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Leveraging QSP Models for MIPD: A Case 
Study for Warfarin/INR
Undine Falkenhagen1,2 , Larisa H. Cavallari3 , Julio D. Duarte3 , Charlotte Kloft4 , 
Stephan Schmidt5  and Wilhelm Huisinga2,*

Warfarin dosing remains challenging due to substantial inter- individual variability, which can lead to unsafe or 
ineffective therapy with standard dosing. Model- informed precision dosing (MIPD) can help individualize warfarin 
dosing, requiring the selection of a suitable model. For models developed from clinical data, the dependence on the 
study design and population raises questions about generalizability. Quantitative system pharmacology (QSP) models 
promise better extrapolation abilities; however, their complexity and lack of validation on clinical data raise questions 
about applicability in MIPD. We have previously derived a mechanistic warfarin/international normalized ratio (INR) 
model from a blood coagulation QSP model. In this article, we evaluated the predictive performance of the warfarin/
INR model in the context of MIPD using an external dataset with INR data from patients starting warfarin treatment. 
We assessed the accuracy and precision of model predictions, benchmarked against an empirically based reference 
model. Additionally, we evaluated covariate contributions and assessed the predictive performance separately in the 
more challenging outpatient data. The warfarin/INR model performed comparably to the reference model across 
various measures despite not being calibrated with warfarin initiation data. Including CYP2C9 and/or VKORC1 
genotypes as covariates improved the prediction quality of the warfarin/INR model, even after assimilating 4 days 
of INR data. The outpatient INR exhibited higher unexplained variability, and predictions slightly exceeded observed 
values, suggesting that model adjustments might be necessary when transitioning from an inpatient to an outpatient 
setting. Overall, this research underscores the potential of QSP- derived models for MIPD, offering a complementary 
approach to empirical model development.

Warfarin, despite its widespread and long- term use as an antico-
agulant, poses challenges to clinicians due to significant variabil-
ity in individual dose requirements. The warfarin effect is often 
quantified by the prothrombin time, typically expressed as the 

international normalized ratio (INR), with a target range of 2–3 
for many indications. This target range is narrow in comparison 
with the interindividual variability (IIV), leading to more than 
10- fold differences in required maintenance dose.1 In recent trials 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
	;Warfarin dose requirements differ substantially between

individuals. Model- informed precision dosing (MIPD) can
improve individualized dosing. Typically, MIPD is performed
using empirically based models.
WHAT QUESTION DID THIS STUDY ADDRESS?
	; Can we leverage the mechanistic knowledge in quantitative

systems pharmacology (QSP) models for MIPD for warfarin?
WHAT DOES THIS STUDY ADD TO OUR
KNOWLEDGE?
	; A mechanistic warfarin/INR model derived from a blood 

coagulation QSP model, without calibration to clinical data, 

performed comparably to an empirical reference model for 
early INR prediction in an external evaluation. Including 
CYP2C9 and VKORC1 genotypes as covariates substan-
tially enhanced the prediction. Model adjustments might be 
necessary when transitioning from inpatient to outpatient 
data.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
	;QSP- derived modeling offers a complementary approach to

empirical modeling to develop PK/PD models for MIPD more
systematically, more mechanistically, and more transparently
and with less dependence on specific clinical data.
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with genotype- guided algorithms, the mean time within target 
INR range was only 54.7% and 67.4%.2,3 A high probability of 
INRs outside the target range can result in an increased risk of 
bleeding or ineffective therapy.

To guide individual dose selection, especially during the dose- 
finding phase, model- informed precision dosing (MIPD) al-
gorithms have been employed. One such example is regression 
algorithms, which predict the dose based on covariates such as 
weight, age, cytochrome P450 isoenzyme 2C9 (CYP2C9) gen-
otype or vitamin K epoxide reductase complex 1 (VKORC1) 
genotype.4,5 Although these models succeed at explaining parts 
of the observed variability, additional unexplained IIV remains, 
thus preventing a priori determination of the optimal individual 
dose based on covariates alone. In addition to stratifying by co-
variates, pharmacokinetics/pharmacodynamics (PK/PD)- based 
algorithms can help to update the optimal dose estimate based 
on early INR measurements.6–8 When correctly accounting for 
the delayed effect, early measurements from the non- steady- state 
phase can inform the PK/PD model predictions of the steady- 
state INR.

There is a large variety in PK/PD models that model the war-
farin/INR relationship.6–9 Empirically based PK/PD models 
depend heavily on the underlying population and study design. 
Without access to the underlying data, it is difficult to compare 
the models and assess whether the results can be extrapolated 
beyond the population used for model development. In a previ-
ous article, we proposed to use model reduction in QSP models 
to derive mechanistic PK/PD models as an alternative to the 
standard empirical model development based on data.10 This 
model development approach makes underlying assumptions 
explicit and provides a basis for data and hypothesis evaluation 
and discussion. Using this approach, we have previously derived 
a mechanistic warfarin/INR model from a QSP model of blood 
coagulation.10

To assess the warfarin/INR model for applicability in MIPD, 
this article addresses three clinically relevant questions. We first as-
sessed the accuracy and precision of early prediction of INR data 
from a diverse patient cohort in an external evaluation. We then 
considered which covariates are most informative for the INR pre-
diction, distinguishing between a priori and early prediction after 
4 days. We assessed the dose optimization by comparing predicted 
optimal doses and doses at discharge. Finally, we assessed how well 
the prediction extrapolates to outpatient data. For the INR pre-
diction within the MIPD algorithm, we employed a full Bayesian 
method implemented using a particle filter.11 The prior knowledge 
encoded in the mechanistic warfarin/INR model and the covariate 
information is combined with early INR data to yield a posterior 
INR distribution. Assessing the uncertainty associated with the 
INR prediction allows us to evaluate clinically relevant properties 
such as the probability of achieving a steady- state INR within the 
target range.

METHODS
A robust and mechanistic understanding is essential to advance 
MIPD for warfarin. While we previously derived a reduced warfarin/
INR model from a QSP framework,10 its clinical application requires 

thorough validation. To this end, we evaluated the predictive perfor-
mance of the warfarin/INR model using an external dataset from an 
ethnically diverse cohort of patients initiating warfarin,12 which was 
not used in the model development. Our assessment leveraged a full 
Bayesian method, enabling a comprehensive evaluation of the model’s 
precision and accuracy. The analysis was implemented in MATLAB 
2021a, and the model code is accessible from https:// doi. org/ 10. 5281/ 
zenodo. 10844967.

Diverse study population
The data were previously collected in a prospective study to assess 
pharmacogenetic dosing in a real- world setting and include 258 adults 
initiating warfarin treatment.12 The dataset comprises demographic, 
pharmacogenetic, and clinical data. No PK data were available. The 
data consisted of 0–10 measurements from an inpatient setting and 
0–10 measurements from an outpatient setting per patient. For pa-
tients with both inpatient and outpatient data, the outpatient data 
were collected after the patient was discharged from the hospital. For 
inpatient data, the daily warfarin dose was reported; for outpatient 
data, the average daily dose in the week before the respective INR 
measurement was available. This value was used in the simulation 
as described in Supplementary Materials Section S1. Patients were 
genotyped for VKORC1 c.1639G>A; CYP2C9*2, *3, *5, *6, *8 and 
*11; CYP4F2 p.V433M and a novel polymorphism in the CYP2C clus-
ter (rs12777823).13 For details on data cleaning, see Supplementary
Materials Section S2 .

To evaluate the predictive performance in the inpatient data, we di-
vided the dataset into training data used to compute individual poste-
rior predictions (Days 0 to 4) and evaluation data (Days 5 to 9). This 
separation was chosen to balance between accumulating sufficient data 
for informed predictions and retaining sufficient data for subsequent 
evaluations. We thus excluded patients from this analysis if they had no 
INR data on Day 5 or later. Out of 640 INR values from 81 patients 
fulfilling the conditions, 392 were early INR values used for individual 
predictions, and 248 were late INR values used for evaluation. To assess 
prediction quality in outpatient data, all patients with outpatient data 
were considered, which left 149 patients with 554 inpatient and 1,070 
outpatient INR values (50 of these patients have no inpatient data). 
Table 1 shows baseline characteristics of the two partly overlapping pa-
tient populations of (i) patients with inpatient INRs after at least 5 days 
(for the inpatient analysis) and (ii) patients with any outpatient data 
(for the outpatient analysis).

Previously developed mechanistic warfarin/INR model
We previously derived a small- scale warfarin/INR model10 (Figure 1a) 
by reducing a blood coagulation QSP model14 with assumed variabil-
ity on all parameters, which we summarize in this section. The model 
reduction ensures the reduced model inherits biological interpret-
ability from the QSP model while approximating the warfarin/INR 
relationship of the QSP model for realistic populations. Therefore, a 
virtual population was created by assuming a distribution across dif-
ferent CYP2C9 genotypes (different clearance values) and different 
VKORC1 genotypes (different IC50 values),9 as well as random vari-
ations in parameter values, realized by a multiplicative log- normal 
distribution with 40% CV. The model reduction was based on model 
order reduction using sensitivity- based input- response indices15 and 
model simplification, including simplified rate reactions and analyt-
ical solutions of sub- models.10

The QSP model in Ref. [14] describes the time courses of important 
coagulation factors in vivo as well as the in vitro blood coagulation test 
to determine the prothrombin time (PT), from which the INR is ob-
tained by normalization. It models the extrinsic and intrinsic pathways, 
explicitly including activation, complex formation, reduction, and oxi-
dation of coagulation factors, in addition to stimulation, production, 
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degradation, and inhibition of degradation reactions. The QSP model 
also models details of the vitamin K cycle for simulating the response 
to warfarin therapy. The PT is calculated using a threshold on the cu-
mulative fibrin concentration after activation by the tissue factor.14 The 
reduced model still contains the key components of the blood coagu-
lation cascade to predict the effect of warfarin on the INR. These are 
the coagulation factors II, VII, and X in addition to the vitamin K hy-
droquinone (VKH2). In vivo, warfarin inhibits VKH2, a stimulator of 
synthesis of coagulation factors II, VII, and X. In vitro, the product of 
these three coagulation factor concentrations determines the PT and 
the INR. The coagulation factors are indirectly inhibited by warfarin, 
that is, warfarin acts on VKH2, which in turn acts on the synthesis 
rates of the coagulation factors. This induces a delay between PK and 
PD, comparable to a turnover model in classical PK/PD modeling. See 
Supplementary Materials Section S11 for additional insights into the 
modeled delay and its dependence on genotypes. See Supplementary 
Materials Section S3 for a complete model definition.

To evaluate the predictive quality of our model, we compared its perfor-
mance to an established empirical reference model developed by Hamberg 
et al.9 (Figure 1b). In the reference model, the warfarin effect on the INR 
is modeled using two transit compartment chains that account for the de-
layed effect and an INR equation that translates the terminal compart-
ment concentrations into the INR.

Prior uncertainty in the mechanistic warfarin/INR model
To use the mechanism- based warfarin/INR model in a Bayesian setting, 
a prior uncertainty must be defined for all parameters. As we want to 
predict the INR for individual patients, the individual prior predictive 

distribution depends on the covariate information of the patient. Given 
the covariate information, the prior parameter uncertainty for any single 
patient before the start of the treatment equals the IIV from the popula-
tion setting. The prior INR uncertainty for a single patient additionally 
depends on the residual unexplained variability (RUV). For mathemati-
cal details, see Supplementary Materials Section S4.

We considered age, weight, CYP2C9 genotype, and rs12777823 
(only in patients who self- identified as Black or African American) as 
covariates affecting the PK.9,13,16 INR baseline, VKORC1, and CYP4F2 
(affecting Vitamin K metabolism) genotypes were considered covari-
ates affecting the PD.9,17 Covariate relationships and parameters were 
taken from the literature; for details, see Supplementary Materials 
Section S5. Covariates were included based on prediction quality im-
provements and difficulty of obtaining the information. For IIV, we 
used a lognormal distribution with 40% CV on all parameters in the 
warfarin/INR model as in the model reduction.10 During the model 
reduction in the previous article, a deliberately high IIV was chosen to 
ensure a good approximation in a diverse population; however, a smaller 
IIV might suffice to model a specific patient population. We thus al-
ternatively considered a more realistic IIV (with CV between 10 and 
40%) on the different parameters if literature data were available; see 
Supplementary Materials Section S6. For RUV, we used a lognormal 
distribution with 20% CV on the INR.9 Compared with empirical 
models, a mechanistic model with IIV on all parameters might explain 
more variability and thus leave a smaller RUV. Thus, we alternatively 
considered an RUV with 18% CV.

Individual posterior prediction and dose optimization
We used a Bayesian statistical approach to infer individual parameters 
from patient data and the prior, and used posterior predictions to fore-
cast individual therapy. INR data until Day 4 (the data horizon) were 
assimilated for each patient to obtain their posterior parameter distribu-
tion (see Supplementary Materials Section S4) using the particle fil-
ter approach presented by Maier et al.11 The particle filter is an efficient 
simulation- based method for Bayesian updating based on sequential 
data.11 For each patient, 1,000 parameter realizations (the “particles”) 
with the same covariates were drawn from the prior parameter distribu-
tion (the IIV). They were used to simulate the prior INR distribution, 
which additionally includes the RUV. Then, the particles were weighted 
based on the likelihood of the sequentially considered data points given 
this parameter realization. The result is a virtual population with pa-
rameters distributed according to the posterior parameter distribution.11 
Then, the predictions made with the posterior were compared with the 
actual data on Days 5 to 9 for evaluation. For the outpatient analysis, 
each INR prediction was performed by assimilating all INRs up to the 
previous visit.

An optimal daily dose maximizes the probability of the INR being 
within the target window at steady state. Depending on time and dosing 
history, the probability of being within the target window can be calcu-
lated from the posterior predicted INR distribution. Using the posterior 
parameter distribution, based on data up to Day 4, and the RUV, we sim-
ulated the posterior INR distribution, assigning a dose from a range be-
tween 0.5 mg and 20 mg after the reported inpatient doses (starting latest 
at Day 10). We chose the dose with the highest predicted probability of 
the INR being within the target window on Day 30, at which point the 
INR was expected to be in steady state. The same particle filter method 
with data up to Day 4 and the same dose optimization was used with the 
reference model.

Measures for prediction quality
To assess the model quality, we evaluated the quality of the INR pre-
dictions and compared the predicted optimal dose with the actually 
prescribed doses. Both accuracy and precision of INR predictions are 
essential for dose optimization.

Table 1 Baseline characteristics of patients with (i) late 
inpatient INRs (on or later than day 5), which were used in 
the inpatient analysis and (ii) patients with any outpatient 
data, which were used in the outpatient analysis. The two 
datasets partly overlap, with 43 patients in both datasets

Characteristics

Patients with 
inpatient data 

at Day 5 or later 
(n = 81)

Patients with 
outpatient data 

(n = 149)

Age (years), mean ± SD 52 ± 14 52 ± 17

Weight (kg), mean ± SD 97 ± 37 92 ± 29

Female sex, % 40.7 46.7

Baseline INR, mean ± SD 1.19 ± 0.19 1.18 ± 0.19

Self- reported race/ethnicity, N (%)

Black or African American 41 (50.6) 86 (57.7)

White 14 (17.3) 13 (8.7)

Hispanic 11 (13.6) 36 (24.2)

Other 15 (18.5) 14 (9.4)

Patients with variant alleles, N (%)

CYP2C9 *2 9 (11.1) 15 (10.0)

CYP2C9 *3 2 (2.5) 5 (3.4)

CYP2C9 *5 0 (0) 2 (1.3)

CYP2C9 *6 2 (2.5) 3 (2.0)

CYP2C9 *8 5 (6.2) 6 (4.0)

CYP2C9 *11 1 (1.2) 2 (1.3)

VKORC1 c.1639G>A 29 (35.8) 61 (40.9)

CYP4F2 27 (33.3) 37 (24.8)

rs12777823 27 (33.3) 46 (30.9)
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We employed a prediction- corrected visual predictive check (pcVPC)18 
to visually interpret the prediction quality. A pcVPC normalizes all pre-
dictions and data around the median prediction in order to make data 
resulting from differing covariates or dosing histories comparable. To 
quantitatively measure the INR prediction accuracy, we compared the 
INR measurements obtained between Days 5 and 9 with the correspond-
ing INR predictions, which incorporated the individual’s INR data from 
Days 1 to 4; see Figure 2a for an illustration. For the outpatient analysis, 
we compared outpatient INR measurements with the corresponding INR 
predictions that incorporated all INR data up to the previous visit. For 
a comprehensive evaluation of the predicted distribution, instead of rely-
ing solely on point predictions, we calculated the proportion of the INR 
measurements falling within their respective 90% prediction intervals. 

The 90% prediction intervals are, for a specific patient and a specific time 
point, defined as the range between the 5th and 95th percentile of the pos-
terior distribution for the INR including RUV. We examined INR predic-
tion precision by assessing the probability (averaged over the population) 
of the INR falling within the target window at the steady state, given the 
calculated optimal dose; see Figure 2b for an illustration. The accuracy 
and precision are evaluated for the same posterior distribution. Notably, 
the precision of predicted INRss is meaningful only when accuracy is good 
since it is solely derived from the prediction. As we expected the accuracy 
and precision to depend on the considered population, we performed 
case resampling bootstrapping to assess the uncertainty. We drew 1,000 
populations (n = 81) from the actual population via drawing with replace-
ment, obtaining 1,000 accuracy and precision values. The 90% confidence 

Figure 1 (a) Mechanistic warfarin/INR model. Ordinary differential equations model the warfarin effect on coagulation factors II, VII, and X. 
The INR is calculated in terms of these coagulation factors. (b) Empirically based reference model.9 Warfarin affects two transit chains whose 
terminal compartments are translated into the INR. Awarf, amount of warfarin in absorption compartment; Cwarf, warfarin concentration in 
central compartment; VKH2, vitamin K hydroquinone; II0, pre- treatment concentration of factor II; VII0, pre- treatment concentration of factor 
VII; X0, pre- treatment concentration of factor X.

Figure 2 Accuracy and precision measures illustrated for a single patient. (a) As a measure for prediction accuracy, we calculate the coverage 
probability of the 90% prediction interval. Given INR data (blue cross) until Day 4, the posterior prediction (blue area) is simulated. The 
coverage probability is the share of evaluation data points (red circles) lying within their respective prediction interval. (b) To measure the 
prediction precision, we simulate the predicted probability of an INR within the target window at Day 30 given optimal dose. Doses until Day 
9 were taken from the data, INR data until Day 4 was assimilated. The prediction for a dose of 10 mg is shown for illustration. The posterior 
predictive distribution p

(
⋅ | data; post -day -9dose

)
 of the INR prediction at Day 30 (blue line) is shown, and the probability of an INR within the

target window is colored (green area). The optimal dose was defined as the post- day- 9 dose that maximized the precision and was determined 
by simulating the posterior INR distribution for a range of doses between 0.5 mg and 20 mg given daily after Day 9. In the actual data, the 
doses until Day 9 typically vary, but in this illustration, a constant dose is assumed for the first 9 days for simplicity.
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intervals constructed with the percentile method are shown in Figure 4, in 
addition to the results for the actual population.

Finally, we wanted to evaluate the dose optimization. While the actual 
optimal dose is unknown, the dose at discharge represents the dose con-
sidered optimal or acceptable by the prescribing physician at the time of 
patient discharge. Thus, we compared the predicted optimal doses (based 
on INR data up to Day 4) with the discharge doses.

RESULTS
We employed a full Bayesian approach to optimize doses in an 
MIPD setting using a mechanistic warfarin/INR model. INR0 , 
age, weight, CYP2C9, and VKORC1 were chosen as covariates in 
the final model; see Section Covariate contributions to predic-
tion quality for details. Individual INR measurements were as-
similated to generate posterior predictive distributions.

Model fit and prediction quality
Figure 3 shows the prediction- corrected visual predictive check 
(pcVPC)18 showing the 10th, 50th, and 90th percentile of the 
data together with the simulation’s 95% confidence intervals 
of these percentiles. As inferred from the Model Performance 
pcVPCs (top), the posterior INR simulations based on all individ-
ual data describe the data well for both the mechanistic warfarin/
INR model and the reference model. To assess the model’s ability 
to predict future INR data, posterior predictions were generated 
using individual INR data until Day 4. Subsequently, these pre-
dictions were contrasted with actual data from Day 5 onwards, 
constituting an external validation. Figure 3 (bottom) presents 
the corresponding pcVPCs, providing insights into predictive 
performance on unseen data. The pcVPCs of our model and the 
reference model look similarly good. The lower data percentiles 
align well with the lower prediction confidence intervals for both 
models and data horizons. The data median and upper data per-
centiles are initially below the prediction confidence intervals but 
eventually align within them. Regardless of the data horizon, both 
models show a slight overprediction initially; in other words, the 
INR increase is modeled to be faster than what is observed in the 
data.

The accuracy and precision measures detailed in Section 
Measures for prediction quality assess the quality of future data 
predictions. Figure 4a presents these measures, along with un-
certainty obtained from bootstrapping, for various variability hy-
perparameters for IIV and RUV (Section Prior uncertainty in 
the mechanistic warfarin/INR model) in comparison with the 
reference model. For an accurate prediction, close to 90% of the 
data points should be within the 90% prediction interval. A high 
predicted probability of being within the target window at steady 
state indicates high precision. In general, we can observe a trade- 
off between accuracy and precision for different hyperparameters. 
We considered accuracy more important, as precision is solely de-
rived from the model predictions and, therefore, only meaningful 
if the predictions are accurate. A large uncertainty in accuracy is 
observed, which is due to the strong dependence of the accuracy 
measure on single data points. The precision depends on the pre-
dictions and not directly on the data and thus is less sensitive to the 
bootstrapped population. We also assessed whether the prediction 

quality varies for specific subpopulations, particularly patients 
who self- identified as Black or African American, who are well 
represented in the dataset. When considering the *5, *6, *8, and 
*11 alleles in addition to *2 and *3, we would expect a similar pre-
diction performance for the African American subpopulation as
when considering *2 and *3 only in European ancestry populations, 
while the failure to test for CYP2C9 variants *5, *6, *8, and *11 is
related to poor dose prediction in African Americans.19,20 In this
study, these variants are tested for and the prediction quality for
patients who self- identified as Black or African American does not 
significantly differ from that of the entire population. Overall, the
mechanistic warfarin/INR model and the reference model have
comparable accuracy and precision.

Covariate contributions to prediction quality
Covariates can partly explain the large variability in warfarin 
response and thus enhance dose selection, especially at the treat-
ment start. We investigated how integrating covariates mech-
anistically into the model impacted prediction quality. Data 
were available on baseline INR, age, weight, CYP2C9 genotype, 
VKORC1 genotype, CYP4F2 genotype, and rs12777823 geno-
type. CYP4F2 was not informative beyond baseline INR changes 
(see Supplementary Materials Section S9) and thus is not fur-
ther considered.

Figure 4b shows accuracy and precision for the mechanistic 
warfarin/INR model with different subsets of the covariates. Prior 
predictions are shown in green and posterior predictions with INR 
data up to Day 4 in violet. In general, with more information, the 
prediction quality improves in both accuracy and precision. At 
the start of treatment, the dose selection depends solely on the 
covariates. In this case, including VKORC1 or CYP2C9 improves 
accuracy and precision over using only clinical covariates (INR0, 
age, and weights). Incorporating rs12777823 for patients who self- 
identified as Black or African American, however, did not nota-
bly improve the prediction, possibly due to the small number of 
patients affected (only 8 patients who self- identified as Black or 
African American had a variant allele). In summary, as expected, 
incorporating genotype information enhances dosing recommen-
dations when individual INR data are absent. When assimilating 
INR data up to Day 4, the inclusion of genotype information still 
notably enhances precision; however, it does not improve the al-
ready high accuracy of predictions. The precision enhancement 
could be explained by the covariates bringing prior predictions 
within the correct range, allowing the INR data to refine them fur-
ther. The inclusion of CYP2C9 appears to have a more pronounced 
positive impact than VKORC1, possibly due to the VKORC1 ef-
fect being observable earlier in the INR than the CYP2C9 effect. 
It has been observed before that the INR takes longer to respond 
in patients with specific CYP2C9 variant alleles.6,21 The addition 
of rs12777823 genotype for patients who self- identified as Black 
or African American does not further improve the prediction 
after INR data until day 4. In summary, incorporating genotype 
information enhances confidence in attaining the target window 
with selected doses, even after assimilating INR data up to Day 4. 
Based on these results, we used the following covariates in the re-
mainder of this article. INR0, age, and weight were included, given 
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their accessibility and solid mechanistic foundation. Additionally, 
CYP2C9 and VKORC1 genotypes were included, as they sub-
stantially enhanced prediction quality both pre- treatment and 
after 4 days. However, we excluded the rs12777823 genotype as a 
covariate in the model, due to its lack of contribution to predic-
tion improvement within this data set and its relatively unclear 
mechanism.

Dose prediction
The purpose of the individual INR prediction is the selection 
of optimal individual maintenance doses. Ideally, one would 
compare between predicted and actual optimal doses. However, 
most patients did not achieve stable maintenance doses during 

the reported time frame. Of the 81 patients in the inpatient 
analysis, only 15 reached a stable dose based on the available 
data (including their outpatient data). These patients likely 
represent the subset most responsive to treatment, rendering a 
meaningful comparison between maintenance and predicted 
doses unfeasible in the present data. As a substitute, we bench-
marked model- predicted optimal maintenance doses (based 
on INR data until Day 4) against the actual dose at discharge, 
which was available for 68 of the 81 patients. Those doses were 
determined by the prescribing physician guided by the dose rec-
ommended by a clinical pharmacist based on INR values up to 
7 days after warfarin initiation using either the Gage et al. algo-
rithm or the IWPC algorithm.4,5,22

Figure 3 Prediction- corrected visual predictive checks (pcVPCs) for model performance and predictive performance. Left: mechanistic 
warfarin/INR model; Right: empirical reference model. Top: Posterior simulation of INR data based on individual INR data up to Day 9. Bottom: 
Posterior prediction of INR data for Days 5–9 based on individual INR data up to Day 4. The same data are shown in all panels.
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Figure 5 shows the actual doses at discharge versus predicted 
optimal doses (based on INR data until day four). Based on the 
mechanistic warfarin/INR model, 42.7% of the predicted doses 
were within ± 20% of the dose at discharge, compared to 30.9% 
of predicted doses based on the reference model. Hence, the pro-
posed mechanistic warfarin/INR model slightly outperforms 

the reference model. Of note, while our model predicts lower 
doses than actually prescribed, the reference model rather pre-
dicts higher doses.

The patients with variant rs12777823 alleles self- identifying as 
Black or African American (n = 8) had a smaller mean predicted 
optimal dose than the remaining population (4.1 mg vs. 4.8 mg), 

Figure 4 Accuracy and precision of the mechanistic warfarin/INR model with various settings and the reference model for comparison. (a) 
Different hyperparameters IIV and RUV and comparison with the reference model. For IIV, either all parameters were distributed with 40% CV 
or parameters had CV according to literature (between 10 and 40%), as described in Section Prior uncertainty in the mechanistic warfarin/
INR model. (b) Influence of different covariate sets on prediction quality before start of treatment (green) and after 4 days of INR data (violet). 
The point labeled “IIV 40%/RUV 20%” in Panel a is the same as the point labeled “clin+c+v” in Panel b. Accuracy is defined as the percentage 
of data points within 90% prediction interval (evaluated on INR measurements from days 5–9, which were not used for prediction). Precision 
is defined as the predicted probability of INR within target window at steady state (posterior prediction given optimal individual dose). 
Uncertainty (90% confidence interval) obtained from bootstrapping. pred: predicted, TW: target window, SS: steady state, IIV: interindividual 
variability, RUV: residual unexplained variability, clin: clinical covariates (age, weight, baseline INR), c: CYP2C9, v: VKORC1, r: rs12777823 (only 
for patients who self- identified as Black or African American).
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even though the rs12777823 genotype was not included as a co-
variate in the final model. This is in line with previous findings,23 
although not very significant due to the small number of affected 
patients. The patients with any variant CYP2C9 allele (*2, *3, *5, 
*6, *8 or *11, n = 17) had smaller mean predicted doses than the re-
maining population (2.5 mg vs. 5.3 mg); however, this was already
accounted for in the prior model by the inclusion of CYP2C9 as
a genotype.

Outpatient INR prediction
Accurately predicting INRs is expected to be more challenging 
for outpatients than in highly controlled inpatient environments. 
We evaluated whether the data observed up to the previous visit 
was sufficient to predict the INR at the subsequent visit in outpa-
tients. We also analyzed if the information at discharge suffices to 
predict the future outpatient data, see Supplementary Materials 
Section S7.

Figure 6 shows the pcVPC for (i) Model performance of the pos-
terior simulation based on all INR data of the respective individual, 
and (ii) Predictive performance of the posterior prediction based on 
individual INR data up to the previous visit. These data are well- 
captured in the Model performance pcVPC. In the Predictive perfor-
mance setting, a slight, consistent overprediction by approximately 
10% can be observed. The uncertainty in predictions is relatively 
well captured, although the range between upper and lower data 
percentiles is slightly wider than the range between the prediction 
percentiles. Concerning accuracy, only 74.4% of the data points are 
within their respective 90% prediction interval; ideally, this value 
would be closer to 90%.

Figure 7 shows the pcVPC for outpatient data and predictions 
with the empirical reference model for comparison. The pcVPCs 
show a Model performance and Predictive performance similar to 
the mechanistic warfarin/INR model, and the accuracy is also very 

similar, with 74.2% of the data points being within their respec-
tive 90% prediction interval. In contrast to the mechanistic model, 
the empirical reference model rather underpredicts the data in the 
Predictive performance setting.

DISCUSSION
In this study, we evaluated the predictive quality of a mechanis-
tic warfarin/INR model on clinical data when used in MIPD. 
The warfarin/INR model was previously derived from a QSP 
model of blood coagulation by model reduction. We conducted 
an external validation using clinical INR data from a diverse 
patient cohort and compared it against the external validation 
of an empirical reference model.9 Due to observing accuracy 
and precision comparable to the reference model and the added 
advantage of a mechanistic foundation, we gained confidence 
in applying the mechanistic warfarin/INR model in MIPD in 
similar datasets.

In the presented mechanistic approach, the starting point is 
the prior mechanistic knowledge encoded in the underlying QSP 
model. By design, the reduced model depends on the underlying 
QSP model; this enables a critical discussion of the reduced model 
since its basis is explicitly given. In contrast, empirical PK/PD mod-
els depend on the underlying clinical study used to develop them, 
most importantly on the study design (patient cohort, dosing regi-
men, etc). As a result, empirical models can vary substantially (as is 
also the case for warfarin, see Ref. [7–9]), leaving the user to choose 
a model without typically knowing explicitly the reason for the dif-
ferences in model structure. QSP and physiologically based PK 
models have previously been used to predict individual outcomes 
based on patient covariates.24–26 By gathering relevant patient 
information (e.g., clinical covariates and genotype information) 
and incorporating it into the mechanistic model, a virtual patient 
or “digital twin” can be simulated to assess individual outcomes. 

Figure 5 Comparison of predicted optimal dose and actually prescribed dose at discharge. (a) Mechanistic warfarin/INR model; (b) reference 
model. Optimal dose predictions based on INR data up to day 4. A linear regression line (black) is plotted together with a perfect correlation 
line (gray) and 20% deviations (dashed gray).
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Importantly, our approach integrates QSP and pharmacometric 
approaches by additionally assimilating individual outcome data in 
a Bayesian context (enabled through model reduction). In compar-
ison with a complex QSP model, a reduced model also facilitates 
communication across disciplines, in addition to faster parameter 
estimation, allowing for Bayesian updating in real time. Therefore, 
when made available to clinicians through a web interface, the 
reduced mechanistic model could aid dose adaptation within a 
bedside- ready decision support tool.

Often, model prediction quality is assessed by the root mean 
squared error (RMSE) or (pc)VPCs. However, this focus on 
population- level metrics, although assessing the population 
variability, may mask individual prediction inaccuracies. Also, 
a quantification of uncertainties in the individual predictions 

is missing. To overcome these limitations in model assessment, 
we used a full Bayesian approach11 and used two measures for 
the accuracy of the individual predictive distribution and the 
individual predicted precision. These quantitative accuracy and 
precision measurements provide a comprehensive evaluation of 
the predictive performance, including its uncertainty. This ap-
proach enabled us to evaluate clinically relevant model quality 
markers, notably the probability of achieving a steady state INR 
within the target range.

We observed initial overpredictions of the INR values by both 
the mechanistic and the reference model (Figure 3). The models 
predicted a faster INR increase than what is observed in the data. 
A possible reason could be a sample bias, as we considered only 
patients hospitalized for at least 5 days. Indeed, those patients had 

Figure 6 Mechanistic model’s prediction- corrected visual predictive check (pcVPC) for patients with outpatient data. Top: Posterior simulation 
of INR based on all individual (inpatient and outpatient) INR data. Bottom: Posterior prediction of INR based on the individual (inpatient and 
outpatient) INR data only up to the previous visit. Times were binned to have at least approx. 20 data points per bin; the boxes illustrate the 
bins. The last bin includes times up to day 242 (box not fully shown).
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a lower mean INR on Day 4 than others. Irrespective of the cause, 
there are two possible solutions to account for the initial overpre-
diction. First, weighing the data more heavily by using a flattened 
prior27 would lead to a more substantial adaptation of the predic-
tion to the data. However, this approach resulted in a better agree-
ment between early data and prediction but a worse agreement for 
later time points when using data until day four. The second op-
tion involves adapting the entire model via a hierarchical Bayesian 
framework. In the present article, only individual patient data was 
assimilated to calculate the individual posterior prediction, but the 

model prior was not calibrated using patient data. As a next step, 
the data from the whole patient cohort could be used to refine the 
prior in a continued learning approach.28 Merging the data with 
the mechanistic prior knowledge is expected to enhance perfor-
mance for future predictions.

The balance between accuracy and precision in the model pre-
diction is largely modulated by the two hyperparameters, RUV 
and IIV. Reducing the variability hyperparameters enhances pre-
cision at the expense of accuracy. However, a prediction that is 
precise yet inaccurate is not meaningful. Therefore, we prioritized 

Figure 7 Empirical reference model’s prediction- corrected visual predictive check (pcVPC) for patients with outpatient data. Top: Posterior 
simulation of INR based on all individual (inpatient and outpatient) INR data. Bottom: Posterior prediction of INR based on the individual 
(inpatient and outpatient) INR data only up to the previous visit. Times were binned to have at least approx. 20 data points per bin; the boxes 
illustrate the bins. The last bin includes times up to day 242 (box not fully shown).
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accuracy over precision. When selecting hyperparameters, we sug-
gest establishing a cutoff value for the accuracy measure, for ex-
ample, requiring a minimum of 80% of values to fall within the 
90% prediction interval and then optimizing for precision. Of 
the considered hyperparameters, the RUV with 20% CV and IIV 
according to literature (10–40%) are the best given these criteria. 
The optimal hyperparameter values could also be estimated in a 
hierarchical Bayesian framework.

Interestingly, the magnitude of the RUV considerably limits the 
probability of achieving INR values within the target range; this 
is illustrated in Supplementary Materials Section S10. For expo-
nential RUV with 20% CV,9 the precision cannot exceed 68.9%. 
The corresponding expected time within target range defined by 
the Rosendaal method29 was 78.8% in a numerical simulation, see 
Supplementary Materials Section S10 for details. Attaining this 
bound would require complete identification of the interindivid-
ual variability from INR data.

Our analysis identified several influential covariates: baseline 
INR, weight, age, CYP2C9, and VKORC1 genotype. The geno-
type information retains its predictive significance even after as-
similating INR data up to Day 4, as demonstrated in Figure 4b and 
consistent with previous findings.30 The prediction enhancements 
observed in Figure 4b suggest that considering the CYP2C9 gen-
otype may have significant predictive value even in the absence of 
VKORC1 data (compare points labeled “clin” and “clin+c”). This 
diverges from the Clinical Pharmacogenetics Implementation 
Consortium (CPIC) Guideline for Pharmacogenetics- Guided 
Warfarin Dosing,1 which recommends a genotype- guided ap-
proach only if both CYP2C9 and VKORC1 genotypes are avail-
able. This may be clinically relevant because CYP2C9 may already 
be on record for some patients, given its significance for several 
other drugs. We also evaluated rs12777823 for patients who self- 
identified as Black or African American and CYP4F2 as potential 
covariates. Regarding CYP4F2, our model suggests that this enzyme 
primarily affects the baseline INR without influencing the subse-
quent warfarin therapy trajectory. The rs12777823 genotype was 
previously found to be associated with altered warfarin clearance 
in African Americans13,31 and to influence the required warfarin 
dose.23 In the present analysis, only 8 patients who self- identified as 
African American had a variant rs12777823 allele, thus the analysis 
remains inconclusive. We excluded the rs12777823 genotype as a 
covariate in the model due to its lack of contribution to prediction 
improvement within this patient population (see Figure 4b, com-
pare points labeled “clin+c+v” and “clin+c+v+r”).

Dose optimization is a key objective in model- informed pre-
cision dosing. Ideally, if stable maintenance doses were available 
for the majority of the population, they would be the preferred 
outcome metric. However, relying solely on stable maintenance 
doses would exclude patients who do not achieve stable dosing, 
potentially masking underperformance for those patients. The 
presented analysis uses the dose at discharge as a substitute for the 
stable maintenance dose as most patients did not achieve a stable 
maintenance dose within the available data frame. The mechanistic 
warfarin/INR model slightly outperforms the reference model by 
predicting (based on INR data until Day 4) optimal doses that are 
closer to the actual doses at discharge. While the discharge doses 

might differ from stable maintenance doses, they were deemed op-
timal by a physician at a later time point than the prediction was 
made. In practice, the dose optimization approach would involve 
determining the individual optimal dose based on the prior and all 
available data up to the point in time at which a dose adaptation de-
cision is to be made. The individually optimal starting dose would 
be determined based only on covariates. Later doses would be 
based on covariates and additionally on all available INR data up to 
that time. Consequently, the dose would be adjusted daily during 
the patient’s clinic stay and at each subsequent clinic visit thereaf-
ter. The optimized dose based on INR data until Day 4, which we 
used in this article for calculation of the precision and comparison 
with actual doses, represents a snapshot of this approach at Day 
4. Of note, the particle filter method facilitates the assimilation of
new data to update the optimal dose.11

We finally explored the difference in prediction quality in inpa-
tient and outpatient settings. In the prediction of outpatient data, 
we observed a slight bias, with INR predictions from the mecha-
nistic model being larger than observed values (Figure 6 bottom) 
and predictions from the reference model being smaller (Figure 7 
bottom). This discrepancy might be attributed to issues with adher-
ence, an increased Vitamin K diet or a potential habituation effect. 
Consistent with our expectations, the variability in outpatient data 
appears slightly higher than predicted, likely due to inconsistent ad-
herence, less controlled dosing times, varying diet and other unfore-
seen factors. It is plausible that any model developed on data from 
the highly controlled hospital setting would require adjustments, 
particularly in the residual error component, when adapted to an 
outpatient setting. An increase in the RUV to 30% CV would suffice 
for acceptable accuracy of the outpatient prediction but comes with 
a reduction in precision. With a model update in the hierarchical 
Bayes framework, including an estimation of the RUV, the accuracy 
might be improved without consequences on the precision.

In conclusion, this article endorses QSP- derived modeling as a 
complementary approach to empirical modeling to produce PK/
PD models suitable for MIPD. In a case study, the mechanistic 
warfarin/INR model, even without prior calibration with clini-
cal data, performed well compared to an empirically based model. 
When integrated with empirical insights, the mechanistic warfa-
rin/INR model shows potential for MIPD with the added advan-
tage of physiologic interpretability. In the future, the mechanistic 
model development concept based on QSP model reduction and 
empirical concepts could be combined to yield better PK/PD 
models for MIPD.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).
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