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A B S T R A C T

Recognition of mitotic figures in histologic tumor specimens is highly relevant to patient outcome assessment.
This task is challenging for algorithms and human experts alike, with deterioration of algorithmic performance
under shifts in image representations. Considerable covariate shifts occur when assessment is performed on
different tumor types, images are acquired using different digitization devices, or specimens are produced
in different laboratories. This observation motivated the inception of the 2022 challenge on MItosis Domain
Generalization (MIDOG 2022). The challenge provided annotated histologic tumor images from six different
domains and evaluated the algorithmic approaches for mitotic figure detection provided by nine challenge
participants on ten independent domains. Ground truth for mitotic figure detection was established in two
ways: a three-expert majority vote and an independent, immunohistochemistry-assisted set of labels. This work
represents an overview of the challenge tasks, the algorithmic strategies employed by the participants, and
potential factors contributing to their success. With an 𝐹1 score of 0.764 for the top-performing team, we

∗ Corresponding author.
E-mail address: marc@deepmicroscopy.org (M. Aubreville).
vailable online 22 March 2024
361-8415/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.media.2024.103155
Received 27 September 2023; Received in revised form 19 January 2024; Accepted 20 March 2024

https://www.elsevier.com/locate/media
https://www.elsevier.com/locate/media
mailto:marc@deepmicroscopy.org
https://doi.org/10.1016/j.media.2024.103155
https://doi.org/10.1016/j.media.2024.103155
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2024.103155&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Medical Image Analysis 94 (2024) 103155M. Aubreville et al.
summarize that domain generalization across various tumor domains is possible with today’s deep learning-
based recognition pipelines. However, we also found that domain characteristics not present in the training set
(feline as new species, spindle cell shape as new morphology and a new scanner) led to small but significant
decreases in performance. When assessed against the immunohistochemistry-assisted reference standard, all
methods resulted in reduced recall scores, with only minor changes in the order of participants in the ranking.
t
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1. Introduction

Despite advances in molecular characterization of biological tu-
mor behavior, morphological tumor classification using established
histopathologic techniques remains an important factor in tumor prog-
nostication (Makki, 2015; Soliman and Yussif, 2016). One criterion of
particular interest within many tumor grading schemes is the density of
cells undergoing division, which are visible as mitotic figures (MFs) in
hematoxylin and eosin (H&E)-stained histopathological sections (Veta
et al., 2015, 2019). The number of MFs within a specific tumor area
is enumerated by experienced pathologists, resulting in the mitotic
count (MC). Despite the prognostic relevance of the MC, low inter-rater
consistency on an object level has been reported in many studies (Veta
et al., 2016; Meyer et al., 2005, 2009; Malon et al., 2012; Bertram et al.,
2021). The recommendation for pathologists is to select the region of
the suspected highest mitotic activity, which is considered to be the
best predictor of tumor behavior (Azzola et al., 2003; Meuten et al.,
2008; Veta et al., 2015). Selection of this regions of interest (ROI)
within the tumor has a great impact on the MC (Bertram et al., 2020a),
but is difficult for pathologists to reliably accomplish and is poorly
reproducible (Aubreville et al., 2020; Bertram et al., 2021). While
assessment of mitotic activity in the entire tumor section (or in the case
of the digital image: the whole slide image (WSI)) would be preferable
in order to identify those mitotic hotspot ROI, this is not feasible in
current practice. Additionally, low inter-rater consistency on an object
level within these selected ROI has been reported in many studies
with the tendency of pathologists to overlook MFs (Veta et al., 2016;
Meyer et al., 2005, 2009; Malon et al., 2012; Bertram et al., 2021).
The combination of these circumstances and the recent availability of
large-scale digital pathology solutions makes automatic detection of
MFs desirable.

Unsurprisingly, MF detection was one of the earliest identified
areas of research interest in computational pathology, with the first
approaches in 2008 (Malon et al., 2008). The first challenge on MF
detection in breast cancer (MITOS2012, (Roux et al., 2013)) was held
at the International Conference on Pattern Recognition (ICPR) and
resulted in the first publicly available MF dataset. While this gave
rise to algorithm development in the field, it was also an example
of questionable dataset quality, as the training and test sets were
selected from the same histology slides (Roux et al., 2013). More recent
challenges (MITOS2014 (Roux et al., 2014), AMIDA13 (Veta et al.,
2015), TUPAC16 (Veta et al., 2019)) also comprised breast cancer and
incorporated a higher number of cases, yet, were still limited by having
the same digitization device for the training and test set.

As shown by prior research (Aubreville et al., 2021), the digiti-
zation device has a decisive influence on the detection quality, as it
coincides with a shift in the image representation, leading to a do-
main shift in the latent representation of the detection models (Stacke
et al., 2020; Aubreville et al., 2023a). Investigation of these limita-
tions was the main idea behind the MItosis DOmain Generalization
(MIDOG) challenge, held as a one-time event at the International
Conference on Medical Image Computing and Computer Assisted In-
tervention (MICCAI) in 2021. This challenge, which was the first to
directly target domain generalization in histopathology, evaluated the
detection of MFs in ROIs of human breast cancer, digitized using
various devices (WSI scanners).

Since MFs are not only of interest for human breast cancer, the 2022
2

MIDOG challenge extended the task of MF domain generalization to
include further representation shifts of interest: In addition to the use of
different WSI scanners, the training dataset was enhanced by including
histological specimens from different tumor types as well as different
species (human, canine, feline), processed by different laboratories.
Each of these contributing factors defined a tumor domain. We define
a tumor domain as a specific combination of tumor type, species, lab,
and WSI scanner. We found that the domain gap between tumor types
is substantial (Aubreville et al., 2023b) and seems to be more important
than the domain gap between scanners, thus the cases used for the
MIDOG 2022 challenge were primarily categorized by the tumor type.

Challenge format and task

As in previous challenges on MF detection, we provided ROIs,
selected by an experienced pathologist from a tumor region with the
presumed highest mitotic activity and appropriate tissue and scan qual-
ity. MF candidates were identified and assessed by a blinded majority
vote of three experts (with the third expert only asked if the first two
disagreed). The training set, consisting of 405 tumor cases (correspond-
ing to 405 patients) and featuring 9,501 MF annotations was released
on April 20, 2022. These cases were split across six tumor domains
(see Fig. 1), out of which five were provided with labels and one was
provided without labels as an additional data source for unsupervised
domain adaptation techniques. An extended version of the training set,
including two novel domains, was made available under a Creative
Commons CC0 license post-challenge (Aubreville et al., 2023b).

The participants were required to package their algorithmic solution
in the form of a docker container,1 which was subsequently evaluated
on the test data on the grand-challenge.org platform2 in a fully auto-
matic manner, i.e., no participant had access to any of the test images
during or after the challenge. To perform a technical validation of the
docker containers, we provided an independent preliminary test set,
consisting of four unseen tumor domains. During a preliminary test
phase, which started on August 5, participants were allowed to perform
one evaluation of an algorithmic approach per day. We explicitly made
the participants aware that the four domains of the preliminary test set
were disjointed from the tumor domains of the actual challenge test set,
so overfitting to those domains by means of hyperparameter or model
selection would not be meaningful. The final challenge submission
phase started on August 26 and lasted until August 30. During this
phase, participating teams were exclusively authorized to submit a
single algorithmic approach.

The challenge provided two tracks: As multiple openly accessible
datasets on MF detection already exist, we gave participants the choice
to either use only data provided by the challenge (track 1) or addi-
tionally use publicly available data and labels (track 2). In the second
track, participants also had the option to use in-house datasets under
the condition that these datasets were made publicly available and
announced on the challenge website up to one month prior to the
challenge. We opted for this strategy to maximize the reproducibility
of the challenge results. However, no participating team chose to use
previously non-public datasets.

1 A reference docker container for evaluation was made available to
he participants at: https://github.com/DeepMicroscopy/MIDOG_evaluation_
ocker.

2 https://midog2022.grand-challenge.org

https://github.com/DeepMicroscopy/MIDOG_evaluation_docker
https://github.com/DeepMicroscopy/MIDOG_evaluation_docker
https://midog2022.grand-challenge.org
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Fig. 1. Random selection of crops of size 128 × 128 px, centered around annotated MFs from the six domains of the training set. Caption indicates the originating lab (UMCU =
UMC Utrecht, VMU = University of Veterinary Medicine Vienna, FUB = FU of Berlin) and the scanners (S360 = Hamamatsu S360, XR = Hamamatsu XR, CS2 = Aperio ScanScope
CS2, 3DH = 3DHIstech Pannoramic Scan II). Domain F was not labeled, hence the crops were selected at random.
The structured challenge design includes details about the policies
regarding participation, publication, awards, and results announce-
ment, and was made available publicly (Aubreville et al., 2022). The
challenge design was proposed and evaluated in a single-blinded peer
review for admission to MICCAI 2022.

Main novelties over the predecessor

While the task (MFs detection on ROIs images) was identical to
the preceding MIDOG 2021 challenge, we incorporated three major
modifications in the 2022 challenge design that set it apart from its
predecessor:

• We extended the sources of domain shift by not only including
the imaging device and the inherent stain differences between
cases but also by incorporating different laboratories (and hence
tissue processing), different tumor types, and different species,
minimizing the gap to real-world data variability.

• The evaluation was carried out on ten independent tumor do-
mains, representing a wide variety of conditions and thus allow-
ing for better generalization of the assessment. The ten domains
were additionally disjoint from the four independent domains of
the preliminary test used for technical validation of the docker
pipeline.

• We established the ground truth of the test set not only as the
majority vote of three experts on the H&E-stained sections (used
for challenge evaluation and ranking) but also by additionally
using an immunohistochemical (IHC) stain for Phospho-Histone
H3 (PHH3) (specific for cells entering the mitotic cycle (Hendzel
et al., 1997)), which was superimposed on the H&E image for
assisted labeling aiming to object-level confusion, which is a main
source of inter-rater disagreement (Veta et al., 2016).

2. Material and evaluation methods

For all tumor types included in our datasets, the MC has well-
established prognostic relevance for discriminating patient outcome,
either as a solitary prognostic test or as part of an established grad-
ing scheme. We retrieved human tissue samples from the diagnostic
archives (DAs) of the Department of Pathology of the University Med-
ical Center (UMC) Utrecht, The Netherlands, as well as the Institute
of Neuropathology and the Institute of Pathology of the University
Hospital Erlangen, Germany. All samples were prepared from paraffin-
embedded tumor sections stained according to the standard procedures
of the respective institutions. We received ethics approval from the
UMC Utrecht (TCBio 20-776) and the ethics board of the medical
faculty of FAU Erlangen-Nürnberg (AZ 92_14B, AZ 193_18B, 22_342_B).
For samples taken from the DAs of veterinary pathology laboratories
(Freie Universität Berlin (FUB), Germany and University of Veterinary
Medicine Vienna (VMU), Austria), no ethics approval was required.
3

2.1. Challenge cohort and tumor domains

In our datasets, we included tumors from multiple different mor-
phological categories: aggregated cell pattern, round cell shape, and
spindle cell shape. While these categories were used in order to allow
comparison of the algorithmic performance depending on the tumor
morphology, we acknowledge that some tumor types (see below) are
difficult to group into these categories and the best fitting category was
chosen. In the training dataset, we included 405 cases (see Fig. 1), split
into the following domains:

• Domain A: Human breast carcinoma, an epithelial tumor with
aggregated cell pattern/morphology, retrieved from the DA of
UMC Utrecht. 150 cases split across three scanners (Hamamatsu
XR, Hamamatsu S360, Aperio Scanscope CS2, 50 each) at 40×
magnification (0.23 to 0.25 μm/px), previously released as train-
ing set of the 2021 MIDOG challenge (Aubreville et al., 2023a).
The MC is part of the College of American Pathologists guidelines
for breast cancer (Fitzgibbons and Connolly, 2023).

• Domain B: Canine lung carcinoma an epithelial tumor with
aggregated cell pattern/morphology, retrieved from the DA of
VMU. 44 cases digitized with a 3DHistech Pannoramic Scan II at
40× magnification (0.25 μm/px). The MC is part of the grading
scheme by McNiel et al. (1997).

• Domain C: Canine lymphoma, a mesenchymal tumor with round
cell morphology, retrieved from the DA of VMU. 55 cases digi-
tized with a 3DHistech Pannoramic Scan II at 40× magnification
(0.25 μm/px). MC is part of the grading scheme by Valli et al.
(2013).

• Domain D: Canine cutaneous mast cell tumor, a mesenchymal
tumor with round cell morphology, retrieved from the DA of
FUB. 50 cases digitized with an Aperio ScanScope CS2 at 40×
magnification (0.25 μm/px). MC is part of the grading scheme
by Kiupel et al. (2011).

• Domain E: Human pancreatic and gastrointestinal neuroendocrine
tumor, a tumor with aggregated cell pattern/morphology, re-
trieved from the DA of UMC Utrecht. 55 cases digitized with a
Hamamatsu XR (C12000-22) at 40× magnification (0.23 μm/px).
MC is part of the 2022 WHO classification scheme of endocrine
and neuroendocrine tumors (WHO Classification of Tumours Ed-
itorial Board, 2022).

• Domain F: Human melanoma, a neuroectodermal tumor compris-
ing all three morphological patterns, retrieved from the DA of
UMC Utrecht. 51 cases digitized with a Hamamatsu XR (C12000-
22) at 40× magnification (0.23 μm/px). MC is part of the staging
and classification scheme of the AJCC for melanoma (Gershen-
wald et al., 2017). This domain was not labeled and only pro-
vided as an additional source of data diversity for unsupervised
approaches.

While, ideally, a consecutive selection of cases would be desirable
to provide representative samples, we intentionally deviated from this
norm in this iteration of the challenge. Specifically, we ensured the
inclusion of a minimum number of mitotically active cases across all
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Fig. 2. Overview of the domains of the test set. Random cropouts sized 256 × 256 px from four randomly selected images of each domain are shown. Caption indicates origin of
tissue (UMCU = UMC Utrecht, UKER = University Hospital Erlangen, UKER NP = Institute of Neuropathology at University Hospital Erlangen, FUB = FU Berlin, VMU = University
of Veterinary Medicine Vienna) and scanner (S360 = Hamamatsu S360, S60 = Hamamatsu S60, 3DH = 3DHistech Pannoramic Scan II). The tumor types are categorized by the
tissue morphology into aggregated cell patterns, round cell morphology and spindle cell morphology.
domains. This was done in order to ensure sufficient dataset support
for MF objects in each respective domain.

We prepared a small (20 cases) preliminary test set to check the
validity of the algorithmic approaches through the docker submission
system. In this dataset, the following domains were included:

• Domain 𝛼: Human breast carcinoma, an epithelial tumor with
aggregated cell pattern/morphology, similar to the training set
domain A, but scanned with a Hamamatsu RS2 scanner. Five
cases, previously used as part of the preliminary test set of MIDOG
2021 (Aubreville et al., 2023a).

• Domain 𝛽: Canine osteosarcoma, a mesenchymal tumor with
predominantly spindle cell morphology, retrieved from the DA of
VMU. Five cases digitized with a 3DHistech Pannoramic Scan II
at 40× magnification (0.25 μm/px).

• Domain 𝛾: Human lymphoma, a mesenchymal tumor, round cell
morphology, retrieved from the DA of UMC Utrecht. Five cases
digitized with a Hamamatsu XR (C12000-22) at 40× magnifica-
tion (0.23 μm/px).

• Domain 𝛿: Canine pheochromocytoma, a neuroendocrine tumor
with aggregated cell pattern/morphology, retrieved from the DA
of VMU. Five cases digitized with a 3DHistech Pannoramic Scan
II at 40× magnification (0.25 μm/px).

For the evaluation of the challenge, we constructed the so-called
final test set, where only a single evaluation per team was permitted.
The dataset, of which an overview is shown in Fig. 2, included 10
cases per domain, encompassing the following domains, evenly divided
between human and veterinary samples:

• Domain 1: Human melanoma, a neuroectodermal tumor compris-
ing all three morphological patterns (round cells, spindle cells,
aggregated cell pattern), retrieved from the DA of UMC Utrecht,
digitized using a Hamamatsu S360 (C13220) at 40× magnification
(0.23 μm/px). MC is part of the staging and classification scheme
of the AJCC for melanoma (Balch et al., 2009).

• Domain 2: Human astrocytoma, a neuroectodermal tumor with
round nuclear shape and star-like cytoplasmic projections (mostly
fitting into the round cell category) retrieved from the DA of
the Institute of Neuropathology at University Hospital Erlangen,
digitized with a Hamamatsu S60 at 40× magnification (0.22
μm/px). MC is part of the 2016 WHO grading scheme (Louis et al.,
2016).

• Domain 3: Human bladder carcinoma, an epithelial tumor with
aggregated cell pattern, retrieved from the DA of the Institute
of Pathology at University Hospital Erlangen, digitized with a
4

3DHistech Pannoramic Scan II at 40× magnification (0.25 μm/px).
MC is used in the differentiation of tumor types according to Ep-
stein et al. (1998) and was recently confirmed to be prognostically
significant by Akkalp et al. (2016).

• Domain 4: Canine breast carcinoma, an epithelial tumor with
aggregated cell pattern, retrieved from the DA of VMU, digitized
with a 3DHistech Pannoramic Scan II at 40× magnification (0.25
μm/px). MC is part of the grading scheme by Peña et al. (2013).

• Domain 5: Canine cutaneous mast cell tumor, a mesenchymal
tumor with round cell morphology, retrieved from the DA of FUB,
digitized with a Hamamatsu S360 (C13220) at 40× magnification
(0.23 μm/px). MC is part of the grading scheme by Kiupel et al.
(2011).

• Domain 6: Human meningioma, a mesenchymal/neuroecodermal
tumor with spindle cell shape, retrieved from the DA of the Insti-
tute of Neuropathology at University Hospital Erlangen, digitized
with the Hamamatsu S60 at 40× magnification (0.22 μm/px). MC
is part of the 2016 WHO grading scheme (Louis et al., 2016).

• Domain 7: Human colon carcinoma, an epithelial tumor with
aggregated cell pattern, retrieved from the DA of UMC Utrecht,
digitized using a Hamamatsu S360 (C13220) at 40× magnifica-
tion (0.23 μm/px). MC is not part of the grading scheme but
was shown to predict survival for lymph-node negative colon
carcinoma by Sinicrope et al. (1999).

• Domain 8: Canine splenic hemangiosarcoma, a mesenchymal tu-
mor with spindle cell morphology, retrieved from the DA of
VMU, digitized with a 3DHistech Pannoramic Scan II at 40×
magnification (0.25 μm/px). MC is part of the grading scheme
of Ogilvie et al. (1996).

• Domain 9: Feline (sub)cutaneous soft tissue sarcoma, a mesenchy-
mal tumor with spindle cell morphology, retrieved from the DA
of VMU, digitized with a 3DHistech Pannoramic Scan II at 40×
magnification (0.25 μm/px). MC is part of the grading scheme
of Dobromylskyj et al. (2021).

• Domain 10: Feline gastrointestinal lymphoma, a mesenchymal
tumor with round cell morphology, retrieved from the DA of
VMU, digitized with a 3DHistech Pannoramic Scan II at 40× mag-
nification (0.25 μm/px). For cats, the MC is know to be correlated
with the grade according to the National Cancer Institute working
formulation (Valli et al., 2000).

While human melanoma (unlabeled) and canine cutaneous mast cell
tumor were already part of the training set, the test set used different
scanners for both tumor types.
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Fig. 3. Correspondence between hematoxylin and eosin (H&E)-stained tissue (top) and immunohistochemistry stain against phospho-histone H3 (PHH3, bottom). The left panel
shows two tumor cells (green circles) with clear immunopositivity against PHH3 conclusive for MFs, supporting H&E morphology. The right panel shows a mitotic figure in
telophase where the PHH3 stain is less conclusive, but the morphology in the H&E is characteristic.
2.2. Establishment of ground truth

The MC is typically assessed on an ROI of 10 high power fields,
the size of which is dependent on the optical properties of the micro-
scope (Fitzgibbons and Connolly, 2023). For digital microscopy, it is
more sensible to directly define the area, calculated from the resolution
of the digitization device, which we set in accordance with previous
work (Veta et al., 2019, 2015) to 2 mm2. The ROI was selected from
each digitized WSI by a pathologist with expertise in tumor pathology
(C.A.B.) as the area with appropriate tissue and scan quality and the
perceived highest mitotic activity, which was considered to be more
likely found in a region with high cellular density. This is in accordance
with current guidelines (Donovan et al., 2021; Avallone et al., 2021;
Ibrahim et al., 2022; Fitzgibbons and Connolly, 2023).

Given the well-known inter-rater disagreements in identification
and annotation of MFs, strategic study design methods are essential to
limit the effects of these factors on the ground truth for subsequent
(ideally unbiased) evaluation. Two main annotation biases need to
be considered: When presented with a MF, previously identified as
such by another expert, an independent expert might be subject to a
confirmation bias. Similarly, it has been reported that the chance of
overlooking individual MFs, especially in densely populated cell areas
or under sub-optimal image quality, should not be neglected (Bertram
et al., 2021).

Our annotation method (described in more detail in Bertram et al.
(2019)) takes both factors into account by identifying all candidate
objects (i.e., MFs) as well as non-mitotic figures (NMFs)/imposters and
then independently rating them by three experts. For the identification,
an expert (C.A.B.) initially identified MF objects and a roughly similar
amount of NMF objects in the images. To avoid missing MFs in this
identification step, we trained a RetinaNet (Lin et al., 2017) single-stage
object detection model on the annotations of this expert and carried out
model inference in a cross-validation scheme to spot additional candi-
date objects that were previously overlooked. These additional objects
were then also assessed by the first expert to yield a first label for each
object. At the end of this first step, both classes had a similar prevalence
according to the initial assessment, which was not communicated to the
experts conducting the consecutive assessments of the MF/NMF cells.
Next, a secondary expert (R.K.) who was blinded to the assessment of
the first expert assessed all previously identified objects according to
the same two classes (MF vs. NMF). In case of non-consensus amongst
those two experts, a third expert (T.A.D.) was presented the object in
question without any information about previously assigned labels to
render the final vote.

All three experts have more than five years of experience in MF
identification. This independent vote counteracts a confirmation bias,
while use of the machine-learning support mitigates the omission of
individual objects. Prior to the assessment, the experts agreed on
common criteria for the identification of MFs (Donovan et al., 2021).
The annotation of all parts of our dataset (training set, preliminary test
5

set, and the final challenge test set) was carried out using the same
methodology. This ground truth definition was used for performance
evaluation and ranking of the participants during the MIDOG 2022
challenge.

PHH3-assisted ground truth

Due to the known high degree of inter-rater disagreement for mi-
totic figure assessment (Meyer et al., 2005), it is prudent to create a
ground truth that relies less on the subjective judgments of experts.
Hence, as an alternative ground truth for the test set, we used IHC stain-
ing for PHH3 as a decision support for annotations by a single expert.
This ground truth definition was not available during the MIDOG 2022
challenge and was developed for this summary paper to gain a better
understanding of the algorithmic performance. Histone H3 is a protein
that is phosphorylated in the early stages of the mitotic phase and
represents a specific marker for mitosis (Hendzel et al., 1997; Bertram
et al., 2020a; Tellez et al., 2018). However, the specific stain is less
pronounced in the last phase (telophase) of mitosis, a phase which is
usually morphologically conspicuous with the H&E stain, and is already
present in early prophase, which is usually not apparent based on H&E
morphology. Thus this IHC stain cannot be used alone for annotating
mitotic figures according to definitions of the H&E morphology. We
hypothesized that the combination of these two staining techniques
would increase label consistency. To evaluate H&E and PHH3 in the
same cells, we de-stained the H&E-stained slides after digitization and
re-stained them with an antibody for PHH3, combined with a secondary
antibody equipped with a tailored enzyme that reacts with a substrate
to yield a brown stain (see Fig. 3). After digitization of the IHC-stained
slide and subsequent manual registration of both scans, a tool based
on the EXACT annotation server was employed by an expert (Marzahl
et al., 2021), in which both scans could be superimposed with variable
transparency. Hence, it was possible to simultaneously evaluate both
the specific immunopositivity for PHH3 as well as the morphology in
the H&E stain for each cell. In case of non-perfect registration between
cells in the PHH3 and H&E stain, the expert annotated the exact
coordinate of the MF in the H&E stain. Out of 100 cases of the test set,
we were able to register 98 to the respective ROIs in the H&E image.
For two cases (068 and 100) restaining with PHH3 was not possible due
to damage during tissue handling. Immunopositive cells lacking H&E
morphology of MFs were not annotated (mostly early prophase MFs)
as it is impossible to identify them in the H&E images. A considerable
number of objects was ambiguous from H&E alone, in which cases the
IHC staining pattern was used to decide on these borderline objects.

2.3. Dataset statistics

The MC is expected to vary across tumor types and species. This
expectation was confirmed in the distribution of MC shown in the
histogram for the training set (Fig. 4) as well as in the box-whisker
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Fig. 4. Histogram of MFs and NMFs in the training set of MIDOG 2022.
Fig. 5. Box-whisker plot of the distribution of MC across the domains of the preliminary test set and the final challenge test set. Boxes indicate lower and upper quartile values,
colored lines indicate median values.
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plots for the preliminary and the final challenge test set (Fig. 5). Tumor
types with a comparatively high MC in our samples were canine lung
cancer (domain B), canine lymphoma (domain C), canine osteosarcoma
(domain 𝛽), as well as human bladder carcinoma (domain 3), human
colon carcinoma (domain 7), canine hemangiosarcoma (domain 8), and
both feline tumors (domains 9 and 10). The mean MC of the training,
preliminary test, and final challenge test set were 26.84, 18.00, and
34.74, respectively.

2.4. Reference approaches

For optimal familiarization, challenge participants were provided
with three baseline approaches with algorithmic descriptions and pre-
liminary test results. Out of these three approaches, two were based
on the RetinaNet (Lin et al., 2017) single-stage object detection archi-
tecture and one was based on the Mask RCNN (He et al., 2017) archi-
tecture. The first RetinaNet-based approach used a domain-adversarial
(Ganin et al., 2016) branch and was trained solely on the MIDOG 2021
training set (i.e., the identical setting as the reference approach for the
MIDOG 2021 challenge) and the reference approach for the MIDOG
2021 challenge (Wilm et al., 2022). Considering that this approach
was only trained on human breast cancer, we expected a considerable
domain gap. The second RetinaNet-based approach was trained on the
six domains of the training set (A–F) and used additional stain augmen-
tation, based on Macenko’s method for stain deconvolution (Macenko
et al., 2009). As the top-performing approaches of MIDOG 2021 were
all using (instance) segmentation, we also included the Mask RCNN for
this purpose. This approach was, however, not trained with any specific
domain-generalizing methods besides default image augmentation. We
provided a detailed description of both approaches as part of the
challenge proceedings (Ammeling et al., 2023).

2.5. Evaluation methods and metrics

MF identification is a balanced pattern recognition problem in that
both an over- and an underestimation of the MCs can lead to equally
detrimental consequences: overestimation may lead to excessively ag-
gressive treatment with significant side effects, whereas an underes-
timation may contribute to more conservative treatment, potentially
diminishing the overall treatment outcome. As in prior challenges (Veta
6

et al., 2019, 2016; Roux et al., 2013, 2014), we thus decided to use the
𝐹1 score as our primary metric, as it represents the geometric mean
between precision and recall and thus benefits from a good operating
point set as a balance between both. To counter averaging effects
from the strongly heterogeneous distribution of the MC, we opted to
calculate the 𝐹1 score across all cases/images from the summary of
respective true positives, false positives, and false negatives over all
slides. As the 𝐹1 score is calculated from thresholded results, it is
additionally insightful to see if competing approaches only chose an
unsuitable decision threshold while having an otherwise proper pattern
discrimination. Hence, we additionally evaluated the average precision
(AP) metric, calculated as the mean precision for 101 linearly spaced
recall values between 0 and 1. Further, we calculated the precision and
recall for all algorithms.

2.6. Statistical analysis of the results

To compare the performance of the approaches, an omnibus test
using analysis of variance (ANOVA) was first conducted, as is standard
procedure. Given significant differences, the test was followed by a
Tukey’s honest significant difference (HSD) test (Tukey, 1949) as post-
hoc test for a pairwise comparison. Both tests were performed on the
respective 𝐹1 score per individual image of the test set. As significance
level, we chose 𝛼 = 0.05, as commonly done. The tests allowed us to
determine if there were statistically significant differences between the
approaches in terms of their 𝐹1 scores. In contrast to multiple pairwise
-tests, Tukey’s method is inherently controlling for the family-wise
rror rate.

Additionally, we performed a mixed linear model regression anal-
sis to analyze effects that can be attributed to the tumor domain or
roups therein. For the purpose of our study, we categorized tumors
nto distinct groups based on tumor morphology, species, and scanner
sed for digitization. Each of those categories had a previously unseen
ondition (e.g., an unknown species, scanner, or morphology) in the
est set. Morphology was differentiated between aggregated cell pat-
ern, round cell shapes, and spindle cell morphology. We differentiated
pecies between human, canine, and feline. Scanners were differenti-
ted between the 3DHistech scanner and the Hamamatsu S360 and
60 scanners. Within this framework, the 𝐹1 score was selected as the
ependent (endogenous) variable to assess the predictive success of
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each model. Since each teams’ algorithmic contribution can be thought
of as a random draw from a larger population of algorithms that are
not separate and independent, we accounted for the variance attributed
to the different teams by incorporating it as a random effect for the
intercept, resulting in a linear mixed effects model with a random
intercept and fixed slope. This means that each team gets its own
intercept estimate but has a common slope. The models were fitted
using the restricted maximum likelihood method and we report the
residual variance and Bayesian information criterion (BIC) values for
each fit.

To investigate the distribution across samples, tumor domains and
methods, we performed empirical bootstrapping of the results of each
test case, i.e., we randomly selected the same number of cases with
replacement from the set of results per case before calculating the
precision, recall, AP and 𝐹1 values.

Bootstrapping offers a robust alternative to individual image-based
etrics for statistical analysis, particularly when evaluating metrics like

he AP and 𝐹1 scores in contexts where the target class, such as MFs,
aries widely in prevalence.

The use of bootstrapping mitigates the disproportionate influence
hat the target class frequency within individual images might exert
n our results, as the 𝐹1/AP scores are now calculated on instances

comprising multiple images. By this methodological choice, we thus
obtain values that are empirically aligned with the expected distribu-
tional characteristics of the dataset, while simultaneously reducing our
dependence on the variable prevalence of mitotic figures in individual
images.

From the bootstrapped (across tumor domain and team) sets, we
additionally determined the 80% confidence levels of precision and
recall for each team and tumor. This was performed by using a Gaussian
kernel density estimator over the bootstrapped sample of precision and
recall values and thresholding at an interval to include 80% of the
respective values. We chose 80% as interval, since it facilitated a more
easy comparison of the approaches than using larger intervals.

3. Overview of submitted methods

15 registered users from twelve teams submitted at least once to
the preliminary test phase of the challenge. Out of those, nine also
submitted to the final test phase. All models were based on methods
of deep learning. The submitted methods were, as in previous chal-
lenges, discrepant in more than one key factor, which makes a direct
identification of components for a successful MF detection method
difficult. All teams submitted to track 1 (without additional data) of the
challenge, while two teams opted to also submit approaches trained by
utilizing additional data. In the following section, we will compare the
algorithmic strategies of all teams and subsequently discuss the datasets
that were additionally used in track 2.

3.1. Pattern recognition tasks

The majority of teams (5/9) chose to frame the task as an object
detection task (see Table 1), partially with a second classification
stage. Two teams used a semantic segmentation approach and two
teams chose a classification-based detection. In particular, the approach
by Jahanifar et al. (2022) used fixed-size disks around the centroid
coordinate of the MFs to generate the segmentation mask target for
track 1 and a segmentation mask generated by the NuClick algo-
rithm (Koohbanani et al., 2020) for track 2, while the approach by Yang
et al. (2022) used the filled inner circle of the provided bounding box
as segmentation target. In contrast, Lafarge and Koelzer (2023) used
a classification of patches (78 × 78 px) with a sliding window like in
the original works by Cireşan et al. (2013). Gu et al. (2023) framed
object localization as a weakly-supervised learning task derived from
class activation maps of medium-sized (240 × 240 px) patches that were
classified as containing a MF or not.
7

3.2. Architectures

The majority of submissions were derivatives of convolutional neu-
ral networks (CNNs), while one team designed their method based on
the Detection Transformer (DETR) (Carion et al., 2020), which is an
object detector derived from the vision transformer class of models
and hence uses a CNN solely for feature extraction. Amongst the other
approaches, EfficientNet (Tan and Le, 2019)-derived architectures were
frequently used. Variants of EfficientNet were used as second stage in
the approaches by Jahanifar et al. (2022), Kotte et al. (2023), and Boz-
aba et al. (2022), as classification approach by Gu et al. (2023), and as
a stem of the mitosis detector by Jahanifar et al. (2022) and Kondo
et al. (2023). Other researchers chose different well-established net-
work stems, such as ResNet (He et al., 2016), SE-ResNeXt (Hu et al.,
2020), or CSPDarknet53 (Bochkovskiy et al., 2020).

3.3. Ensembling and test-time augmentation

While both ensembling and test-time augmentation (TTA) are strate-
gies well-known to enhance model robustness, they were only em-
ployed by a minority of participants (see Table 1). Only the winning
approach by Jahanifar et al. (2022) employed both ensembling and
TTA. The runner-up approach by Kotte et al. (2023) employed a
tailored ensembling of model scores of the first and second stages
but only in cases where the score of an object in the first stage did
not exceed a given threshold. The approach by Lafarge and Koelzer
(2023) ensembled two models trained with different augmentation
strategies, and integrated the effect of 90-degree rotation for TTA via
the use of a rotation invariant model (Cohen and Welling, 2016). The
approach by Annuscheit and Krumnow (2023) used four-fold TTA using
mirroring of the images.

3.4. Augmentation

All participating teams used standard geometric image transforma-
tions like rotation, scaling, and elastic deformations. Additionally, the
majority of teams opted to use one form of standard color augmentation
that aims at manipulating the hue, brightness, and contrast. Addition-
ally, multiple teams opted to use image perturbations such as blurring,
sharpening, and noising. Bozaba et al. (2022) additionally employed
mosaic augmentation. Bochkovskiy et al. (2020), and Gu et al. (2023)
additionally used balanced mixup (Galdran et al., 2021). Besides those
general computer vision augmentation strategies, specific stain aug-
mentation strategies for H&E-stained images were employed by three
teams (Jahanifar et al., 2022; Gu et al., 2023; Annuscheit and Krum-
now, 2023), while the approach by Yang and Soatto (2020) augmented
images by performing a style-transfer in the frequency-domain.

3.5. Use of the unlabeled domain

The unlabeled domain F of the training set (human melanoma)
was employed by four teams. Lafarge and Koelzer (2023) designed
a hard-negative mining scheme that additionally employed the unla-
beled domain by un-mixing the stains into hematoxylin, eosin, and
a residual component, and then extracted objects with high residual
components (e.g., stain artifacts), which can be mistaken for MFs. Gu
et al. (2023) used the surplus domain to treat all images as negatives
and counteracted these noisy labels with a specifically crafted loss
function. Annuscheit and Krumnow (2023) used the domain as an
additional domain in a representation learning scheme for domain
adaptation. Finally, Wang et al. (2023a) used the additional data in

an auxiliary domain classifier in a multi-task learning scheme.



Medical Image Analysis 94 (2024) 103155M. Aubreville et al.

B
o
d
c
t
h
R
r

t
t

w
m

Table 1
Overview of the submitted methods by all participating teams. TTA indicates test-time augmentation.

Team Tracks 1st stage Architecture Second stage Ensembling TTA Augmentation Use of unlabeled
domain

geometric stain color other

Baseline 1 (Ammeling et al.,
2023)

2 instance segmentation Mask RCNN (He et al., 2017),
ResNet50 backbone

– ✗ ✗ ✓ ✗ ✓ ✗ –

Baseline 2 (Ammeling et al.,
2023)

1 object detection RetinaNet (Lin et al., 2017),
ResNet18 backbone

– ✗ ✗ ✓ ✓ ✓ ✗ domain-adversarial

Baseline MIDOG21 (Wilm et al.,
2022)

1 object detection RetinaNet (Lin et al., 2017),
ResNet18 backbone

– ✗ ✗ ✓ ✗ ✓ ✗ domain-adversarial

TIA Centre (Jahanifar et al.,
2022)

1, 2 segmentation Efficient-UNet (B0) (Jahanifar
et al., 2021)

EfficientNet-B7 ✓ ✓ ✓ ✓ ✓ sharpness –

TCS Research (RnI) (Kotte et al.,
2023)

1 object detection DETR (Carion et al., 2020),
ResNet50-DC5 backbone

EfficientNet-B7 ✓ ✗ ✓ ✗ ✓ ✗ –

USZ/UZH Zurich (ML) (Lafarge
and Koelzer, 2023)

1 classification (sliding window) P4-ResNet70 (Cohen and Welling,
2016; He et al., 2016)

– ✓ ✗ ✓ ✗ ✓ ✗ hard-negative
mining

UCLA-HCI (Gu et al., 2023) 1 classification (large tiles) EfficientNet-B3 weakly supervised
localization

✗ ✗ ✓ ✓ ✓ blur, noise,
balanced-mixup

treated as negative

SKJP (Kondo et al., 2023) 1 object detection EfficientDet (Tan et al., 2020),
EfficientNet V2-L backbone

– ✗ ✗ ✓ ✗ ✗ stain normalization –

HTW Berlin Annuscheit and
Krumnow (2023)

1 object detection YOLO v5 (Jocher et al., 2020) – ✗ ✓ ✓ ✓ ✓ blur/sharpening domain
generalization

AI_medical (Yang et al., 2022;
Wang et al., 2023b)

1, 2 segmentation SK-UNET (Wang et al., 2021),
SE-ResNeXt50 encoder

– ✗ ✗ ✓ ✗ ✓ Fourier-domain
augmentation

–

Virasoft (Bozaba et al., 2022) 1 object detection YOLO v5 (Jocher et al., 2020),
CSPDarknet53 stem

EfficientNet-B3 ✗ ✗ ✓ ✗ ✗ mosaic –

HITszCPATH (Wang et al., 2023a) 1 object detection RetinaNet (Lin et al., 2017),
ResNet50 stem

– ✗ ✗ ✓ ✗ ✓ – auxiliary classifier
p
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3.6. Domain generalization methodologies

Besides augmentation, several teams employed specific strategies
targeted at domain generalization. Annuscheit and Krumnow (2023)
designed a domain adaptation scheme based on metric learning where
the distance of each sample to prototypes of all domains was minimized
to achieve domain generalization. Wang et al. (2023a) employed multi-
task learning with two auxiliary tasks: an overall MF classification for
the patch and a tumor domain classifier, likely regularizing the model
(and hence counteracting domain overfitting). Similarly, (Yang et al.,
2022) added a weight perturbation to the loss term, as this was shown
to regularize the model and make it more robust to domain shifts (Wu
et al., 2020).

3.7. Additional datasets used in track 2

In the second track of the challenge, it was permitted to use publicly
available datasets. Yang et al. (2022) used a Hover-Net (Graham et al.,
2019) which was trained on other histopathology datasets to generate
more accurate segmentation masks. Similarly, the approach by Jahan-
ifar et al. (2022) created enhanced MF segmentation masks by using
NuClick (Koohbanani et al., 2020) and additionally by incorporating
the TUPAC16 (Veta et al., 2019) dataset to the training dataset.

4. Results

Overall, as shown in Figs. 6(a) and 6(b), we found that two of the
approaches submitted to the challenge had outstanding performance.
The evaluation of track 1 on all ten tumor domains of the test set
shows that the TIA Center approach (Jahanifar et al., 2022) yielded
the best overall performance (𝐹1 = 0.764), closely followed by the
approach from the TCS Research team (Kotte et al., 2023) (𝐹1 = 0.757).

reaking this down into the ten tumor domains, we find a similar
verall picture, with both approaches scoring first or second in all
omains (see Table 2). We also note that the two leading approaches
hose different strategies when optimizing the operating point: While
he TIA Center approach yielded a moderately lower recall value at a
igher precision value, we found the opposite to be true for the TCS
esearch approach (see Figs. 6(c) and 6(d)). The 𝐹1 score is roughly
eflected in the precision–recall curves of Fig. 7.

In the second track of the challenge, we find a clear superiority of
he approach by Jahanifar et al. (2022), further supported by having
he leading edge in all tumor domains.

Comparing the performance in both tracks across tumor domains,
e find that tumor domain 2 (human astrocytoma) and 6 (human
eningioma), i.e, the neuropathological domains, seemed to have been
8
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articularly challenging, with overall maximum 𝐹1 scores of 0.63 and
.68, respectively (see Table 2). On the contrary, the domains 1 (human
elanoma), 3 (human bladder carcinoma), 5 (canine cutaneous mast

ell tumor), and 8 (canine splenic hemangiosarcoma) were the tumor
omains to which the algorithms generalized best, achieving 𝐹1 scores
f up to 0.82, 0.81, 0.82 and 0.82, respectively.

.1. Statistical analysis

The ANOVA yielded an F-value of 7.295 (dfgroup = 13, df residual =
386, 𝑝 < 0.0001), indicating a significant difference between at least
wo of the algorithms. While the 𝐹1 score, which we assessed sta-
istically, differed considerably between the algorithms, the post-hoc
nalysis, performed as Tukey HSD hypothesis test (depicted in Fig. A.2
f the supplementary material), yielded statistically significant (𝑝 <
.05) differences only between the results of the MIDOG 2021 domain-
dversarial RetinaNet baseline and most other approaches (with the
xception of the Mask RCNN baseline and the Virasoft/HITszCPath ap-
roaches), between the HTW Berlin and the leading TIA Centre method,
nd between both the Virasoft and HITszCPath and all approaches by
IA Centre and the approach by TCS Research. While the TIA Centre
pproaches and the TCS Research approach reached a higher overall F1
core than the MIDOG 2022 domain-adversarial baseline provided by
he organizers, this difference was not significant, as of this statistical
est.

Visual analysis of the 80% confidence regions of precision and
ecall per tumor domain, shown in Fig. 8, reveals a wide spread in
erformance in the human astrocytoma and the human meningioma
omains, both originating from a lab that did not provide samples to
he training set. Furthermore, the analysis yields low recall for the
aseline MIDOG 2021 RetinaNet approach in feline soft tissue sarcoma,
anine hemangiosarcoma, feline lymphoma, and for canine mammary
arcinoma. The figure also reveals that the UCLA-HCI approach, while
erforming well overall, had a particularly low recall in the human
elanoma case.

The results of the linear mixed effects model shown in Table 3
onfirm the visual impression of considerable differences between tu-
or domains. Since all variables in this regression model are binary
rojections of the categorical variable and hence mutually exclusive,
he coefficients can be interpreted directly as differences in the 𝐹1 score.
eline soft tissue sarcoma, canine mammary carcinoma, and human
strocytoma all showed a highly significant decrease in detection per-
ormance. The subgroup analysis of morphological patterns (Table 4)
howed a significantly reduced performance for the group of spindle
ell tumors (not seen in training). Similarly, also for the analysis of do-
ains according to the species (Table 5), we find a small but significant
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Fig. 6. Distribution of the 𝐹1 score, precision, recall, and AP metric as a result of bootstrapping. Only submissions that provided meaningful scores per detection are shown in
the AP metric diagram.
Fig. 7. Precision–recall values and curves (for all participants where the model score per MFs was provided and consistent). The marker indicates operating point calculated by
he thresholded detections of the participants. Minor mismatches may be explained by post-processing after thresholding.
Table 2
𝐹1 values across all tumor domains for all participants. Values in brackets indicate 95% confidence interval as a result of bootstrapping. The top group are the baselines, the

iddle group are the submissions in track 1 and the bottom group are the submissions in track 2 of the challenge.
Team Overall Tumor 1 Tumor 2 Tumor 3 Tumor 4 Tumor 5 Tumor 6 Tumor 7 Tumor 8 Tumor 9 Tumor 10

Baseline 2 (Wilm) 0.714 [0.68,0.74] 0.74 [0.61,0.79] 0.48 [0.27,0.63] 0.75 [0.69,0.79] 0.68 [0.61,0.73] 0.81 [0.76,0.84] 0.66 [0.50,0.73] 0.72 [0.62,0.78] 0.77 [0.64,0.82] 0.69 [0.55,0.75] 0.66 [0.56,0.72]
Baseline 1 (Ammeling/Ganz) 0.654 [0.62,0.68] 0.72 [0.59,0.78] 0.32 [0.13,0.48] 0.72 [0.66,0.76] 0.56 [0.48,0.61] 0.76 [0.67,0.80] 0.60 [0.42,0.72] 0.67 [0.59,0.72] 0.70 [0.59,0.74] 0.57 [0.40,0.66] 0.64 [0.55,0.72]
Baseline MIDOG2021 0.513 [0.44,0.58] 0.73 [0.58,0.79] 0.38 [0.13,0.67] 0.74 [0.68,0.79] 0.23 [0.12,0.32] 0.69 [0.64,0.73] 0.62 [0.38,0.70] 0.69 [0.59,0.74] 0.50 [0.34,0.58] 0.32 [0.22,0.36] 0.08 [0.03,0.13]

TIA Centre 0.764 [0.74,0.78] 0.80 [0.74,0.84] 0.65 [0.38,0.79] 0.81 [0.78,0.83] 0.71 [0.62,0.78] 0.83 [0.81,0.86] 0.71 [0.52,0.78] 0.75 [0.65,0.82] 0.79 [0.70,0.83] 0.70 [0.58,0.77] 0.77 [0.70,0.81]
TCS Research (RnI) 0.757 [0.72,0.78] 0.76 [0.66,0.80] 0.48 [0.24,0.72] 0.79 [0.73,0.84] 0.73 [0.66,0.76] 0.79 [0.74,0.83] 0.65 [0.41,0.75] 0.74 [0.64,0.80] 0.84 [0.73,0.87] 0.72 [0.62,0.77] 0.77 [0.70,0.82]
USZ/UZH Zurich (ML) 0.696 [0.66,0.73] 0.76 [0.58,0.83] 0.28 [0.10,0.52] 0.75 [0.69,0.80] 0.66 [0.55,0.73] 0.73 [0.66,0.79] 0.64 [0.45,0.71] 0.71 [0.63,0.77] 0.78 [0.66,0.82] 0.64 [0.46,0.73] 0.66 [0.58,0.73]
UCLA-HCI 0.685 [0.65,0.71] 0.55 [0.39,0.67] 0.48 [0.20,0.74] 0.76 [0.70,0.80] 0.68 [0.62,0.72] 0.77 [0.74,0.79] 0.57 [0.46,0.65] 0.69 [0.61,0.75] 0.72 [0.62,0.76] 0.58 [0.44,0.66] 0.73 [0.67,0.79]
SKJP 0.671 [0.64,0.70] 0.76 [0.65,0.80] 0.51 [0.23,0.69] 0.75 [0.69,0.80] 0.60 [0.53,0.65] 0.70 [0.59,0.76] 0.65 [0.48,0.75] 0.67 [0.57,0.73] 0.71 [0.58,0.77] 0.60 [0.52,0.64] 0.63 [0.52,0.71]
HTW Berlin 0.666 [0.63,0.70] 0.75 [0.64,0.80] 0.57 [0.30,0.76] 0.72 [0.64,0.78] 0.57 [0.41,0.66] 0.77 [0.68,0.81] 0.66 [0.51,0.75] 0.64 [0.58,0.69] 0.69 [0.52,0.76] 0.56 [0.40,0.63] 0.68 [0.57,0.75]
AI_medical 0.659 [0.62,0.69] 0.80 [0.70,0.84] 0.63 [0.33,0.83] 0.74 [0.67,0.80] 0.64 [0.52,0.73] 0.79 [0.72,0.84] 0.65 [0.49,0.72] 0.68 [0.62,0.72] 0.68 [0.56,0.75] 0.52 [0.43,0.60] 0.59 [0.51,0.65]
Virasoft 0.639 [0.61,0.67] 0.66 [0.50,0.74] 0.34 [0.15,0.65] 0.70 [0.66,0.72] 0.62 [0.54,0.67] 0.60 [0.54,0.65] 0.59 [0.35,0.65] 0.60 [0.49,0.67] 0.73 [0.64,0.77] 0.63 [0.50,0.68] 0.61 [0.54,0.66]
HITszCPath 0.630 [0.59,0.66] 0.75 [0.65,0.80] 0.38 [0.17,0.60] 0.73 [0.66,0.77] 0.55 [0.44,0.63] 0.72 [0.66,0.76] 0.57 [0.34,0.66] 0.62 [0.56,0.65] 0.70 [0.59,0.76] 0.49 [0.33,0.56] 0.61 [0.53,0.67]

TIA Centre (Task 2) 0.749 [0.72,0.77] 0.83 [0.77,0.86] 0.70 [0.37,0.86] 0.81 [0.78,0.84] 0.71 [0.61,0.76] 0.82 [0.80,0.84] 0.69 [0.57,0.74] 0.73 [0.64,0.79] 0.78 [0.68,0.82] 0.67 [0.52,0.73] 0.73 [0.65,0.78]
AI_medical (Task 2) 0.708 [0.68,0.73] 0.82 [0.74,0.86] 0.61 [0.29,0.78] 0.78 [0.71,0.83] 0.65 [0.56,0.71] 0.78 [0.74,0.81] 0.66 [0.50,0.76] 0.71 [0.64,0.75] 0.73 [0.61,0.80] 0.58 [0.42,0.64] 0.71 [0.66,0.77]
drop in performance for feline specimens, which were also not part of
the training set. Notably, we also found significant differences between
the scanners, with the images scanned on the Hamamatsu S360 scanner
(which was already seen as part of the training set) performing slightly
9

better than on the Hamamatsu S60 (Table 6). The variance of the
random intercept is small with 0.004 in all models suggesting that the
teams have similar intercepts and that the random intercept contributes
little to the overall variability.
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Fig. 8. 80% confidence regions for precision and recall for each team/approach and tumor type. Confidence intervals were established using a Gaussian kernel density estimator
applied to the bootstrapped datasets. Kindly refer to the supplementary material for an alternative version of this Figure, where the subplots compile data over tumor domains for
each team.
Table 3
Results from the linear mixed effects model assessing the influence of tumor domain on 𝐹1-Score with ‘team’ as a random effect for the intercept
and canine hemangiosarcoma acting as baseline category. The fit of the model was determined using the Restricted Maximum Likelihood (REML)
method, with a residual variance of 0.0486 and a BIC of −100.79.

coef. std.err. z P> |z| [0.025 0.975]

intercept 0.639 0.025 25.114 0.000 0.589 0.689
1: human melanoma 0.008 0.026 0.289 0.773 −0.044 0.059
2: human astrocytoma −0.114 0.026 −4.317 0.000 −0.165 −0.062
3: human bladder carcinoma 0.071 0.026 2.678 0.007 0.019 0.122
4: canine mammary carcinoma −0.111 0.026 −4.224 0.000 −0.163 −0.060
5: canine cutaneous mast cell tumor 0.069 0.026 2.610 0.009 0.017 0.120
6: human meningioma −0.059 0.026 −2.244 0.025 −0.111 −0.007
7: human colon carcinoma 0.004 0.026 0.148 0.882 −0.048 0.056
9: feline soft tissue sarcoma −0.135 0.026 −5.122 0.000 −0.187 −0.083
10: feline lymphoma −0.020 0.026 −0.762 0.446 −0.072 0.032
group var 0.004 0.008
4.2. Runtime analysis

All inference runs were conducted on the same platform, grand-
challenge.org, where all jobs are run on the same environment
(ml.g4dn.xlarge configuration, 4 virtual CPU cores, 16 GiB RAM,
NVIDIA Tesla T4 with 16 GB of VRAM, hosted by Amazon Web Ser-
vices). This enabled us — within certain limits — to also compare the
runtime of the approaches. The analysis, shown in Fig. 9, reveals that
only three approaches (the HTW Berlin and both RetinaNet approaches)
had a runtime in the area of 100 s per image. The approach by USZ/UZH
Zurich and HITszCPath reached medium inference time per image of
below 200 s, while most approaches were in the 200–400 s range. In
contrast, the two-stage approach by the AI_medical team required a
considerably higher run-time in the range of 800 s per image.

4.3. Assessment on alternative (PHH3-assisted) ground truth

After the full annotation of 98 cases based on the joint information
of the H&E and PHH3-stained images, we found an increase in the
count of MF by 15.0%. Out of the mitotic figures identified aided
by the PHH3-stained images, 28.78% were previously not part of
the majority vote of the three experts based on the H&E stain. We
performed a post-hoc analysis of all these cells, the results of which
are depicted in Table 7. Out of those MF only identified with help of
the PHH3 stain, 20.97% were from the 9% of cases of feline lymphoma,
10

which are generally difficult due to the small cell size resulting at low
cellular details at the given image resolution. Over the complete test
set, the primary reason for the discrepancy was a borderline mitotic
figure morphology, which was hard to discriminate against imposters
due to cells being out of focus or superimposed to other cells in
thick tissue sections, poor tissue/image quality such as overstained
chromatin structures, prophase morphology without obvious chromatin
spikes that are difficult to differentiate from apoptotic cells or other, not
further classified reasons. Less common were difficulties distinguishing
the MF from imposters due to a borderline cell cycle phase to the G2-
phase with early membrane changes and G1-phase with formation of
nuclear membranes of the two neighboring daughter cells. In 5.85%
of cases the MFs were found to have an unusual morphology, while in
0.54% of cases we found an incomplete capture of the cell at the image
borders. Only 1.08% of mitotic figures were considered labeling errors
in the HE approach, as characteristic MF morphology was apparent.

When evaluating with this alternative, IHC-assisted ground truth,
we found overall lower recall values for all approaches, as shown in
Fig. 10, also resulting in overall lower AP and 𝐹1 values. However,
the order of the approaches, when sorted by the 𝐹1 value, was almost
unaltered. Fig. 10 also shows the precision and recall values of both
experts using the original H&E images when evaluated on the PHH3-
assisted alternative ground truth, as well as the respective values for
the three-expert majority vote, indicating a good alignment between
the H&E-based and the IHC-assisted GT. For expert 1 (C.A.B.), we found
an overall precision, recall, and 𝐹1 value of 0.926, 0.611, and 0.736,
respectively, and for expert 2 (R.K.) we found an overall precision,
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Table 4
Results from the linear mixed effects model assessing the influence of tumor morphology (aggregated cell
pattern, round cell shape, and spindle cell shape) on 𝐹1-Score with ‘team’ as a random effect for the intercept
and aggregated cell patterns serving as baseline reference category for comparisons. The fit of the model
was determined using the Restricted Maximum Likelihood (REML) method, with a residual variance of 0.053
and a BIC of −59.3. Only spindle cell tumors gave significantly different results.

Coef. Std.Err. z P> |z| [0.025 0.975]

intercept (30 cases) 0.627 0.021 30.477 0.000 0.586 0.667
all three (10 cases) 0.020 0.022 0.888 0.374 −0.024 0.064
round cell (30 cases) −0.009 0.016 −0.593 0.553 −0.040 0.022
spindle cell (30 cases) −0.052 0.016 −3.308 0.001 −0.083 −0.021
group var 0.004 0.008
Table 5
Results from the linear mixed effects model assessing the influence of species on 𝐹1-Score with ‘team’ as a
random effect for the intercept and canine samples (with a support of 30 cases) serving as baseline reference
category for comparisons. The fit of the model was determined using the Restricted Maximum Likelihood
(REML) method, with a residual variance of 0.053 and a BIC of −71.94.

coef. std.err. z P> |z| [0.025 0.975]

intercept (30 cases) 0.625 0.021 30.386 0.000 0.584 0.665
feline (20 cases) −0.063 0.018 −3.576 0.000 −0.098 −0.029
human (50 cases) −0.004 0.014 −0.281 0.779 −0.032 0.024
group var 0.004 0.008
Table 6
Results from the linear mixed effects model assessing the influence of scanner on 𝐹1-Score with ‘team’ as a
random effect for the intercept and slides scanned with the 3DHistech Pannoramic Scan 2 (3DH, 50 cases)
serving as baseline reference category for comparisons. The fit of the model was determined using the
Restricted Maximum Likelihood (REML) method, with a residual variance of 0.051 and a BIC of −100.08.

coef. std.err. z P> |z| [0.025 0.975]

intercept (50 cases) 0.600 0.019 31.109 0.000 0.562 0.638
Hamamatsu S360 (30 cases) 0.066 0.014 4.700 0.000 0.038 0.093
Hamamatsu S60 (20 cases) −0.047 0.016 −2.942 0.003 −0.079 −0.016
group var 0.004 0.008
Fig. 9. Runtime assessment (box-whisker-plot) for all algorithmic approaches on grand-challenge.org. Boxes represent 25th and 75th percentile, orange line indicates median.
ecall, and 𝐹1 value of 0.659, 0.747 and 0.700, respectively. The three
expert majority vote achieved a precision, recall, and 𝐹1 value of 0.818,
.711, and 0.761 respectively.

. Discussion

.1. Assessment of employed strategies

The MIDOG 2022 challenge was the first to assess MF recognition
cross multiple tumor types. This extends the range of covariate shifts
11
to the visual context of the MFs. In the previous challenge, the main
domain shift could be attributed to changes in color, sharpness, and
depth of field (caused by the differing scanners). In this challenge,
the generalization to different tumor types and hence unknown tissue
types that surround the MFs is harder to reflect in dedicated domain
generalization strategies, e.g., domain augmentation. This may explain
why the participants of this iteration of the challenge did not opt to
formulate novel augmentation strategies. It is noteworthy that the top
three approaches to track 1 of the challenge used distinctively differ-

ent strategies to address the pattern recognition problem (semantic
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Fig. 10. Precision and recall of all approaches and the experts, evaluated on the PHH3-assisted alternative ground truth. AP values and curves are only given for approaches
where the model scores were provided and consistent. The expert scores represent the independent assessment of experts 1 and 2 on the hematoxylin and eosin-stained images,
which was performed when establishing the original challenge ground truth, the majority vote represents the challenge ground truth.
Table 7
Breakdown of mitotic figures that were additionally identified using the phosphohistone H3 (PHH3) stain.

Category Subcategory Percentage

borderline morphology

prophase with resemblance to apoptosis 31.23%
out of focus (scan artefact or thick tissue section) 27.54%
poor image tissue quality (such as overstained) 5.67%
not further classified 23.13%
total 87.58%

borderline to non mitotic phases
prophase with early membrane changes 4.05%
late telophase (with formation of nuclear membrane) 0.90%
total 4.95%

untypical MF morphology 5.85%
cut off at image border 0.54%
overlooked (clear mitotic figure) 1.08%
d
l
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t
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segmentation followed by connected components analysis (Jahanifar
et al., 2022), object detection (Kotte et al., 2023) and classification on
a sliding window (Lafarge and Koelzer, 2023)), highlighting that the
how (i.e., augmentation, sampling scheme, post-processing) of training

as likely more important than the what (i.e., the neural network
rchitecture). One commonality between the three top performing
pproaches to track 1 was that they all used some form of ensem-
ling technique, which has been reported as a strong determinant of
uccess in biomedical challenges (Eisenmann et al., 2023), and likely
ontributed directly to domain robustness. Of note, in contrast to our
xpectations, approaches in track 2 (using additional data) of our
hallenge did not show improved performance compared to track 1.
his is particularly interesting, given the similarity of the approaches
f the TIA Centre team for both tracks. We attribute this to the fact
hat the additional dataset that was used for training (TUPAC16, Veta
t al. (2019)) in the approach by Jahanifar et al. (2022) might introduce
semantic diversity in the labels for mitotic figures, since it used a

ifferent annotation process (Bertram et al., 2020b). Given the size
f the MIDOG22 training set in comparison to the TUPAC16 set, and
hat the MIDOG22 data set already includes three different scanner-
omains for breast cancer (and the TUPAC16 providing another two),
here might also be little added informational value by the additional
ataset.

.2. Domain generalization on the test set

Our test set contained three notable conditions that were not part of
ny training set. First of all, it introduced a new scanner (Hamamatsu
60), which also coincided with specimens from another, yet unseen
ab. As the analysis in Table 6 shows, we found a moderate, but
12

a

significant reduction in performance on samples from this scanner/lab.
Secondly, the test set introduced a new species (felines). The regression
analysis in Table 5 yielded only a moderate but significant performance
drop for the unseen species. The third condition that was not part of
the training set was the group of spindle cell tumors, where we also
found a moderate but statistically significant reduction of performance
(see Table 4). It is worth noting that feline soft tissue sarcoma, a tumor
with spindle cell morphology, had the lowest scores across individual
domains (refer to Table 3). This is likely to have an impact on both
aggregated evaluations. While our test set represents the broadest
span of tumor classifications yet, the pool of conditions with shared
characteristics remain limited. This prohibits a definitive stratification
of influencing aspects at this point. However, it is worth highlighting
that all three domain-defining factors that were new in the test set of
the challenge yielded drops in performance.

It should be noted that the evaluation using 𝐹1/AP scores on in-
ividual images, and not the collective, tends to skew results towards
ower values. Consider the scenario of a tumor image with a solitary
F. If this singular cellular event goes undetected (false negative),

he 𝐹1 score drops from 1.0 to 0.0. On the other hand, if there is
single false positive misdetection, the 𝐹1 score reduces from 1.0

o 0.5. Now contrast this scenario in the context of an image with
00 MFs. In this case, the impact of either events changes the scores
nly marginally. This means, that especially for cases with a low true
Fs count, the 𝐹1 score is strongly influenced by the number of false

ositives. Consequently, we anticipate a more significant decline in
he 𝐹1 score for low-grade cases, inherently weighting the deviation
rom the overall expected performance higher in the macro-average.
he bootstrapped results, on the other hand, mitigate this problem by

ggregating over a larger sample before calculating the metrics.
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5.3. Container-based submission

The use of containers for the algorithmic submission comes with an
increased risk of unintended and unexpected technical failures for the
participants. For this reason, we made an independent preliminary test
et available to the participants. Additionally, test cases were shipped
ith the container. To avoid overfitting of hyperparameters to this set
y the participants and, at the same time, to reduce the computational
udget required to evaluate the containers, one daily execution was
dmitted during a two-week time frame prior to the submission. Since
verfitting could still not be ruled out, in this version of the challenge,
e opted to use four independent (disjointed from the challenge test

et) domains in this phase.
For every detected object, the submission format provided a field

or the detection class (MF or NMF) as well as for the detection score,
hich we used for an automatic evaluation of the AP score. It was not
andatory to provide meaningful values in the score field, however.
onsequently, we were only able to determine AP scores as well as
recision–recall curves for the approaches where these scores were
eaningful, whereas the other approaches were excluded in Figs. 6(b),
, and 10.

Overall, the usage of containers for algorithmic submissions pre-
ented challenges that required careful handling, and our approach of
roviding a preliminary test set and imposing limitations on executions
elped address some of the associated risks. However, since the inde-
endence of the test set is of utmost importance for a data challenge,
e contend that these additional efforts are well-justified.

.4. PHH3-assisted ground truth

The post-challenge evaluation on the alternative, PHH3-assisted
round truth yielded overall lower recall values for all approaches.
e attribute this to the inclusion of multiple MFs having inconclusive
orphological features in the H&E image, which could be identified
ith higher confidence in the IHC due to immunopositivity against
HH3-antibodies. Equivocal or inconclusive morphologies include the
F being out of focus due to the factual three-dimensionality of the

ample as well as general difficulty in clearly differentiating some
F morphologies (particularly prometaphase MF) from imposters. In

he PHH3 stain, however, these structures are clearly distinguishable
ue to immunoreactivity, which provides an unaltered high contrast,
ontributing to the overall higher number of MFs. Similar to the expert
nnotators of the H&E-approach, algorithms were trained (based on
he ground truth used) to exclude these morphologically inconclusive
tructures, which explains the lower recall values of all approaches. The
ood agreement of the challenge ground truth (three-expert majority
ote) compared to the alternative and IHC-assisted ground truth high-
ights the benefits of multiple blinded expert ensembles for H&E-based
F annotations. The in-depth evaluation of mitotic figures that were

nly identifiable using the IHC stain as secondary source of information
Table 7), however, also reveals the limitations of purely H&E-based
round truth definitions, as occurring borderline morphological pat-
erns were found to represent the majority of IHC-positive MFs that
ere not found in the annotations based solely on the H&E stain.
onetheless, it is worth pointing out that the PHH3-assisted ground

ruth should not be simply perceived as an improved version of the
&E-based ground truth on H&E-stained images, even if it is a more
ccurate description of the biological truth. The majority of cells that
ere additionally attributed to be MFs after consulting the PHH3 stain
ere not sufficiently discriminable using the H&E stain alone since

he necessary information was likely just not contained in the images.
raining on such annotations could hence exhibit a higher degree of

abel noise (if only the information available from the H&E image is
onsidered as input to the network).

Our analysis indicates that by using the PHH3-assisted identification
13

f MF objects, we can expect a considerable increase of the MC,
which is in line with findings by other works on PHH3 alone (van
Steenhoven et al., 2020; Dessauvagie et al., 2015). Currently, grading
schemes predominantly rely on H&E-based counts alone and changing
the methodology could invalidate the respective cutoff values. Hence,
the use of PHH3-assisted labels for training MF detectors could addi-
tionally also lead to an overall increase of the MC, which would be
conflicting with current grading schemes.

5.5. Limitations of the AP metric

One insight from our challenge is the limitations of the AP metric,
which averages the precision at defined recall values, as a ranking
metric. Besides a high number of hyperparameters (such as the max-
imum number of detections, the interpolation method, and grid), the
AP metric is used according to multiple different definitions (Hirling
et al., 2023). Moreover, as can be seen in Fig. 7, none of the algorithms
reached the zero value for precision, which penalized the approaches
in the AP metric. We hypothesize that this is a result of all approaches
using a detection threshold before the non-maximum suppression; a
common procedure to reduce computational overhead for the matching
of ground truth and candidates, which is an operation in (𝑛2). If no
value can be meaningfully interpolated for high recall values (e.g., for
the MIDOG 2021 baseline approach in Fig. 7 above a recall value
of 0.6), the precision value is commonly extrapolated to 0, which
penalizes the approach unjustly. Similarly, should the averaging be
confined to the maximum achieved recall value, methods employing
a high detection threshold would gain an unfair advantage. In par-
ticular, this is demonstrated when comparing the winning approach
of Jahanifar et al. (2022) and the runner-up of Kotte et al. (2023). While
the precision–recall curve in Fig. 7 clearly indicates the superiority
of the winning approach, the AP metric (see Fig. 6(b)) benefits from
the lower detection threshold of the approach by Kotte et al. (2023),
giving a false impression that the latter approach has a higher decision-
threshold independent performance. This provides additional evidence
for the utility of the 𝐹1 score as the primary challenge metric.

5.6. Performance comparison and outlook

We found that the top algorithmic solutions of this challenge de-
tected MFs at a level similar to that of the 2021 MIDOG challenge
(top 𝐹1 value of 0.748 in 2021 (Aubreville et al., 2023a) and 0.764
in 2022). Additionally, comparing these performances to published 𝐹1
values for human experts (0.563 for human breast cancer (Aubreville
et al., 2023a), 0.79 on canine cutaneous mast cell tumor (Bertram
et al., 2021)) indicates that the automatic approaches are in the range
of human experts. Nevertheless, it is worth pointing out that human
experts typically perform this task not only on ROIs but on the entire
slide, which was not the task of this challenge. We hence encourage the
creation of further datasets and challenges incorporating annotations
on the entire WSIs and thus also providing labels for a much more
diverse set of tissue characteristics.
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