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Abstract

Geometric matching problems are among the most intensely studied fields in Computational Geometry.
A geometric matching problem can be formulated as follows: given are two geometric objects P and Q.
These objects are taken from a class of geometric objects G and P is called the pattern and Q is called
the model. A geometric matching instance is defined for a distance measure distG : G� GÑ R� and a
transformation class T. The task is to find the transformations t P T that minimize distG ptpPq, Qq.
In this thesis, geometric hybrid registration problems are studied. Registration problems are closely
related to geometric matching problems. The term geometric registration problem describes the task of
mapping points from one space (pattern space) to their corresponding points in a deformed copy of that
space called model space.
This research is motivated by a real world application: navigated surgery. Here, the goal is to register
an operation theatre space (pattern space) to the internal coordinate system (model space) of a medical
navigation system. The purpose of a medical navigation system is to support surgeons by visualizing
the used surgical instruments at their correct position in a 3D-model of a patient. The models are
generated beforehand based on CT or MRT scans.
Hybrid registration is a novel strategy to compute solutions for this alignment problem. Geometric
hybrid registrations reduce the spatial synchronization problem to a series of (at least two) geometric
matching problems that are solved interdependently. Usually, a computationally involved point-to-
surface matching is combined with a comparably simpler but underdefined point-to-point matching. The
point-to-surface matching is computed for a sufficiently large and suitably distributed set of points
(called surface points) measured in the pattern space to a geometric surface in the model space. For the
point-to-point matching, a small set of (one to three) characteristic points are measured in the pattern
space and are defined in the model space. In the context of the intended application, these points are
called anatomic landmarks – anatomically exposed spots within the field of interest.
In Chapter 2, surprisingly simple constant-factor approximations are presented for a special subproblem
of registrations under rigid motions: computing a rotation around a fixed axis that minimizes the
Hausdorff distance of a point set to a set of lines, line segments or triangles in the plane or in R3.
In Chapter 3, we present two hybrid rigid motion registration strategies . These two algorithms
compute fast and robust absolute-error approximations for settings in which two anatomic landmarks
are available. Two different discretization techniques are used, based on whether or not the defined
anatomic landmarks are available already during the preprocessing phase.



In Chapter 4, approximation schemes and heuristics are introduced for the computationally difficult
task of computing hybrid registrations with a single given anatomic landmark. Here, rigid motion
registrations are considered that minimize the Hausdorff distances of the involved geometric features to
surfaces that are given as point clouds or as triangulated surfaces.
In Chapter 5, the weighted directed Hausdorff distance is introduced along with matching algorithms
that minimize this measure. Translations and rigid motions of point sets in arbitrary dimensions are
considered. The weighted directed Hausdorff distance allows to take the different precision levels into
account with which the different feature types can be measured.
A novel matching concept named non-uniform matchings is presented in Chapter 6. This approach
allows to compute a set T of transformations instead of a single transformation to perform the mapping
from the pattern space to the model space. The pattern space is partitioned into areas of interest and
a computed transformation t P T is only valid within one cell of this partition. The transformation set
has to satisfy two competing targets: the transformations have to match the geometric features of a cell
close to their counterparts in the model. On the other hand, transformations for neighboring cells have
to be similar to guarantee a smooth mapping.
Computing a set of transformations reduces the effect of local deformations. Dealing with local defor-
mations and several areas of interest is an essential step towards developing registration algorithms
for the clinically highly relevant application of navigated soft tissue surgeries.
In the practical part of this thesis, in Chapter 7, a study that has been done in cooperation with the
Klinik und Hochschulambulanz für Neurochirurgie, Charité-Universitätsmedizin Berlin and the industry
partner Prosurgics Ltd. is presented. In this study, the degree of precision of measuring surface
points and anatomic landmarks are theoretically and empirically analyzed. From this study, adjustment
parameters are deduced that are essential for all hybrid registration methods that are based on these
feature types.
A framework is presented in Chapter 8 in which most of the hybrid registration algorithms have been
implemented.



Zusammenfassung

Geometrische Musteranpassungsprobleme gehören zu den am intensivsten studierten Felder der Algo-
rithmischen Geometrie. Ein geometrisches Musteranpassungsproblem kann wie folgt formuliert werden:
Gegeben sind zwei geometrische Objekte P und Q. Diese Objekte gehören zu einer Klasse G von
geometrischen Objekten, wobei P Muster und Q Modell genannt wird. Ein geometrisches Musteran-
passungsproblem ist bestimmt durch ein Abstandsmaß distG : G� GÑ R� sowie durch eine Transfor-
mationsklasse T. Gesucht sind diejenigen Abbildungen t P T, welche die Zielfunktion distG ptpPq, Qqminimieren.
In dieser Arbeit werden hybride Registrierungsprobleme untersucht, welche in einem engen Zusammen-
hang zu geometrischen Musteranpassungsproblemen stehen. Bei einem Registrierungsproblem besteht
die Aufgabe darin, eine Abbildung zu finden, die jeden Punkt eines Musterraums auf seinen entsprechen-
den Punkt in einem Modellraum abbildet. Die Forschung an dieser Problemstellung ist motiviert durch
eine Anwendung aus in der Neurochirurgie – durch bildgeführte Operationsverfahren. Hierbei wird
während einer Operation mit Hilfe eines medizinischen Navigationssystems das verwendete Operati-
onsbesteck in der korrekten relativen Lage und Position in einem 3D-Modell des Patienten visualisiert.
Das Modell wird zuvor aus einer CT- oder MRT-Aufnahme generiert. Hierfür ist es notwendig, das
Operationsfeld und das interne Koordinatensystem des Navigationssystems aneinander auszurichten;
also eine Abbildung zu finden, welche jedem Punkt des Operationsfeldes seinen entsprechenden Punkt
im Modellraum zuordnet.
Der Schwerpunkt dieser Arbeit liegt auf Registrierungsstrategien, welche das beschriebene Ausrich-
tungsproblem mit Hilfe eines neuartigen hybriden Ansatzes lösen. Hierbei wird das Problem auf eine
Menge von (zumindest zwei) geometrischen Musteranpassungsproblemen reduziert, welche in wech-
selseitiger Abhängigkeit gelöst werden. Die Grundidee ist, ein rechnerisch anspruchsvolles Punkt-zu-
Oberflächen Anpassungsproblem mit einem vergleichsweise einfacherem aber unterdefiniertem Punkt-
zu-Punkt-Anpassungsproblem zu kombinieren. Die Punkt-zu-Oberflächen-Anpassung wird für eine Men-
ge von im Operationsfeld eingemessenen Punkten und einer im Modellraum definierten Oberfläche be-
rechnet. Die Punkt-zu-Punkt Anpassung hingegen basiert auf einer kleinen Menge von (ein bis drei)
so genannten anatomischen Landmarken. Anatomische Landmarken sind anatomisch exponierte Stellen,
welche auf dem Patienten leicht eingemessen und in dem Modell leicht definiert werden können.
In Kapitel 2 wird eine überraschend einfache Approximation mit konstantem Approximationsfaktor für
folgendes Problem vorgestellt: Gesucht sind diejenigen Rotationen um eine gegebene Achse, welche



den gerichteten Hausdorff-Abstand einer Punktmenge zu einer Menge von Geraden, Strecken oder
Dreiecken in der Ebene oder im R3 minimieren. Die Bestimmung einer minimierenden Rotation ist
ein wesentliches Teilproblem bei der Berechnung einer Registrierung für die Transformationsklasse der
starren Bewegungen.
Zwei hybride Registrierungsverfahren für starre Bewegungen werden in Kapitel 3 vorgestellt. Diese
Verfahren berechnen schnelle und robuste Approximationen mit absolutem additiven Fehler für den
Fall, dass genau zwei anatomische Landmarken zur Registrierung zu Verfügung stehen. Diese Verfahren
verwenden unterschiedliche Diskretisierungsstrategien in Abhängigkeit davon, ob die im Modellraum
definierten Landmarken bereits zum Zeitpunkt der Vorverarbeitung zur Verfügung stehen.
In Kapitel 4 werden Approximationsschemata sowie eine Heuristik vorgestellt für die rechnerisch an-
spruchsvolle Aufgabe der Bestimmung einer Registrierung bei nur einer gegebenen anatomischen Land-
marke.
Die Genauigkeit mit welcher anatomische Landmarken eingemessen werden können, unterscheidet sich
von der Genauigkeit für die Einmessung von Oberflächenpunkten. Um diesem Unterschied Rechnung
zu tragen, wird in Kapitel 5 ein neues Abstandsmaß, der gerichtete gewichtete Hausdorff Abstand
eingeführt. Die in diesem Kapitel vorgestellten Registrierungsverfahren berechnen Abbildungen bei
denen diese Genauigkeitsunterschiede berücksichtigt werden können.
Eine vielversprechende Verallgemeinerung des geometrischen Musteranpassungsproblems wird in Ka-
pitel 6 vorgestellt: so genannte nicht-uniforme geometrische Musteranpassungsprobleme. Bei diesem
Ansatz wird eine Menge von Transformationen berechnet, welche den Musterraum in den Modellraum
abbilden anstatt einer einzelnen Transformation. Hierfür wird der Musterraum in Zellen partitioniert und
eine berechnete Transformation ist nur gültig innerhalb der ihr zugewiesenen Zelle. Die Transformatio-
nen haben zwei potentiell konkurrierende Kriterien zu erfüllen: Zum Einen sollen die sich in den Zellen
befindlichen Objekte nah an ihre Entsprechungen im Modellraum abgebildet werden. Gleichzeitig sol-
len Transformationen aus benachbarten Zellen ähnlich sein um eine gleichmäßige Gesamtabbildung zu
gewährleisten.
Die Berechnung einer Menge von Transformationen ermöglicht es, den Einflussbereich von lokalen
Deformationen zu beschränken. Dies ist ein wichtiger Schritt hin zur Entwicklung von Algorithmen für
die in der klinischen Praxis sehr interessante Anwendung der Weichteilnavigation.
Im praktischen Teil dieser Arbeit wurde in Kapitel 7 eine Studie vorgestellt, welche in Zusammenar-
beit mit Partnern der Klinik und Hochschulambulanz für Neurochirurgie, Charité-Universitätsmedizin
Berlin sowie der Firma Prosurgics Ltd. durchgeführt wurde. In dieser Studie werden die unterschied-
lichen Messungenauigkeiten untersucht, welche beim Einmessen von anatomischen Landmarken und
Oberflächenpunkten auftreten. Diese theoretische wie empirische Untersuchung ermöglicht es, Gewich-
tungsparameter abzuleiten, welche für alle hybriden Registrierungsmethoden essentiell sind, die auf
diesen Eingabetypen beruhen.
Schließlich wird in Kapitel 8 ein Rahmenwerk vorgestellt, in welchem die meisten der hier vorgestellten
hybriden Registrierungsalgorithmen implementiert wurden.
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Chapter 1
Introduction
A geometric registration problem, or registration problem for short, is the task of computing a mapping
from a given pattern space into a given model space. Such a mapping is also called registration in this
context. The model space can be seen as a potentially distorted copy of the pattern space with its own
coordinate system. A registration maps each point of the pattern space to its corresponding point in the
model space, see Figure 1.1. A registration can be seen as an alignment of the two spaces, converting
the coordinate system of the pattern space into the coordinate system of the model space.

pattern space model space
�1

�2�3

�4

�(�1)

�(�2)

�(�3)

�(�4)

Figure 1.1: Illustration of a registration r that maps points from the pattern space to their corresponding
points in the model space.

The registration problems considered here are motivated by a real life application: navigated surgery in
rigid tissue. Nowadays most neurosurgical interventions are supported by so called medical navigation
systems. A medical navigation system is a device that visualizes the surgical instruments that are
used during an operation in a 3D-model of the anatomically relevant area of the patient. The model
itself is constructed beforehand based on the result of an imaging process such as an X-ray computed
tomography (CT) or magnetic resonance imaging (MRT) scans.
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It is of utmost importance that the instruments are displayed at the correct relative position and in
the correct alignment in the model with respect to the patient in the operation theatre. The surgeon
depends on these systems as typically the spot (tumor) on which the operation is performed is occluded
by other tissue and hence can not be seen directly. In this thesis, we primarily concentrate on rigid
tissue registrations as required for surgeries on brain tumors that are surrounded by rigid (generally
not deformable) tissue – the skull.
A medical navigation system has to solve a registration problem. Namely, to compute an alignment of
the operation theatre space (pattern space) to the space containing the anatomical model of the patient
(model space).

1.1 Problem Definition

Intuitively, a registration is the combination of dislocation, noise, distortion and deformation that if
applied to the pattern space gives the model space. In most real life applications, there is neither a
precise model of these influencing factors nor an explicit description of them, which makes it impossible
to determine registrations exactly.
Formally stated, a registration r : Rn Ñ Rm is a mapping from the pattern space P into the model space
Q. Applications where the two spaces are of different dimensionality are for example registrations of
slice images (2D) to MRT models (3D).
For our context however, the spaces P and Q can be seen as representations of the same space where
Q is a copy of P deformed by r . Hence, we can write Q � r pPq.
Definition 1 (ε-Registration of P to Q).
For P, Q and r as before and a distance measure dist : Rm � Rm Ñ R�, a ε-registration for an ε ¥ 0
of P to Q is a function r1 : PÑ Q with the property that

@p P P dist �rppq, r1ppq� ¤ ε. (1.1)
Note, that in general the actual deformation r itself as well as the transformation class from which r is
drawn are forever unknown. Thus, it is not possible to compute an ε-registration r1 for some ε ¥ 0 that
is guaranteed to satisfy Equation 1.1 for all points of the pattern space P.
As it is hard to compute a registration directly, a closely related problem is solved instead. In a first
step, geometric features such as point sets, lines, triangles or surfaces are extracted from both spaces.
Then, a transformation from a given transformation set is computed that maps the features from the
pattern space as closely as possible to their corresponding features in the model space with respect to
a suitable distance measure.
In the context of the presented application, the pattern space P is the operation theatre space. The
coordinate system that is used for the pattern space is the internal coordinate system of a tracking
device with which the position of objects in that space is determined. The space Q on the other hand
is the space of the visualization component of the navigation system that visualizes the model of the
patient. The features that are extracted from and defined in both spaces are described in detail in
Section 1.3.
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1.2 Reducing Registrations to Geometric Matching Problems

The features that are measured in the pattern space are called the pattern and the measured or defined
features in the model space are called the model. Registration problems are typically reduced to
geometric matching problems. A geometric matching problem can be formulated as:
Definition 2 (Geometric Matching Problem).
Given:

G a class of geometric objects
distG : G� GÑ R� a distance measure on G

P P G a pattern object
Q P G a model object

T a set of admissible transformations of G
Task: Compute a transformation t P T minimizing

distGptpPq, Qq. (1.2)
The transformation t that minimizes Equation 1.2 is then taken as the registration to map all points of
P into Q.
Geometric matching problems are among the most intensely studied problems in Computational Geom-
etry and a lot of research has been done in this field. A survey by Alt and Guibas [1] gives an overview
of 30 years of research in this area.
Matching problems have a vast set of applications in a variety of fields. Among these are drug design [17],
company logo detection [2], Egyptian hieroglyph matching [47], automatic telescope guiding [8], optical
character recognition [9], geometric graph matching [7] and satellite image registration [19] to name just
a few.

1.2.1 Current Approaches to Registration Problems

Fiducial Registrations

A standard strategy to solve the registration problem of the presented clinical application is to perform a
fiducial-to-fiducial matching [24] based on geometric hashing methods. A fiducial is an artificial marker
that is attached to the head of the patient either by glueing it onto the skin or by screwing it into the
skull, see also Section 1.4.1.
From a Computational Geometry point of view a fiducial-to-fiducial matching is a point-to-point match-
ing either with or without known correspondence. Point-to-point matchings are matchings where both,
the pattern and the model are point sets. If the correspondence is given, it is additionally known which
point of P is mapped onto which point of Q.
The solution to the geometric matching problem is a transformation, typically a rigid motion or an almost
rigid affine map, that minimizes the root mean square distance of the transformed pattern to the model.
With almost rigid affine maps we understand mappings whose transformation matrix have a determinant
that is close to 1.
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Definition 3 (Root Mean Square Distance).
The root mean square distance pRMSq of finite point sequences A � ta1, . . . , anu, B � tb1, . . . , bnu �
Rd is defined as

RMSpA, Bq :� minπPΠpnq

gffe 1
n

¸
iPrns

}ai � bπpiq}2,

where } � } is the Euclidean Norm and Πpnq is the set of all permutations of t1, . . . , nu.

Other Approaches

A common and general technique to solve point-to-surface matching problems is the iterative closest
point (ICP) method [5, 42, 38]. The basic idea is that from an unspecified initial position of a point
set A the nearest Euclidean neighbor for each a P A in a geometric surface B is computed. Then, a
transformation is applied to A that minimizes the mean square distance of the point pairs pa, nBpaqq,where nX pzq denotes the nearest neighbor of z in X . This process is iterated until either

• a certain threshold is reached,
• a certain number of iterations is reached,
• the nearest neighbor assignment does not change after applying a motion (i.e., a local minimum

is reached),
• the decrease of distance between two successive iteration steps is below a certain threshold.

This approach, however, computes only local minima and does not guarantee to compute a solution
whose quality is in any relation to the global optimum.
Other surface matching techniques are based on label relaxation [32], spin images [26], surface point
images [49], geometric fingerprints [44] or geodesics in combination with local geometry [48].

1.3 A New Approach: Hybrid Registrations

The novel approach that is studied in this thesis is called hybrid registration.
For a hybrid registration problem, the alignment problem is reduced to a series of (typically two) geo-
metric matching problems that are solved interdependently. Usually, a computationally difficult point-
to-surface matching is combined with a comparably simpler but underdefined point-to-point matching.
A system is called underdefined if it does not determine all degrees of freedom. In this case, knowing
the image of one or of two points does not fix all degrees of freedom of a rigid motion or of an affine
map in R3.
The point-to-surface matching is computed for a sufficiently large and suitably distributed set of points
P (called surface points) measured in the pattern space to a geometric surface S (the surface of the
3D-model) in the model space. For the point-to-point matching, a small set (one to three) characteristic
points are measured in the pattern space Pc and their counterparts Qc are manually defined in the
model space. In the context of the intended application, these points are called anatomic landmarks –
anatomically exposed spots within the field of interest, like the outer corner of an eye or the root of
the nasal bone, see Figure 1.2. Throughout this thesis we will use the terms characteristic point and
anatomic landmark synonymously.
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pattern space model space

surface point surface

anatomic landmark
anatomic landmark

Figure 1.2: Two dimensional example of the input of a hybrid registration problem. Six surface points
(P2) and one anatomic landmark (P1) are measured in the pattern space. One anatomic landmark (Q1)as well as the surface (Q2) is defined in the model space.

The features are manually measured in the operation theatre space with a traceable device after the
patient is affixed on the operation table. In a pre-processing step, the surface S is extracted by a
skin-segmentation process that determines all voxels that can be classified as skin. The anatomical
landmarks on the model are again defined manually during the operation planning phase.
A hybrid registration problem can be formulated as follows:
Definition 4 (Hybrid Registration Problem).
Given:

G a class of geometric objects
distG : G� GÑ R� a distance measure on G

P � P1, . . . , Pm a sequence of geometric features with Pi P G for i P rms
Q � Q1, . . . , Qm a sequence of geometric features with Qi P G for i P rms

T a set of admissible transformations of G
f : Rm Ñ R an aggregate function

Task: Compute a transformation t P T minimizing
f �pdistG ptpPiq, QiqqiPrms

	 (1.3)

The objective function that is minimized in almost all registration algorithms in this thesis is the directed
Hausdorff distance or variants of it. The directed Hausdorff distance is an established distance measure
(but not a metric) that is used in many geometric matching applications.
Definition 5 (Directed Hausdorff Distance).
The directed Hausdorff distance ~h pA, Bq for two sets A, B � Rd and a distance measure dist : Rd �
Rd Ñ R� is defined as: ~h pA, Bq :� sup

aPA
infbPB distpa, bq.

Throughout this thesis we consider closed and bounded sets and set the embedded distance measure
to the Euclidean distance } � }, which allows us to define the directed Hausdorff distance for two sets
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A, B � Rd as ~h pA, Bq :� maxaPA minbPB }a� b},
see Figure 1.3.

A

B�
�

Figure 1.3: The directed Hausdorff distance of the point set A and the polygon B is realized by the
Euclidean distance }a� b}.

For the typical case of solving a point-to-surface problem (surface points P to surface S) and a point-to-
point problem (anatomic landmarks Pc to anatomic landmarks Qc) with respect to the directed Hausdorff
distance, we can rewrite the objective function of Equation 1.3 as

max�~h ptpPq, Sq , ~h ptpPcq, Qcq
	 ,

where the maximum function is used as the aggregate function f .

Remarks

The embedded distance measure distG has been fixed to the directed Hausdorff distance. The Hausdorff
distance has two advantageous properties with respect to this application:

1. it is a conservative distance measure, as it is defined by the worst matched feature,
2. as it is the maximum over individual point-to-feature distances, it often allows to decompose the

problem into smaller subproblems that can efficiently be combined.
As mentioned in Chapter 9.2 one could also consider other distance measures or aggregate functions
such as the sum of all individual distG distances.

1.3.1 Previous Results for Hybrid Registrations

The research in this thesis was preceded by the work of Dimitrov et al. [13]. The authors present rigid
motion registrations for settings in which exactly two characteristic points are given and where the
surface S is given as a triangulated domain. They present an O pmn φ pmnq logmnq-time algorithm to
compute a semioptimal solution, where n is the number of points in P , m is the number of triangles
in S and φ p�q is the inverse Ackermann function. Let Tsem � T be the subset of transformations (here:
rigid motions) that minimize the directed Hausdorff distance of Pc to Qc . Semioptimal registrations are
registrations t P Tsem that minimize the directed Hausdorff distance of P to S.
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The authors also present for all ε ¡ 0 a p1� εq-approximation scheme of an optimal solution that has
a runtime of

O
�ρ5Pε5 mn φ pmnq logmn



,

where ρP is the relative diameter of the set P with respect to the center of Pc � tp1, p2u, i.e.,
ρP � 2 maxpPP }pp1 � p2q{2� p}

}p1 � p2} .

1.4 Medical Image Registration

The considered application of registrating a patient to his or her model is also studied by biomedical
engineers in the context of medical image registrations. The term medical image registration actually
covers a vast set of registration applications where the introduced motivation forms one subfield.
An overview over the remarkable amount of work in this field is given in survey articles by Maurer et
al. [35], Elsen et. al. [46], Maintz et al. [33] as well as Dawant [10].
Maintz and Viergever propose a classification system based on nine criteria to classify registration
approaches. A classification of the approaches of this thesis can be found in Table 1.1.

criterion classification description
dimensionality 2D-2D as well as

3D-3D in general kD-kD
nature of registration basis intrinsic no artificial objects (such as artificial markers)

are used to perform the registration
nature of transformation translations

rigid motions translations plus rotations
domain of transformation global one transformation for the entire space

local subregions have their own transformation
interaction automatic the algorithms are not interactive and do not

require manual initial alignments
optimization procedure parameters computed the parameters of a registration are deduced

or manually defined and not computed by
finding an optimum of some function defined
in the parameter space

modularities involved patient to modality usually to a CT or MRT model
subject intrasubject all data are acquired from the same patient,

i.e., the patent is registrated to his or her
model

object head more specific: brain or skull
Table 1.1: Classification of the approaches that are studied in this thesis with respect to the classification
system proposed by Maintz and Viergever [33].
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1.4.1 Fiducial Based Registrations

As described in Section 1.2.1, a standard strategy that is currently used to compute patient-to-model
(head-to-model-of-head) registrations are fiducial-to-fiducial registrations [36, 16, 24, 20]. In a common
variant of this technique, a fiducial is an artificial marker in the form of a plastic cylinder. A fiducial is
affixed to the patient by either screwing it into the skull with tiny bolts or by locking it onto a plateau
that is glued to the skin of the patient, see Figure 1.4 left.

Figure 1.4: left: fiducial attached to glued plateau for imaging phase, middle: a measurable fiducial on
the same plateau, right: visualization of MRT scan with detected centers of the fiducials. [Illustration
by permission of Prosurgics Ltd.]

Typically, five to eight fiducials are affixed to the head of the patients before the imaging process is
performed. After the image is gained, the cylinder is removed but the plateau remains. The cylinder of
a fiducial contains a small ball of a material that is easily and uniquely detectable in the image. Before
the operation is performed, the head of the patient is affixed in a special holding device on the operation
table so that its position remains invariant throughout the surgery. After being affixed, new cylinders
are locked onto the plateaus. These cylinders have a notch in the form of a cone whose apex is exactly
where previously the center of the enclosed ball was. In a final step, these apices are measured by
a traceable device to get a point set P in the operation theatre space. The corresponding set Q are
the centers of the balls in the image which are automatically detected by the navigation device, see
Figure 1.4.
The registration problem is then reduced to a point-to-point matching of P to Q with respect to the
root mean square distance.
Fitzpatrick et al. [18] studied the effect of noise and error on the registration quality for fiducial based
registrations. They distinguish the following error terms:
FLE fiducial location error, the error introduced by dislocation of fiducials,
FRE fiducial registration error, the error at the fiducials after applying the registration,
TRE target registration error, the error at the point of interest after applying the registration.

Their analysis shows that the crucial term, the TRE, the error at the point of interest (usually the tumor)
to a large part depends on the distribution of the fiducials around the spot of interest.
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1.4.2 Real World Restrictions

The input data for the considered geometric matching problems result from real world measuring pro-
cesses. Geometric data that is acquired by imaging processes or tracking devices are subject to noise
and imprecision. One source of imprecision is the resolution of the imaging process. The voxels that
result from imaging devices that are currently used in clinical praxis have a resolution of typically

• 1mm�1mm�1mm for magnetic resonance imaging (MRT) and
• 0.625mm�0.625mm�0.625mm for X-ray computed tomography (CT).

The second source of imprecision is the measuring device that is used to extract features from the
operation theatre space. These are optical or electromagnetic devices that capture the position and
orientation of a device within a specific spacial frame. A typical device (e.g., the one used for the empirical
studies presented in Chapter 7) is the miniBIRD tracker (Ascension Technology Corp., Burlington,
Vermont, USA), which has an average accuracy of 1.8mm.
Besides these technical errors, there are other influences that alter the representation of the input.
Electromagnetic fields for example significantly influence the imaging process (causing fractals or de-
formations) as well as the precision of electromagnetic tracking devices.
The fixation of the patient in the operation theatre space exposes the patients head to pressure that
slightly deforms the skull. As this deformation is present in the operation theatre but not during the
imaging process, the surface S and the patients head cannot be brought in complete congruence by a
rigid motion or an affine map.

1.5 Goals and Classification of This Thesis

In this thesis, we investigate the following hypothesis:
Are hybrid registration methods appropriate techniques to solve real life registration prob-
lems as they occur in the context of navigated surgery?

Hybrid registration strategies follow a purely geometric approach to solve the problem and differ in
several ways from the known and currently applied techniques.

Guarantee Bounds

Most point-to-surface registration techniques, such as ICP based strategies [42, 5], compute a solution
by descending into a local minimum of the objective function. Even if several initial positions are tested,
it is neither guaranteed that the actual global minimum is found nor that there is any relation (additive
or multiplicative ratio) between the computed result and the best possible result.
The hybrid registration algorithms presented here allow either to compute the optimum or they provide
guarantee bounds for the computed results. Some registration methods also allow to compute all
registrations that are below a certain quality threshold.
The quality guarantees for the computed results together with the ability to compute a set of equally
good registrations, increase the confidence in a navigation system.
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Less Effort for Clinical Personnel

The hybrid approach does not require that artificial markers are affixed to the patient. Fixing fiducials
to the patients head is a time consuming process that exposes the patient to additional stress.
As shown by Fitzpatrick et al. [18], the quality of a fiducial based registration depends on the distribution
of the fiducials around the area of interest. The imaging process, however, does not allow to place
fiducials freely on the patients head, as the patient has to lie as motionless as possible on a bench
while the scan is performed.

New Applications Fields

Fixing plateaus for locking fiducials to the patients head limits the time between the imaging process
and the actual operation. Due to perspiration or by touching the plateaus, their position may shift
or even get lost between the imaging process and the operation which might significantly change the
computed result.
For hybrid registrations, it is not necessary the attach anything to the patient or measure anything from
the patient before he or she is affixed in the operation field. This allows to apply these methods also
for emergency operations where there is typically not enough time to prepare the patient before the
imaging process.
The developed strategies allow the use of medical navigation systems also for ambulant otolaryngologic
interventions. A patient can be scanned in a clinic where an imaging device is available and can later
on be operated ambulatory, even days later if the diagnosis allows that.

Intuitive and Conservative Objective

The objective function of Equation 1.3 that is minimized for hybrid registrations is based on the directed
Hausdorff distance. In contrast to the root mean square distance, the value of the Hausdorff distance has
a one-to-one correspondence to actual features in the operation space: it is the (Euclidean) distance
of the worst matched feature either to the surface (if the feature is a surface point) or to a landmark (if
the feature itself is a landmark).

1.6 Organization of This Thesis

In Chapter 2, surprisingly simple constant-factor approximations are presented for a special subprob-
lem of rigid motion registrations: computing a rotation around a fixed axis that minimizes the Hausdorff
distance of a point set to a set of lines, line segments or triangles in the plane or in R3.

In Chapter 3 two hybrid rigid motion registration strategies are presented. These two algorithms
compute fast and robust absolute-error approximations for settings in which two anatomic landmarks
are available. Two different discretization techniques are used, based on whether or not the defined
anatomic landmarks are available already at the pre-processing phase.
This research has partially been published in [14].
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In Chapter 4 approximation schemes and heuristics are introduced for the computationally difficult
task of computing hybrid registrations with just a single given anatomic landmark. Here, rigid motion
registrations are considered that minimize the Hausdorff distances of the involved geometric features to
surfaces that are given as point clouds or as triangulated surfaces.
An early version of this research has partially been published in [15].
In Chapter 5 the weighted directed Hausdorff distance is introduced along with matching algorithms
that minimize this measure. Here, translations and rigid motions of point sets in arbitrary dimensions
are considered. The weighted directed Hausdorff distance allows to take the different precision levels
into account with witch the different feature types can be measured.
This research has been published in [27, 28, 29].
A novel matching concept named non-uniform matchings is presented in Chapter 6. This approach allows
to compute a set of transformations instead of just a single transformation to perform the mapping from
the pattern space to the model space. Here, the pattern space is partitioned into areas of interest. A
computed transformation is only valid within a cell of this partition. The transformations have to satisfy
two competing targets: they have to match the geometric features of a cell close to their counterparts
in the model. Simultaneously, transformations for neighboring cells have to be similar to guarantee a
smooth mapping.
Computing a set of transformations reduces the effect of local deformations. This is an essential step
towards developing registration algorithms for the clinically highly relevant application of performing
navigated soft tissue surgeries.
A subset of an early version of this research has been published in [30].
In the practical part of this thesis, in Chapter 7, a study in cooperation with the Klinik und Hochschul-
ambulanz für Neurochirurgie, Charité-Universitätsmedizin Berlin and the industry partner Prosurgics
Ltd. is presented in which the different imprecision levels of measuring surface points and anatomic
landmarks are theoretically and empirically analyzed. From this study, adjustment parameters are
deduced that are essential for all hybrid registration methods that are based in these feature types.
A first draft of this study was published as [12].
Finally, a framework is presented in Chapter 8 in which most of the hybrid registration algorithms have
been implemented.





Part I

Theory





Chapter 2
Constant-Factor Approximations for
Point-to-Line and Point-to-Plane
Registrations
In this chapter, a simple matching strategy for the following settings is presented and analyzed

1. matching a point set P to a set L of lines or line segments in the plane,
2. matching a point set P to a set Q of planes in R3.

The transformation class that is considered here are rotations around a fixed center pr for matchings in
the plane and rotations around a fixed axis r for matchings in R3.

Motivation

Most strategies and algorithms that are presented in the following chapters deal with rigid motion
registrations. A rigid motion transformation – the result of a rigid motion registration – can be seen as
the joined application of a translation and a rotation. Sometimes it is possible to compute a matching
in two phases where the two components of a rigid motion are handled separately, see Chapter 3.
The results presented here lead towards rigid motion registrations by giving insights in how to approx-
imate the rotational part of a rigid motion registration. The discussed algorithms compute matchings
whose cost app is guaranteed to be at most four times the cost opt of an optimal solution.

2.1 Problem Definition

In the following we will denote with tα a rotation around the respective rotation center by an angle of
α . First, a planar point-to-line(-segment) registration is studied:
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Problem 1. Given a set P of k points, a rotation center pr and a set L of n lines (line segments) in
the Euclidean plane, compute the set Aopt of rotation angles so that the rotation of P around pr by an
angle of α P Aopt minimizes its directed Hausdorff distance to L:

Aopt :� arg minβPr0,2πq
~h ptβpPq, Lq .

The problem is then extended to point-to-plane registrations in R3:
Problem 2. Given a set P of k points, a rotation axis r and a set Q of n planes in Euclidean space
R3. Compute the set Aopt of rotation angels so that the rotation of P around r by an angle of α P Aoptminimizes its directed Hausdorff distance to Q:

Aopt :� arg minβPr0,2πq
~h ptβpPq, Qq .

2.2 Computing Exact Solutions

The set Aopt can be computed exactly by applying the theory of Davenport-Schinzel sequences [43].
For each point p P P and each line l P L let

fp,lpαq :� ~h ptαppq, lq
denote the distance of tαppq to its closest point on l for α P r0, 2πq. The lower envelope fppαq of the
functions is defined as

fppαq :� minlPL
�fp,lpαq�

and gives for each point p and angle α the Euclidean distance of tαppq to its closest point on its closest
line. The angle set Aopt consists of all global minima of the upper envelope over all functions fp for
p P P :

Aopt :� arg minαPr0,2πsmaxpPP fppαq.
Using the strategy presented in [43], these minima can be computed in O �kn 2φpknq log kn� time, where
φ p�q is the inverse Ackermann function.

The algorithms that are presented here compute 4-approximations and have a runtime of O �k2 n2�, see
also Section 2.6. The advantage of these strategies over the exact and theoretically faster algorithms
is that no complicated operations are involved in the computation and therefore it is very simple to
implement these algorithms.

2.3 Rotations in the Plane

The central idea of the approximation algorithms is based on so-called critical points and critical angles.
Rotating a point p P P around the rotation center pr induces a trajectory trp. For a single point p and
a fixed line l P L critical points are defined as those points on trp that minimize the directed Hausdorff
distance to l, see Figure 2.1.
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Figure 2.1: All closest points on trp to l are critical points.

Let Ep,l be the set of critical angles for a point p and a line l which are all angles α for which ~h ptαppq, lqis minimal.

Ep,l :� arg minαPr0,2πq
~h ptαppq, lq

Note that the union EP,L of all critical angles consists of O pknq angles:
EP,L :� ¤

pPP lPL
Ep,l.

2.3.1 The Approximation Algorithm

By construction, rotating the point set P around pr by a critical angle α P EP,L moves at least one
point in P onto a critical point. Let opt be the Hausdorff distance of P in optimal position with respect
to L.
Theorem 1. There is an angle α P EP,L that realizes a 4-approximation of opt:

Dα P EP,L : ~h ptαpPq, Lq ¤ 4 opt .
Proof. Note that opt � 0 implies app � 0, as every point of P in optimal position lies on a critical
point. Suppose otherwise that opt ¡ 0 and that P is in optimal position, i.e., the distance of each point
p P P to its closest line in L is at most opt. Let α be the smallest angle by which P has to be rotated
in either direction such that an arbitrary point p P P moves upon one of its critical points ep � tαppq(see Figure 2.2). We now show that such a rotation does not move any other point in P further than
4 opt away from its (initially) closest line. Let l1 be the closest line of an arbitrary point p1 P Pztpu
and let α 1 be the smallest angle which rotates p1 onto one of its critical points ep1 . By construction,
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the following inequalities hold:
~h �p1, l1� ¤ opt

α ¤ α 1. (2.1)
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����

��

�
��

�

��

α

α�α
β

���

��
�α (��)
�α� (��)

��
Figure 2.2: Construction for the proof of Theorem 1.

We have that the inner angles of the isosceles triangle ∆pp1, ep1 , prq that are not incident to pr are
pπ� α 1q{2, see Figure 2.2. Let β � =pep1 , pr , l1rq be the angle at pr in the triangle ∆pep1 , pr , l1rq where
l1r is the closest point on l1 to pr . The distance ~h pp1, l1q can be expressed as

~h �p1, l1� � c sin�π � �π2 � β�� �π�α12
		

� c sin�β � α12
	 .

Where c :� }p1 � ep1}. For small α we can assume by Equation (2.1) that
~h �tαpp1q, l1� ¤ ~h �tα1pp1q, l1� .

By triangle inequality, we get that
cα1 :� }tα1pp1q � ep1} ¤ 2c.

The distance ~h ptα1pp1q, l1q can be described as
~h �tα1pp1q, l1� � cα1 sin �π � �π2 � β�� �π2 � α 1��

� cα1 sin �β � α 1�
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With these preliminary observations we are able to compare the distance of p1 to l1 before and after
rotating p1 by an angle of α :

~h �tαpp1q, l1� ¤ ~h �tα1pp1q, l1�
� cα1 sin �β � α 1�
¤ 2c sin �β � α 1�
� 2c sin

��
β � α 1

2


� α 1

2



� 2c� sin
�
β � α 1

2



cos
�α 1

2


� sin

�α 1
2



cos
�
β � α 1

2

	 (2.2)

To simplify equation (2.2) we make use of the following observations:
1. for small values of α we estimate cospαq � 1,
2. leaving out the factor cos�β � α12

	 does not decrease the sum,
3. as β P r0, π{2q we estimate sinp α12 q ¤ sinp α12 � βq.

Therefore we conclude
~h �tαpp1q, l1� ¤ 2 c

�
sin

�
β � α 1

2


� sin

�
β � α 1

2




� 4 c sin
�
β � α 1

2



� 4 ~h �p1, l1� ¤ 4 opt
[\

2.4 Point-to-Line-Segment Registration

The result for point-to-line registrations can be extended to point-to-line-segment registrations by
introducing additional critical points. The new set of critical points is chosen so that for each point in
P the closest point in L remains either an internal point or an endpoint of a segment while P is rotated
away from optimal position by the smallest critical angle.
Formally, for a point p and a line segment l � pls, leq, let gl be the line containing l and let
φp : r0, 2πq Ñ gl be the function defined as φppαq � q, so that }tαppq � q} is minimal. That is,
φp maps each angle α to the closest point of tαppq on gl. The set of critical angles E 1p,l for p and a
line segment l is defined as

E 1p,l :� Ep,gl Y  φ�1p plsq, φ�1p pleq( ,
see Figure 2.3.
Let, as before, α be the smallest angle by which P has to be rotated (in either direction) from optimal
position such that a point of P is congruent to one of its critical points.
For all points of P whose closest point on their closest line segment l is neither of both endpoints of
l, all arguments of the previous section hold. Note, that no point will be rotated over one of its critical
points, as α is chosen to be the smallest angle.
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Figure 2.3: For a line segment l, additional critical points for a point p are points on trp where an
endpoint of the line segment l becomes the closest point on l to p.

It remains to show, that the points Pe � P whose closest point in optimal position is an endpoint of
a line segment are not moved away too far when P is rotated by α . For a point p P Pe let q be the
closest endpoint of its closest line segment l and let ep be the critical point corresponding to φ�1p pqq
(see Figure 2.4). Two cases have to be considered, depending on the size of the angle γ � =pq, ep, pq.If γ   π{2 the Hausdorff distance of p to l actually decreases and therefore }tαppq � l} cannot violate
the approximation criterion. Consider the case that γ ¥ π{2 and let α 1 � =pp, pr , epq. By definition of
α :

α ¤ α 1
therefore

}p� tαppq} ¤ }p� ep}
Note that q is the closest point on l for p and tαppq.
To shorten the next equations we introduce the following abbreviations:

x � }q� ep}, y � }p� ep}, z � }p� tαppq}.
Due to the fact, that γ ¥ π{2 we can describe }p� q} as

}p� q} �
b
x2 � y2 � 2xy cospγq

¥
b
x2 � y2

The distance }tαppq � q} can be formulated as:
}tαppq � q} ¤ x � y� z

¤ x � y� x � y
� 2px � yq (2.3)

Here we make use of the following common proposition:
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Figure 2.4: Illustration for points p whose closest point is an endpoint of a line segment l.

Proposition 1. For all x, y P R :
x � y ¤ ?2

b
x2 � y2

Applying Proposition 1 to Equation (2.3) we get:
}tαppq � q} ¤ 2px � yq ¤ 2?2

b
x2 � y2

¤ 2?2}p� q}   4 opt .

2.5 Point-to-Plane Registration

In this section, we discuss a 3-dimensional variant of the 2-dimensional point-to-line registration prob-
lem.
The general approximation strategy is similar to the approximation algorithm for point-to-line registra-
tions. We first introduce the definition of critical angles for this setting.
For a point p P P � R3, a rotation axis r and a plane q P Q the set of critical angels Ep,q and the set
of all critical angels EP,Q is defined as follows:

Ep,q :� arg minαPr0,2πq
~h ptαppq, qq

EP,Q :� ¤
pPP qPQ

Ep,q.

The critical points of a point p P P are as before all points ttαppq | α P Ep,q, q P Qu. Let opt denote
the directed Hausdorff distance of P in optimal position to Q.
Theorem 2. There is an angle α P EP,Q that realizes a 4-approximation of opt:

Dα P EP,Q : ~h ptαpPq, Qq ¤ 4 opt .
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Proof. Let app � minαPEP,Q ~h ptαpPq, Qq be the cost of the approximation. First we observe that from
opt � 0 follows app � 0, as in this case there is at least one angle that moves each point p P P onto
one of its critical points (which lies in one of the planes of Q). As all configurations in which an input
point is aligned with its critical point are investigated, the global minima will be tested and found.
If opt ¡ 0 assume P to be in optimal position, i.e., ~h pP,Qq � opt. Consider the smallest angle α that
rotates (in either direction) a point p P P onto its critical point. If α � 0 there must be a point p1 P P
whose distance to its closest plane q1 P Q in optimal position increases when being rotated by tα , i.e.,~h pp1, q1q   ~h ptαpp1q, q1q.
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Figure 2.5: Illustration of a point p1 whose distance to its initial closest plane q1 increases when being
rotated by tα .
Let α 1 be the angle that rotates p1 onto its closest critical point ep1 . As α was chosen to be the
smallest angle that rotates a point onto its closest critical point, we have that α ¤ α 1 and consequently~h ptα1pp1q, q1q ¥ ~h ptαpp1q, q1q. We now show that

~h �tα1pp1q, q1� ¤ 4 ~h �p1, q1�
which implies the theorem, as ~h pp1, q1q ¤ opt.
Let a be the orthogonal projection of p1 onto q1 and a1 the orthogonal projection of p1α1 � tα1pp1q onto q1.
Furthermore, let b be the closest point to a on the line l which is the intersection of q1 with the plane
that contains the trajectory trp1 (the trajectory of p1 when being rotated around r). Let b1 be the closest
point to a1 on l, see Figure 2.5. Note, that that ~h pp1, q1q � }p1 � a} and that ~h pp1α1 , q1q � }p1α1 � a1}
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and that the triangles ∆pp1α1 , a1, b1q and ∆pp1, a, bq have the same angles. Hence we have
}p1α1 � b1}
}p1 � b} � }p1α1 � a1}

}p1 � a} .

From the point-to-line registration of the previous chapter we know that
}p1α1 � b1} ¤ 4}p1 � b}

and therefore }p1α1 � a1} ¤ 4}p1 � a}, which completes the proof. [\

2.5.1 Remarks

The point-to-plane registration described in Section 2.5 can be extended to point-to-triangle or point-
to-rectangle registrations in a similar manner as the point-to-line approximation has been extended to
point-to-line-segment registrations.

2.6 Runtime

Each of the k points of P has a constant number of critical points (angels) with each of the n lines, line
segments or planes. Each of the O pk nq aligning configurations can be tested in O pk nq time which
results in a total runtime of O �k2 n2�.
In case of non-intersecting line segments L, the Voronoi diagram of L can be computed in O pn lognq
time [3], which reduces the runtime to compute the Hausdorff distance to O pk lognq time, which results
in an overall runtime of O �k2n logn� for point-to-disjoint-line-segment registrations.





Chapter 3
Absolute-Error Approximations of
Semioptimal Point-to-Surface
Registrations
Geometric registration problems as they are investigated in this thesis are optimization problems:
registrations (in general transformations) have to be computed that minimize a certain objective function.
Computing the exact optima for some optimization problems is hard because their corresponding decision
problem is NP-hard. Sometimes the best known algorithms are indeed efficient from a theoretical point
of view but are still too time consuming to be of practical use.
In either case, it is common to develop algorithms that compute solutions that approximate optimal
solutions of the original problem. An algorithm A that minimizes an objective function is called an
approximation algorithm if the cost app for a solution computed by A (the value of the objective function
for the computed solution) for any instance of the problem can be bounded from above by a function
that depends on the cost opt of an optimal solution and potentially on additional input parameters.
From a theoretical point of view, so called constant-factor approximations and (fully) polynomial-time
approximation schemes are of special interest as the computed results have a relative dependence on
opt, i.e., either

app ¤ c � opt
for a constant c, or

app ¤ p1� εq opt
for a parameter ε ¡ 0. For some real world applications, especially when the input is known to
have a finite granularity of a given magnitude (e.g. if the input is based on CT oder MRT images
of a known resolution) another type of approximation algorithm is of practical interest: absolute-error
approximations. Absolute-error approximation algorithms compute feasible solutions whose cost app
satisfies

app ¤ opt� µ,
for a parameter µ ¡ 0.
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3.1 Problem Description

In this chapter, we discuss absolute-error approximations for a variant of the hybrid registration problem
for exactly two characteristic points: the computation of a semioptimal registration. The objective of a
hybrid registration problem consists of two subobjectives:

1. minimizing the distance of the registrated anatomic landmarks to their counterparts in the model,
2. minimizing the distance of the surface points to the model itself.

Formally, for a set of measured characteristic points Pc , their defined counter parts in the model Qc , a set
P of k points arbitrarily measured from the surface and the surface S itself (given as a set of n triangles
or points), the task is to compute a transformation t of a given transformation class T minimizing

max�~h ptpPcq, Qcq , ~h ptpPq, Sq
	 . (3.1)

A transformation t P T minimizing Equation 3.1 is called optimal. A transformation t is called semiop-
timal if it minimizes the second term ~h ptpPq, Sq (3.2)
given that the first term ~h ptpPcq, Qcq (3.3)
is minimal. Note that the first subobjective on its own is a bottleneck matching: each measured
characteristic point p P Pc is matched to a different defined characteristic point q P Qc . Let Tsem � T

be the subset of transformations that minimize the distance of Pc to Qc (Equation 3.3):
Tsem :� arg mintPT

�~h ptpPcq, Qcq
	 .

A semioptimal transformation is then any transformation t P Tsem minimizing Equation 3.2. In case that
three or more characteristic points are defined and measured in R3 that do not lie on a common line,
a semioptimal transformation is already defined by the optimal position of Pc .
In this chapter, we discuss two algorithms for computing absolute-error approximations of semioptimal
registrations for exactly two characteristic points. Let sem be the cost of a semioptimal registration

sem � mintPTsem

�~h ptpPq, Sq	 ,
then for any parameter µ ¡ 0, we describe algorithms to compute registrations with a cost app satisfying

app ¤ sem�µ. (3.4)

3.1.1 Motivation

Computing the semioptima instead of the optima of a hybrid registration problem with two characteristic
points has the advantage that minimizing Equation 3.3 already determines five of the six degrees of
freedom of a rigid motion registration in R3. As described in [13, Lemma 3.6], a semioptimal registration
can be used to determine a p1� εq-approximation for any ε ¡ 0 by standard discretization techniques.
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Semioptimal transformations also qualify as good initial positions for heuristic strategies that descent
into local minima, such as simulated annealing [31] or iterative closes point [42] methods.
In settings where the two characteristic points are expected to be defined and measured with a very
high precision, semioptimal registrations can be used directly to map points from the pattern space to
the model space.

3.1.2 The Searchspace of Semioptimal Registrations

Let Pc � tp1, p2u and Qc � tq1, q2u with p1 � p2 and q1 � q2. As there are just two possible nearest
neighbor pairs for the bottleneck matching of Pc to Qc , we assume that in semioptimal position the
closest point in Qc to p1 is q1 and hence the closest point to p2 is q2.
By definition, semioptimal registrations have to minimize Equation 3.3, which for rigid motion registra-
tions implies that for all t P Tsem the points q1, q2, tpp1q and tpp2q lie on one line and additionally
}tpp1q � q1} � }tpp2q � q2}, see Figure 3.1.

�1

�2

�(�1)
�(�2)

Figure 3.1: Illustration of Pc and Qc in semioptimal position.

The rigid motions of Tsem can be seen as the successive application of two rigid motions: first a
transformation tinit that aligns the points tinitpp1q and tinitpp2q with q1 and q2 in the way described
above and a counterclockwise rotation tα around the axis defined by q1, q2 by an angle α :

Tsem � ttα � tinit | 0   α ¤ 2πu.
Computing a semioptimal registration corresponds to the one-dimensional problem of computing the set
of angles α such that

~h�tαpP̂q, S	 (3.5)
is minimized for P̂ � ttinitppq |p P Pu. To compute the exact set Asem � r0, 2πq of angles α P Asemso that tα � tinit is a semioptimal registration, it is necessary to trace the Hausdorff distance for each
p̂ P P̂ to S along its trajectory tα1pp̂q for all α 1 P r0, 2πq. Let f : r0, 2πq � P̂ Ñ R be defined as the
function f pα, p̂q :� ~h ptαpp̂q, Sq. The semioptimal rotation angles Asem are the global minima of the
upper envelope of all functions f pα, p̂q for p̂ P P̂ :

Asem :� arg minαPr0,2πqmax
p̂PP̂

f pα, p̂q.
The set Asem can be computed exactly in O pkn φ pknqq time using the theory of Davenport–Schinzel
sequences [43] where φ p�q is the inverse Ackermann function. The runtime of this strategy depends on
the resolution of the surface as each point-to-surface distance function itself is the lower envelope of
n � |S| point-to-feature functions, where a feature here is either a triangle or a point.
The algorithms that are presented in this chapter compute absolute-error approximations of sem. The
runtime for computing the registrations does not depend on the resolution of the surface, except during
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the (not time-critical) preprocessing phase. The two strategies make use of different discretization
techniques whose applicability depends on the information that is available during the preprocessing
phase.
In Section 3.2 we present a strategy that needs O �n{µ3� preprocessing and O ppk{µq log kq respectively
O ppk{µq log k{µq matching time to compute rigid motion registrations, given that only the surface S is
given at preprocessing time.
The algorithm presented in Section 3.3 computes absolute-error approximations in O pk{µq matching
time and needs the same preprocessing time as the previous strategy, given that S as well as Qc is
given at preprocessing time. Due to the simplicity of the matching process of this method, this algorithm
is not only theoretically fast but also fast in practice.
Both strategies allow adding points at a later stage to an already computed solution to increase the
accuracy of the result.

3.2 Fast Registration Based on a Cube Discretization

The algorithm that is presented first computes approximative semioptimal registrations and is based
on a regular cube decomposition of the model space. In this section, the strategy itself and two
implementations of this strategy are discussed. The implementations differ in the way how additional
points (measured after the initial matching process is completed) are processed in order to refine an
already computed registration.
To ensure that the runtime analysis of this strategy is independent of scaling factors, we assume the
model S to be scaled to fit into the unit cube within the scope of this chapter.
Let G be a subdivision of the unit cube into Op1{µ3q subcubes of side length µ{?3, implying that µ is
the largest distance between any two points of the same subcube and let P̂ � tinitpPq for an arbitrary
transformation tinit minimizing Equation 3.3.
In the preprocessing phase, the distance of each subcube c P G to S is set to be the Hausdorff distance
of the center xc of the cube to S. Note, that the distance of any point y that lies within c to S differs
by at most }xc � y} from the Hausdorff distance of xc to S. To shorten further explanations, the term
the Hausdorff distance of a cell (cube) will be used instead of the Hausdorff distance of the center of a
cell (cube).
The general idea is that during the registration phase, each p̂ P P̂ is rotated around the axis q1 q2and instead of computing the exact angle-to-surface distance functions for each point, the angles for
which p̂ enters (or leaves) a subcube of G are collected – together with the Hausdorff distance of the
corresponding cells. A set Aapp of rotation angles that, together with tinit , yield psem�µq-approximations
is computed by constructing a weighted refinement ApP̂q of the interval r0, 2πq that is induced by the
collected angles of all p̂ P P̂ . Each interval of the refined subdivision is weighted by the largest
Hausdorff distance of the cube whose corresponding angle range (given by the entering and leaving
angles) covers the considered interval of the refinement, see Figure 3.2. The union of the intervals in
the refinement with the smallest weight is the sought set Aapp of rotation angles .
Formally, for a point p̂ P P̂ let App̂q be the partition of r0, 2πq into subintervals rαinpp̂, cq, αoutpp̂, cqq,where αinpp̂, cq is the angle for which tαinpp̂,cqpp̂q enters the cell c P G and αoutpp̂, cq is the angle for
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which tαoutpp̂,cqpp̂q leaves c; for all α P rαinpp̂, cq, αoutpp̂, cqq it holds that tαpp̂q P c. Note that there
can be more than one angle interval for a point and a cell as the trajectory of p̂ can intersect a single
subcube more than twice (at most 12 times). The weight wpiq of an interval i P App̂q is the Hausdorff
distance of the corresponding cell c to S as computed in the preprocessing phase. The arrangement
ApP̂q is the refinement of r0, 2πq induced by all intervals App̂q for all p̂ P P̂ . The weight wpjq for an
interval j P ApP̂q is given as:

wpjq � maxtwpiq | i � j , i P App̂q, p̂ P P̂u.
A set Aapp of angles that approximate sem up to an additive value of µ is then given as

Aapp �
¤ arg min

jPApP̂q
wpjq.

0 2π

2 2

2
2

3
3

3
5

75
1

14

3 3 3 3 5 5 7
2
25

2

2 5 5

A(�̂1)
A(�̂2)
A(�̂3)
A(P̂)

A���

Figure 3.2: The refined subdivision ApP̂q of the interval sets for a set P̂ � tp̂1, p̂2, p̂3u.
Theorem 3. The angles α P Aapp imply registrations that are psem�µq-approximations of sem:

@α P A : ~h ptα � tinitpPq, Sq ¤ sem�µ.
Proof. For any α P Aapp, let Bα be the set of all subcubes of G that contain at least one point of P̂
after being rotated by an angle of α around q1 q2 in counterclockwise direction:

Bα �
!c P G | Dp̂ P P̂ : tαppq P c

)
and let cα P arg maxcPBα ~h pc, Sq be one of the subcubes of Bα with the largest Hausdorff distance to S.
The Hausdorff distance of a subcube c to S is the distance of the center xc of the cube to S. The distance
of any point within c to xc is at most µ{2, hence

@α P Aapp @p̂ P P̂ : ~h ptαpp̂q, Sq ¤ ~h pcα , Sq � µ{2.
In semioptimal position, the point of P̂ that is furthest from S lies within a subcube whose associated
distance is at most sem�µ{2, as do the other points of P̂ , which implies

@α P Aapp : ~H �tαpP̂q, S	 ¤ ~h pcα , Sq � µ{2 ¤ sem�µ,
as Aapp is chosen so that ~h pcα , Sq is minimized. [\
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3.2.1 The Implementation

We present two implementations to compute a set Aapp � ApP̂q: the first is a standard sweep line
approach and the second uses a data structure called counting segment tree. Even though the counting
segment tree variant is slightly more complex and in theory has a larger matching time, it is shown
in Section 3.2.3 that this method outperforms the simple sweep line method in practice. The empirical
experiments show a clear speed difference especially when points are added to a computed solution in
order to increase its quality.
In the not time critical preprocessing phase, the Hausdorff distance of each of the O �1{µ3� subcubes
is naively computed by computing the distance of each cube center to the n features of the surface S.
It is necessary for both implementations to collect the sets of subcubes Cp̂ that are intersected by the
trajectories of all p̂ P P̂ . Let the cells of G be represented in a three dimensional array. It takes O p1q
time to locate the first cell cp̂ P G containing p̂ � tinitppq for a point p P P . The succeeding cell of
cp̂ on the trajectory of p̂ around q1 q2 in counterclockwise direction can be determined in O p1q time
by intersecting the six sides of cp̂ with the trajectory. The set Cp̂ is computed by continuing this way
until cp̂ is reached again. This takes O p1{µq time, as Cp̂ contains at most this many subcubes. While
traversing the intersected cells, the extremal angles and also the associated Hausdorff distances of each
cell are stored in a linked list for each p̂.

The Sweep Line Variant

Here, the subset Aapp of the weighted refinement ApP̂q is computed by a sweep over the k interval
sets from 0 to 2π . The events that have to be handled are the angles α for which any tαpp̂q lies on
the boundary of a subcube of Cp̂. While processing the individual events, the largest distance value of
the corresponding subcubes of the intervals under the sweep line defines the weight of the current cell
of the refinement. The Hausdorff distances that are associated with the intervals under the sweep line
are organized in a max-heap which is initialized with the distance values of the intervals containing
the angle α � 0. At start, the event queue consists of the k intervals r0, αoutpp̂, .qq for p̂ P P̂ ordered
increasingly by their right limits.
Suppose that i � rαinpp̂, cq, αoutpp̂, cqq is the current element in the event queue. This event is processed
by assigning the current top value of the heap to the active cell of the refined arrangement whose right
limit becomes αoutpp̂, cq. The weight wpiq of the event interval is removed from the heap (which is not
necessarily the current maximal value of the heap) and the value of the interval that is the successor of
i in the corresponding linked list is added to the heap, see Figure 3.3. Also the interval j is inserted
into the event queue so that the queue remains ordered increasingly by the right limits of the contained
intervals. While constructing the refinement by sweeping over the intervals, the algorithm keeps track
of the cells Aapp of the arrangement that have the smallest distance value.
The sweep line variant merges all k interval sets in O pk{µ log kq time, sweeps through all O pk{µq
events, and updates the heap in O plog kq time which results in a total matching time of

O
�k
µ log k



.
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Figure 3.3: left current state of the sweep process, right heap before and after handling interval i

The Counting Segment Tree Variant

The angle set A can also be computed using a data structure called counting segment tree (cST). A
cST is a slightly modified variant of the standard segment tree data structure as, e.g., described in
the textbook of de Berg et al. [11]. This data structure allows to organize an arrangement of intervals
and stores the covering of its cells by intervals that are sequentially added to the tree. The counting
segment tree additionally keeps track of the number of intervals that cover each cell of the arrangement.
The cell tmax of the arrangement that is covered by the largest number of intervals can be reported in
O p1q time.
To compute the set Aapp, all O pk{µq angles that move a point p̂ P P̂ onto the boundary of a subcube
are sorted in increasing order. A counting segment tree T is then initialized based on the refinement
induced by this ordered angle set.
In a second step, the union of all collected intervals for all points p̂ P P̂ are ordered with respect
to the associated Hausdorff distances of the subcubes. Finally, these intervals are added to T in the
introduced order.
Let i be the first interval added to the segment tree that causes tmax to be covered by k intervals,
and let wpiq be the Hausdorff distance of the subcube corresponding to i. The process of inserting
intervals is continued as long as the intervals have a distance value equal to wpiq. The set of intervals
of the counting segment tree that are covered k times is the set Aapp. The segment tmax after adding
i belongs to Aapp as it represents the cell of the arrangement that is covered by k segments and that
has the smallest largest Hausdorff distance among all sets of k intervals that share a common angle.
All intervals that follow i in ordered sequence and that also have an associated Hausdorff distance of
wpiq can also cause cells of the arrangement to be covered by k intervals after being added to T . The
method that inserts these intervals to T allows to report the cells that are covered k times with no extra
cost.
The runtime of the segment tree method is dominated by the time needed to order all intervals with
respect to the distance value of their corresponding subcubes, which is also the time needed to build
the segment tree. Adding an interval to the tree takes O plog pk{µqq time, therefore the run time of this
variant is

O
�k
µ log kµ



.
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3.2.2 Increasing the Quality by Adding Points to a Solution

Both implementations have in practice roughly the same matching time, see also Section 3.2.3. In many
applications it is possible and desired to refine an already computed solution by measuring additional
arbitrary points P 1. Both implementation variants allow to add additional points to an existing solution
without the need to recompute the entire matching for P Y P 1.

Adding Points With the Sweep Line Method

To add an additional point p1 P P 1 to a computed solution, one performs a new sweep over the weighted
arrangement ApP̂q and the intervals encountered by following the trajectory for p̂1 � tinitpp1q. The
new event queue is initialized with the first cell of ApP̂q and the first interval of Cp̂1 in the order of
their right intervals. As the weights of the new weighted refinement is either defined by a cell of the
previous refinement or the intervals defined by q̂ it is not necessary to store the Hausdorff distances of
the intervals under the sweep line in a heap.
This way, all intervals of the previous arrangement together with the intervals for q̂ have to be inspected
to find the refined registrations. Apart from the log k factor needed to maintain the max heap is this
method as expensive as restarting the whole sweep line process for P Y tp1u.
Formally, all O pk{µq intervals of the refined subdivision and all O p1{µq intervals of the added point
are inspected. As both sets are given as linked lists, it takes O ppk � 1q{µq time to merge them and to
update the refinement.

Adding Points With the Segment Tree Variant

To add a point p1 to a solution which has been computed with the segment tree method, the intervals
corresponding to Cp1 have to be collected and sorted with respect to their associated Hausdorff distances.
The new registration angles are computed by adding either the first interval of the old ordered interval
list whose weight was larger than wpiq or the first interval of the ordered interval list for p1 to the tree,
depending on which interval has the smaller associated Hausdorff distance. Intervals are added to T
based on this criterion as long as after adding an interval i1 the first cell of the new arrangement is
covered by k�1 intervals. As before, this process is continued as long as the succeeding intervals have
an associated Hausdorff distance of wpi1q.
Adding an interval j for the new point p1 to the tree might cause that a leaf of T that contains an
interval limit of j has to be splitted. This corresponds to refining the underlying arrangement ApP̂q.
Note, that the segment tree is now not guaranteed to be balanced anymore, but even if all intervals
for the new point would cause leaf splits, the height of T increases at most by a factor of two. Using
a cST has the advantage, that the time needed to add a point to the solution does not depend linearly
but logarithmically on the size of the arrangement of the initially computed arrangement.
Collecting and sorting all intervals for an additional point takes O pp1{µq log p1{µqq time. Adding a
single interval to the segment tree costs O plog pk{µqq time. In the worst case, all intervals that were
not added to T during the initial matching process and all new intervals have to be added to find a
cell that is covered by k � 1 intervals. Therefore, the worst case run time for adding a point with this
method is O ppk � 1q{µ logpk{µqq. The experiments, however, show that actually only a small number
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counting segment tree method sweep line method
case MT 1.AP 2.AP 3.AP MT 1.AP 2.AP 3.AP
1 0.16 0.07 0.07 0.07 0.16 0.3 0.38 0.48
2 0.26 0.09 0.07 0.08 0.25 0.33 0.44 0.55
3 0.05 0.04 0.04 0.04 0.05 0.1 0.16 0.21
4 0.47 0.07 0.03 0.11 0.46 0.53 0.61 0.68
5 0.19 0.04 0.07 0.03 0.2 0.32 0.39 0.45
6 0.47 0.09 0.09 0.07 0.48 0.6 0.7 0.81
7 0.19 0.07 0.08 0.08 0.19 0.33 0.43 0.55
8 0.48 0.07 0.09 0.08 0.48 0.44 0.85 0.99
9 0.35 0.07 0.11 0.09 0.36 0.56 0.69 0.79
10 0.59 0.08 0.09 0.08 0.58 0.71 0.85 0.98

AVG 0.32 0.07 0.07 0.07 0.32 0.42 0.55 0.65
MT=matching time,
i.AP=time for adding the i-th point

Table 3.1: Comparison of of the segment tree and the sweep line method, all values in seconds

of intervals are added to T before a new solution is found.

3.2.3 Evaluation

The two methods have been implemented and compared with respect to their real world performance.
The tests were performed on ten test configurations, each consisting of: a model of a skull given as a
triangulated surface (consisting of nearly 3000 triangles) scaled to fit into the unit cube, two defined
characteristic point pairs and a set P of eight points defined in the pattern space. For all configurations
the grid density µ was set to 0.01.
The tests were performed on a 2.33 GHz Intel Core 2 Duo processor computer equipped with 2GB of
main memory. The actual running times of the tests are shown in Table 3.1. The matching time (MT)
is the time needed to compute the initial solution which is then refined by adding sequentially three
points (1.–3. AP) to the solution.

3.3 Fast Registration for a Fixed Rotation Axis

In this section, we discuss an absolute-error approximation algorithm for semioptimal registrations for
the case that the model S and the position of the two characteristic points in model space are given
at preprocessing time. Knowing the positions of q1 and q2 in model space allows to use a different
discretization technique, as the rotation axis around which P̂ � tinitpPq will be rotated is already
known. Instead of computing the Hausdorff distance for a set of subcubes of a grid to the surface S, the
distance functions along a set of trajectories around q1 q2 are computed. To perform the matching, the
closest trajectories to the points of P̂ are determined and their associated distance functions are properly
merged to compute rotation angles that result in absolute-error approximations of the semioptimum.
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3.3.1 The Approximation Strategy

The central idea to compute a set Aapp of angles that approximate Asem is based on the following
simple observation that follows directly from the fact that the Hausdorff distance satisfies the triangle
inequality:
Lemma 1. For all point sets O � R3 and all points x, x 1 P R3 the following inequality holds:���~h px, Oq � ~h �x 1, O���� ¤ }x � x 1}.

The lemma states that if a point x is moved to a position x 1, the directed Hausdorff distance to a fixed
point set O changes by at most }x� x 1}. Or in other words, the directed Hausdorff Distance of a single
point x to a fixed object O has a Lipschitz constant of 1 with respect to the Euclidean distance of its
first element x .

The Idea

In the preprocessing phase, a set C of trajectories is computed so that the Euclidean distance of
p̂ � tinitppq for any measurable point p to its closest point

p̃ P arg minxP�C }x � p̂}
on its closest trajectory trp P C (that is p̃ P trp) is bounded from above by a value d, see Figure 3.4 a.
The trajectories of C are selected as follows: along the rotation axis r � q1 q2 trajectory centers ciare chosen uniformly such that the distance of two consecutive centers is ∆w . For each center point citrajectories (circles) are generated with radii j �∆h, j P N, centered in ci and with q2�q1 as their normal
vector, see Figure 3.4 b. How d,∆w and ∆h have to be chosen will be explained in the following.
To simplify further explanations, we say that all trajectories that have the common center ci are in the
ith slice and all trajectories with radius j �∆h are in the j th ring of C . Let p̃ be the closest point on the
trajectory of C that is closest to a measured point p̂ � tinitppq. Instead of computing the distance function
along the trajectory of an actually measured point p̂ during the registration phase, the precomputed
distance function of the closest trajectory containing p̃ is used to find the proper rotation angles. Due
to Lemma 1 the distance function of f pα, p̂q stays within a d tube around f pα, p̃q, see Figure 3.5.
It follows from this that the function value at the global minima Aapp of the upper envelope of the
functions f pα, p̃q for all p̂ P P̂ differs by at most d from the function value at global minima of the
upper envelope of the functions f pα, p̂q. The transformations that result from first applying the initial
transformation tinit and then the rotation around r by an angle of Aapp satisfy the Equation (3.4) for
d � µ.

Simplification by Discretization of the Angle Space

The strategy can significantly be simplified by not storing the continuous distance functions f pα, p̂q for
each trajectory of C but, instead, replacing it with a piecewise constant distance function f 1pα, p̂q that
sufficiently approximates f . The function f 1 is defined by the directed Hausdorff distance of sample
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Figure 3.4: a) illustration of the closest trajectory, b) illustration of the distribution of pre-process
trajectories, c) front view of a three rings of a single slice, d) isometric view of three cells of two
consecutive slices.
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Figure 3.5: a) Example of the optimal angle αopt for tinitpPq � tp, p1, p2u, b) The Hausdorff distance
along two trajectories that have a distance of d differs by at most d for all α P r0, 2πq.

points that are uniformly distributed along each trajectory. Hence, f 1pα, p̂q � ~h ps, Sq, where s P trp is
the sample point closest to tαpp̂q.
The sample points are distributed as follows: first a direction o is chosen, such that o is orthogonal to
r . On each trajectory tr P C the extremal point in direction o is chosen to be the first sample point tr0.The remaining sample points on tr are uniformly distributed with a step length corresponding to an
angle difference of ∆α which gives tri :� t∆αptri�1q for 1 ¤ i   σ , where σ :� r2π{∆αs is the number
of samples on each trajectory, see Figure 3.4 c. The trajectories and the sample points induce a cell
partitioning of the space around the rotation axis r as shown in Figure 3.4 d. All points that fall within
one cell of this arrangement have the same closest trajectory and the same closest sample point on this
trajectory. Let ∆d be the largest possible distance between any point within a cell to the sample point
that defines that cell for a specific choice of ∆w , ∆h and ∆α , see Figure 3.7.
Note, that the described sampling strategy generates the same number of samples on each trajectory
– independent of the individual radii of the trajectories. The number of samples that are required to
guarantee that largest distance of any point to the closest sample on the closest trajectory is at most
∆d is smaller for small radii than for larger radii, given that ∆w , ∆h are fixed. As shown in the next
section, choosing the same number of samples for each trajectory makes the registration process itself
fast and almost trivial.

Computing Approximative Semioptimal Rotation Angles

We first describe how a set of angles is computed that imply an absolute-error approximation of a
semioptimal registration and then describe how ∆d, ∆h, ∆w and ∆α have to be chosen so that the
resulting registrations are indeed psem�µq-approximations.
Let P � tp1, . . . , pku and let sliceris be the index of the slice of pi, which means the closest trajectory
to the p̂i lies within the sliceristh slice. Analogously, let ringris be the index of the ring that contains
the trajectory that is closest to p̂i. These indices are computed by projecting p̂i onto the rotation axis
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r to find the closest center (slice) and by computing the Euclidean distance of p̂ to its projection on r
to find its closest radius (ring).
In the preprocessing phase, the set of piecewise constant distance functions for all sample points of all
trajectories were computed. Let distrssrrsrxs be the Hausdorff distance of the x th sample point of the
trajectory that is in the sth slice and the rth ring. A set of rotation angles Aapp is computed by reporting
all global minima of the upper envelope of the distance functions distrslicerissrringriss, for all 1 ¤ i ¤ k .
Note, that the measured points p̂i initially fall into cells that potentially cover different angle ranges,
see Figure 3.6.

�̂

�̂�

�
0
1

2

3

σ − 1

σ − 2

ring 2
ring 3
ring 4

ring 1

Figure 3.6: Illustration of a single slice of the discretization. Point p falls in the cell belonging to ring
3, sample 3, point p1 fall belongs to ring 4 sample σ � 1.

To compare the proper angle ranges for each point while computing the minima of the upper envelope,
another index array offsetris is needed. The value offsetris denotes the index of the cell that contains
t0pp̂iq and is computed by measuring the angle of the vector p̂i� zi to the orientation vector o that was
chosen in the preprocessing step, where zi is the orthogonal projection of p̂ onto r .
Altogether, the point p̂i initially lies in sliceris, in ringris and in the cell of the offsetristh sample point
on this trajectory.
The upper envelope E is computed for all angle ranges 0 ¤ x   σ for σ � r2π{∆αs:

Erxs :� max1¤i¤kdistrslicerissrringrissrpx � offsetrisq mod σ s. (3.6)
While computing E also its minima Aapp are computed and reported as

Aapp :�¤
ti∆α | i P arg min0¤x σ Erxsu.

The corresponding rigid motion registrations are ttα � tinit |α P Aappu.



38 Chapter 3. Absolute-Error Approximations of Semioptima

Choosing Proper Constants

By construction we have that a measured point p̂ � tinitppq stays within the cells of the sample
points Sptrpq of the closest precomputed trajectory trp while being rotated around r . As the distance
of any point within a cell to the sample point that defines the cell is at most ∆d, we have that the
distance function f pα, p̂q lies within the ∆d-neighborhood of the piecewise constant function f 1pα, p̂q,
see Figure 3.7. Consequently, the function value at the global minima of the upper envelope of the
functions f pα, p̂q for all p̂ P P̂ differs by at most ∆d from the function value at the global minima of the
functions f 1.

�� (·� S) sample

α∆α0 2π

� (α� �̂)
� (α� �̃)

∆�

∆��∆�
��

∆�

a) b)
Figure 3.7: a) the function f pα, p̂q stays within the ∆d neighborhood of the piecewise constant function
f pα, p̃q, b) illustration of the furthest distance ∆d of a point to a sample and the furthest distance d1 a
point can be moved by a rotation of an angle of ∆α{2.

The upper envelope E of the piecewise constant functions can be computed by a simple sweep over the
individual functions f 1 (see Equation 3.6) because all distance functions f 1 are assumed to be aligned
with respect to their underlying angle ranges, i.e., all points tαpp̂q for p̂ P P̂ are assumed to leave/enter
their individual cells for the same angle α . In general this is not the case as can be seen in Figure 3.6,
the angle for which p̂ leaves its initial cell is smaller than the angle at which p̂1 leaves its initial cell.
Alining the functions f 1 so that the underlying ∆α ranges are aligned corresponds to a shift of the
functions f by an angle of at most ∆α{2. Due to Lemma 1, we have that for all α P r0, 2πq and all
p̂ P P̂

f pα � β, p̂q P rf pα, p̂q � d1, f pα, p̂q � d1s,
where β � ∆α{2 and d1 is the largest distance a point p̂ can travel when being rotated by an angle
of β , hence d1 ¤ }tβpp̂q � p̂} for any p̂, see Figure 3.7 b. Choosing the values of ∆w , ∆h, and ∆α
so that ∆d � d1 ¤ µ guarantees that the value at the global minima of the upper envelope of the
distance functions f differs by at most µ from the value at the global minima of the upper envelope
of the functions f 1. As ∆d ¡ d1 this can be realized by setting ∆d to µ{2. Recall, that the model
S is assumed to be scaled to fit into the unit cube and all points P to be measured within the unit
cube. Choosing ∆w � ∆h � µ{3 and ∆α � sin�1pµ{3q results in ∆d � µ{2 and consequently in
d1 ¤ }p̂� tβpp̂q} ¤ µ{2 for β � ∆α{2.
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Runtime Analysis

The preprocessing time depends on the number of slices, rings, and sample points σ which in turn is
determined by the chosen values for ∆w, ∆h, and ∆α . The cell partition induced by the set of all
samples has to cover the unit cube, as we restricted P̂ � r0, 1s3. In the worst case, the trajectory centers
have to be distributed along a line segment of length ?3 on r and the maximal radius is also bounded
by ?3.
Consequently, O p1{µq slices and O p1{µq rings have to be introduced and each trajectory has to be
subdivided into O p1{µq sample points which yields a preprocessing time of O �n{µ3� if the Hausdorff
distance for each sample point to S is computed by taking the minimal distance to any of the n features
of the surface.
The time needed to compute a registration depends on the number of measured points k � |P| and the
number of samples σ � O p1{µq on each trajectory. A sweep over the k piecewise constant functions f 1
and hence computing the minima of their upper envelope can be performed in time O pk{µq.

Adding Points to a Solution

As for the previously presented strategies, the algorithm presented here allows to increase the precision
of the registration by considering additionally measured points. To include an additionally measured
point p1 � tinitppq, the sample of the cell containing p1 has to be computed in constant time and the
upper envelope as to be updated by sweeping over the previous upper envelope and over the function
f pα, p1q in O p1{µq time.

Removing Points from a Solution

In some settings it is desirable to be able to remove the influence of certain points of P from a computed
registration, e.g., if a point is known to be influenced by significant measurement inaccuracies.
The following modifications of the algorithm allows to remove a single measured point p P P from the
solution in O p1{µq time by slightly increasing the matching time to O ppk log kq{µq and the time needed
to insert an additional point to O pplog kq{µq:
The upper envelope E consists of O p1{µq constant pieces, the value of each constant piece is defined
by the maximum of all k samples at the corresponding angle range. When removing p from a solution,
the Hausdorff distances of the sample points on the trajectory closest to p must no longer constitute to
the upper envelope.
The following data structures are introduced to support a fast deletion of points: for each of the O p1{µq
angle intervals of the upper envelope a balanced search tree Ui is generated. Each search tree stores in
its leaves the k distance values of the sample points that correspond to the angle range of that section
of the upper envelope. Additionally, the leaves of the search trees are organized in a doubly connected
edge list, as illustrated in Figure 3.8. Also, each leaf of Ui stores a pointer to the leaf in Ui�1 that
stores the distance value of the next sample on the same trajectory.
A point is removed by following the pointers through the list of samples of that point. At each sample
index i the corresponding pointer to the leaf in the search tree Ui is used to remove this sample from the
tree. The new global minima are found, as before, by finding the indices of E where the largest distance
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Figure 3.8: Illustration of pointer structure that allows fast removal of points. left: the sample sequences
for four points, right: the search tree Ui for the four samples at index i.

is minimal. As the leaves of the individual search trees are organized in a doubly connected list, this
value can be updated in constant time for each index. Search trees are used to store the distance values
for the individual angel ranges of the upper envelope to allow the insertion of additionally measured
points in O plog kq (instead of O pkq) time for each sample index.

Reducing the Number of Samples in Practice

In the runtime analysis of this algorithm, the trajectory centers are assumed to be distributed along a line
segment of length ?3 on the rotation axis r and he trajectories in the outermost ring are assumed to have
a radius of size ?3 to ensure that S is completely ∆d-covered by the set of all trajectories/samples.
To reduce the number of samples that are actually used to compute the registration, the following
adjustments can be made.
The radii of the trajectories have to be chosen in a way, such that for any point s of the model S

there is a trajectory that contains a sample point that lies close to s. The choice of ∆w and ∆h
only depends on the approximation parameter µ whereas the size of an angle interval ∆α depends
on µ and the radius hmax of the trajectories of the outermost ring. This radius can be chosen to be
hmax � min�?3, c � ~h pS, rq	, where c ¥ 1 is a small adjustment parameter (in our experiments chosen
to be 1.1). As implied in Figure 3.9, this often reduces the actual number of samples that are considered
in the precomputation phase.
The length wmax of the line segment along which the centers of the trajectories have to be distributed
can be restrained by projecting the corner vertices of the triangles of S onto r . If wmax is chosen to be c
times the furthest distance of two vertices projected onto r , it is ensured, that S is completely enclosed
by the trajectories of the first and last slice, see Figure 3.9.
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Figure 3.9: Illustration of the difference of the sample range C resulting from wmax and hmax for a small
adjustment parameter c in contrast to the theoretically needed sample range Ct of length and radius?3 for a model S scaled to fit into the unit cube U .
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3.4 Evaluation

The presented algorithm has been implemented in C++ and evaluated on a computer equipped with an
Intel Core2 Duo processor and 2GB main memory. It took 282µs p5.02msq on average to compute the
approximated registration for a model of about 3000 triangles, an approximation parameter µ � 0.01
(µ � 0.004) and |P| � 8 measured points, see Figure 3.10. An approximation parameter of µ � 0.01
(µ � 0.004) corresponds to a physical accuracy 2.5mm (1mm) in the operation field space.
Compared to the hybrid registration algorithm of Section 3.2, this algorithm is about 560 times faster
if applied on the same input data for the same parameter set, at the same preprocessing time. The
registration is computed only once, in the beginning of the operation and the solution is eventually
improved by adding measured points in a later operation phase. Due to the fast registration time, this
algorithm meets the requirements for a realtime registration system and could be used in applications
where a registration has to be computed for each frame of the visualization system.
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Figure 3.10: left: the extremal trajectories in the outermost ring, center: the points s1, s2 and p1, p2after initial alignment, right: the closest trajectories to the measured points and the registrated points
(in diamonds).



Chapter 4
Approximate Point-to-Surface
Registration with a Single Characteristic
Point
The previous chapter, as well as the algorithms presented by Darko et al. [13] and the Diploma thesis
of Hartmann [22] deal with hybrid registration methods for settings in which two or more characteristic
points are available for computing a registration. In this chapter, we address the problem of computing
rigid motion registrations with just a single given characteristic point, i.e., Pc � tpu and Qc � tqu.
More precisely, we present an approximation scheme for the case that the surface is represented by a
point set and a pp1� εq opt�τq-approximation (for any ε, τ ¡ 0), where opt is the value of an optimal
solution for the case that the surface is represented by trinagles.
Furthermore, we present a general heuristic framework that allows to apply algorithms that are designed
for two characteristic points also on input that contains just one measured characteristic point. The
general idea of the heuristic is to guess a rotation axis through the proximity of q by picking a second
’virtual’ characteristic point p̂ in the pattern space and to guess its location q̂ in the model space. The
underlying algorithm for two characteristic points is then called with the original characteristic point
and with the virtual characteristic point as input along with the set of surface points. The value of
the objective function for this guess of the virtual characteristic point is then used to exclude areas in
the model space where no ’better’ virtual characteristic points can be found – given that the objective
function of the underlying algorithm fulfills certain conditions. This strategy computes registrations that
either have a quality of at most a pre-specified absolute parameter or differ at most by a specified
value from the best possible choice of a virtual characteristic point. The computed registrations are
absolute-error approximations of the solutions of the underlying two-point algorithm for any choice of
the position of the virtual point q̂ in the model space.
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4.1 Problem Definition

The computational complexity of computing a registration with exactly one characteristic point depends
on the representation of the surface S. We consider surfaces that are represented as point sets or as
triangulated surfaces.
Let S � R3 be a surface consisting of m points or triangles, representing the anatomic model of the
patient in the model space, let Qc � tqu be the characteristic point defined in the model and let
Pc � tpu be its measured representative in the pattern space. Furthermore, let P � R3 be a point set
of n surface points measured from the patient in the pattern space.
Problem 3. Given S, P, p, q as above, compute a rigid motion topt minimizing

dist pPc, Qc, P, Sq � max�~h ptoptpPq, Sq , ~h ptoptpPcq, Qcq
	 (4.1)

� max�~h ptoptpPq, Sq , }toptppq � q}	 .
4.2 FPTAS & Quasi-Approximation Scheme

In this section, we first present an FPTAS for surfaces represented as point sets and then extend this
result to a quasi-FPTAS for triangulated surfaces.
Definition 6 (quasi-FPTAS). A quasi-FPTAS is an algorithm that computes for arbitrary ε, τ ¡ 0 a
solution whose cost app fullfills

app ¤ p1� εq opt�τ
and that has a runtime that is polynomial in the input size, in ε and in τ, where opt is the cost of an
optimal solution.
A quasi-FPTAS approximation combines relative and absolute-error approximation aspects.

4.2.1 Approximation Scheme for Point Sets

We first assume the surface to be given as a point set S � tq1, . . . , qmu. The approximation scheme
is based on a constant-factor approximation which, combined with a discretization technique, yields an
FPTAS.
Let p̂ P P be a point of the set P of surface points that has the largest distance to p, i.e., p̂ P
arg maxp1PP }p � p1}. Assume p and P to be in optimal position, i.e., the transformation topt that is to
be computed for Problem 3 is the identity, i.e., for all x P Rd it holds that toptpxq � x . Let opt be
the cost of an optimal solution, and let q̂ P S be the closest point of S to p̂. Consider the translation
t1 � q� p that moves p onto q and the rotation t2 around q (by the smallest angle) so that the points
q � t1ppq � t2 � t1ppq, q̂ and t2 � t1pp̂q are aligned, see Figure 4.1.
Lemma 2. The registration t � t2 � t1 � topt is a 2p1�?2q � 4.828-approximation to opt, that is,

dist pttppqu, tqu, tpPq, Sq ¤ 2p1�?2q opt .
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q̂

p̂

t1(p̂)
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t2 ◦ t1(p̂)

t1

Figure 4.1: Transformation t2 � t1 aligns the points q, q̂, and p̂ and places p upon q.

Proof. We assumed p and P to be in optimal position, therefore }p�q} ¤ opt. Applying t1 to P moves
every point at most opt away from its nearest neighbor in S. The rotation t2 around q rotates t1pp̂q by
the smallest angle α ¤ π{2 onto the line through q and q̂. As }t1pp̂q� q̂} ¤ 2 opt and α ¤ π{2 we have
that }tpp̂q � t1pp̂q} ¤ 2?2 opt, see Figure 4.2. As p̂ is the furthest point in P to p any other point,
p1 P P is moved away by at most 2?2 opt, hence:

@p1 P P : }tpp1q � p1} ¤ }t1ppq � p} � }tpp̂q � t1pp̂q} ¤ p1� 2?2q opt,
which, as the distance of p1 to its nearest neighbor q1 P S is bounded by opt, results in a 2p1�?2q-
approximation.

p

q q̂

p̂

t1(p̂)

t(p̂)

≤ opt

≤ 2 opt

≤ 2 opt

≤ 2
√
2 opt

Figure 4.2: Applying t2 to t1pp̂q moves any p1 P t1pPq by at most 2?2 opt to t2pp1q.
[\

Corollary 1. For a given q̂, let T1 be the set of rigid motions t so that tppq � q and tpp̂q, q and q̂ are
aligned. Any Transformation tsem P T1 that minimizes

dist pttsemppqu, tqu, tsempPq, Sq (4.2)
is called a semioptimal registration and is a 2p1�?2q-approximation to opt.
For a given q̂, the set of transformations that minimize Equation 4.2 can be computed by applying the
theory of Davenport-Schinzel sequences [43] as described by Darko et al. [13, Lemma 3.2] in a runtime
of O �mn 2φpmnq logmn� where φ p�q is the inverse Ackerman function. As the point q̂ closest to p̂
in optimal position is unknown, all m points of S have to be tested, which increases the runtime to
O �m2n 2φpmnq logmn� for computing the constant-factor approximation.



46 Chapter 4. Registrations with a Single Characteristic Point

The Approximation Scheme

Lemma 2 states that applying the transformation t � t2 � t1 to p and P in optimal position results in a
registration that has a cost app of at most 2p1 � ?2q opt. The key idea of the approximation scheme
is to build a spherical grid G2 around the axis q q̂ centered in q with radius }p � p̂} whose width
and granularity depends on app, see Figure 4.3. By properly choosing the granularity of the grid, it is
ensured that there is one transformation t1�12 among all rotations that move tpp̂q onto a vertex of the
grid that approximates t�12 in the sense that }t1�12 ptpp̂qq � t�12 ptpp̂qq} ¤ µ for a given parameter µ ¡ 0
whose size is to be specified.
The translational component t�11 of t�1 is approximated by testing all translations that move tppq � q
onto a vertex of a cubic grid G1 centered in q with radius }p� p̂} whose width and granularity again
depend on app. A proper choice of the cell width of the second grid guarantees that there is a translation
t1�11 that approximates t�11 so that

}t1�11 pt1�12 � tppqq � t�11 pt�12 � tppqq} � }t1�11 ptppqq � t�11 pt1ppqq}
� }t1�11 pt1ppqq � p}
¤ µ.

This in turn implies that there is a combination t1�1 � t1�11 � t1�12 of transformations so that
max�}t1�1ptppqq � p}, ~h �t1�1ptpPqq, P�	 ¤ 2µ.

To achieve a p1� εq-approximation, we choose
µ � ε app

4p1�?2q .

The grid G2 has to fulfill the property that the distance of the closest grid point g P G2 to t1pp̂q is
bounded by }g� tpp̂q} ¤ µ. Choosing an opening angle of

α � min
�
π, 4 sin�1

� app
2}p� p̂}




and an angel step width of

β � 2 sin�1
� ?2 µ

2 p1�?2q }p� p̂}
�

ensures this property and results in O p1{ε2q grid points for G2, see Figure 4.3.
The grid G1 has to provide a grid point g at distance at most µ to p. Choosing the width of the cubical
grid as 2 app and the edge length of each cell of G1 as w � 2{?3µ results in a set of grid points that
fulfills this property, see Figure 4.3. The grid G1 has O p1{ε3q grid points.
Theorem 4. For any ε ¡ 0, a p1� εq-approximation of opt for Problem 3 can be computed in

O
�m2n

ε5 2φpmnq logmn



time, provided that S is given as a set of m points.
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Figure 4.3: Illustration of the discretization technique of the approximation scheme.

Proof. Let tsem be a rigid motion that moves p upon q and p̂ on the line through q and q̂. Among
the two possible positions of tsempp̂q on that line we choose the one with the smaller distance to q̂.
For each choice of q̂ we first compute the constant-factor approximation described in Lemma 2 which
provides an approximation value of appq̂.
Based on appq̂ the grids G1 and G2 are generated in the manner described before. There are O p1{ε5q
combinations of a rotation ta around q that moves tsempp̂q onto a grid point a P G2 and of a translation
tb that moves tsemppq onto a grid point b P G1. For each combination ta, tb the exact algorithm (see [9,
Lemma 3.2]) that computes a rotation tr,a,b around the axis through tb � ta � tsemppq and tb � ta � tsempp̂q
that minimizes ~h ptr,a,b � tb � ta � tsempPq, Sq is called. [\

4.2.2 Approximation for Triangulated Surfaces

By a further discretization step we extend the FPTAS for surfaces that are represented by point sets
to a quasi-FPTAS for triangulated surfaces.
Theorem 5. For any ε ¡ 0 and τ ¡ 0, a pp1�εq opt�τq-approximation for Problem 3 can be computed
in

O
�mn
ε5 2φpmnq logmn

�}p� p̂}
τ


2�
time, provided that S is given as a set of m triangles and p̂ P arg maxp1PP }p� p1}.
Proof. Assume that the closest point q̂ P S to p̂ in optimal position is known. Applying the transformation
t2 � t1 (as defined in the proof of Theorem 4) on p and P moves p onto q and p̂ on the line through q
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and q̂. Consider the sphere s centered in q with radius }p� p̂} and a set Qτ � s of sample points on
s with the property

@x P s Dy P Qτ : }x � y} ¤ τ. (4.3)
This property ensures that the distance of the intersection point of the ray starting in q passing through
q̂ with s is in distance of at most τ to its closest sample y P Qτ . Trying transformations t2 � t1 that
move p onto q and p̂ onto y results in an additional absolute additive error term of at most τ to the
registration, as p̂ is the furthest point in P to p. [\

In the case of a surface that is given as a point set, it is possible to try all candidates for q̂ the closest
point to p̂ in optimal position. This is not possible for triangulated surfaces, as the point that realizes
the smallest distance of p̂ to S could be a corner, on an edge or in the interior of any triangle, which is
the reason why the absolute-error term τ has to be introduced if the same techniques as for the FPTAS
shall be applied.
In the proof of Theorem 5, the whole sphere s was sampled “τ-densely”. It is actually enough to sample
the portion of s that is covered by the perspective projection of all triangles of S from q onto s.

4.3 Heuristic Framework

The key idea of the heuristic is to convert an instance I of the one-point case, i.e., an input that contains
exactly one characteristic point (see Problem 3), into a sequence of problem instances I1, I2, . . . for the
two point case, i.e., inputs that contain exactly two characteristic points (see Chapter 3). Each problem
instance Ii is generated based on I by adding an additional virtual characteristic point to the instance.
The virtual characteristic point that is added to I is chosen by a strategy of the heuristic and does not
correspond to defined or measured features of the surface.
The heuristic does not compute an approximation to an optimal registration for Problem 3, it computes
a set of registrations that have a cost that is at most a given parameter ρ ¡ 0 where ρ is part of the
input, given that opt ¤ ρ.
Let A2 be an algorithm that comutes rigid motion registrations for the two-point case minimizing
Equation 4.1. The heuristic strategy presented here proceeds as follows: first, the point in P furthest
to p is chosen to be the virtual characteristic point p̂ for the pattern space (Pc � tp, p̂u). This choice
of p̂ will remain the same for all instances that will be generated in the course of the computation. For
the first instance I1, an initial position q1 is guessed for p̂ from a specific region of the model space.
The subsequent instances Ii for i ¡ 1 are generated by exploiting the following observation:
Observation 1. Let q1 and q2 be two choices of virtual characteristic points and let Pc � tp, p̂u, q, P
and S be defined as before. Let t1 be an optimal registration for the instance pPc, tq, q1u, P, Sq and t2
an optimal registration for the instance pPc, tq, q2u, P, Sq, then

} dist �t1pPcq, tq, q1u, t1pPq, S�� dist �t2pPcq, tq, q2u, t2pPq, S� } ¤ }q1 � q2}
as

} dist �Pc, tq, q1u, P, S�� dist �Pc, tq, q2u, P, S� } ¤ }q1 � q2}.
In other words, the function dist p�q is Lipschitz continuous with a constant of 1 with respect to the
position of the added virtual characteristic point in model space.



4.3. Heuristic Framework 49

For a virtual characteristic point q1, let trq1s be the rigid motion registration computed by A2 for the
instance pPc, tq, q1u, P, Sq and let drq1s be its registration value, i.e.,

drq1s :� dist �trq1spPcq, tq, q1u, trq1spPq, S� .
Observation 1 implies that for any virtual characteristic point q2 we have that

drq2s P �drq1s � }q1 � q2}, drq1s � }q1 � q2}�.
4.3.1 The Heuristic

The heuristic takes a valid instance I for the one point case, a parameter ρ ¡ 0 and an algorithm
A2 (solving two point instances) as input. The output is either a (set of) rigid motion registrations for
Problem 3 that have a cost of at most ρ or the empty set in case that no such registrations have been
found.

q p p̂ q′

q′ p̂p q

≤ ρ ≤ ρ

≤ ρ ≤ ρ

q
ρ

‖p− p̂‖+ 2ρ

‖p− p̂‖

‖p− p̂‖ − ρ

Figure 4.4: left: Illustration of the two extreme positions for the measured characteristic point p and the
virtual characteristic point p̂, given that }p � q} ¤ ρ, right: Illustration of the annulus Å from which
virtual characteristic points can be drawn.
The objective function of Equation 4.1 is the maximum over the Euclidean distance of the (single)
characteristic point and its registrated image and the directed Hausdorff distance of the registrated
point set P to the surface S. Any registration with a cost of at most ρ must satisfy that p lies within
or on the boundary of the ball centered in q with radius ρ. Any registration for the two point case
that fulfills that }q� p} ¤ ρ must place the second characteristic point in the closed annulus Å with
inner radius }p � p̂} � ρ and outer radius }p � p̂} � 2ρ, see Figure 4.4. For x P R3 and r ¡ 0 let
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Ballpx, rq :� tp | }p � x} ¤ ru be a Euclidean ball around x with radius r . In this context, the term
annulus describes objects of the form Ballpx, rqzBallpx, r1q for r ¡ r1.
The heuristic actually computes a set Q of virtual characteristic points for which it is guaranteed that
A2 will compute a rigid body registration that has a cost of at most ρ if any q1 P Q is chosen as the
virtual characteristic point in the model space, see Algorithm 1.
Algorithm 1: Computing a set Q of virtual characteristic points providing a cost ¤ ρ.
Data: p, q, P, S as before, an algorithm A2 applicable on two point instances, a parameter ρ ¡ 0.
Result: The set Q of virtual characteristic points realizing a distance function value of at most ρ.
// initializing the result set
Q :� H;
p̂ :� any point of arg maxp1PP }p� p1};
M :�Å;
while M � H do

// select a random point of M
q1 :� takeRandomPointpMq;
if drq1s ¡ ρ then

// exclude neighborhood
1 M :� Mz pSr X Ballpq1, |drq1s � ρ|qq;

else
// include neighborhood
// compute intersection

2 I :�ÅXBallpq1, |drq1s � ρ|q;
// remove I from search space
M :� MzI;
// add I to solution
Q :� QY I;

end
end
return Q ;

Run-time Analysis

The number of samples the heuristic chooses and therefore its runtime partially depends on the difference
between the cost drq1s for the chosen samples, the approximation value ρ, the portion of Å that provides
virtual characteristic points that result in registrations with cost at most ρ compared to the volume of Å
and how these good virtual characteristic points are distributed in Å. The runtime hence depends on
geometric properties of the input that a priori cannot be determined and therefore cannot be expressed
as a function in the magnitudes or in the description size of the input.
The heuristic as described so far is not even guaranteed to terminate, as choosing samples q1 with
drq1s � ρ does not reduce the search space. The termination of the process can be enforced by
ensuring that for each chosen sample an area of at least a pre-described volume is excluded, i.e., by
replacing Ballpq1, |drq1s � ρ|q by Ballpq1,minp|drq1s � ρ|, εqq in lines 1 and 2 of Algorithm 1 for a
parameter ε ¡ 0 that is part of the input of the heuristic.
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In this variant, at least a ball with radius ε is excluded from the admissible region M . An upper bound
to the number of samples that are drawn in total can be derived by a packing argument as described in
[34]. The maximal number of samples that can be drawn equals the largest number of balls B of radius
ε so that all centers are within Å, all centers are mutually at least ε apart and their union covers Å,
i.e., �bPB b �Å. This in turn is the largest number N of disjoint balls of radius ε{2 that can be packed
into Å. By replacing the annulus with a ball whose radius is equal to the outer radius of Å, we get
a bound of

N π ε3
6 ¤ 4

3 π p}p� p̂} � 2ρq3,
implying

N P O
��}p� p̂} � 2ρ

ε

3�

.
Introducing the parameter ε to the strategy of the heuristic guarantees its termination. On the other
hand it may also cause that not all good virtual characteristic points are found. Also areas of Å might
be marked as good even though they provide virtual characteristic points that result in registration with
a cost larger than ρ (in fact the cost may become as large as ρ � ε ). It might even be that no virtual
characteristic points that provide good registrations will be found even though they exist, if ρ ¤ opt�ε .

4.3.2 Implementation

The heuristic has been implemented twice. An implementation that follows the description given above
is described in Appendix A. Here, a simpler variant is described where the candidate set of virtual
characteristic points in Algorithm 1 is set to the sphere S centered in q with radius }p� p̂}. As argued
for Lemma 2 the best choice of a sample point q1 P S is guaranteed to provide a 2p1�?2q-approximation
to opt, which implies that for choices ρ   2p1 � ?2q opt the heuristic is not guaranteed to compute
any registrations even though opt ¤ ρ. This variant of the heuristic can be applied when the expected
cost of an optimal solution is expected to be small in comparison to ρ or the measured characteristic
point is expected to be measured with high precision, e.g., if the computed registrations are used as the
initial position of an ICP registration.
As the computation of an arrangement of circles on a sphere is complex and comparably time consuming,
the implementation uses six quad-trees [11] to approximate the arrangement. These quad-trees form
the six sides of the smallest axis parallel cube C containing S and are initialized with a single square
as the root facet. All facets are also stored in a max-heap data structure with respect to the length of
their diagonals.
In each round, a facet f with the largest diameter is dequeued from the heap. Then, the intersection qfof S with the line segment from q to the center of f is computed and selected as a virtual characteristic
point. The ball Ballpqf , |drqf s � ρ|q is then projected back (using a perspective projection with focus
q) onto the sides of the cube, see Figure 4.5. The faces of the quad-trees that intersect this projection
are removed from the heap and refined until they approximate the intersection ε-fine (for a suitably
small ε). This means that facets that have a diagonal smaller or equal to ε are not refined if they are
intersected by the boundary of the projection. All facets that are generated within a step of the process
and that lie outside of the projection are added to the heap. If drqf s   ρ, all facets that are within the
intersection are added to the return set Q. This process is repeated until the heap contains no further
facets, see Figure 4.6 for an illustration.



52 Chapter 4. Registrations with a Single Characteristic Point

�

S

�
��

��[�� ] − ρ�

Figure 4.5: Illustration of how the center of a facet f is projected onto the virtual characteristic point
qf P S and how the ball of radius }drqf s�ρ} centered in qf is projected back onto the bounding cube.
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c) d)
Figure 4.6: a) The model S, the measured characteristic point q and the sphere S , b) A set of exclusion
areas and one inclusion area, c)+d) their approximation on the cube surrounding S .



Chapter 5
Minimizing the Weighted Directed
Hausdorff Distance
The central ideal of a hybrid registration algorithm is to compute a mapping from the pattern space to
the model space by simultaneously matching different geometric features. As mentioned before, these
different geometric features are of different types, in the context of the considered application: measured
anatomical landmarks and surface points. In this chapter, we address the fact that different feature types
can be measured with different precisions and study how to incorporate this information in a registration
algorithm.
In Chapter 7 we present a theoretical and empirical study on the measurement precision of anatomic
landmarks in comparison to arbitrarily measured points. This study shows that it is reasonable to
distinguish the input (precision wise) not only by their ’nature’ but also by other properties like the
spatial position with respect to the positioning of the patient in the operation theatre. The positioning
of a patient in turn depends on the location of the tumor that has to be operated on.
Features that can be measured with a higher accuracy should have a stronger influence on the registra-
tion in contrast to features that have a comparable weaker precision. We present exact and approximative
algorithms to compute registrations where the different measurement precisions are part of the input
and are considered in the objective function.
The weighted directed Hausdorff distance that we are about to introduce is defined for sequences of
weighted geometric objects – in this context point sets. The coordinates of a point in such a set is the
defined (in model space) or measured (in pattern space) position of a landmark. The weight of a point is
proportional to the precision with which the landmark can be measured and is based on the mentioned
empirical study presented in Chapter 7. Landmarks that can be measured with the same precision are
collected in the same set.
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5.1 Problem Definition

Given are two sequences of finite point sets P � pP1, . . . , Pkq and Q � pQ1, . . . , Qkq with Pi, Qi � Rd
and a sequence of weights w � pw1, . . . , wkq with wi P R� and w1 ¥ w2 ¥ � � � ¥ wk . For ni :� |Pi|
and mi :� |Qi|, let n � °ki�1 ni and m � °ki�1mi. For the purpose of illustration one can think of P
and Q being colored in k different colors, where all points in Pi and Qi are colored with the ith color.
Definition 7. The weighted directed Hausdorff distance ~h pP,Q, wq for P, Q and w given as before is
defined as: ~h pP,Q, wq � max1¤i¤k wi � ~h pPi, Qiq.

For points in the plane, ~h pP,Q, wq can be computed in O ppn�mq logmq time using Voronoi diagrams
to compute the directed Hausdorff distance for every color; for higher dimensions it can be computed
easily in O pmnq time.
In this chapter, we discuss the problem of matching two sequences of weighted point sets under the
weighted directed Hausdorff distance:
Problem 4. Given P, Q and w defined as before and a transformation class T, find the transformations
t P T that minimize the function

f ptq � ~h ptpPq,Q, wq , (5.1)
where tpPq :� pttppq |p P Piuq1¤i¤k .
Let opt denote the value of the minimum of f .

5.1.1 Generalization of the Problem

In the following sections, we present approximations and exact solutions for Problem 4 for various
transformation classes and dimensions. A reasonable generalization of the problem is to maintain the
partitioning of the points into k sets but assigning a weight to each point individually. The originally
stated problem then becomes a special variant of this formulation. The generalized problem can be
solved using the same techniques and with the same runtime as for solving Problem 4. We decided
to present the solutions for Problem 4 as it simplifies the notation and meets the specification of the
motivating application.
In Section 5.2 we present a 2-approximation for colored point sets in arbitrary dimension under trans-
lations and extend it to an FPTAS in Section 5.3. In Section 5.4, a constant-factor approximation for
rigid motions is presented. An exact algorithm optimizing the Hausdorff distance under translations for
points in the plane is presented in Section 5.5.

5.2 A 2-Approximation for Translations in Rd

Theorem 6. A 2-approximation for translations of colored points can be computed in O pm1pm� nq logmq
time in R2 and in O pm1mnq time for point sets in higher dimensions.
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Proof. Choose a point p P P1 and let T be the set of all translation vectors that move p upon a point
of Q1: T :� tq� p | q P Q1u.
Then, any translation t2app of T that realizes the smallest Hausdorff distance is a 2-approximations of
opt:

f pt2appq � mintPT hptpPq,Q, wq ¤ 2 opt .
To show this, assume P to be in optimal position, let nn pp,Qiq � Qi be the set of nearest neighbors of
p P Pi in Qi, and let nippq be one representative of this set. In optimal position, all weighted distances
are bounded by opt:

@ 1 ¤ i ¤ k @ p1 P Pi wi}p1 � nipp1q} ¤ opt .

∈ P1
∈ Q1

∈ T

a) b)

�
∈ P�
∈ Q�
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Figure 5.1: Illustration of an aligned point configuration for the weighted directed Hausdorff distance.

Consider the translation tq P T that moves the chosen point p upon one of its nearest neighbors
q P nn pp,Q1q. By applying tq to P, all points in Pi for any i P rks are moved away from their optimal
positions by }p � q}, see Figure 5.1. The new weighted distance l of any p̃ P Pi to one of its closest
neighbors after applying tq is at most:

l � wi � hptqpp̃q, Qiq
¤ wi p}p̃� nipp̃q} � }p� n1ppq}q
¤ opt�wi }p� n1ppq}
¤ opt�w1 }p� n1ppq}
¤ 2 opt .

For a fixed p P P1, we simply test all translations that move p upon a point q P Q1, which yields the
stated runtime. [\

The key argument that guarantees an approximation factor of 2 is that w1 is at least as large as any other
weight. Choosing an arbitrary point p1 P Pi for any color i and testing all translation vectors that move
p1 onto a point q1 P Qi yields a p1� w1{wiq-approximation that can be computed in O pmipm� nq logmq
time in the plane or in O pmimnq time for arbitrarily dimensions. By the pigeonhole principle, this
implies that there is a 1� pw1{wkq-approximation that can be computed in O �m2{k n� time for general d
and in O pm{k pm� nq logmq time for point sets in the plane.
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5.3 An FPTAS for Translations in Rd

Theorem 7. For every ε ¡ 0 an p1� εq-approximation for translations can be computed in
O p1{ε2 m1pm� nq logmq

time in the plane and in O��?d{ε�d m1mn
	 time in higher dimensions.

Proof. Let app2 � f pt2appq where t2app is a solution of the 2-approximation as described in Theorem 6.
Choose any p P P1 and for every q P Q1 build a regular cubic grid Gq centered in q with side length
app2 {w1 where each cell has a side length of pε app2q{p

?dw1q, see Figure 5.2.

�
� ���2 � �1

� ���2 � �1

�

���2 �1

���2 �1

Figure 5.2: Illustration of Gq.

Let T be the set of all translations that move a point p P P1 onto a grid point of a grid Gq for any
q P Q1. Then, the translation tapp of T that realizes the smallest weighted Hausdorff distance satisfies

f ptappq � mintPT
~h ptpPq,Q, wq ¤ p1� εq opt .

Assume P to be in optimal position and let q � n1ppq be one of the nearest neighbors of the chosen
p P P1. By construction, the point p lies within the boundaries of the grid Gq. Due to the choice of the
cell length, the furthest distance l of p to one of its closest grid points is at most l ¤ pε app2q{p2?dw1qand as opt ¥ app2 {2 we have that l ¤ pε optq{p?dw1q. As all wi for 1   i ¤ k are at most as large
as w1, the weighted distance of all other points increases by at most ε � opt when translated along the
distance l.
There are �?d{ε�d grid points for each Gq that need to be tested, which implies the stated runtime. [\

Using the same arguments as for the 2-approximation, it is easy to show that an p1� εq-approximation
can be computed in O��?d c{ε�d m2 n{k	 time for points sets in dimension d ¥ 3 or in

O�
pc{εq2 m{kpm� nq logm	

time in R2 with c � w1{wk .
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5.4 A Constant-Factor Approximation for Rigid Motions in the Plane

The constant-factor approximation described in Section 5.2 for a planar setting can be extended to cover
rigid motions.
Theorem 8. A 2p1�?2q-approximation for rigid motions can be computed in

O pm1mi pm� nq logmq
time for point sets in the plane.
Proof. Choose any p P P1. Let P :� �

1¤i¤k Pi and let ω : P Ñ R be the function that maps a point
x P P to its weight ωpxq � wi for x P Pi. Let p1 P P be a point that maximizes the weighted distance
to p, that is,

p1 P arg maxxPP ωpxq}x � p}.
Without loss of generality, let ωpp1q � wi. This choice of p1 ensures that the change of the weighted
Hausdorff distance of any point p̃ P P when rotated around p is bounded by the change of the weighted
Hausdorff distance of p1.
For any q P Q1 and any q1 P Qi, let t be defined as t :� tq,q1 � tq, where tq is the translation that
moves p upon q and tq,q1 is the rotation around q by the smallest absolute angle such that q, q1 and
tq,q1 � tqpp1q are aligned, see Figure 5.3.
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Figure 5.3: a) The translational part tq, b) the rotational part tq,q1 , c) the aligned configuration.

Let T be the set of all transformations that align p P P1 and p1 P Pi with some q P Q1 and q1 P Qi in
the described manner.
We claim that any transformation trapp of T that realizes the smallest Hausdorff distance satisfies the
stated approximation factor, that is,

f ptrappq � mintPT
~h ptpPq,Q, wq ¤ 2 opt�2?2 opt � 2p1�?2q opt .

The first summand is due to the influence of the translational component tq as discussed in the proof
of Theorem 6. The second term, 2?2 opt, reflects the furthest weighted distance that a point p̃ can
possibly cover while moving from position tqpp̃q to tpp̃q, see Figure 5.4. [\
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Figure 5.4: a) Example of a constant-factor approximation, b) Illustration of an aligned configuration
that could realize an approximation factor of 2p1�?2q opt.

Scenarios where qq1 and q tqpp1q are orthogonal and additionally }q�tqpp1q} � opt (see Figure 5.4 b)
almost reach the upper bound of 2p1�?2q opt.

5.4.1 Extending the Result to R3

In R3 one additional degree of freedom has to be fixed. Based on the registration in the previous
section, this freedom is a rotation around the axis p p1.
The algorithm can be adjusted by choosing p and p1 as before and by choosing a point p2 P Pj such
that

p2 P arg maxxPP ωpxq dist �x, p p1�,
where dist �a, b c� is the distance of the point a to its orthogonal projection onto the line through
b and c. For any q2 P Qj consider additionally the rotation tq,q1,q2 around the axis qq1 such that
tq,q1,q2 � tpp2q, q, q1 and q2 are coplanar. It is easy to see that the additional rotation results in a
p6� 2?2q-approximation (� 11.657) of the optimum and the runtime increases to O �m1mimj mn�.
Note that similar discretization techniques as those presented for translations can be applied to gain
an FPTAS for rigid motions.
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5.5 An Exact Algorithm for Computing a Registration Unter Trans-
lations in the Plane

The minima of the objective function f ptq (Equation 5.1) under translations in the plane can be computed
similar to the approach of Huttenlocher et al. [25] by partitioning the translation space into cells such
that for all translations of one cell the weighted Hausdorff distance is realized by the same point pair.
As we consider translation throughout this section, we write a translation of a point p by a translation
vector t as p� t instead of tppq.
Recall that the objective function f is given as:

f ptq � max1¤i¤k wi hptpPiq, Qiq
� max1¤i¤k wi maxpPPi minqPQi }pp� tq � q}
� max1¤i¤k wi maxpPPi minqPQi }pq� pq � tq}

Computing the distance of the point p� t to q is equivalent to computing the distance of the translation
vector t to the vector q� p. By introducing the sets Sippq :� tq� p |q P Qiu we can reformulate f ptq
as

f ptq � max1¤i¤k wi maxpPPi mincPSippq
}c � t}.

To compute the minima of f , we compute the decomposition of the translation space into (potentially
empty) cells Cpp, qq � R2 with p P Pi and q P Qi, such that

Cpp, qq :� tt | f ptq � wi }pp� tq � q}u.
Theorem 9. The decomposition of the translation space into cells Cpp, qq and with it the transformations
t that minimize f ptq can be computed in O �m2n2 φ �m2n2� logmn� time, where φ p�q is the inverse
Ackermann function.
Proof. To characterize Cpp, qq with p P Pi and q P Qi we fist observe that f ptq � wi }pp � tq � q}
implies t P Vor pq� p, Sippqq, where Vor pa, Aq is the Voronoi cell of the site a P A in the Voronoi
diagram of the set A. Otherwise, another point q1 of color i would be closer to p than q, implying that
f ptq would not by realized by p and q.
There are two possible reasons why for a translation t P Vor pq� p, Sippqq the value of f ptq might not
be realized by p and q. This is either because another point p1 P Pi of the same color has a larger
distance to its nearest neighbor for this translation. Or the weighted distance of a closest point pair of
another color j � i exceeds wi}pp� tq � q}, that is, f ptq � wi}pp� tq � q} implies

@1¤j¤k@p1PPj minq1PQj wj}pp
1 � tq � q1} ¤ wi}pp� tq � q}.

We define Bpp, qq as the blocked area for the pair p and q, i.e., all translations t P Vor pq� p, Sippqqfor which the value of f ptq is not realized by p and q due to either of the aforementioned reasons.
The characterization of the shape of Bpp, qq for a point pair of the ith color follows directly from the
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previous observation and is given as
Bpp, qq :� ¤

p̃PPiztpu
Vor pq� p, Sipp̃q Y Sippqq Y¤

1¤j¤ki�j

¤
p̂PPj

MWVor �q� p, Sippq, Sjpp̂q, wi, wj� ,
where MWVor pa, A, B, w, w 1q is the Voronoi cell of a point a P A in the multiplicatively weighted
Voronoi diagram of the set AYB where all points in A have weight w and all points in B have weight
w 1. Note, that the Voronoi cells that are united in the characterization of Bpp, qq correspond to the
portions of the translation space for which wi}pp� tq � q} is not the maximal distance shortest pair. A
cell Cpp, qq of a point pair of the ith color is then fully characterized by

Cpp, qq � Vor pq� p, Sippqq zBpp, qq.
For a non-empty cell that has an empty blocking area, the value of f ptq is minimal at the site that
defined the cell and increases linearly to the distance from this site. Therefore, the minimal value of
f ptq is either realized at a site or at the boundary of a blocking area. This means that the minima of
f ptq can be computed while computing the decomposition of the translation space into cells.
Let bp,q denote the number of edges contributing to the boundary of Bpp, qq.
Lemma 3. The combinatorial complexity of Bpp, qq is O�bp,q 2φpbp,qq	.

Proof. By introducing polar coordinates pr, θq with q � p as the origin, the boundary of Bpp, qq can
be seen as the upper envelope of the partially-defined, continuous, univariate functions given as the
edges of the Voronoi diagrams parametrized by θ. Two Voronoi edges can intersect in at most two
points. Applying the theory of Davenport-Schinzel sequences [43], this results in a complexity of
O�bp,q 2φpbp,qq	. [\

Let b � °
1¤i¤k

°
pPPi

°
qPQi bp,q be the total number of edges that contribute to the boundary of any

blocking region.
Lemma 4. b � O �m2n2�
Proof. First, fix a color i and a point p P Pi. The edges e that contribute to the boundaries of any
blocking area of a facet of Vor pSippqq result from the edges of the Voronoi diagrams

e P ¤
p̃PPizp

Vor pSippq Y Sipp̃qq Y ¤
1¤j¤ki�j

¤
p̂PPj

MWVor �Sippq, Sjpp̂q, wi, wj� .
Let bip be the number of edges contributing to the boundaries of the blocking areas for the facets
of Vor pSippqq. The combinatorial complexity of a standard Voronoi diagram of n sites is O pnq, the
complexity of an multiplicatively weighted Voronoi diagram for the same number of sites however is
Θpn2q as shown by Aurenhammer et al. [4], even if just two different weights are involved. This is
the main reason why the runtime for colored points increases compared to the monochromatic variant
discussed by Huttenlocher et al. [25].
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This leads to a combinatorial complexity for bip of

bip � O
���� ¸
p̃PPiztpu

pmi �miq �
¸

1¤j¤ki�j

¸
p̂PPj

pmi �mjq2

���


� O
����nimi �

¸
1¤j¤ki�j

njpmi �mjq2

���

� O

�� ¸
1¤j¤k

njpmi �mjq2
�


Summing over all colors i and all points p P Pi gives
b � ¸

1¤i¤k

¸
pPPi

bip

� O
�� ¸

1¤i¤k

¸
pPPi

¸
1¤j¤k

njpmi �mjq2
�


� O
�� ¸

1¤i¤k
ni ¸

1¤j¤k
njpmi �mjq2

�

� O

�� ¸
1¤i¤k

ni ¸
i¤j¤k

njpmi �mjq2
�


� O �m2n2� .
[\

Lemma 3 and Lemma 4 together imply that the combinatorial complexity of the whole decomposition is
O�m2n2 2φpm2n2q	.
The algorithm to compute the translations that minimize the directed Hausdorff distance involves two
steps.
First, all (multiplicatively weighted) Voronoi diagrams have to be computed. Aurenhammer et al. [4]
presented an algorithm to compute weighted Voronoi diagrams of n sites in O �n2� time. It takes
O �m2n2� time to compute all diagrams, as argued for Lemma 4.
In the second step, the blocking areas of all facets of all Voronoi diagrams have to be computed. As
shown by Hershberger [23], the upper envelope of n partially defined functions that mutually intersect in
at most s points can be computed in O pλs�1pnq lognq time, where λspnq denotes the maximum possible
length of a pn, sq Davenport–Schinzel sequence. This leads to a runtime of O �m2n2 φ �m2n2� logmn�,
as stated in Theorem 9. [\
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As shown by Rucklidge [41], the lower bound of the geometric complexity of the graph of f ptq for a
single color, i.e., two point sets in the plane, both of size n is already Ωpn3q.
Note that an exact solution for the special case where all weights of all points are equal (w1 � wk ),can be computed faster. For this case, all multiplicatively weighted Voronoi diagrams are just regular
Voronoi diagrams consisting of line segments only. This reduces the complexity of the upper envelope
of the boundary of the blocking areas, as two line segments can mutually intersect at most once. For
this case, the algorithm and the analysis of the method presented by Huttenlocher et al. [25] can be
applied.
Corollary 2. The transformations t that minimize f ptq for uniformly weighted point sets in the plane
under translations can be computed in O �n2m lognm� time.



Chapter 6
Towards Non-Uniform Geometric
Matchings
The strategies and algorithms presented in the previous chapters compute exact or approximate regis-
trations by reducing the registration problem to a geometric matching problem. As stated in Definition 2
(geometric matching, page 3), the task in a geometric matching problem is to compute a single trans-
formation of a given transformation class that matches a pattern to a model so that a certain objective
function is optimized. This transformation is then used to map any point of the space that contains the
pattern to its “corresponding” point in the model space.
The restriction of using a single transformation, no matter which reasonable transformation class is
considered, limits the ability to handle or to consider local deformations. Often one has to decide
whether a specific region should be mapped well or whether the registration should give results that are
good on average over the entire space. This is especially disadvantageous for soft tissue registrations. In
that context also tissue deformations (e.g., due to respiration or physical pressure) have to be considered.

Computing a set of transformations We generalize the concept of geometric matchings to so-called
non-uniform geometric matchings. In a non-uniform matching problem, a set of transformations is
computed. Each transformation is locally valid within predefined regions of the pattern space. The
regions of interest form a partition of the pattern space. To map a point p from the pattern space to the
model space one first has to determine the cell that contains p. In a second step, the transformation
that is associated to that cell is used to perform the actual mapping. The transformation for a certain
cell is computed by solving a geometric matching problem that maps geometric features of that cell to
the model, see Figure 6.1.
Non-uniform registrations have to optimize two competing objectives: to match the pattern features
close to the model features while simultaneously assuring conformity of the mapping by demanding that
transformations of two neighbored cells are “similar” with respect to their effect.
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pattern space model space

�� �� ��
�� ��

Figure 6.1: Illustration of a non-uniform registration for point sequences under translations. A translation
is computed for each cell of the pattern space. The geometric features pi are matched using the
corresponding translations ti to minimize the distance to the model feature qi while simultaneously
enforcing that transformations of neighboring cells are similar.

In its most general form a non-uniform geometric matching problem can be stated as follows:
Definition 8 (Non-Uniform Geometric Matching Problem).
Let PpRd, kq denote the set of all partitions of Rd into k cells.
Given:

G a class of geometric objects
distG : G� GÑ R� a distance measure in object space
P � tp1, . . . , pnu P G a pattern object
Q � tq1, . . . , qmu P G a model object

T a transformation class admissible on G

C � tC1, . . . , Cku P PpRd, kq a partition of Rd into k cells such that @i P rns Dj P rks pi � CjdistT : PpRd, kq � Tk Ñ R� a distance measure in transformation space
f : R� � R� Ñ R� a weight function

Task: compute a set of transformations T � pt1, . . . , tkq P Tk minimizing
f pdistG pttipCi X Pqq | 1 ¤ i ¤ ku , Qq , distTpC, T qq

.
Note that for k � 1 Definition 8 is equal to the definition of the usual geometric matching problem (see
Definition 2, page 3).
A pattern feature pi P P is mapped by the transformation tj that corresponds to the cell Cj containing
pi. The matched feature set P 1 is hence given as

P 1 :� ¤
jPrks

tjpP X Cjq.
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The objective function that defines the quality of a matching consists of two parts: the function distGthat measures the distance of the matched point set P 1 to Q. The second factor is the function distTthat measures the “similarity” of a transformation set T by considering the neighborhood relations of
the individual transformations as induced by the partition C of the pattern space.

6.1 Non-Uniform Matchings for Point Sequences

For now, we consider a simple yet not trivial variant of the non-uniform matching problem where we
restrict the transformation class T to translations. We further assume the geometric features to be point
sequences of equal size (|P| � |Q| � n), measured in the pattern space and defined in the model space.
We also assume that the correspondence between the point sequences is known, that is, point pi is
mapped to qi for all i P rns. As the measure in the feature space pdistGq we consider the maximum
Euclidean 1-to-1 distance, that is

distGpP 1, Qq :� maxiPrns }tippiq � qi}. (6.1)
We consider decompositions of the pattern space into n cells so that each cell contains exactly one
point of P (as it is the case for the Voronoi diagram of P). As stated above, the transformations
are not computed independently from each other. To control the conformity of the registration around
cell boundaries of the decomposition, one has to ensure that two transformations ta and tb whose
corresponding cells Ca and Cb are neighbors (share parts of their boundary) are similar with respect to
their effect. As a measure of similarity of two translations ta and tb we consider the Euclidean distance
}tapxq � tbpxq} of their images of a point x P Rd . From now on, we do not distinguish between a
translation and its translation vector and measure the similarity of two translations by the Euclidean
norm of the translation vector difference, i.e., }ta � tb} (as the distance of two images of the same point
does not depend on the preimage of the point).
The information about the pairs of translations that have to be similar is encoded in a graph G � pT , Eq
which we call neighborhood graph. The vertex set of G is the set T of translations that are to be computed
and tti, tju P E if the cells corresponding to translations ti and tj share parts of their boundary. Note
that the edges of the neighborhood graph could also be selected by criteria other than the adjacency of
cells and could for instance be manually chosen by the user. The algorithms presented in this chapter
do not require that the neighborhood graph resembles the partition of the pattern space. For some
algorithms, however, the approximation factors depend on the structure of G .
To simplify notation, we define for any two translations ti, tj P T :

dij �
#1 if tti, tju P E

0 otherwise.
As the measure distT for the similarity of the translation set T we take the maximum of the similarity
of any two translations that are adjacent in G:

distTpT ,Gq :� maxi,jPrnsdij}ti � tj}.

We chose to measure the distances in the pattern space as well as the deviations in the translation
space using the Euclidean metric. This problem could just as well be studied with another reasonable
underlying measure, such as the Manhattan metric.
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Putting all this together and taking the maximum of the distance measured in object space and the
similarity measure in translation space, we get the following problem description:
Problem 5. Given P, Q and G as above, compute a sequence T of translations pt1, . . . , tnq minimizing

distpP,Q,G, T q :� max
�

maxiPrns }tippiq � qi}, maxi,jPrnsdij}ti � tj}


, (6.2)

where } � } denotes the Euclidean norm. The first term accounts for the distance of the matched point
set P to Q by considering the L8 norm of the vector tippiq � qi.
We have chosen to minimize the maximum of the distances in the pattern space and the deviations in
the model space. Again, other weight functions e.g. minimizing the sum of both components could be
considered as well. For translations however minimizing the maximum of both involved measures seems
natural as the minimum will be achieved where both influence variables are equal. As the displacement
of a point that caused by choosing either of two neighboring translations (Euclidean distance of the two
images) is equal to the deviation of these two transformations (Euclidean norm of the difference vector),
taking the maximum of both magnitudes results in a good balance between the two measures by not
favoring one over the other.
One advantage of considering translations is that the distance of a matched point pi to its corresponding
point qi and also the similarity of two translations can be measured in translation space. Consider the
translations si � qi � pi for 1 ¤ i ¤ n and let S :� ps1, . . . , snq. The distance }tippiq � qi} for a point
pi matched with translation ti to qi can be expressed as

}tippiq � qi} � }ti � pi � qi} � }qi � pi � ti} � }si � ti}.
The problem of computing a non-uniform matching for point sequences under translations can also be
formulated in the following way: Consider a straight line embedding of the graph G1 � pS Y T , E 1q
with E 1 � ttsi, tiu | i P rnsu Y ttti, tju |dij � 1u. The edge set E 1 consists of two sorts of edges:

1. edges connecting two translations ti and tj indicating that they have to be similar,
2. n edges tsi, tiu whose lengths measure the Euclidean distance of tippiq to qi.

Note, that the positions of all s P S are already determined by the input. The problem of computing a
non-uniform registration optimizing Equation 6.2 can be formulated as:
Problem 6. Find a placement for all t P T such that the length of the longest edge of the induced
straight line embedding of G1 is minimal.
As the vertices of G1 represent translations, we also call G1 the translation graph of S .

6.1.1 Convex Programming Formulation

The problem of computing a non-uniform registration optimizing Equation 6.2 can be phrased as a
convex optimization problem (see [6] for an introduction into this field):

minimize ε
subject to }si � ti} ¤ ε, i � 1, . . . , n,

dij }ti � tj} ¤ ε 1 ¤ i   j ¤ n.
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As any metric norm is convex and the maximum of two convex functions is also convex. Convex opti-
mization problems have the property that they have a unique minimum, i.e., any local minimum is also
a global minimum. Furthermore, convex optimization problems (such as Problem 6) can be solved in
polynomial time, e.g., by using the interior-point or the ellipsoid method [6].
In Sections 6.2 and 6.3 we present fast approximation algorithms that are based on geometric insights
into the problem. There are two reasons for considering geometric approximation algorithms for this
problem, even though the machinery of convex programming provides us with exact polynomial solutions
to this problem:

1. the approximation factors of the constant-factor approximations are close to 1 and the approximate
solutions can be computed in linear time with only small constants hidden in the O-Notation.

2. the geometric insights we gained during the study of the geometric nature of this problem help
to develop approximation strategies for non-uniform matching variants that can not be formulated
as a convex optimization problem, see Section 6.4.

6.2 Constant-Factor Approximations

Let Topt be an optimal solution and let opt :� distpP,Q,G, Toptq be the value of the objective function
for Topt .

6.2.1 Arbitrary Graphs and Bounded Diameter Graphs

Theorem 10. Choosing ti � qi � pi � si for 1 ¤ i ¤ n results in a 3-approximation of opt.
Proof. Assume T to be in optimal position. For any i and j with dij � 1 we have that }ti � tj} ¤ opt
as well as }ti� si} ¤ opt and }tj � sj} ¤ opt. Moving ti upon si and tj upon sj increases the distance
}ti�tj} by at most 2�opt while setting the distances }ti�si} and }tj�sj} to zero, hence }ti�tj} ¤ 3�opt
for all i, j with dij � 1, see Figure 6.2a. [\

Let k be the diameter of the neighborhood graph G , i.e., the largest number of edges on a shortest path
between any two vertices of G (short with respect to the number of edges on the path).
Theorem 11. Choosing t1 � t2 � � � � � tn � qi � pi for some 1 ¤ i ¤ n results in a pk � 2q-
approximation of opt.
Proof. Assume T to be in optimal position and let i be the selected index. The distance of any tj to
ti is at most k � opt as each edge on the path from ti to tj has length at most opt and the number of
edges on the path is bounded by k . As the distance }ti � si} is also bounded by opt, we have that
}tippjq � qj} ¤ pk � 2q opt, see Figure 6.2b. [\
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Figure 6.2: a) Illustration of the 3-approximation of Theorem 10. b) Illustration of the pk � 2q-
approximation of Theorem 11.

6.2.2 Complete Graphs in the Plane

Assume P � pp1, . . . , pnq and Q � pq1, . . . , qnq to be point sequences in the plane and the neighbor-
hood graph G to be complete, that is, any two translations have to be compared.
Lemma 5. Let Topt be an optimal choice of translations. The center copt of the smallest disc enclosing
Topt provides a p1� 1{?3q-approximation for points in the plane and complete neighborhood graphs, if
copt is chosen for all t P T :

distpP,Q,G, pt1 � copt , t2 � copt , . . . , tn � coptqq ¤ p1� 1{?3q opt .
Proof. In optimal position, the distance }si � ti} for any 1 ¤ i ¤ n is bounded by opt. All translations
of Topt lie within the smallest disc enclosing Topt whose radius is bounded by opt{?3, as stated in the
following lemma.
Lemma 6. The radius of the smallest disc enclosing a point set of width µ in the plane is bounded by
µ{?3.
Proof. Any planar point set X of at least two points contains a subset of two or three points txiu � X
such that the smallest enclosing disc δX of the subset is identical to the smallest enclosing disc of X ,
moreover all xi lie on the boundary of δX and define δX . If δX is described by two points x1 and x2 then
}x1 � x2} is the diameter of δX and as }x1 � x2}{2 ¤ µ{2   µ{?3 the lemma holds.
Assume that δX is defined by three points x1, x2, x3 and assume w.l.o.g. that }x1 � x2} is the longest of
the pairwise distances of tx1, x2, x3u and assume that x3 lies to the left of the ray starting in x1 through
x2.
A Reuleaux triangle of width µ is the intersection of three discs of radius µ centered at the corners of an
equilateral triangle with side length µ. The circumcircle δ∆ of an equilateral triangle of side length µ
is identical to the circumcircle of its induced Reuleaux triangle and has a radius of µ{?3, see Figure 6.3
right.
Consider the rigid motion that moves x1 on the origin and x2 on the positive x-axis, hence x3 lies in the
intersection of the first quadrant with two discs of radius }x1 � x2} centered in x1 and x2 respectively.
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The set tx1, x2, x3u is fully contained in the Reuleaux triangle with one corner on the origin, one corner
on the positive x-axis and the third corner in the first quadrant and is therefore also covered by δ∆ , see
Figure 6.3 left. This implies, that the radius of δX is bounded by the radius of δ∆ . [\

1√
3
µ

a = (0, 0) (x, 0)
b

c

c′

b′

µ µ

µ

Figure 6.3: left: Illustration of the proof of Lemma 6, right: the equilateral- and Reuleaux triangle
containing all point sets of width x .

The distance of each point s P S to copt is bounded by opt�1{?3 opt. Therefore, the center copt implies
a p1� 1{?3q-approximation as stated in Lemma 5. [\

Lemma 5 implies that there exists a single translation that results in a maximal distance of p1�1{?3q opt
to any s P S . But as Topt is unknown, the center copt of its smallest enclosing disc is unknown as
well. On the other hand, the translation that minimizes the largest distance to any point of S can be
computed in linear time [25, 37].
It is easy to see that the center c of the smallest disc enclosing S is the translation that minimizes the
maximal distance to any translation in S . We have determined the approximation factor for choosing
ti � copt for i P rns and know that c is the best possible choice of a single translation. Together with
Lemma 5 this implies the following constant-factor approximation:
Theorem 12. The center c of the smallest disc enclosing the point sequence S results in a p1� 1{?3q-
approximation:

app � distpP,Q,G, pt1 � c, t2 � c, . . . , tn � cqq ¤ p1� 1{?3q opt .
The approximation factor can be improved to 2{3 p1�1{?3q � 1.05157 by choosing n different translations
in the following way: Let app be the value of the approximation as presented in Theorem 12. Choose,
for 1 ¤ i ¤ n, ti to be the intersection oi of the straight line si c with the circle δapp centered in c
with radius app {3. If δapp does not intersect the line segment si c, then ti is chosen to be si. For this
choice of ti, the distance }si � ti} is bounded by 2{3 p1� 1{?3q opt for each 1 ¤ i ¤ n which is also the
diameter of the circle δapp, implying that the distances }ti � tj} for 1 ¤ i   j ¤ n are also bounded by
2{3 p1� 1{?3q opt, see Figure 6.4.
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Figure 6.4: The outer circle is the smallest circle enclosing S (radius app), the inner circle δapp has a
radius of app {3 with the same center.

Theorem 13. Let c be the center of the smallest disc enclosing the sequence S and let app be the
approximation value resulting from applying Theorem 12. Choosing ti as the intersection oi of the
straight line si c with the circle δapp with center c and radius app {3, or ti � si if δapp does not intersect
si c, results in a 2{3 p1� 1{?3q-approximation that can be computed in O pnq time:

�app � distpP,Q,G, pt1, t2, . . . , tnqq ¤ 2{3 p1� 1{?3q opt � 1.05157 opt .

Center of Optimal Translations vs. Center of Approximation

Figure 6.5 shows a picture of an example for which the center copt of the optimal translations and the
center c of the smallest disc enclosing S differ. The translations s1 � p0, 0q, s2 � p3, 0q, s3 � p1.5, 1�?3{2q have an unique optimal solution sequence Topt � pt1 � p1, 0q, t2 � p2, 0q, t3 � p1.5,?3{2qq
which has its center at copt � p1.5,?3{6q. The center of S is c � p1.5,� 0.33011q which results in
an approximation quotient of �app{ opt � 1.0239.

6.2.3 Neighborhood Graphs with Diameter k
In the previous section the neighborhood graph has been assumed to be complete, that is, any two
translations had to be compared. We extend the idea of Theorem 13 to graphs with diameter k ¡ 1.
Lemma 7. The radius of the smallest disc that encloses a straight line embedding of a graph with
diameter k, given that the length of any edge in the embedding is at most µ, is bounded by

f pkq � µ � k � p1� k2qtk{2u
cos p2 arcsin p1{2kqq � sin p2 arcsin p1{2kqqa4tk{2u2 � 1� 2k cos p2 arcsin p1{2kqqtk{2u � µ

The radius of the smallest disc that encloses a straight line embedding of a graph with diameter k (so
that the longest edge of the embedding has a length of at most µ) is maximized for embeddings that
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Figure 6.5: Example of an approximative registration in contrast to an optimal solution.

contain an isosceles triangle of side length k � µ and a base side length of length µ. Another isosceles
triangle is attached to the tk{2uth vertex of this embedding that shares a vertex of the base line of the
first triangle and also has a base side length of µ, see Figure 6.6.
Replacing this bound for the radius of the smallest circumcircle of the optimal translations in Theorem 13
leads to the following result for graphs with diameter k :
Theorem 14. Let P, Q be as before, let G be a neighborhood graph with diameter k, let c be the
center of the smallest ball enclosing the sequence S and let app be the approximation value resulting
from applying Theorem 12. Choosing ti as the intersection oi of the straight line si c with the ball δappcentered in c with radius app {3, or ti � si if δapp does not intersect si c, results in a 2{3 p1 � f pkqq-
approximation, that is,

distpP,Q,G, pt1, t2, . . . , tnqq ¤ 2{3 p1� f pkqq opt .
This approximation – compared to the trivial 3-approximation described in Theorem 10 – gives better
approximation factors for neighborhood graphs with a diameter of up to 6, as shown in Table 6.1.



72 Chapter 6. Towards Non-Uniform Geometric Matchings

Figure 6.6: Illustration of the proof of Lemma 7.

k � 2{3 p1� f pkqq
2 1.7862
3 1.7904
4 2.1405
5 2.4221
6 2.7541
7 3.0658

Table 6.1: The approximation values of Theorem 14 for 1   k ¤ 7.

6.3 Approximation Schemes for Trees and Cycles

In this section, we present two p1� εq-approximation schemes for settings in which the neighborhood
graph is a tree or a cycle. The first technique uses a dense sampling combined with a dynamic pro-
gramming approach and works in arbitrary dimensions. The second strategy computes an approximation
based on deciding a relaxed decision problem variant for different guesses of the value of opt and can
be applied if additionally P and Q are planar point sequences.
By slightly abusing notation, we impose the information of G on S , that is, we call si and sj adjacent,
if tti, tju P EpGq.

6.3.1 An FPTAS for Trees

The basic idea of the approximation strategy is to construct a sufficiently dense sample set around each
s P S . Samples are chosen from the sample sets in a bottom-up manner, from the leafs to the root using
dynamic programming: starting in the leafs, the cost of selecting a sample for a point s is computed
based on the optimal choices of samples in the subtree rooted in s.
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Sufficiently Dense Sample Sets

In the following we consider samplings Cpα, β, pq � Rd of points p P Rd with α ¡ 0, β ¥ 0 that have
the following properties:

1. @ x P Cpα, β, pq : }x � p} ¤ β
2. @ t P tt | }t � p} ¤ βu : D x P Cpα, β, pq : }x � t} ¤ α

We call such a sampling an α-dense sampling of p with radius β . For the Euclidean norm and a point
p P Rd , an α-dense sampling of radius β with

|Cpα, β, pq| P O
��?d βα


d�

can be constructed, e.g., by intersecting a regular rectangular gird with side length αa4{d with a ball
of radius β centered in p.
Let app1 be the value of the 3-approximation as described in Theorem 10. In the following, as α and β
will be fixed to α � 1{6 ε app1 and β � app1, we write Cpxq instead of Cp1{6 ε app1, app1, xq, to simplify
notation.

Dynamic programming

Let r be an arbitrarily selected root of G . We define the cost crxs of a sample point x P Cpsq for a
point s P S inductively. If s is a leaf in G , then crxs :� }x � s}, the distance of the sample x to the
translation s. Otherwise, let c1, . . . , cl be the children of s in G then

crxs :� max
�
}x � s}, max1¤j¤l minyPCpcjq

maxpcrys, }y� x}q


. (6.3)

Additionally, pointers nrx, js are stored together with the cost crxs for each sample x P Cpsq pointing
to one sample point y that realizes the minimum in minyPCpcjq maxpcrys, }y� x}q for x in Equation 6.3
for each child cj of s.
A sequence of translations t11, . . . , t1n that realizes a p1 � εq-approximation can be found by following
the pointers stored at a sample point m of the root r that has the smallest cost value of any sample in
Cprq, that is, m P arg minxPCprq crxs.
Theorem 15. The set t11, . . . , t1n of translations that result from following the pointers of the sample
m P Cprq with the smallest cost realize a p1� εq-approximation and can be computed in O pn{ε2dq time.
Proof. Consider an optimal translation ti, from Theorem 10 we know that ti lies within a circle with
radius app1 centered in si. The distance of ti to its closest sample is at most α � 1{6 ε app1 and as
app1 ¤ 3 opt this distance is bounded by 1{2 ε opt. Moving each optimal translation to its closest sample
point increases the distance of two neighbored translations by at most ε opt and the distance of each
ti to si by at most 1{2 ε opt.
That the best combination of samples from each sample set is selected can be shown by using an
inductive argument. We argue that the algorithm maintains the best cost crxs and pointers nrx, is for
all samples x P Cpsiq in the subtree rooted in si.
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For a leaf si, each sample x P Cpsiq has a cost of crxs � }si � x}. This is the distance of qi to pi � x ,
which is clearly optimal as only pi and qi have to be considered (si is a leaf). If si is an internal node,
the cost crxs of a sample x P Cpsiq is either the distance }x � si} to its sample center si (invariant
to any choice of samples in the subtree), the distance }y � x} to a sample y P Cpcjq of some child cjof si in G or the cost crys of a sample of a child. For all children cj of si the sample y realizing the
minimum minyPCpcjq maxpcrys, }y� x}q is chosen and –by supposition– crys contains the best possible
value in the subtree rooted in cj , given that y P Cpcjq was selected. Therefore, crxs contains the best
possible value of any choices of samples in the sample sets of the children of si.
Each sample set Cpsiq consists of O�

papp1{ε app1qd
	
� O p1{εdq sample points for fixed d. Each of the

O pn{εdq samples (except the ones of the root) is touched O p1{εdq times while updating the cost information
for the samples of the parent node, which results in a runtime of O pn{ε2dq, as stated in the theorem. [\

6.3.2 An FPTAS for Cycles

Let S be ordered so that for 1 ¤ i   n, si and si�1 are neighbored in G , as well as sn and s1. Consider
the graph G� � Gzts1u resulting from removing s1 from the cycle. Fix a sample x P Cps1q and perform
the p1 � εq-approximation for trees on G� rooted in sn, with the difference that the cost crys for any
y P Cps2q is initialized to

@y P Cps2q crys :� maxp}x � s1}, }y� s2}, }x � y}q,
which is the value of the registration in the chain s1, s2 given that x is chosen for s1 and y is chosen
for s2. Then, a best possible choice for samples in the sample sets of s2, . . . , sn, given that x P Cps1qwas selected, can be gained by following the pointers of any sample z P Cpsnq with

z P arg minwPCpsnq
maxpcrws, }w � x}q.

As all O p1{εdq choices for x P Cps1q have to be tested, the runtime increases to O pn{ε3dq.

6.3.3 A Faster FPTAS for Trees in the Plane

In this subsection, we present an alternative approximation scheme for neighborhood graphs that are
trees in the plane. This approximation is based on a relaxed decision problem formulation. The usual
(unrelaxed) decision variant to Problem 6 can be stated as follows:
Problem 7. For a given µ ¥ 0 and a translation graph G1 � pSYT , E 1q that is a tree with S, T � R2,
is there a placement of T such that the length of any edge in the induced straight line embedding of
G1 is at most µ?
Before presenting an algorithm to decide Problem 7, we need to introduce some notation and mention
basic geometric observations. As in the previous subsections, we impose the structure of the neighbor-
hood graph GpT , Eq on S and hence call si and sj adjacent if tti, tju P E . Let δpc, rq be a disc of
radius r centered in c and define δµ :� δpp0, 0q, µq. The Minkowski sum X ` Y of two sets X and Y
is defined as X ` Y :� tx � y | x P X, y P Y u. For X being a geometric figure, the set X ` δµ is the
set of all points z so that there is a point x P X with }z � x} ¤ µ.
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The following simple geometric observations hold for embeddings that meet the edge length constraint,
see Figure 6.7:

1. for all ti P T we have that ti P δpsi, µq
2. if tta, tbu P EpGq then ta P δpsb, 2µq and tb P δpsa, 2µq
3. if c1, . . . , ck are the children of si then ti P �jPrks δpcj , 2µq X δpsi, µq

si

ti

δ(si, µ)

sa

sb
ta

tb

δ(sb, 2µ)
δ(sa, 2µ)

si

c1

c2

c3

tit1

t2

t3

δ(s1, µ)

δ(c2, 2µ)

δ(c1, 2µ)δ(c2, 2µ)

Figure 6.7: Illustration of geometric properties that every registration whose edges have a length of at
most µ has to satisfy.

These observations motivate the definition of the admissible region regµ psq for a point s P S . The
admissible region of a point s is defined as the set of all translations t for which a straight line
embedding of the subtree rooted in s exists that satisfies the edge length constraint.
Definition 9 (admissible region). The convex admissible region regµ psq of a point s for a given µ is
defined inductively:

• if s is a leaf in G1 then regµ psq � δps, µq,
• if s is an internal node with children c1, . . . , ck , then

regµ psq �
£
iPrks

�regµ pciq ` δµ� X δps, µq. (6.4)

Let r P S be an arbitrarily chosen root of G . The decision problem can be solved by computing the
admissible region of r:
Lemma 8. There exists a straight line embedding of G1 so that each edge has a length of at most µ iff
regµ prq � H.
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Solving the decision problem exactly involves computing Minkowski sums of admissible regions and
their intersections. The boundary of an admissible region of a point s can in the worst case be defined
by all “µ inflated” admissible regions of the children of s. Fortunately, it is not necessary to maintain
the exact shape of the admissible regions to compute a p1 � εq-approximation. Instead of computing
the exact admissible regions regµ psq, we approximate its shape by an convex polygon �regµ psq so that
~h ��regµ psq , regµ psq� ¤ λ for a λ ¡ 0 that is to specified later and additionally regµ psq � �regµ psq.We also approximate the inflated admissible regions regµ psq ` δµ by convex polygons inflµ psq so that
regµ psq ` δµ � inflµ psq and ~h �inflµ psq , regµ psq ` δµ� ¤ λ.

Relaxing the decision problem

An algorithm A that uses the described inductive strategy stated in Equation 6.4 to decide Problem 7 for
given µ ¥ 0 and λ ¡ 0 by maintaining the regions �regµ psq (inflµ psq) instead of regµ psq (regµ psq ` δµ)for all s P S has the following properties:

• it returns false for any µ   opt�λ
• it returns true for any µ ¡ opt
• it returns either true or false for any µ P ropt�λ, optq.

Note, that two inflated approximate admissible regions inflµ psq and inflµ ps1q might intersect, even
though regµ psq ` δµ X regµ ps1q ` δµ � H. Let s P S be an internal node of G and let c1, . . . , ck be
the k children of s. For any t P �regµ psq we have that }t � s} ¤ µ � λ and

@i P rks Dt1 P �regµ pciq : }ci � t1} ¤ µ � λ^ }t � t1} ¤ µ � λ.
As before, let app1 be the value of the 3-approximation as described in Theorem 10, hence app1 {3 ¤
opt ¤ app1 and set λ to ε � app1{3. Consider an uniform sampling of the interval rapp1 {3, app1s with sample
width λ (i.e., the distance of two consecutive samples). The smallest sample µ1 of the sample set for
which the approximated admissible region of the root r of G is not empty satisfies that |µ � opt | ¤
ε � app1 {3   ε � opt, hence the embedding computed for the value µ1 realizes a p1� εq-approximation.
Theorem 16. For a neighborhood graph G that is a tree and point sequences P,Q P R2 and any ε ¡ 0
a sequence of translations T � pt1, . . . , tnq can be computed in O plog 1{ε n{?εq time so that

distpP,Q,G, T q ¤ p1� εq opt .
Proof. Using binary search, it takes O plogp2 app1{3 � 3{ε app1qq � O plog 1{εq time to find the smallest value
µ1 for which the approximated admissible region of r is not empty. A single relaxed decision problem
for a µ P rapp1 {3, app1s can be decided in O�na1{ε

	 time: as shown by Rote [40], any convex planar
figure can be approximated by a convex polygon that circumscribe the figure and has O�aB{λ

	 points
on its boundary and is in λ Hausdorff distance to the figure, where B is the length of the boundary of
the figure. This strategy is used to approximate admissible regions: any admissible region is defined
as – or intersected by – a disc of radius µ and is inflated (by taking the Minkowski sum) by a disc of
radius µ. Hence any admissible convex region can be covered by a disc of radius 2µ which bounds the
length of the boundary of an admissible region to 4πµ. By choosing λ � ε � app1 {3 we have that any
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inflated admissible region can be approximated by a convex polygon using O�a4πµ{ε�app1 {3
	
� O p1{?εq

vertices, as µ ¤ app1. Each region inflµ psq for all nodes s P Sztru is intersected exactly once to gain the
(approximated) admissible region of the parent of s. As shown by Toussaint [45], two convex polygons
can be intersected in linear time, which leads to a total runtime of O pn{?εq to compute a single relaxed
decision problem instance. [\

6.4 Non-Uniform Matchings for Point Sets

In Problem 5 (stated in Section 6.1) we assumed that the correspondence of the points in P and Q
is given. That is, point pi is mapped to qi and the objective function with respect to pi is influenced
by the Euclidean distance of ti � pi to qi. In this section, we consider a variant of the problem where
this correspondence is not given, while still one translation for each p P P is computed. Instead of the
1-to-1 distance stated Equation 6.1, we consider the directed Hausdorff distance of the set P to the set
Q.
The problem considered in this section can be formulated as:
Problem 8. Given a point set P � tp1, . . . , pnu and a point set Q � tq1, . . . , qmu and a neighborhood
graph G � prns, Eq, compute a set of translations T � tt1, . . . , tnu minimizing

distpP,Q,G, T q :� max
�

maxpiPP minqPQ }pti � piq � q}, maxi,jPrnsdij}ti � tj}


.

Note, that the objective function of Problem 8 is not convex due to the minimum function in the distance
measure in feature space. The non convexity can easily be seen by the following simple 1-dimensional
example: let P :� t0u and let Q :� t�1, 1u, then the objective function reduces to minp}t�1}, }t�1}q
which is clearly not convex, see Figure 6.8.
This problem therefore has no convex program formulation, but we can apply some of the geometric
insights of the previous sections to gain approximation algorithms for Problem 8.

6.4.1 Exact Solutions

No exact polynomial algorithms are known to solve Problem 8. A simple exact but exponential algorithm
is to guess the assignment of the Hausdorff distance, i.e., to try for all p P P all potential nearest
neighbors q P Q and to solve for the O pmnq instances the convex programming problem for point
sequences as presented in Section 6.1.1.

6.4.2 Complete Graphs in the Plane – with Hausdorff Distance

Here, we consider complete neighborhood graphs for point sets in the plane, as in Section 6.2.2. The
approximation idea presented in Theorem 13 can be adopted to compute constant-factor approximations
for Problem 8.
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Figure 6.8: Graph of the non convex objective function of P � t0u and Q � t�1, 1u.

Consider the point sets Si :� tq� pi |q P Qu for i P rns and imagine the points sets Si to be colored
in different colors. Each point s P Si is a translation with the property that the distance of s � pi to
(some point of) Q is zero, see Figure 6.9.
An optimal solution set T � tt1, . . . , tnu has the property that T itself has a diameter of opt and that
for each ti P T there is a point s P Si with distance }s � ti} ¤ opt. In contrast to Section 6.2.2, it is
not known in advance which point s P Si will achieve a distance of at most opt to ti.

δc δc

c2r/3
r/3

s1

s2

s3

s4 = t4

t3

t2

t1

Figure 6.9: left: point set P (squares) and Q (discs). middle: point sets S1, . . . , S4 and the smallest
diameter disc δc that contains a point of each set Si. right: the smallest diameter disc δc and the
translation set that realizes the constant-factor approximation.

Given a smallest disc δc that covers at least one point of each set Si, we can apply the approximation
idea described in Theorem 13 and gain a 2{3 p1� 1{?3q-approximation for the Hausdorff distance setting.
For a point set of n points in the plane that is colored with k different colors, the smallest disc that
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contains at least one point of each color can be computed in O pk n lognq time, as shown by Huttenlocher
et al. [25] and Sharir and Agarwal [43, Section 8.7].
Theorem 17. Let c be the center of the smallest disc δc that contains at least one point of each set
Si � tq� pi |q P Qu and let r be radius of δc . For each i P rns let si be a point of Si that is covered
by δc . Choosing ti as the intersection oi of the straight line si c with the circle δapp with center c and
radius r{3, or ti � si if δapp does not intersect si c, results in a 2{3 p1 � 1{?3q-approximation that can
be computed in O �mn2 logmn� time:

distpP,Q,G, pt1, t2, . . . , tnqq ¤ 2{3 p1� 1{?3q opt � 1.05157 opt .
Note, that the translation set T that is computed in Theorem 17 is optimal, given that the similarity of
the translation set is measured by the diameter of the smallest enclosing disc of T .
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Chapter 7
Study on Measurement Accuracy
In the original formulation of a hybrid registration problem (see Definition 4 on page 5) one has to
compute a transformation t of a given transformation class T that minimizes the following objective
function:

max�~h ptpPq, Sq , ~h ptpPcq, Qcq
	. (7.1)

In the context of medical navigation systems, the characteristic points that are measured in pattern
space Pc and their counterparts Qc that are defined in the model are called anatomical landmarks (AL).
In contrast to the anatomical landmarks, the set P of arbitrarily measured points that are taken from
the measurable anatomic region of interest are called surface or contour points (CP).
When the quality of a registration is measured in terms of Equation 7.1, the influence of the distance
between the measured and defined anatomical landmarks is assumed to be as important as the distance
of the contour points to the surface. Taking a closer look at the measurement procedure suggests,
however, to introduce a parameter to balance the two components.
In an actual registration workflow, both pattern features – the anatomic landmarks (Pc) as well as
the contour points (P) – are manually measured from the region of interest using imprecise measuring
devices. The positions of the anatomic landmarks in the model (the set Qc) are determined also manually
in the operation planning phase by marking their position in the slice images of the CT or MRT scan.
During this process of measuring and defining the input data, various inaccuracies influence the actual
representation (the measured positions) of the features.
With respect to the registration method, the involved errors can be classified into two categories:
Objective errors: These are inaccuracies that depend only on the imprecisions of the measuring devices

that are used to determine the location of a point in the operation field.
Subjective errors: These are the inaccuracies that are caused by the surgeon or the medical staff by

not defining the ALs precisely in the 3D-model during in the operation planning phase or by
missing the exact position of an AL during the measurement.

The theoretical and empirical evaluation of these errors, especially the proportion of their influence on
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the deviation of the measured features to the actual positions of the features, is of great significance for
developing hybrid registration algorithms.
In this chapter, different error types and their influence on hybrid registrations are investigated in theory
and in experiments. Based on this studies, parameters are deduced and suggested to weight the two
features in the objective function of a hybrid registration algorithm. In Chapter 5, we have presented
algorithms that were especially designed to take weighting parameters into account.

7.1 Measurement Errors and Hybrid Registration Algorithms

In an ideal setting – in the absence of any errors or noise – there is a rigid body transformation
t : R3 Ñ R3 so that ~h ptpPcq, Qcq � 0^ ~h ptpPq, Sq � 0.
As objective and subjective errors influence the representation of the measured features and the defined
positions in real applications, the value of the objective function is usually larger than 0 at its minimum.
Let ηptq be the error term that accounts for the distance of the transformed anatomic landmarks to their
counterparts in the model and let µptq capture the deviation of the transformed set P to the surface S,
hence

ηptq :� ~h ptpPcq, Qcq� maxpPPc minqPQc }p� q}
µptq :� ~h ptpPq, Sq � maxpPP minsPS }p� s}.

This allows us to rewrite Equation 7.1 as maxpµptq, ηptqq. Under realistic conditions the expected
magnitude of ηptq is larger than µptq, as ηptq accounts for both, objective as well as the subjective
errors, whereas only objective errors influence µptq. The term µptq is not affected by subjective errors
because a point p P P has no unique distinct target point in the model. The only constraint a rigid
motion t has to fulfill with respect to a surface point p is that tppq has to be mapped close to some
point of S.

7.1.1 Analyzing the Influence of Noise on Measured Anatomic Landmarks and on
Measured Contour Points

For this study we assume the surface S to be represented as a triangulated surface. Even if subjective
errors could be eliminated completely, it still would be reasonable to introduce a parameter to balance
the involved features in the objective, as the same deviation has a different influence on the objective
function depending on whether an anatomical landmark or a contour point was measured.
Consider the experiment of measuring a point q P R3 and let p be the point that was actually measured.
Recall that p � q only in absence of any error. We assume that the involved objective errors do not
favor certain directions, i.e., that the error of measuring a single point q can be modeled as a ball bqwith center q.
for Anatomical Landmarks The effect of noise on ηptq is equivalent to the Euclidean distance of a point

p that is randomly chosen from the interior of bq to q, see Figure 7.1 a).
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for Contour Points The effect of noise on µptq is the distance of the measured point p to the triangulated
surface S containing q – and not to q itself. We assume that the curvature of the surface S can
be neglected in comparison to the diameter of bq.
The error term µptq corresponds to the distance of p, randomly chosen from the interior of bq, to a
plane S that contains the triangle Sq of S from which q was measured. Under these assumptions,
µptq is equal to the distance of p to its orthogonal projection q̂ onto S , see Figure 7.1 b).

��
�

��̂
S�

��
�

�

a) b)
Figure 7.1: a) The distance of a measured characteristic point p to its target point q. b) The distance
of a point p to the surface S .

7.2 An Error Model for Analyzing the Deviation of Measured Points

In the following, an error model will be presented that allows to analyze the effect of noise on the
various feature types. For this study we assume that the measured features are in optimal position, i.e.,
that the identity function is optimal.
Each measured anatomical landmark pi P Pc can be represented as the defined landmark qi P Qcplus a distortion vector Xi P R3 that captures the effect of the objective error on the measurement of
qi. Likewise, every contour point p P P can be represented as a point s P S plus a distortion vector
Xs P R3.
The process of measuring a point q P R3 can be seen as a random experiment, where an elementary
event (the distortion vector) Xq is drawn from the universe R3 of all possible distortion vectors. Let
Y pXqq be the random variable that maps a distortion vector Xq to its length, i.e., Y pXqq � }Xq}, where
} � } denotes the Euclidean norm. In this study, we assume that the distribution of the objective errors
does not favor certain directions of the distortion vectors. That is, we assume that the isosurfaces of the
probability distribution function of Y are spheres with center q.
To quantify the effect of noise on the individual components ηptq and µptq of the objective function, the
expected magnitudes of these components within this random experiment are calculated.
Theorem 18. The expected value of the distance of a measured anatomic landmark pi P Pc to its
corresponding landmark qi P Qc in the model (the expected magnitude of ηptq) is twice as large as the
expected distance of any measured contour point p P P to its closest point on the plane containing the
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Figure 7.2: Illustration of the influence of Xq for contour points.

triangle Sp from which p was measured (the expected magnitude of µptq):
@ pi P Pc @ p P P Er}tppiq � qi}s � 2 � Er~h �tppq, Sp�s.

Proof. Let q be the point that was measured and let p be its distorted representation, i.e., p � q� Xq.The assumption that the isosurfaces of the probability distribution of Y pXqq are spheres around q allows
us to fix the distance }q�p} to a constant r and analyze the effect of distortion vectors of this magnitude.
With respect to the described random experiment, we are now restricted to choose Xq uniformly from
the sphere centered in q with radius r . The proportion of the expected values that contributes to ηptq
and µptq is invariant to the choice of r which allows to set r to 1.
In case of anatomic landmarks, the distortion vector contributes with its whole length to ηptq, as ηptq is
defined to be the Euclidean distance }q� p} of the two points:

Er}q� p}s � Er}Xq}s � r � 1.
The analysis for a measured contour point is a bit more involved. The magnitude in which Xq contributes
to µptq depends on the distance of p to its closest point p̂ on the plane Sp that contains the triangle of
S that in turn contains q, see Figure 7.2.
We need that the curvature of S is negligible compared to the diameter of the sphere with radius 1
around q to ensure that the distance }p� p̂} actually approximates the distance of p to S. To analyze
the expected value Erminp̂PS }p � p̂}s we cut the upper half of the unit sphere around q into rings of
height ∆x . The area A of a ring can be expressed as A � 2π?1� x2∆l where ∆l � ∆x?1�x2 denotes
the arc length of a ring and x is the height of the ring over Sp, see Figure 7.3.
We have that

A � 2πa1� x2 ∆l � 2πa1� x2 ∆x?1� x2 � 2π ∆x.
We now can express Erminp̂PS }p� p̂}s as the following integral:

Erminp̂PS }p� p̂}s � 1
2π

1»
0

2π x dx � 1
2x2���10 � 1{2.
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∆� ∆� = ∆�√1 − �2

Figure 7.3: A height ring of the upper half-sphere.

[\

This analysis shows that it is reasonable to introduce a weighting parameter of at least c � 2 to a
combined objective function of the form

maxpc µptq, ηptqq,
even if subjective errors could be ignored completely.

7.3 Empirical Experiments

The results of the theoretical studies have been verified by empirical studies. These studies have
been conducted in cooperation with PD Dr. Olaf Suess and Dr. Sven Mularski from the Klinik und
Hochschulambulanz für Neurochirurgie, Charité-Universitätsmedizin Berlin and Robert Günzler and
Udo Warschewske from Prosurgics Ltd..

7.3.1 Experimental Setup

Preoperative
The empirical data was acquired based on routine use of neuronavigation in 15 patients with intracranial
lesions. An MRT 3D navigation image dataset was generated preoperative for all patients. This dataset
consists of a 3D MP rage sequence with isotropic voxels of 1mm long edges. Seven fiducial markers were
previously affixed to the patient’s head in a distribution that was as nonlinear as possible, using a two-
component technique (self-adhesive skinpad and removable fiducial marker-fastener). The image-data
processing and autosegmentation was performed with the navigation software Guideline (Prosurgics,
Berlin, Germany). This navigation system performed the segmentation of the skin and brain surfaces, as
well as the extraction of the positions of the fiducial markers. Additionally, several anatomic landmarks
were located, among them three particularly suitable landmarks:
AL1 the outermost right eye corner,
AL2 the root of the nasion,
AL3 the outermost left eye corner.

Their positions were indicated on the slice image planes and on the 3D representation of the model,
see Figure 7.4.
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a) b) c)

Figure 7.4: a) the position of the fiducial markers. b) the position of AL1–3. c) a set of suitable anatomic
landmarks (gray) and contour points (black). [Illustration by permission of Prosurgics Ltd.]

Intraoperative
The intraoperative navigation was performed with an electromagnetic, sensor-based measuring technique
(miniBIRD, Ascension Technology Corp., Burlington, Vermont, USA). After placing the patient on the
operating table, the patient’s head was fixed in a Mayfield support1. The comparative image-data
registration took place in two steps:

1. a conventional fiducial marker registration (as described in Section 1.4.1) was performed by
sequential measurement of the fiducial positions with a navigation stylus,

2. the anatomic landmark positions as well as several freely chosen contour points on the scalp
surface were measured in a similar way.

7.3.2 Measuring Deviation

First, the measured anatomical landmarks and contour points are mapped into model space by the
computed fiducial registration.
The deviation of an anatomical landmark is approximated by the Euclidean distance of its measured
position in the pattern space to its defined position in the model space.
The deviation of a contour point is determined by the distance of the measured point to the closest voxel
of the model that has been classified as skin in the skin segmentation process. A voxel is here modeled
as a ball with a radius r that depends on the resolution of the underlying MRT image, r � 0.5mm for
the images used in this study. The distance of a contour point p to the surface is consequently defined
to be maxp0, }p� s} � rq, where s is the center of the voxel closest to p.
The adjustment parameters c that are suggested in the following section are based on the quotient of
the average deviation of the measured anatomical landmarks and the average deviation of the measured

1a device in a ring like shape in which screws allow to fix the head of a patient so that the position remains invariant during
the course of the operation
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contour points.

Note on the Influence of the Aligning Fiducial Registration

The transformation with whitch the operation theatre is mapped to the model was computed based on a
conventional fiducial registration method. Neither the anatomical landmarks nor the contour points have
been used to compute this registration. The registration itself has influence on the measured deviations,
due to inaccuracies of the involved devices that affect this registration process.
For this study, the error that is caused by the fiducial registration is regarded as an additional objective
error, as it influences both, the measurement of the anatomic landmarks and the measurement of the
contour points. The adjustment parameter that are suggested in the following evaluations should be
regarded as pessimistic estimates because of the described inaccuracies.

7.3.3 Results

First, the results of 11 of the 15 data sets are presented that contain the standard landmarks AL1, AL2,
and AL3, that were introduced in Section 7.3.1. In the second analysis, all data sets are considered
and structured by the number of measured anatomical landmarks and the number of measured contour
points.

Results for Data Sets Containing AL1, AL2 and AL3

An overview of the distances of the measured anatomic landmarks AL1, AL2, and AL3 from their defined
positions in the model for 11 data sets is shown in Table 7.1 together with the average fiducial regis-
tration error (FRE) of each data set. The fiducial registration error is the root mean square distance of
the measured fiducial markers after being mapped in the model space to the detected fiducial positions
in the model. The FRE is an indicator for how good this particular data set has been aligned, i.e., the
larger the FRE the more noise influenced the registration process. The average deviation of anatomical
landmarks AL1, AL2 or AL3 from their defined position is 7.24mm over all relevant data sets.

1 2 3 4 5 6 7 8 9 10 11 AVG
∅ FRE 3.02 2.18 1.49 2.78 1.35 2.26 2.71 2.31 2.08 1.63 2.36 2.20

AL1 4.34 8.51 2.12 7.72 7.31 13.01 7.36 15.29 14.93 11.03 6.15 8.89
AL2 9.32 3.36 2.71 10.66 0.72 8.73 3.63 5.75 7.05 6.39 4.87 5.75
AL3 7.48 3.14 2.23 6.99 4.38 10.83 7.91 11.39 6.3 8.53 8.65 7.07
AVG 7.05 5.0 2.35 8.45 4.14 10.86 6.3 10.81 9.43 8.65 6.55 7.24

Table 7.1: Measurement results for eleven data sets: average FRE, deviation of AL1, AL2 and AL3 (all
values in [mm]).
Table 7.2 shows the deviation of these three landmarks compared to the minimal, maximal and average
deviation of the contour points, differentiated by the number of measured contour points. Each row
contains the values for the number of measured contour points indicated in the first column. The
number in braces in the first column denotes the number of data sets that were considered in that row;
a data set was considered if it contained a sufficient number of measured contour points. For each
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data set the average distance of the first i measured contour points to their closest surface voxel after
registration was evaluated and the minimal, maximal and average values are shown in columns two to
four.

avg dist CPs surface c = avg ALs / avg CPs
#CPs min max avg min max avg

¤ 1 [11] 0.0 6.59 1.87 0.96 655.48 85.6
¤ 2 [11] 0.32 3.44 1.44 1.83 13.09 6.85
¤ 3 [11] 0.21 3.04 1.41 2.61 19.64 7.76
¤ 4 [11] 0.16 3.6 1.42 1.75 19.75 7.77
¤ 5 [11] 0.13 3.85 1.54 1.64 18.69 7.4
¤ 6 [11] 0.39 3.27 1.56 1.93 9.32 5.58
¤ 7 [11] 0.34 2.8 1.49 2.25 10.5 5.75
¤ 8 [11] 0.3 3.12 1.45 2.02 11.67 6.11
¤ 9 [11] 0.46 2.77 1.49 2.27 13.13 5.83
¤ 10 [11] 0.55 3.05 1.58 2.07 12.91 5.59
¤ 11 [11] 0.53 3.21 1.62 2.27 13.28 5.59
¤ 12 [11] 0.74 3.16 1.65 2.02 12.87 5.4
¤ 13 [11] 0.73 2.97 1.62 2.18 9.85 5.13
¤ 14 [11] 0.69 2.76 1.64 2.02 9.0 4.99
¤ 15 [11] 0.65 2.59 1.61 2.16 8.77 4.91
¤ 16 [11] 0.61 2.52 1.55 2.15 8.93 5.08
¤ 17 [11] 0.57 2.37 1.49 2.25 8.59 5.2
¤ 18 [11] 0.71 2.53 1.53 2.38 7.81 4.96
¤ 19 [10] 0.68 2.39 1.52 2.33 8.25 4.98
¤ 20 [10] 0.81 2.27 1.57 2.26 8.68 5.3
¤ 21 [10] 0.86 2.2 1.58 2.29 8.21 5.27
¤ 22 [10] 1.0 2.4 1.64 2.24 7.17 4.99
¤ 23 [10] 1.01 2.48 1.67 2.26 6.97 4.84
¤ 24 [8] 1.05 2.38 1.68 2.21 6.69 4.77
¤ 25 [8] 1.27 2.36 1.78 2.21 6.33 4.69

Table 7.2: Min., Max. and Avg. values of the average distance of the contour points to the surface (in
[mm]) and the resulting weighting parameter c. The numbers in braces in the first column indicate how
many data sets were relevant for collecting the values of this row.
In columns five to six of Table 7.2 the minimal, maximal and average quotient of the average deviation
of the anatomic landmarks AL1, AL2 and AL3 (see Table 7.1) and the average distance of the first i
contour points is shown.

Results for Data Sets with Arbitrary Anatomic Landmarks

In clinical practice it is not always possible to measure all three described anatomic landmarks AL1,
AL2 and AL3. Sometimes less than three landmarks or only landmarks at positions other than AL1, AL2
or AL3 are accessible. The resulting adjustment parameters for arbitrary anatomic landmarks can be
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discerned from Table 7.3. The columns of Table 7.3 are ordered increasingly by the number of measured
anatomic landmarks and the rows are ordered increasingly by the number of measured contour points.

#ALs
#CPs 1 2 3 4 5

1 3.0 [15] 3.36 [13] 3.38 [12] 3.18 [8] 2.48 [5]
2 4.12 [15] 4.37 [13] 4.46 [12] 4.91 [8] 4.42 [5]
3 3.86 [15] 4.14 [13] 4.3 [12] 5.14 [8] 4.23 [5]
4 3.56 [15] 4.04 [13] 4.37 [12] 5.2 [8] 3.96 [5]
5 3.44 [15] 3.8 [13] 4.07 [12] 4.74 [8] 4.19 [5]
6 3.4 [15] 3.82 [13] 4.06 [12] 4.9 [8] 4.33 [5]
7 3.53 [15] 3.89 [13] 4.19 [12] 5.23 [8] 4.57 [5]
8 3.6 [15] 3.98 [13] 4.29 [12] 5.27 [8] 4.54 [5]
9 3.6 [15] 3.89 [13] 4.2 [12] 5.32 [8] 4.56 [5]

10 3.24 [15] 3.61 [13] 3.91 [12] 4.84 [8] 3.95 [5]
11 3.24 [15] 3.55 [13] 3.84 [12] 4.76 [8] 3.94 [5]
12 3.21 [15] 3.51 [13] 3.79 [12] 4.7 [8] 3.77 [5]
13 3.3 [15] 3.59 [13] 3.87 [12] 4.74 [8] 3.93 [5]
14 3.29 [15] 3.56 [13] 3.82 [12] 4.9 [8] 4.08 [5]
15 3.23 [15] 3.62 [13] 3.88 [12] 4.85 [8] 4.16 [5]
16 3.36 [15] 3.75 [13] 4.01 [12] 5.05 [8] 4.28 [5]
17 3.44 [15] 3.86 [13] 4.16 [12] 5.21 [8] 4.42 [5]
18 3.43 [15] 3.81 [13] 4.08 [12] 5.04 [8] 4.27 [5]
19 3.43 [15] 3.83 [13] 4.1 [12] 5.12 [8] 4.49 [5]
20 3.51 [14] 3.94 [12] 4.21 [11] 5.28 [8] 4.66 [5]
21 3.52 [14] 3.92 [12] 4.18 [11] 5.18 [8] 4.5 [5]
22 3.4 [14] 3.78 [12] 4.04 [11] 4.97 [8] 4.4 [5]
23 3.39 [14] 3.74 [12] 3.99 [11] 4.87 [8] 4.34 [5]
24 3.34 [13] 3.69 [12] 3.93 [11] 4.82 [8] 4.31 [5]
25 3.33 [11] 3.74 [10] 3.92 [9] 4.88 [7] 4.22 [4]

Table 7.3: Average quotient of the deviation for anatomic landmarks and contour points. The numbers
in braces in indicate how many data sets were relevant for the cell.
Most hybrid registration algorithms that are designed for computing transformations based on exactly k
anatomical landmarks, try all combinations of choosing k landmarks from the set of measured landmarks,
given that more than k landmarks were measured and defined. Therefore, a cell in the ith row and
the j th column of Table 7.3 contains the average quotient of the average distance of the best (closest)
j landmarks and the average distance of the first i measured contour points over all relevant data sets.
Only those data sets were considered for a cell that contained at least i measured contour points and
at least j measured landmarks. The number in braces denotes the number of data sets that satisfy the
constraints of a particular cell.





Chapter 8
Implementation
Along with the theoretical research that has been presented in the first part of this thesis, a framework
named RegistrationToolKit has been developed to realize proof of concept implementations of most
of the registration algorithms that we introduced in the previous chapters. The framework and the
algorithms implemented in RegistrationToolKit currently comprise 30, 397 lines of code and provide
a vast set of functionalities and methods, among them:

• a library for elementary geometric computations and operations that are common for many rigid
motion registration algorithms,

• a user interface to set all parameter of the algorithms and to start and control the computation
• a visualization interface that allows to illustrate geometric primitives, triangulated surfaces and

voxel models for visualizing registration results,
• introducing standardized representation formats for models, input files and registrations.

The framework itself as well as the implemented algorithms are written in the programming language
C++ using the free and platform independent Qt library [39] (developed by Nokia) to realize the user
interface and OpenGL for visualizing geometric primitives.

In this chapter, we give an overview over the concept and the general design of the framework and some
of its functionalities.

8.1 Requirements

The general idea that lead to the development of the RegistrationToolKit framework is to provide a
consistent and standardized environment in which registration algorithms can be implemented, tested
and evaluated. The focus of the concept and design is on supporting the following key functionalities:

1. to introduce standard input formats so that different algorithms or implementations can be applied
on the same data set,
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2. to provide an intuitive user interface that allows to test and apply the implemented algorithms,
3. to introduce common interfaces between the implemented algorithms so that algorithms can be

called comfortably as subroutines within other algorithms,
4. to be able to evaluate the performance and quality of different algorithms in the same environment

(e.g., by using the same library for elementary geometric operations),
5. to make the implementation of an algorithm independent of its visualization, i.e., to allow to call

the algorithm without any visualization context,
6. to introduce a lightweight messaging service to allow an implementation to interact with its

environment (e.g., a medical navigation system)
7. providing a suitable set of operations/functions to handle standard tasks that usually surround

implementations of registration algorithms (e.g. for reading models, visualizing results, storing
registrations).

8.2 The Framework

The RegistrationToolKit framework consists of several components that are shown in Figure 8.1.

Graphical
User

Interface

Geometric
 Library

Algorithms

Algorithm 1 Algorithm 2 Algorithm n...

Algorithm
Controller

Visualization
Controller

3D 
VisualizationLog

Log
Controller

R�����������T���K��

Figure 8.1: High level block diagram of the components and relations of the components of Registra-
tionToolKit.

The three main components are the set of implemented algorithms, the library of geometric methods
and functions and the graphical user interface (GUI). The Interaction between the algorithms and the
components of the user interface and some other aspects of the framework are discussed in the following
section.
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Input Formats

Most of the algorithms that are implemented in the framework compute point-to-surface registrations.
Some of the algorithms that are presented in the theory part distinguish between triangulated surfaces
and models that are represented as voxel data. In the implementation this differentiation is circumvented
by introducing a common abstract (in c++ jargon virtual) superclass Model that is extended by two
classes named TriangulatedModel and VoxelModel.

virtual precision getDirectedHausdorffDistancePointsToModel(…)
virtual precision getClosestPoint(…)
virtual precision optimizeForMultiplePointQueries()
...

Model

precision getDirectedHausdorffDistancePointsToModel(…)
precision getClosestPoint(…)
precision optimizeForMultiplePointQueries()
...

TriangulatedModel
precision getDirectedHausdorffDistancePointsToModel(…)
precision getClosestPoint(…)
precision optimizeForMultiplePointQueries()
...

VoxelModel

Figure 8.2: UML-diagram of the abstract Model class and two of its implementations.

All methods and functions through which algorithms can interact with models (surfaces) are defined
abstract in the Model class and hence force their implementation in all classes that inherit from this
class. By this abstraction it is not necessary to distinguish the type of model in an algorithm. The
implementation details that require knowledge about the geometric structure of the model are hidden
in the specific implementation of the respective methods of the specific model type. Another advantage
of this this approach is that the implemented algorithms can directly be applied to other surface types
without the need of changing the algorithmic code. All that has to be taken care of, is to implement
another surface class that extends the Model class which has to implement all methods of Model that
are declared virtual.
Some of the abstract geometric functions that are defined in the Model class are:

• getDirectedHausdorffDistancePointsToModel(const QList<Point3D*> &points)
which returns the directed Hausdorff distance of a point set given by a constant reference to a
list points to the model.

• getClosestPoint(const Point3D &point)
which returns the point of the model that is closest to a query point given as a constant reference
to a point point.

• optimizeForMultiplePointQueries()
the function is called whenever multiple queries of the above listed methods are intended. Calling
this function indicates that it is reasonable to invest preprocessing time in building data structures
that support fast point location queries so that the aforementioned methods can be processed faster.



96 Chapter 8. Implementation

User Interface

The main window of the user interface of the RegistrationToolKit framework is subdivided into tree
parts:

1. an area in which algorithms can be selected and their properties (e.g., approximation parameter)
can be specified [see Elements 2-4 in Figure 8.3],

2. an visualization region in the center of the window [see Element 5 in Figure 8.3],
3. a section in which the elements of the visualization can be manipulated [see Elements 7,8 in

Figure 8.3] as well as a log in which messages that are produced during the computation of the
current algorithm are shown [see Element 6 in Figure 8.3].

1) toolbar for frequent functions

2) list of all
implemented 
algorithms

3) description 
of selected 
algorithm

3) list of all 
properties of 
the selected 
algorithm

4) description 
of the 
selected 
property

5) visualization area 6) protocol (log) of the current algorithm

7) list of all
visualization
elements

8) properties of 
the selected 
visualization 
element

Figure 8.3: Screenshot of the RegistrationToolKit user interface.

An usual workflow for applying an algorithm in RegistrationToolKit is the following: after starting
the program, an algorithm is chosen from the list of all algorithms [Element 2]. Selecting an algorithm
from this lists causes that a detailed description of this algorithm is shown in a field [Element 3] just
below the list of all algorithms. Also, all properties, variables and settings of the selected algorithm are
shown in a list-style [Element 4].

A property can
• ask for a file/destination, e.g., an input file in which a (voxel-/triangulated-) model is specified or

input points are stored,
• ask to specify a numeric value, e.g., the level or recursions or the approximation parameter,
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• ask to set a flag, e.g., whether or not a random rigid motion should be applied to the measured
points.

Default values are suggested for each property except for those properties that ask for files. When
a property is clicked on, a detailed description of its influence on the algorithm is shown in a field
[Element 5] below the parameter list. After selecting the desired algorithm and after specifying its
parameters, the ’play’ button in the toolbar [Element 1] is selected, which starts the selected algorithm.
Depending on the implementation of the selected algorithm, a progress bar at the bottom of the main
window is shown to indicate the progress of the computation and the log area [Element 6] in the lower
right part of the window displays status messages that are emitted by the implementation during the
computation phase.
During or after the computation, geometric objects that are involved in the computation of the algorithm
(e.g., the model, the measured characteristic points and the matched characteristic points) are visualized
in the OpenGL component [Element 5] in the center of main window. Dragging the mouse in this field
changes the viewpoint and using the mouse wheel allows to zoom onto the focused object. The element
that is focused on can be selected by double-clicking the element in the list of all visualization elements
[Element 7].

Library of Geometric Functions

Part of the framework is a library of geometric functions that are commonly used in the context of rigid
motion registration. All functions of the class ElementTools (the implementation of the library) are
defined static, implying that they can be used within any context, in particular without the need to
instantiate an algorithm. Most geometric functions that compute intersections or projections are based
on solving linear equations that result from a linear algebra formulation of the solution.
These are some of the functions provided by the class ElementTools:
rotateAroundAxis(const Point3D &origin, const Point3D &direction, precision angle)

returns an four by four matrix of type Matrix44 that corresponds to the rigid motion transformation of
a rotation by an angle of alpha around a line that contains the point origin and has the direction
vector direction.
getAligningRigitMotion(Point3D p1, Point3D p2, Point3D q1, Point3D q2)

returns an four by four matrix of type Matrix44 that corresponds to the rigid motion transformation t
that transforms the points p1 and p2 so that the midpoints of the line segments p1, p2 and q1, q2 are
congruent and that the line through p1 and p2 is congruent to the line through q1 and q2 and addi-
tionally tpp1q is closer to q1 than to q2. This operation is commonly used by registration algorithms
that compute (approximative) semioptima for two available characteristic points, see Chapter 3.
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getDistanceOfPointToTriangle(const Point3D &point, const Triangle &triangle)

returns the distance of the point point to the triangle triangle, which is defined as the Euclidean
distance of point to the closest point on the triangle. The implementation of this function is a bit
involved as one has determine on which facet the closest point to point is. The closest point can lie
in the interior of the triangle (2-facet), lie on an edge (1-facet), or be one of its corners.
getClosestPointInTriangle(const Point3D &point, const Triangle &triangle)

returns the point of the triangle triangle that realizes the shortest distance to the point point, see
also getDistanceOfPointToTriangle(...).
computeIntersectionsOfCircleWithBox(const Circle &circle, const AABox &box,

QList<Point3D> &intersections)

returns the number of intersections of the circle circle with the axis aligned box box. The intersection
points are computed by equalizing the equation representing the circle with the equations of the six
rectangles that define the box. A circle can have between 0 and 12 intersections with a cube. The
intersections are stored in the container intersections, if the circle intersects the box.
getIntersectionOfPlanes(const Point3D &ao, const Point3D &an, const Point3D &bo,

const Point3D &bn, Point3D &ro, Point3D &rd)

returns false if the plane a represented by the position vector ao and normal vector an is parallel to
the plane b defined by the position vector bo and normal vector bn (i.e., if an and bn are parallel).
Otherwise, the function returns true and additionally stores in ro the position vector and in rn the
direction vector of the line aX b.
getClosestPointsOnCircleToLine(const Circle &circle, const Line &line,

QList<Point3D> &points)

returns the number of points on the circle circle that minimize the Euclidean distance of the circle to
the line. These points are stored in the collection points. A circle can have one closest point to a line
(if they touch or do not intersect) or can have up to two closest points if the circle and the line intersect.
This function is for example used by the point-to-line registration algorithm described in Chapter 2.

Messaging System

The framework consists of several components (see Section 8.2) that need to interact. Deciding how to
realize the control- and information flow as a common and reoccurring problem in software development.
The interaction between the components in RegistrationToolKit is realized using the observer and the
inversion of control design pattern [21]. These design pattern describe how the information flow is
organized between a set of objects that want to react on a change of an internal state of a specific
other object O. The central idea of this pattern is to provide the observing objects with a mechanism
to register themselves at the object O that is to be observed. Whenever O changes an internal state it
notifies all registrated observers.
In RegistrationToolKit, a certain variant of these pattern is used: for each specific state type (e.g. states
that indicate a certain progress of the computation of a geometric algorithm) a so-called controller is
introduced. Status changes of a specific type are communicated using specific implementations of the
abstract Message class, see Figure 8.4. A change of state that for example indicates a progress change
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of the computation of a registration is communicated by an instance of the AlgorithmMessage class.

QString getName();
QString getDescription();
QDateTime& getTimeStamp();
...

Message

Algorithm* getAlgorithm();
...

AlgorithmMessage
QColor getColor();
...

LogMessage

int getMinRange();
int getMaxRange();
int getValue();
...

ProgressMessage
VisualizationWidget* getWidget();
VisualizationElement* getElement();
...

VisualizationMessage

Figure 8.4: UML diagram of the Message class and all its implementations.

The objects that are interested in observing status changes of this specific type register to the cor-
responding controller. Whenever an internal state of an object O changes, a new message of the
corresponding type is generated by O and delivered to the controller using the signal-slot technology
provided by Qt. The controller than broadcasts this message to all of its registrated observers, see
Figure 8.5.

Observed Object O

emit message

Controller

broadcast message

Observer Object 1

receive message

Observer Object 2

receive message

Observer Object n

receive message

status changes

Figure 8.5: Diagram indicating the message delivery in RegistrationToolKit.

In RegistrationToolKit, four different massage types (classes) are distinguished:
AlgorithmMessage for communicating changes of the computation state, e.g., that the computation
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stated, or an error occurred, or the computation has finished.
LogMessage to communicate text messages that are to be displayed in a log.
VisualizationMessage to manage visualization elements, e.g., to add/remove/focus on an element to

the OpenGL frame, see also next section.
ProgressMessage to indicate the progress of a computation, usually to control a progress bar that

gives visual feedback of the current status of the computation.

Implementation vs. Visualization

An important conceptual decision in frameworks in which algorithms are implemented and visualized
is, how to uncouple the implementation of an algorithm from its visualization. It is desirable to be able
to call the implemented algorithms without any visualization context, e.g., in a command line program
or capsulated in a modul or library.
One naïve solution is to introduce an internal state that stores the information whether or not a visu-
alization context is given and only if this flag is set, specific visualization functions are called. This
approach would result in code that mixes potentially highly optimized algorithmic code with visual-
ization code which is not necessary at all to solve the algorithmic problem and is potentially never
executed.
In RegistrationToolKit, visualizations are realized by exchanging messages (see previous section) be-
tween the class that contains the implementation of an algorithm and the framework (to be more precise:
the visualization module of the framework). A two level uncoupling (described in the following by an
example) is recommended to allow that the class that contains the actual algorithmic code for solving the
specific geometric task does not contain any code for exchanging messages that deal with visualization
issues. In Appendix B the implementation of an algorithm and its visualization is presented for further
illustration.

Two level uncoupling by example
The framework provides an abstract class Algorithm that defines central functions of an algorithm,
such as:

• run() to start the computation (more precise: a new thread is created that starts the algorithm)
and

• reset() to reset all internal states, which is called before the algorithm is started.
This class also contains a member variable that stores a collection of AlgorithmPropertys which
define the parameters (e.g., approximation parameters) of the algorithm.
Let MyAlgorithm be a class that implements an algorithm that is to be made available in the framework.
In order to introduce this algorithm to the framework, MyAlgorithm has to extend (inherit from) the
class Algorithm.
To visualize the geometric objects that are used by MyAlgorithm a new class, by convention named
MyAlgorithmVis, is introduced that in turn inherits from MyAlgorithm. Instead of adding MyAlgorithm
to the set of available algorithms of the framework, an instance of MyAlgorithmVis is added.
When the computation of an algorithm is triggered (see the user interface paragraph of this section),
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Figure 8.6: Flow diagram of the visualization process.
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the run() function of the currently selected (in this case of MyAlgorithmVis) algorithm is called.
Calling the run() method of MyAlgorithmVis actually calls the run() method of MyAlgorithm as
the wrapper class (MyAlgorithmVis) by convention does not overwrite this function (or is assumed to
call run() of its super class).
At the end of the geometric computation, an algorithm (here: MyAlgorithm) is expected to emit a cor-
responding AlgorithmMessage. This message is received and distributed by the algorithm-controller
component of the framework to all registrated listeners (making use of the observer design pattern). All
algorithms that are introduced to the framework are automatically registrated as listeners to this message
type and hence the instance of MyAlgorithmVis also receives this message. After MyAlgorithmVis
receives this message and by that detects that the geometric computation of its superclass is completed,
a private function is called that takes care of the actual visualization of the geometric objects that are
defined protected in MyAlgorithm. The visualization itself is usually done as follows: each geometric
object that is stored as a protected member of MyAlgorithm (by that accessible by all classes that
inherent from MyAlgorithm) and that is to be visualized is converted to its visualizable counterpart
and send to the visualization-component of the framework by a VisualizationMessage, see Figure 8.6.

Visualization of geometric objects
Each geometric primitive (such as points, lines, triangles, circles, models, . . . ) that are part of the
computation of a geometric algorithm has a counterpart that allows its visualization in an OpenGL
context. Each class that represents a visualizable geometric object has to extend an abstract class
VisualizationElement which enforces the implementation of a function void paint(...). The
object is drawn by calling this function with the OpenGL component on which it is to be drawn.

We will demonstrate the visualization capability of a geometric primitive by the example of the class
Circle.
The class Circle only stores the information about its center, its radius and a normal vector of the plane
in which the circle lies. The class CircleVis extends from Circle and VisualizationElement and
hence implements the paint(...) function which draws the circle on the given widget, see Figure 8.7.

VisualizationElement();
virtual void paint(VisualizationWidget *widget);
...

VisualizationElement
protected Point3D c;
protected Point3D axis;
protected precision r;

public Circle(){}
...

Circle

public CircleVis(const Circle &circle);
public CircleVis(const Point3D &center, const Point3D &axis, const precision radius);

public void paint(VisualizationWidget *widget);
 ...

CircleVis

Figure 8.7: UML diagram of the relation between the Circle, CircleVis and
VisualizationElement classes.
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8.3 A Word About Precision and Data Types

Implementations of geometric algorithms have to deal with the problems of precision and numeric sta-
bility. As computers have finite storage and memory, it is not possible to store the exact values of all
numbers that occur during a computation in any number system. Ignoring this problem by using finite
precision representations will introduce rounding errors that propagate throughout the computations of
an algorithm and might significantly alter the final result, e.g., by changing the topology of the result.

There are several ways to address this problem, thee typical strategies are:
1. using floating point arithmetic to represent values,
2. using a library that provides data types with variable (adaptive or definable) precision,
3. using computer algebra systems/libraries that provide methods for symbolic computing.

In RegistrationToolKit the first option – floating point arithmetic – is used to realize the computations
that occur during the registration algorithms. The main reasons for this decision are:

Topology of the Involved Geometric Objects

The considered registration algorithms do not require a stable topology of the involved geometric objects.
The objective functions that are minimized are point–to–surface distance measures; more precisely
Hausdorff distances or variants of it. In this registration setting: the objectives are aggregates of point–
to–feature distance functions where features here are either points, lines or triangles. The algorithms
handle these features separately, i.e., even if the set of triangles constitute to a connected triangulated
surface, the topology of that surface is not considered during the computations. Therefore, representing
triangles (lines, points) using finite precision arithmetic coordinates could change the topology of the
represented object but this does not significantly influence the necessary distance computations.

Requirements of the Cooperation Partner

A central motivation for implementing the algorithms that are presented in the first part of this thesis was
to integrate them in real world medical navigation systems. The cooperation partner Schaerer Mayfield
Technologies GmbH later taken over by Prosurgics Ltd. Germany required to use no additional libraries
(but Qt) for license and license fee reasons. It turned out, that medical navigation systems that are
currently in use internally also use finite precision arithmetic, see also next section.

Resolution and Precision of the Input Data

The algorithms that are implemented in this framework are designed to be used in real life medical
navigation systems. In these settings, imprecision and rounding errors are already introduced by the
coarse resolution of the input and the imprecision of the measuring devices. These errors exceed the
imprecision that is caused by the use of finite precision data types by several orders of magnitude.
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The unit that is internally used to store all geometric values and variables is millimeter (mm), i.e., a
point with the coordinates p2.0, 1.0, 3.0q is located 3mm in x-direction, 1mm in y-direction and 3mm in
z-direction from the origin.
The most commonly used format for storing floating-point values is the IEEE-754 format. The unit in last
place (ULP) of a number format is the absolute value between the true number and its representation
in the considered format. In the IEEE-754 format in single precision (data type float in C++) the ULP
of numbers that have an exponent of 0 is � 10�7 and in double precision (data type double in C++)
the ULP is � 10�16.
In contrast, the resolution of standard clinical magnetic resonance imaging (MRI) systems is about 1mm
and the resolution of common computed tomography (CT) systems is about 0.5mm. Modern (electro
magnetic or optical) tracking devices with which points can be measured in the operation theatre also
have a precision of about 1.8mm.
Comparing the inaccuracies that are due to imprecise inputs with the rounding errors that are caused
by finite value representations shows that it is reasonable to use finite precision data types as the
induced imprecision is negligible for problem instances in praxis.
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Conclusion and Future Work
In this thesis, a geometric problem has been studied that is of significant relevance in the context of
modern computer assisted surgeries. The problem is to compute a mapping from an operation theatre to
a model space that contains a 3D-model of the relevant anatomical area of a patient. Such a mapping,
in this context also called registration, is a central component of medical navigation devices. These are
systems that support the surgeon during an operation by projecting the currently used surgical instru-
ment into the model at the correct relative position within the correct relative orientation. Navigated
surgery is especially used during neurosurgical interventions where the tissue on which the operation
is performed is typically occluded. This technique is primarily used for rigid tissue registrations where
the point of interest (the spot where the operation is actually performed) is surrounded by rigid tissue
– usually a tumor that is surrounded by the scull.
This research was motivated by the aim to enhance the reliability, to increase the stability of the
computed registration, to improve the comfort for patient and medical personnel and to widen the
application area of the currently used systems. Furthermore, we aimed for methods of resolution for
the challenging task of computing soft tissue registrations. This problem is significantly harder than
the problem of computing rigid tissue registrations, as one has to deal with local non-rigid tissue
deformations, time dependencies (due to respiration) and the inability to fix reference points.
A conceptually new strategy has been investigated and evaluated in the light of the aforementioned
applications: hybrid registration methods. These are registration techniques where the mapping problem
is reduced to a series of (at least two) geometric matching problems which are interdependently and
simultaneously solved to gain a solution for the initial question. The input for the individual geometric
matching problems are: geometric features measured from the operation theatre on the one hand and
geometric features defined in the model space on the other hand. Typically, the input differs semantically
(anatomical landmarks or surface points) and with respect to the feature type (point sets or surface).
The underlying hypothesis that has been studied throughout this thesis is:

Are hybrid registration methods appropriate techniques to solve real life registration prob-
lems as they occur in the context of navigated surgery?
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9.1 Contribution

The contributions of this thesis can be classified in three groups:
1. The development and analysis of exact and approximative registration algorithms for various

transformation classes and input types in R2 and R3 with focus on their applicability in the
context of medical navigation systems for rigid tissue registrations. The focus was especially on
algorithms that
(a) guarantee quality bounds,
(b) are able to compute all registrations of a certain quality,
(c) provide robust results,
(d) are efficient and implementable to be of practical interest.

2. The implementation of the analyzed and described strategies in an environment that is comparable
to the intended application context – medical navigation systems. The realization of the algorithms
in a framework that covers the relevant phases in the workflow of a medical navigation system
proved that the presented approaches are indeed of practical relevance.

3. A new geometric strategy has been developed to address the problem of soft tissue registrations:
non-uniform geometric matchings. This generalization of geometric matching problems allows to
compute mappings that consist of several mutually dependent and locally valid transformations
(instead of a single transformation). With this approach, it is possible to match several areas of in-
terest individually by simultaneously considering their spacial and/or chronological neighborhood
(to cover local deformations and time dependencies).

The concept of reducing the registration problem to hybrid geometric matching problems has been
proven to lead to stable, efficient (in theory as well as in praxis) and reliable algorithms that provide
quality guarantees for the computed solutions. Considering semantically different geometric sets as
input for hybrid registrations allows to combine several geometric matching techniques from the field
of computational geometry.
Consider the formulation of a hybrid registration problem, where a point-to-point matching problem is
solved for the anatomical landmarks together with a point-to-surface matching problem for the surface
points and the surface. For this setting it is possible to combine the reduction of the dimension of the
search space (due to the point-to-point matching) with the stability of the comparably harder point-to-
surface matching problem.
The presented algorithms cover a majority of the clinically relevant application fields. They are proven
to meet the quality and computation time constraints; their proof-of-concept implementations in the
developed framework support the theoretical results.
In addition to the contributions mentioned above, a further step has been made to close the gap
between the theoretical analysis of hybrid registration algorithms and their actual use in medical
navigation systems. In an empirical study about measurement inaccuracies of anatomical landmarks
and surface points, weighting parameters have been deduced, see Chapter 7. These parameters are a
crucial component for every system that uses hybrid matching algorithms to compute registrations.
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9.2 Future Work

Further Theoretical Research

The concept of hybrid registration problems can be seen as a general framework where several details
need to be specified to meet the requirements of a specific application. To solve a specific problem
instance, one has to specify these components. To clarify the choices that have been made in this thesis,
we repeat the formal definition of a hybrid registration problem.
Definition 2 (Hybrid Registration Problem).
Given:

G a class of geometric objects
distG : G� GÑ R� a distance measure on G

P � P1, . . . , Pm a sequence of geometric features with Pi P G for i P rms
Q � Q1, . . . , Qm a sequence of geometric features with Qi P G for i P rms

T a set of admissible transformations of G
f : Rm Ñ R an aggregate function

Task: Compute a transformation t P T minimizing
f �pdistG ptpPiq, QiqqiPrms

	
For the class of problem instances that have been considered in this thesis, the
class of geometric objects G was fixed to points, point sets and triangulated surfaces,
the distance measure distG in object feature space was the directed Hausdorff distance or variants of

it,
the transformation class T was fixed to rigid motions or translations,
the aggregate function f was fixed to the maximum of the individual matching result values.
Further research could extend the presented results to e.g., almost rigid affine transformations, i.e.,
affine maps with a transformation matrix that have a determinant that is almost 1. Also other distance
measures such as the root mean squared distance as well as other aggregate functions such as the
average value of the m individual matching problems could be considered.
For the challenging task of computing hybrid registration problems with a single anatomical landmark
(Chapter 4), the problem of computing an exact rigid motion registration in R3 remains open as well as
the problem of computing a polynomial-time approximation scheme.
The weighted directed Hausdorff distance as introduced in Chapter 5 is defined as the maximum of m
Hausdorff distances, where each Hausdorff distance is multiplied by a scalar. As reasonable modifica-
tions of this measure, also the average of the m sub-measures could be considered. Also non-linear
weighting methods could be considered for the individual Hausdorff distances that are involved. Again,
computing rigid motion or almost rigid affine transformation registrations in R3 remains a challenging
task with many applications in theory and praxis.
A natural candidate for extensions and further research is the promising approach of non-uniform
matchings that has been introduced to deal with local deformations in rigid body registrations or with
soft tissue registrations.
Open questions and tasks are:
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1. to find a purely geometric algorithm (not a convex programming formulation) to compute non-
uniform matchings for translations of arbitrary neighborhood graphs in the plane or in R3,

2. extend the results to rigid motion and almost rigid motion registrations in the plane and in R3,
where important subproblems are
(a) to formulate an adequate similarity measure for these transformation sets to compare trans-

formations that are adjacent in the neighborhood graph,
(b) (optionally) to generate a suitable partition of the pattern space so that there exists a non-

uniform geometric matching that satisfies a given quality bound or optimizes the quality.
Non-uniform registrations could also be extended to consider time dependencies. A direct way to
consider time in a non-uniform registration is to extend neighborhood graphs (here described for trans-
lations) to time dependent neighborhood graphs as illustrated in Figure 9.1. A time dependent neighbor-
hood graph consists of copies of regular neighborhood graphs – one for each considered time step. For
a time step t , the set S t encodes the object space distances of the registrated features. A transformation
tti of this time step is connected by edges to the transformations tt�1i and tt�1i of the transformation
in the adjacent time steps. These edges have to be sufficiently weighted to balance the constraints of
similarity between a specific transformation in consecutive time steps and between transformations in
the same time step (the weight should also depend on the length of the time span between two time
steps).

Further Empirical Research

Two interesting tasks remain open that – due to the cessation of business of a cooperation partner –
could not be completed.
Comparison of Methods on a Common Significant Data Basis
The algorithms presented in this thesis have been theoretically analyzed and their implementations
have been tested in the framework that has been designed for this purpose. It remains open to compare
the results presented here with the quality of registrations that are computed by medical navigation
systems that are currently used in praxis. In this context, it would also be interesting to compare these
approaches with other known techniques such as iterative closest point techniques (ICP), especially
testing whether a downstream ICP phase significantly increases the quality of a registration.
To be able to do the intended study it is necessary to

1. collect a significantly large set of clinical data (CT/MRT images) along with a measurement of
all geometric features that are required to compute registrations with all considered registration
methods,

2. to perform a skin segmentation/surface extraction on the raw data to gain the model to which the
measured features are registrated to (for hybrid registrations),

3. to define meaningful measures to compare the individual results as the different registration
techniques optimize different objective functions.

As we believe that these algorithms indeed improve upon the existing systems, the final step is to
integrate and test the developed algorithms in an actual navigation system. This step can only be
realized in close cooperation with an industry partner that is established in the field.
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Figure 9.1: Illustration of a time dependent neighborhood graph for time steps t � 1, t , t � 1 and t � 2.
The dashed edges connect transformations between successive time steps.





Appendix A
Algorithms Implemented in
RegistrationToolKit
In the following, several algorithms are presented that were implemented in RegistrationToolKit. A
simple example of an implemented algorithm is given in Appendix B.

Point-to-Feature Registration (Chapter 2)

Parameter to be specified by the user:
input file path to the text file in which the rotation center/points/lines (or line segments) are stored.
line registration boolean flag indicating that a point-to-line registration (or if set to false a point-to-

line segment registration) is performed.
The point-to-feature approximation algorithm that is described in Chapter 2 has been implemented for
features that are lines or line segments. The point-to-line approximation is rather simple. The central
task is to compute all critical angles which are either defined by the closest point on a trajectory to a
line, or their intersections.
If line segments are considered, the computation is slightly more involved. This is because the critical
points (angles) have to be computed based on several case distinctions. It has to be distinguished
whether

• the trajectory intersects/touches/does not intersect the line segment,
• wether none/one or both endpoints lie within the trajectory and
• whether or not the orthogonal extensions of the endpoints of the line segment intersect the

trajectory.
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Figure A.1: Screenshot of the visualization of the point-to-feature registration.
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Absolute-Error Approximations of Semioptima (Chapter 3)

In total four algorithms have been implemented to cover the absolute-error approximations that are
described in Chapter 3. Two of these algorithms perform the preprocessing, one algorithm computes
registrations based on the gird discretization technique and the forth algorithm computes registrations
based on the cylinder discretization technique.

Parameter to be specified by the user for the preprocessing of the grid based registration algorithm:
model file path to the file in which the (triangulated or voxel based) model is described.
output file path to the file in which the preprocessed data is to be saved.
µ the discretization value.
dist. threshold optional parameter t; if set to t ¡ 0 all directed Hausdorff distances ~h pc, Sq of cells c

that satisfy ~h pc, Sq ¥ t are set to 8 to ensure that only registrations are considered that result
in a quality less than t .

safety the amount (in %) by which the bounding box (unit cube) is extended to cover surrounding space
around the model. Example: if set to 100% all eight unit length boxes that surround the unit cube
are also sampled.

As O p1{µ3q point-to-model distance requests have to be performed during the preprocessing phase,
the optimizeForMultiplePointQueries() function of the model is called. This function allows
the implementation of the model to build internal data structures (e.g., quad-trees) that support fast
point-to-model distance queries. The actual implementation of this function depends on the specific
representation of the model.

Parameter to be specified by the user for the algorithm that computes a registration based on a cubical
grid discretization:
model file path to the file in which the (triangulated or voxel based) model is described, for visualization

purposes only. The surface information that is needed to compute the registration has been
extracted in the preprocessing phase of the algorithm.

pp. data file path to the file containing the pre-processed data.
point file path to the file containing the landmarks and surface point information.
char. quality flag indicating whether the objective function is the maximum of the Hausdorff distance

of the characteristic points in semioptimal position multiplied by a constant p and the best found
position of the surface points to the surface. If set to false only the Hausdorff distance of the
registrated surface points to the surface is considered.

p see char. quality.
refinement flag indicating whether perturbations of the rotation axis should be considered to potentially

gain better registration results. If set to false only semioptimal configurations are tested. The
perturbations are defined by introducing a cubical grid around the first anatomical landmark and
a spherical grid around the second. All combinations of grid point pairs (one sample from the
spherical grid one from the cubical grid) are tried as alternative positions for the characteristic
points of the model, see Figure A.2.

cube length, cube step, angle range, angle step parameter that are relevant, if refinement is set to
true. The cube length w specifies the edge length of the discretization and the angle range α
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the width of the spherical grid, see Figure A.2. Cube step defines in how many samples the cube
is subdivided in each dimension and angle step defines how many samples are to be introduced
along the latitude and longitude of the spherical grid.

The central function of this algorithm that has to be carefully implemented is the method that computes
the intersections of a trajectory with a cube of the spherical grid in R3. The intersections have to be
ordered according to the rotation angle that moves the measured point onto a boundary of a cell. Fur-
thermore, it has to be ensured that all cubes are followed in the same direction, i.e., clockwise around
the rotation axis for all trajectories.

1

p1 α

w

w

w

p2

Figure A.2: Parameter of the perturbation option of the cubic grid registration algorithm for two defined
and measured characteristic points.

Parameter to be specified by the user for the preprocessing of the cylinder based registration algorithm:
model file path to the file in which the (triangulated or voxel based) model is described.
point file path to the file in which the point sets are described (as the positions of the anatomical

landmarks have to be known at preprocessing time).
output file path to the file in which the preprocessed data is to be saved.
µ the discretization value.
safety the amount (in %) by which the outermost cylinder is extended. A value of 10% e.g. extends the

length rotation axis of the outer most cylinder as well as its radius by a factor of 1.1.
header only flag indicating weather or not only the header information of the preprocessing should be

written to the output file.
As for the grid based preprocessing algorithm, the optimizeForMultiplePointQueries() of the
model is called to optimize it for several point-to-model distance queries.
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Parameter to be specified by the user for the algorithm that computes a registration based on a cylindric
grid discretization:
model file path to the file in which the (triangulated or voxel based) model is described, for visualization

purposes only. The surface information that is needed to compute the registration has been
extracted in the preprocessing phase of the algorithm.

pp. data file path to the file containing the pre-processed data.
point file path to the file containing the landmarks and surface point information.
The central algorithmic task of this algorithm is:

1. to compute the slice and ring and the index of the initial sample for each measured surface point,
2. to find the angle intervals for which the largest sample-to-surface distance is minimal,
3. to combine the initial aligning motion with the corresponding rotations around the axis.

Registration with a Single Characteristic Point (Chapter 4)

This algorithm has been implemented twice. The first variant is described in Chapter 4.3.2 and only
considers virtual characteristic points that are taken from a sphere centered in the defined characteristic
point in the model space with radius }p� p̂}.

Here, an implementation is described that follows the description given in Chapter 4.3.1.
Parameter to be specified by the user for the approximation heuristic for a single characteristic point:
model file path to the file in which the (triangulated or voxel based) model is described.
point file path to the file containing the landmarks and surface point information.
initial motion flag indicating whether or not the measured points are initially transformed by a random

rigid motion.
max # of iterations if set to ¡ 0: max number of iterations that are performed, i.e., bound on the

number of tested sampled.
quality threshold registrations with a quality below this threshold are included in the result set.
subdivision threshold cells of the octree that organizes the subdivision of the annulus Å that have an

edge length below this threshold are not further subdivided.
A general outline of this heuristic is

1. pick a virtual characteristic point q̂ in model space,
2. call an algorithm A2 that computes registrations for two characteristic points by adding q̂ to the

input,
3. exclude/include the neighborhood around q̂ based on the quality of the registration,
4. pick a new virtual characteristic point and repeat.

In this implementation, the simple semioptimal approximation algorithm that is described in the next
paragraph is used as the nested algorithm A2. The annulus and its subdivisions and refinements is
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organized in an octree where only cells are considered, that fall within or intersect the annulus. The
next virtual characteristic point is chosen as the center of the first leaf (in BFS order starting at the root)
cell of the octree that is not covered by an in/excluding area and whose center falls within the annulus.
This criterion selects the largest (edge length wise) leafs first. If the first leaf that is encountered
which is not covered by an in/excluding area has a center that lies outside of the annulus, this leaf is
subdivided and the BFS is restarted.

including areas

defined characteristic point

octree cells of excluded areas

octree cells of
included areas

Figure A.3: Screenshots of the one point approximation heuristic: left: the model and the matched
points and the regions that result in a registration value 0.05, right: cells of the octree that approximate
inclusion/exclusion areas.

Simple Semioptimal Approximation Algorithm

This section describes the implementation of a simple algorithm that approximates semioptimal regis-
trations for two defined and measured characteristic points. The quality of the computed registration
depends on a parameter specified by the user and on a geometric property of the input, i.e., the length
of the longest distance of any measured surface point to its orthogonal projection onto the line through
the two defined characteristic points.
A registration is computed by first applying an initial rigid motion that alines the anatomical landmarks
as defined in Section 3.1.2. Then, u � 1 positions of the measured point set are tested by rotating
the measured points by angles of i 2π{u for i � 0, . . . , u around the rotation axis, for a user defined
parameter u. The best position is then taken as the registration.
Parameter to be specified by the user for this algorithm:
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model file path to the file in which the (triangulated or voxel based) model is described.
point file path to the file containing the landmarks and surface point information.
initial motion flag indicating whether or not an initial random rigid motion shall be applied to relocate

the measured points.
number of angles the parameter u that defines how many positions (different rotation angles) will be

tested.
assigned flag indicating whether or not the characteristic points are assigned, i.e., whether the first

defined characteristic point is matched to the first measured characteristic point. If set to true
, only the configuration in which the first (second) measured characteristic point is matched the
to first (second) defined characteristic point is tested. If set to false all possible assignment
combinations are tested.

Iterative Closest Point – ICP

The iterative closes point (ICP) method is a well known and studied heuristic for computing point-
to-point and point-to-surface matchings, see also Section 1.2.1. The basic idea of this method is that
starting from a unspecified initial position the nearest neighbor of each pattern point in the model (point
set / surface) is determined. Then, the rigid motion that – if applied to the pattern – minimizes the least
squares distance between the pattern and the determined nearest neighbors is computed and applied
to the pattern. This process (determining the nearest neighbors, computing the minimizing rigid motion,
applying the motion) is usually iterated until one of the following criteria apply:

• a certain threshold is reached,
• a certain number of iterations is reached,
• the nearest neighbor assignment does not chance after applying a motion (i.e., a local minimum

is reached),
• the decrease of distance between two successive iteration steps is below a certain threshold.

The implementation of the ICP algorithm in RegistrationToolKit allows to take the characteristic points
into consideration to influence the (important) initial positions. If specified by the user, the measured
points are aligned in way as described for the previous algorithm: first moved to a semioptimal position
and rotated around the axis through the first two characteristic points.

Parameter to be specified by the user for the ICP algorithm:
model file path to the file in which the model is described.
point file path to the file containing the landmarks and surface point information.
max # iterations maximal number of ICP steps that are performed per initial position
initial alignment flag indicating whether the anatomical landmarks shall be used to bring the measured

points in potentially good initial positions. If set to true, the first two characteristic points are
used to bring the measured points in semioptimal position, u (the parameter that is described
next) positions are tested by rotating the point set around the axis defined by the first two defined
characteristic points. The point set is rotated by multiples of 2π{u. If set to false the initial
position is the position of the measured points as described in the point file.

# initial positions the parameter u that describes how many rotation positions are to be tested.
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distance threshold optional termination parameter. If set to ¡ 0 the ICP process is terminated if the
current directed Hausdorff distance of the point sets to their features is terminated.

trim target optional parameter v describing how many measured points shall be considered. If set to
¡ 0 only the first v measured surface points are considered in the ICP process (reasonable for
very large measured point sets).



Appendix B
Example Implementation of an Algorithm
In this chapter a simple algorithm is presented to illustrate how geometric algorithms are implemented
and visualized in RegistrationToolKit, see also Chapter 8.

The algorithm takes a point p and a line l in R3 as input and computes the orthogonal projection
p K l of p onto l. The coordinates of p as well as the position of l can be specified by the user. In
the visualization p, l and p K l are shown as well as a (dotted) line segment from p to p K l, see
Figure B.1.
The implementation consists two classes, TestAlgorithm and TestAlgorithmVis, defined in four
files:
TestAlgorithm.h defining the member variables and methods of the TestAlgorithm class.
TestAlgorithm.cpp containing the implementation of the TestAlgorithm class, containing the

algorithmic code.
TestAlgorithmVis.h defining the member variables and methods of the TestAlgorithmVis class.
TestAlgorithmVis.cpp specifying the implementation of the TestAlgorithm class, responsible for

visualizing the result of the algorithm.
The class TestAlgorithm contains the actual implementation of the algorithm whereas the class
TestAlgorithmVis (which extends the TestAlgorithm class) takes care of the visualization of the
geometric objects. In the following the four files are listed and their function is summarized.

TestAlgorithm.h

The geometric objects will be visualized later are stored as ’protected’ members in the TestAlgorithm
class. The definition also contains the definition of descriptive members like the name and a description
of the algorithm that are shown in the user interface.
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Figure B.1: Screenshot of the projection algorithm example (with coordinate system).
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1 #ifndef TESTALGORITHM_H
#define TESTALGORITHM_H

#include "Algorithm.h"
#include <QString>

6
/**
* Definition of the ’TestAlgorithm’ class.
* The algorithm computes the orthogonal projection
* of a point onto a line.

11 **/
class TestAlgorithm: public Algorithm
{
Q_OBJECT

16 public:
// the name of the algorithm (required by the Algorithm class)
static const QString NAME;

// a string that describes the algorithm (required by the Algorithm class)
21 static const QString DESCRIPTION;

private:
// properties of the algorithm, i.e., all parameter
// that can be influenced by the user

26
// string representation of the coordinates of the point
AlgorithmProperty *pointPosProperty;

// string representation of the first point of the line
31 AlgorithmProperty *lineStartProperty;

// string representation of the second point of the line
AlgorithmProperty *lineEndProperty;

36 protected:
// geometric members that are used by the algorithm and
// by the visualization

// the point that is to be projected
41 Point3D* point;

// its projection
Point3D* projection;

46 // the line onto which the ’point’ ist to be projected
Line* line;

public:
/**

51 * Constuctor of the TestAlgorithm class
*
* factory: factory for generating geometric elements,
* required by the superclass (Algorithm)
**/

56 TestAlgorithm(ElementFactory *factory);

/**
* Starts the algorithm (required by the Algorithm class)
**/
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61 void run();

signals:
/**
* Signal passing function to emmit messages to all listeners.

66 *
* msg: the message that is to be distributed
**/
void sendMessage(Message* msg);

71 private:
/**
* Generates a point based on the string representation of the property
* ’prop’ that specifies the coordinates of the ’point’.
*

76 * prop: reference to the property that contains the string representation
* of the coordinates
* point: pointer to the pointer at which the new point is to be stored.
*
* return: ’true’ if the property contains a string that is a proper

81 * coordinate representation, ’false’ otherwise.
**/
bool PropertyToPoint(const AlgorithmProperty &prop, Point3D **point);

};

86 #endif

TestAlgorithm.cpp

In this implementation, the visualization takes place after the algorithmic computations are finished.
This is only one way of realizing the visualization. An alternative is to send a visualization message
during the computation to indicate that a geometric object should be added/removed/focused on/changed
in the visualization.

#include "TestAlgorithm.h"
#include "ElementTools.h"
#include "AlgorithmMessage.h"

4 #include "LogMessage.h"
#include "Model.h"

const QString TestAlgorithm::NAME = "Projection Algorithm";
const QString TestAlgorithm::DESCRIPTION = "Example algorithm that illustrates the orthogonal

projection of a point onto a line.";
9

TestAlgorithm::TestAlgorithm(ElementFactory *factory):
Algorithm(NAME, DESCRIPTION, factory)

{
// setting up the algorithm properites ...

14 pointPosProperty = new AlgorithmProperty(QString("point"), QString("x, y, z coordinates of
the point that is to be projected (separated by spaces)."), QString("1 2 3"));

lineStartProperty = new AlgorithmProperty(QString("line start"), QString("x, y, z
coordinates of one point of the line (separated by spaces)."), QString("1 0 0"));

lineEndProperty = new AlgorithmProperty(QString("line end"), QString("x, y, z coordinates
of another point of the line (separated by spaces)."), QString("2 1 1"));
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// ... and adding them to the list of properties that are shown in the GUI
19 properties.append(pointPosProperty);

properties.append(lineStartProperty);
properties.append(lineEndProperty);

}

24 void TestAlgorithm::run()
{
// the actual computation starts here by sending a message to the environment that the

algorithm started
emit sendMessage(new AlgorithmMessage("algorithm started", AlgorithmMessage::

ALGORITHM_STARTED, this));

29 // temporary variables to store the points on the line
Point3D *pnt1, *pnt2;

// get features from properties
if (!PropertyToPoint( *pointPosProperty, &point)) return;

34 if (!PropertyToPoint( *lineStartProperty, &pnt1)) return;
if (!PropertyToPoint( *lineEndProperty, &pnt2)) return;

// get the line from the two points
line = new Line(*pnt1, *pnt2);

39
// compute the orthogonal projection using code from the geometric library
projection = new Point3D(ElementTools::getOrthogonalProjectionOnLine(*point, *line));

// send a string representation of the projection to the log
44 emit sendMessage(new LogMessage(QString("projection at %1").arg(projection->toString()), Qt

::green));

// computation is done. Last step: broadcasting this information to the environment
emit sendMessage(new AlgorithmMessage(

QString("algorithm finished"),
49 QString("orthogonal projection computet."),

AlgorithmMessage::COMPUTATION_FINISHED,
this));

}

54
bool TestAlgorithm::PropertyToPoint(const AlgorithmProperty &prop, Point3D **point)
{
QStringList coordinates = prop.getStringValue().split(" ");
if (coordinates.length() != 3)

59 {
emit sendMessage(new AlgorithmMessage(

QString("Wrong format of %1 property").arg(prop.getName()),
QString("Algorithm aborted."),
AlgorithmMessage::CRITICAL_ALGORITHM_ERROR_OCCURRED,

64 this));
return false;

}

(*point) = new Point3D(coordinates[0].toDouble(), coordinates[1].toDouble(), coordinates
[2].toDouble());

69 return true;
}
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TestAlgorithmVis.h

The definition of the TestAlgorithmVis class contains a member variable to store the OpenGL win-
dow in which the elements are to be displayed. The class definition also contains methods for trig-
gering the visualization and for requesting OpenGL windows. The class requires to implement a slot
receiveMessage(. . . ) to be able to detect relevant status changes, e.g., to recognize that the algo-
rithmic computation has finished and the visualization can be started.

#ifndef TESTALGORITHMVIS_H
#define TESTALGORITHMVIS_H

#include "TestAlgorithm.h"
5

class Message;
class VisualizationWidget;

/**
10 * Definition of the ’TestAlgorithmVis’ class.

* This class is responsible of visualizing the
* geometric objects of the ’TestAlgorithm’ class
* after the algorithmic computation has finished.
*/

15 class TestAlgorithmVis: public TestAlgorithm
{
Q_OBJECT

private:
20 // pointer to the message by which an OpenGL window is requested

Message *widgetRequestMessage;

// pointer to the OpenGL window that is assigned to this algorithm
VisualizationWidget *widget;

25
public:
/**
* Constuctor of the TestAlgorithmVis class
*

30 * factory: factory for generating geometric elements,
* required by the superclass (Algorithm, superclass of TestAlgorithm)
**/
TestAlgorithmVis(ElementFactory *factory);

35 private:
/**
* Emmits a message to the visualization controller and requests
* an own window in which the elements are visualized.
**/

40 void requestOwnWidget();

/**
* Called after ’TestAlgorithm’ sends the message that the
* computation is completed. Takes care of visualizing the

45 * geometric ’protected momber’ features of ’TestAlgorithm’.
**/
void visualize();

50 public slots:
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/**
* Slot for recieving messages. Required to implement the
* listener interface.
*

55 * msg: pointer to the message that is sended.
**/
void receiveMessage(Message* msg);

};

60 #endif

TestAlgorithmVis.cpp

The TestAlgorithmVis class extends the TestAlgorithm class. As there is no implementation of the
run() method in TestAlgorithmVis, the corresponding method of TestAlgorithm is triggered when
the algorithm is started. In the last line of the run() method of TestAlgorithm (see Section B) a
message is emitted that is received by the receiveMessage(. . . ) method of this TextAlgorithmVis
class. After detecting this situation, the algorithm requests an OpenGL window from the visualization
controller. As soon as this window is constructed (communicated by a visualization message), the
visualization is started.

#include "TestAlgorithmVis.h"

#include "Message.h"
#include "VisualizationMessage.h"

5 #include "AlgorithmMessage.h"
#include "VisualizationWidget.h"
#include "AllVisualizationElements.h"

TestAlgorithmVis::TestAlgorithmVis(ElementFactory *factory):
10 TestAlgorithm(factory),

widgetRequestMessage(NULL)
{
}

15
void TestAlgorithmVis::requestOwnWidget()
{
// message stored in member variable to be able to
// remember the request, when it is answered.

20 widgetRequestMessage = new VisualizationMessage("Projection algorithm requests new widget",
"Projection Example", VisualizationMessage::REQUEST_VIZUALIZATION_WIDGET);

emit sendMessage(widgetRequestMessage);
}

25 void TestAlgorithmVis::visualize()
{
VisualizationElement *element;

// visualization of the point
30 element = new Point3DVis(*point);

element->setName(QString("point"));
element->setColor(Qt::blue);
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element->setRadius(0.05);
emit sendMessage(new VisualizationMessage(VisualizationMessage::VISUALIZATION_ELEMENT_ADDED

, widget, element));
35

// visualization of the line
element = new LineVis(*line);
((LineVis*) element)->setExtendToInfinity(true);
element->setName(QString("line"));

40 element->setColor(Qt::black);
emit sendMessage(new VisualizationMessage(VisualizationMessage::VISUALIZATION_ELEMENT_ADDED

, widget, element));

// visualization of the projection
element = new Point3DVis(*projection);

45 element->setName(QString("projection onto line"));
element->setColor(Qt::red);
element->setRadius(0.05);
emit sendMessage(new VisualizationMessage(VisualizationMessage::VISUALIZATION_ELEMENT_ADDED

, widget, element));

50 // dotted line from point to projection
element = new LineVis(*point, *projection);
element->setName(QString("aux. line"));
element->setColor(Qt::gray);
element->setLineStyle(VisualizationProperties::DASHED);

55 emit sendMessage(new VisualizationMessage(VisualizationMessage::VISUALIZATION_ELEMENT_ADDED
, widget, element));

emit sendMessage(new VisualizationMessage(VisualizationMessage::FOCUS_ON_ELEMENT_REQUEST,
widget, element));

}

void TestAlgorithmVis::receiveMessage(Message* msg)
60 {

if (msg->getType() == Message::ALGORITHM_MESSAGE)
{ // an algorithm message is received
AlgorithmMessage *aMsg = (AlgorithmMessage*) msg;

65 if ( aMsg->getContent() == AlgorithmMessage::COMPUTATION_FINISHED
&& aMsg->getAlgorithm() == this)

{ // this TextAlgorithm that was extended has finished
// ask for an OpenGL widget
requestOwnWidget();

70 }
} else if (msg->getType() == Message::VISUALIZATION_MESSAGE)
{ // a visualization message is received
VisualizationMessage *vMsg = (VisualizationMessage*) msg;

75 if ( vMsg->getContent() == VisualizationMessage::VIZUALIZATION_WIDGET_GENERATED &&
widgetRequestMessage != NULL &&
vMsg->getRelatedMsg() == widgetRequestMessage)

{ // it is the answer to the request for an OpenGL window
widget = vMsg->getWidget();

80 // the visualization can be triggered
visualize();

}
}

}
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