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Error-mitigated fermionic classical
shadows on noisy quantum devices
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Bujiao Wu1,2,3 & Dax Enshan Koh 4

Efficiently estimating fermionic Hamiltonian expectation values is vital for simulating various physical
systems. Classical shadow (CS) algorithms offer a solution by reducing the number of quantum state
copies needed, but noise in quantum devices poses challenges. We propose an error-mitigated CS
algorithm assuming gate-independent, time-stationary, and Markovian (GTM) noise. For n-qubit
systems, our algorithm, which employs the easily prepared initial state ∣0ni 0nh ∣ assumed to be
noiseless, efficiently estimates k-RDMswith eOðknkÞ state copies and eOð ffiffiffi

n
p Þ calibrationmeasurements

for GTM noise with constant fidelities. We show that our algorithm is robust against noise types like
depolarizing, damping, and X-rotation noise with constant strengths, showing scalings akin to prior
CS algorithms for fermions but with better noise resilience. Numerical simulations confirm our
algorithm’s efficacy in noisy settings, suggesting its viability for near-term quantum devices.

Assessing the properties of interacting fermionic systems constitutes one of
the core tasks of modern physics, a task that has a wealth of applications in
quantum chemistry1, condensed matter physics2, and materials science3.
Notions of quantum simulation offer an alternative route to studying this
important class of systems. In analog simulation, one prepares the systemof
interest under highly controlled conditions.However, any such effortmakes
sense only if one has sufficiently powerful readout techniques available that
allow one to estimate properties. In fact, the read-out step constitutes a core
bottleneck in many schemes for quantum simulation.

Fortunately, for natural fermionic systems, one often does not need to
learn the full unknown quantum state; trying to do so regardless would be
highly impractical, as the resources required for a full tomographic recovery
would scale exponentially with the size of the system. Instead, what is
commonly needed are the so-called k-particle reduced density matrices,
abbreviated as k-RDMs. These are expectation values of polynomials of
fermionic operators of the 2k-th degree. Naturally, the expectation value of
any interaction fermionic Hamiltonian can be estimated using 2-RDMs
only4,5. Indeed, the adaptive variational quantum algorithm (VQE)6 also
utilizes up to 4-RDMs to simulate many-body interactions in the ground
and excited state7,8. That is to say, meaningful methods of read-out often
focus on estimating such fermionic reduced density matrices.

On the highest level, several approaches can be pursued when dealing
with fermionic operators. One of those—and the one followed here—is to
treat the fermionic system basically as a collection of spins. Then given spin

Hamiltonians Hi

� �m
i¼1 and an unknown quantum state ρ, where

m ¼ O polyðnÞ� �
, the classical shadow (CS) algorithm or its variants9–21 in

qubit systems are among the most promising ways to calculate the expec-
tations Tr ρHi

� �
, with the representation of the Hamiltonians Hi

� �m
i¼1 in

thePauli basis, which invokes a fermion-to-spinmapping such as the Jordan-
Wigner22,23 or Bravyi-Kitaev encodings24,25. We define the classical shadow
channel asM, which involves operating the unitary channel U uniformly
randomly sampled from the Clifford group before measurements in the Z-
basis and classical postprocessing operations on the measurement out-
comes. By performing the inverse of the classical shadow channelM�1 on
the resulting state after performingM on the initial state ρ, we obtain the
classical shadow representation ρ̂ of the quantum state ρ, allowing for the
calculation of the expected values of observables Hi

� �m
i¼1 with respect to ρ

using classical methods.
While the classical shadow algorithm requires exponentially many

copies even for some local interacting fermions due to the inefficient
representation in the qubit system, recently, several classical shadow algo-
rithms for fermionic systems without encoding of the Hamiltonians have

been proposed26–28. Zhao, Rubin, and Miyake26 utilize the generalized CS

method9 for fermionic systems, and proposed an algorithm that requires

Oðð n
k
Þk3=2ðlog nÞ=ε2Þ copies for the unknown quantum states to output all

the elements of a k-RDM. Low27 proves that all elements of the k-RDM can
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be estimated with
η
k

� �
ð1� η�k

n Þk 1þn
1þn�k =ε

2 number of copies of the

quantum state, where η is the number of particles and n is the number of

modes.These fermionic shadowestimationmethods (alongwith the generic
classical shadow formalism) do not account for noise in the system,which is
an inevitability in real physical systems.

Since we are still in the noisy intermediate-scale quantum (NISQ) era,
current quantum simulators are heavily affected by noise; hence, any
characterization technique needs to be robust for these simulators to be
useful. For qubit systems, robust shadow estimation was developed29,30

where Chen et al.29 use techniques from randomized benchmarking to
mitigate the effect of gate-independent time-stationary Markovian (GTM)
noise channels on the procedure. Jnane et al.31 proposed error-mitigated
classical shadow with probabilistic error cancellation.

Utilizing the robust shadow estimation scheme and taking inspiration
fromthe fermionic shadowestimationofZhao et al.26,28,wepresent an error-
mitigated shadow estimation scheme for fermionic systems and demon-
strate its feasibility for realistic noise channels. Note that akin to the fer-
mionic CS approaches proposed in refs. 26,28, our error-mitigated CS
method circumvents the need to encode the Hamiltonian using the qubit
representation.

We sample our unitaries UQ from the matchgate group32, a natural
choice for our protocol as there is a one-to-one correspondence between
two-qubit matchgates and free-fermionic evolution33,34. We therefore
design the classical postprocessing operations by leveraging the irre-
ducible representation of the matchgate group. We successfully intro-
duce an unbiased estimator cM for the noisy classical shadow channelfM, where we require an additional calibration protocol to generate the
estimator cM with the assumption that the computational basis state
∣0i 0h ∣ can be prepared noiselessly. Additionally, we demonstrate the
efficacy of our protocol under conditions of constant noise strength by
evaluating its performance across various common noise channels:
depolarizing noise, generalized amplitude damping, X-rotation, and
Gaussian unitary noise. The number of samples required for the esti-
mation process of our protocol is in the same order as the noise-free
matchgate classical shadow scheme26,28.

We determine the effectiveness of our protocol with the above noise
models by calculating the expectations of all elements of the k-particle
reduced density matrix (k-RDM) when the noise strength is constant. The
number of samples required for estimation, in this case, is
O knk lnðn=δeÞ=ε2e
� �

and for calibration is O ffiffiffi
n

p
ln n lnð1=δcÞ=ε2c

� �
with

error εe+ εc and success probability (1− δe)(1− δc).
We have extended the analysis of our error-mitigated fermionic

shadow channel estimation to more general physical quantities
inspired by the fermionic shadow analysis of Wan et al.28, with more
details in Supplementary Notes 5, 9. We list distinct classical shadow
approaches in both noiseless and noisy qubit and fermionic systems in
Table 1. Our error-mitigated fermionic classical shadow technique
constitutes an extension of the work by Chen et al.29, accommodating
scenarios where the gate-set lacks (1) 3-design properties35 and (2) the
applicability of the randomized benchmarking scheme developed by
Helsen et al.36.

We tested the accuracy and efficacy of our protocol by performing
numerical experiments to estimate Tr ρeγS� �

(where eγS ¼ Uy
QγSUQ,

where γS is the product of ∣S∣Majorana operators and plays a crucial role
in computing k-RDMs) on a noisy quantum device subjected to various
types of gate noise such as depolarizing, generalized amplitude damp-
ing, X-rotation, and Gaussian unitaries. Our numerical investigations
confirm the potential of our methods in real-world experimental
scenarios.

Results
Basic notations and concepts
Here we give the basic notations and concepts that will be used throughout
this work.

Basic notations. The symbols X, Y, and Z denote the Pauli X, Y, and Z
operators respectively. The operator RXðθÞ ¼ exp �i θ2X

� �
denotes the

rotation operator around the x-axis. A Z-basis measurement is per-
formedwith respect to the basis of eigenstates of the Pauli-Z operator.We
utilize I to represent the identity operator on the full system. The set of
linear operators on a vector space H is denoted as LðHÞ. We utilize the

symbol eO to omit the logarithmic terms.

Superoperator. We denote the superoperator representation of a linear

operator O 2 LðHÞ as ∣Oii :¼ O=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr OOy� �q

and the scaled Hilbert-

Schmidt inner product between linear operators as

hOjRih i ¼ Tr OyR
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr OOy� �

Tr RRy� �q
. The action of a channel E 2

LðLðHÞÞ operating on a linear operator O 2 LðHÞ can hence be written

as E∣Oi i ¼ EðOÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr OOy� �q

. The channel representation of a mea-

surement with respect to the computational basis can be represented as
X ¼ P

x2 0;1f gn ∣xii xh ∣h . We denote the unitary channel corresponding to

the unitary operator U as Uð�Þ ¼ Uð�ÞUy.

Majorana operator. TheMajorana operators γj for 1≤j≤2n describes the

fermionic system with γj ¼ bðjþ1Þ=2 þ byðjþ1Þ=2 for odd j and γj ¼
�iðbj=2 � byj=2Þ for even j, where bj and byj are the annihilation and

creation operators, respectively, associated with the j-th mode. Let γS be
the product of theMajorana operators indexed by the subset S, denoted as
γS ¼ γl1 � � � γljSj for ∣S∣>0 and γ; ¼ I, where S ¼ l1; . . . ; ljSj

� �
and

l1 < l2 <… < l∣S∣. It can be shown that γS forms the complete orthogonal
basis for LðHÞ for S⊆ [2n]. Let Γk :¼ γSj∣S∣ ¼ k

� �
be the subspace of γS

with cardinality k. We denote the even subspace as Γeven :¼ L
lΓ2l . Also,

we denote Pk as the projector onto the subspace Γk, i.e.

Pk ¼
X

S2 ½2n�
kð Þ
∣γS

		
γS



∣



; ð1Þ

where we have used the notation that for a set A and an integer k, ðA
k
Þ ¼

fT � A : jTj ¼ kg denotes the set of subsets of A with cardinality k.

Gaussian unitaries. Matchgates are in a one-to-one correspondence
with the fermionic Gaussian unitaries and can serve as a qubit
representation for these unitaries. We denote Mn as the matchgate
group, andwrite its elementsUQ 2 Mn in terms of rotationmatricesQ
belonging to the orthogonal group Orth(2n) (see Supplementary Note
1 for details)33,37. Following Wan et al.’s study28, which demonstrated
that the continuous matchgate group Mn and the discrete subgroup
Mn \ Cln (where Cln represents the Clifford group) deliver equivalent
performances for fermionic classical shadows, our findings remain
applicable to both continuous and discrete matchgate circuits. Since
Uy

QγjUQ ¼ P
kQjkγk, the matchgate UQ transforms the product

of Majorana operators γS in the Γ∣S∣ subspace
as Uy

QγSUQ ¼ P
S02 ½2n�

jSj

� � detðQjSS0 ÞγS0 .
k-particle reduced density matrices (k-RDM). We denote a k-RDM as
kD, which can be obtained by tracing out all but k particles. Here we

Table 1 | Enumeration of the classical shadow protocols in
noiseless and noisy settings, for qubit and fermionic systems
respectively

Clifford-based shadows Fermionic shadows

Noiseless Huang et al.9 Zhao et al.26; Low27; Wan et al.28

Noisy Chen et al.29; Koh and Grewal30 This work
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denote it as a tensor with 2k indices,

kDj1 ;...;jk ;l1 ;...;lk
¼ Tr ρbyj1 � � � b

y
jk
bl1 � � � blk

� �
; ð2Þ

where ji and li are in [n] for i∈ [k]. The fermionic systemcanbe equivalently
described in the Majorana basis, in which case a tensor can be rewritten as
the linear combinations of Tr ργS

� �
, and ∣S∣≤ 2k. Hence all n2k elements of

the k-RDMcan be obtainedby calculatingTr ργS
� �

, for the scaling ofO nk
� �

different S with ∣S∣≤ 2k38.

Pfaffian function. The Pfaffian of a matrix Q 2 R2n× 2n is defined as

pf ðQÞ ¼ 2n

n!

X
σ2S2n

sgn σð Þ
Yn
i¼1

Qσ2i�1 ;σ2i
; ð3Þ

which can be calculated in O n3
� �

time39.

Ideal fermionic shadow (Wan et al.28). Given an unknown quantum
state ρ, the classical shadow method applies a unitary UQ uniformly
randomly sampled from matchgate group Mn, followed by measuring
the generated state in the computational basis. With the measurement
result ∣xii, we can generate the classical representation ρ̂ ¼ M�1Uy

Q∣xii
for the unknown quantum state ρ, where the channel M describing the
overall process is defined as

MðρÞ ¼ R
QdμðQÞ

P
x2 0;1f gn

xjUQρU
y
Qjx

D E
Uy

Q∣xi xh ∣UQ

" #

¼ P
k

n

k

� �
2n

2k

� �P2kðρÞ:
ð4Þ

Noise assumptions. In this work, we assume that the noise is gate-
independent, time-independent, andMarkovian (a common assumption
in randomized benchmarking (RB) abbreviated as the GTM noise
assumption40) and that the preparation noise for the easily prepared state
∣0i 0h ∣ is negligible. For the convenience of calculation, we utilize the left-
hand side noisy representation for a noisy fermionic unitary eUQ :¼ ΛUQ.
Here we define the average fidelity in Γ2k subspace for noise channel Λ as

Bk :¼
ð�iÞk

2nð n
k
Þ

X
x

X
S2

½n�
k

� � ð�1ÞxSTr ∣xi xh ∣ΛðγDðSÞÞ
� �

;
ð5Þ

whereDðSÞ ¼ 2j� 1; 2jjj 2 S
� �

; 0≤ k≤ n; xS ¼
P

j2Sxj. It is easy to check
thatBk ¼ 1 if k = 0.With some calculations, we haveBk ¼ 1 for the noise-
free model where noise channel Λ equals the identity. In the following, we
give the analysis of the simplified result for Bk for several common noise
models in the qubit system and fermionic system when k > 1. See more
details for the analysis in Supplementary Note 3.

(1) The depolarizing noise with channel representation ΛdðAÞ ¼
ð1� pÞAþ pTr Að Þ I

2n for any n-qubit linear operator A, where the noise
strength p∈ [0, 1], and Bk ¼ 1� p.

(2) The generalized amplitude-damping noise with the Kraus repre-
sentation

Λað�Þ ¼
P

u; v 2 0; 1f gn
u≠v

Euvð�ÞEy
uv þ E0ð�ÞEy

0;

ð6Þ

whereEuv ¼
ffiffiffiffiffi
�pu

p
∣vi uh ∣ foru ≠ v∈ {0, 1}n and E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�P

u; v 2 0; 1f gn
u≠v

Ey
uvEuv

s
,

where the probabilities �pu satisfy
ð2n � 1Þ�pu ≤ 1 for any u 2 0; 1f gn. The average fidelity Bk ¼
1�P

u2 0;1f gn�pu if k ≠ 0. We let
P

u2 0;1f gn�pu denote the noise strength.
(3) The X-rotation noise with the channel representation

Λrð�Þ ¼ RXðθÞð�ÞRXð�θÞ ð7Þ

whereRXðθÞ ¼ expð�i
Pn

l¼1 θlXl=2Þ, where thenoise strengths θl are some
real numbers. By some calculations, we have

Bk ¼ ð n
k
Þ
�1P

S2ð
½n�
k

Þ

Q
l2S cos θl . Hence min

l
coskθl ≤Bk ≤ max

l
coskθl .

(4)Noise that is aGaussian unitary41,42, wherewe assume that the noise
has no coherence with the environment. This noise channel is denoted as

Λgð�Þ ¼ UQð�ÞUy
Q; ð8Þ

whereUQ is aGaussian unitary. By selecting the noisemodel to beΛg, we get

Bk ¼ ð n
k
Þ
�1P

S;S02ð
½n�
k

Þ
detðQjDðSÞ;DðS0 ÞÞ.

Note that for the noise models defined in (1–3), the average fidelity
Bk 2 ½0; 1� is close to one when the noise strengths are close to zero.

For comparison, it is worth noting that the standard average noise
fidelity43Favg ¼

R
ψdψ ψjΛð∣ψ	 ψ



∣Þjψ
 	

where ψ is drawn from the Haar
measure, and theZ-basis average noise fidelity defined in Chen et al.29, FZ ¼
1
2n
P

b hbjΛjbih i are not equivalent to Bk under the same noise model. We
present a comparisonof these threequantities forΛd,Λa,Λr for a single qubit,
as depicted in Table 2. They are closely aligned, withB1 slightly smaller than
Favg and FZ. We give a more detailed analysis in Supplementary material X.

Mitigation algorithm and error analysis

Let cM :¼ Pn
k¼0 f̂ 2kP2k be the estimator for the noisy shadow channelfM ¼ Pn

k¼0 f 2kP2k. In the Methods Section, we provide an explicit

expression and efficiency for the calculation of f̂ 2k. Using the estimated

noisy channel cM, we can now obtain an estimate for fTrðρHjÞgmj¼1
, where ρ

represents certain quantum states and Hj denotes certain observables. If

f2k = 0, the channel fM becomes non-invertible. Consequently, the effec-
tiveness of the fermionic CS method diminishes, and we cannot retrieve
trðρHÞusing it. In this study,weoperate under the assumption that thenoise
is permissible and the fermionic CS channel is consistently invertible.
Additionally, we provide a scenario in Supplementary Note 3 where the
extremenoise channel occurs, i.e., fk = 0.However, it is anticipated that such
an extreme case will rarely occur. Algorithm 1 demonstrates themethod for
mitigated estimation.

Table 2 | Comparison of average noise fidelity Fave, Z-basis
average noise fidelity FZ, and average noise fidelity in Γ2k
subspace Bk

Noise
type

Λd Λa Λr

Λavg 1− p/2 2=3� ðp0 þ p1Þ=6þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� p0Þð1� p1Þ

p
=3 ðcosðθÞ þ 2Þ=3

FZ 1− p/2 1− (p0+ p1)/2 cos2ðθ=2Þ
B1 1− p 1− (p0+ p1) cos θ
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Algorithm 1. Error-mitigated estimation for noisy fermionic classical
shadows

1: Input Quantum state ρ, observables H1,…,Hm, integers
Nc,Kc,Ne,Ke.

2: Outputv̂i for i∈ [m].
3: Rc≔NcKc;
4: for j← 1 to Rc do
5: Prepare state ρ0 ¼ ∣0ni, uniformly sample Q∈Orth(2n) or

Perm(2n), implement the associatednoisyGaussian unitary bUQ on
ρ0, and measure in the Z-basis with outcomes x;

6: Let f̂
ðjÞ
2k :¼ 2nð�1Þk n

k

� ��1

hh0jP2kUy
Qjxii; 8k 2 ½n�;

7: end for
8: f̂ 2k :¼ MedianOfMeans f ðjÞ2k

n oRc

j¼1
;Nc;Kc

� �
8k 2 ½n�;

9: cM :¼ Pn
k¼1 f̂ 2kP2k;

10: Re≔NeKe;
11: for i← 1 tom do
12: for j← 1 to Re do
13: Prepare ρ, uniformly sample Q∈O(2n) or Perm(2n), implement

the associated noisy Gaussian unitary ÛQ on ρ, andmeasure in the
Z-basis with outcomes x;

14: Generate estimation v̂ðjÞi :¼ Tr Hi
cM�1Uy

QðxÞ
� �

;
15: end for
16: v̂i :¼ MedianOfMeans v̂ðjÞi

n oRe

j¼1
;Ne;Ke

� �
;

17: end for
18: return v̂i

� �m
i¼1

Incorporating the MedianOfMeans sub-procedure, as explained in
Ref. 9, guarantees that the number of quantum state copies needed relies on
the logarithm of the number of observables. We included the Media-
nOfMeans sub-procedure in Supplementary Note 6 to ensure the com-
pleteness and consistency of this paper. Our error analysis will involve
selecting appropriate values for the number of calibrations and estimation
samplingsNc,Ne, Kc, and Ke to estimate the coefficients f̂ 2k associated with
the noisy channel.

Let v̂ :¼ TrðcM�1Uyð∣xi xh ∣ÞHÞ be an estimation of Tr ρH
� �

for some
observables H in the even subspace Γeven and quantum states ρ, where x

follows the distribution Tr ∣xi xh ∣bUðρÞ� �
for x 2 0; 1f gn, then we have

∣v̂ � Tr ρH
� �

∣ ≤ ∣v̂ � Tr cM�1fM ρ
� �

H
� �

∣

þ∣Tr cM�1fM ρ
� �

H
� �

� Tr ρH
� �

∣

¼ εe þ εc;

ð9Þ

where εe :¼ ∣v̂ � Tr cM�1fMðρÞ
� �

∣ is the estimation error and εc :¼
∣Tr cM�1fM ρ

� �
H

� �
� Tr ρH

� �
∣ is the calibration error. Therefore, by

determining the necessary number of samples Ne and Ke to achieve the
desired level of estimation error εe (as well as Nc and Kc to account for the
calibration error εc), we can obtain an estimation v̂ with an overall error of
ε = εe+ εc, using NeKe copies of the input state ρ.

Theorem 1. Let ρ be an unknown quantum state and Hi

� �m
i¼1 be a set of

observables in the even subspace Γeven. Consider Algorithm 1 with the
number of estimation samplings

Re ¼ 68ð1þεcÞ2 lnð2m=δeÞ
22nε2e

P
0≤ l1þl2þl3 ≤ n

gðl1; l2; l3ÞP
S1;S2 ;S3 disjoint
jSij¼2li8i2½3�

Tr eγS1eγS2H0

� �
Tr eγS2eγS3H0

� �
Tr eγS3eγS1ρ� �

;

where

gðl1; l2; l3Þ ¼
ð�1Þl1þl2þl3

n
l1; l2; l3

� �
p

2n
2l1 þ 2l2

� �
2n

2l2 þ 2l3

� �
Bl1þl3

2n
2l1; 2l2; 2l3

� �
p

n
l1 þ l2

� �
n

l2 þ l3

� �
Bl1þl2

Bl2þl3

, and

H0 ¼ max
i
ðHi � Tr Hi

� �
I
2nÞ, and the number of calibration samplings

Rc ¼ O Bmax

ffiffiffi
n

p
ln n lnð1=δcÞ

B2
minε

2
c

� �
;

whereBmax ¼ max
k

∣Bk∣ andBmin ¼ min
k
∣Bk∣. Then, the outputs vi

� �m
i¼1 of

the algorithm approximate Tr ρHi

� �� �m
i¼1 with error εe+ εc and success

probability 1− δe− δc, under the assumption that Hi



 


1 ¼ O 1ð Þ, where

Hi



 


1 is the spectral norm of Hi.
We observe that the sampling for estimation we obtained is consistent

withWan et al.28 in the absence of noise. In the following, wewill provide an
analysis of the necessary number of measurements to compute hkDi using
Algorithm 1. To calculate the representation of each element
hkDij1 ;...;jk ;l1 ;...;lk , where ji, li are in the range [n] for i∈ [k], we need to
calculate m ¼ O nk

� �
expectations for different eγS, where ∣S∣ ¼ 2k. By

choosing the observable Hj ¼ eγS where ∣S∣ ¼ 2k and m ¼ O nk
� �

in
Theorem 1, with the number of estimation samplings

Re ¼ O knk lnðn=δeÞ
B2
kε

2
e

� �
ð10Þ

and the number of calibration samplings

Rc ¼ O Bmax

ffiffiffi
n

p
ln n lnð1=δcÞ

B2
minε

2
c

� �
; ð11Þ

the estimation error can be bounded to εe+ εc. The equations for Re and Rc
can be simplified to Re ¼ Oðknk lnðn=δeÞε2e

Þ and Rc ¼ Oð
ffiffi
n

p
ln n lnð1=δcÞ

ε2c
Þ for the

general noises with constant average fidelity Bk in subspace Γ2k for any
k 2 0; . . . ; nf g. We give more details for the calculations in Supplementary
Note 8. However, some types of noise channels, such as certain Gaussian
unitary channels present in the related 2n × 2n matrix Q, cannot be miti-
gated with our mitigation algorithm. In particular, there exists a signed
permutation matrix Q for which f2k = 0, resulting in complete loss of pro-
jection for the observable onto the subspace Γ2k. As a result, it is impossible
to calculate Tr ρeγS� �

for any set S containing 2k elements.We anticipate that
the noise in the quantum device will differ significantly from the UQ which
belongs to the intersection of the matchgate and Clifford groups.

Numerical results
Here we give the numerical results for the mitigated shadow estimation in
the fermionic systems. Since the elements of a k-RDM can be expressed in
the form Tr ργS

� �
, we give the numerical results of the errors of the esti-

mators for the expectation value of local fermionic observables Tr ρeγS� �
.

The estimator v̂ for Tr ρeγS� �
can be represented as in Eq. (17). Here we

choose the number of qubits n = 4 and S ¼ 1; 2f g, and eγS ¼ Uy
QγSUQ and

Q is uniformly randomly chosen from Perm(2n). The quantum state ρ is a
uniformly randomly generated 4-qubit pure state. As shown in Fig. 1, we
depict the estimations of classical shadow estimators28 and our mitigated
Algorithm 1, with the changes of noise strength (Fig. 1a–d) and the changes
of the number of samples (Fig. 1e–h). Here we numerically test the esti-
mations with respect to depolarizing, amplitude damping, X-rotation, and
Gaussian unitaries.

The calibration samples in Algorithm 1 for the numerics are
Nc = 4, 000 andKc = 20 for all noise models. The number of samples for the
classical shadow method is set as Ne = 4, 000,Ke = 10, and for Algorithm 1
are set as Ne = 4, 000/(1− pnoise) and Ke = 10, where pnoise is the noise
strength varying for different noise settings:
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(1) Depolarizing noise ΛdðρÞ ¼ ð1� pÞρþ p I
2n, where ρ is any quantum

state and p is the depolarizing noise strength. In Fig. 1a, p varies from
0.05 to 0.3 (p = 0.05j for x-axis equals j where j∈ [6]), and in Fig. 1
(b), p = 0.2.

(2) Generalized amplitude damping noise Λa with representation

ΛaðρÞ ¼
X

u; v 2 0; 1f gn
u≠v

EuvρE
y
uv þ E0ρE

y
0;

ð12Þ

where Euv ¼
ffiffiffiffiffiffi
puv

p ∣vi uh ∣ for u ≠ v∈ {0, 1}n and

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�P

u; v 2 0; 1f gn
u≠v

Ey
uvEuv

s
. Note that Eq. (12) is a generalization

of Eq. (6), which connects to Eq. (6) by setting puv ¼ �pu for any u, v∈ [n].

Here we uniformly randomly choose puv in
½0;1�þj�1
6× 2nþ1 , and labeled it as j in the

x-axis of Fig. 1 where j∈ [6], and choose the generated damping errors for
j = 5 case in Fig. 1 (b) as the damping errors for Fig. 1f.

(3) X-rotationnoiseΛr defined inEq. (7)withnoise parameters θj ¼ π
2 8�jð Þ

for j∈ [6], and the noise strength is chosen as 1� cos θ in Fig. 1c, and
Fig. 1g depicts the errors in the X-rotation noise with noise parameter
θ6. The x-axis of the mitigation results of X-rotation noise in Fig. 1c
denotes the label for noise parameters cos θj for j range from 1 to 6.

(4) The Gaussian unitary noise channel UQ is chosen such that Q is
sampled from the signed permutation group, ensuring that the coef-
ficient f1 for the noise channel is non-zero. The associated numerical
results are shown in Fig. 1d, h. The number of estimation samplings
Ne = 8000,Ke = 10 for Fig. 1d. Fig. 1h choose the same noise parameter
with the fifth noise parameter in Fig. 10d. From the figure, we see that
without mitigation, the error is enormous with the CS algorithm.

In Fig. 1e–h the number of samples ranges from 900þ 100 expðjÞ� �
for j 2 0; . . . ; 5f g. From Fig. 1, we see that with the increase of the noise
strength, the classical shadow method with depolarizing, amplitude
damping, and X-rotation noise all gradually diverge to the expected value
Tr ρeγS� �

, while our error-mitigated estimation protocol in Alg. 1 gives an

expected value that is close to the noiseless value. Based on the numerical
results depicted in Fig. 1e–h, it is evident that as the number of samples
increases, the estimation outcomes generated by Algorithm 1 approaches
the expected value Tr ρeγS� �

, while the convergent value for the classical
shadowmethod is far from the expected value with depolarizing, amplitude
damping, and X-rotation noises. Conversely, the error bar associated with
CS estimations is observed to be smaller compared tomitigated estimations,
using the same number of samplings, as illustrated in Fig. 1e–h. This is due
to the variance of themitigated estimations associatedwith the averagenoise
fidelities in Γ2k subspace Bk.

Discussion
We present an error-mitigated classical shadow algorithm for noisy fer-
mionic systems, thereby extendingmatchgate classical shadows fornoiseless
systems26,28. With our method, the calibration process requires a number of
copies of the classical state ∣0i 0h ∣ that scales logarithmically with the
number of qubits. Assuming a constant average noise fidelity for the noise
channel, our algorithm requires the same order of estimation copies as the
matchgate classical shadow without error mitigation28. Our algorithm is
applicable for efficiently calculating all the elements of a given k-RDM.

To provide a clearer demonstration of the average fidelity of common
noises, we consider depolarizing, amplitude damping, and X-rotation
noises. The average fidelity of depolarizing and amplitude damping noises
are given by (1− p) and ð1�P

u�puÞ respectively, where p; �pu are the noise
parameters. For X-rotation noise, the average fidelity lies between
½minθ cos

kθ;maxθ cos
kθ� where θ is the rotated angles. To evaluate the

effectiveness of our algorithm in mitigating these noises, we compare its
performance with thematchgate CS algorithm to calculate the expectations
of eγS, where ∣S∣ ¼ 2k, which is crucial for calculating k-RDMs. Our
numerical results show good agreement with the theory, validating the
effectiveness of our algorithm.

While our algorithm demonstrates good performance in the presence
of common types of noise in near-term quantum devices, further investi-
gations are required to explore its potential limitations and improvements.
Someof the open questions that can be addressed in future research include:
(1) Is it possible to extend our algorithm to handle other types of noise,

such as time-dependent, non-Markovian and environmental noise44,

Fig. 1 | The estimations for the expectation values of Majorana operators. The
estimations with the changes of (a–d) the noise strength and (e–h) the number of
samples for fixed noise parameters, where (a, e) are associated with depolarizing
noise, (b, f) are associated with generalized amplitude damping noise, (c, g) are
associated with X-rotation noise, (d, h) are associated with Gaussian unitary noise.
The error bar is the estimation of the standard deviation by repeating the procedure

for R = 10 rounds, and it is estimated to be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR

i¼1 ðv̂i � �vÞ2=R
q

, where �v is the

expectation of the corresponding estimations. Specially, �v ¼ f jSj
g Tr ργS

� �
, g ¼ f̂ ∣S∣ for

Mitigated estimation, and g ¼
n
k=2

� �
2n
kð Þ for CS estimation. In (a–d), the x-axis represents

the labels for different noise parameters. The dotted horizontal line indicates the
value Tr ρeγS� �

.
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or more generally, noise that does not satisfy the GTM assumption? If
so, howwould these different types of noise impact the performance of
our algorithm?

(2) We provide numerical results under the assumption of Gaussian
unitary noise, a common noise model in the fermionic platform. An
intriguing unanswered question pertains to the performance of our
algorithm in the presence of more typical noise channels inherent to
fermionic platform.

(3) The number of gates required by thematchgate circuit isOðn2Þ45. As a
result, the accumulation of noise significantly increases the error
mitigation threshold46,47, which raises the intriguing question of whe-
ther it is feasible to provide an error-mitigated classical shadow using a
shallower circuit. This may be compared with Bertoni et al.48, who
propose a shallower classical shadow approach for qubit systems.

(4) In addition, we have included in the Supplementary materials the
analysis and numerical results regarding the overlap between a Gaus-
sian state and any quantum states, as well as the inner product between
a Slater determinant and any pure state. This prompts the question of
whether our algorithm can be utilized to calculate other physical,
chemical, or material properties beyond the scope of this paper.

Exploring these questions would enhance our comprehension of the
potential and limitations of our algorithm, and could potentially pave the
way for advancements in the estimation of fermionic Hamiltonian expec-
tation values with near-term quantum devices.

Note added
Following the completion of our manuscript, we became aware of recent
independentwork byZhao andMiyake49, who also studyways to counteract
noise in the fermionic shadows protocol.

Methods
Noisy fermionic channel representation
Here we present an unbiased estimation approach for the noisy repre-
sentation of the fermionic shadow channel, which utilizes a protocol similar
to the matchgate benchmarking protocol50. According to representation
theory51 (see details in Supplementary Note 1), the noisy fermionic shadow
channel can be represented as fM ¼ Pn

k¼0 f 2kP2k. Since
TrðHfMðρÞÞ ¼ TrðρfMðHÞÞ, with the pre-knowledge of f2kwe can calculate
TrðHfMðρÞÞ for any observable H in the even subspace. To learn the
2(n+ 1) coefficients, we begin with the easily prepared state ρ0 ¼ ∣0i 0h ∣
and apply a noisy unitary channel bU with U sampled from the matchgate
group. We then perform a Z-basis measurement X with measurement
outcomes x 2 0; 1f gn, followed by classically operating the unitary channel
Uy on ∣xi xh ∣. The generated state has expected value

Pn
k¼0 f 2kP2kðρ0Þ, and

f2k is obtained by projecting the final state to the P2k subspace with some
classical post-processing. We illustrate the learning process of the noisy
channel in Fig. 2a. The following theorem provides an unbiased estimation
of the noisy fermionic classical shadow.

Theorem 2. The noisy fermionic shadow channel can be represented asfM ¼ P
kf 2kP2k, where P2k is defined in Eq. (1), and f̂ 2k ¼

2nhh0jP2kUy
Qjxii=

n
k

� �
is an unbiased estimator of f 2k 2 R, where ∣xii is

the measurement outcome from the noisy shadow protocol obtained by

starting from the input state ∣0ii and applying a noisy quantum circuit eUQ

followed by a Z-basis measurement, where UQ is uniformly randomly
picked from the matchgate group.

The representation of the noisy fermionic channel, denoted byfM ¼ P
kf 2kP2k, where f 2k 2 C, can be obtained by the irreducible

representation of the Gaussian unitary. A detailed proof of this theorem is
provided in SupplementaryNote 4.We claim that the coefficients f̂ 2k can be
efficiently calculated with the following lemma.

Lemma 1. f̂ 2k is the coefficient of x
k in the polynomial pQ(x), where

pQðxÞ ¼
n

k

� ��1

pf C∣0i
� �

pf �C�1
∣0i þ xQTC∣xiQ

� �
; ð13Þ

where C∣xi¼
Ln

i¼1
0 ð�1Þxj

ð�1Þxjþ1 0

� �
is the covariance matrix of ∣xi.

This lemma can be obtained by Proposition 1 in Ref. 28. For the
completeness of this paper, we also give the proof of this lemma in Sup-
plementary Note 4. The coefficients can be calculated with the polynomial
interpolation method in polynomial time.With Theorem 2, we can give an
unbiased estimation cM for fM.

By the definition of f̂ 2k, and the twirling properties of
R
QdμðQÞU�2

Q ,
the expectation value for the estimation f̂ 2k can be formulated as

f 2k ¼
2n

2k

� ��1 n

k

� �
Bk: ð14Þ

We postpone the details of this proof to Supplementary Note 4. It implies
that in the noiseless scenario, eM degenerates intoM as defined in Equation
(4). Combined with the definition of Bk in Eq. (5), f2k is close to

2n
2k

� ��1
n
k

� �
if the average noise fidelity in Γ2k subspace is close to one.

Recall thatBk is a constant in the depolarizing, amplitude-damping, andX-
rotation noises with a constant noise strength, which implies that these
noises can be efficiently mitigated with our algorithm.

Alternatively, we have a counterexample in Supplementary Note 3 that
illustrates the limitationsof ourmitigationalgorithm.Specifically, if thenoise
follows a Gaussian unitary channel UQ where Q is a signed permutation
matrix (associated with a discrete Gaussian unitary), then Bk may become
zero. Hence, f2k = 0, rendering our estimation approach unsuitable.

Fig. 2 | Schematic diagram of the error-mitigated
matchgate classical shadow algorithm. a Protocol
to learn the noisy classical shadow channel, wherefM ¼ Uy

Q°X°Λ°UQð�Þ ¼
Xn

k¼0
f 2kP2kð�Þ, where UQ

is uniformly randomly sampled from the matchgate
group. The estimation f̂ 2k for f2k is obtained by
projecting fM to P2k subspace with input state
ρ0 ¼ ∣0i 0h ∣. b The shadow estimation ρ̂ for input
state ρ with the noisy quantum circuit and classical
post-processing with the approximated noisy clas-
sical shadow channel in (a), where UQ0 is uniformly
randomly sampled from the matchgate group.
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Recall that our goal is to estimate Tr ρHi

� �� �m
i¼1 using a noisy quantum

device and polynomial classical cost, where ρ is an n-qubit quantum state and
Hi is anobservable in the even subspaceΓeven.Herewevisualize the estimation
process with the guarantee in Theorem 2. We uniformly randomly sample a
matchgateUQ from thematchgate group and apply it to the quantum state ρ,
and then measure in the Z-basis to get outcomes x. We define the estimator

v̂ ¼ Tr HcM�1ðUy
Q∣xi xh ∣UQÞ

� �
ð15Þ

¼
Xn
k¼0

f̂
�1

2k Tr HP2k Uy
Q∣xi xh ∣UQ

� �� �
: ð16Þ

It is easy to show that trðHcM�1fMðρÞÞ is an unbiased estimation of trðρHÞ
when fM is invertible, specifically when f2k ≠ 0 for any k, and H belongs to

the even subspaceΓeven.Given thatE½cM� ¼ fM and v̂ serves as anunbiased

estimator of trðHcM�1fMðρÞÞ, it implies that the estimation error ε :¼
jv̂ � trðρHÞj is bounded by jv̂ � trðHcM�1fMðρÞÞj þ jtrðHcM�1fMðρÞÞ�
trðρHÞj, which can be minimized with the increasing of the number of

samplings for the estimations v̂ and trðHcM�1fMðρÞÞ, as shown in Eq. (9).
Note that the estimator defined inEq. (16) is not always efficient for all states
ρ and observables H. Here we claim that with this estimator, we can effi-
ciently calculate substantial physical quantities such as the expectation value
of k-RDM,which not only serves the variational quantum algorithm (VQE)
of a fermionic system with up to k particle interactions52,53, but also provide
supports to the calculations of derivatives of the energy54,55 and multipole
moments56. It is also an indispensable resource for the error mitigation
technique8,57. It also serves to calculate the overlap between a Gaussian state
and any quantum state, and the inner product between a Slater determinant
and any pure state inspired by the fermionic shadow analysis ofWan et al.28.
We postpone the details to Supplementary Note 5.

Note that all elements of k-RDMscanbederived throughTr ργS
� �

for a
total ofO nk

� �
sets S with ∣S∣ = 2k. In an expansion of this concept, we now

focus on evaluatingTr ρeγS� �
forO nk

� �
different Swith ∣S∣ = 2k. To calculate

the expectationvalueTr ρeγS� �
,we set the inputquantumstate tobeρ and the

observable to be H ¼ eγS in the estimation formula of Eq. (16), which can
then be simplified to

v̂ ¼ ikf̂
�1

2k pf Q1Q
TC∣xiQQ

T
1 jS

� �
; ð17Þ

where eγj ¼ P
l2½2n�Q1ðj; lÞγl , Q1(j, l) is the (j, l)-th element of Q1, and

C∣xi¼
Ln

i¼1ð
0 ð�1Þxj

ð�1Þxjþ1 0
Þ is the covariance matrix of ∣xi xh ∣. Here,

A∣S refers to the submatrix obtained by taking the columns and rows of the
matrixA that are indexed by S. The simplified quantity can be calculated in

polynomial time since f̂ c and the Pfaffian function can be calculated effi-
ciently. We give a detailed proof of the simplification process in Supple-
mentary Note 5.

Data availability
The datasets produced during the current study are available at https://
github.com/GillianOoO/Error-mitigated-fermionic-classical-shadow.git.
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