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Abstract 1 

Abstract 

Cardiovascular magnetic resonance imaging (CMR) provides a non-invasive and detailed 

assessment of cardiac structures and tissues, offering valuable quantitative assessments 

for diverse cardiac conditions. Quantification requires precise annotations by readers, in-

cluding reference points and delineations of heart chambers, myocardium and other 

structures. As clinical applications multiply and readers are supported by the clinical inte-

gration of artificial intelligences (AI), evaluating the reproducibility of readers and quanti-

fication methods becomes essential. The aim on this thesis is to design, implement and 

test an extendible software tool, Lazy Luna (LL), that is dedicated to semi-automated 

multilevel reader comparison to increase quality control in CMR. A multilevel comparison 

of readers offers annotation comparisons, quantitative clinical parameter (CP) compari-

sons, and causal explanations for CP differences with annotation differences. 

First, a software prototype was designed and implemented for short-axis (SAX) cine im-

aging. Annotations were modelled as geometric objects, ensuring exact calculations of 

segmentation metric values and CPs. Difference tracing was implemented to allow for 

finding causal annotation explanations for CP differences between readers. A graphical 

user interface (GUI) was implemented to enable user-inspection of statistical reader dif-

ferences and locating their origins in annotations. LL was tested by comparing two CMR 

experts to each other who annotated 13 SAX cine datasets. Second, interfaces were 

implemented for all software components (e.g. CPs, visualizations, tables) to facilitate the 

extendibility of LL to new imaging sequences. The extendibility was tested by applying LL 

to 13 parametric T1 mapping cases annotated by two expert readers and Late Gadolinium 

Enhancement (LGE) cases from the openly available Emidec dataset with reference con-

tours and AI contours.  

First, the software prototype of LL calculated precise segmentation metrics and CPs. The 

GUI allowed for tracing large CP differences to contouring differences. The SAX reader 

comparison revealed that differences in basal slices contour choices led to large volumet-

ric differences. Second, the extendible back- and frontend of LL allowed for extensions to 

T1 mapping and LGE. For T1 mapping LL was used to trace CP differences to contouring 

variability. For LGE LL revealed an undertrained AI that had learned the myocardial con-

tour, but poorly estimated scar tissue. The application cases showed that LL is useful 

open-source software for reader comparison on multiple imaging techniques. 
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The semi-automated multilevel reader comparison software, Lazy Luna, was successfully 

implemented for several CMR imaging techniques. LL calculates differences for large 

cohorts and offers qualitative explanations for biases between readers. LL provides in-

sights into the challenges of CMR standardization and promising technologies for the 

future of quantitative CMR.  

 

Zusammenfassung 

Die kardiovaskuläre Magnetresonanztomografie (CMR) ermöglicht eine nicht-invasive 

Funktions- und Gewebeanalyse, die quantitative Werte zur kardialen Diagnostik beiträgt. 

CMR Quantifizierung erfordert Annotationen durch Auswerter, mit Referenzpunkten und 

Konturierungen von Herzkammern, Myokard und weiteren Strukturen. Zunehmende An-

wendungen und die klinische Integration künstlicher Intelligenzen (AI) benötigen die Eva-

luation der Reproduzierbarkeit von Auswerter und Quantifizierungsmethoden. Ziel dieser 

Arbeit ist das Entwerfen, Implementieren und Testen eines erweiterbaren Software-

Tools, Lazy Luna (LL), das dem halbautomatisierten mehrstufigen Auswertervergleich 

zur Qualitätskontrolle in der CMR gewidmet ist. Ein mehrstufiger Vergleich von Auswer-

tern bietet Annotationsvergleiche, klinische Parameter (CP)-Vergleiche und Annotations-

gründe für CP-Unterschiede. 

Zuerst wurde ein Software-Prototyp für die Kurzachsen-cine (SAX)-Bildgebung entworfen 

und implementiert. Annotationen wurden geometrisch modelliert um exakte Berechnun-

gen von Metriken und CPs zu gewährleisten. Die Verfolgung der Differenzen erlaubte es 

Annotationserklärungen für CP-Unterschiede zwischen Auswertern zu ermöglichen. Eine 

grafische Benutzeroberfläche (GUI) wurde implementiert, um die Nutzerinspektion von 

statistischen Auswerterunterschieden zu ermöglichen und ihre Annotationsursprünge zu 

ermitteln. LL wurde getestet, indem zwei Experten miteinander verglichen wurden, die 13 

SAX-Cine-Datensätze annotierten. Zweitens wurden Schnittstellen für alle Softwarekom-

ponenten (z.B. Visualisierungen, Tabellen) implementiert, um die Erweiterbarkeit von LL 

auf neue Bildsequenzen zu erleichtern. Die Erweiterungen wurden getestet, indem LL 

zum Vergleich von zwei Experten auf 13 parametrische T1 Mappingbildern, und von Re-

ferenz- und AI-Konturen auf Late Gadolinium Enhancement (LGE) Bildern angewendet 

wurde. 
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Zuerst berechnete der Software-Prototyp präzise Metriken und CPs. Die GUI ermöglichte 

das Verfolgen von CP-Unterschiede zu ursächlichen Konturierungsunterschieden. Der 

SAX- Auswertervergleich zeigte Konturunterschiede die in basalen Schichten zu großen 

Volumenunterschieden führten. Zweitens ermöglichte die erweiterbare Back- und Front-

end von LL Erweiterungen auf T1-Mapping und LGE. Für T1-Mapping wurde LL verwen-

det um Konturierungsunterschiede für CP-Unterschiede zu finden. Für LGE offenbarte LL 

eine AI, welche die Myokardkontur gelernt hatte, aber Narbengewebe unterschätzte. Die 

Anwendungsfälle zeigten, dass LL eine nützliche Open-Source-Software für den Auswer-

tervergleich mehrerer CMR Bildgebungstechniken ist. 

Die halbautomatisierte mehrstufige Auswertervergleichssoftware, Lazy Luna, wurde er-

folgreich für verschiedene CMR-Bildgebungstechniken implementiert. LL berechnet Aus-

werterunterschiede und bietet qualitative Erklärungen für dieselben. LL ermöglicht Einbli-

cke in die Herausforderungen der CMR-Standardisierung und vielversprechende Tech-

nologien für die Zukunft der quantitativen CMR. 
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1 Introduction 

1.1  Cardiovascular Magnetic Resonance Imaging 

Cardiovascular magnetic resonance imaging (CMR) is a non-invasive medical imaging 

technique that has transformed the assessment, diagnosis, and treatment of various car-

diovascular diseases [1–3]. CMR exploits the heart’s magnetic properties to provide high-

resolution images of the heart and blood vessels, allowing healthcare professionals and 

researchers to gain invaluable insights into the structure and function of the cardiovascu-

lar system [1,2,4]. CMR has become an essential tool in cardiology, offering superior di-

agnostic accuracy, a wealth of information for treatment planning, and is becoming ever 

more prevalent and accepted in guidelines and recommendations, such as in the Euro-

pean Society of Cardiology [5,6].  

 

CMR offers several advantages over other imaging modalities, such as computed tomog-

raphy (CT) and echocardiography. Unlike X-Ray or CT, CMR is void of ionizing radiation 

exposure, making it safer for recurring examinations, and extends the diagnostic toolkit 

beyond echocardiography [4]. In addition to the capability of CMR to assess cardiac struc-

tures from multiple angles, it also assesses surrounding tissues, the pericardium, great 

vessels, and possible masses in the chest [3]. Further, CMR provides cardiac function 

information such as ventricular outputs, ejection fractions, and blood flow as well as my-

ocardial tissue composition with parametric mapping, late gadolinium enhancement and 

perfusion imaging. This allows CMR to diagnose complex cardiovascular conditions such 

as congenital heart diseases, and cardiomyopathies, as it enables precise characteriza-

tion of tissue properties and blood flow dynamics [5]. 

 

1.1.1  Imaging Techniques 

Cine imaging provides high space-and-time resolved cardiac images for volume and func-

tion assessment of the ventricles and atria as well as revealing wall-motion behaviour [3]. 

Short-axis (SAX) cine imaging covers the left and right ventricles (LV, RV) with a stack of 

slices perpendicular to the septal wall. Long-axis (LAX) cine imaging positions slices to 

show all four heart chambers. Cine imaging is crucial for diagnosing heart failure, cardio-

myopathies and valvular diseases. Parametric mapping techniques allow for tissue 
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characterization by estimating underlying bio-physical properties as numerical values, 

which are assigned to voxels [7]. The parametric approaches allow for quantitative myo-

cardial tissue differentiation; T1 mapping allows for differentiating healthy myocardium 

from diffuse fibrosis and detecting infiltrative diseases (e.g. amyloidosis or fat accumula-

tion), T2 mapping reflects the myocardial water content, providing oedema and inflam-

mation imaging [8–11]. Late gadolinium enhancement (LGE) employs a contrast agent, 

which accumulates in scarred tissue and allows for focal scar and fibrosis detection as 

well as quantification [12,13]. Phase-contrast CMR encodes the speed and direction of 

blood flow patterns, which allows for the assessment of hemodynamics [14]. CMR can 

combine these imaging techniques within a single examination, making it a versatile, non-

invasive tool for characterizing and diagnosing a wide range of cardiovascular conditions 

[5,6]. 

 

1.1.2  The Imaging Chain 

The CMR imaging chain starts with patient preparation (e.g. obtaining the medical history, 

assessing illnesses and medical implants), followed by their positioning on the examina-

tion table where radiofrequency coils are placed over their chest [1,2]. Before patient-

specific images are acquired localizer scans are performed to determine imaging planes 

and regions of interest [3]. By selecting different pulse sequences (“imaging techniques”) 

raw data are acquired. To minimize motion artefacts, pulse sequences are synchronized 

to the cardiac cycle with cardiac gating, which ensures the data are acquired at specific 

phases of the heartbeat. In addition to this, breath-hold commands may minimize respir-

atory motion artefacts. The acquired raw data is then reconstructed into images; for ex-

ample, during cine imaging a sequence of images is captured throughout the cardiac 

cycle. Following the reconstruction, post-processing steps may remove motion artefacts 

and reduce noise [15]. These final CMR images are visually analysed and annotated by 

a CMR expert, who judges whether the image quality is acceptable for interpretation, and 

then pinpoints and delineates relevant cardiac structures visible within the images [3,16]. 

Based on the images and their annotations clinical parameters pertaining to cardiac func-

tion, myocardial tissue characteristics and quantifications, and abnormalities are calcu-

lated and remarked upon. The findings are collected in a report, including measurements, 

clinical remarks and diagnostic recommendations, which are integrated into the patient’s 

overall clinical evaluation. 
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1.2 Confounders in the Imaging Chain 

Although it is generally agreed that CMR imaging techniques offer a high accuracy and 

reproducibility, they are affected by a multitude of confounders in the CMR imaging chain 

[17]. Variability-inducing confounders can originate in all steps of the imaging chain, from 

different scanner sites, image acquisition and reconstruction methods, image annotation 

and clinical parameter assessment, to patient diagnosis and prognosis. Different groups 

use different vendors, scanners, sequences, and technicians, who may position coils and 

perform the image planning and positioning during the scan. Depending on the overall 

system, different imaging techniques may be employed to acquire the same image types, 

for example parametric T1 mapping can be performed with several different pulse–se-

quences [10]. Patients may have atypical cardiac morphologies, making default imaging 

planes problematic, or have difficulties breathing, which can produce motion artefacts and 

noise during image acquisition or perturb the image reconstruction and post-processing 

of images. Furthermore, cardiac gating is known for its vulnerability [18], may impact im-

age quality and lead to unreliable quantification. The image analysis and annotation may 

suffer from reader variability, which can impact annotation reproducibility and affect clini-

cal parameters and diagnostic decisions. Reader variability may further affect the reports 

of CMR experts, when standardised reporting fails to mitigate reader differences.  

 

In order to decrease the effects of confounders, standardisation initiatives are continu-

ously investigated. Such initiatives include multi-vendor, multi-site [19] and travelling vol-

unteer studies [20], which are used to assess the comparability of parameters obtained 

from different sites, while comparability methods, like the Z-score [21] intend to correct 

differences between sites or scanners. Imaging protocols are published in order to stand-

ardise and streamline patient-based CMR to decrease variability caused by imaging pro-

cedure [22]. Innovations in image reconstruction, such as parallel MRI reconstruction and 

compressed sensing have greatly impacted scanning times and thus the set of clinically 

applicable sequences [15,23,24]. However, reconstruction algorithms can be prone to 

producing artefacts, and difficult to reproduce due to unavailable source-code. Open-

source frameworks, such as Gadgetron intend to ameliorate this by providing compre-

hensive, and standardised approaches to image reconstruction [25,26]. Visual image 
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quality guidelines and image/signal-to-noise-ratio classification algorithms aim to provide 

reproducible image quality assessments for artefact detection and data exclusion [22,27]. 

Quantitative imaging biomarkers provided by radiomics, machine learning, and convolu-

tional neural networks (CNN) offer information about physiological structures in the image 

[28–30]. However, for radiomics algorithms source-code is not always available, and for 

CNNs the variety of training datasets and procedures can lead to difficult-to-understand 

blackboxes. To address these drawbacks the “Image Biomarker Standardisation Initia-

tive” offers reproducible radiomics features [31]. In order to further streamline the post-

processing of CMR images post-processing guidelines are employed [3]. For artificial in-

telligences (AI), public segmentation competitions provide benchmarking, reproducible 

results and open-source code [32–34]. Although significant efforts have been made to 

reduce the effects of confounders on the CMR imaging chain, many sources of variability 

remain insufficiently mitigated. 

 

1.3 Reader Differences for Segmentations and Clinical Parameters 

Even though guidelines and standardising consensus statements are well established in 

the CMR community, reproducibility in intra- and inter observer studies showed that sig-

nificant annotation and clinical parameter differences remain [20,35]. For SAX cine, highly 

variable annotation decisions for basal slices cause large volumetric differences, while 

apical slices remain similarly irreproducible with smaller volumetric impacts [36,37]. This 

may be caused by different annotation decisions, fat in the images, or by partial volume 

effects, in which single image voxels contain a mixture of different tissues or cardiac 

structures due to their large slice-thicknesses (7–10mm) compared to their pixel spac-

ings. And although clinical parameter differences are close to zero for interobserver as-

sessments, the variance can be high even for expert readers. In 2015, Suinesiaputra et 

al. demonstrated the necessity of further standardisation by comparing seven experts to 

each other, who each contoured 15 cases according to SCMR guidelines [38]. Large 

differences in segmentation decisions for LV basal and apical slices and clinical parame-

ters were revealed between sites. For parametric mapping, apical slice value assess-

ments are less reproducible than those for basal or midventricular slices [39]. And a re-

cent study on the reproducibility of T1 and T2 parametric mapping parameters across 

sites and readers, implied that mapping parameter differences between readers also 
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explain some of the variability between sites [40]. Since inter- and intraobsever analyses 

isolate reader-specific contributions to segmentation and parameter differences, and dif-

ferences still remain in intraobserver analyses, some relevant segmentation differences 

must be due to the difficulty of image interpretation. 

 

Training CMR newcomers allows for mitigating segmentation differences and increasing 

the reproducibility of clinical parameters in-site [41], while simultaneously spreading the 

post-processing guidelines, which offers additional standardisation across sites and 

countries. Typically, trainees have a medical background with vast knowledge in cardiol-

ogy and experience in medical imaging. For post-processing of CMR images, educating 

trainees builds on curriculums and face-to-face teaching with immediate feedback. Train-

ing has been shown to increase the reproducibility of LV volume assessments [42]. Fol-

lowing courses on the basics of image interpretation, supervised practice in clinical rou-

tine leads to increased familiarity and responsibility of newcomers with CMR. However, 

as CMR availability grows around the globe, the clarification and imparting of post-pro-

cessing techniques and guidelines grows more difficult and expensive in turn [43,44].  

 

AI tools provide fully or semi-automated segmentation algorithms for cardiac structures, 

calculating clinical parameters with errors in the order of interobserver variability 

[32,33,45]. AI tools address several challenges of manual segmentation, which can be 

time-consuming and prone to interobserver variability. They are employed in research to 

analyse large datasets of CMR images or to speed up manual segmentation tasks in 

clinical routine, where CMR experts check AI outputs. In addition to clinical parameter 

evaluations, segmentation CNNs are trained and evaluated with segmentation metrics, 

such as the Dice similarity coefficient (Dice) [46] and the Hausdorff distance (HD) [47]. 

However, while CNNs achieve high segmentation metric values similar to experts, they 

continue to produce human-atypical segmentation failures, such as fragmented segmen-

tations that violate cardiac geometry constraints (e.g. myocardial contours that run 

through the bloodpool) and cause distrust in AIs [48–50]. CNNs promise a higher effi-

ciency, and scale indefinitely, providing new hope for widespread standardisation that 

could be shared across sites, this promise of standardisation is doubtful due to the ever-

expanding number of available AIs. Most post-processing vendors offer supporting AI 

segmentations for several CMR imaging techniques, and segmentation competitions 

have produced many more. The comparability of these algorithms is unclear and the 
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varying results, so far attained in diverse competitions, imply that the human reader vari-

ability may instead be reproduced with AIs.  

 

To summarise the nature of reader differences: segmentation standardisation and seg-

mentation improvement can be opposing goals. Consensus and guidelines make the 

point that standardising procedures ought to lead to more reproducible image segmenta-

tions and clinical parameters [3,9]. At the same time consensuses and guidelines tend to 

acknowledge that significant variability remains due to lacking agreement and genuine 

difficulties, unknown confounders, and also acknowledging that certain inconsistencies 

may be justified due to the evolving methodologies, such as the clinical integration of AIs 

or the increased differentiation of cardiac structures [35,51]. 

 

1.4 The Need for Quality Control 

Quality assurance has been pursued along the CMR imaging chain in order to minimise 

the effects of confounders. As illustrated above, to standardise reader segmentation of 

images, guidelines and training programs were introduced. Research tends to focus on 

reader comparisons to judge the reproducibility of clinical parameter assessments of a 

multitude of imaging techniques within and across sites. The methodological focus of cli-

nicians and AI developers on reader comparison should be integrated into an overall 

comparison method, called a multilevel reader comparison. On the segmentation level, 

clinicians tend to focus on qualitative differences, including segmentation difference vis-

ualisations, descriptions of cardiac structures and how guideline-consistent segmenta-

tions behave in relation to them. AI developers tend to focus on quantitative segmentation 

metrics to assess segmentation proficiency. Multilevel reader comparison should assess 

and explain biases between two readers as statistical properties of the assessed clinical 

parameters. The assessed clinical parameter differences should in turn be explained by 

segmentation differences – described quantitatively and qualitatively. In practice, multi-

level reader comparisons would be tedious tasks, full of laborious and error-prone sub-

tasks, including clinical parameter calculations, statistical calculations, assessments of 

statistical clinical parameter acceptability, and visualisations for a better understanding of 

reader similarities and deviations, while allowing to trace reader differences to individual 

clinical parameter differences back to their causal segmentation difference origins. A 
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semi-automated quality control tool that performs a multilevel reader comparison could 

be readily applied to assess the acceptability of clinical parameter assessments in new 

environments. Currently, the CMR landscape of software tools is missing a reader com-

parison tool to automate and streamline such a multilevel reader comparison. 

 

1.5 Aims 

The overall aim of this thesis is to design and implement an extendible semi-automated 

multilevel reader comparison tool for quality assurance tasks in cardiovascular magnetic 

resonance imaging. The thesis focuses on two publications, which pertain to comparison 

software, named Lazy Luna (LL). The first publication aims to develop a software proto-

type (“Software Prototype Development”), which illustrates the general functionality of 

such a tool on short-axis cine images [52]. The second publication aims to formally design 

LL as generalizable and extendible software (“Software Architecture Design”), which en-

sures the software can be extended to an ever-changing environment of imaging tech-

niques, clinical parameters and confounders in CMR [53]. 
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2 Methods 

2.1 Outline of Software for Multilevel Reader Comparison 

The software Lazy Luna was designed to offer a multilevel reader comparison that covers 

segmentations, clinical parameters and reader statistics (Figure 1). CMR images, seg-

mentations and clinical parameters were modeled to allow for accurate calculations of 

segmentation metrics, clinical parameters and reader statistics. These analysis levels 

were connected to allow for tracing differences from the segmentation level over the pa-

rameter level to the statistical reader level (e.g. biases). An interactive GUI was designed 

to make the software accessible. 
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																															…	

Reader	1	

CMR	Images	

…	

Annotations	

…	

Clinical	Parameters	

Annotation	Comparison	

Statistics	

Reader	2	

A	 B	

Annotations	
Clinical	Parameters	

A∩ B

Figure 1: Multilevel Reader Comparison  
Attribution: adapted from “Introduction of Lazy Luna an automatic software‐driven multilevel comparison of ventricular function quantifi-
cation in cardiovascular magnetic resonance imaging” by Hadler et al. 2022, https://www.nature.com/articles/s41598-022-10464-w, 
Licensed under a Creative Commons Attribution 4.0 License. 
Caption: Cases can be compared when two readers annotated the same CMR images (first reader above in red, second below in blue). 
Clinical results are calculated from images and annotations. Image segmentations can be compared with segmentation metrics such 
as the Dice similarity coefficient (Dice) or the Hausdorff distance. Segmentation differences can be visualized as overlapping or disjoint 
by color-coding them (central subfigure). Reader biases can be visualized as statistical plots, such as Bland-Altman plots (right) of 
reader differences of cardiac volume assessments. 



Methods 13 

2.2 Software Prototype Development 

This subchapter describes several focuses during LL’s development. This included the 

data interface, how quantification accuracy was guaranteed, how difference tracing from 

annotations to clinical parameter impacts was implemented, and how the usability of the 

software was tested. 

 

2.2.1  Data Interface 

Images 

The DICOM [54,55] format (Digital Imaging and Communications in Medicine) is the in-

ternational standard for the medical imaging communication. Keeping data in this format 

avoids conversion loss for images and adjacent information, which is relevant for sorting 

images and annotations, visualisations and parameter calculations, including: a unique 

identifier, acquisition time stamp, image position in 3D space, pixel spacing, slice thick-

ness, and pixel value conversion parameters. 

 

Annotations and Geometrical Operations 

Annotations consist of geometric objects (e.g. points, lines, polygons and multi-polygons), 

which offer accurate representations of sub-pixel annotations of cardiac structures (e.g. 

insertion points, ventricular cavities, papillary muscles) by expert readers in post-pro-

cessing software, as well as precise delineations of pixel masks (typical AI outputs). Ge-

ometric annotations allow for precise geometrical operations, including intersections, un-

ions, distance and area calculations. 

 

2.2.2  Quantification Accuracy 

Segmentation Metrics 

The geometrical operations for annotations allow for calculating segmentation metrics, 

such as Dice and HD. In addition to this, DICOM attributes such as the pixel width, height 

and slice thickness allow for calculating the volume differences in millilitres (ml diff). Dice 

measures the overlap of two polygons (areas A and B); HD measures the maximum 



Methods 14 

among the minimal distances between the outlines of two polygons (contours of A, B: cA, 

cB). The ml diff provides the volumetric impact of a segmentation difference. 

Dice(A,B)= 
2 × |A ∩B|
|A|+|B| 	

HD(A,B) =max# maxa∈cA$minb∈cBd(a,b)',  maxb∈cB$mina∈cAd(a,b)' (	

ml diff(A,B)= (|A|-|B|) × area per pixel × slice thickness 	

 

Clinical Parameters 

Short-axis clinical parameters include ventricular volumes, such as end-systolic and end-

diastolic volumes (ESV, EDV) for the left and right ventricle (LV, RV) and the LV myocar-

dial mass (LVM). Cardiac function parameters include the LV and RV stroke volume (SV) 

and ejection fraction (EF). All parameters are based on volume calculations, which are 

calculated on the basis of annotations, pixel height and width, and slice thickness (Figure 

1). For each parameter a class was implemented to simplify calculation and comparison. 

 

Cases  

Cases were implemented as container classes (i.e. classes that contain and organize 

several interacting objects) in order to facilitate the connection between images, annota-

tions and clinical parameters as well as connect the multiple levels of analysis to each 

other. A case contains references to all images from one CMR-scan, image annotations 

from one reader, and clinical parameters calculated from the images and annotations. 

 

2.2.3  Difference Tracing 

Difference tracing required visualisations that compare annotations on the image level 

and readers statistically so that differences between readers could be understood quali-

tatively and quantitatively. 

 

Annotation Comparison Visualisation 

A visualisation of annotation differences was implemented by calculating intersecting and 

disjoint surfaces to plot them in separate colours (Figure 1). This shows regions that were 

exclusively segmented by the first or the second reader, and agreement between both. 

 

Statistical Reader Comparison Visualisation 
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When several cases were annotated by two readers they can be compared to each other 

(Figure 1). Quantile-quantile plots, Paired Boxplots and Bland Altman plots are imple-

mented as visualisations of statistical clinical parameter reader differences. These plots 

include statistical information: quantile-quantile plots are used to visually estimate 

whether a Gaussian distribution may be assumed, paired boxplots show a quantile box-

plot for both readers, with all cases’ values scattered as points on top of the boxplots. As 

each case has a specific clinical parameter value, as assessed by both readers, the points 

can be connected by a line when they represent the same case. Bland Altman plots rep-

resent the clinical parameter comparisons as the average on the x-axis and the difference 

between both assessments of the y-axis. 

 

Implementation of Difference Tracing 

Difference tracing was implemented by connecting point elements of the statistical visu-

alisations to the cases. Since the statistical visualisations “know” which cases are repre-

sented by the individual points, they can communicate which case was selected to the 

program. By clicking on a point in a statistical visualisation, another tab is opened that 

focuses on the selected case as annotated by both readers. This tab focuses on annota-

tion comparison for the case’s images, with metric value calculations and a visualisation 

of the annotations for both readers. 

 

2.2.4  Usability 

Software Package Dependencies 

LL was written in Python 3.8, and requires several software packages to run:  

• Pydicom [56] 2.2.0 

• Shapely [57] 2.0.0 

• Pandas [58] 1.2.4 

• Matplotlib [59] 3.6.2 

• Seaborn [60] 0.11.1 

• PyQt5 [61] 5.15.7 

User interface 

A graphical user interface (GUI) was written in PyQt5. The user can select cases from 

two readers and compare them to each other statistically in a tab. The interactive 
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matplotlib figures allow for opening another tab in the GUI, in which individual annotations 

are compared. Tabular information can be exported for the user. 

 

Software Prototype Testing 

The prototype was verified by performing a multilevel interobserver analysis on short-axis 

images stacks of 13 scans from a 1.5T Avanto fit (Siemens Healthineers, Erlangen, Ger-

many). These images were annotated by two readers in cvi42 (Version 5.12.1, Circle 

Cardiovascular Imaging, Calgary, Canada) to produce segmentations on LV, RV endo-

cardia, as well as LV papillary muscle and myocardium. The two readers were compared 

with LL.   

 

LL was used to explain reader volume differences with annotation differences, and ex-

ported tabular data. First, LL was used to show the impact of segmentation differences 

on clinical parameters by isolating segmentation metric values for contour comparisons 

that affected specific parameter differences and presenting the results in a table. Second, 

LL was used to analyse where segmentation errors originated in cardiac geometry for 

each contour type and presented this tabular information. 

 

2.3 Software Architecture Design 

Building on the software prototype, LL was formally designed as generic software that is 

extendible to the evolving requirements of CMR, such as new imaging techniques and 

clinical parameters. This necessitated a documentation of formal software requirements. 

 

2.3.1  Requirements 

Accessibility and product independence  

LL should be independent of vendors or reader output (polygons for human readers, im-

age masks for CNNs) and should be available as open-source software building on open-

source components.  

Extendibility 
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The following is adapted from Hadler et al. 2022 [53]: “LL requires an understandable 

backend so that developers can extend the software to new sequences. LL’s core com-

ponents should” be implemented as “classes, to allow for a generic, extendable backend.  

 

Usability and Target Groups  

LL should be usable by” AI “developers and medical experts. A graphical user interface 

(GUI) should be provided in order to allow for an automatic reader comparison” for multi-

ple imaging techniques with “expressive visualizations and statistical analyses, independ-

ent of programming familiarity.” 

 

2.3.2  Accessibility and Product Independence 

Generic Interface for Annotations 

A custom LL annotation format stores geometric representations of annotations as dic-

tionaries with key-value pairs, connecting annotation types (e.g. contour or point name) 

to their annotations (i.e. Shapely geometry and auxiliary information). The dictionaries 

were stored in pickle format with the associated DICOM’s unique identifier as its base-

name, the SOPInstanceUID.  

 

Open Source  

LL should be made available as open-source software on Github.  

 

Product Independence and Code Maintenance 

LL should be designed with open-source packages for its functionalities. LL requires a 

maintenance plan since the packages evolve, including code and API, which may perturb 

LL’s usability. This dissertation’s author maintains LL’s open-source code. 

 

2.3.3  Usability and Target Groups 

Agile Development Procedure 

For the prototype, clinicians contributed information on relevant clinical parameters and 

preferred visualisations of annotation differences. LL required a development procedure 
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that integrated clinician feedback in iterative feedback loops for incremental improvement 

(Figure 3). 

 
Figure 2: Agile Development Procedure of Lazy Luna 
Attribution: adapted from “Lazy Luna: Extendible software for multilevel reader comparison in cardiovascu-
lar magnetic resonance imaging” by Hadler et al. 2023, https://www.sciencedirect.com/science/arti-
cle/pii/S0169260723002808, Licensed under a Creative Commons Attribution 4.0 License. 
Caption: Starting from Lazy Luna’s current state (n), a development cycle consisted of user meetings who 
described desired functionalities, followed by abstractions thereof to implementable features, their imple-
mentation and testing These were then discarded or integrated, depending on clinician/AI developer opinion 
during the next group meeting. Following such a development cycle, Lazy Luna version n+1 was installed. 
Legend: LL: Lazy Luna 
 

Graphical User Interface 

The GUI described in “Software Prototype Development” (2.2) was redesigned to build 

on the formalized classes and offer the selection of different views for each available 

imaging technique. 

 

2.3.4  Extendibility 

Class Diagram 

In order to make LL understandable and easily extendible it follows an object-oriented 

programming paradigm. LL’s class structure is presented in Figure 3. 

LL	nth	
Version	 Group	Meeting	

LL	n+1th	
Version	

Required	
Feature	

Feature	
Design	

Imple-
mentation	

Feature	
Testing	
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Figure 3: Lazy Luna Class Diagram  
Attribution: adapted from “Lazy Luna: Extendible software for multilevel reader comparison in cardiovascu-
lar magnetic resonance imaging” by Hadler et al. 2023, https://www.sciencedirect.com/science/arti-
cle/pii/S0169260723002808, Licensed under a Creative Commons Attribution 4.0 License. 
Caption: The data repository (grey) contains DICOM images and annotation files. The software backend 
(blue) shows backend classes and relationships. Cases contain DICOM image and annotation references, 
a reader, clinical results and categories. (Classes in capital letters) Clinical Results calculate clinical pa-
rameters for the case. Categories can be attached to Cases for simplified access to DICOMS and annota-
tions. Metrics compare two annotations to each other quantitatively. View classes organize the other clas-
ses to address use-case needs. The frontend (red) consists of Visualizations and Tables as GUI elements 
as well as Tabs (PyQt5 Widgets) and the Analysis Tool, the main application interface.  
Legend: DICOM: digital imaging and communications in medicine, GUI: graphical user interface 
 

Extending Classes to New Imaging Techniques  

LL should be extendible to other imaging techniques by extending the backend classes 

in Figure 2. Implementing new Clinical Parameter classes or Metric classes may require 

code extensions of the Annotation or Category classes. LL’s extendible classes, their 

easy access and modification functions (getter and setter functions) as well as extension 

options are presented in Table 1. Annotation is a utility class that handles pickled Python 

dictionaries containing Shapely geometries. New geometrical operations or visualisations 

can be implemented as Annotation class functions. Category is a class that sorts images 

and annotations. Adjusting LL to other imaging techniques may require the implementa-

tion of additional clinical parameter classes. Metric classes can be added to quantify an-

notation similarity. View classes organise cases to address user needs for an imaging 

modality. When new tabs are designed for an imaging modality, they are registered in a 

View class. 

Case 
•  DICOM	Images 
•  Annotations 
•  Reader	
•  Clinical	Results 
•  Categories 

Case	Comparison 
•  Case1,	Case2 
•  Metrics 

Metric 
•  Metric	Info	
•  get_val() 

Clinical	Parameter 

•  CP	Info	
•  get_val() 

Category 

•  Case 
•  Category	Info 

Annotation 
•  Plotting	functions	
•  Geometric	

operations… 

2..2	

Visualization 
•  Case	/	Cases	
•  visualize()	
•  key_press_event()	
•  on_click()	

Table 
•  Case	/	Cases	
•  calculate()	
•  to_pyqt_table_model()	
•  store()	

Lazy	Luna	Tab 
•  Figures	
•  Tables 

1..*	1..*	

Analysis	Tool 
•  load_cases()	
•  add_tab() 

View 
•  customize_case	
•  registered_tabs	

1..*	

DICOM	Image 
•  UID 
•  Pixel	Array 
•  Slice	Thickness 
•  Pixel	Size 
•  Etc. 

Annotation	File 
•  UID 
•  Contours 
•  Points 

Repository	
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Table 1: Class Descriptions and Extendibility 

Attribution: adapted from “Lazy Luna: Extendible software for multilevel reader comparison in cardiovascular magnetic resonance imaging” by Hadler et al. 2023, 

https://www.sciencedirect.com/science/article/pii/S0169260723002808, Licensed under a Creative Commons Attribution 4.0 License. 

 

Class Use Description Functions Extension Description 

Annotation Interface class to geometries: 
- Getter functions: provide access 
to geometry objects 
- Visualizations: of geometries atop 
matplotlib axes 
- Helper functions: offer complex 
geometrical calculations  

Getter functions:  
- get_contour(cname) 
- get_point(pname) 
Visualization functions: 
- plot_contours(axis, cname, color)  
- plot_points(axis, pname, color)  
- plot_face(axis, cname, color) 
- plot_cont_comparison(axis, 
other_anno, cname, colors) 
Helper functions: 
- get_contour_as_mask(cname)  

How to: 
The class is extended by adding new 
functions 
Exemplary helper functions: 
- Point distances 
- Angle calculations 
- Bounding box determination 

Category Sorts images and annotations: 
- Sorting functions: sort images and 
annotations spatially and tempo-
rally according to DICOM attributes  
- Getter functions: provide access 
to DICOMs, images and annota-
tions 
- Helper functions: offer calcula-
tions that require sorted DICOMs 
and annotations  

Sorting function: 
- get_sop2depthand-
time(sop_uid2filepath)  
Getter functions: 
- get_dcm(slice, phase) 
- get_img(slice, phase) 
- get_anno(slice, phase) 
Helper functions: 
- get_volume(cont_name, phase)  

How to: 
The class is extended by adding new 
functions 
Exemplary helper functions: 
- Cardiac geometry descriptions (such 
as basal, midventricular, apical slices) 
- Determining phases in cardiac cycle 
(like end-systolic phase)  

Clinical Result A Clinical Result calculates a clini-
cal parameters for a case  
 

Setter functions: 
- init(case): sets case, clinical parame-
ter name, measurement unit 
Getter functions: 

How to: 
Lazy Luna is extended by clinical re-
sults for new imaging techniques by 
writing new classes 
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- get_val(as_string=False) 
- get_val_diff(other_clinical_result, 
as_string=False) 

Exemplary extension: 
- Clinical result for calculation of aver-
age myocardial voxel intensity 

Metric A Metric quantifies the difference 
between two annotation geome-
tries with the support of correspon-
ing DICOMs 
Metric values: calculation of metric 
values  

Setter functions: 
- init(): sets metric name, measurement 
unit 
Getter functions: 
- get_val(geo1, geo2, dcm=None, 
as_string=False) 

How to: 
Lazy Luna is extended by metrics for 
new imaging techniques by writing 
new classes  
Exemplary extension: 
- Difference in number of pixels within 
contour type for two readers 

View A View structures cases by ap-
pending relevant categories, clini-
cal results and tabs  

Setter functions: 
- init(): sets the view name, tabs for in-
idividual case_comparisons and lists of 
case comparisons 
Adjust case: 
- initialize_case(case): calculates infor-
mation requiring only one calculation - 
customize_case(case): connects the 
view’s categories and clinical results 
Store information function: 
- store(case_comparisons)  

How to: 
Extending Lazy Luna to a new imag-
ing modality requires the implementa-
tion of a custom View class 
Exemplary extension: 
- A View for focal scar imaging  
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Plug-in Scheme 

LL requires a generic plug-in scheme to allow for simple visualisation and table element 

integration into the GUI. Figures inherit their functionality from the matplotlib.Figure class 

and can be integrated into PyQt5.QWidget [62] objects with the FigureCanvas [63] inter-

face class offered by matplotlib. Tables function as an interface class allowing for seam-

less transformation of Pandas DataFrame [64] objects to the QtGui.QStandardItemModel 

for table presentation. 

 

2.3.5  Extension to T1 Parametric Mapping & Late Gadolinium Enhancement 

In order to verify the extendibility of Lazy Luna, the software was extended to two imaging 

techniques. First, LL was extended to parametric T1 mapping and tested on a dataset of 

13 parametric T1 mapping cases, which were annotated by two clinicians with cvi42 (Ver-

sion 5.12.1, Circle Cardiovascular Imaging, Calgary, Canada). Second, LL was extended 

to accommodate LGE imaging. To this end LL is tested on the openly available Emidec 

dataset [34] by comparing the publicly available segmentation masks provided as refer-

ence masks to an AI’s segmentation masks. 
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3 Results 

3.1 Software Prototype Development 

3.1.1  Data Interface 

Images were stored in DICOM format, which guaranteed complete image information. 

Annotations were stored as geometrical representations, which ensured precise segmen-

tation delineations regardless of reader type (human or AI). 

 

3.1.2  Quantification Accuracy 

Segmentation metric and clinical parameter calculations were based on exact geomet-

rical representations, which guaranteed sub-pixel accuracy, and DICOM tags, which rep-

resent the image information precisely as output by the scanner. 

 

3.1.3  Difference Tracing 

Offered within the GUI, difference tracing was implemented to track clinical parameter 

biases to annotation differences. This is demonstrated in Figure 4, where an LL user 

searched for reasons for larger reader deviations of the RV EDV, visible within a Bland-

Altman plot. This qualitative investigation revealed segmentation differences in the basal 

slices, which had a significant impact on the volumetric assessment. 
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Figure 4: Tracing Difference from Statistical Plots to Annotation Differences 
Attribution: adapted from “Introduction of Lazy Luna an automatic software‐driven multilevel comparison of ventricular function quantification in cardiovascular 
magnetic resonance imaging” by Hadler et al. 2022, https://www.nature.com/articles/s41598-022-10464-w, Licensed under a Creative Commons Attribution 
4.0 License. 
Caption: Two Lazy Luna tabs are shown on the left. The top tab focuses on clinical parameter statistics: top left shows clinical parameter averages for each 
reader and their differences in a table. Top right shows a paired boxplot for the selected clinical parameter, first reader on top, second below. Bottom left show 
a QQ-plot. The bottom right RVEDV Bland Altman plot is magnified on the right to show differences as assessed by both readers. Case x was selected by the 
user to open the lower tab, which presents the outlier’s segmentations. The top part of the second tab shows metric values for the segmentation comparisons, 
the lower part a segmentation comparison, which is magnified on the right. The first reader’s segmentations are in red (first subplot); the second’s in blue (third 
subplot), and their agreement is displayed in the second subplot with green referencing area overlap between both readers.  
Legend: RVEDV: right ventricular end-diastolic volume, QQ: quantile-quantile
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Two tables were automatically generated by LL during the multilevel reader comparison. 

The first shows all SAX cine clinical parameter value averages and standard deviations, 

as well as segmentation metrics that affected the clinical parameters (Table 2). The sec-

ond shows where segmentation difficulties statistically accumulate in cardiac geometry, 

subdivided by contour type and basal, midventricular or apical slices (Table 3). As illus-

trated qualitatively in Figure 4, RV endocardial contours in basal slices were shown to be 

more difficult to contour than other regions and have higher average volumetric impacts 

(3.1ml per slice, Table 3). 

 
Table 2: Reader Comparison: Clinical Parameters and Segmentation Metrics 

Attribution: adapted from “Introduction of Lazy Luna an automatic software‐driven multilevel comparison 
of ventricular function quantification in cardiovascular magnetic resonance imaging” by Hadler et al. 2022, 
https://www.nature.com/articles/s41598-022-10464-w, Licensed under a Creative Commons Attribution 
4.0 License. 

Clinical Parameter Difference / Metric Mean Std 

LVEF [%] -2.7 2.9 

LVEDV [ml] -0.1 2.7 

LVESV [ml] 4 4.4 

Dice [%] 94 3 

HD [mm] 0.7 0.3 

LVM [g] -1 4 

Dice [%] 91 7 

HD [mm] 0.8 0.5 

RVEF [%] -0.8 3.1 

RVEDV [ml] -2.4 11.1 

RVESV [ml] -0.4 6.2 

Dice [%] 90 5 

HD [mm] 1.6 0.7 

All Contour Types   

Dice [%] 92 4 

HD [mm] 1.1 0.5 
Legend: LV: left ventricle, RV: right ventricle, LVM: Left ventricular myocar-
dial mass, EF: ejection fraction, EDV: end-diastolic volume, ESV: end-sys-
tolic volume, Dice: Dice similarity coefficient, HD: Hausdorff metric, Std: 
Standard deviation 
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Table 3: Reader Comparison: Clinical Parameters and Segmentation Metrics by Cardiac Location 

Attribution: adapted from “Introduction of Lazy Luna an automatic software‐driven multilevel comparison 
of ventricular function quantification in cardiovascular magnetic resonance imaging” by Hadler et al. 2022, 
https://www.nature.com/articles/s41598-022-10464-w, Licensed under a Creative Commons Attribution 
4.0 License. 

Position Metric LV Endocardium LV Myocardium RV Endocardium 

Basal Dice [%] 88 87 72 

 HD [mm] 1.9 2.1 8.1 

 Abs. ml diff [ml] 1.4 0.9 3.1 

Midv Dice [%] 97 91 94 

 HD [mm] 0.8 1 2 

 Abs. ml diff [ml] 0.3 0.4 0.6 

Apical Dice [%] 84 74 83 

 HD [mm] 0.2 0.5 0.2 

 Abs. ml diff [ml] 0.2 0.5 0.2 
Legend: LV: left ventricle, RV: right ventricle, Midv: midventricular, EF: ejection 
fraction, EDV: end-diastolic volume, ESV: end-systolic volume, Dice: Dice similar-
ity coefficient, HD: Hausdorff metric, Abs. ml diff: absolute millilitre difference per 
slice, Std: Standard deviation 

 

3.2 Software Architecture Design 

3.2.1  Accessibility and Product Independence 

LL exclusively builds on open-source libraries as prescribed in Methods. LL itself is of-

fered as open-source software on Github (https://github.com/thadler/LazyLuna), and was 

tested on 64-Bit systems of macOS 10.14.6 and 12.6.8, Windows 10 Home and Ubuntu 

20.04 and worked for Python versions 3.8 and above. 

 

3.2.2  Usability and Target Groups 

The two extensions below were developed in an agile development procedure with feed-

back from clinicians on the utility of extensions. 
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3.2.3  Extendibility 

Plug-in Scheme 

Tables and visualizations can be added to tabs following a plug-in scheme (Figure 5). 
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Figure 5: Lazy Luna Plug-in Scheme 
Attribution: adapted from “Lazy Luna: Extendible software for multilevel reader comparison in cardiovascular magnetic resonance imaging” by Hadler et al. 2023, 
https://www.sciencedirect.com/science/article/pii/S0169260723002808, Licensed under a Creative Commons Attribution 4.0 License. 
Caption: The left presents LL table and visualization code examples, the right shows the resulting GUI tab. For the Table: the first code line instantiates the LL table, 
the second calculates its cell values, the third instantiates the GUI table, line four connects the LL table to GUI table, line five makes the GUI table visible. For the 
visualization: the visualization is instantiated in code line one, the interface canvas in line two, interface parameters are set in line three, the figure is calculated in line 
four, user-interactions are connected in lines five to seven, the toolbar is added to the GUI in line eight, and then added to the GUI in lines nine and ten. On the right, 
the GUI is shown with the table on top and the figure below. Legend: LL: Lazy Luna, GUI: graphical user interface 

LL	Visualization	

LL	Table	 LL	Tab	
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3.2.4  Extension to T1 Parametric Mapping 

In development cycles with clinicians parametric T1 mapping requirements were defined, 

including the GLOBAL_T1 value and the American Heart Association (AHA) model [65]. 

The GLOBAL_T1 value is the average of all pixel values within the myocardial contours 

across all slices, while the AHA model calculates T1 averages of pixels within 16 myo-

cardial segments. This required extending the Annotation class with functions capable of 

identifying pixels within the myocardial contour, which was performed with Rasterio’s ras-

terize function [66].  

 

Calculating the AHA model and an AHA differences model required extensions to the 

Annotation and the Category class (Figure 6). The Annotation class was extended to 

allow for calculating AHA segments by using the insertion point and the LV myocardial 

segmentation. Within these extensions, the LV endocardial centroid and the insertion 

point are used to divide the LV myocardial segmentation into several segments (6 for 

basal and mid ventricular, 4 for apical slices). Then mean values are calculated for pixels 

within the individual segments. 
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Figure 6: Lazy Luna Calculation of the AHA model 
Attribution: adapted from “Lazy Luna: Extendible software for multilevel reader comparison in cardiovascu-
lar magnetic resonance imaging” by Hadler et al. 2023, https://www.sciencedirect.com/science/arti-
cle/pii/S0169260723002808, Licensed under a Creative Commons Attribution 4.0 License. 
Caption: Short-axis parametric T1 mapping images with LV myocardial delineations and insertion points on 
the top left. Bottom left, myocardial segment masks are calculated (red and blue) from the image annota-
tions. On the top right, the images and segmentation masks are assigned to basal, midventricular or apical 
locations, depending on their spatial relationship to the extent and apical points in a long-axis view of the 
heart. The bottom right shows the AHA model by assigning the segments into their respective bins and 
calculating the average. The rings correspond to basal, midventricular and apical positions (outside to in-
side). 
Legend: LV: left ventricle, AHA: American heart association 
 

Building on these code adaptions two new LL Visualisation classes were implemented 

and added to LL to visualise the AHA models for both cases, and an AHA difference 

model to illustrate differences that emerge due to different annotation choices by both 

readers (Figure 7). 
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Figure 7: AHA Model 
Attribution: adapted from “Lazy Luna: Extendible software for multilevel reader comparison in cardiovascular magnetic resonance imaging” by Hadler et al. 2023, 
https://www.sciencedirect.com/science/article/pii/S0169260723002808, Licensed under a Creative Commons Attribution 4.0 License. 
Caption: On the top, a Lazy Luna tab with a reader’s AHA model average for several patients is shown. The reader was selected on the upper left of the GUI. 
Below three figures generated from this tab are presented (from left to right): First, the average AHA model for all cases for the first reader is presented. Second, 
the average of differences between the first and second reader is visualized. Third, the average AHA model for all cases for the second reader is shown.  
Legend: AHA: American heart association, GUI: graphical user interface 

Reader	selection	

•  Reader	1	
•  Reader	difference	
•  Reader	2	
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3.2.5  Extension to Late Gadolinium Enhancement 

The following subchapter is a revised version of the Results chapter from the publication “Lazy Luna: Ex-
tendible software for multilevel reader comparison in cardiovascular magnetic resonance imaging” by Had-
ler et al. 2023, https://www.sciencedirect.com/science/article/pii/S0169260723002808, Licensed under a 
Creative Commons Attribution 4.0 License. 
 

The annotation class required no changes to generalize to LGE imaging. New contour 

types (scar, excluded area, no reflow) were integrated into the annotation class, which 

allowed for dealing with scars, exclusions and no reflow areas, which permitted the im-

plementations of LGE clinical parameters, including the scar volume, mass and fraction, 

excluded volume and mass as well as no re-flow volume and mass. “LL also required a 

new View class, the SAX_LGE_View to refocus the cases on the images and clinical 

parameters” [53].  

 

Extension to the Emidec dataset 

The Emidec dataset comprises LGE images and segmentation masks stored in Nifti for-

mat. Nifti provides image meta information and the image. Meta information “contains 

voxel width, height, and depth, image sizes, and the number of phases and slices” [53]. 

This information was converted from Nifti format to DICOM files. “The annotation files 

were generated from the Nifti file masks” [53]. Nifti voxel segmentations were outlined as 

Shapely polygons, converted to LL annotation format and stored as pickle files, assigning 

Shapely geometries to contour names. The code was published as a Jupyter Notebook 

(interactive programming environment) in the repository.  

 

An under-trained UNet (called Emidec_AI) predicted segmentation masks for myocar-

dium, scar and no reflow tissue. The Emidec_AI predicted the training set’s segmenta-

tions. LL was used to compare the readers in Figure 8. 
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Figure 8: Emidec Artificial Intelligence Investigation 
Attribution: adapted from “Lazy Luna: Extendible software for multilevel reader comparison in cardiovascular magnetic resonance imaging” by Hadler et al. 2023, 
https://www.sciencedirect.com/science/article/pii/S0169260723002808, Licensed under a Creative Commons Attribution 4.0 License. 
Caption: The Clinical Results tab (top left) shows clinical parameter averages of the gold standard, the Emidec_AI, and their differences. The paired boxplot is 
enlarged on the upper right. The two readers (Gold top, Emidec_AI bottom) are presented as boxplots with the cases‘ LVM values plotted as dots. Lines connect 
the case dots to visualize case-specific reader differences. Below, the reader contours of CaseP096 are presented, showing the overestimation of the epicardial 
contour, explaining LVM differences. The bottom tab’s sub-figures provide an analogous analysis for the Emidec_AI‘s SCARV estimation. The paired boxplot 
reveals that the Emidec_AI underestimates scar volumes. The lower plot shows the Emidec_AI has not learned to estimate the full scar. 
Legend: LVM: left ventricular myocardial mass, SCARV: scar volume 
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4 Discussion 

4.1  Short Summary of Results 

The “Software Prototype Development” and the “Software Architecture Design” publica-

tions showed that a flexible and extendible semi-automated multilevel reader comparison 

software tool could be developed for CMR quality control and published as open-source 

software. The software Lazy Luna was designed as a software package to solve a number 

of intermingling calculations (i.e. metrics, clinical parameters, statistics), visualisations, 

relationships between analysis levels (i.e. reader biases on clinical parameters and an-

notation choices) and tabs of the user interface (e.g. connecting tabs with statistical vis-

ualisations to tabs illustrating a reader comparison on an individual case). The main result 

of the “Software Prototype Development” publication is demonstrating the feasibility of 

implementing such a comparison tool. On 13 short-axis cine cases the software calcu-

lated segmentation metrics, clinical parameters and reader biases. LL performed statisti-

cal procedures, and offered visualisations of annotation differences and statistics. How-

ever, prototyping also revealed insufficiencies with the underlying software design, such 

as its exclusive dedication to SAX cine imaging. This was addressed in the follow-up 

publication. The main result of publishing the “Software Architecture Design” was a ge-

neric software backend and frontend for simple extensions to new imaging techniques by 

streamlining the implementation of new figures, tables and tabs for the graphical user 

interface. This was demonstrated by extending LL to T1 mapping and late-gadolinium 

enhancement imaging with visualisations, tables and tracing methods, as well as testing 

the software on an interobserver T1 dataset, and a publicly available LGE dataset with 

scar contours where expert annotations were compared to a convolutional neural net-

work.  

 

Some studies that applied LL are presented in the discussion. These are not the focus of 

this thesis, but demonstrate the software’s utility as a quality assurance support tool for 

CMR. In the following subchapters we show how LL helped reveal connections between 

confounders, annotation and clinical parameter differences (4.2). Then we focus on the 

relevance of high-quality data (4.3) as LL showed that clean data is key to quality assur-

ance in CMR. Following the Limitations (4.4), the outlook is presented (4.5), encompass-

ing: knowledge extraction in data storage systems (4.5.1), the clinical integration of AIs 
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(4.5.2), establishing new clinical parameters (4.5.3) and training newcomers as they enter 

clinical routine (4.5.4). 

4.2  Annotation Difficulties, Confounders and Future Standardisation 

Developing LL was accompanied by numerous software applications in various scenar-

ios. However, regardless of the application, LL consistently revealed substantial annota-

tion differences between readers. Reasons for annotation differences are manifold and 

originate along the entire CMR imaging chain. Some differences suggest contradictory 

beliefs about the cardiac structures visible in the images [48]. For example, in the “Soft-

ware Prototype Development” publication SAX cine basal slice decisions occasionally 

caused large volumetric differences between readers. These were due to partial volume 

effects, which genuinely present mutually exclusive cardiac structures in the same image 

(e.g. ventricle and atria). During the “Software Architecture Design” the integration of my-

ocardial border voxels was revealed as difficult. In order to determine precise myocardial 

parametric mapping values, contours must be rasterised (generating pixel masks from 

polygons) and determined as either belonging to the myocardium or not. Beyond being a 

non-trivial implementation and software design problem, human readers face this prob-

lem every time they segment parametric mapping images, choosing more or less con-

servative myocardial segmentations to avoid voxels containing fat and blood. Occasion-

ally, lacking consistency and missing annotations of cardiac structures can be explained 

by them being overlooked such as human readers segmenting the papillary muscles in 

slices n-1 and n+1 but not in-between, in slice n. Of course, for AIs this explanation does 

not hold. In the “Software Architecture Design” publication, an AI was trained to segment 

the LV myocardium as well as scar and no reflow tissue. The AI performed well on myo-

cardium segmentation, but poorer on scar tissue detection, and did not detect any no 

reflow regions. This roughly reflected the prevalence of the different classes, but was (as 

intended in the study) due to an insufficient training of the network. In 2023 Ammann et 

al. applied LL to analyse commonalities and differences between three popular CNN ar-

chitectures [48]. All architectures were trained in a comparable environment to segment 

SAX cine images, and evaluated on 29 test cases. Two CNN architectures were similar 

for clinical parameters across the board, typically within predefined tolerance ranges; one 

had a poorer performance, and often exceeded tolerance ranges. However, for all CNN 

architectures, basal slice volume differences were the foremost origin of ventricular 
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volume differences, however, different from human readers, CNNs were reluctant to de-

cide for or against slice segmentation, instead segmenting basal and apical slices partially 

and implausibly. 

 

The point of listing these annotation difficulties is not to instantaneously solve these is-

sues but to show that qualitative investigations of annotation failures are important be-

cause in order to address them appropriately they must be pinpointed in their causal 

origin. Depending on the origin of a segmentation difficulty, adjusting different steps in 

the CMR imaging chain seems advantageous to their resolution. On the one hand, partial 

volume artefacts occur with large slice thicknesses when different structures or tissues 

are encompassed within the same voxel and produce intermediate values. For example, 

when mutually exclusive cardiac structures are represented in the same SAX cine im-

ages, no amount of post-processing guidelines will resolve the discrepancies. Rather, this 

segmentation difficulty can be better addressed by increasing resolution along the z-axis 

of the stacks, such as would be offered by 3D sequences [67]. This would decrease the 

voxel depth of individual slices, which leads to smaller volumetric impacts of individual 

slices and simultaneously to fewer cardiac structures being averaged into the same im-

age. On the other hand, some annotation differences may point towards the need for 

more annotation standardisation, such as differences in papillary muscle inclusion 

choices, in basal slice choices by expert readers or CNNs violating cardiac geometry in 

basal slices, which may result from training on inconsistent datasets. Artefacts in images 

must similarly be differentiated by their cause [16]. Breathing artefacts make image an-

notation difficult and may be caused by severely ill patients or healthy volunteers who 

struggle with breathing commands. These artefacts can be addressed either by using 

faster sequences that require fewer breath holds, such as compressed sensing se-

quences or by developing novel reconstruction methods that attempt to correct for K-

space data affected by motion artefacts [15,23,68,69].  

 

Several of these annotation difficulties may require flagging as they unveil themselves 

during the CMR examination and post-processing. Breath hold problems can be tackled 

with appropriate sequences; artefacts can be detected during reconstruction with signal-

to-noise ratio calculations or with classification CNNs after reconstruction, and programs 

that assess whether annotations respect cardiac geometry constraints can identify im-

plausible annotations. Such consistency checks and red flagging of potential issues along 
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the CMR imaging chain can provide improvement suggestions and increase segmenta-

tion plausibility while catching post-processing errors during stressful clinical routine. 

4.3  High-Quality Data and CMR Quality Assurance 

4.3.1  Heterogeneous Data 

LL supports CMR Quality Assurance (QA) tasks by comparing a reader or an AI to an 

expert reader. However, in order to attain good QA assessments, excellent and repre-

sentative data is necessary. In the last decade CMR has exploited the heterogeneity of 

data in order to address confounders, such as patient characteristics, including age, sex, 

ethnicity and diseases, over scanning characteristics, such as vendors, field strengths, 

coils, sequence implementations and image reconstruction algorithms to post-processing 

steps, including different sites, post-processing software, and readers. For clinicians, dis-

ease heterogeneity is axiomatic to disease differentiation, diagnosis and establishing ref-

erence values [70,71]. To clinical researchers heterogeneity is relevant because the com-

municability of results and diagnostic approaches builds on the comparability of normal 

values between sites. As confounders interfere with the comparability of site-specific nor-

mal values, Z-score normalization and multi-site evaluations attempt to compensate or 

evaluate the communicability of parameters and their normal values [20,21,40]. 

 

Since the introduction of CNNs, dataset sizes have greatly increased in CMR. Next to 

dataset size, data heterogeneity has proven key to improving AI performance in real world 

scenarios, which require models that are hardened against inevitable confounders and 

accompanying domain shifts [32,33,72]. As the first CMR segmentation competition da-

tasets were produced before the arrival of CNNs, they focussed on individual cardiac 

structures in SAX cine, such as LV and RV segmentation datasets in 2009-2012 - at the 

time difficult computer vision problems [73,74]. However, as CNNs overtook traditional 

methods in semantic segmentation tasks, datasets increased in difficulty. In 2017, the 

ACDC dataset offered segmentations of both ventricles on healthy and pathological 

hearts [32]. In 2020 and 2022, the M&Ms dataset boosted the trend towards mirroring 

clinical reality by increasing dataset heterogeneity with multiple centres, vendors and dis-

eases in their segmentation competition [33].  
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Although the engineering of datasets towards real-world data reflects good machine 

learning practice [75], the gap between segmentation competitions and clinical routine 

data is far from closed – a recent publication on confounder impact in clinical routine 

pointed towards unknown confounders having long-term influences on clinical parameter 

stability [76]. Datasets should reflect the full range of available imaging techniques with 

clinical utility, including SAX and LAX cine, parametric mapping techniques, LGE and 4D 

flow. Datasets should also orient themselves towards the diverse set of patients encoun-

tered in clinical routine. This includes diverse representations of diseases, but should also 

include patients covering several age groups, evenly distributed between both genders 

and ethnicities, as well as integrating different scanners, sites and post-processing soft-

ware. The patient-focused heterogeneity is necessary because the statistical averages of 

clinical routine patients vary wildly across the world, which means that extracting cohorts 

from one clinic will inevitably integrate spurious correlations reflecting the region’s bias in 

diseases, ages, genders, ethnicity, payment plans of the health case system and diag-

nostic procedures in practice. Future datasets should include these confounders in order 

to best mirror the diversity of clinical reality. 

 

4.3.2  Clean Data 

Provided a heterogeneous dataset that closely represents real-world data, expert anno-

tations reveal themselves as essential to CMR QA. Reproducible and accurate annota-

tions lead to less variance and bias in the dataset, which in turn leads to training more 

proficient AIs and contributes to straightforward evaluations of trainees on dedicated da-

tasets. Annotation variability remains significant in CMR datasets [38], and makes training 

and benchmarking AIs difficult [77]. Recently, segmentation competitions, such as ACDC 

and M&Ms, have aimed at generating excellent annotations with several expert readers 

agreeing on annotations, thus defining a gold standard dataset [32,33]. Nonetheless, 

these competitions typically store their segmentations as pixel masks and not as poly-

gons, thus losing sub-pixel resolution that was integrated in the post-processing software 

- this may be particularly relevant for thin myocardia, which can be as thin as individual 

pixels. At the same time, reader agreement may be beneficial to reducing overlooked 

contours and other careless mistakes, but seems less promising at eliminating real disa-

greements that result from unclear data, that different readers genuinely understand 
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differently [38]. Annotation variance affects the training of AIs, which learn reader indeci-

siveness as fragmented annotations “in-between” two plausible annotations of the same 

image [48,50]. This reflects their tendency to reduce the bias between their outputs and 

the image’s multiple plausible annotations. However, although the two individual annota-

tions may represent plausible solutions, their average may violate cardiac geometry con-

straints. As data in CMR grows exponentially, the annotation differences themselves be-

come a valuable resource for QA tasks, such as developing annotation repair methods 

and reproducibility assessments. 

 

4.4  Limitations 

LL requires user intervention to recognise imaging techniques (i.e. SAX/LAX cine or par-

ametric mapping images). This is performed as a semi-automated procedure for each 

case in order to ensure correct image classification. Currently, LL is limited to comparing 

two readers to each other. Future versions of LL should allow the comparison of multiple 

readers. 

 

4.5  Outlook 

4.5.1  Data Storage and Knowledge Extraction 

The growing amount and complexity of CMR data requires more expressive storage op-

tions to do them justice. Picture archiving and communications systems (PACS) and the 

DICOM standard were optimised for clinical needs and patient-oriented requests, such 

as searching for acquisitions by date. As CMR moves through cycles of research investi-

gations and clinical deployments, a multitude of confounders are investigated for effects 

on annotations and clinical parameters, with AI deployments offering annotations of all 

phases and slices in cine imaging, potentially establishing new clinical parameters and 

humanly unverifiable numbers of annotations. These research endeavours are unlocking 

a wealth of data unsuited to traditional PACS. First, PACS limit the kinds of data that can 

be stored together, and second, they limit the options to query this data efficiently and 

extract knowledge [78–80]. Knowledge extraction from databases could be used for 
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research purposes, such as testing and generating hypotheses from vast stores of data 

(i.e. data mining). QA tools like LL could be redesigned to interface with such a database. 

In order to fully harness the available data, better accommodate its integration with data 

from other modalities, and offer explorative data analysis, the underlying databases 

should be engineered towards the emerging research environment. 

 

4.5.2  Clinical Integration of Artificial Intelligence 

Another data science task that should be adjusted to the QA concerns of medical imaging 

is the training and evaluation of AI algorithms. Currently, AI training is exclusively being 

treated as a Deep Learning problem, and although this is an important aspect, it is inher-

ently incomplete given the complexity of the domain in which the AIs are intended to 

function. These tasks could also be performed on a dedicated database that integrates 

an ever-growing number of confounders, so that the AI can expand its robustness to con-

founders as CMR itself expands. And while AIs calculate impressive clinical parameters, 

in the range of expert reader deviations, they continue to produce nonsensical annota-

tions. These difficulties cause distrust and hamper their integration into clinical routine. 

Recent FDA proposals suggest that clinical AI integration may be best served with a con-

stant monitoring-approach [75,81]. In the following paragraphs we will, first, outline steps 

for the post-processing with AIs, second, deal with AI-output acceptability, and third, il-

lustrate a monitoring environment for AIs in clinical routine. 

 

Images may contain artefacts that make their interpretation misleading. Artefacts should 

be automatically identified and reported. Following this, irrelevant images are excluded 

from the segmentation task (e.g. SAX cine images outside the ventricles). These image 

classification tasks can be tackled with CNN image classifiers [82,83]. The relevant car-

diac structures should be extracted from the image with bounding box detection [76,84]. 

Following these two preprocessing steps, the images are segmented with segmentation 

CNNs, such as U-Nets [45,85–87]. Following the segmentation procedure, output masks 

are post-processed. As the last step of the segmentation CNN is typically a sigmoidal 

function, which maps each mask pixel value to a floating point number between 0 and 1, 

the output is thresholded to label pixels as either belonging to a cardiac structure or not. 

This thresholding can lead to “stray pixels” or even stray structures [50]. In order to 
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exclude these stray structures, the largest connected component is often selected, setting 

other mask pixels to zero. However, the necessity of the largest connected component to 

exclude stray pixels/structures implies that an understanding cardiac geometry is not in-

herent to the CNN itself.  

 

Even the largest connected component can reflect an indecisive segmentation decision, 

leading to the fragmented segmentations that violate cardiac geometry and must be dealt 

with separately. Several approaches integrate cardiac geometry constraints into the AIs, 

such as shape-priors for loss functions [88,89] during training, shape-constraints on via-

ble geometries [90,91], or by replacing the CNN segmentation with similar expert seg-

mentations from other hearts (similarity determined on an embedding of predicted and 

expert segmentations) [92]. In this case, segmentation error estimation may help users 

identify segmentations with difficulties. Methods like Monte-Carlo Dropout segmentation 

generation [93], reverse classification accuracy[94], linear combinations of ensemble 

Dice estimations [95] and Bayesian networks [49,50] intend to offer the user segmenta-

tion quality estimation. Explainability methods like GradCam [96] have been tested suc-

cessfully on brain MRI scans, and may provide the user with an insight into which CMR 

image regions are confusing. Future methods may evaluate the 3D plausibility of seg-

mentation stacks.  

 

A clinical AI should be embedded in a monitoring and self-updating environment with a 

QA database. Data from clinical routine must be accessible for AI training and evaluation 

to ensure good performance and robustness towards confounders [81]. After deploying 

the clinical AI, it performs on clinical routine data, while simultaneously being monitored 

so that failed annotations are caught and corrected. These corrected annotations are 

added to the QA database. By storing training and QA cases in the database (and ex-

panding them with clinical cases over time), the AI can be continuously validated on the 

database to check for consistent or improving performance. Such an expansion of training 

cases will further allow for continuous updates of a clinical AI to reflect annotation guide-

line evolution, newly diagnosable and differentiable diseases, without risking undetected 

model performance deterioration. 
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4.5.3  Establishing and Assessing Novel Clinical Parameters 

As CMR evolves to exploit advantages of AI segmentation, new clinical parameters that 

require vast numbers of segmentation are established. Such innovative parameters must 

be investigated for their reproducibility and plausibility – a task that LL supports. For ex-

ample, in 2023 Gröschel et al. used LL to evaluate the reliability of AI based quantification 

of myocardial strain [97]. Myocardial strain was calculated in SAX and LAX cine views by 

generating LV myocardial contours and extent points for all phases in all views and “track-

ing” the displacement of myocardial features to compute strain values. To this end, LL 

was used to assess contour plausibility by comparing AI segmentations to expert contours 

quantitatively, and calculate statistical differences between AI and expert strain assess-

ments. By differentiating the influences of contouring proficiency from feature tracking, LL 

allowed to isolate the effect of the feature-tracking algorithm. The future of CMR is bound 

to include new clinical parameters that require high-dimensional representations ex-

tracted from more images than could be manually segmented efficiently. For example, 

blood flow curves (for LV, RV, and atrial chambers) are calculated by segmenting all cine 

images of SAX and LAX views, and were effectively applied by Bello et al. in 2019 to 

predict mortality rates more accurately than conventional methods could [98]. The same 

holds true for CMR shifting from slice-based imaging to 3D volumetric imaging. 3D imag-

ing techniques provide isotropic high-resolution images that capture intricate cardiac 

structures, but they will also require hundreds of image segmentations to delineate car-

diac structures. Extensions of LL to 3D sequences will be a future undertaking to allow 

for feedback loops as AIs and new parameters are assessed for their clinical utility. 

 

4.5.4  Training CMR Newcomers 

Within the working group LL is used to provide trainee feedback with semi-automatically 

generated reports, which often show the steep learning curve necessary to master CMR 

post-processing. While LL is capable of identifying clinical parameter deviations between 

trainee and expert, as well as exposing segmentation differences that caused the param-

eter deviations, it also shows that LL requires user-intervention to describe annotation 

differences for the trainee. On the one hand, learning CMR encompasses far more than 

annotating images, it also includes identifying and describing structures, patterns, atypical 

morphologies, and recognising pathologies in images. On the other hand, the training 
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procedure is far from replaced; LL remains a semi-automated tool, leaving the communi-

cation of mistakes to the supervisor or LL-user. Future research will model the training of 

CMR newcomers as a “gamified” learning experience, in which the trainee is presented 

with a base set of cases to annotate. As the trainee progresses through the cases, anno-

tation proficiency and clinical parameter deviations are tracked. After the trainee has an-

notated several cases, the trainee receives an automatic report. Certain segmentation 

failures could be automatically classified through shape matching and linked to explana-

tion/training videos on segmentation choices by experts before the training continues. 
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5 Conclusions  

The developed multilevel reader comparison software, Lazy Luna, was successfully pro-

totyped for short-axis cine imaging, then thoroughly designed and implemented to be ex-

tendible to new imaging techniques and generalize over typical quality assurance tasks 

in Cardiovascular Magnetic Resonance. The presented studies show that quality assur-

ance tool design and implementation is both possible and feasible. The numerous appli-

cations presented in results and the discussion revealed deeper insights into why stand-

ardisation in CMR is challenging and which paths are most promising. Future research 

will focus on generalising the reader comparison software to multiple other imaging tech-

niques and confounders, in order to support and enable strong AI research and training 

improvements in CMR. 
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