analysis according to standard protocols
(Affymetrix) [32]. The Chromosome Analysis Suite 4.0
(ChAS) (ThermoFisher, Germany) software was used to
visualize, analyze and summarize the chromosomal aber-
rations, including gains, losses, and loss of heterozygosity
(LOH). The non-FFPE analysis work-flow was applied.
Criteria for copy number alterations include chromo-
somal changes encircling at least 20 informative probes,
with a minimum size event of at least 100 kb, with me-
dian log2Ratio +/− 0.3, and showing a CNN-LOH more
than 5Mb. Individual copy number analysis for each
BLUE-1 cell line, as well as, comparative analysis be-
tween the three cell lines (BLUE-1, BLUE-1 K10, and
BLUE-1R10) was done. In addition, we manually
inspected all the aberrations filtered out due to the cri-
teria described above and included only those aberra-
tions showing differences in the B-allele frequency
(BAF).

Clonality studies
B-cell clonality studies were performed to determine the
immunoglobulin heavy chain (IGH) rearrangements for
BLUE-1, BLUE-1 K10 and BLUE-1R10 using a multiplex
PCR method developed within the EuroClonality/
BIOMED-2 collaborative study, BMH4-CT98–3936 [33]
for all three IGH frame work regions. After PCR on the
ProFlex PCR Thermocycler (ThermoFisher Scientific,
Germany), gel electrophoresis was performed to check
the amplification of PCR products. For single base pair
resolution, GeneScan analysis (capillary electrophoresis)
of the IGH PCR products was performed with the 3500
series Genetic Analyser (ThermoFisher Scientific,
Germany). The sizes of the various PCR products were
determined using the GeneMapper 4.0 software (Ther-
moFisher Scientific, Germany).

Immunohistochemistry and fluorescence in situ
hybridization (FISH) analysis
Immunohistochemistry (IHC) was performed using sec-
tions of formalin-fixed paraffin-embedded (FFPE) cell
line blocks as described [34]. The primary antibody used
in this case was anti-AHCY antibody (Table 1). FISH
was performed on sections of formalin-fixed paraffin-
embedded (FFPE) cell line blocks as described [35, 36].
This was carried out using orange-labeled AHCY gene-
specific probes (product name: AHCY-20-OR) and
green-labeled chromosome 20-control (centromeric)
probes (product name: CHR20–10-GR) (both purchased
from Empire Genomics, USA). DakoCytomation
Hybridizer (Dako/Agilent, Germany) was used for FISH
probe hybridization, while nuclear counterstaining was

done with the aid of Dako fluorescence mounting
medium containing DAPI (Dako/Agilent, Germany).
Visualization and analysis (of at least 50 intact nuclei)
were performed with the Zeiss Axio Imager Z1 (Zeiss,
Germany) and the Isis imaging software version 5.3.1
(Metasystems, Germany).

Cytogenetics, metabolomics and global DNA methylation
analysis
Profiling of short tandem repeats (STR) for authentica-
tion of the cell lines BLUE-1, BLUE-1 K10 and BLUE-
1R10 using the StemElite kit (Promega) was performed
as previously described [32]. Conventional cytogenetic
analysis was performed as reported [37] and the karyo-
types were described according to ISCN guidelines
(2013).
The intermediates of methionine and polyamine me-

tabolism in BLUE-1, BLUE-1 K12 and BLUE-1R12 cell
extracts were measured by liquid chromatography-
tandem mass spectrometry following an established
protocol [38]. Genome-wide DNA methylation analysis
was done on BLUE-1, BLUE-1 K10 and BLUE-1R10
using the Infinium MethylationEPIC BeadChip (Illu-
mina, USA) as described [39]. Copy number plots were
generated from the raw output data (.idat files) using
the ‘conumee’ R package in Bioconductor [39, 40].

Statistical analysis
Statistical analysis was done using the GraphPad Prism 5
software (GraphPad Software, California, USA). Statis-
tical significance was evaluated using the Mann-Whitney
U test (two-tailed) for pairwise comparisons, and one-
way ANOVA with the Tukey post-hoc test for group
comparisons. p values less than 0.05 were considered
significant.

Results
Generation and characterization of a DZNep-resistant cell
line clone
We generated a DZNep-resistant clone by subjecting the
DZNep-sensitive Burkitt lymphoma cell line BLUE-1
[20] to progressively increasing concentrations of
DZNep for up to 7 months (Fig. 1a and Methods sec-
tion). Analyses were performed with the resistant BLUE-
1 subclones (BLUE-1R10 or BLUE-1R12) and their re-
spective controls. To analyze the response of the gener-
ated DZNep-resistant clone to DZNep, we treated the
clone and its corresponding control with 5 μM DZNep
for 72 h and then measured the percentage of apoptotic
cells. The control cell line, BLUE-1 K10, exhibited strong
apoptosis with about 50% apoptotic cells in comparison
to the resistant BLUE-1R10 clone, which displayed only
about 10% apoptotic cells following treatment with
DZNep (Fig. 1b). Furthermore, Western blot analysis
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performed on total protein lysate obtained after treat-
ment of both cell lines with 2 μM and 5 μM DZNep re-
vealed an increase in the expression of cleaved PARP,
indicating apoptosis in the DZNep-treated cells of
BLUE-1 K10 in relation to BLUE-1R10 (Fig. 1b). The
doubling time of the DZNep-resistant clone BLUE-1R10
was also compared with that of the corresponding con-
trol BLUE-1 K10 and the parent cell line BLUE-1. This
revealed that both BLUE-1R10 and BLUE-1 K10 had
shorter doubling times than BLUE-1 (Fig. 1c).
To determine the identity of the generated clone, we

explored the STR profile and determined the clonality of
BLUE-1R10. The results were then compared with those
of its corresponding control BLUE-1 K10 and the parent
cell line BLUE-1. The STR profile analysis for the three
cell lines when compared with the DSMZ STR profiling
database revealed an STR profile of a BLUE-1 cell line,
confirming their authenticity. Furthermore, the IGH
chain gene rearrangement patterns for the three cell
lines were identical (Additional file 1: Figure S1). We
also performed genomic characterization of the cell lines
using conventional cytogenetics and copy number ana-
lysis by OncoScan CNV assay. Only minor differences in
the karyotype were observed upon analysis of the three
cell lines (Additional file 2: Figure S2). Upon further
examination the copy number data, we detected gen-
omic aberrations exclusive to each of the three BLUE-1
cell lines (Additional file 5: Table S1). We detected three
abnormalities only present in BLUE-1R10 as compared
to the parental BLUE-1 and BLUE-1 K10 cell lines.
These include one loss in 4q12q12, one high copy gain
in 6q14.3q14.3, and one LOH in 20p12.2p13. Moreover,
we observed aberrations solely in the parental BLUE-1
cell line, including gains in 6p22.1p25.3, 19p13.11p13.3,
and 19p13.11q13.43, which may have been lost due to
prolonged culture conditions. We also distinguished
common copy number aberrations in BLUE-1 and
BLUE-1R10 cell lines, but not shown in the BLUE-1 K10
(Additional file 5: Table S1).

Identification of biomarkers for resistance to DZNep
To probe the underlying mechanism of resistance of
BLUE-1R10 to DZNep, we performed WES of genomic
DNA obtained from BLUE-1R10 and its corresponding
control BLUE-1 K10. Additional copy number variant
analysis was performed on the WES data using the soft-
ware tool CNVkit. This analysis identified a small focal,
approximately 30-fold copy number gain in the region
spanning the AHCY gene and the proximal part of the
ITCH gene on chromosome 20 (Fig. 2a). Upon manual
inspection of this specific genomic region in the OncoS-
can data, we confirmed the presence of this high copy
number gain including the AHCY gene (Additional file
3: Figure S3). It was not called in the initial analysis due

to applied detection criteria for the analysis which fil-
tered the amplicon out due to its small genomic size and
low marker content (see material and method sections
for more details).
We validated this AHCY gain on the DNA level using

two methods. First, we used the TaqMan Copy Number
Assay to analyze DNA obtained from cryostocks col-
lected at the various time-points during the generation
of the resistant clone, including BLUE-1 as the reference
cell line. We noted a clear copy number gain in AHCY
beginning with BLUE-1R6 (preserved after almost 5
months of treatment with DZNep) and increasing there-
after (Fig. 2b). The AHCY copy number gain was further
confirmed by a CNV analysis using global DNA-
methylation data from BLUE-1R10, and comparing it
with data from BLUE-1 K10 and BLUE-1. Here, the gain
in AHCY copy number on chromosome 20 was also ob-
vious in the resistant clone in comparison to the respect-
ive control and the parent cell line (Fig. 2c).

AHCY copy number gain at the chromosomal and
transcriptional level
On the chromosomal level, we confirmed AHCY amplifi-
cation in BLUE-1R10 and BLUE-1R12, by performing a
FISH study using target-specific probes for AHCY on
chromosome 20q11.22. Our FISH data (Fig. 3a) revealed
cluster-type amplification and large AHCY-gene clusters
in form of dense clouds of labeled regions suggestive for
hsr-regions in cells of BLUE-1R10, when compared with
its control BLUE-1 K10 and BLUE-1.
To ascertain the expression of AHCY, we performed a

real-time PCR using the TaqMan gene expression assay
on cDNA from the resistant clone, the respective con-
trols and the parent cell line BLUE-1. The results display
overexpression of AHCY in the resistant clone BLUE-
1R10 and a further increase in BLUE-1R12 (Fig. 3b).

AHCY gain at the protein level and metabolomics studies
AHCY expression at the protein level was determined
using two different methods, IHC and Western blot. The
IHC results show increased AHCY expression in the re-
sistant clone in comparison to its control and the parent
cell line (Fig. 4a). The Western blot result (Fig. 4b) con-
firmed that AHCY is overexpressed in BLUE-1R10, with a
higher expression in BLUE-1R12. The respective controls
and parent BLUE-1 cell line had a similar level of AHCY
expressed.
To understand the dynamics of the concentrations of

methionine intermediates in the resistant clone, its con-
trol and the parent cell line, we employed a high per-
formance liquid chromatography-tandem mass
spectrometry method. We notice a similar distribution
pattern for S-adenosyl-L-homocysteine (SAH), adenine
and adenosine in BLUE-1 and the control cell line
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BLUE-1 K12. The resistant clone (BLUE-1R12), however,
displayed a significant increase (p < 0.05) in the level of
both adenine and adenosine in comparison to its control
BLUE-1 K12 (Fig. 4c).

AHCY copy number gain in primary lymphoma samples
We examined the frequency of AHCY copy number gains
in a small series of B-cell lymphomas by examining 12 pri-
mary lymphoma samples consisting of Burkitt lymphoma,
diffuse large B-cell lymphoma, follicular lymphoma, pri-
mary mediastinal B-cell lymphoma and anaplastic large
cell lymphoma. We performed the TaqMan CNV assay
using genomic DNA isolated from these samples. Subse-
quent analysis of the AHCY copy number with the Copy-
Caller software revealed a predicted AHCY copy number

of 2 for all but one sample, which had a predicted copy
number of 1 (Additional file 4: Figure S4). In addition, we
checked the frequency of AHCY copy number alterations
in B-cell lymphoma by analyzing published genomic data
from 1295 B-cell lymphoma samples curated from 5
different studies on the cBio Cancer Genomics Portal
[41, 42] but no AHCY genomic alterations were
detected.

Discussion
Acquired resistance to small molecule inhibitors used in
cancer treatment remains a huge problem in cancer
therapy. Although many cancer types respond to initial
therapy, there is the uncertainty of resistance arising
against the utilized drug [43]. Various molecular

Fig. 2 AHCY copy number gain in the DZNep-resistant clone. a Log2 copy ratio plot of copy number variation regions in BLUE-1R10 in relation to
BLUE-1 K10. The gray dots represent copy ratio values across different bins, the orange line shows segments and the yellow vertical lines indicate
the respective genes. b Evolution of AHCY copy number in the resistant clone. Genomic DNA from the cell lines was subjected to the TaqMan
copy number assay (ID: Hs02422126_cn). The real-time PCR read-out and copy number was analyzed with the CopyCaller software. A human
tonsil DNA sample was used as a calibrator for the TaqMan copy number assay. c CNV plots calculated from global DNA methylation array data.
Chromosome 20 locus on BLUE-1, BLUE-K10 and BLUE-1R10 was analyzed for variations in AHCY copy number. The y-axis represent the log2 copy
number ratio (CNR). Amplifications represent positive deviations from the baseline while losses indicate negative deviations from the baseline
(0.0). Encircled in red, shows AHCY copy number gain in BLUE-1R10
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mechanisms are involved in the resistance of tumor cells
to therapy [44–46]. DZNep - an indirect EZH2 inhibitor
- is known to be efficacious against many different types
of cancer and, hence, may make its way into clinical tri-
als. Already, genetic determinants of sensitivity to
DZNep-mediated apoptosis have been described for gas-
tric cancer and multiple myeloma tumor cells respect-
ively [47, 48]. In this study, we aimed to investigate the
molecular mechanism underlying acquired resistance to
DZNep in B-cell lymphoma, and to identify biomarkers
predictive of the therapeutic success of EZH2 inhibition
with DZNep. To achieve this, we generated and investi-
gated a DZNep-resistant clone. The continued resistance
of the clone (BLUE-1R10) to DZNep following treatment
with DZNep as well as upon cultivation in a DZNep-free
medium implies that a permanent change has occurred
on the genomic level in this clone. We analyzed the

proliferation rate of BLUE-1R10, comparing its doubling
time with that of BLUE-1 K10 and BLUE-1. The shorter
doubling time observed in the resistant clone and its
control in relation to the parent cell line is in contrast to
a previous report of an increased doubling time in two
colon cancer cell lines that acquired drug resistance
upon prolonged cultivation with irinotecan [49]. Since
the reduction in doubling time was also observed in the
control cell line BLUE-1 K10, the increased growth rate
of both BLUE-1R10 and BLUE-1 K10 cannot be attrib-
uted to the effect of DZNep on the cells. Perhaps, some
changes in genes responsible for cell cycle regulation
and proliferation could have occurred during the long-
term cultivation of the clone and its control. This is not
surprising because, we already know the extent of gen-
etic and transcriptional heterogeneity that occur in cell
lines during evolution [50]. Besides, in other cell types

Fig. 3 AHCY copy number gain in the DZNep-resistant clone: chromosomal and transcriptional validation. a FISH analysis using AHCY target-
specific probes in the resistant clone and its control. Yellow arrows show in pink color a cluster-type amplification of AHCY. Green dots represent
the centromere of chromosome 20. b Transcriptional expression of AHCY. cDNA was synthesized from the RNA of all cell lines. Relative gene
expression (shown on the y-axis) was quantified using the AHCY gene expression assay, with B2M and SDHA used as an endogenous control. RQ
is shown as mean plus SD of triplicate measurements
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such as human embryonic stem cells, the effect of pro-
longed cultivation on the proliferative capacity is evident
as an increase in the proliferative capacity of these cells
[51].
It was crucial to confirm the identity of the DZNep-

resistant clone to ensure that it certainly originated from
the parent cell line BLUE-1. To achieve this, the STR
profile and clonality of BLUE-1R10 was explored to-
gether with that of BLUE-1 K10 and BLUE-1. The iden-
tical STR profile and IGH chain gene rearrangement
patterns indicate that both cell lines indeed originate
from the same parent. Nevertheless, the differences ob-
served between BLUE-1, BLUE-1 K10 and BLUE-1R10
upon genomic interrogation using the OncoScan CNV
assay could suggest a divergent genomic evolution be-
tween BLUE-1 K10 and BLUE-1R10 cell lines in culture.
Since AHCY is a direct target of DZNep-mediated

EZH2 inhibition, we focused on validating the identified
AHCY gain in the resistant clone. Using the TaqMan

Copy Number Assay, which measures gene copy num-
bers by incorporating the TaqMan copy number assay
with the TaqMan copy number reference assay in a sin-
gle real-time PCR run, validation of AHCY amplification
was achieved on the DNA level. The progressive increase
in the AHCY copy number observed from BLUE-1R6
confirms that the gain in copy number is continual in
the DZNep-resistant clone. It is noteworthy that at the
point of DZNep withdrawal from the clone (from BLUE-
1R9 to BLUE-1R10), there was an almost two-fold in-
crease in the AHCY copy number. This copy number
gain doubled following continuous cultivation of the
clone in a DZNep-free medium (from BLUE-1R10 to
BLUE-1R11 and BLUE-1R12). This implies that the
AHCY copy number gain, once initiated, does not re-
quire DZNep pressure to persist. Although this copy
number event may reflect a sort of genomic compensa-
tion in the resistant clone due to prolonged AHCY in-
hibition, it is unlikely that this genomic aberration

Fig. 4 Translational validation of AHCY gain in the resistant clone, and metabolomics analysis. a IHC results from BLUE-1, BLUE-1 K12 and BLUE-
1R12 cell lines. Sections from FFPE cell line blocks were stained with anti-AHCY antibody. b Validation of AHCY overexpression at the protein level
using Western blot. Whole cell protein lysates from the cell lines were analyzed using Western blot. Histone 3 was used as a loading control for
the blot. The full-length blot is presented in Additional file 7: Fig. S6. FUSION-CAP Software was used for Western blot image analysis. c
Quantification of S-adenosyl methionine, adenine and adenosine in BLUE-1, BLUE-1 K12 and BLUE-1R12. Values are shown as mean plus SD from
six replicate measurements
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would decrease to baseline levels upon prolonged with-
drawal of DZNep pressure.
Moreover, the FISH data which revealed that the

AHCY amplification was more pronounced in BLUE-
1R12 in comparison to BLUE-1R10 further affirms the
persistence of AHCY copy number gain. The chromo-
some 20 polysomy observed in the cells of each cell line
may reflect the level of genomic instability usually occur-
ring in cancer cells [52, 53]. The overexpression of
AHCY on the transcriptional and protein level in the
DZNep-resistant clone is consistent with the knowledge
of drug resistance in cancer stemming from alterations
in the drug target, particularly, alterations involving
modified enzyme expression [46, 54]. Alterations in the
apoptotic machinery did not appear to be involved in
the resistance of the resistant clone to apoptosis based
on its RNA expression profile.
The results of our metabolomics studies which re-

vealed an analogous distribution for SAH, adenine and
adenosine in both BLUE-1 and BLUE-1 K12 signifies
that following long-term culture of BLUE-1, there is no
peculiar alteration of the balance exerted by these inter-
mediates within the cell. The increase in adenine and ad-
enosine levels of the resistant clone (BLUE-1R12) when
compared to BLUE-1 K12 is in line with the increased
expression of AHCY, which catalyzes the hydrolysis of
SAH to adenosine and L-homocysteine.
Previous works have linked copy number gains on

chromosome 20q with the pathogenesis of tumors such
as colon cancer [55], colorectal cancer [56], and cervical
cancer [57], with significant gains of the AHCY gene
among others. However, little is known about the role of
AHCY copy number gain in driving B-cell lymphomas.
For this reason, we analyzed the AHCY copy number of
12 primary lymphoma samples using the TaqMan CNV
assay. The absence of AHCY copy number gain in the
patient samples analyzed implies that it is unlikely that
AHCY copy number gains play a driving role in B-cell
lymphoma pathogenesis. In addition, the absence of
AHCY copy number alterations from in silico studies
signifies that alterations in AHCY are rare in primary B-
cell lymphoma however, in solid tumors, the frequency
of AHCY amplification can be as high as 20% [41, 42].

Conclusion
Acquired drug resistance poses a great challenge in can-
cer therapy. It is important to recognize mechanisms of
resistance for novel drugs about to enter clinical trials so
that one can monitor for early signs of development of
drug resistance. DZNep is a promising epigenetic drug
that is in the pre-clinical phase of clinical approval, but
has shown promising effects for selected cancer patients.
We show that copy number gain of AHCY is one pos-
sible mechanism of acquired resistance to DZNep-

mediated apoptosis and propose AHCY as a potential
biomarker to stratify patients during the use of DZNep.
Although AHCY alterations are rare in primary B-cell
lymphomas, it may still be important to screen for modi-
fications of this gene in patients prior to the initiation of
EZH2 based therapy with DZNep. These findings might
be valuable in predicting patients, who will benefit from
EZH2 inhibition using DZNep once it progresses into
clinical studies.
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Abstract

Very high risk neuroblastoma is characterised by increased MAPK signalling, and targeting

MAPK signalling is a promising therapeutic strategy. We used a deeply characterised panel

of neuroblastoma cell lines and found that the sensitivity to MEK inhibitors varied drastically

between these cell lines. By generating quantitative perturbation data and mathematical

modelling, we determined potential resistance mechanisms. We found that negative feed-

backs within MAPK signalling and via the IGF receptor mediate re-activation of MAPK sig-

nalling upon treatment in resistant cell lines. By using cell-line specific models, we predict

that combinations of MEK inhibitors with RAF or IGFR inhibitors can overcome resistance,

and tested these predictions experimentally. In addition, phospho-proteomic profiling con-

firmed the cell-specific feedback effects and synergy of MEK and IGFR targeted treatment.

Our study shows that a quantitative understanding of signalling and feedback mechanisms

facilitated by models can help to develop and optimise therapeutic strategies. Our findings

should be considered for the planning of future clinical trials introducing MEKi in the treat-

ment of neuroblastoma.

Author summary

Only few targeted therapies are currently available to treat high-risk neuroblastoma. To

address this issue we characterized the drug response of high risk neuroblastoma cell lines

and correlated it with genomic and transcriptomic data. Particularly for MEK inhibition,

we saw that our panel could be nicely separated into two groups of resistant and sensitive

cell lines. Genomic and transcriptomic markers alone did not help to discriminate

between responders and non-responders. We used signalling perturbation data to build
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cell line specific signalling models. Our models suggest that negative feedbacks within

MAPK signalling lead to a stronger reactivation of MEK in MEKi resistant cell lines after

MEK inhibition. Model analysis suggested that combining MEK inhibition with IGF1R or

RAF inhibition could be an effective treatment and we characterised this combination

using phosphoproteomics by mass-spectrometry and growth assays. Our study confirms

the importance of quantitative understanding of signalling and may help plan future clini-

cal trials involving MEK inhibition for the treatment of neuroblastoma.

Introduction

Neuroblastoma is the most common and devastating extracranial childhood solid tumour,

accounting for 15% of all childhood cancer deaths. The 5-year survival rate is 75% overall, but

it is below 45% for so-called high-risk neuroblastoma that represent about 40% of patients [1–

3]. Telomere maintenance is a central hallmark of high-risk neuroblastoma [4], and approxi-

mately 50% of high-risk neuroblastoma harbour amplification of the MYCN oncogene [5].

Mutations activating the RAS/MAPK signalling pathway are frequent in high-risk and relapsed

neuroblastoma [6, 7], with relapsed neuroblastoma being almost always fatal. Most recently,

mutations in the p53/MDM2 or RAS/MAPK pathway in the presence of telomere mainte-

nance mechanisms were shown to define a subgroup of ultra-high risk neuroblastoma with a

5-year survival below 20%. Therefore, development of novel therapies for patients with high

risk or relapsed neuroblastoma is an urgent clinical need. Mutations of anaplastic lymphoma

kinase (ALK), present in 8% of all patients at diagnosis [8, 9], are the most common mutations

activating the RAS/MAPK pathway in neuroblastoma. In addition, mutations in PTPN11,

NF1, Ras and other RAS/MAPK pathway signalling elements occur in neuroblastoma [7, 10].

This makes RAS/MAPK pathway inhibition a promising treatment option for neuroblas-

toma, and ALK and MEK inhibitors are already being tested in early clinical trials [11]. How-

ever, tumour responses to targeted inhibitors were inconsistent, and early progression pointed

towards development of resistance, giving a strong incentive to understand mechanisms of pri-

mary and secondary resistance and how to overcome these mechanisms.

Resistance to targeted therapies of signalling pathways are often mediated by feedbacks that

re-wire or re-activate signalling. For example, resistance to PI3K/mTOR inhibition in breast

cancer is often mediated by feedbacks that lead to activation of JAK/STAT signalling [12]. Sim-

ilarly, in colon cancer, MAPK-directed therapy is counteracted by a negative feedback that

leads to hyper-sensitisation of the EGF receptor and ultimately reactivation of MAPK and

AKT signalling [13, 14]. Additionally, a very strong feedback from ERK to RAF leads to re-

activation of MAPK signalling upon MEK inhibition in many cancer types [15–17]. One

approach to overcome feedback-mediated resistance is by combinatorial therapy that co-tar-

gets the feedback [18].

We report here how a more quantitative understanding of feedback mechanisms might

help to optimise combinatorial treatment. We used a neuroblastoma cell line panel represent-

ing the class of very high-risk neuroblastoma, which we profiled for drug sensitivity, genomic

and transcriptomic alterations. We observed strong differences in the sensitivity to MEK inhi-

bition. To arrive at a mechanistic understanding of resistance to MEK inhibition, we generated

systematic perturbation data and quantified signalling using data-driven models. By this we

described qualitative and quantitative differences in feedback structures that might confer the

observed robustness to MEK inhibition. We then identified potential combinations capable of
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sensitising highly resistant cell lines to MEK inhibition, and tested these combinations

systematically.

Results

Drug sensitivity in a panel of very-high-risk neuroblastoma cell lines

We collected a panel of 9 neuroblastoma cell lines (CHP212, LAN6, NBEBC1, SKNAS, NGP,

SKNSH, N206, KELLY and IMR32) and performed molecular profiling of these cells (RNA-

sequencing and exome sequencing, see Fig 1A and S1 File). We noticed that all cell lines har-

bour a mutation in at least one of the RAS pathway genes with all cell lines having a mutation

in either KRAS, NRAS, NF1, BRAF or ALK. One cell line (IMR32) had two mutations in the

pathway: a mutation in KRAS and an atypical BRAF mutation. Most cell lines also have a

mutation in one of the p53 pathway genes: ATRX, ATM, ATR, PRKDC, CDKN2A and TP53.

Additionally, all express telomerase as seen by TERT expression, except for LAN6 which is

known to have an alternative mechanism to lengthen the telomeres (ALT) [4]. We saw strong

variability in the expression of MYCN, with 4 cell lines expressing low levels of MYCN, and 5

cell lines displaying high levels of MYCN. When considering mutations of individual genes,

we found a strong heterogeneity within our panel, but overall the frequency of mutations in

individual genes reflects that of high risk tumours [6]. Taken together, those data indicate that

the chosen cell line panel can be seen as representative for the group of very-high risk

neuroblastoma.

To further characterise the cell line panel, we measured drug sensitivity for 6 inhibitors that

target components of the pathways shown to be affected by mutations (MAPK/PI3K/mTOR),

using live cell imaging and computing growth rates from confluency measurements (Fig 1B).

In this panel of cell lines, there was no notable difference in the sensitivity to the AKT inhibitor

MK2206 or to the RAF/pan-tyrosine kinase-inhibitor Sorafenib. In contrast, pronounced vari-

ation in IC50 across the panel can be seen for mTORC1 inhibitor Rapamycin and MEK inhibi-

tor AZD6244. When comparing to published drug sensitivity data, the IC50 for AZD6244

largely correlate with those derived for a different MEK inhibitor (binimetinib) [19]. All 6

NRAS wild type cell lines showed similar sensitivity to Rapamycin while the 3 NRAS mutant

cell lines exhibited either strong resistance (SKNSH and SKNAS) or sensitivity (CHP212).

This is only partly in agreement with previous literature that described CHP212 but also

SKNAS as sensitive to sub-nanomolar concentrations of Everolimus, a Rapamycin analog

[20]. AZD6244 is the drug with the most variable drug response, with a subset of 6 cell lines

cell lines being very resistant to AZD6244 (IC50 >10μM, Fig 1C and S1 Fig) and another sub-

set of 3 cell lines showing extreme sensitivity (IC50� 10–100 nM). When correlating inhibitor

sensitivity with mutations, we found no notable correlation for AZD6244 and Rapamycin (S2

Fig). Drug sensitivities also did not correlate significantly with selected expression data

(adjusted p>0.93 for the 1000 most variable genes and adjusted p>0.94 for GO signal trans-

duction genes, S3 Fig). Also a PCA analysis could not separate cells according to MEKi sensi-

tivity for those two expression groups (S4 and S5 Figs). For instance, previous reports showed

that NF1 expression is linked to sensitivity to MEK inhibitors [19], however we only found a

weak and non-significant correlation with AZD6244 sensitivity (R2 = 0.34, p = 0.10, S6 Fig).

Taken together, this data establishes that this cell line panel represents a heterogeneous group

of very high risk neuroblastoma that differ in drug sensitivity, most prominently against MEK

inhibitors. Furthermore, it suggests that the difference cannot be explained by single mutations

or expression of marker genes alone.
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Fig 1. Mutations are insufficient to explain sensitivity variations to RAS/PI3K drugs in neuroblastoma cell line

panel. A: Oncoprint of 9 neuroblastoma cell lines for RAS/p53/PI3K related genes along with MYCN and TERT

mRNA expression. Bold font indicates MYCN-amplified cell lines. B: Relative IC50 of the same 9 neuroblastoma cell

lines as in A for drugs targeting the PI3K and MAPK pathways (n = 2). C: Viability concentration curves for the MEK

inhibitor AZD6244 on the neuroblastoma cell line panel along with the calculated IC50 (intersection with dotted line).

Points represent measurements (n = 2).

https://doi.org/10.1371/journal.pcbi.1009515.g001
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Perturbation-response data unveils heterogeneity in signalling

To get insights into the underlying mechanisms of resistance to the MEK inhibitor AZD6244,

we selected 6 neuroblastoma cells lines that represented the spectrum of sensitivity to MEK

inhibition (sensitive: CHP212, LAN6; resistant: SKNAS, SKNSH, KELLY and IMR32). Using

these cell lines, we performed perturbation experiments, in which we stimulated the cells by

growth factors for 30 minutes, and additionally inhibited specific pathways for 90 minutes

(Fig 2A). After perturbation, we then monitored pathway activity by measuring phospho-

proteins.

We designed the experiments such that they probe the AKT/mTOR and MAPK signalling

pathways (Fig 2B). Specifically, we selected ligands that might activate those pathways based

on the expression of growth factor receptors in the cell lines. As expression of receptors was

heterogeneous (S7 and S8 Figs), we chose a set of growth factors such that each cell line had

robust expression of receptors for at least two provided ligands. Inhibitors were chosen such

that they block key steps of the pathway. The position of perturbations and readouts in the sig-

nalling network is shown in Fig 2B. We perturbed the 6 cell lines with 4 ligands (PDGF, EGF,

IGF1 and NGF, shown in blue) and 7 inhibitors (GS4997 (ASK1i), MK2206 (AKTi), Rapamy-

cin (mTORC1i), AZD6244/Selumetinib (MEKi), Sorafenib (RAFi), TAE684 (ALKi) and

GDC0941 (PI3Ki), shown in red) alone or in combinations. Subsequently, we measured 6

phosphoproteins (MEK, ERK, AKT, S6K, p38 and cJUN, yellow background) for each pertur-

bation using a sandwich ELISA where a first bead-bound antibody captures the protein and a

second recognises the phosphosite of interest. All experiments were performed in two biologi-

cal replicates.

Overall, the perturbation experiments yielded 240 data points per cell line, which are visual-

ised in a heatmap in Fig 2C. Inspection of the heatmap shows that the perturbation-response

data has similar patterns in different cell lines, but there are also clear differences. For instance,

inhibition of mTOR leads to down-regulation of phospho-S6K across all cell lines, but inhibi-

tion of AKT and PI3K has diverging effects on S6K. Similarly, application of MEKi leads to an

increase of phospho-MEK across all cell lines, but ALK inhibition had varying effects in differ-

ent cell lines.

To get further insights into this high-dimensional data set, we performed principal compo-

nent analysis (PCA) on the perturbation data (Fig 2D top and S9 Fig). The PCA highlights 3

groups of cell lines. The first component (42% of variance) separates the cell lines according to

the effect of Sorafenib and TAE684 on AKT and S6K. The second component (26%) separates

IMR32 and KELLY based mainly on the MEK response to MEK inhibition. The third compo-

nent (18%) contains the effects of IGF1, GS4997 and Rapamycin on AKT and S6K and mainly

separates KELLY and IMR32 (S10 Fig).

When we applied hierarchical clustering on the cell line panel, SKNSH was clustered sepa-

rately, suggesting that it has a very atypical response to the perturbations, with a generally very

high response to all ligands, and an especially strong response to PDGF (Fig 2D bottom). This

atypical status of SKNSH is also present in the mRNA expression, with a PCA on the most var-

iables genes or on the genes in the GO term “signal transduction” separating it from the other

cell lines. Interestingly, CHP212 also separated from the other cell lines in a PCA based on

gene expression data, but not when considering the response to the perturbations. When

grouping cells by MEK inhibitor sensitivity, we noticed that simple multivariate analysis by

PCA does not separate cells into groups that correspond to sensitive or resistant cells (Fig 2D

top and S9 Fig), and also hierarchical clustering does not separate sensitive from resistance cell

lines (Fig 2D bottom).
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Signalling models highlight differential feedback regulation of MEK

To get further, more mechanistic, insights into potential resistance mechanisms, we used the

perturbation data to parameterise signalling models. We applied our previously developed

method that has been derived from Modular Response Analysis (MRA, implemented as R

Fig 2. Neuroblastoma cell lines show heterogeneous responses to signalling perturbations. A: Outline of the perturbation experiments. A panel of cell lines was

treated with growth factors and small molecule inhibitors, and the resulting effect on selected phosphoproteins was measured using multiplexed bead-based ELISAs. B:

Graphical representation of the perturbation scheme on a literature signalling network. Blue and red contour highlights ligand stimulation and kinase inhibition,

respectively; yellow filling shows measured phosphoproteins. C: Perturbation data obtained from applying all combinations of 4 ligands or BSA control and 7

inhibitors or DMSO control to 6 neuroblastoma cell lines. Each measurement is normalised by the BSA+DMSO control of the corresponding cell line and represents at

least 2 biological replicates. Readouts are phospho-proteins p-MEK1S217/S221, p-p38T180/Y182, p-ERK1T202/Y204, p-cJUNS63, p-AKTS473 and p-S6KT389. D: Global non-

mechanistic analysis of the perturbation data presented in C: TOP first two components of a principal component analysis and BOTTOM hierarchical clustering. Colour

scale corresponds to the IC50 for AZD6244 treatment (see also Fig 1C).

https://doi.org/10.1371/journal.pcbi.1009515.g002
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package STASNet, [21]) to fit signalling network models to each cell line. This modelling pro-

cedure requires a literature network and the perturbation data as input, and then estimates

response coefficients corresponding to link strengths using a maximum likelihood estimate

(see Fig 3A, first step). By using the statistical framework of the likelihood ratio test, the model-

ling procedure then allows to test if any extension of the literature network is required to

describe the data (see Fig 3A, second step). To compare parameters between cell lines, it is

essential to harmonise parameters between all cells that can practically not be identified alone,

i.e. parameters for inhibitors (see Fig 3A, third step). This finally yields a parameter map that

allows to compare signalling strength between cell lines (see Fig 3A, final step).

When starting with a canonical literature network (see Materials and methods), we

obtained reasonable fits for 4 of the 6 cell lines, as judged by the sum of weighted squared

residuals that is in the order of number of data points (Fig 3B, red bars), and the normal distri-

bution of residuals (S11 Fig). When we systematically tested if extensions of the network

improve the fit using a likelihood ratio test, we found that significant improvements were still

possible for most cell lines. We therefore performed successive rounds of extensions for each

cell line independently (Fig 3A and S3 File). While SKNSH required no extension of the litera-

ture network, CHP212, LAN6, SKNAS required two or three extensions. KELLY and IMR32,

the two cell lines that initially had the poorest fit, required four extensions (Fig 3C). After the

extension the sum of weighted squared residuals was in the order of the number of data points

for all cell lines except KELLY (Fig 3B green bar). The high residuals still exhibited by KELLY

could be narrowed down to uncertainties in individual data points (see S3 File). Two network

extensions (ASK1!MEK and p38!S6K) were significant in at least 3 cell lines and corre-

spond to an effect of the ASK1 inhibitor GS4997 on the MEK/ERK MAPK pathway and S6K.

Both links are negative which suggests an antagonism between the p38 MAPK and the MEK/

ERK MAPK pathways in neuroblastoma cell lines. This negative crosstalk from p38 to MEK/

ERK has also been described in other cell systems, e.g. after p38 knockdown in HeLa cells [22].

All extended models had similar, but different, parameters for the inhibitor strength. How-

ever, there is a strong interdependence of the inhibitor strength and link strength downstream

of the inhibitor which render comparison between those link strengths in different cells diffi-

cult (see S3 File). As all cell lines received the same inhibitor concentration we therefore har-

monised the inhibitor parameters by fixing them to the mean value between all models (Fig

3A, fixed inhibitor parameters). The resulting harmonised models maintained a good agree-

ment with the data (Fig 3B, blue bars) and were used for inter-model comparisons (Fig 3D and

3E).

When inspecting the parameters for ligand-induced pathway activation, we noticed that

they reflected a strong heterogeneity in ligand response between the cell lines. Reassuringly,

they matched the expression of the corresponding receptors in many cases (Fig 3D and S12

Fig). The parameters for pathways downstream of NGF correlated mostly with NTRK1 expres-

sion and not with NGFR expression, which might indicate that NGF signalling is mediated

mostly via NTRK1 in those cell lines. The parameters for IGF-induced signals correlated with

IGF1R or IGF2R for MEK and AKT, respectively, indicating that both receptors mediate IGF1

signalling independently. Interestingly, the parameters for the pathway from EGF to MEK did

not correlate with EGFR expression, but they do for EGF to AKT, which might suggest that

differences in adaptor protein expression shape routing into downstream signalling in the vari-

ous cell lines. Indeed, the expressions of GAB2 and SRC are very different between the cell

lines and could explain that IMR32 and LAN6 are activated by EGF as strongly as SKNAS and

SKNSH despite their lower EGFR expression (Fig 2C and S6 Fig). Another potential cause for

the attenuated activation of MEK/ERK is that in NRAS mutant cell lines (CHP212, SKNAS

and SKNSH), MEK/ERK activity is less inducible by receptors, as also parameter values of the

PLOS COMPUTATIONAL BIOLOGY Signalling models unveil combination therapies targeting feedback-mediated resistance
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Fig 3. Receptor expression and topology variations explain the heterogeneity in perturbation response. A: Starting from a

literature-derived network, a model was fitted for each cell line (Initial model fit) and extended following suggestions from the

model (Model extensions and refit). Those models with different network structures were then harmonised by fixing the inhibition

parameters to a consensus value (Fixed inhibitor parameters) to make the parameters directly comparable (Parameter comparison).

B: Model residuals before and after model extension and harmonisation. The black line represents the number of data points, which
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routes from PDGF, EGF, NGF and IGF into MAPK signalling are lower in those cell lines.

Conversely, these cell line models display a slightly more inducible PI3K pathway. This obser-

vation is in agreement with a recent comparative study of G12V-mutated RAS isoforms in

colorectal SW48 cells, where the NRAS-mutated cell line showed a weaker coupling of recep-

tors to MEK and a stronger coupling to PI3K than in the parental cell line [23]. This would

suggest that an activation of the MEK/ERK pathway is relayed predominantly by NRAS while

the PI3K pathway activation is mediated by other proteins [24]. Taken together, this shows

that the wiring and routing of ligand induced signalling in these cell lines is varying and is

mostly explainable by the expression of the corresponding receptor and RAS mutation status.

In contrast to the receptor-associated parameters, the strength of intra-cellular kinase paths

are less variable, and most paths are comparable between cell lines (Fig 3E). The most promi-

nent exception is the negative feedback in MAPK signalling from ERK to RAF. When com-

pared to the other cell lines, this feedback appears to be 3 to 4 times stronger in KELLY and

IMR32, which are two cell lines that are highly resistant to AZD6244. A strong RAF-mediated

feedback is a known resistance mechanism against MEK inhibitors [15–17], where relieve of

inhibition of upstream components post inhibition can partially reactivate signalling. This sug-

gests that AZD6244 resistance could be mediated by a differential regulation of this feedback.

Apart from the RAF-mediated feedback, MAPK signalling is also controlled by receptor-

mediated feedbacks. In the KELLY cell line, our modelling procedure extended the model by a

negative feedback from S6K to IGFR that could then explain the strong accumulation of

pMEK by IGF following AZD6244 treatment (Fig 3C and S3 File). Receptor-mediated feed-

backs are also known to mediate resistance, notably to MAPK inhibitions [13, 18, 25–27], by

reactivating this pathway and other parallel pathways.

In summary, the signalling parameters derived from the perturbation data by our models

show that cell lines diverge in receptor expression and feedback regulation, with strong multi-

layered feedbacks for some of the resistant cell lines.

Differential quantitative wiring of resistant cell lines

A hallmark of negative feedbacks is that they lead to re-activation of the pathway after pathway

inhibition. In agreement with this, we observe an increase of phosphorylated MEK upon

MEKi treatment (AZD6244) that is more pronounced in the cell lines IMR32 and KELLY

compared to the other cell lines modelled, including the most sensitive cell lines CHP212 and

LAN6 (Fig 4A and S13 Fig). We also tested the most resistant cell line in our panel, N206,

which also showed a strong feedback response (Fig 4A). To more precisely dissect the feedback

wiring, we generated additional focused perturbation data for those cells with high feedback

(KELLY, IMR32 and N206) to MEK inhibition. We stimulated cells with different growth fac-

tors (IGF and NGF or EGF), and blocked MAPK signalling with MEK and RAF inhibitors,

and subsequently monitored six phosphoproteins (Fig 4B). Subsequently, we used this data to

parameterise a focused MRA model that additionally either contained or did not contain the

only receptor-mediated feedback found in the first modelling round from S6K!IGF1 (Figs

is equal to the expected mean of the error if the model explains all the data. C: Cell-line-specific network extensions (dashed arrows)

relative to the literature network. Colour of the extended link was matched to cell line colour if required in only one cell line model

and black otherwise. D: Model paths from the receptors to the first measured downstream node and correlation with the

corresponding receptor expression. The colours correspond to the value of the path scaled by the maximum absolute value of that

path between all cell lines. E: Model paths between non-receptor perturbed nodes and measured nodes for routes present in at least

2 cell lines. Colour scale is the same as in D. Cells are ordered from left to right from most sensitive to most resistant to the MEK

inhibitor AZD6244. Due to the absence of ASK1 basal activity in IMR32, ASK1->p38 and ASK1->MEK represent in this cell line

NGF->ASK1->p38 and NGF->ASK1->MEK, respectively.

https://doi.org/10.1371/journal.pcbi.1009515.g003
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3C and 4A). Inclusion of the IGF receptor-mediated feedback led to a significantly better fit of

the data for N206 and KELLY (χ2 p<0.05), but did not improve the IMR32 model (Fig 4C and

4D). Interestingly, the S6K!IGF1!RAF!MEK feedback is stronger in the N206 models, but

the pathway-intrinsic feedback (ERK!RAF!MEK) is stronger in KELLY (Fig 4D). This

highlights that all these cells display negative feedback regulation, but the strengths of the two

layers of feedbacks are different between cell lines.

Parallel inhibition of MEK and IGFR leads to synergistic effects on the

phosphoproteome

To gain a more systematic understanding of the effect of MEK and IGFR inhibition on the sig-

nalling states of the cells, we generated deep (phospho-)proteomics profiles using tandem

mass-tag (TMT) based mass spectrometry [28, 29]. We reasoned that inhibition of IGFR in

Fig 4. AZD6244 resistant cell lines have strong feedback control of MAPK signalling. A: Mean pMEK log2-fold change relative to control after AZD6244 treatment

in 7 neuroblastoma cell lines measured with bead-based ELISAs. Error bars represent 95% confidence interval. B: Measurement of 6 phosphoproteins (columns) after

perturbation of N206, IMR32 and KELLY by either EGF (KELLY, N206) or NGF (IMR32) (together referred to as GF), IGF1, or control BSA in combination with

Sorafenib (RAFi), AZD6244 (MEKi) or control DMSO. Values are expressed in log2-fold change to BSA+DMSO control. C: Starting model and S6K!IGF1 receptor

extension for the high pMEK responder cell lines. D: (top panel) Model residuals for N206, IMR32 and KELLY models with (black) or without (blue) an S6K!IGF1

receptor feedback link and corresponding p-value(χ2 test with df = 1). (bottom panel) Parameter values of the high pMEK responder models including the S6K!IGF1

receptor link.

https://doi.org/10.1371/journal.pcbi.1009515.g004
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combination with MEK should have a synergistic effect in N206 compared to IMR32. We mea-

sured the phospho- and total protein levels in IMR32 and N206 cells after 4h treatment with

MEK and/or IGFR inhibitors and control cells. Although a similar number of phosphosites

were dis-regulated in both cell lines (448 in IMR32, 615 in N206, FDR< 0.05), there was little

overlap in the phospho-peptides differentially regulated between the two cell lines (Fig 5A),

and this overlap was mostly limited to phospho-peptides affected by MEK inhibition (S14 Fig).

In IMR32, IGFR inhibition had little effect, while the presence of MEK inhibition strongly

affected the phosphoproteome (Fig 5B left). Moreover the effect of the combination of MEK

and IGFR inhibitors was dominated by the effect of the MEK inhibition, with about two thirds

of the differential phosphopeptides (96/149) being also regulated by MEK inhibitor alone.

Accordingly, differentially phosphorylated peptides in IMR32 are enriched in MAPK targets

(S15 Fig). In contrast, both MEK as well as IGFR inhibition induce strong alterations in the

phosphoproteome in N206 (S14 Fig), affecting both mTOR and MAPK signalling targets (S15

Fig), and the combination exhibits a synergistic effect (Fig 5B right). Overall, 24 differentially

phosphorylated sites in N206 show synergistic regulation, as defined by a significant deviation

of the combination from the sum of the individual treatment effects. Of these, 17 phosphosites

were synergistically down-regulated, and 7 sites showed up-regulation. Moreover, 10 of those

synergistically downregulated phosphosites are known or putative targets of the PI3K/AKT

signalling axis. This suggests that MEK/ERK signalling influences AKT signalling in a IGFR

dependend way. In contrast, only two sites showed synergy in IMR32 (Fig 5C). Among the

synergistically downregulated phospho-sites in N206 was S425 of the Eukaryotic translation

initiation factor 4B (EIF4B), a protein involved in regulation of translation and a known nexus

between AKT and MAPK signalling [30]. We performed a kinase substrate enrichment analy-

sis [31] to explore how the signalling networks were affected by the inhibitions (Fig 5D). For

IMR32 cells, this analysis showed a decreased phosphorylation of MEK and JAK targets and

an increased phosphorylation of ARAF and BRAF targets in response to MEK inhibition.

Interestingly, in combination with IGFR inhibition the RAF activation is partially reversed

whereas other kinase targets seem rather unaffected. Overall this indicates a feedback activa-

tion of RAF that does not totally compensate the loss of MEK activity. In N206 cells, the

response to MEK inhibition and the attenuation of the activation of RAF targets following

double inhibitor treatment is similar to the response in IMR32. However, in IMR32 cells IGFR

inhibitor treatment had little impact on the kinome whereas a massive down-regulation of tar-

gets of a range of kinases occurred in N206 cells, covering the PI3K/AKT/mTOR pathway

(SGK1–3,AKT1,p70S6K), MAPK pathway (p90RSK) and many members of the Protein

Kinase C Family. This suggests a central role of IGFR signalling on central growth and survival

pathways.

When we investigated the phosphorylation of components of the MAPK pathway more

closely, we found many RAF negative feedback/crosstalk sites to be down-regulated after MEK

inhibition (BRAF: T401, S750, T753; RAF1: S29, S642, S259) in both cell lines (Fig 5E). MEK1

S222/S226 phosphorylation is increased and pERK S204 decreased in both cell lines after MEK

inhibition, in line with corresponding measurements using bead-based ELISAs. Among those

down-regulated phosphosites that were only significant in the combination in N206 we

detected many MYCN-phosphosites, notably MYCN S62, which is regulated by MAPK via

CDK1 [32]. Interestingly, this loss of S62 phosphorylated MYCN is associated with reduced

MYCN levels (Fig 5F) despite the association of MYCN S62 with increased MYCN degrada-

tion [33]. The decreased detection of MYCN S62 might be a consequence of the loss of total

MYCN protein but is likely not causing this loss itself. This downregulation was observed in

IMR32 and N206 cells upon single inhibition (IGFRi for N206 and MEKi for both cell lines),

but only in N206 cells an even stronger downregulation could be observed upon double
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Fig 5. Phosphoproteomics analysis reveals important variations in the response to combination treatment. A-B: Venn diagrams

showing the overlap in differentially regulated phosphosites A: between IMR32 and N206 or B: between treatments for each cell line.

C: Phosphopeptides synergistically altered by MEKi+IGFRi combination (black outline) when compared to the sum of individual

inhibitor treatments. AKT, mTOR or P70S6K bona fide targets (bold font) and putative targets (italic font; top 5 predicted kinases by

PhosphoNET Kinase Predictor www.phosphonet.ca) are indicated. D: Kinase substrate enrichment score using PhosphoSitePlus

annotations. E: Log-fold change to DMSO for RAF/MAPK and MYCN phosphopeptides. C-E: Black outline highlights significant

changes in activity (limma moderated t-test, FDR<5%) F-H: Relative levels compared to control of the total proteins levels for MYCN

(F) and CCND1 (H) measured with mass spectrometry and MYCN measured with Western blot (G).

https://doi.org/10.1371/journal.pcbi.1009515.g005
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inhibition (Fig 5F). We confirmed these effects in Western blots for IMR32 and N206 cells

(Fig 5G), and also found downregulation of MYCN upon IGFRi as well as MEKi treatment

but no synergetic decrease after the combination treatment (Fig 5G). Another interesting pro-

tein that is regulated synergistically in N206 is Cyclin D1 (Fig 5H), a protein that is involved in

cell cycle progression and whose loss likely mediates MYCN loss. It should be noted that only

5 proteins (PHGDH, DERL1, AMPD3, ARHGEF16 and CCND1) were found differentially

affected with an FDR< 10%, highlighting that on this time scale phospho-protein changes

dominated.

Taken together, the proteomics data is coherent with the model that MAPK signalling in

N206 is controlled by a dual feedback structure involving RAF and IGFR, whereas it is mainly

controlled by a RAF-mediated feedback in IMR32. It furthermore supports the notion that

treatment with MEK and IGFR inhibitors would show synergy in N206.

Vertical inhibition can break feedback-mediated resistance

Feedback regulation is often a central aspect for drug resistance that could be overcome by a

vertical inhibition strategy, where an inhibition of an upstream node prevents pathway reacti-

vation. Based on our models, we tested if the additional application of an inhibitor targeting

the feedback nodes (RAF and IGFR) would sensitise resistant cells toward MEK inhibition

(Fig 6A). We quantified growth reduction after inhibiting IMR32, KELLY and N206 with dif-

ferent dose combinations of inhibitors against MEK (AZD6244), IGFR (AEW541) and RAF

(LY3009120) (Fig 6B). In agreement with our model predictions of strong IGFR-mediated

feedback in N206 (Fig 4D), there was a strong synergistic effect as evaluated by the Bliss score

[34] of the combination of MEK and IGFR inhibitions on growth in N206 but little in KELLY

or IMR32 (Fig 6C and see S16 Fig for Loewe score).

When trying to overcome the model-derived strong ERK-RAF feedback found in all three

cell lines with a combination of MEK and RAF inhibition we only found a synergistic effect for

two of the three cell lines (N206 and KELLY), whereas IMR32 remained resistant and no syn-

ergy could be detected. We hypothesised that this observed resistance in IMR32 might be

either because the vertical inhibition by MEKi and RAFi was molecularly not effective or that

IMR32 might no longer depend on ERK signalling for survival and growth. To distinguish the

former from the latter we decided to compare model simulation and measurements for pertur-

bation effects of selected inhibitor combinations on pMEK and pERK in IMR32 and KELLY

cells.

Based on the model simulations, in both cell lines the vertical inhibition of MEK + RAF

inhibitor was predicted to suppress MAPK signalling much stronger than MEK inhibitor

alone or in combination with an ERK inhibitor. Moreover, the suppressive effect was predicted

to be even more profound in IMR32 than in KELLY (Fig 6D left). We then measured the effect

on pMEK and pERK of MEK inhibitor alone and in combination with the RAF inhibitor

LY3009120 or ERK inhibitor SCH772984 (Fig 6D right). The measurements qualitatively sup-

ported the model simulations showing that RAF inhibitor suppressed MEK feedback activa-

tion by AZD6244, and that this suppression is stronger in IMR32. Addition of the ERK

inhibitor neither suppressed this feedback activation nor could it decrease ERK phosphoryla-

tion more than RAF inhibition, as also predicted by the model. This suggests that in agreement

with the model simulations the combination of RAFi and MEKi is most effective in IMR32 to

effectively suppress ERK activation and feedback-mediated re-activation. However, since the

growth is least affected by this combination IMR32 seems not to depend on ERK activity.

As both KELLY and N206 have strong multi-layered feedbacks (Fig 4D), we also tried triple

combinations of IGFRi, RAFi and MEKi. We observed that only in KELLY, triple inhibitor
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treatment seems to have an additional benefit compared to the best combination of two inhibi-

tors. (S17 Fig and S2 File).

Discussion

Neuroblastoma is a complex disease with distinct subtypes that display radically different out-

comes, ranging from spontaneous regression in low-risk groups to only 50% survival of

patients in the high risk neuroblastoma group. Mutations in RAS/MAPK signalling are a hall-

mark of high risk neuroblastoma, and also define a subgroup of patients with ultra-high-risk

neuroblastoma and an even worse survival. Therefore targeted treatment might be a valid

strategy to treat those patients. However, response to MEK inhibitors are very variable, and it

is thus important to understand mechanisms of resistance and how to circumvent these.

Fig 6. AZD6244 resistant cell lines can be sensitised with combined inhibition with the IGFR inhibitor AEW541 or the RAF inhibitor LY3009120. A: Model-

inferred targeting strategy of dual inhibition. B: Growth inhibition measurements for various combinations of the MEK inhibitor AZD6244 with the RAF inhibitor

LY3009120 or the IGFR inhibitor AEW541. Values over 100 indicate cell death. n = 2. C: Bliss synergy corresponding to the measurements in B. D: LEFT: Model

predictions of pERK and pMEK activity for MEK inhibition alone and in combination with inhibition of upstream kinase RAF or downstream kinase ERK for KELLY

and IMR32. Values are log-fold changes to IGF1 condition with inhibitor strength set to -1. D: RIGHT: pERK and pMEK plex measurements in KELLY and IMR32 after

90min treatment of the MEK inhibitor AZD6244 in combination with either DMSO, SCH772984 (ERKi, 10μM) or LY3009120 (RAFi, 5μM) in cells grown with 10%

FCS. Values are log-fold change to FCS medium condition.

https://doi.org/10.1371/journal.pcbi.1009515.g006
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In this work, we explored how a more quantitative understanding of signalling can be used

to design combinatorial treatments to counteract drug resistance. We used a panel of deeply

profiled cell lines representing high risk neuroblastoma and showed that the response to MEK

inhibitors is variable, with some cell lines responding at low doses in the nM range, whereas

others are highly resistant. By using signalling perturbation-response data, we characterised

the signalling network surrounding MAPK. Analysis of that perturbation data with the model-

ling framework of modular response analysis unveiled that MAPK signalling is controlled by a

multi-layered feedback with variable strength. A central finding was that MEK-inhibitor sensi-

tive cells are controlled by low feedbacks within the MAPK cascade, whereas a subset of resis-

tant cell lines shows strong multi-layered feedbacks that may be causal for resistance.

Simulation of cell-line specific models suggested that different combinations of inhibitors can

be used to overcome resistance, and experiments could confirm these predictions in two out of

three cell lines.

Our work highlights that systematic perturbation data are a powerful source to probe intra-

cellular signalling pathways. The connectivity of signalling pathways implies that minor quan-

titative alterations of the network can lead to many changes in response, not all of which alter

the phenotype. In this work, we saw that multivariate analysis of the perturbation data alone

was not fruitful to separate cell lines with respect to their drug sensitivity. In contrast, integra-

tion of data by models highlighted that variations of only a few links is enough to explain the

differences between those cell lines. Modelling was therefore key to integrate the data and to

unveil feedback loops as potential sources of resistance.

In our work we used a maximum likelihood version of MRA, but there are multiple other

methods that might be suited to reconstruct semi-quantitative signalling networks from per-

turbation data. [35] proposed a bayesian variant which overcomes the linearity assumption of

MRA using chemical kinetics to guide the inference and fuzzy-logic models such as used by

[36] also show good performance to reconstruct network topology from signalling data. How-

ever getting quantitative values for the interactions between components of a signalling net-

work from a small set of perturbations requires MRA variants [21, 37] or necessitates time-

resolved perturbation data which limits the number of perturbations that can be studied simul-

taneously [38]. While boolean models are very good strategies to model large signalling net-

works and complex synergies [39], they would be unable to capture quantitative differences in

feedback regulation, which are the key resistance mechanisms uncovered in this work.

Drug resistance to targeted therapies have been attributed to negative feedback loops in

multiple tumours. Most importantly, sensitivity to MEK inhibitors is strongly influenced by a

pathway-intrinsic feedback, where ERK phosphorylates RAF at multiple sites [15–17]. This

feedback has been shown to be very strong in epithelial cells leading to pathway robustness

[16], which can be overcome by vertical inhibition of RAF [17]. Another mode of feedback

regulation is the inhibition of receptors by pathways. An example is the inhibitory regulation

of EGFR by the MAPK pathway [13, 14]. When inhibiting MAPK signalling by MEK or RAF

inhibitors, this feedback leads to hyper-sensitisation of EGFR, which in turn reactivates MAPK

signalling and additionally activates other downstream pathways such as PI3K/AKT signalling.

Also in this case vertical inhibition can help to overcome this mode of resistance, by co-target-

ing the MAPK pathway and the upstream receptor.

Our modelling analysis suggested that some neuroblastoma cell lines possess two major lay-

ers of feedback in MAPK signalling. One of these feedbacks is pathway-intrinsic (from ERK to

RAF) and one is a feedback to the IGF receptor. Interestingly, different cell lines show different

relative strength of feedbacks from ERK to RAF and IGFR, and simulations show that those

require different strategies for vertical inhibition. For the cell line KELLY, modelling unveiled

an extremely strong negative feedback from ERK to RAF. This suggests that a combination of
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MEK and RAF inhibitor will be more potent than a combination of MEK and IGFR inhibitor.

In contrast, in the cell line N206, both feedbacks have similar strength, suggesting that both

combinations might be potent. In line with these predictions, experiments showed that in

KELLY indeed the combination of MEK and RAF inhibitors is much more potent to reduce

growth compared to the combination of MEK and IGFR. In contrast, in N206 both combina-

tions reduce growth.

Our phospho-proteomics analysis shows that the combination of MEK and IFGR also has dif-

ferent effects in the two cell lines: Whereas it shows clearly synergistic effects of the combination

in N206, there is no sign of synergy in IMR32. By aggregating the phosphoproteome to kinase

activities using kinase enrichment scores, one can also get insights into the re-wiring of signal-

ling after perturbation. In our case, it clearly shows how the re-activation of RAF after MEK

inhibition is inhibited by the treatment with IGFR inhibitors, and IGFR and MEK inhibitors

synergize in reducing AKT activity in N206. The phosphoproteome also showed that the dual

treatment of IGFR and MEK manifests itself in synergistic downregulation of important pro-

teins that are regulated by convergent signalling of MEK and AKT, such as MYCN and EIF4B.

Interestingly, a third resistant cell line, IMR32, showed no response in growth to MEK

inhibitor in vertical combination with either RAF and/or IGFR inhibitor on growth, even

though it’s cellular ERK signalling was strongly responsive. This highlights that cancer cells

might lose ERK-mediated cell cycle control, suggesting that coupling of cellular phenotype to

signalling pathways is not necessarily strict [40, 41]. To more directly model changes on cellu-

lar phenotypes such as growth or viability, models of signalling would need to be connected to

phenotypic readouts [42]. In addition, it might be beneficial to include downstream readouts

such as cyclin levels or CDK activation that are more directly involved in cell cycle progression

and can be deregulated in cancer [43, 44]. Our model attributes signalling differences between

cell lines to an apparent feedback from MAPK signalling to IGFR and/or RAF. However, our

model is too coarse-grained to distinguish feedback regulation from other, potentially non-lin-

ear mechanisms of cross-talk. Ultimately, only mechanistic studies that e.g. include the use of

cell lines that have mutant feedback will unveil if the feedbacks are responsible for the observed

signalling phenotypes and inhibitor synergies. It should be also pointed out that our measure-

ments only encompass one time point and that later dynamics of the MAPK pathway, such as

transcriptional feedbacks, could also explain IMR32 resistance to vertical inhibition.

In summary, our results show that a quantitative understanding of differences in signalling

networks can be very helpful to rationalize resistance, and to derive effective treatments.

Future work should investigate if those feedback mechanisms exist in tumours in vivo and

whether they could explain relapses. Our description of the wiring of the RAS/MAPK pathway

in neuroblastoma will support the design of clinical trials using combinatorial treatments to

prevent or overcome therapy resistance. In addition, the framework described here could be

used to analyse signalling in tumours of individual patients While it will be technically chal-

lenging to assess signalling network responses in tumour patients, ex vivo cultures—so-called

avatars—could be an option [45, 46]. We envision that learning features of robustness and vul-

nerability of tumours from signalling models on cell line panels might greatly reduce the

required set of perturbations in those avatars that are sufficient to inform a model, and allow

reliable stratification and prediction of treatment options.

Materials and methods

Cell lines

The neuroblastoma cell lines were obtained by courtesy of the Deubzer lab (Charité, Berlin) as

part of the Terminate-NB consortium. The identity of the cell lines was confirmed with STR
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profiling (see S2 Table), which were generated by Eurofins Cell Line Authentification Test and

matched with the Cellosaurus STR similarity research tool [47]. All cell lines were grown in

DMEM (Gibco, Life Technologies) with 3.5 g/L glucose (Sigma), 5 mM glutamine (Gibco, Life

Technologies) and 10% FCS (Pan Biotech).

Whole exome sequencing

DNA was extracted from the human neuroblastoma cell lines (see above), using the NucleoS-

pin Tissue kit (Macherey-Nagel) according to the manufacturer’s protocol. From the DNA,

libraries for whole-exome sequencing were prepared using the SureSelect Human All Exon V7

kit (Agilent) and the Illumina TruSeq Exome kit. The libraries were sequenced on Illumina

HiSeq 4000 and Illumina NovaSeq 6000 sequencers. The read sequences and base quality

scores were demultiplexed and stored in Fastq format using the Illumina bcl2fastq software

v2.20. Adapter remnants and low-quality read ends were trimmed off using custom scripts.

The quality of the sequence reads was assessed using the FastQC software. Reads were aligned

to the human genome, assembly GRCh38, using the bwa mem software version 0.7.10 [48],

and duplicate read alignments were removed using samblaster version 0.1.24 [49]. Copy-num-

ber alterations were determined using cnvkit version 0.1.24 [50]. Single-nucleotide variants

(SNVs) were identified using strelka version 2.9.10 [51]. Afterwards, potential germline vari-

ants were filtered out by excluding all SNVs that had also been observed in at least 1% of sam-

ples in cohorts of healthy individuals, namely the 1000 Genomes Project [52] and the NHLBI

GO Exome Sequencing Project [53] cohorts. The raw data are available on ENA under the

accession number PRJEB40670.

RNA sequencing

The cell lines were sequenced in 3 separate batches. The IMR32, KELLY, SKNAS, LAN6,

NBEBC1 cell lines were prepared in triplicate, using a paired-end stranded protocol with 2x75

cycles per fragment and 2 more cell lines (NGP, SKNSH) were prepared in duplicate, using a

paired-end stranded protocol with 2x150 cycles. Two more libraries (CHP212 and N206) were

prepared using a paired-end stranded protocol with 2x75 cycles per fragment.

Raw sequencing data were rigorously checked for quality using FastQC. The reads were

aligned to the human genome GRCh38 (without patches or haplotypes) and the GENCODE

transcript annotation set using the STAR aligner software [54]. The read counts per gene were

obtained using the featurecounts [55] method from the subread software package. The raw

data are available on ENA under the accession number PRJEB40670.

Drug sensitivity assay

Cells grown for 1 day in full medium were treated with the indicated drugs in 4 different con-

centrations (0.1, 1, 10 and 100 μM Fig 1B) along with the corresponding DMSO controls on

the same plate. The growth of the cells was tracked by phase contrast imaging for 72h with 4

images per well taken every 2h using the Incucyte Zoom instrument (Essen BioScience) and

the confluency estimated using the Incucyte Zoom Analysis software (Essen BioScience). The

growth rate was estimated with a linear fit on the log-transformed confluency, and the IC50

was determined by fitting a sigmoid of the form:

V ¼
1

1þ expð� logðCÞ þ IC50Þ � S

to normalised growth rates (implemented in https://github.com/MathurinD/drugResistance).

V is the growth rate relative to DMSO control, C is the concentration and the parameters IC50
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and slope S are fitted. See S1 Table for the fitted parameters and S2 File for the raw data and

analysis scripts, as well as S18 and S19 Figs for example images.

Synergy estimation

For the synergy assay, cells seeded the day before were treated with different concentrations of

AZD6244 (0.1, 1, 10, 30 and 50 μM, Selleck Chemicals) in combination with NVP-AEW541

(0.1, 0.3, 1, 3 and 10 μM, Cayman Chemical) or LY3009120 (0.1, 0.3, 1, 3 and 15 μM, Selleck

Chemicals). The synergy scores were determined using the R package synergyfinder [56] with

the relative growth rates thresholded between 0 and 1 as input (0 meaning no growth or cell

death and 1 meaning growth as fast as the DMSO control).

Perturbation assay

Cells were seeded in 24 well plates and grown for 2 days in full medium followed by 24h in

FCS-free medium before treatment with the same concentrations of ligands and inhibitors.

All inhibitors were dissolved in DMSO and cells were treated for 90 minutes at the follow-

ing concentrations: GDC0941 (1 μM, Selleck Chemicals), AZD6244/Selumetinib (10 μM, Sell-

eck Chemicals), MK2206 2HCl (10 μM, Selleck Chemicals), Rapamycin (10 μM, Selleck

Chemicals), Sorafenib (10 μM, Selleck Chemicals), GS-4997 (10 μM, Selleck Chemicals) and

TAE684 (10 μM, Selleck Chemicals).

The cells were treated for 30 minutes (60 minutes after inhibitor treatment) with ligands in

a 0,1% PBS/BSA carrier solution at the following concentrations: EGF (25 ng/mL, Peprotech),

PDGF (10 ng/mL, Peprotech), NGF (50 ng/mL, Peprotech) and IGF1 (100 ng/mL, Peprotech).

The cells were then lysed using BioRad Bio-Plex Cell Lysis Kit and measured using the Bio-

Plex MAGPIX Multiplex Reader with a custom kit from ProtAtOnce with analytes p-cJUN

(S63), p-p38 (T180/Y182), p-AKT (S473), p-ERK1/2 (T202/Y204,T185/Y187), p-MEK1 (S217/

S221), p-S6K (T389) and p-RSK1 (S380). The p-RSK1 (S380) readout was discarded because of

a low dynamic range.

The same procedure and analytes were used for the other perturbation assays in this paper.

Refer to the main text for the exact inhibitors and concentrations used for each experiment.

Signalling models

The model for each cell line was fitted separately from the corresponding perturbation data

with the createModel function from the R package STASNet [21]. STASNet implements the

variation of Modular Response Analysis (MRA) described in [13] and [21] that implements a

dual effect of inhibitors as both a negative stimulus and a disruption of signal propagation.

Under the hypothesis of pseudo-steady-state and locally linear dependencies between nodes,

MRA models the response to a perturbation as

R ¼ � ~rk � S ð1Þ

where Rij is the global response of node j after perturbation of node i, ~rkij is the local response of

node j after perturbation of node i taking into account the effect of inhibition of node k, and

Sik is the sensitivity of node i to perturbation k. The pAKT readout was systematically removed

if AKT inhibition was present because the AKT inhibitor MK2206 blocks AKT autophosphor-

ylation [57], i.e acts upstream of the AKT node, while STASNet expects inhibitors to act down-

stream of their annotated target.

We designed a literature network consisting of the MAPK and PI3K/AKT signalling path-

way as annotated in KEGG (https://www.genome.jp/kegg/pathway/hsa/hsa04010.html and
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https://www.genome.jp/kegg-bin/show_pathway?hsa04151) with intermediate nodes sup-

pressed, the addition of the well documented ERK->RAF feedback and all receptors corre-

sponding to RTK. Each cell line was fitted first on the literature network, then we extended the

networks independently using a greedy hill climbing approach, until no significant link could

be added. We then performed successive rounds of reduction to identify the non-significant

links. Most removed links relate to receptor connections. Only three connections not related

to receptors were removed during this procedure, each for one cell line only. To facilitate

model comparison, these links were ultimately retained in the model, as otherwise the model

parameters would not be comparable. Those models with final topology yielded similar values

for the inhibition parameters so we generated new models with those parameters fixed to the

mean value across all 6 models and re-fitted each cell line with inhibitor values fixed. With this

fitting strategy the links between models became directly comparable as the non identifiability

induced by the inhibitor parameters was removed (Fig 3A). The high pMEK responder cell

line models were fitted using the same procedure.

Western blot

Cells were grown to confluency for 3 days in full medium and treated with AEW541 10μM

and/or AZD6244 10μM or control DMSO for 4h then lysed using BioRad Bio-Plex Cell Lysis

Kit. The lysates were run for 3h at a constant 45 mA in 10% acrylamid gels and blotted for 45

minutes at 400 mA on nitrocellulose. The membranes were stained for total protein using

Pierce Reversible Protein Stain (Thermofischer 24580) and blocked for 30 minutes in 1:1 PBS:

Odyssey blocking buffer. The primary antibodies were incubated overnight at 4C one at a time

and the corresponding secondary during the following day for 2h at room temperature in 1:1

PBST/Odyssey. We used the following primary antibodies: pIGF1R betaY1135/Y1136 1:1000

(CST 3024), pAKT S473 1:2000 (CST 4060), total MYCN 1:200 (Santa Cruz sc-53993) and

pMEKS217/S221 1:1000 (CST 9154).

TMT (phospho-)proteomics

For the proteomics and phosphoproteomics cells were grown to confluency for 3 days in full

medium and treated with AEW541 10μM and/or AZD6244 10μM or control DMSO for 4h.

We used an adapted version of the TMT workflow [28]: samples were reduced, alkylated

and digested with a combination of LysC (Wako) and Trypsin (Promega) using the the single-

pot, solid-phase-enhanced sample preparation [58]. For each sample, an equal amount of pep-

tide was then chemically labelled with TMTpro reagents [29]. Samples were randomly assigned

to one of the first 15 TMT channels, while the 16th channel was composed of a superset of all

the samples to allow multi-plex normalisation. Equal amounts of the labelling reactions were

combined in two TMT16 plexes, desalted via SepPak columns (Waters) and fractionated via

high-pH fractionation [59] on a 96 minutes gradient from 3 to 55% acetonitrile in 5 mM

ammonium formate, each fraction collected for 1 minute then combined into 24 fractions.

From each fraction, an aliquot was used to measure the total proteome while the remaining

peptides were combined into 12 fractions and used as input for an immobilised metal affinity

chromatography using an Agilent Bravo system. For the total proteome analysis, peptides were

on-line fractionated on a multi-step gradient from 0 to 55% acetonitrile in 0.1% formic acid

prior injection in a QExactive HF-x mass spectrometer. Samples were acquired using a data

dependent acquisition strategy with MS1 scans from 350 to 1500 m/z at a resolution of 60 000

(measured at 200 m/z), maximum injection time (IT) of 10 ms and an automatic gain control

(AGC) target value of 3 × 106. The top 20 most intense precursor ions with charges from +2 to

+6 were selected for fragmentation with an isolation window of 0.7 m/z. Fragmentation was
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done in an HCD cell with a normalised collision energy of 30% and analysed in the detector

with a resolution of 45 000 (200 m/z), AGC target value of 105, maximum IT of 86 ms. We

used the same parameters for phosphoproteome analysis with the exception of MS2 maximum

IT that was set to 240 ms.

The acquired raw files were analysed using MaxQuant v1.6.10.43 [60], with TMTpro tags

manually added as fixed modifications and used for quantitation. The correction factors for

purity of isotopic labels was set according to vendor specification and minimum reporter pre-

cursor intensity fraction was set to 0.5. The resulting protein groups were filtered for potential

protein contaminants, protein groups only identified via peptides decorated with modification

or hits in the pseudo-reverse database used for FDR control. The resulting intensities of each

sample channel were normalised to the intensity of the 16th reference channel, then median-

centered and normalised according to the median-absolute deviation. Identified phosphopep-

tides were similarly filtered, with the exception of filtering based on modified sites, and nor-

malised using the same strategy.

Differentially expressed phosphopeptides were called using the limma package [61] with a

false discovery rate of 0.05 on treatment minus control contrasts. Synergies were computed

using a contrast fit of the combination minus the sum of single treatments. Kinase substrate

activity was implemented in R using the ratio of the mean z-score as described in [31] and

computed for kinase-substrate sets from PhosphoSitePlus [62]. The normalised intensities and

scripts used for the analysis can be found at https://itbgit.biologie.hu-berlin.de/dorel/

phosphoproteomics_tnb_perturbations.
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(PDF)
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treatment in (A) IMR32, (B) N206 or (C) both strictly. Enrichment was computed using the R

package enrichKEGG.

(PDF)
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or (B) LY3009120 shown in 6B. Synergy scores were computed with the R package synergyfin-

der. Positive scores indicate synergy, negative scores indicate antagonism.

(PDF)

S17 Fig. Viability to combination treatments. Relative viability of IMR32, KELLY and N206

after treatment with AZD6244, AEW541 and RO5126766 alone or in combination. Con-

fluency was tracked for 72h using the Incucyte Zoom. Growth rate was fitted to the confluency

curve and normalised to the average growth rate of the corresponding DMSO controls. black

crosses indicate the mean value for each cell line for the corresponding treatment.
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