
Efficient Coding of Transform Coefficient
Levels in Hybrid Video Coding

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

am Fachbereich Mathematik und Informatik
der Freien Universität Berlin

vorgelegt von
Tung Nguyen

Berlin 2023



Erstgutachter/in: Prof. Dr.-Ing. Heiko Schwarz

Zweitgutachter/in: Prof. Dr.-Ing. Jens-Rainer Ohm

Tag der Disputation: 03.05.2024



Selbstständigkeitserklärung

Name: Nguyen
Vorname: Tung

Ich erkläre gegenüber der Freien Universität Berlin, dass ich die vorliegende Dissertation selbstständig und
ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe. Die vorliegende Ar-
beit ist frei von Plagiaten. Alle Ausführungen, die wörtlich oder inhaltlich aus anderen Schriften entnommen
sind, habe ich als solche kenntlich gemacht. Diese Dissertation wurde in gleicher oder ähnlicher Form noch
in keinem früheren Promotionsverfahren eingereicht.

Mit einer Prüfung meiner Arbeit durch ein Plagiatsprüfungsprogramm erkläre ich mich einverstanden.

Datum: Unterschrift:



Diese Arbeit ist meiner Frau und meinen beiden Kindern gewidmet, deren unerschütterliche Unterstützung
die Grundpfeiler für den erfolgreichen Abschluss dieser Arbeit sind.

Mein besonderer Dank gilt Heiko Schwarz und Jonathan Pfaff für ihre fachliche Anleitung und wertvollen
Einsichten, die entscheidend zum Gelingen dieser Arbeit beigetragen haben. Ich möchte auch Detlev Marpe,
Thomas Wiegand, Thomas Schierl und Ralf Schäfer für ihre jahrelange Unterstützung danken, die maßge-
blich zur Vollendung dieser Arbeit beigetragen hat. Weiterhin danke ich allen meinen Kollegen, deren Namen
hier nicht alle aufgeführt werden können, deren Beitrag jedoch unermesslich wertvoll war. Jeder von Ihnen
hat auf einzigartige Weise zu diesem Werk beigetragen.



Abstract

All video coding standards of practical importance, such as Advanced Video Coding (AVC), its successor
High Efficiency Video Coding (HEVC), and the state-of-the-art Versatile Video Coding (VVC), follow the
basic principle of block-based hybrid video coding. In such an architecture, the video pictures are partitioned
into blocks. Each block is first predicted by either intra-picture or motion-compensated prediction, and the
resulting prediction errors, referred to as residuals, are compressed using transform coding. This thesis
deals with the entropy coding of quantization indices for transform coefficients, also referred to as transform
coefficient levels, as well as the entropy coding of directly quantized residual samples. The entropy coding of
quantization indices is referred to as level coding in this thesis. The presented developments focus on both
improving the coding efficiency and reducing the complexity of the level coding for HEVC and VVC. These
goals were achieved by modifying the context modeling and the binarization of the level coding.

The first development presented in this thesis is a transform coefficient level coding for variable transform
block sizes, which was introduced in HEVC. It exploits the fact that non-zero levels are typically concentrated
in certain parts of the transform block by partitioning blocks larger than 4×4 samples into 4×4 sub-blocks.
Each 4×4 sub-block is then coded similarly to the level coding specified in AVC for 4×4 transform blocks.
This sub-block processing improves coding efficiency and has the advantage that the number of required
context models is independent of the set of supported transform block sizes.

The maximum number of context-coded bins for a transform coefficient level is one indicator for the com-
plexity of the entropy coding. An adaptive binarization of absolute transform coefficient levels using Rice
codes is presented that reduces the maximum number of context-coded bins from 15 (as used in AVC) to
three for HEVC. Based on the developed selection of an appropriate Rice code for each scanning position,
this adaptive binarization achieves virtually the same coding efficiency as the binarization specified in AVC
for bit-rate operation points typically used in consumer applications. The coding efficiency is improved for
high bit-rate operation points, which are used in more advanced and professional applications.

In order to further improve the coding efficiency for HEVC and VVC, the statistical dependencies among
the transform coefficient levels of a transform block are exploited by a template-based context modeling
developed in this thesis. Instead of selecting the context model for a current scanning position primarily
based on its location inside a transform block, already coded neighboring locations inside a local template
are utilized. To further increase the coding efficiency achieved by the template-based context modeling, the
different coding phases of the initially developed level coding are merged into a single coding phase. As a
consequence, the template-based context modeling can utilize the absolute levels of the neighboring frequency
locations, which provides better conditional probability estimates and further improves coding efficiency.

This template-based context modeling with a single coding phase is also suitable for trellis-coded quantization
(TCQ), since TCQ is state-driven and derives the next state from the current state and the parity of the
current level. TCQ introduces different context model sets for coding the significance flag depending on
the current state. Based on statistical analyses, an extension of the state-dependent context modeling of
TCQ is presented, which further improves the coding efficiency in VVC. After that, a method to reduce
the complexity of the level coding at the decoder is presented. This method separates the level coding
into a coding phase exclusively consisting of context-coded bins and another one consisting of bypass-coded
bins only. For retaining the state-dependent context selection, which significantly contributes to the coding
efficiency of TCQ, a dedicated parity flag is introduced and coded with context models in the first coding
phase. An adaptive approach is then presented that further reduces the worst-case complexity, effectively
lowering the maximum number of context-coded bins per transform coefficient to 1.75 without negatively
affecting the coding efficiency.

In the last development presented in this thesis, a dedicated level coding for transform skip blocks, which
often occur in screen content applications, is introduced for VVC. This dedicated level coding better exploits
the statistical properties of directly quantized residual samples for screen content. Various modifications to
the level coding improve the coding efficiency for this type of content. Examples for these modifications
are a binarization with additional context-coded flags and the coding of the sign information with adaptive
context models.



Zusammenfassung

Alle bedeutenden Videokodierungsstandards basieren auf einer blockbasierten hybriden Kodierungsarchitek-
tur. Zu diesen Standards gehört Advanced Video Coding (AVC) und dessen Nachfolger, High Efficiency Video
Coding (HEVC). Auch die neueste Entwicklung, Versatile Video Coding (VVC), welches der Nachfolger von
HEVC ist, basiert auf diesem Konzept. Im ersten Schritt der blockbasierten hybriden Videokodierung werden
die Videobilder in Blöcke unterteilt. Jeder Block wird zunächst prädiziert, und die resultierenden Restfehler
werden mittels Transformationskodierung komprimiert. Dabei werden die Restfehler zuerst transformiert,
anschließend die resultierenden Transformationskoeffizienten quantisiert und die Quantisierungsindizes mit-
tels Entropiekodierung signalisiert. Diese Dissertation befasst sich mit der Entropiekodierung von Quan-
tisierungsindizes für Transformationskoeffizienten sowie mit der Entropiekodierung von direkt quantisierten
Restfehlern. Die vorgestellten Ansätze konzentrieren sich sowohl auf die Verbesserung der Kodierungseffizienz
als auch auf die Reduktion der Komplexität für HEVC und VVC. Diese Ziele wurden durch die Modifikation
der Kontextmodellierung und der Binarisierung erreicht.

Im ersten Ansatz wird eine Unterstützung für variable Transformationsblockgrößen, die in HEVC eingeführt
wurde, in der Entropiekodierung vorgestellt. Dieser Ansatz nutzt die Beobachtung, dass Quantisierungsin-
dizes, die von null verschieden sind, typischerweise in bestimmten Teilen des Transformationsblocks, unab-
hängig von der eigentlichen Blockgröße, konzentriert sind. In diesem Ansatz werden Blöcke, die größer als
4×4 sind, in kleinere 4×4 Unterblöcke unterteilt. Die Entropiekodierung für 4×4 Blöcke, wie sie in AVC ver-
wendet wird, kann dann direkt für jeden 4×4 Unterblock angewendet werden. Durch diese Unterteilung und
eine angepasste Kontextmodellierung verbessert sich die Kodierungseffizienz. Ein weiterer entscheidender
Vorteil dieses Konzepts ist, dass die Anzahl der erforderlichen Kontextmodelle unabhängig von der Anzahl
unterstützter Transformationsblockgrößen wird.

Ein Bewertungsmaß für die Komplexität der Entropiekodierung ist die maximale Anzahl der binären Sym-
bole, die mit adaptiven Kontextmodellen kodiert werden. Hierbei stellen die binären Symbole zur Signal-
isierung der Quantisierungsindizes den größten Anteil dar. Im zweiten Ansatz wird daher eine alternative
Binarisierung für die Quantisierungsindizes vorgestellt. Diese adaptive Binarisierung, im Gegensatz zur
zuvor verwendeten festen Binarisierung, reduziert die maximale Anzahl an binären Symbolen pro Quan-
tisierungsindex, die mittels Kontextmodellen signalisiert werden, von 15 auf drei für HEVC. Gleichzeitig
erreicht die adaptive Binarisierung dieselbe Kodierungseffizienz wie die zuvor verwendete feste Binarisierung
und verbessert die Kodierungseffizienz bei hohen Bitraten.

Die Kontextmodellierung umfasst unter anderem die Auswahl eines adaptiven Kontextmodells, mit dem ein
binäres Symbol kodiert wird. Bislang nutzte die Kontextmodellierung für die binären Symbole der Quan-
tisierungsindizes nur indirekt die Informationen von den bereits rekonstruierten Quantisierungsindizes im
gleichen Block. Jedoch wurden direkte statistische Abhängigkeiten zwischen den Quantisierungsindizes inner-
halb eines Blocks beobachtet. Im dritten Ansatz wird daher eine alternative Kontextmodellierung vorgestellt,
die bereits rekonstruierte Quantisierungsindizes in der Nachbarschaft auswertet, um die Kodierungseffizienz
für HEVC und VVC weiter zu verbessern.

Im dritten Ansatz wurde eine Kontextmodellierung entwickelt, die sich für die trellis-basierte Quantisierung
(TCQ) eignet — eine zustandsbasierte Quantisierungsmethode mit zwei skalaren Quantisierern. Die Auswahl
eines der beiden Quantisierer erfolgt durch den aktuellen Zustand, der aus dem Zustand sowie der Parität des
vorangegangenen Quantisierungsindex abgeleitet wird. Dies ist möglich, da die im dritten Ansatz entwickelte
Kontextmodellierung die Kodierreihenfolge entsprechend anpasst. Mit TCQ werden weiterhin verschiedene
Kontextmodellsätze für die Kodierung der Signifikanz abhängig vom aktuellen Zustand verwendet. Im vierten
Ansatz wird, basierend auf statistischen Analysen, eine Erweiterung der zustandsabhängigen Kontextmodel-
lierung mit TCQ vorgestellt, die die Kodierungseffizienz in VVC weiter verbessert. Zudem wird der Ansatz
so erweitert, dass er die Komplexität reduziert, ohne die Kodiereffizienz signifikant zu beeinträchtigen.

Der zuletzt vorgestellte Ansatz betrifft die Kodierung von Quantisierungsindizes, die keiner Transformation
unterzogen wurden. Der sogenannte “Transform Skip Mode” wird oft bei Signalen verwendet, die nicht mit
einer Kamera aufgezeichnet wurden. Aufgrund der statistischen Eigenschaften solcher Signale bieten Modi-
fikationen der Kontextmodellierung und der Binarisierung eine signifikant verbesserte Kodierungseffizienz.



Contents

1 Introduction 1
1.1 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Practical Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Video and Entropy Coding 10
2.1 Hybrid Video Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Entropy Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Context-Based Adaptive Binary Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Shannon-Fano-Elias Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Iterative Shannon-Fano-Elias Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Arithmetic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Challenges in Entropy Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.5 Design Principles of CABAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.6 Binarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.7 Adaptive Context Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.8 Context Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Transform Coefficient Level Coding for Variable Block Sizes 20
3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Transform Coefficient Level Coding in AVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Coding Phases in AVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Context Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 8×8 Transform Blocks and Generalization . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.4 Reference Implementation and Experimental Setup . . . . . . . . . . . . . . . . . . . . 25
3.2.5 Properties of Variable Transform Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Alternative Design with 4×4 Sub-Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Properties of 4×4 Sub-Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Coding Phases with 4×4 Sub-Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Context Modeling for 4×4 Sub-Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.4 Final Design with 4×4 Sub-Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Findings and Technical Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Adaptive Binarization of Transform Coefficient Levels 41
4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Static Binarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Binarization of Transform Coefficient Levels in AVC . . . . . . . . . . . . . . . . . . . 42



CONTENTS

4.2.2 Context-Coded Bins per Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Alternative Fixed Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Adaptive Binarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Probability Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.2 Empirical Conditional Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Golomb and Rice Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.4 Backward-Adaptive Rice Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . 51
4.3.5 Nested Rice Codes with EG0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.6 Final Design with Nested Rice Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Findings and Technical Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Template-Based Context Modeling 64
5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Extra Coding Tools Inherited from HEVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 Last Significant Scanning Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 Diagonal Scanning Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.3 Coded Sub-Block Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.4 Reference Implementation and Experimental Setup . . . . . . . . . . . . . . . . . . . . 66

5.3 Template-Based Context Modeling for Significance . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.1 Local Template Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.2 Impact of a Single Neighboring Frequency Location . . . . . . . . . . . . . . . . . . . . 68
5.3.3 Determination of the Local Template Geometry . . . . . . . . . . . . . . . . . . . . . . 70
5.3.4 Trade-Off Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Single Coding Phase and Level Magnitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.1 Enabling Evaluation of Absolute Transform Coefficient Levels . . . . . . . . . . . . . . 73
5.4.2 Non-Zero Locations with Absolute Level Magnitudes . . . . . . . . . . . . . . . . . . . 73
5.4.3 Coding of Magnitudes with a Local Template . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.4 Position-Dependent Context Model Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.5 Reported Implementation and Performance in VVC . . . . . . . . . . . . . . . . . . . 79

5.5 Findings and Technical Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Level Coding Suitable for Trellis-Coded Quantization 83
6.1 Scalar Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.1 Reconstruction of Transform Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.2 Simple Quantization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.3 Rate-Distortion Optimized Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Trellis-Coded Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.1 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.2 TCQ Implementation in VVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.3 Coding Performance of TCQ in VVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Extended Context Modeling for TCQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Separation of Context- and Bypass-Coded Bins . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4.1 Solution and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



CONTENTS

6.4.2 Level Coding with Parity Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4.3 Rice Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4.4 Reported Coding Performance in VVC . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Reduction of Context-Coded Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.5.1 Adaptive Binarization Bound in HEVC . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.5.2 Adaptation of the Concept to VVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6 Using Intermediate Levels for Context Modeling in TCQ . . . . . . . . . . . . . . . . . . . . . 101
6.6.1 Impact of Intermediate Levels on Context Modeling . . . . . . . . . . . . . . . . . . . 102
6.6.2 Context Modeling Adjustments for Intermediate Levels . . . . . . . . . . . . . . . . . . 102
6.6.3 Refinements for Context Modeling of b|x|>1, b|x|>3, and bpar . . . . . . . . . . . . . . . 103

6.6.4 Refinements for Context Modeling of bsig . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6.5 Refinements to the Rice Parameter Derivation . . . . . . . . . . . . . . . . . . . . . . . 104
6.6.6 Conclusion on Intermediate Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.7 Findings and Technical Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Transform Skip Residual Coding 107
7.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2 Transform Skip Mode in HEVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2.1 Modifications for TSM in HEVC Range Extensions . . . . . . . . . . . . . . . . . . . . 109
7.2.2 Reference Implementation and Experimental Setup . . . . . . . . . . . . . . . . . . . . 109
7.2.3 Block Size Restriction and Coding Efficiency . . . . . . . . . . . . . . . . . . . . . . . 110
7.2.4 Comparision to Other Screen Content Tools in VVC . . . . . . . . . . . . . . . . . . . 111
7.2.5 Impact of Level Coding Components on Coding Efficiency . . . . . . . . . . . . . . . . 112

7.3 Binarization and Context Modeling of TSM Levels . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3.1 Statistics of TSM Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.3.2 Additional Context-Coded b|x|>1+2n Flags . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3.3 Template-Based Context Modeling of bsig . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3.4 Template-Based Context Modeling of b|x|>1+2n . . . . . . . . . . . . . . . . . . . . . . 118

7.3.5 Rice Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3.6 Context-Coded Sign Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3.7 Coding Efficiency Provided by TSRC, IBC, and PLT Enabled . . . . . . . . . . . . . . 122
7.3.8 Binarization Without the bpar Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3.9 Implementation of TSRC in VVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.4 Findings and Technical Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8 Summary and Conclusion 130

List of Implementations 133

List of Publications 136

List of Figures 143



CONTENTS

List of Tables 146

Acronyms 147

Bibliography 149



CHAPTER 1

Introduction

Contents
1.1 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Practical Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Video coding describes the compression and decompression of raw digital video content so that the amount
of data is reduced while the reconstructed content provides as much fidelity as possible. A video coding
system comprises an encoder to compress the raw data into a bitstream and a decoder to decompress
the bitstream and reconstruct the video content. Figure 1.1 illustrates an example of an application that
requires video coding, the live broadcasting of an event [1]. In this example, the scene is captured by a
camera, which generates the raw digital video content. This raw signal serves as the input to the video
encoder, which compresses the signal into a bitstream, a digital description of the video content with less
data than the original raw signal. The bitstream could be stored, for example, for archiving purposes. In
most applications, video signals are transmitted to a receiving side, for example, over a broadcast channel or
the Internet. The practical importance of video coding can be seen when considering the amount of data for
raw video sequences. A high-definition (1920×1080 spatial resolution) raw video sequence (4:2:0 subsampled
Y ′CBCR) with a frame rate of 50 Hz and 8-bit precision per sample requires about 1244 megabits per second
(Mbps). For an ultra-high-definition raw video sequence (3840×2160) with the same frame rate and bit depth,
one second of video requires about 4977 megabits. At the time of this thesis, the size of high-end consumer
hard drives is 20 terabytes; with such a hard disk, about 67 minutes of raw ultra-high-definition video or four
and a half hours of raw high-definition video could be stored. An alternative example demonstrating the
necessity of video coding is the limited bandwidth available for typical end-consumer applications. At the
time of this thesis, the median internet connection speed in Germany is about 83 Mbps [2]. This bandwidth
is insufficient to transmit raw high-definition content for real-time playback. Furthermore, it is even lower
in practical applications because the bandwidth has to be shared between multiple clients.

The progress in video coding, in the form of new video coding standards specifying new and refined algorithms,
is mainly driven by the demand for higher coding efficiency, i.e., fewer bitstream data for the same perceptual
quality or, vice versa, higher perceptual quality for the same amount of bitstream data. The emergence of new
video applications often causes this demand for higher coding efficiency. Examples of video applications that
appeared in the last decade are the introduction of new video formats (high-definition, ultra-high-definition),
internet-based video-on-demand services, the usage of high-dynamic range, computer-generated, panorama,
and 360-degree content, live streaming of video games, the usage of smartphones, and more. Another trend
that has contributed to the demand for higher coding efficiency in recent years is the increase in the relative
share of video data distributed over the Internet. As reported in [3], the share of video data transmitted over
the Internet has increased significantly. A reason for the observed growth of video data is the increase in the
number of video applications, such as watching video content using smartphones and Tablet computers. The
report in [3] predicts that this trend will continue, emphasizing the importance of higher coding efficiency.

State-of-the-art video compression standards, such as Advanced Video Coding (H.264/MPEG-4 Part 10)
(AVC), its successor High Efficiency Video Coding (H.265/MPEG-H Part 2) (HEVC), and the latest de-
velopment at the time of this thesis, the Versatile Video Coding (H.266/MPEG-I Part 3) (VVC) standard,
are based on a block-based hybrid video coding architecture. Each video picture is initially partitioned into
fixed-sized blocks. These fixed-sized blocks are coded line-wise from left to right, and a block may be further
partitioned into smaller blocks of variable size. Each block is first predicted either using already recon-
structed samples of the same frame (intra-picture prediction) or samples of already reconstructed frames
(inter-picture or motion-compensated prediction). The resulting prediction errors, also referred to as residu-
als, are transformed and quantized, and the resulting quantization indices are then coded into the bitstream

1



1.1. ORGANIZATION OF THE THESIS

Codec

Scene

Viewer

Video 
Capture End

Video 
Display End

Channel 
Encoder

Channel 
Decoder

Modulator

Demodulator

Transmission Channel

Storage

Video 
Encoder

Video 
Decoder

Figure 1.1
An example application that requires video compression: The live broadcasting of an event. In this example,
the camera captures the scene and provides the raw digital video signal to a video encoder. The video encoder
compresses the signal into a bitstream, which is a description of the video signal, but with less data than the
original input video. The bitstream can be stored or transmitted over a transmission channel like a broadcast
channel or the Internet.

using entropy coding. The quantization indices are referred to as transform coefficient levels and the cod-
ing of transform coefficient levels is referred to as transform coefficient level coding. Besides the transform
coefficient levels, partitioning information, prediction and motion data, quantization step sizes, and more
are entropy coded in the bitstream. The transform coefficient levels typically have a significant share of the
bitstream. This share increases with a higher reconstruction fidelity and bit-rate. A well-designed entropy
coding architecture, such as arithmetic coding, can achieve an efficiency close to optimal block codes when
the conditional probabilities are known. In most cases, however, these conditional probabilities highly de-
pend on the input signal, the chosen quantization step size, and the applied coding tools before the entropy
coding. As a consequence, these conditional probabilities are not known with sufficient accuracy. Therefore,
this thesis focuses on improving the estimation of suitable conditional probabilities for transform coefficient
levels, which finally results in coding efficiency improvements.

1.1 | Organization of the Thesis

This thesis starts with a brief overview of hybrid video coding with a particular focus on entropy coding.
After that, the developed context modeling and binarization techniques are presented in five chapters, each
concentrating on a different concept for increasing the coding efficiency or reducing the implementation
complexity. The following list briefly summarizes the chapters of the thesis:

• Chapter 2 – Video and Entropy Coding: This chapter starts with a brief overview of block-based
hybrid video coding, followed by a review of entropy coding with a focus on the framework of context-
based adaptive binary arithmetic coding (CABAC). Theoretical and practical assumptions are discussed,
the blocks responsible for modeling the conditional probabilities in CABAC are identified, and the basic
notations and configurations used for the experiments throughout this thesis are introduced.

• Chapter 3 – Transform Coefficient Level Coding for Variable Block Sizes: The introduction
of transform block sizes larger than 4×4 samples in HEVC significantly improves the coding efficiency.
However, a level coding that supports multiple transform sizes is required for entropy coding, because
the level coding in AVC is only specified for 4×4 and 8×8 transform blocks. This chapter describes
how the transform coefficient level coding can support variable transform block sizes without a linear
dependency between the number of supported transform sizes and the number of context models. The
independency between these two aspects is achieved by a partitioning of larger transform blocks into
4×4 sub-blocks and a sub-block-wise coding coupled with a sub-block-wise context modeling.

• Chapter 4 – Adaptive Binarization of Transform Coefficient Levels: An indicator for the
complexity of entropy coding is the maximum number of context-coded symbols per sample or transform
coefficient. The coding of binary symbols with adaptive context models is comparably complex due to

2



1.2. STATE-OF-THE-ART

the feedback loop, which impedes efficient parallel hardware implementations. Therefore, the number of
context-coded bins should be kept as low as possible without sacrificing coding efficiency. This chapter
describes a method to reduce the maximum number of context-coded bins by utilizing an adaptive
binarization for absolute transform coefficient levels with Rice codes.

• Chapter 5 – Template-Based Context Modeling: This chapter presents a template-based context
modeling that improves coding efficiency since the evaluation of the neighboring frequency locations
inside the template enables a suitable estimation of conditional probabilities. Further compression
efficiency improvements are then achieved by changing the coding order within a sub-block so that
absolute levels inside the template can be utilized for context modeling. This modification is equivalent
to enabling more conditionals for context modeling.

• Chapter 6 – Level Coding Suitable for Trellis-Coded Quantization: An optional low-complex
vector quantizer, referred to as trellis-coded quantization (TCQ), that improves coding efficiency sig-
nificantly was included in the specification of VVC. The first part of this chapter briefly describes why
the level coding developed in the preceding chapter is suitable for TCQ, and how the so-called state-
dependent context modeling can be extended to improve coding efficiency further. The main topic of
this chapter is throughput increase, which is achieved by separating the context- and bypass-coded
bins of a sub-block and organizing them into two coding phases. Since this separation would break
the compatibility of the level coding with TCQ, the binarization is modified by including a parity flag,
which finally decreases the implementation complexity with a negligible impact on coding efficiency.

• Chapter 7 – Transform Skip Residual Coding: The increased use of screen content has led to
the development of dedicated screen content coding tools that significantly improve coding efficiency
for this type of content. An existing and straightforward technique to improve screen content coding
is quantizing the residual samples directly, i.e., the transform is bypassed and the quantization indices
are entropy coded using the conventional level coding. This chapter describes a new dedicated level
coding for directly quantized residuals that further improves the coding efficiency for screen content.

1.2 | State-of-the-Art

In block-based hybrid video coding, the input pictures are partitioned into blocks, the blocks are predicted,
and the resulting prediction error blocks are transmitted using the concept of transform coding. Transform
coding [4] is a lossy data compression method widely used in multimedia applications such as image, video,
and audio coding. Firstly, the input signal is mapped from the spatial or time domain to a transform domain
using a unitary transformation, such as the Fourier transform [5] or the discrete cosine transform (DCT) [6].
The transformed data, referred to as transform coefficients, are quantized, and the resulting quantization
indices (also called transform coefficient levels) are entropy-coded to generate a compressed representation of
the original signal, which can be efficiently stored and transmitted. The first approaches of transform coding
for images, which included Fourier and Hadamard transforms [7, 8], were proposed in 1968. Transform coding
is based on the idea that most of the energy in a signal is concentrated in a few transform coefficients, and
each transform coefficient can be coded independently. In practice, it turned out that statistical dependencies
between transform coefficients of a block exist, which can be exploited by joint or conditional entropy coding
techniques to achieve higher coding efficiency.

An entropy coding method widely used in the early days of image and video coding is run-length coding, with
its first application dating back to 1967 [9]. As its name indicates, the basic concept of run-length coding is
to signal the number of repeating zeros by a single value. Run-length coding is used in various block-based
image and video coding standards that are no longer state-of-the-art, such as JPEG [10], H.262/MPEG-2
Part 2 (MPEG-2) [11, 12], H.263 [13], and MPEG-4 Part 2 (MPEG-4 Visual) [14]. In those image and
video coding standards, a special variant of run-length coding, referred to as run-level coding, is used for
coding the transform coefficient levels inside a block. In Baseline JPEG [15], the DC level of a block is coded
differentially to the DC level of the previous block. The difference is coded as a pair (category, value), where
category specifies a range of values for the difference and is transmitted using a variable-length code, whereas
value specifies the actual difference inside this range and is transmitted with a fixed-length code. The AC

3



1.2. STATE-OF-THE-ART

levels of a block are mapped to a sequence using the zigzag scanning pattern. The sequence of scanned
AC levels is represented by a sequence of triples (run, category, value). The run specifies the number of
zero-valued levels before the next non-zero level, category specifies a range for the next non-zero level, and
value specifies the actual value of the next non-zero level inside this range. The pairs (run, category) are
coded using a variable-length code and the value is coded using a fixed-length code. A special codeword in
the variable-length code is reserved for an end-of-block symbol, which signals that all remaining AC levels
of the block are equal to zero. Two variable-length codes, which are not specified in the standard but have
to be selected in the encoder, are used in JPEG: One for coding the category for DC levels and the other for
coding the (run, category) pairs for the scanned sequence of AC levels. A similar run-level coding is specified
for MPEG-2 [16], but here (run, level) pairs, with level being the value of the next non-zero level, are coded
directly with a variable-length code specified in the standard. In H.263 and MPEG-4 Visual, an extension
of the run-level coding is used; the variable-length code is specified for triples of the form (last, run, level).
The entry last specifies whether the next non-zero level is the last non-zero level inside the transform block.
This concept does not require the signaling of the end of the block, but requires a so-called coded block flag
to signal whether or not all coefficients in a block are zero-valued.

The concept of run-level coding can also be found in the AVC standard [17] with context-based adaptive
variable length coding (CAVLC) [18]. However, the run-level coding in AVC significantly differs from the
variants used in the previous image and video coding standards in the aspect that it exploits joint entropy
coding to a larger degree and additionally incorporates conditional entropy coding to increase the coding
efficiency. First, the number of non-zero levels and the trailing ones, i.e., the number of absolute levels equal
to one at the end of the sequence of the non-zero levels, are coded using a single codeword. Furthermore, the
variable-length code table used is chosen depending on the data in the left and top neighboring transform
blocks. This approach is based on the observations that there are statistical dependencies between the
numbers of non-zero transform coefficient levels in neighboring blocks and that the non-zero levels at the end
of the scanned sequence typically have an absolute value equal to one. After that, the signs for the trailing
ones are coded in reverse scanning order. The level magnitudes of non-zero levels that are not included in
the trailing ones (their number can be derived by the total number of non-zero levels minus the number of
trailing ones) are coded next. The last bit (least-significant bit (LSB)) of the codeword that represents a level
magnitude indicates the sign for the corresponding level. Because the level magnitudes typically decrease
towards the high-frequency scanning positions, these magnitudes are coded in reverse scanning order and
the variable-length code table is adaptively selected for each scanning position depending on the previously
coded level magnitude. Finally, after coding the total number of zero-valued levels from the DC location to
the last non-zero level, the runs between two successive non-zero levels are coded for specifying the positions
of the non-zero levels (also in reverse scanning order).

During the 1990s, wavelet-based transform coding gained popularity as an alternative architecture for image
coding, with influential publications in [19, 20, 21, 22, 23]. These wavelet approaches commonly employ
adaptive context models combined with a binary arithmetic coding engine for entropy coding. After applying
a wavelet transform, the resulting wavelet coefficients of the subbands are entropy coded utilizing bit planes.
When wavelet coefficients are represented using a fixed-length binary code, each bit plane denotes the bit
values at a specific position within the codewords associated with the wavelet coefficients of the subband. In
plain bit-plane coding, the coding process begins with the most-significant bit (MSB). The embedded zerotree
wavelet (EZW) algorithm, an extension of plain bit-plane coding, uses a quadtree structure spanning over
coefficients in different sub-bands of the same orientation that share the same spatial region [20]. This
algorithm takes advantage of the high likelihood of zero-valued coefficients in higher sub-bands of the same
orientation when a zero-valued coefficient is coded in the lower sub-band for the same spatial region. A
further development of EZW is the set partitioning in hierarchical trees (SPIHT) technique that also utilizes
similar statistical properties [22]. Tree construction and signaling are arranged using three distinct sets of
wavelet coefficients, which are adjusted during encoding and decoding in SPIHT. The JPEG 2000 image
coding standard [23] bases its wavelet coefficient coding on bit-plane coding without zerotrees, a method
known as embedded block coding with optimised truncation (EBCOT) [24]. EBCOT organizes the coding of
each bit plane into three coding passes, called significance propagation, magnitude refinement, and cleanup.
A distinction is made between significant and insignificant positions, where significant positions are those

4



1.2. STATE-OF-THE-ART

positions that have any binary value equal to 1 signaled in a previous bit plane. As no significant positions
are available for the first bit plane, the coding begins with the cleanup pass, which is always invoked when
insignificant locations without significant neighbors exist in the bit plane. The cleanup pass uses run-length
coding, while the significance propagation pass individually codes the binary value of insignificant positions
with significant neighbors. In the magnitude refinement pass, the binary symbols of significant positions in
the current bit plane are coded.

The three wavelet-based image coding algorithms mentioned—EZW, SPIHT, and EBCOT—utilize template-
based context modeling. In EZW, adaptive context models are chosen based on surrounding locations and
the parent node [25]. In contrast, EBCOT determines the context model for coding an insignificant position
according to the significance of the eight neighboring locations in the significance propagation pass. During
the early stages of the AVC development, a wavelet-based video coding proposal featuring an architecture
called partitioning, aggregation, and conditional coding (PACC) [26] was submitted in response to the Call
for Proposals [27]. PACC employs zerotrees and template-based context modeling, where the locations
covered by the template depend on the current bit plane level and potentially including the nearest neighbors
within the causal neighborhood. The PACC concept laid the groundwork for the development of CABAC, an
arithmetic coding architecture designed for block-based transform coding and first specified in AVC. CABAC
offers higher coding efficiency compared to CAVLC [28], which is why it has been specified as the entropy
coding method in both HEVC and VVC.

The usage of binary arithmetic coding with context modeling, a common approach in wavelet-based image
and video coding, is also applicable to block-based hybrid video coding. Separating conditional probability
estimation (context modeling) from codeword construction (binary arithmetic coding engine) offers modeling
and implementation advantages, which are discussed in more detail in chapter 2. However, incorporating
wavelet-based concepts into conventional block-based hybrid video coding presents several challenges. Con-
ventional block-based video coding employs a DCT or similar block transforms rather than wavelet trans-
forms. When applying a wavelet transform, the image structure is retained in the subbands, meaning that the
statistical properties of the wavelet coefficients are relatively stable across the subbands. Furthermore, sta-
tistical dependencies between wavelet coefficients in different subbands are, to a large extent, predetermined
by the structure of the wavelet transform. Strong dependencies typically exist between wavelet coefficients
associated with the same orientation and spatial region of the image. These facts can be exploited by de-
signing a suitable context modeling that considers these aspects. In block-based hybrid video coding, on the
other hand, the transform is applied to a small section of a frame, and the input is a residual signal that
highly depends on the original signal inside the block and the used predictor. Therefore, the statistical prop-
erties of transform coefficient levels may vary significantly from one block to another within the same frame.
Moreover, in modern video coding standards, the differences in statistical properties of transform coefficient
levels for blocks within the same frame are further increased by the usage of varying transform types and
sizes. Beyond context modeling aspects, video coding must also address stringent complexity constraints
required for real-time decoding and cater to a broad range of applications. For example, a video codec
should be capable of efficiently handling both screen content and camera-captured content These challenges
were successfully addressed for CABAC in AVC [28], but have to be taken into account for subsequent de-
velopments. In particular, HEVC and VVC introduce additional challenges due to the wider variety of block
sizes and supported transforms. This thesis aims to identify the statistical dependencies arising from the
new coding and partitioning tools introduced in HEVC and VVC and leverage them by employing context
modeling inspired by wavelet approaches.

A significant portion of research on coding transform coefficient levels took place during the standardization
phases of HEVC and VVC. Examples of these studies include [29], which proposed modifying the signaling
of the last significant scanning position for HEVC; [30], which recommended signaling the coded sub-block
flag for each sub-block; [31], which suggested signaling the area within the block consisting of non-zero
coefficients as a rectangle; and [32], which suggested reducing the number of context models for VVC.
Outside the standardization bodies, there is comparably less research on the topic of transform coefficient
coding, one example being [33]. In this work, the authors developed a template-based context modeling
approach based on an early version of the template-based context modeling discussed in chapter 5. Unlike

5



1.2. STATE-OF-THE-ART

the approach discussed in chapter 5, they employed a different configuration for the position-dependent
context model set. Additional research was carried out for AV1 [34, 35], a video codec developed by the
industry consortium AOMedia. In AV1, the transform coefficient level coding combines existing approaches,
such as the interleaved signaling of non-zero positions and the last significant scanning position of AVC, and
a bit plane coding similar to those used for wavelet coefficients [36].

The standardization activities are also the driving factor for the context modeling and binarization techniques
investigated in this thesis. The presented techniques were developed during the standardization phases of
HEVC and VVC with the challenges mentioned above in mind. As a result, these techniques offer improved
coding performance and versatility in a variety of coding conditions. Below is a brief summary of the
development of the individual coding techniques presented in this thesis in the context of the standardization
of HEVC and VVC:

• Chapter 3 – Transform Coefficient Level Coding for Variable Block Sizes: The development
of the level coding presented in this chapter started with the development of HEVC. The level coding in
AVC was specified for 4×4 transform blocks in the first published version in 2003. With the introduction
of 8×8 transform blocks for the High profiles in AVC, the level coding specified for 4×4 transform
blocks was extended to 8×8 transform blocks in a rather straightforward way. This extension could be
generalized and applied to larger transform block sizes. However, this would result in the disadvantage
that the number of context models linearly increases with the number of supported transform sizes,
because each transform block size uses dedicated context model sets. Besides the linear increase in
the number of context models, the coding efficiency may also suffer from context dilution, since the
resulting context models are used more infrequently and, thus, adapt slower to the actual symbol
statistics. The 4×4 sub-block processing presented in this chapter provides a solution to the undesired
dependency between the number of supported transform sizes and the number of context models [37].

• Chapter 4 – Adaptive Binarization of Transform Coefficient Levels: When HEVC was in its
early stages of development, the binarization of absolute transform coefficient levels in CABAC was
inherited from the variant specified in AVC. However, there were concerns regarding the implementa-
tion complexity of context-adaptive coding, particularly for high bit rates. The main reason for this
concern was that, in contrast to AVC, HEVC aimed to specify a single entropy coding method, which
eventually led to the selection of CABAC. To address these complexity concerns, an adaptive bina-
rization technique with Rice codes was developed, which is presented in this chapter. This technique
reduces the maximum number of context-coded bins per level, and thereby decreases the complexity
of CABAC [38].

• Chapter 5 – Template-Based Context Modeling: A first version of the template-based context
modeling for transform coefficient levels [38] was proposed in the Fraunhofer HHI submission [39] to the
Call for Proposals [40] that initiated the development of HEVC. This template-based context modeling
was utilized for the coding of the significance flags and was included in the initial reference software
for the HEVC development, which was called Test Model under Consideration (TMuC) [41]. The
template-based context modeling presented in this chapter was developed for VVC; it represents an
advanced version of the template-based context modeling in [42], which itself is an improved version of
the variant initially presented in [39].

• Chapter 6 – Level Coding Suitable for Trellis-Coded Quantization: TCQ was initially pro-
posed for VVC in combination with the level coding presented in chapter 5 [43]. However, in the level
coding that utilizes absolute levels, context- and bypass-coded bins are interleaved. During the VVC
standardization process, this interleaved transmission of context- and bypass-coded bins was considered
a potential complexity issue. Therefore, the level coding presented in this chapter was developed, where
the context- and bypass-coded bins are coded separately so that bypass-coded bins of a sub-block are
transmitted successively. Because the parity information of the previously coded level, required for
the state-dependent context model sets of TCQ, would become unavailable, the parity information is
transmitted as a dedicated context-coded flag [44].

• Chapter 7 – Transform Skip Residual Coding: The transform skip residual coding presented in

6



1.3. MAIN CONTRIBUTIONS

this chapter was developed during the VVC development. The first concepts to improve the coding
efficiency by adapting the context modeling were developed in HEVC Range Extensions (RExt) [45].
The approach presented in this chapter further improves the coding efficiency for screen content by de-
signing a dedicated transform skip residual coding that considers the statistical properties of transform
skip residuals [46].

1.3 | Main Contributions

The developed context modeling and binarization techniques for the level coding presented in this thesis
improve compression efficiency or reduce the implementation complexity. That is achieved by studying the
statistical properties of transform coefficient levels. Based on the findings of these investigations, either
the context modeling or the binarization, or both of them, are refined to achieve compression efficiency
improvements or a reduction of implementation complexity.

The underlying entropy coding for the level coding considered in this thesis is the CABAC framework that
employs context models to represent conditional probabilities for the binary symbols. These context models
are adaptive, i.e., the binary probability of the employed context model is updated after coding a binary
symbol. This property, in turn, means that a more suitable context modeling can better distinguish between
different conditional binary distributions for the input symbols. Therefore, the objective of optimizing
the level coding regarding compression efficiency or implementation complexity can be reduced to context
modeling and binarization. Note that context modeling also includes changes in the scanning or coding
order, because these modifications either alter the availability of variables that can be used for designing
suitable conditions or enable new conditionals for the probability estimation.

The context modeling and binarization techniques presented in this thesis have contributed to more efficient
video coding standards. The main contributions are summarized in the following list:

• The introduction of variable transform block sizes improves coding efficiency, but it requires a level
coding that supports various transform block sizes. It is demonstrated that a level coding supporting
transform block sizes larger than 4×4 can be realized efficiently by partitioning the block into 4×4
sub-blocks and coding the transform coefficient levels sub-block-wise.

• The sub-block-wise coding can be extended by a sub-block-wise context modeling, where the context
model set used for the context-coded symbols of a sub-block is chosen depending on the preceding
sub-block within the same transform block. It is demonstrated that such a sub-block-wise context
modeling allows for sharing context models among different block sizes, which decouples the number
of context models from the actual number of supported transform sizes and simultaneously improves
the coding efficiency.

• A binarization for non-binary symbols is necessary for binary arithmetic coding. In the AVC standard,
the binarization used for absolute transform coefficient levels represents the concatenation of two prefix
codes, where the binary symbols of the first prefix code are coded with adaptive probability models.
In contrast, the remaining symbols are coded in the low-complex bypass mode. However, the value
for which the transition between the two prefix codes occurs (referred to as the cut-off value) results
in a relatively high number of context-coded symbols per level. It is demonstrated that by using an
adaptive binarization with Rice codes the cut-off value and, thus, the implementation complexity can
be significantly decreased without harming the coding efficiency.

• It is further demonstrated that the adaptive binarization of absolute transform coefficient levels with
Rice codes improves coding efficiency for high and very high bit-rate operation points.

• The statistical dependencies between the absolute levels within a given transform block can be utilized
to improve the estimation of conditional probability models (context modeling). It is demonstrated
that a local template that considers the already reconstructed significance information of the neighbor-
ing frequency locations improves the context modeling, which directly results in an improved coding
efficiency.

7



1.4. PRACTICAL IMPORTANCE

• The context modeling highly depends on the available conditionals. For example, when the significance
flags for all levels inside a transform block are coded first, the context modeling for the significance
flag can only consider reconstructed significance flags. It is demonstrated that modifying the coding
order so that the absolute levels become available for the template-based context modeling improves
the coding efficiency.

• The template-based context modeling of the level coding that utilizes absolute levels for context mod-
eling is also suitable for TCQ. For improving the level coding for TCQ, state-dependent context model
sets are used for the context modeling of the significance flags, where different sets are used depending
on the current quantization state. It is demonstrated that adding another context model set to the
state-dependent context model sets further improves the coding efficiency.

• The implementation complexity of the level coding can be decreased by grouping the bypass-coded
bins within a sub-block or transform block and coding them successively. For the level coding that
combines a template-based context modeling with absolute levels, this complexity decrease can be
achieved by separating the context- and bypass-coded bins within a sub-block into two coding phases.
It is demonstrated that, by adding a dedicated parity flag, such a separation can be achieved with a
negligible impact on coding efficiency for configurations with and without TCQ enabled.

• The maximum number of context-coded bins per transform coefficient was limited to three without
negatively impacting the coding efficiency by reducing the cut-off value and using the adaptive bina-
rization with Rice codes. It is demonstrated that this maximum number of context-coded bins per
transform coefficient can be further reduced without harming the coding efficiency when decreasing
the cut-off value adaptively during the coding of the transform coefficient levels.

• The statistical properties of screen content are significantly different from those of traditional camera-
captured content. Encoders often choose a coding mode that skips the transform and directly quantizes
the residual samples. The resulting levels are then entropy coded with the conventional level coding.
It is demonstrated that modifying the context modeling for the directly quantized residual samples
improves the coding efficiency of screen content.

• In order to avoid interference with the conventional level coding, the coding of directly quantized
residual samples is implemented in a dedicated level coding, referred to as transform skip residual
coding. It is demonstrated that scanning the transform block sub-block-wise from the top-left to the
bottom-right corner of the block for transform skip residual coding improves the coding efficiency for
screen content, and that the signaling of the last significant scanning position for transform skip residual
coding does not provide any benefit.

• It is demonstrated that increasing the number of context-coded flags, reducing the size of the local
template, and coding the sign information with adaptive context models significantly improve the
coding efficiency for screen content.

• It is further demonstrated that the transform skip residual coding contributes to the overall coding
efficiency of screen content when combined with other dedicated screen content coding tools.

1.4 | Practical Importance

The context modeling and binarization techniques presented in this thesis were developed with the aim of
practicability, i.e., they were conceptually designed to be included in the video coding standards HEVC and
VVC. For this purpose, several input contributions covering the presented context modeling and binarization
techniques were submitted to either the Joint Collaborative Team on Video Coding (JCT-VC) responsible
for the HEVC development or the Joint Video Experts Team (JVET) responsible for the VVC development.
Correspondingly, many of the context modeling and binarization techniques presented in this thesis can be
found in the video coding standards HEVC and VVC:

• The partitioning and processing of larger residual block sizes in sub-blocks is a concept that is used in
the level coding specified in both HEVC and VVC.

8



1.4. PRACTICAL IMPORTANCE

• The adaptive binarization of transform coefficient levels using the concatenation of the TRU code, Rice
codes, and the 0th-order exponential-golomb (EG0) code is a concept that is used for the binarization
of absolute transform coefficient levels in both HEVC and VVC.

• The template-based context modeling combined with a modified coding order, so that the neighboring
frequency locations inside the local template contain absolute levels, served as the starting point for
the template-based context modeling employed in the level coding of VVC.

• The extension of the state-dependent context model sets for context modeling of the significance flags
by one additional context model set is used in the level coding of VVC.

• The separation of context- and bypass-coded bins for a sub-block combined with a binarization that
includes a dedicated parity flag is used for the level coding specified in VVC.

• The restriction of the maximum number of context-coded bins that significantly reduces implementation
complexity is specified for the level coding of VVC.

• VVC includes a dedicated transform skip level coding.

• The transform skip level coding of VVC employs a sub-block-wise scanning from the top-left to the
bottom-right corner of the block.

• The transform skip level coding of VVC processes all sub-blocks of the block, meaning that the last
significant scanning position, which is signaled in the conventional level coding, is not transmitted.

• In the transform skip level coding of VVC, a reduced local template for context modeling is utilized,
more context-coded flags than in the conventional coefficient coding are coded for a level, and the sign
information is coded with adaptive probability models.

9



CHAPTER 2

Video and Entropy Coding

Contents
2.1 Hybrid Video Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Entropy Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Context-Based Adaptive Binary Framework . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Shannon-Fano-Elias Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Iterative Shannon-Fano-Elias Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Arithmetic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Challenges in Entropy Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.5 Design Principles of CABAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.6 Binarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.7 Adaptive Context Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.8 Context Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Nowadays, successful modern video coding standards build upon the hybrid coding architecture, where block-
based prediction is combined with transform coding of the prediction error signals. In this architecture, lossy
coding, which is essential for achieving the compression ratios required in practical video applications, is
achieved by quantization. Before the quantization, the signal undergoes a 2-dimensional transform, and the
quantization is performed in the transform domain. The transform reduces statistical dependencies within
the input signal, allowing scalar quantization to achieve a performance closer to that of vector quantization.
It should be noted that the transform can only remove linear dependencies (i.e., correlations), which implies
that the application of a transform does not make any difference if the input signal is uncorrelated. Another
effect of transform coding is that the quantization in the transform domain is more pleasing to human
perception.

At the end of the coding pipeline, entropy coding generates the output as a binary sequence, referred to as
bitstream. Each bitstream contains information, such as the partitioning structure and prediction data, and
the quantization indices referred to as transform coefficient levels. Entropy coding represents a lossless
coding concept where the reconstructed signal is identical to the input signal. It is an important component
within the hybrid video architecture, because it can contribute to the overall coding efficiency by utilizing
the statistical properties of the provided signals and exploiting remaining statistical dependencies.

This chapter starts with a brief overview of the hybrid video coding architecture and its components to
understand the input provided to the entropy coding within the modern hybrid video coding framework. The
second part of this chapter includes a more detailed description of entropy coding and the theoretical and
practical assumptions for the coding of the transform coefficient levels, the notations, and the configurations
and experimental environment for the results presented throughout this thesis.

2.1 | Hybrid Video Coding

Each input frame is partitioned into fixed-size N×N blocks, where N is the edge length of the block, and
each N×N block can be further subdivided into smaller blocks for prediction and transform coding in block-
based hybrid video coding. This partitioning applied to the input frame forms a (partitioning) grid, and
figure 2.1 illustrates an example of such a partitioning grid for a frame of an high-definition test sequence.
The processing of the partitioning grid is commonly line-wise from left to right. Each N×N grid element,
which is a block of 64×64 samples in this example, can be subdivided into smaller blocks, and the final result
is a partitioning tree, where the tree structure depends on the employed partitioning technique, such as the

10



2.1. HYBRID VIDEO CODING

Figure 2.1
Snapshot taken from the test sequence BQTerrace (1920×1080) partitioned into 64×64 blocks of samples, which
is also the maximum coding tree unit size in High Efficiency Video Coding (H.265/MPEG-H Part 2) (HEVC).
Each 64×64 block is processed individually line-wise from left to right.

quadtree approach. Prediction is performed for each block, which corresponds to a leaf of the partitioning
tree, and the resulting prediction errors are referred to as the residual signal. A transform decorrelates the
residual signal, and the following quantization reduces the signal information. Finally, the entropy coding
encodes the resulting transform coefficient levels into the bitstream.

A simplified processing diagram from an encoder viewpoint is illustrated in figure 2.2 for each block, denoted
as Bi that contains the original input samples. The original block samples are predicted using intra- or
inter-prediction, followed by the transform of the prediction residuals and the quantization of the resulting
transform coefficients. At the final stage of the pipeline, the entropy coding encodes the transform coefficient
levels and other coding information into the bitstream. Further, it contributes to the overall coding efficiency
by utilizing the statistical properties of the signal and exploiting the remaining statistical dependencies within
the transform coefficient levels. The processing from the decoder viewpoint is inverse, i.e., the entropy decoder
reconstructs the transform coefficient levels from the bitstream and provides the input to the scaling process,
which is the counterpart of the quantization at the decoder side. After scaling the transform coefficients,
the signal is transformed back into the spatial domain by the inverse transform, and the spatial signal is
combined with the prediction signal resulting in the reconstructed signal. The difference between the original
and reconstructed samples is referred to as distortion. The most commonly employed distortion metric is
mean squared error.

Conceptually, block-based hybrid video coding combines a set of different coding tools into a single design:
partitioning, prediction, transform, quantization, and entropy coding, where each part can be optimized for
more efficiency (in terms of coding efficiency and complexity). However, state-of-the-art encoders need to
implement advanced algorithms to exploit the whole extent provided by sophisticated coding tools. Detailed
overviews for the specific video coding standards are provided in [47] for HEVC and in [48] for Versatile
Video Coding (H.266/MPEG-I Part 3) (VVC). A broader description of the development line for the H.26x
video coding standards can be found in [49].

11



2.1. HYBRID VIDEO CODING

Bi

intra prediction transform

quantization bitstream

entropy coding

inter prediction

Figure 2.2
Simplified block diagram of block-based hybrid video coding architecture from the encoder viewpoint, where the
input is a block Bi containing original samples. A prediction is performed for the samples in Bi using either
intra- or inter-prediction. The prediction errors, referred to as residuals, are then transformed, and the obtained
transform coefficients are quantized, resulting in quantization indices, also referred to as transform coefficient
levels. At the end of the coding pipeline, the entropy coding utilizes statistical properties and exploits the
remaining statistical dependencies for further coding efficiency improvements.

2.1.1 | Partitioning

The partitioning specifies how each grid node is subdivided into smaller blocks, where the syntax and
semantics depend on the employed technique. Different alternatives are possible for the shape, the size, and
the signaling, which leads to a certain partitioning tree. Those aspects form the design of the partitioning
scheme. Figure 2.3 illustrates the partitioning in HEVC, which uses quadtree structures with a corresponding
coding order. In this example, a flag is signaled for each block, specifying whether or not a 2N×2N block
is further subdivided into four N×N blocks. More information and detailed description for partitioning in
practical video standards can be found in [38] for HEVC and in [50] for VVC.

2.1.2 | Prediction

Each block employs a prediction that generates a residual signal with usually less energy than the original
input signal. There are two main prediction modes: intra-prediction employing reference samples of the
already reconstructed regions of the current frame and inter (or temporal) prediction employing reference
samples of fully reconstructed preceding frames.

Intra Prediction

The top and the left samples adjacent to the current block form reference samples in intra-prediction, and
so-called angular intra modes predict the current block samples according to an angle using extrapolation.
Further, specialized intra-prediction modes suitable for a specific type of texture or content exist, such as
luma-to-chroma intra prediction allowing the prediction of chroma blocks from the co-located luma samples,
the planar mode, where the extrapolation is according to a plane, or the DC mode that uses the mean of the
reference samples as predicted value for all sample positions. An overview of the different intra-prediction
modes available in HEVC, such as the planar mode, is given in [51]. A respective overview for VVC is given
in [52].

Inter Prediction

A reconstructed area in a fully reconstructed frame provides the reference samples for inter-prediction. The
spatial region used as the reference is indicated by a motion vector specifying the spatial displacement relative
to the current block, and a reference index specifying the employed reconstructed picture. Motion vector
prediction is used for efficient signaling, and only the difference between the current motion vector relative
to the predictor is coded in the bitstream. How the predictors are constructed and what kind of the special
modes exist, such as skip and merge, and more, are described in-depth for HEVC in [53], and the in-depth
description for VVC can be found in [54].

12



2.2. CONTEXT-BASED ADAPTIVE BINARY FRAMEWORK

a b

c d

g h

i j

e

f

a b c d

e f

g h i j

64
 s

am
pl

es

64 samples

16
 s

am
pl

es

16 samples

Figure 2.3
Example for the partitioning in HEVC using quadtree structures where a single flag signals the split of a 2N×2N
node into four N×N child nodes. The center illustration shows the depth-first Z-scanning processing denoted by
alphabet characters, and the right illustration shows the corresponding quadtree structure.

2.1.3 | Transform

A transform in video coding is, in theory, a reversible process that changes the basis of the 2-dimensional
signal representing the information in the spatial domain. After the application of a suitable transform, which
is usually based on either sine or cosine basis functions with the corresponding transforms being referred
to as discrete sine transform (DST) or discrete cosine transform (DCT), respectively, the block signal is
decorrelated, and its energy is typically concentrated into few transform coefficients. Practical video coding
standards employ integer approximations of the corresponding transforms, which can be implemented more
efficiently. More information for the transforms in HEVC can be found in [47], and for VVC an overview
can be found in [55].

2.1.4 | Quantization

The quantization that follows the transform is the non-reversible phase of the coding pipeline, and it reduces
the signal information so that the compression factor necessary for practical applications can be achieved.
A simple quantization approach is a uniform reconstruction quantization (URQ), where the quantization
step size ∆ defines the distance between two reconstruction values and, thus, the accuracy of the transform
coefficients. Because practical video coding standards specify the scaling process only, the counterpart of the
quantization at the decoder side, practical encoders can choose the quantization implementation depending
on their requirements. Adjusting the quantization step size ∆ indirectly controls the bit-rate, and practical
encoders usually implement a user-defined quantization parameter (QP), where internally the QP is mapped
to a ∆ value. Further information on quantization can be found in [56].

2.1.5 | Entropy Coding

From the encoder viewpoint, the entropy coder is the last component of the coding pipeline. It is responsible
for the output of the transform coefficient levels and the side information as a sequence of binary symbols,
referred to as bitstream. State-of-the-art video coding standards employ context-based adaptive binary arith-
metic coding (CABAC) [57] as the entropy coding scheme, which has three major components: binarization,
context memory, and an arithmetic coding engine.

2.2 | Context-Based Adaptive Binary Framework

The CABAC framework inherits an arithmetic coding engine, a concept that goes back to Shannon-Fano-
Elias and block codes, which will be briefly reviewed next.

In block codes [1], a sequence of input symbols (s1, s2, . . . , sM ) is mapped to a codeword according to the
joint probability p (s1, s2, . . . , sM ), where M is the sequence length. Block codes can achieve an efficiency
close to the entropy rate (if it exists) for a large value of M . However, it is impossible to implement general
block codes for larger sequence lengths, because of excessive memory prerequisites due to the number of
codewords.

13



2.2. CONTEXT-BASED ADAPTIVE BINARY FRAMEWORK

2.2.1 | Shannon-Fano-Elias Codes

A solution that avoids the need for storing the codewords is Shannon-Fano-Elias coding. Let A be an alphabet
and V = {v0, v1, . . .} be an ordered set of all possible sequences of symbols si ∈ A with a sequence length
equal to M . Furthermore, for each vk ∈ V, let p (vk) denote the joint probability. In Shannon-Fano-Elias
coding, each sequence vk is assigned to a half-open interval [Lk, Lk+Wk), where the width Wk and the lower
bound Lk of the interval are derived by

Wk = p (vk) Lk =

k−1∑
i=0

p (vi) . (2.1)

For each of the intevals [Lk, Lk +Wk), the corresponding codeword b1b2 . . . bK can be found by selecting a
real number ck ∈ [Lk, Lk +Wk) that has a binary representation ck = 0.b1b2 . . . bK with K = ⌈− log2 p (vk)⌉.

2.2.2 | Iterative Shannon-Fano-Elias Codes

In contrast to joint probabilities, an advantage of conditional probabilities is that they can be described by
simpler models while achieving a sufficient approximation of the general variant. Such an approximation
eventually reduces the memory requirements to a feasible level for practical implementations. The iterative
variant of Shannon-Fano-Elias codes utilizes conditional instead of joint probabilities, where each symbol smk
of the sequence vk is evaluated to determine iteratively the current width Wm

k , and the current lower bound
Lm
k . Exactly as in the non-iterative variant, each resulting codeword b1b2 . . . bK corresponds to a real number

ck ∈ [LM
k , LM

k +WM
k ) that has a binary representation ck = 0.b1b2 . . . bK with K = ⌈− log2W

M
k ⌉. A further

advantage of the concept is that some bits of the codeword ck = 0.b1b2 . . . bK are settled during the iteration
and can be transmitted while processing the symbols of the sequence, which makes the concept feasible for
practical applications. This iterative concept forms nested intervals, i.e., the first symbol s1k determines the
interval [L1

k, L
1
k +W 1

k ), and the next interval [L2
k, L

2
k +W 2

k ) is within the interval [L1
k, L

1
k +W 1

k ), where in
each iterative step the current interval is refined towards the final interval. In contrast to the non-iterative
variant, the set of all possible sequences V does not have to be ordered, but the alphabet A has to be ordered.

Let p
(
sik|s

i−1
k , si−2

k , . . . , s1k
)

denote the conditional probability which depends on all available preceding sym-
bols of the sequence vk, and p

(
sik|C

(
si−1
k , si−2

k , . . . , s1k
))

denotes an estimation, where C (·) is the conditional
that represents a model. An example for simpler models using the conditional is p

(
sik|C (·)

)
= p

(
sik
)

when
it is assumed that there are no statistical dependencies among the symbols of the sequence, or a first-order
model with p

(
sik|C (·)

)
= p

(
sik|s

i−1
k

)
. Algorithm 2.1 summarizes the iterative approach from the encoder

viewpoint using the modeling by C (·), where the interval width Wm
k := Wm is updated depending on the

conditional probability of the current symbol smk := sm, and the interval bound Lm
k := Lm is updated

depending on the sum of conditional probabilities for all symbols in the alphabet prior to sm.

Algorithm 2.1 Overview of the iterative Shannon-Fano-Elias codes from the encoder viewpoint. The
codeword can be any value in [LM , LM + WM ), and the algorithm suggests the binary representation of
⌈LM · 2K⌉ with K bits.
Require: vk =

(
s1k, s

2
k, . . . , s

M
k

)
=: (s1, s2, . . . , sM )

1: m← 1, L0 ← 0, W0 ← 1
2: while m ≤M do
3: Wm ←Wm−1 · p (sm|C (sm−1, sm−2, . . . , s1))
4: Lm ← Lm−1 +Wm−1 ·

∑
∀a∈A:a<sm

p (a|C (sm−1, sm−2, . . . , s1))
5: m← m+ 1
6: end while
7: K ← ⌈− log2 WM⌉
8: outputs binary representation of ⌈LM · 2K⌉ with K bits

2.2.3 | Arithmetic Codes

The presented iterative variant of Shannon-Fano-Elias codes is impossible to implement for practical applica-
tion in its current form due to the high precision required for the parameters. Arithmetic coding replaces the

14



2.2. CONTEXT-BASED ADAPTIVE BINARY FRAMEWORK

|x| TRU ℓ (x)
0 0 1
1 1 0 2
2 1 1 0 3
3 1 1 1 0 4
4 1 1 1 1 0 5
5 1 1 1 1 1 5

Table 2.1
Example of the TRU code for |x| ∈ {0, 1, 2, 3, 4, 5} and maxVal = 5, where blue bins denote the terminating binary
symbol. Due to the truncation, the codeword length for |x| = 4 and |x| = 5 are the same with ℓ (4) = ℓ (5) = 5.

real-valued parameters L, W , and the probabilities by finite-precision arithmetic. Different configurations are
possible on the number of bits for each parameter, the updating rules for L and W , and the renormalization
rule required to maintain the precision. In CABAC, the arithmetic coding engine is referred to as modulo
coder [28].

2.2.4 | Challenges in Entropy Coding

With arithmetic codes, entropy coding can reach an efficiency close to optimal block codes with the same
block sizes, when the conditional probabilities are known, whereas using wrong probabilities leads to an
increased bitstream size. The challenge in entropy coding can be identified as modeling or estimating the
(conditional) probabilities as accurately as possible, so that the bitstream size is minimized.

2.2.5 | Design Principles of CABAC

As its name implies, CABAC is a framework with a binary arithmetic coding engine, which has some
advantages over multi-alphabet designs. Binary arithmetic coding reduces implementation costs, because
the engine has to maintain two intervals only, and the estimation of binary (conditional) probabilities tends
to be more feasible than for multi-alphabets in practical applications.

Besides the binary arithmetic coding engine, the CABAC framework inherits a binarization that maps non-
binary inputs to a sequence of bins. For that, a prefix code is required, but the actually used code is
not relevant for known probability mass functions (pmfs) because the symbol probabilities can be uniquely
mapped to probabilities for the bins of the prefix code. For the estimation of the pmf, the framework provides
writeable context memory, where each adaptive context model represents a binary pmf that can be used to
specify the probability of the bin that is encoded or decoded. The assignment of a context model to a bin
depends on the design of the context modeling, and the associated task can be abstracted as determining
the pmf for a given bin.

2.2.6 | Binarization

For non-binary input symbols, the binarization maps the input into a sequence of bins, referred to as bin
string. Typically, only the absolute value is considered with the sign transmitted separately as a flag for
integer-valued input, such as for transform coefficient levels. Two types of codes are commonly used in the
CABAC framework: the truncated unary (TRU) code and the 0th-order exponential-golomb (EG0) code, and
the following paragraphs give a brief description of the two.

Truncated Unary

A unary code is a prefix-free code for countable but infinite alphabets where the codeword of the current
symbol within the ordered codeword table is one binary symbol longer than the codeword of its preceding
symbol. For |x| ∈ N0, the codeword is |x| times ′1′, and a terminating symbol ′0′, where the bin values
for the non-terminating and the terminating symbols are interchangeable. The terminating symbol for the
codeword representing the last value within finite sets can be omitted, which leads to the same codeword
length for the last value of the set and its predecessor. Table 2.1 lists an example for the resulting TRU
code with the finite set {0, 1, 2, 3, 4, 5}, where the two last elements have the same codeword length with

15



2.2. CONTEXT-BASED ADAPTIVE BINARY FRAMEWORK

bucket #2
sized for 2 
elements

bucket #3
sized for 4 
elements

bucket #4
sized for 8 
elements

bucket #5
sized for 16 
elements

bucket #1
sized for 1 
element

“0” “10” “110” “1110” “1110”

Figure 2.4
Bucket model of the EG0 or Elias-γ code, where the number of items a bucket can contain doubles for each further
bucket, resulting in a variable-sized bucket concept.

ℓ (4) = ℓ (5) = 5.

0th-order Exponential-Golomb (EG0)

The EG0 code is equivalent to the Elias-γ code [58], where a codeword consists of a prefix and a suffix. Each
|x| ∈ N0 can be represented by

|x| = 2k − 1 + r, (2.2)

with k ∈ N0 and r ∈ {0, . . . , 2k − 1}. The prefix is the unary code of k, and the suffix is the fixed-length
binary code of r with a length equal to k. An absolute offset, which is equal to 2k − 1, is indicated by the
prefix alone, whereas the suffix indicates the difference between |x| and 2k − 1. For this type of code, an
often employed representation is the bucket model, where the ordered buckets are identifiable by k, and each
bucket contains exactly k items in the case of EG0. Figure 2.4 illustrates the bucket concept for the EG0
or Elias-γ code, where the prefix specifies the bucket index and the suffix points to the concrete item within
the selected bucket.

Table 2.2 lists the codewords for the first five elements of |x| ∈ N0, where the red-marked bins denote the
prefix and the blue-marked bins denote the suffix. A property of the EG0 code is that the suffix length
increases by one symbol for each further bucket, resulting in a doubling of the bucket size of each further
bucket, i.e., the bucket sizes are equal to {1, 2, 4, 8, . . . , 2k, . . .} with k being the bucket index. Moreover,
since the prefix for the indication of each further bucket increases by one symbol, the transition from one
bucket to the next bucket results in an increase in codeword length by two symbols, whereas the codeword
length for values within a bucket is the same.

2.2.7 | Adaptive Context Models

Each bin coded with the arithmetic coding engine requires a probability, whose exact value is usually unknown
in practical applications. In the CABAC framework, so-called adaptive context models are provided, and
each of them represents one out of 128 possible binary pmfs, where the parameter of the pmf, i.e., either
the probability P (x = 1) = p or P (x = 0) = 1 − p is implemented as an internal state. After encoding or
decoding a bin with an adaptive context model, the actual bin value is used to update the pmf represented
by the employed context model.

|x| EG0 ℓ (x)
0 0 1
1 1 0 0 3
2 1 0 1 3
3 1 1 0 0 0 5
4 1 1 0 0 1 5
5 1 1 0 1 0 5

Table 2.2
Example of the EG0 or Elias-γ code with the input is |x| ∈ N0, where the prefix is the unary code and the suffix
the fixed-length binary code. Since the first bucket can contain one item only, the suffix is (∅).

16



2.2. CONTEXT-BASED ADAPTIVE BINARY FRAMEWORK

probability update

input

bitstream

aspects of context modeling

bypass mode regular mode

context memorybinarization

binary

non-binary

Figure 2.5
Block diagram of CABAC from the encoder viewpoint. Solid lines represent the flow of bins, where solid gray
lines denote the time before encoding a bin, and solid black lines denote the time after encoding a bin. Dotted
arrows represent the flow of information from and back to the context memory. Annotations contain additional
information for clarification.

The simplest form of probability estimation for a binary source is counting the number of bins equal to
one and dividing that number by the total number of observed bins. Let pn+1 = P (bn+1 = 1) denotes
the estimated probability for the next bin being equal to one, then the relative frequency approach can be
formulated as:

pn+1 =
1

n+ 1

n∑
i=0

bi. (2.3)

In this simple approach, all bins have an equal impact on the estimated probability of the next symbol. A
window or weight function can be used to give more recent bins a higher influence. For a so-called exponential
decay window, the weights are derived using an exponential decay, where the weight for bi+1 is proportionally
smaller than that for bi. This exponential decay window can be implemented recursively, where α controls
the window characteristics, i.e., the weight distribution or the rate of adaptation:

pn+1 = αpn + (1− α)bn. (2.4)

The multiplication-free implementation in CABAC discretizes the possible values of the probabilities pn
using 128 states, which can be represented by a 7-bit integer, with α being:

α =
63

√
0.01875

0.5
≈ 0.95. (2.5)

The real-valued probability for each state q is then:

p (q) =

{
1− 0.5 · α63−q, if q < 64,

1− 0.5 · αq−64, if q ≥ 64.
(2.6)

A state transition table, which implements a finite-state machine (FSM), is used to perform the probability
update in CABAC, because the update only depends on the current internal state and the actual bin value.
In VVC, the probability estimation is extended by a further estimator, and the final estimation is the
combination of the two estimators, which, among other effects, enables a faster adaptation at the beginning
[56].

2.2.8 | Context Modeling

A block diagram of CABAC from the encoder viewpoint is illustrated in figure 2.5. In this block diagram,
solid lines represent the flow of the input and the bins, and dotted lines represent the flow of information

17



2.2. CONTEXT-BASED ADAPTIVE BINARY FRAMEWORK

from and back to the context memory. Gray lines represent the time before encoding a bin, and black lines
represent the time after encoding a bin. The coding of a non-binary input starts the binarization process.
Each bin is coded with either an adaptive context model, where the bin probability is derived from the
internal state of the context model, or in the bypass mode with a fixed uniform pmf. For each bin not coded
in the bypass mode, the internal probability of the employed context model is updated using the actual bin
value, as denoted by the feedback to the context memory in figure 2.5.

Context Modeling Task

From a general perspective, the task of context modeling is to select a conditional probability estimate
p (bn|C (bn−1, bn−2, . . . , b0)) that is close to the real conditional probability p (bn|bn−1, bn−2, . . . , b0) for the
bin bn to be coded. This task can be relatively difficult when trying to estimate the conditional probabilities
directly, and the decomposition into different modules, as in the CABAC framework, makes the task more
feasible. Adaptive context models enable the focus of the design on apriori knowledge about the statistical
properties and dependencies, rather than a direct estimation of the probability. Let x be an absolute
transform coefficient level, which is binarized using the unary code. Then, each bin bi denotes the conditional
event “x > i∥x > i−1, . . . , x > 0” with the associated proability P (bi) := P (x > i|x > i− 1, . . . , x > 0). An
example of apriori knowledge is the observation that P (x > 0) > P (x > 1|x > 0). The observed statistical
property can be exploited by using different context models when coding b0 and b1. During the coding process,
the context models adapt to the actual probabilities, which depend on the input signal, operation point, and
more. For the above example, the probability of P (x > 0) should be different from P (x > 1|x > 0), and
using the same context model for both bins would increase the average codeword length, if the assumption
is correct.

Though selecting an adaptive context model is the main task of the context modeling within the CABAC
framework, three more aspects interact directly with the context modeling, which should be attributed to
the task of the context modeling and should be considered during its design.

• The choice of a prefix code used for the binarization of the non-binary input interacts with the context
model selection, because a decision on which context model should be used for each bin of the bin string
has to be made. When using a different prefix code, the probabilities for the bins alter; therefore, the
binarization design influences the context modeling and is considered as a part of the context modeling
in this thesis.

• For each bin, a decision has to be made whether the bin should be coded with an adaptive context
model or not, depending on apriori knowledge of the statistical properties.

• The coding order, which cannot be depicted in figure 2.5, is another aspect that is a part of the context
modeling, because it affects the appearance order, and thus, the conditionals C (·) available for context
modeling. An example is the scanning pattern used in the level coding that specifies the sequential
processing of the 2-dimensional block, where changing the scanning pattern leads to a different coding
order and the available conditionals.

Another problem within context modeling is the so-called context dilution, where too many context models
lead to insufficient input symbols for each adaptive context model, resulting in problems with suitably
estimating probabilities. Conversely, the coding efficiency is poor when using the same adaptive context
model for bins of different pmfs to save context memory. When the logic of context model selection is
too complicated, the implementation feasibility may be affected, eventually to a level making practical
implementations almost impossible. In summary, the design of the context modeling has to balance the
aspects mentioned above, among additional constraints not mentioned here, so that a trade-off can be found
that provides sufficient coding efficiency while requiring the least context models possible.

Notation for Context Model Selection

For this thesis, the assignment of a bin bn that represents a piece of unique information, such as bn := (x > 1),
to a context model is realized via a context model offset. Let Cn denote an array of context models used

18



2.3. CHAPTER SUMMARY

for coding the bin bn, and δn ∈ [0, |Cn| − 1] ∩ N0 is a corresponding context model offset. Note that the
same unique information can have different pmfs, and for the above example, the probability P (x > 1) may
depend on the location within the transform block, among other aspects. Therefore, bins representing the
same unique information can require different context models to achieve an appropriate coding efficiency.
Selecting a context model is denoted as Cn [δn], and the main task of the context model selection in this
thesis can be summarized as the determination of the context model offset δn.

Optimization Strategies in This Thesis

Different optimization approaches under the umbrella term context quantization based on non-parametric
statistics exist in the literature, such as in [59, 60]. Conceptually, the optimal number of context models
and assignments for a bin of the same type is sought, such as for b0 := (x > 0). While the so-called context
quantization approaches are generic, their focus is purely on context model selection without considering the
coding order and the binarization. Furthermore, the final results require a relatively large look-up table to
implement the conditional C (·), because the conditional or context function C (·) does typically not inherit
any causal dependencies, which could be implemented by closed formulas or simple arithmetic.

The task of context modeling contains more aspects than context model selection, at least in this thesis,
and this thesis focuses on heuristic methods, where statistical properties are first examined, and from the
analyses, a model is established, from which a context modeling design is derived. Instead of developing
a new overall context modeling design from scratch, the existing context modeling is optimized given the
requirements and considering further constraints, such as the number of context models or the number of
bins coded with context models.

2.3 | Chapter Summary

This chapter briefly described the relevant elements of a hybrid video coding architecture: partitioning,
prediction, transform, quantization, and entropy coding. Because this thesis is about level coding, which is
the main part of entropy coding in hybrid video coding, the concepts that led to the arithmetic coding were
reviewed more detailly. Shannon-Fano-Elias codes that can achieve the efficiency of block codes without stor-
ing the codewords were presented, followed by iterative Shannon-Fano-Elias coding that utilizes conditional
pmfs instead of joint pmfs. The latter property is crucial for practical applications, because conditional pmfs
can be approximated by simpler models while achieving sufficient accuracy. Arithmetic coding is then the
implementation of iterative Shannon-Fano-Elias coding with finite-precision arithmetic.

Next, the CABAC framework was presented and discussed, followed by the description of the context mod-
eling task, which in the first approximation is the selection of adaptive context models, where each context
model describes a binary pmf. It was clarified that context modeling in this thesis involves more aspects,
such as the binarization process or the coding order of transform coefficient levels. Finally, the optimization
strategies used to develop the techniques presented in this thesis were described, and why more generic
approaches, commonly published under the umbrella term context quantization, were not pursued.

19



CHAPTER 3

Transform Coefficient Level Coding for Variable Block Sizes

Contents
3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Transform Coefficient Level Coding in AVC . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Coding Phases in AVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Context Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 8×8 Transform Blocks and Generalization . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.4 Reference Implementation and Experimental Setup . . . . . . . . . . . . . . . . . . . 25
3.2.5 Properties of Variable Transform Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Alternative Design with 4×4 Sub-Blocks . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Properties of 4×4 Sub-Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Coding Phases with 4×4 Sub-Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Context Modeling for 4×4 Sub-Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.4 Final Design with 4×4 Sub-Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Findings and Technical Achievements . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

The continuous advances in hardware technologies allow for faster computation and higher throughput,
making cutting-edge video coding techniques feasible. Among the coding tools in High Efficiency Video
Coding (H.265/MPEG-H Part 2) (HEVC) that contribute to the improved coding efficiency relative to the
predecessor Advanced Video Coding (H.264/MPEG-4 Part 10) (AVC) [61, 17] are adaptive partitioning
techniques. These techniques support flexible block sizes for prediction [57] and transform coding of the
prediction errors [62]. But the transform coefficient level coding (or level coding) with context-based adaptive
binary arithmetic coding (CABAC) [28] in the first version of AVC was desgined for 4×4 transform blocks
only. The introduction of additional transform sizes came in the form of 8×8 transform blocks in the second
version of AVC. Its support within CABAC was realized by modifying the design for 4×4 transform blocks
and using different context models than for 4×4 transform blocks. Such an approach can, in principle, be
generalized and applied to additional transform sizes.

This chapter presents an alternative design for the level coding for variable block sizes. During the devel-
opment, particular attention was paid to implementation feasibility (in terms of complexity for hardware
architectures) and coding efficiency. The main idea of the concept is to partition transform blocks larger
than 4×4 samples into 4×4 sub-blocks and process each sub-block individually. That enables software and
hardware implementations to employ a unified design for the different transform block sizes. Moreover, the
developed design decouples the number of context models from the number of supported transform sizes
by sharing context models across different block sizes. That property enables, in turn, a straightforward
introduction of additional transform sizes and shapes as the development of the VVC standard proved.
Compared to the approach used for 8×8 transform blocks in AVC, the alternative design provides higher
coding efficiency and has a fixed number of context models, which is independent of the number of supported
transform sizes. The concepts developed in this chapter form a foundation for practical implementations,
because its basic architecture can be found in both the HEVC [63, 47], and its successor, the VVC [64, 49]
standard.

3.1 | Problem Statement

In the first version of AVC, transform coding of prediction residuals is specified using 4×4 blocks only.
However, particularly for high-resolution video formats, the coding efficiency can be improved by additionally
supporting larger block sizes.

The second version of AVC introduced 8×8 transform blocks in addition to the existing 4×4 transform
blocks. Entropy coding of the quantization indices, also referred to as transform coefficient levels, in
8×8 transform blocks was realized by extending the design specified for 4×4 transform blocks. Different

20



3.2. TRANSFORM COEFFICIENT LEVEL CODING IN AVC

4 samples 4 samples
4 sam

ples4 
sa

m
pl

es

regular reverse

1st coding phase 2n
d 

co
di

ng
 p

ha
se

Figure 3.1
Zigzag scanning pattern used in AVC. On the left: The regular zigzag scanning pattern for 4×4 transform blocks
used in the first coding phase. On the right: The corresponding reverse zigzag scanning pattern for 4×4 transform
blocks used in the second coding phase.

context models than for 4×4 transform blocks are used for the entropy coding of transform coefficient levels
belonging to 8×8 transform blocks, because they are characterized by different statistical properties. This
approach could be generalized and applied to additional transform block sizes; it will also be used as the
basis for the level coding approaches investigated in this chapter.

Nevertheless, this approach becomes infeasible for more flexible partitioning schemes that support a large
variety of block sizes, because it requires a separate set of different context models for each supported
transform size. That does not only increase the implementation complexity but may also lead to context
dilution [65], where too many context models can result in inferior coding efficiency, because the probability
estimation cannot adapt to the actual symbol statistics due to an insufficient number of input symbols for a
context model.

3.2 | Transform Coefficient Level Coding in AVC

In AVC, the transform coefficient level coding for 4×4 transform blocks consists of two coding phases. In the
first coding phase, the locations of non-zero valued transform coefficient levels, also referred to as significant
levels, are transmitted. The binary mask identifying significant and insignificant transform coefficient levels
is commonly called significance map. The actual values for the significant locations are then transmitted
in the second coding phase.

Two serialization processes are involved: The scanning pattern and the binarization of transform coef-
ficient levels. A scanning pattern specifies the mapping from a 2-dimensional array of transform coefficient
levels within a transform block to a one-dimensional array. The first coding phase uses the zigzag scanning
pattern, as illustrated on the left in figure 3.1. After finishing the first coding phase, the second phase starts
from the highest frequency position located at the bottom-right corner of the transform block and uses the
reverse zigzag scanning pattern, as illustrated on the right in figure 3.1. The use of the zigzag scanning
pattern reflects the statistical property that low-frequency positions located at the top-left area of the block
have a higher probability for significant transform coefficient levels due to the energy compaction of the
transform.

The second serialization process decomposes the integer-valued transform coefficient levels, denoted as x,
into a sequence of binary-valued symbols (bn)n∈N, referred to as bin string, for coding with the binary
arithmetic engine, where each binary-valued input symbol is referred to as bin. The absolute value |x| ∈ N0

of each transform coefficient level is binarized using a combination of truncated unary (TRU) and 0th-order
exponential-golomb (EG0) codes. More accurately, the binarization of x1 = min (|x|, 15) uses the TRU code,

21



3.2. TRANSFORM COEFFICIENT LEVEL CODING IN AVC

|x| TRU EG0 ℓ (x)
0 0 1
1 1 0 2
2 1 1 0 3
3 1 1 1 0 4
4 1 1 1 1 0 5
. . . . . . . . . . . . . . . . . . . . .
12 1 1 1 1 . . . 0 13
13 1 1 1 1 . . . 1 0 14
14 1 1 1 1 . . . 1 1 0 15
15 1 1 1 1 . . . 1 1 1 0 16
16 1 1 1 1 . . . 1 1 1 1 0 0 18
17 1 1 1 1 . . . 1 1 1 1 0 1 18
18 1 1 1 1 . . . 1 1 1 1 1 0 0 0 20
19 1 1 1 1 . . . 1 1 1 1 1 0 0 1 20
20 1 1 1 1 . . . 1 1 1 1 1 0 1 0 20

Table 3.1
Bin strings for absolute transform coefficient levels |x| up to 20, inclusively, when using the binarization process
specified in AVC for transform coefficient levels. Note that values greater than 14 include an EG0 suffix, whereas
the suffix does not exist for values less than 15.

whereas the remaining absolute value (x2 = |x| − 15), which is only transmitted if x1 = 15, is binarized by
the EG0 code. All bins belonging to the TRU code are coded with adaptive context models in the CABAC
framework, they are referred to as context-coded bins. All bins belonging to the EG0 code are coded
in the bypass operation mode, and these bins are referred to as bypass-coded bins. When the transform
coefficient level is significant (x ̸= 0), an additional sign bin is coded in the bypass mode. The implicit
assumption for all bypass-coded bins is that the source probabilities for both possible values are the same.
Table 3.1 summarizes the bin strings for absolute transform coefficient levels up to 20, inclusively, in AVC.
Note that the length ℓ (x) in table 3.1 denotes the bin string length rather than the final codeword length.
Because the described binarization scheme depends on the input symbol x only and not on any further input
parameters, it is referred to as static binarization. The decoder can reconstruct the final absolute transform
coefficient level given only the bin string.

Before coding the actual transform coefficient levels, a bcbf flag (coded block flag) is signaled in the bitstream
for each transform block. It specifies whether the corresponding transform block contains at least one
significant transform coefficient level. The bcbf flag efficiently represents insignificant transform blocks that
often occur at lower bit-rate operation points. Consequently, the coding process described in the following
paragraphs considers only the case bcbf = 1.

3.2.1 | Coding Phases in AVC

The transmission of the transform coefficient levels comprises two coding phases: The significance map
signaling followed by the values for the significant scanning positions. For the sake of comprehensibility, the
following description is from the viewpoint of the encoder.

1st Coding Phase

In the first coding phase that uses the regular scanning pattern (illustrated on the left in figure 3.1), a bsig
flag is transmitted for each scanning position i. The bsig flag specifies whether the scanning position i has
a significant level (x ̸= 0) or not and corresponds to the first bin of the TRU code (b|x|>0). If the scanning
position i is significant (bsig [i] = 1), a blast flag is additionally transmitted directly after the bsig flag. This
flag specifies whether the current scanning position i is the last significant scanning position (blast [i] = 1) in
the transform block. Interleaving the two flags allows for an efficient representation of insignificant areas at
high-frequency locations.

22



3.2. TRANSFORM COEFFICIENT LEVEL CODING IN AVC

Algorithm 3.1 Pseudo-code of the level coding in AVC for 4×4 transform blocks consisting of two coding
phases realized by two while-loops.
1: i← 0, ilast ← −1
2: while ilast < 0 do
3: ilast ← significanceAndLast (i)
4: i← i+ 1
5: end while
6: i← ilast, c1 [i]← 1, c2 [i]← 0
7: while i ≥ 0 do
8: absoluteV alueAndSign (i, c1, c2)
9: i← i− 1

10: end while

2nd Coding Phase

After establishing the significance map, the absolute values and signs for the significant scanning positions
are transmitted. Note that the first bin bsig of the binarization for the absolute values is already coded in
the first coding phase. Only the remaining bins representing the absolute values minus one are transmitted
in the second coding phase. The second coding phase uses the reverse scanning pattern starting from the
last (significant) scanning position (illustrated on the right in figure 3.1), because this reverse scanning
pattern allows for a more efficient context modeling as the probabilities become more predictable towards
the low-frequency positions. Each bin belonging to the TRU code (up to 14) is coded with a context model,
whereas the bins belonging to the EG0 code (if present) are coded in the bypass mode of the arithmetic
coding engine. Finally, the sign information (bsign flag) is coded in the bypass mode for the significant levels
(x ̸= 0), because of its uniform distribution.

An overview of the design is given in algorithm 3.1, where two while-loops realize the two coding phases. Note
that c1 and c2 in algorithm 3.1 are arrays storing tracking variables. They are often used to implement
the context modeling rules described in the next subsection in practical applications.

3.2.2 | Context Modeling

Let Cn denote an array of context models used for coding the bin n, where n represents actual flags, such
as bsig or blast. Each context model is then addressed by a context model offset δn (i) at the scanning
postion i as Cn [δn (i)].

1st Coding Phase

For both bsig and blast, each scanning position i employs a dedicated context model. Given the scanning
position i, the corresponding context model is then Csig [i] and Clast [i] (where δsig (i) = δlast (i) = i). A
summary for the assignment is given in algorithm 3.2 (sub procedure of coding the significance bsig and last
blast flags). Whenever blast [i] = 1 is signaled, the last significant scanning position is identified as being
equal to i, and the first coding phase is terminated.

Algorithm 3.2 significanceAndLast : Coding of bsig and blast including the corresponding context modeling
in AVC.
Require: scanning position i
1: δsig (i)← i, δlast (i)← i
2: transmit bsig [i] using Csig [δsig (i)]
3: if bsig [i] = 1 then
4: transmit blast [i] using Clast [δlast (i)]
5: if blast [i] = 1 then
6: return i
7: else
8: return −1
9: end if

10: end if

23



3.2. TRANSFORM COEFFICIENT LEVEL CODING IN AVC

2nd Coding Phase

Up to 14 context-coded bins may be present for each x ̸= 0, where the first bin b|x|>1 uses a dedicated
context model from the set Cx>1. For the remaining 13 context-coded bins, the same context model from
the set Cx>2 is used, where the derivation of δx>1 (i) and δx>2 (i) differs. For the first bin b|x|>1, the context
model index is incremented by one (δx>1 (i) = δx>1 (i+ 1) + 1) after the coding of b|x|>1 [i+ 1] = 0, but
switches to a fixed context model offset (δx>1 (i) = 0) after the coding of a bin b|x|>1 [i+ 1] = 1. In the
latter case, the same context model is used for all remaining scanning positions of the transform block. Let
Bx>1 (i) =

∑ilast
k=i+1 b|x|>1 [k] denote the sum of the already coded b|x|>1 flags and Bsig (i) =

∑ilast
k=i+1 bsig [k]

the corresponding sum of the bsig flags. Then, the context index derivation for the b|x|>1 flag in AVC is given
by the following formula:

δx>1 (i) =

{
0, if Bx>1 (i) > 0,

min (4, Bsig (i) + 1) , otherwise.
(3.1)

The rationale for such context modeling is that the probability of b|x|>1 increases towards the low-frequency
scanning positions, and its probability of being equal to one becomes fairly predictable. With each occurence
of b|x|>1 = 0, the probability for b|x|>1 (i) = 1 increases, while the occurence of b|x|>1 (i+ 1) = 1 indicates that
the probability for b|x|>1 (i) becomes rather independent of the values of the bins following b|x|>1 (i+ 1) = 1.
The context model offset δx>2 (i) for the remaining 13 context-coded bins (if present) is incremented by one
after the coding of a bin b|x|>1 (i+ 1) = 1. Consequently, δx>2 (i) relies on Bx>1 (i) and the following formula
summarizes the context modeling:

δx>2 (i) = min (4, Bx>1 (i)) . (3.2)

Algorithm 3.3 summarizes the second coding phase and the described context modeling for the context-coded
bins of x. The evaluation of the already coded b|x|>1 flags is realized by the tracking variables c1 and c2 in
practical implementations.

Algorithm 3.3 absoluteValueAndSign: Coding of absolute levels and signs together with the context mod-
eling using the two tracking variables c1 and c2 in AVC.
Require: scanning position i, arrays storing tracking variable values c1, and c2
1: if bsig [i] = 1 then
2: δx>1 (i)← min (c1 [i] , 4)
3: transmit b|x|>1 [i] using Cx>1 [δx>1 (i)]
4: if b|x|>1 [i] = 1 then
5: δx>2 (i)← min (c2 [i] , 4), j ← 1
6: do
7: j ← j + 1, bj = b|x|>j [i]
8: transmit bj using Cx>2 [δx>2 (i)]
9: while bj ∧ j < 14

10: if bj ∧ j = 14 then
11: transmit |xi| − 15 in bypass mode using EG0
12: end if
13: c2 [i− 1]← c2 [i] + 1, c1 [i− 1]← 0
14: else if c1 [i] ̸= 0 then
15: c1 [i− 1]← c1 [i] + 1
16: end if
17: transmit bsign [i] in bypass mode
18: end if

Number of Context Models

The described level coding requires four different arrays of context models (Csig, Clast, Cx>1, and Cx>2). Let
|Cn| denote the number of items in an array Cn, then the number of total context models is equal to 42
(|Csig| = 16, |Clast| = 16, |Cx>1| = 5, and |Cx>2| = 5).

24



3.2. TRANSFORM COEFFICIENT LEVEL CODING IN AVC

3.2.3 | 8 × 8 Transform Blocks and Generalization

The level coding for 8×8 transform blocks in AVC is a simple extension of the design for 4×4 transform
blocks. For the first coding phase, however, if one attempts to keep the number of context models for bsig
and blast the same as for 4×4 transform blocks, at least some context models have to be used for multiple
scanning positions. The solution of the extended design in AVC is assigning the same context model to four
successive scanning positions and using different context models than for 4×4 transform blocks. The only
change to the context modeling of the second coding phase is the usage of different context models for 8×8
transform blocks.

Using different context models when dealing with 8×8 transform blocks can be expressed by adding a
corresponding offset to the context indices (δsig, δlast, δx>1, and δx>2), and doubling the size of the context
model arrays (Csig, Clast, Cx>1 and Cx>2). When following the principles used in AVC for 8×8 transform
blocks, the concept can be generalized to additional block sizes by:

• Increasing the number of successive scanning positions that use the same context model so that the
number of context models necessary for bsig and blast is equal to 16;

• Adding 16 context models to both Csig and Clast, and five context models to both Cx>1 and Cx>2 for
each additional transform block size;

• Using additional offsets for δsig, δlast, δx>1, and δx>2 depending on the transform block size N.

In the following, it is assumed that the partitioning only supports square transform blocks with a power-of-
two width and height greater than or equal to 4, as it is the case in both AVC and HEVC. Nonetheless, the
concept can be extended to more general rectangular blocks in a straightforward way. Let n = log2 N − 2
with N being the width and height of a square transform block, then the generalized version for the context
index offsets is given by:

δsig (i)← 16n+ (i≫ (n≪ 1)) ,

δlast (i)← 16n+ (i≫ (n≪ 1)) ,

δx>1 (i)← 5n+min (c1 [i] , 4) ,

δx>2 (i)← 5n+min (c2 [i] , 4) .

(3.3)

The first two assignments in the above formula replace the first line in algorithm 3.2, and the last two
assignments replace the corresponding derivation in algorithm 3.3 (line two and line five). Note that using
distinctive context models for each transform size is a disadvantage, because it introduces a linear relationship
between the number of additional transform sizes and the number of context models. A reason for using
different context models depending on the transform size is that the statistical properties of transform
coefficient levels depend on the transform block size.

3.2.4 | Reference Implementation and Experimental Setup

The generalized AVC design is the starting point for the development in this chapter. It is referred to as
implementation 3-0 (IMP3-0) and is the initial anchor for coding efficiency comparisons. For all coding
experiments in this chapter, the HEVC reference software, version 16.22 (HM-16.22), was used as the basis.
The coding experiments are evaluated by measuring the Bjøntegaard delta bit-rate (BD-rate) [66] for the luma
component between two codec versions, and the experiments mainly follow the HEVC common test conditions
(CTC) [67]. Specifically, the used test set, coding tools configuration, and quantization parameters (QPs)
controlling the operation points are described in detail in [67]. Within the used experimental environment,
the encoder can choose among four different (square-shaped) transform block sizes: 4×4, 8×8, 16×16, and
32×32. Different than specified in the CTC, the performed encoder simulations did not use sign data hiding
(SDH), rate-distortion optimized quantization (RDOQ), and transform skip mode (TSM) to simplify the
conducted experiments. Furthermore, all adaptive context models used for level coding were initialized
as equi-probable (EP) to avoid interference from initial probabilities. The total number of context models
employed for the generalized AVC design is equal to 168 (4 transform sizes multiplied by 42).

25



3.3. ALTERNATIVE DESIGN WITH 4×4 SUB-BLOCKS

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

Ĥ(|X|) = 1.86

4×4

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

Ĥ(|X|) = 1.42

8×8

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

Ĥ(|X|) = 0.49

16×16

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

Ĥ(|X|) = 0.39

32×32

Figure 3.2
Histograms of coded absolute transform coefficient levels for the four used transform block sizes, acquired by
coding the first frame of the BQTerrace sequence using HM-16.22. Absolute transform coefficient levels greater
than eight were assigned to the last bin of the histogram, and the QP was set to 27.

3.2.5 | Properties of Variable Transform Sizes

To demonstrate that different transform sizes lead to different probability distributions, figure 3.2 illustrates
the histograms of absolute transform coefficient levels for the used transform sizes. The data used to generate
the histograms were acquired by decoding existing bitstreams, and only scanning positions with coded
bsig flags were considered. That avoids a bias of the histograms towards zero-valued transform coefficient
levels, which should be avoided, because the design already considers the effect of insignificant areas at the
high-frequency locations by coding blast flags. Furthermore, Ĥ (X) denotes the empirical entropy for the
corresponding histograms. Figure 3.2 indicates that the relative frequency (or empirical probability) p̂ (·) for
insignificant scanning positions is higher for larger transform sizes, resulting in a significantly lower Ĥ (X)
value. This observation indicates that larger transforms tend to be sparser, i.e., there are more insignificant
scanning positions along the scanning path. Note that the histograms do not reflect the probabilities of real
coding conditions (e.g., for the bsig flag), but they show that the probabilities are not independent of the
transform size.

Additional encoding experiments were performed where all transform block sizes employ the same context
models, i.e., n = 0 for the notation in equation (3.3). That implementation showed an inferior coding
efficiency than the anchor implementation, where each transform block size employs distinctive context
models. The measured BD-rate, averaged over the entire test set, are 1.32% in the All-Intra and 0.68% in
the Random-Access configurations.

3.3 | Alternative Design with 4 × 4 Sub-Blocks

The two coding phases of the generalized AVC design are universally applicable, implying that support-
ing additional transform sizes requires only the definition of the corresponding zigzag scanning patterns.
However, the amount of additional context models directly depends on the number of additional transform

26



3.3. ALTERNATIVE DESIGN WITH 4×4 SUB-BLOCKS

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

Ĥ(|X|) = 1.86

4×4 SB #00

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

Ĥ(|X|) = 1.95

8×8 SB #00

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

Ĥ(|X|) = 1.22

16×16 SB #00

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

Ĥ(|X|) = 1.16

32×32 SB #00

Figure 3.3
Histograms of absolute transform coefficient levels for the sub-block containing the DC frequency position of
different transform sizes, acquired by coding the first frame of the BQTerrace sequence using HM-16.22. Absolute
transform coefficient levels greater than eight were grouped into the last bin of the histogram, and the QP was
set to 27.

sizes. That dependency should be broken to achieve a universal context modeling variant, which leads to a
completely straightforward design, i.e., no further modifications are necessary when introducing additional
transform sizes except for the definition of the scanning patterns.

A concept that would resolve the dependency mentioned above is partitioning the transform blocks into
different regions and using the same context models for regions with similar statistical properties. The
number of context models is then fixed and independent of the number of supported transform sizes. Such
an alternative approach could even improve coding efficiency when those regions exist among the different
transform sizes. A possible realization is the partitioning of transform blocks larger than 4×4 samples
into 4×4 sub-blocks. Within each 4×4 sub-block, the same coding order and context modeling as for 4×4
transform blocks could be used to keep the existing design for 4×4 transform blocks.

3.3.1 | Properties of 4 × 4 Sub-Blocks

The motivation behind the alternative design with 4×4 sub-blocks is to share context models among different
transform sizes. However, it can only work when 4×4 sub-blocks with similar statistical properties among
different transform sizes exist. It is not evident that they exist, but it should be supposed that 4×4 sub-
blocks with similar statistical properties do not always emerge at the same locations and that their appearance
depends on the input signal, the transform size, the transform type, the quantization step size, and other
parameters.

Figure 3.3 illustrates the histograms of 4×4 sub-blocks covering the DC frequency position (denoted as sub-
block #00 with absolute offsets (x = 0, y = 0) relative to the top-left origin of the transform block) for the
used transform sizes. An observation is that the sparsities for the larger transform sizes (8×8, 16×16, and
32×32) are less pronounced than in the histograms for the entire transform blocks in figure 3.2. Another

27



3.3. ALTERNATIVE DESIGN WITH 4×4 SUB-BLOCKS

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

Ĥ(|X|) = 1.03

8×8 SB #01

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

Ĥ(|X|) = 1.20

8×8 SB #02

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

Ĥ(|X|) = 0.72

16×16 SB #02

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

Ĥ(|X|) = 0.80

32×32 SB #02

Figure 3.4
Histograms of absolute transform coefficient levels for various 4×4 sub-blocks of different transform sizes, acquired
by coding the first frame of the BQTerrace sequence using HM-16.22.

observation is that the histogram for 8×8 transform blocks becomes more similar to the histogram of 4×4
transform blocks. The above observations show that the empirical probability distribution can be different
than that of the entire transform block when considering 4×4 sub-blocks. Figure 3.4 illustrates the histograms
of sub-blocks with the identifier #01 (x = 4, y = 0) and #02 (x = 0, y = 4) for the different transform sizes.
An observation is that the two histograms for 8×8 transform blocks are very similar, and the same observation
can be made for the histograms of the sub-blocks for 16×16 and 32×32 transform blocks. Both observations
suggest that 4×4 sub-blocks with very similar statistical properties (or empirical probability distributions)
can emerge within larger transform sizes. Nevertheless, the histogram for 4×4 transform blocks shows a
different empirical distribution than the histograms for the 4×4 sub-blocks of larger transform sizes. With
that observation, 4×4 transform blocks should use different context models than for larger transform block
sizes.

The above analyses of the histograms indicate that 4×4 sub-blocks with similar statistical properties among
different transform sizes may exist. Given these observations, the challenge is to detect 4×4 sub-blocks with
similar statistical properties so that the same context models can be used. Note that the histograms do not
represent the probabilities for real coding conditions, but the coding efficiency results presented during the
discussion in section 3.2.5 demonstrate that they often give first useful indications.

3.3.2 | Coding Phases with 4 × 4 Sub-Blocks

In the alternative approach, 4×4 sub-blocks can be realized by modifying the existing scanning patterns,
as illustrated in figure 3.5 for a 16×16 transform block. While the only change to the first coding phase is
the scanning pattern, there are two possibilities to implement the coding order for the second coding phase
(called scanning options in the remainder of this subsection).

For the first scanning option, the 4×4 sub-blocks are processed in forward scanning order, and for each
sub-block, the second coding phase (reverse scanning order) directly follows the first coding phase (forward

28



3.3. ALTERNATIVE DESIGN WITH 4×4 SUB-BLOCKS

4 sam
ples16

 s
am

pl
es

16 samples 4 samples

Figure 3.5
Decomposition of a 16×16 transform block into 4×4 sub-blocks and the corresponding scanning for the first
coding phase. Each sub-block is processed using the zigzag scanning pattern (on the left), and within each 4×4
sub-block, the same scanning pattern is used (on the right).

scanning order). Hence, the two coding phases are interleaved on a granularity of sub-blocks, as it is
summarized in algorithm 3.4. Compared to the AVC approach for 4×4 transform blocks in algorithm 3.1,
the scanning pattern is modified, and the coding order switches between the first and the second coding
phases.

For the second scanning option, the second coding phase starts when the first coding phase is completed
for the whole transform block as summarized in algorithm 3.5. The second coding phase starts at the last
significant scanning position and uses the reverse scanning pattern until the signaling for the transform block
is completed. Compared to algorithm 3.1, only the scanning pattern is modified.

Both variants have advantages and disadvantages concerning memory requirements and context modeling.
The first scanning option requires less local memory than the second scanning option, because data of each
4×4 sub-block are processed only once. More precisely, a local buffer for 16 transform coefficient levels
is sufficient, whereas the second scanning option requires either extra storage or memory access to hold
information for incompletely reconstructed 4×4 sub-blocks. However, the first scanning option may result
in a sub-optimal context modeling for the second coding phase, because the 4×4 sub-blocks are processed
from low- to high-frequency positions (whereas the scanning inside a sub-block is from high- to low-frequency
locations).

Algorithm 3.4 Pseudo-code of the level coding with 4×4 sub-blocks using the first scanning option for the
second coding phase.
1: i← 0, ilast ← −1
2: while ilast < 0 do
3: m← 0, i0 ← i
4: while m < 16 ∧ ilast < 0 do
5: ilast ← significanceAndLast (i)
6: c1 [i]← 1, c2 [i]← 0
7: m← m+ 1, i← i+ 1
8: end while
9: m← m− 1

10: while m ≥ 0 do
11: absoluteV alueAndSign (i0 +m, c1, c2)
12: m← m− 1
13: end while
14: end while

29



3.3. ALTERNATIVE DESIGN WITH 4×4 SUB-BLOCKS

All-Intra Random-Access
Configuration

−0.35
−0.30
−0.25
−0.20
−0.15
−0.10
−0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

B
D

-r
at

e
IMP3-1: Scanning Option #1
IMP3-2: Scanning Option #2

IMP3-3: Scanning Option #1
IMP3-4: Scanning Option #2

Figure 3.6
Coding efficiency of the two scanning options with and without tracking variables reinitialization (TVR). AI
denotes the All-Intra configuration and RA the Random-Access configuration. IMP3-1 is the implementation
for scanning option #1, where the first and second coding phases are interleaved on a sub-block granularity.
IMP3-2 is the implementation for scanning option #2, where the second coding phase starts after the first coding
phase is finished for the whole transform block. IMP3-3 corresponds to IMP3-1 with TVR enabled and IMP3-4
corresponds to IMP3-2 with with TVR enabled.
Anchor for BD-rate computations: IMP3-0

Coding Efficiency of Scanning Options

Coding experiments were conducted to investigate the coding efficiency for the two scanning options with
the implementation of the first scanning option is called IMP3-1, and the second scanning option is called
IMP3-2. Experimental results for the conducted coding experiments are summarized by the four left bars
in figure 3.6. The scanning order is the only modification compared to the anchor, which is IMP3-0 and
represents the generalized AVC design. On the one hand, the first scanning option shows inferior coding
efficiency relative to the anchor (the generalized AVC design) in both configurations (0.31% and 0.23%).
On the other hand, the second scanning option maintains the same coding efficiency in the Random-Access
configuration and experiences a smaller loss in coding efficiency than the first scanning option in the All-Intra
configuration. The inferior coding efficiency of the first scanning option is probably due to the sub-optimal
context modeling for the second coding phase.

Algorithm 3.5 Pseudo-code of the level coding with 4×4 sub-blocks using the second scanning option for
the second coding phase.
1: i← 0, ilast ← −1
2: while ilast < 0 do
3: ilast ← significanceAndLast (i)
4: m← m+ 1, i← i+ 1
5: end while
6: m← m− 1, i← i− 1
7: c1 [i]← 1, c2 [i]← 0
8: while i ≥ 0 do
9: while m ≥ 0 do

10: absoluteV alueAndSign (i, c1, c2)
11: m← m− 1, i← i− 1
12: end while
13: m← 15
14: end while

30



3.3. ALTERNATIVE DESIGN WITH 4×4 SUB-BLOCKS

Tracking Variables Reinitialization

A potential problem for the first scanning option occurs when δx>1 = 0 and the probabilities for b|x|>1 = 1
of the upcoming scanning positions are expected to be high. However, the probabilities for b|x|>1 = 1 do not
increase, because the scanning for the sub-blocks is from low-frequency to high-frequency positions.

A possible solution for this context selection problem in the second coding phase of the first scanning option
is to reinitialize the tracking variables c1 and c2 to their initial values at the start of each sub-block. Recall
that c1 and c2 are responsible to count the number of coded b|x|>1 bins and their values and are used for
the context modeling of the second coding phase as summarized in algorithm 3.3. For the first scanning
option, line six in algorithm 3.4 then becomes obsolete and algorithm 3.4 is extended by the statements
c1 [i0 +m]← 1 and c2 [i0 +m]← 0 in between line nine and ten.

The sub-block-based reinitialization of the tracking variables can also be used for the second coding option.
In that setting, line seven in algorithm 3.5 becomes obsolete and algorithm 3.5 is extended by the statements
c1 [i]← 1 and c2 [i]← 0 in between line eight and nine.

In the following investigation, IMP3-3 represents the implementation of scanning option #1 with tracking
variables reinitialization and IMP3-4 the implementation of scanning option #2 with tracking variables
reinitialization. The experimental results are summarized by figure 3.6 for both scanning options with
tracking variables reinitialization. IMP3-0 implementing the generalized AVC design served as the anchor,
and the only modification relative to the previous experiments is setting c1 [i] = 1 and c2 [i] = 0 at the
beginning of each 4×4 sub-block. Both scanning options provide coding efficiency improvements relative
to their counterparts without tracking variables reinitialization, and both scanning options provide -0.27%
in the All-Intra and -0.07% in the Random-Access configurations relative to the generalized AVC design.
Interestingly, the second scanning option also benefits from the tracking variable reinitialization. When using
the second scanning option without reinitialization, there are also coding conditions where the assumption
that the probability for b|x|>1 = 1 is high is not fulfilled. An example of such a case is when δx>1 becomes zero
for a certain sub-block, but there are sub-blocks at high horizontal or vertical frequency positions that follow
the sub-block in coding order in the second pass. Due to the energy compaction property of the transform,
the actual probabilities for b|x|>1 = 1 inside these sub-blocks are not so large as indicated by δx>1 = 0,
which eventually results in a sub-optimal context modeling for the second coding phase. Given that both
scanning options provide the same coding efficiency improvements with the tracking variable reinitialization,
the first scanning option is the preferred variant as it allows for more efficient implementations. Therefore,
the scanning option #1 with tracking variable reinitialization is used as the base version for the following
investigations.

3.3.3 | Context Modeling for 4 × 4 Sub-Blocks

Modifying the scanning pattern and reinitializing the tracking variables sets the foundation for the alternative
design with 4×4 sub-blocks. However, the goal of a universally applicable context modeling has not been
achieved yet, because the number of required context models still depends on the number of supported
transform sizes.

Context Quantization for δsig and δlast

In the generalized AVC design, the context quantizer assigns the same context model to N2/16 successive
scanning positions when an N×N transform block is coded. This approach becomes infeasible for larger
transform block sizes, because a close spatial relationship between the locations is not always given, i.e.,
the first and the last scanning positions sharing the same context model can be located in completely
different regions of the transform block. A solution to that problem is assigning the same context model to
locations with close spatial relationships, where the number of frequency positions sharing the same context
model remains the same as before. Particularly, a subsampling of frequency positions is performed and
the modification results in four neighboring frequency positions sharing the same context model when the
transform block is 8×8. For 16×16 transform blocks, all frequency positions within a sub-block share the
same context model, and four neighboring 4×4 sub-blocks share the same context model for 32×32 transform

31



3.3. ALTERNATIVE DESIGN WITH 4×4 SUB-BLOCKS

Class Luma CB CR

All-Intra
A -0.25 (-0.06)% -0.47 ( 0.06)% -0.37 ( 0.20)%
B -0.39 (-0.18)% -0.37 (-0.22)% -0.42 (-0.21)%
C -0.46 (-0.17)% -0.41 (-0.20)% -0.44 (-0.17)%
D -0.33 (-0.11)% -0.32 (-0.11)% -0.34 (-0.07)%
E -0.98 (-0.47)% -0.87 (-0.46)% -0.88 (-0.48)%

Overall -0.45 (-0.18)% -0.46 (-0.18)% -0.46 (-0.13)%
Random-Access

A -0.15 (-0.32)% -0.89 (-0.28)% -0.56 (-0.18)%
B -0.23 (-0.20)% -0.35 (-0.12)% -0.38 (-0.34)%
C -0.34 (-0.14)% -0.25 (-0.17)% -0.24 (-0.11)%
D -0.20 (-0.11)% -0.47 ( 0.01)% -0.07 (-0.10)%
E -0.66 (-0.40)% -0.71 (-0.26)% -0.64 (-0.37)%

Overall -0.29 (-0.22)% -0.51 (-0.16)% -0.36 (-0.22)%

Table 3.2
Coding efficiency of the modified context quantizer for δsig and δlast of the first coding phase in the 4×4 sub-
blocks design (IMP3-5). BD-rates not in brackets were computed using IMP3-0 as the anchor, i.e., the generalized
AVC design. BD-rates in brackets were computed using IMP3-3, i.e., the 4×4 sub-block processing with tracking
variables reinitialization.
Anchor for BD-rate computations: IMP3-0 (IMP3-3)

blocks. This approach is summarized as follows, where N denotes the transform block size and (x (i) , y (i))
specifies the location of the i-th scanning position inside the transform block:

sx = x (i)≫ log2 (N≫ 2) ,

sy = y (i)≫ log2 (N≫ 2) ,

δsig [i] = δlast [i] = sx + (sy ≪ 2) + 16n.

(3.4)

Similar as in equation (3.3), the context models for different transform sizes are distinguished by the index
n = log2 N− 2.

IMP3-5 represents the implementation that is based on IMP3-3 (scanning option #1 with tracking vari-
ables reinitialization) and implements the context quantization denoted in equation (3.4) for δsig and δlast.
Table 3.2 summarizes the coding efficiency provided by IMP3-5. The values in brackets denote BD-rates
calculated by using IMP3-3 the anchor, i.e., the 4×4 sub-block processing with the first scanning option and
tracking variables reinitialization. For the BD-rates not in brackets, the anchor is IMP3-0, i.e., the general-
ized AVC design; these values represent the overall coding efficiency improvements. The coding experiment
confirms that the AVC context quantizer is sub-optimal, and modifying the context quantizer that assigns
the same context model to neighboring locations provides higher coding efficiency.

Adaptive Context Model Sets for 4 × 4 Sub-Blocks

One of the main goals was to design an approach for level coding that can be straightforwardly extended to
additional block sizes. Based on the basic concept with 4×4 sub-blocks, this can be achieved by switching
between different context model sets depending on the statistical property of a sub-block. The term context
model set denotes a subset of context models used for certain sub-blocks. For example, each value of n in
equation (3.3) and equation (3.4) indicates a unique context model set. One possibility to introduce context
model sets for different classes of sub-blocks is to estimate the statistical properties of a sub-block depending
on the number of absolute levels greater than one located in the preceding sub-block in coding order. A
reason for investigating this quantity for context model switching is that it represents the already used
tracking variable c2 at the start of a sub-block before reinitialization. With i0 denoting the first scanning
position of a sub-block, the quantity selected for context model set switching is given by:

c2 [i0] =

i0−16∑
k=i0−1

b|x|>1 [k] . (3.5)

32



3.3. ALTERNATIVE DESIGN WITH 4×4 SUB-BLOCKS

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

Ĥ(|X|
∣∣c2[i0] ∈ [0, 3]) = 0.57

8×8 SB #01

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

Ĥ(|X|
∣∣c2[i0] ∈ [4, 8]) = 1.23

8×8 SB #01

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

Ĥ(|X|
∣∣c2[i0] ∈ [9, 12]) = 1.69

8×8 SB #01

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

Ĥ(|X|
∣∣c2[i0] ∈ [13, 16]) = 2.04

8×8 SB #01

Figure 3.7
Histograms of sub-blocks with the identifier #01 (x = 4, y = 0) of 8×8 transform blocks, conditioned on the
number of bins b|x|>1 = 1 located in the preceding sub-block in coding order.

Because the tracking variable c2 is already used in the second coding phase, the selected procedure was to
first investigate the context modeling for the second coding phase. After establishing a suitable algorithm
for the context model switching for the second coding phase, similar optimization techniques are used for
extending the context model switching to the first coding phase.

Analysis of Conditional Entropies

Before describing the parameters and optimization for the context model switching, a statistical analysis is
presented suggesting that using c2 [i0] as an indicator for the statistical properties of a sub-block is indeed fea-
sible. In figure 3.7, conditional histograms are shown for the sub-block with the identifier #01 (x = 4, y = 0)
of 8×8 transform blocks. Note that the underlying data used in figure 3.7 and in the histogram with the
identifier #01 of figure 3.4 are the same. The condition for the four histograms in figure 3.7 varies, where the
top-left histogram is conditioned on c2 [i0] ∈ [0, 3]. For the top-right histogram, the condition is c2 [i0] ∈ [4, 8],
and it is c2 [i0] ∈ [9, 12] and c2 [i0] ∈ [13, 16] for the bottom-left and the bottom-right histograms, respectively.

Compared to the empirical marginal histogram in figure 3.4, the empirical conditional distributions are
different, which is also reflected by the values for the empirical conditional entropies Ĥ (X|c2 ∈ [a, b]). The
empirical conditional entropy for the example is Ĥ (X|C) = 0.93, which is 10% less than the empircal
marginal entropy of Ĥ (X) = 1.03. This result clearly indicates that there exist statistical dependencies
between the transform coefficient levels of a sub-block and the variable c2 [i0]. Note that the histograms do
not reflect the probabilities in real coding conditions (i.e., the binary probabilities for a bin); they are mainly
used to derive indications for suitable coding conditions.

Quantization of Context Information

The necessary modifications to enable the selection of different context model sets for each 4×4 sub-block
change the definition of n in equation (3.3), while the offset calculations in equation (3.3) remain the same.

33



3.3. ALTERNATIVE DESIGN WITH 4×4 SUB-BLOCKS

0

20

40

60

80

100

N
um

be
r

of
C

on
te

xt
M

od
el

s

(0
,
0
)

(1
,
0
)

(2
,
0
)

(3
,
0
)

(4
,
0
)

(5
,
0
)

(6
,
0
)

(7
,
0
)

(8
,
0
)

(9
,
0
)

(1
0
,
0
)

(1
1
,
0
)

(1
2
,
0
)

(1
3
,
0
)

(1
4
,
0
)

(1
5
,
0
)

(1
6
,
0
)

(1
7
,
0
)

(1
8
,
0
)

(0
,
1
)

(1
,
1
)

(2
,
1
)

(3
,
1
)

(4
,
1
)

(5
,
1
)

(6
,
1
)

(7
,
1
)

(8
,
1
)

(9
,
1
)

(1
0
,
1
)

(0
,
2
)

(1
,
2
)

(2
,
2
)

(3
,
2
)

(4
,
2
)

(5
,
2
)

(6
,
2
)

(0
,
3
)

(1
,
3
)

(2
,
3
)

(3
,
3
)

(4
,
3
)

(0
,
4
)

(1
,
4
)

(2
,
4
)

(3
,
4
)

(0
,
5
)

(1
,
5
)

(2
,
5
)

Tested Configuration (n2DC, q2)

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

B
D

-r
at

e
All-Intra
Random-Access
|C|x|>1|

Figure 3.8
Coding efficiency of IMP3-6 with all tested combinations of n2DC (context model offset for the first sub-block)
and q2 (the quantization parameter in equation (3.6)).
Anchor for BD-rate computations: IMP3-5

When operating without context quantization (n = c2 [i0]), 17 different values for n are possible, resulting in
90 context models for Cx>1 and another 90 context models for Cx>2 (17 ·5+5, because 4×4 transform blocks
use dedicated context models). In total, 180 context models are necessary (independent of the number
of supported transform sizes), while the generalized AVC design requires only 40 context models when
supporting the four different transform sizes of 4×4, 8×8, 16×16, and 32×32.

Coding experiments with a context quantization that only requires binary-shift operations were conducted to
reduce the number of required context models. In addition to the bit-shift, which is referred to as quantization
parameter q2, the context model offset n2DC for the first sub-block, which contains the DC frequency position
and does not have a preceding sub-block, has to be selected.

With N being the width and height of a transform block (which is only required for detecting 4×4 transform
blocks), and q2 and n2DC being the parameters to be optimized, the sub-block offset is given by:

n2 =


0, if N = 4,

n2DC, if N ̸= 4 ∧ i0 = 0,

(c2 [i0]≫ q2) + 1, if N ̸= 4 ∧ i0 > 0.

(3.6)

Note that n2 is used instead of n in the formula above, because it only affects the context model indices of
the second coding phase, and to simplify the optimization process, n2 is used for both context model indices
δx>1 and δx>2.

Experimental Results for 2nd Coding Phase

A set of coding experiments was conducted using different combinations of the values for n2DC and q2 in
equation (3.6). Meaningful values for q2 range from zero to five, inclusively, resulting in m = {18, 10, 6, 4, 3, 2}
distinctive sets of context models for q2 ∈ [0, 5], where m is given by:

m = (16≫ q2) + 2. (3.7)

For the parameter n2DC, meaningful values range from zero to m, where n2DC = 0 means that the context
models of 4×4 transform blocks are used initially, whereas n2DC = m means that a distinctive set of context
models is used for the first sub-block. The number of necessary context models for Cx>1 and Cx>2 depends

34



3.3. ALTERNATIVE DESIGN WITH 4×4 SUB-BLOCKS

0
40
80
120
160
200
240
280
320
360
400
440
480

N
um

be
r

of
C

on
te

xt
M

od
el

s

(0
,
0
)

(1
,
0
)

(2
,
0
)

(3
,
0
)

(4
,
0
)

(5
,
0
)

(6
,
0
)

(7
,
0
)

(8
,
0
)

(9
,
0
)

(1
0
,
0
)

(1
1
,
0
)

(1
2
,
0
)

(1
3
,
0
)

(1
4
,
0
)

(1
5
,
0
)

(1
6
,
0
)

(1
7
,
0
)

(1
8
,
0
)

(0
,
1
)

(1
,
1
)

(2
,
1
)

(3
,
1
)

(4
,
1
)

(5
,
1
)

(6
,
1
)

(7
,
1
)

(8
,
1
)

(9
,
1
)

(1
0
,
1
)

(0
,
2
)

(1
,
2
)

(2
,
2
)

(3
,
2
)

(4
,
2
)

(5
,
2
)

(6
,
2
)

(0
,
3
)

(1
,
3
)

(2
,
3
)

(3
,
3
)

(4
,
3
)

(0
,
4
)

(1
,
4
)

(2
,
4
)

(3
,
4
)

(0
,
5
)

(1
,
5
)

(2
,
5
)

Tested Configuration (n1DC, q1)

−0.15
−0.10
−0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

B
D

-r
at

e
All-Intra
Random-Access
|Csig|

Figure 3.9
Coding efficiency of IMP3-7 with all tested combinations of n1DC (context model offset for the first sub-block)
and q1 (the quantization parameter in equation (3.6)).
Anchor for BD-rate computations: IMP3-6∗

on the parameters n2DC and q2 as follows:

|Cx>k| =

{
m+ 1, if n2DC = m,

m, otherwise.
(3.8)

The implementation for this investigation is referred to as IMP3-6 and the anchor to compute the BD-rates
is IMP3-5. Figure 3.8 summarizes the experimental results and the number of context models for the tested
parameters in IMP3-6. The configuration of q2 mainly controls the number of context models, because q2 = 0
implies that there is no quantization, whereas q2 = 5 implies that the same context model set is used for all
sub-blocks independent of c2 [i0].

The best performing combination in the All-Intra configuration is (n2DC = 5, q2 = 2) with a BD-rate of
-0.18%, whereas the best combination in the Random-Access configuration is (n2DC = 0, q2 = 3) with a BD-
rate of -0.13% . By analyzing these two configurations, the following observations can be made. In the
best All-Intra configuration (n2DC = 5, q2 = 2), the first sub-block of transform blocks larger than 4×4 is
coded with the context model set that would otherwise only be used when all transform coefficient levels of
the preceding sub-block have absolute values greater than one. It indicates that, for intra slices, the first
sub-block is implicitly assumed to contain very high signal energy. In contrast to that, the best Random-
Access configuration (n2DC = 0, q2 = 3) reuses the 4×4 context model set for the first sub-block of larger
transform blocks, which indicates that the first sub-blocks in inter slices have similar statistical properties as
4×4 transform blocks. Furthermore, a larger quantization parameter q2 and, thus, a smaller set of context
models is preferable for inter slices.

For the following coding experiments, the configuration (n2DC = 5, q2 = 2) is used for transform blocks in
intra slices, whereas the configuration (n2DC = 0, q2 = 3) is used for all transform blocks in inter slices. This
particular configuration is referred to as IMP3-6∗.

Experimental Results for 1st Coding Phase

With the aim of completely decoupling the number of context models from the number of supported transform
sizes, similar coding experiments as for the second coding phase were also conducted for the context models
used in the first coding phase. That means, the context offset n in equation (3.4) is replaced by a context
offset n1, which is derived in the same ways as n2 in equation (3.6).

35



3.3. ALTERNATIVE DESIGN WITH 4×4 SUB-BLOCKS

0 (4×4) 5 (8×8) 10 (16×16) 15 (32×32)
Context Model Index δ|x|>1 (ℓ̄(Csig) = 0.77 bits)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

C
od

ew
or

d
Le

ng
th

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
el

at
iv

e
N

um
be

r
of

B
in

s

ℓ̄(Csig[δ|x|>1])

Number of Bins

Figure 3.10
Average codeword length ℓ̄(Csig[δ|x|>1]) of context models used for coding b|x|>1 in the generalized AVC design,
where each transform block size uses a dedicated context model set.

Instead of n2DC and q2, the corresponding parameters for the first coding phase are referred to as n1DC and
q1. Similar as for the second coding phase, the same values of n1DC and q1 are used for both context model
indices δsig and δlast.

The implementation for this investigation is referred to as IMP3-7, and the anchor used to compute the BD-
rates is IMP3-6∗. Figure 3.9 summarizes the experimental results, and most of the tested configurations show
inferior coding efficiency relative to the anchor. Interestingly, configurations requiring many context models
provide inferior coding efficiency, whereas configurations providing coding efficiency improvements require
significantly fewer context models. The best configuration for both the All-Intra and the Random Access
configurations is (n1DC = 5, q1 = 2); it is the same setting as the one that was found to be optimal in intra
slices for the second coding phase. The adaptive selection of context model sets depending on the preceding
4×4 sub-block for the first coding phase provides slight coding efficiency improvement. Furthermore, by
using the adaptive context model set selection for both coding phases, the main objective of decoupling the
number of context models from the number of supported transform sizes could be achieved.

Context Modeling Analysis

To demonstrate the impact of the developed context modeling on the coding efficiency of the context-
coded bins in the level coding, an example analysis of the average codeword length for the b|x|>1 bins is
presented. In a first experiment, the generalized AVC design was investigated. Figure 3.10 summarizes the
average codeword length of all context models used for coding the b|x|>1 flags, i.e., the context models of
Cx>1. Moreover, the overall average codeword length is given below the x-axis of figure 3.10. The data were
acquired by decoding the first frame of the BQTerrace sequence, which implies that all b|x|>1 flags were coded
within an intra slice. Specifically, to obtain the actual presentation, the statistics output of the HM decoder
with additional debugging options enabled was evaluated; they represent estimates of the actual average
codeword lengths for the individual context models. When neglecting context adaptation and inefficiencies
of the arithmetic coding engine, the measured overall average codeword length of 0.77 bits per bin basically
represents the empirical conditional entropy Ĥ (X|C) for the used sample.

The same experiment but for the variant with 4×4 sub-blocks and the improved context modeling is sum-
marized in figure 3.11; for this setting, an overall average codeword length of 0.73 bits per bin was measured.
The results indicate that a bit-rate saving of about 4% was achieved for the b|x|>1 flags by modifying the
context modeling.

36



3.3. ALTERNATIVE DESIGN WITH 4×4 SUB-BLOCKS

0 (4×4) 5 10 15 20 25

Context Model Index δ|x|>1 (ℓ̄(Csig) = 0.73 bits)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
A

ve
ra

ge
C

od
ew

or
d

Le
ng

th

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
el

at
iv

e
N

um
be

r
of

B
in

s

ℓ̄(Csig[δ|x|>1])

Number of Bins

Figure 3.11
Average codeword length of the context models used for coding b|x|>1 in the adaptive context model sets configu-
ration, where the first context model set set given by index range [0, 5) is used for 4×4 transform blocks only. The
other context model sets are shared across the different transform sizes depending on the preceding sub-block.

For the generalized AVC design, the context model with index δx>1 = 5 (used for 8×8 transform blocks
after a level with absolute value greater than one was coded in the reverse zig-zag scan) has the largest
average codeword length. This context model is also used the most, as indicated by the relative number of
bins in figure 3.10. The comparably large average codeword lengths of the context models used for 32×32
transform blocks (δx>1 ≥ 15) is supposedly caused by the insignificant amount of bins coded with these
context models. The experimental data for the 4×4 sub-block approach illustrated in figure 3.11 show
that the bins are more evenly distributed among the available context models, except for the index range
δx>1 ∈ [20, 25). In summary, theses experiments indicate that the adaptive selection of context model sets
for each 4×4 sub-block achieves a lower conditional entropy H (X|C), which eventually results in a smaller
average codeword length.

Class Luma CB CR

All-Intra
A -0.69% -1.75% -1.72%
B -0.75% -1.60% -1.71%
C -0.54% -0.67% -0.72%
D -0.42% -0.83% -0.86%
E -1.14% -1.43% -1.46%

Overall -0.69% -1.26% -1.31%
Random-Access

A -0.36% -0.89% -0.98%
B -0.55% -1.20% -1.31%
C -0.54% -0.51% -0.63%
D -0.39% -0.72% -0.60%
E -0.91% -1.34% -1.55%

Overall -0.53% -0.92% -1.00%

Table 3.3
Coding efficiency of the level coding with 4×4 sub-blocks in its final configuration (IMP3-7∗).
Anchor for BD-rate computations: IMP3-0

37



3.3. ALTERNATIVE DESIGN WITH 4×4 SUB-BLOCKS

Algorithm 3.6 IMP3-7∗: Level coding with 4×4 sub-blocks in its final configuration.
Require: block size N, slice type stype
1: i← 0, ilast ← −1, n1 ← 5
2: if N = 4 then
3: n1 ← 0, n2 ← 0
4: else if stype is equal to INTRA then
5: n2 ← 5, q2 ← 2
6: else
7: n2 ← 0, q2 ← 3
8: end if
9: while ilast < 0 do

10: m← 0, i0 ← i
11: while m < 16 ∧ ilast < 0 do
12: sx ← x (i)≫ log2 (N≫ 2)
13: sy ← y (i)≫ log2 (N≫ 2)
14: z ← sx + (sy ≪ 2), δsig (i)← 16n1 + z, δlast (i)← 16n1 + z
15: transmit bsig [i] using Csig [δsig (i)]
16: if bsig [i] = 1 then
17: transmit blast [i] using Clast [δlast (i)]
18: if blast [i] = 1 then
19: ilast ← i
20: end if
21: end if
22: m← m+ 1, i← i+ 1
23: end while
24: m← m− 1
25: c1 [i0 +m]← 1, c2 [i0 +m]← 0
26: while m ≥ 0 do
27: if bsig [i0 +m] = 1 then
28: δx>1 (i0 +m)← 5n2 +min (c1 [i0 +m] , 4)
29: transmit b|x|>1 [i0 +m] using Cx>1 [δx>1 (i0 +m)]
30: if b|x|>1 [i0 +m] = 1 then
31: δx>2 (i0 +m)← 5n2 +min (c2 [i0 +m] , 4), j ← 1
32: do
33: j ← j + 1, bj = b|x|>j [i0 +m]
34: transmit bj using Cx>2 [δx>2 (i0 +m)]
35: while bj ∧ j < 14
36: if bj ∧ j = 14 then
37: transmit |xi0+m| − 15 in bypass mode using EG0
38: end if
39: c2 [i0 +m− 1]← c2 [i0 +m] + 1, c1 [i0 +m− 1]← 0
40: else if c1 (i0 +m) ̸= 0 then
41: c1 [i0 +m− 1]← c1 [i0 +m] + 1
42: end if
43: transmit bsign [i0 +m] in bypass mode
44: end if
45: m← m− 1
46: end while
47: n1 ← (c2 [i0]≫ 2) + 1, n2 ← [c2 (i0)≫ q2] + 1
48: end while

3.3.4 | Final Design with 4 × 4 Sub-Blocks

The final configuration of the alternative level coding with 4×4 sub-blocks is summarized in algorithm 3.6.
For the adaptive selection of context model sets, the parameters specifying the initial context model offsets
and the quantization parameter for the first coding phase are n1DC = 5 and q1 = 2. The parameters for the
second coding phase depend on the slice type stype, and they are n2DC = 5 and q2 = 2 when the current
slice is an intra slice. For transform blocks in inter slices, these parameters are n2DC = 0 and q2 = 3,
respectively, as denoted in algorithm 3.6. Table 3.3 summarizes the coding performance for the level coding
in its final configuration, which is referred to as IMP3-7∗, relative to the generalized AVC design (IMP3-0).
A coding efficiency improvement is achieved with BD-rates of -0.69% in the All-Intra and -0.53% in the
Random-Access configurations. The total number of context models is equal to 252 (|Csig| = |Clast| = 6 · 16,

38



3.4. FINDINGS AND TECHNICAL ACHIEVEMENTS

and |Cx>1| = |Cx>2| = 6 · 5). Even though, for the investigated partitioner, the total number of context
models is larger than in the generalized AVC design (168 context models), it does not depend on the number
of supported transform sizes and, thus, enables a straightforward extension to additional transform sizes.

3.4 | Findings and Technical Achievements

The presented level coding with 4×4 sub-blocks was developed based on findings that were explored by data
analysis and encoding simulations. They can be summarized together with the technical achievements of the
level coding with 4×4 sub-blocks as follows:

• Local regions (within a transform block) with similar statistical properties among different transform
sizes exist;

• This property allows for the partitioning of transform blocks into 4×4 sub-blocks;

• 4×4 sub-blocks enable hardware implementations to employ a unified logic for all additional block
sizes;

• Within 4×4 sub-blocks, the existing context modeling designed for 4×4 transform blocks can be reused
to achieve a coding efficiency similar to a design with dedicated context models per transform block
size;

• The statistical properties of a 4×4 sub-block can be estimated based on coded data of the preceding
4×4 sub-block;

• That allows the estimation of suitable conditions for context model selection that are independent of
the supported transform sizes;

• Such a conditional coding approach requires a fixed amount of context models, since those same context
models are used for different transform sizes;

• The decoupling of the context memory from the number of supported transform sizes enables a straight-
forward design where additional transform sizes and shapes can be introduced by specifying the scan-
ning pattern only;

• A coding efficiency improvement is achieved compared to the generalized AVC design.

The coding concept with 4×4 sub-blocks was proposed in [39, 68] during the development of the HEVC
standard. Even though the final standard includes additional improvements, the basic design of the level
coding with 4×4 sub-block is included in the HEVC standard and also its successor, the VVC standard.

The HEVC standard introduced variable transform block sizes of 4×4, 8×8, 16×16, and 32×32 samples
where only square shapes are permitted for complexity reasons. Even larger transform sizes were considered,
but they were not further pursued as they did not significantly improve the coding efficiency. HEVC specifies
a 4×4 sub-block processing for both coding phases and a selection of context model sets depending on already
coded sub-blocks. As in the presented alternative level coding, the adaptive selection of context model sets
is employed for the second coding phase using the number of positions x within the preceding sub-block
for which b|x|>1 holds [37]. In contrast to the interleaved signaling of the last significant scanning position,
HEVC employs a forward signaling of the last significant scanning position [29]. This signaling enables the
application of the reverse scanning pattern for both coding phases, where the coding phases are interleaved
on a 4×4 sub-block granularity, as described in this chapter. For the first coding phase, HEVC employs a
context modeling that relies on the here presented evaluation of coded 4×4 sub-blocks with the following
two enhancements. Firstly, two neighboring sub-blocks are evaluated to select one out of three fixed context
model assignments for each sub-block [69]. Secondly, HEVC employs a bcsf flag (coded sub-block flag) that is
similar to the bcbf flag, but applied to 4×4 sub-blocks [70]. In summary, all core aspects of the level coding
presented in this chapter can be found in the HEVC standard.

As VVC is the successor of HEVC, the level coding built upon that of HEVC and the main concepts already
existing in HEVC can also be found in VVC. Here, the processing is realized with 4×4 sub-blocks and other

39



3.5. CHAPTER SUMMARY

smaller sub-shapes for block sizes that are not divisible by 4×4 [71]. Employing already coded sub-blocks
has been replaced by more advanced context modeling techniques for bins related to the transform coefficient
levels. These advanced context modeling techniques are discussed in chapters 5 and 6. Nevertheless, the
concept of evaluating already coded sub-blocks still exists in VVC for the context modeling of the bcsf flag.

3.5 | Chapter Summary

This chapter has presented an alternative level coding for variable transform block sizes with 4×4 sub-blocks.
Its application allows reusing the existing context modeling design of 4×4 transform blocks within each 4×4
sub-block and enables the possibility for feasible hardware implementations. The concept of selecting context
model sets depending on the preceding 4×4 sub-block within the same transform block further improves the
coding efficiency. In conjunction with sharing the context models across different transform block sizes
except for 4×4 transform blocks, a fixed number of context models is achieved. That property means that
the number of context models is decoupled from the number of supported transform sizes and shapes, which
is even more crucial for the Versatile Video Coding (H.266/MPEG-I Part 3) (VVC) standard.

The developed level coding impacts real-world applications because of its specification in the HEVC and
VVC standards, as the design was successfully submitted to the standardization process. Particularly, the
processing of larger transform blocks in smaller sub-blocks, the selection of context model sets depending on
the preceding sub-block, and sharing context models among different transform sizes and shapes are integral
parts of HEVC and VVC.

Continued efforts are necessary when there is a desire to achieve further coding efficiency, as provided by the
presented level coding. The local activity has to be analyzed at a finer granularity than done by the current
approach with 4×4 sub-blocks to identify statistical dependencies among the transform coefficient levels.
Further throughput optimizations by reducing context memory are desirable for more efficient hardware
implementations, since context memory requires surface area. Both aspects are further examined in chapter 5,
where a more advanced context modeling design is presented, which is also the basis for the level coding in
the VVC standard.

40



CHAPTER 4

Adaptive Binarization of Transform Coefficient Levels

Contents
4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Static Binarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Binarization of Transform Coefficient Levels in AVC . . . . . . . . . . . . . . . . . . 42
4.2.2 Context-Coded Bins per Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Alternative Fixed Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Adaptive Binarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Probability Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.2 Empirical Conditional Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Golomb and Rice Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.4 Backward-Adaptive Rice Parameter Estimation . . . . . . . . . . . . . . . . . . . . . 51
4.3.5 Nested Rice Codes with EG0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.6 Final Design with Nested Rice Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Findings and Technical Achievements . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Binary arithmetic coding and especially context-based adaptive binary arithmetic coding (CABAC) [28]
achieves an efficient compressed representation by using adaptive context models. An adaptive context
model represents a (conditional) binary probability model and resides in the writeable memory, allowing
the model parameters to be updated. In the CABAC framework, a context model is updated by feeding
the associated decoded binary symbol instantaneously back to the context model, which creates a direct
dependency on the decoded symbol. This dependency causes a processing delay, which affects the overall
throughput and parallel processing capability of software and hardware architectures. A reason why context
model updates are expensive compared to the operational cost of the engine is due to the physical distance
of the context memory in hardware implementations. Typically, context memory is located farther away
from the engine logic due to its size and necessity of being writeable, whereas the read-only and limited-sized
memory for the arithmetic coding engine can be placed close to the logic. The physical distances lead to
longer signal paths, which implies more clock cycles for addressing and performing the reading and writing
operations.

A single factor that is used to represent the above-described relationship between context memory and overall
throughput is the maximum number of context-coded binary symbols, referred to as bins, that can occur
within a bitstream. When designing hardware decoders, the engineers need to ensure that the chipset can
handle the maximum number of context-coded bins supported by a profile and level combination. The static
binarization process specified for transform coefficient levels in Advanced Video Coding (H.264/MPEG-4
Part 10) (AVC) is the main contributor to the overall number of context-coded bins, as described in this
chapter.

In this chapter, an alternative binarization scheme for transform coefficient levels that significantly reduces
the maximum number of context-coded bins is presented. This alternative binarization achieves virtually
the same coding efficiency as the AVC design by introducing adaptive prefix-free codes into the binarization
process of transform coefficient levels. All bins of the newly introduced prefix-free codes employ the bypass
processing path of CABAC. Both the High Efficiency Video Coding (H.265/MPEG-H Part 2) (HEVC) [63,
47] standard, and its successor, the Versatile Video Coding (H.266/MPEG-I Part 3) (VVC) [64, 49] standard
include the adaptive binarization for transform coefficient levels developed in this chapter.

4.1 | Problem Statement

Binary arithmetic coding engines process binary symbols; hence, non-binary input values require a mapping
to binary sequences, referred to as bin strings. Such a mapping for the integer-valued transform coefficient
levels can be described by a binarization function f : z ∈ Z → (bn)n∈N : bn ∈ B. The input parameter

41



4.2. STATIC BINARIZATION

bin string

truncated unary

0th-order Exp-Golomb

x ∊ {0,1,…,14}

x ∊ {15,16,…,xmax}

t0=15

Figure 4.1
Static binarization scheme for transform coefficient levels in AVC, involving the concatenation of TRU and EG0
codes. For x ∈ [0, 14]∩N0, the bin string consists of a TRU code only, whereas for x ≥ 15, the bin string consists
of the TRU code for x = 15 and an EG0 code for x− 15.

required for the binarization process of transform coefficient levels in AVC is the transform coefficient level
itself, and this so-called static binarization allows for the reconstruction of the input value given the bin
string only. Such a static binarization requires a certain amount of bins coded with adaptive context models
to achieve a specific coding efficiency. However, this relatively high amount of context-coded bins is an issue
for efficient hardware implementations, even though static binarization is relatively simple at the logic layer.
Besides the general throughput limitation caused by the physical distance of the context memories from the
engine, another bottleneck occurs within the processing when using the same context model for n consecutive
bins. In such a case, the decoder parses n times the symbol from the bitstream and updates the context
model after each bin. Due to the serial processing of bins in the binary coding engine, the decoder is stuck
with the single context model and cannot execute further processes in parallel by, e.g., employing speculative
processing via pipelining strategies. Further aspects and constraints that need to be considered for hardware
implementations in entropy coding of practical video coders are discussed in [72].

4.2 | Static Binarization

The binarization of transform coefficient levels specified in AVC is static and involves two different prefix
codes: The truncated unary (TRU) and the 0th-order exponential-golomb (EG0) codes. The output of the
binarization process is a bin string representing the transform coefficient level. Each bin is either coded with
an adaptive context model, where the internal state of the context model has to be updated depending on
the reconstructed bin value, or it is coded in the bypass mode, where a non-adaptive uniform probability
mass function (pmf) is used. Bins belonging to the TRU code employ adaptive context models, whereas
bins belonging to the EG0 code are coded in the bypass mode. The reason for using the bypass mode for
EG0 bins is that the resulting codewords are expected to be close to a minimum-redundancy code and rarely
occur for typical operation points. For the sake of more understandable and clearer notations, only absolute
transform coefficient levels, denoted by x, with x ∈ N0, are considered in the remainder of this chapter.

4.2.1 | Binarization of Transform Coefficient Levels in AVC

For an absolute transform coefficient level x ≤ 14, the bin string consists of a TRU codeword only. When
x ≥ 15, the bin string consists of the TRU codeword for x = 15 (i.e., 15 times ′1′) followed by the EG0
codeword for x − 15. Let fTRU (·,maxVal) denote the TRU code with the maximum representable value
maxVal, fEG0 denote the EG0 code, and ∗ denote the concatenation operator for bin sequences, then the
binarization f (x) in AVC can be expressed by:

f (x) = fTRU (x, 15) ∗ gEG0 (x− 15) , (4.1)

where,

gEG0 (z) =

{
(∅) , if z < 0,

fEG0 (z) , otherwise.
(4.2)

Table 3.1 in section 3.2 summarizes the bin strings of the first 20 absolute transform coefficient levels x.
Furthermore, the binarization concept is illustrated in figure 4.1, where the axis denotes the bin string

42



4.2. STATIC BINARIZATION

2 7 12 17 22 27 32 37 42 47

Quantization Parameter

0

2

4

6

8

10

12

14

C
on

te
xt

-C
od

ed
B
in

s
pe

r
Sa

m
pl

e Non-Levels
Levels

Figure 4.2
The cps vary depending on the operation point, which is selected via the quantization parameter (QP). The red
portion of the bars denotes the cps for transform coefficient levels, while the blue portion represents the cps for
non-level data.

length. For all bin strings that exceed the denoted fixed threshold, the composition of the bin string consists
of a EG0 suffix with the same TRU prefix (15 times ′1′). The bin string then represents an absolute level
equal to or greater than 15, whereas all absolute levels less than or equal to 14 do not have a EG0 suffix.
The fixed transition t0 from TRU to EG0 is equal to t0 = 15 for the binarization of transform coefficient
levels specified in AVC, i.e., when x ≥ t0, the bin string has a EG0 suffix. As all bins belonging to TRU are
coded with adaptive context models, the transition boundary t0 directly dictates the maximum number of
context-coded bins for transform coefficient levels.

4.2.2 | Context-Coded Bins per Sample

Besides transform coefficient levels, context-coded bins are being used for coding non-level data, such as
the prediction modes, prediction data, and partitioning information. Therefore, the context-coded bins can
be split into two categories: The bins for level coding and the bins for signaling the side information. An
upper limit for the number of context-coded bins, expressed in context-coded bins per sample (cps), can be
estimated under the assumption that an encoder always selects the smallest available block size, which is
equal to 4×4. In that scenario, the prediction mode and data are signaled for each 4×4 block, whereas the
signaling of the partitioning depends on the initial block size. Let us assume that the initial block size is
64×64, which is the maximum initial block size specified in the HEVC standard, and further assume that
the partitioning is based on quadtrees only. Then, four level of splits are necessary to signal a partitioning
consisting of 4×4 blocks only, which require 85 context-coded bins in total for an area of 64×64 samples (1
bin to 32×32, four bins to 16×16, 16 bins to 8×8, and 64 bins to 4×4 blocks). Each sample has then a share
of 85/4096 ≤ 0.021 bins for signaling the partitioning. For the prediction, it can be estimated that the mode
and associated data require at most ten context-coded bins (1 bin for prediction mode, either intra or inter,
and up to nine bins for the prediction information, such as motion vector differences and reference indices)
for a 4×4 block. Additional coding tools exist that require signaling with context-coded bins, such as the
sample adaptive offset , and it is further assumed that they require up to five context-coded bins. Each
sample has a share of less than one context-coded bin for coding the side information, when considering the
above estimations and the luma component only.

In summary, for 4:2:0 chroma sub-sampled video content, the approximate worst-case limit is less than
1.5 bins for signaling the side information. That value is significantly smaller than the cps for transform
coefficient levels, which is equal to 22.5 for video coded in the Y ′CBCR 4:2:0 format, when using the AVC

43



4.2. STATIC BINARIZATION

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cut-Off Threshold t0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

B
D

-r
at

e
QP ∈ {22, 27, 32, 37}: All-Intra
QP ∈ {22, 27, 32, 37}: Random-Access
QP ∈ {2, 7, 12, 17}: All-Intra
QP ∈ {2, 7, 12, 17}: Random-Access

Figure 4.3
Coding efficiency of the investigation on different cut-off thresholds t0 (IMP4-0).
Anchor for BD-rate computations: IMP3-7∗

binarization.

The above estimation of the worst-case cps limit is rather theoretical and may only occur for artificial input
signals. An investigation on the actual cps for typical video content, depending on the operation point, was
experimentally analyzed, and the results are summarized in figure 4.2. The data used for the analysis were
acquired by using existing bitstreams, which were encoded using IMP3-7∗, i.e., the level coding in its final
implementation presented in chapter 3. In figure 4.2, the cps are separately listed for transform coefficient
levels and non-level data, which represents the side information. The cps increases monotonically with the
operation point by a factor close to seven from 0.03 for QP = 51 to 0.21 for QP = 0 for the non-level data.
The observation indicates that the encoder chooses a finer partitioning structure with increased bit-rate, i.e.,
the encoder selects smaller block sizes for prediction and transform coding. Note that the relatively small
cps values for the side information compared to the estimated upper bound is because the maximum number
of context-coded bins for the side information is usually not required for typical camera-captured content.
For transform coefficient levels, the cps increase is steeper, starting from 0.04 for QP = 51 and ending at
12.30 for QP = 0. In summary, the experimental results in figure 4.2 confirm that the context-coded bins
for transform coefficient levels dominate the overall cps. It is, therefore, sufficient to concentrate on the
context-coded bins for the transform coefficient levels to reduce the total number of context-coded bins.

4.2.3 | Alternative Fixed Thresholds

Without modifying the basic concept of the AVC binarization, the cps worst-case bound can be reduced
by lowering the cut-off threshold t0. The impact of lowering the t0 value on the coding efficiency was
experimentally evaluated by performing coding experiments with the QPs specified in the common test
conditions (CTC). The implementation of this investigation is referred to as IMP4-0, and the anchor used
for Bjøntegaard delta bit-rate (BD-rate) computations is IMP3-7∗. Experimental results for this investigation
are summarized in figure 4.3. Besides the CTC QP set {22, 27, 32, 37}, additional BD-rates for the QP set
{2, 7, 12, 17}, representing the high bit-rate operation points, are presented. A cut-off threshold lower than
two was not tested as it would disable the adaptive selection of context model sets for each 4×4 sub-block
developed in chapter 3, resulting in inferior coding efficiency.

For the first QP configuration, i.e., the operation points according to the CTC, slight losses in coding
efficiency can be observed when the cut-off is reduced to t0 = 4, while the inferior coding efficiencies are
significant for t0 ∈ {2, 3}. A similar observation can be made for the QP configuration representing the high
bit-rate operation points, where the absolute transform coefficient levels have higher magnitudes, and the

44



4.3. ADAPTIVE BINARIZATION

losses are higher compared to the first QP set. The experimental results show that setting t0 = 6 can reduce
the worst-case cps significantly with little penalty on the coding efficiency. Nevertheless, the reduction is
not sufficient, since the cps of transform coefficient levels is still significantly higher than the cps for the
side information. Note that a reduction in the number of context models only occurs for t0 = 2, where the
context models of Cx>2 are no longer required, which would save 90 context models. For the configuration
t0 = 3, the same number of context models are necessary as before, but the usage of the same context model
for successive bins can be avoided.

4.3 | Adaptive Binarization

When lowering t0 significantly to achieve a worst-case cps value that is closer to that of the side information,
e.g., to t0 ∈ {2, 3}, the coding efficiency losses are significant. The observed inferior coding efficiencies
arise because the EG0 code is sub-optimal for the actual distribution of the remainders when t0 is small.
Nevertheless, it is possible to reduce the loss in coding efficiency when the code used for binarizing the
remainders is adjusted to the actual probability distribution. For typical camera-captured content, the
probability distribution of the remainders depends on various parameters, such as the transform size, the
QP, the input signal, and more. An adaptive approach that selects different prefix codes that suit the
actual probability distribution of the remainder is a solution for retaining the coding efficiency provided
by the current design. Different granularities for the adaptivity are possible, e.g., by applying the same
prefix code for a region of a transform block, for the whole transform block, or determining a code for each
scanning position. The latter design is aligned with the existing tracking variables used in the second coding
phase, where the context modeling evaluates the preceding scanning position. Before presenting further
investigations for the adaptive design that uses the preceding scanning position to determine a suitable
prefix-free code for the remainder of the current scanning position, a probability model for the remainder of
transform coefficient levels is introduced.

4.3.1 | Probability Model

An often-used probability model for the distribution of transform coefficients (see, for example, [73]), which
can to a certain degree also be verified experimentally, is the zero-mean Laplacian distribution. According
to this model, the absolute transform coefficients c, with c ∈ R+, have an exponential probability density
function (pdf) given by:

pC (c) = µ exp (−µc) . (4.3)

The probability masses for the absolute transform coefficient levels are determined by the pdf of the Lapla-
cian model and the encoder algorithm for quantization. However, practical video coding standards specify
the inverse quantization (scaling process) only, while the quantization itself is not included in the specifica-
tions. That gives practical encoder implementations a certain degree of freedom to conduct the quantization,
e.g., by performing an entropy-constrained scalar quantization scheme [74], such as rate-distortion optimized
quantization (RDOQ) [75] in the HM reference software implementation. Nevertheless, considering those
aspects in the following approximations is intractable, and low-complexity encoders often use simple quan-
tization algorithms similar to what is described next. Let ∆ be the quantization step size and a ∈ [0, 0.5] a
rounding offset, then an absolute transform coefficient level x results from the following quantization of an
absolute transform coefficient c according to:

x = ⌊ c
∆

+ a⌋. (4.4)

To obtain the pmf pX (x) for the absolute transform coefficient levels from pC (c), the considered quantization
denoted in equation (4.4) can be applied to the pdf. A distinction is necessary between the first and all other
intervals, because the interval size is equal to (1− a)∆ for the first interval, whereas it is equal to ∆ for the
other intervals. For the first interval, the probability is:

pX (x = 0) =

∫ (1−a)∆

0
µ exp (−µc) dc

= 1− exp (−µ∆(1− a)) .

(4.5)

45



4.3. ADAPTIVE BINARIZATION

For the remaining intervals (x > 0), the probabilities are:

pX (x) =

∫ (x+1−a)∆

(x−a)∆
µ exp (−µc) dc

= exp (−µ∆(x− a))− exp (−µ∆(x+ 1− a))

= exp (−µ∆(x− a)) (1− exp (−µ∆)) .

(4.6)

The remainders z ∈ N0 of absolute transform coefficient levels emerge from applying a cut-off t0 in the
binarization process, and they are only transmitted when an absolute level x is greater than or equal to the
cut-off value t0. With y representing exp (−µ∆), the pmf of the remainders for all cut-off values t0 > 0,
which are only transmitted when the absolute level is greater than or equal to t0, is given by:

pZ (z) = pX (x = z + t0|x ≥ t0)

=
pX (x = z + t0)∫∞
(t0−a)∆ pC (c) dc

=
yz+t0−a (1− y)∫∞

(t0−a)∆ µ exp (−µc) dc

=
yz (1− y) yt0−a

exp (−µ∆(t0 − a))

=
yz (1− y) yt0−a

yt0−a

= yz (1− y) .

(4.7)

By equation (4.7), the remainders of absolute transform coefficient levels follow a geometric pmf for all cut-off
values t0 > 0, when assuming a zero-mean Laplacian model for transform coefficients and the encoder quan-
tization algorithm in equation (4.4), and the model parameter y of the geometric distribution is independent
of t0. A further conclusion from the analysis is that, when considering context-adaptive binary arithmetic
coding, the first bin (bsig) should be coded with a dedicated context, whereas the remainders should be bi-
narized with the unary code and coded with another dedicated context model. Employing a shared context
model for the remainders as done by the existing context modeling in AVC is, therefore, a suitable choice
given the analysis above. Note that the model parameter y (0 ≤ y ≤ 1) of geometric distributions controls
two properties. Firstly, it determines the probability for pZ (z = 0) = 1 − y, and secondly, it controls the
skewness of the distribution.

4.3.2 | Empirical Conditional Distribution

The theoretical considerations can be verified by empirical data, as illustrated in figure 4.4 that contains four
different histograms using transform coefficient levels of 4×4 transform blocks. The original data were used
for the top-left histogram, i.e., without applying a cut-off value, and the histogram represents the empirical
marginal pmf of the absolute transform coefficient levels. For the three remaining histograms, a cut-off value
was applied, and these are conditional histograms. Hence, they represent the empirical pmfs of the remainder
values. From the above analysis, the conditional pmfs should be geometric when applying a cut-off t0 > 0.
For the overlayed geometrical distributions, the model parameter y of each pmf is selected according to the
relative frequency (or empirical probability) of the first bin. If the marginal pmf is considered, i.e., the case
without a cut-off, the overlaid geometric distribution does not fit the empirical data well. However, for the
conditional pmfs, the overlaid geometric distributions show more suitable approximations to the empirical
conditional histograms. Although the theoretical analysis showed that the distribution is independent of
the value of t0, the histograms show that the distribution parameter depends on the value of t0, which
is supposedly due to the inaccuracy of the zero-mean Laplacian model. Nevertheless, these observations
indicate that the geometric distribution, derived by theoretical analysis, is a suitable approximation for the
remainders, which is sufficient for selecting an appropriate prefix code.

46



4.3. ADAPTIVE BINARIZATION

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

4×4

p̂X(|x|)

1 2 3 4 5 6 7 8 9
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

4×4

p̂X(|x|
∣∣x ≥ 1)

2 3 4 5 6 7 8 9 10
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

4×4

p̂X(|x|
∣∣x ≥ 2)

3 4 5 6 7 8 9 10 11
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

4×4

p̂X(|x|
∣∣x ≥ 3)

Figure 4.4
Four histograms are shown above using absolute transform coefficient levels of 4×4 transform blocks. The top-
left histogram represents the (empirical) marginal pmf, whereas the other histograms represent the (empirical)
conditional pmfs considering absolute transform coefficient levels greater than or equal to a specific threshold.
For the overlaid geometric distributions, the model parameters y are selected based on the empirical probability
for the first histogram entries, y = 1− pZ (z = 0)

4.3.3 | Golomb and Rice Codes

For geometric distributions, Golomb codes [76, 77] were proven to be an optimal class of variable-length
codes and can be used for the binarization of the remainders (i.e., using the bypass coding mode for the
resulting bins). Golomb codes consist of a prefix and a suffix, where the prefix is a unary code, and the suffix
is a truncated fixed-length code. An actual Golomb code that can be used to represent a remainder z is
selected by the Golomb parameter b, with b ≥ 0. The main property of Golomb codes is a constant bucket
size, i.e., each prefix represents b codewords, as illustrated in figure 4.5.

Construction of Rice Codes

Rice codes are a subset of Golomb codes, and the corresponding parameter k is used instead of b to specify
the actual Rice code, where the relationship between k and b is given by:

b = 2k. (4.8)

Because b is now a power-of-two value, the prefix construction and reconstruction can be implemented by
binary-shift operators, whereas the suffix can be represented by the fixed-length binary code, where its length
is equal to k. The construction and reconstruction of Rice codes are summarized in algorithm 4.1. Using the
subset of Rice codes is implementation-friendly, but the optimality provided by Golomb codes for all geometric
pmfs is not given anymore, because only Golomb codes with the Golomb parameters {1, 2, 4, 8, 16, . . .} can
be used. However, further investigations in the next subsection show that the most-used Rice parameters
are k ∈ {0, 1} for the remainders z, which allows for using Rice codes with minor penalties on the coding
efficiency.

In table 4.1, the codewords for z ∈ [0, 7] ∩ N0 with different Rice parameters are listed, where the case

47



4.3. ADAPTIVE BINARIZATION

bucket #2
sized for b 
elements

bucket #3
sized for b 
elements

bucket #4
sized for b 
elements

bucket #5
sized for b 
elements

bucket #1
sized for b 
elements

“0” “10” “110” “1110” “1110”

Figure 4.5
Bucket model of Golomb codes where the number of codewords in a bucket (identified by the prefix) is constant
and is equal to the Golomb parameter b. This property is beneficial for b = 2k yielding a fixed-length suffix,
allowing the decoder to determine the suffix length as soon as the Rice parameter k is determined.

Algorithm 4.1 Construction and reconstruction of a remainder z with Rice codes, where k is the Rice
parameter.
1: procedure riceEncode(z, k)
2: q ← z ≫ k
3: r ← z − q ≪ k
4: unary (q)
5: fixedLengthBinary (r, k)
6: end procedure
7: procedure riceDecode(k)
8: q ← unary ()
9: r ← fixedLengthBinary (k)

10: return (q ≪ k) + r
11: end procedure

k = 0 was left out, because the codewords are the same as those of the unary code. To understand the code
rate (increase in codeword lengths) for the different prefix-codes, figure 4.6 illustrate codeword lengths ℓ (z)
depending on the remainder z. When the Rice parameter k is large, there is a significant penalty for small
remainders, and they should only be used for geometric pmfs with very small probabilities for pZ (z = 0).
Note that the histograms in figure 4.4 indicated that the model parameter y increases with increasing cut-off
value t0. Therefore, the optimal Rice parameter k is expected to increase with an increasing cut-off value t0.

Optimal Rice Parameter

For a geometric source with a known model parameter y, the optimal Golomb parameter b can be derived
according to [58, p.37]. Let ϕ =

(
1 +

√
5
)
/2 denote the golden ratio, then the optimal Rice parameter k for a

given model parameter y can be calculated by [78]:

kopt = max

(
0, 1 +

⌊
log2

(
log (ϕ− 1)

log y

)⌋)
. (4.9)

z k = 1 ℓ (z) k = 2 ℓ (z) k = 3 ℓ (z) k = 4 ℓ (z)

0 0 0 2 0 00 3 0 000 4 0 0000 5
1 0 1 2 0 01 3 0 001 4 0 0010 5
2 10 0 3 0 10 3 0 010 4 0 0010 5
3 10 1 3 0 11 3 0 011 4 0 0011 5
4 110 0 4 10 00 4 0 100 4 0 0100 5
5 110 1 4 10 01 4 0 101 4 0 0101 5
6 1110 0 5 10 10 4 0 110 4 0 0110 5
7 1110 1 5 10 11 4 0 111 4 0 0111 5

Table 4.1
Codewords for the remainders z ∈ {0, 1, . . . , 7} when using Rice codes with the parameter k ∈ {1, 2, 3, 4}.

48



4.3. ADAPTIVE BINARIZATION

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Remainder z

0

2

4

6

8

10

12

14

16

18

20

22

24

C
od

ew
or

d
Le

ng
th

ℓ(
z
)

unary
EG0
Rice k = 1

Rice k = 2

Rice k = 3

Figure 4.6
Codeword lengths ℓ (z) for unary, EG0, and different Rice codes, where the actual Rice parameters are k ∈
[1, 4] ∩ N0.

The optimal Rice parameter given the model parameter y of geometric distributions according to the above
formula is illustrated in figure 4.7. When y < ϕ − 1 ≈ 0.62, the optimal Rice parameter is k = 0, i.e., the
best Rice code is the unary code. Note, however, that the unary code is only a zero-redundancy code for
y = 0.5.

Optimum Rice Parameter Given Remainder

The calculation in equation (4.9), which was derived in [78], is based on the assumption that the model
parameter y is available for a block of input values, and the same Rice code is then used for those input
values yielding the minimum average codeword length. That is different from the concept of selecting a Rice
code for the remainder z of each scanning position, which is being pursued here.

When selecting the Rice code for each scanning position, the minimal codeword length for a given remainder,
and derived from that, the optimal Rice parameter, is of more interest. Multiple Rice codes can result in the
same codeword length, and figure 4.8 summarizes minimum Rice parameter kmin and the maximum Rice
parameter kmax that are optimal for remainders z. To minimize the losses in coding efficiency, a switch to a
different Rice code is necessary when z is expected to become greater. Figure 4.8 shows the Rice code that
has to be used to achieve the shortest codeword length. In such an ideal environment, the points to switch

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Model Parameter y

0

1

2

3

4

5

6

R
ic

e
P
ar

am
et

er
k

Figure 4.7
Optimal Rice parameter k given the model parameter y of the geometric distribution, derived according to
equation (4.9).

49



4.3. ADAPTIVE BINARIZATION

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Remainder z

0

1

2

3

4

R
ic

e
P
ar

am
et

er
k

kmax

kmin

Figure 4.8
Optimal Rice parameters k for a single remainder value z.

between Rice codes can be specified by:

k = 0 ⇌ k = 1 : for z ∈ [1, 2] ∩ N0,

k = 1 ⇌ k = 2 : for z ∈ [2, 5] ∩ N0,

k = 2 ⇌ k = 3 : for z ∈ [4, 11] ∩ N0.

(4.10)

Fixed Rice Binarization

Two investigations were performed to understand the efficiency of Rice codes for the binarization of transform
coefficient levels in practical video coding environments. The first investigation analyzes the frequency of
Rice codes that generate the shortest codeword length when the remainder z is known at the decoder
side by evaluating existing bitstreams. For the second investigation, additional encoding experiments were
performed, and the best Rice parameter for the whole test set was determined, i.e., the same Rice parameter
for all test sequences and QPs that provides the best BD-rate. Moreover, the second investigation includes
further BD-rate results that were derived by calculating Rice parameters for different operation points.

For the first investigation, the bitstreams generated for the study in section 4.2.3, i.e., IMP4-0 with the
t0 = 3 configuration were used, and the evaluation assigned each remainder z to a Rice code that provides
the shortest codeword length. When multiple Rice codes generate the same codeword length for a remainder
z, the Rice code with the lower Rice parameter is counted as being the optimal Rice code. Figure 4.9
summarizes the investigation results as a histogram that denotes the frequency of optimal Rice codes for the
remainders within the bitstreams. The investigation shows that the case k > 3 rarely occurs, and most of
the remainders can be coded with k = 0.

0 1 2 3 4 5

Rice Parameter k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
el

at
iv

e
Fr

eq
ue

nc
y

Figure 4.9
Histogram denoting the relative frequency for a Rice code that generates the shortest codeword length given a
remainder z, where the remainders were extracted from existing bitstreams.

50



4.3. ADAPTIVE BINARIZATION

2 3 4

Cut-Off Threshold t0

−0.8
−0.6
−0.4
−0.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

B
D

-r
at

e
AI: Cut-Off Reduction (EG0)
RA: Cut-Off Reduction (EG0)
AI: FRC for Test Set
RA: FRC for Test Set

AI: FRC for Sequences & QP
RA: FRC for Sequences & QP
AI: Theoretical Optimum
RA: Theoretical Optimum

Figure 4.10
Coding efficiency of binarizations with Rice code with t0 ∈ {2, 3, 4} for the remainders z instead of the EG0 code
(IMP4-1). “FRC for Test Set” denotes the best configuration where k is the same for all test sequences and QPs.
“FRC for Sequences & QP” employed the results from the same set of experiments, but the BD-rate calculations
were performed based on different Rice code combinations for each test sequence and QP, i.e., the Rice parameter
k varies among the test sequences and QPs, but is the same for each bitstream. Finally, “Theoretical Optimum”
denotes a configuration where the Rice code providing the shortest codeword length for a remainder z is chosen,
which is a configuration that is not decodable.
Anchor for BD-rate computations: IMP3-7∗

For the second investigation, additional encoding experiments were performed, where the EG0 code was
replaced by different Rice codes, and the corresponding implementations are referred to as IMP4-1. Each
set of experiments was configured to use a different Rice code, where k ∈ [0, 8] ∩ N0, for all test sequences
and QPs. The configuration that provides the best coding efficiency is selected, and figure 4.10 summarizes
the BD-rate for cut-off thresholds t0 ∈ {2, 3, 4}. For calculating the BD-rates, IMP3-7∗, which is the same
anchor used for the experiments in figure 4.3, was employed. “Cut-Off Reduction (EG0)” for each cut-off
threshold t0 denotes the coding efficiency of the configuration using the EG0 code for the binarization of
the remainder, which is equivalent to the corresponding results in figure 4.3. In figure 4.10, “FRC for Test
Set” in figure 4.10 denotes the coding efficiency for the best performing Rice code for all test sequences and
QPs, which is k = 0 for all cut-off thresholds. “FRC for Sequence & QP” denotes the coding efficiency
when the best performing Rice code can be different for each test sequence and QP, where Rice parameters
k < 2 were chosen for all test sequences and operation points. The results of the second investigation are
consistent with the results of the first investigation, i.e., most of the remainders z can be coded with k < 2.
Furthermore, the second investigation shows that switching among different Rice codes can provide improved
coding efficiency, as indicated by the difference in coding efficiency between “FRC for Test Set” and “FRC
for Sequence & QP” for t0 = 3 in figure 4.10. Finally, “Theoretical Optimum” denotes a configuration that
is not decodable, where the Rice code providing the shortest codeword length for a remainder z is selected
for encoding. Although this configuration is not decodable, it illustrates the theoretical limit that can be
achieved by using Rice codes with adaptive selection of the Rice parameter

4.3.4 | Backward-Adaptive Rice Parameter Estimation

In the previous subsection, the investigations demonstrate that using Rice codes is feasible and that the
theoretical findings match the practical coding environment. The distributions of the remainders z can be
approximated by geometric pmfs. By using a Rice code with a fixed Rice parameter for the remainder values,
the coding efficiency can be improved relative to using the EG0 code. The investigations further reveal that
most remainders have a minimal codeword length for Rice parameters k ∈ {0, 1}, and remainders, where the

51



4.3. ADAPTIVE BINARIZATION

shortest codeword length is obtained for k > 3, rarely occur.

A remainder is transmitted after coding b|x|>1 = 1 or b|x|>2 = 1, depending on the configuration of t0.
Therefore, the selection of the Rice parameter for the current scanning position should rely on preceding
scanning positions, because this approach aligns the adaptive binarization with the existing tracking variables
used in the second coding phase. With that consideration, it can be assumed that the remainders for the
first scanning positions of the transform block, usually located at high-frequency locations, are small, and
they usually become greater towards low-frequency scanning positions. Additional configurations have to be
determined besides the backward-adaptive estimation of the Rice parameter when replacing the EG0 code
by Rice codes:

• Initial Rice parameter: For the first scanning position of the transform block, there is no preceding
scanning position with a coded remainder. Given the investigations above, the initial Rice parameter
should be k = 0, because most of the remainders have the shortest codeword length for k = 0. Another
reason for the choice is that because the second coding phase usually starts at high-frequency locations,
it is expected that the remainders are typically small, for which k = 0 provides the shortest codeword
length.

• Maximum Rice parameter: The studies in the previous subsection indicated that k > 3 rarely
occurs; therefore, the maximum Rice parameter should be k = 3 for the upcoming investigations.

• Rice parameter reinitialization: 4×4 sub-blocks are scanned from low-frequency to high-frequency
locations within a transform block, whereas the scanning within each sub-block is from high-frequency
to low-frequency locations for the second coding phase. Reinitializing the tracking variables used for the
context modeling in the second coding phase was feasible, because the context modeling was originally
designed using a scan from high-frequency to low-frequency locations. Because the Rice parameter
selection is within the second coding phase, a reinitialization of the Rice parameter, e.g., to k = 0,
should be considered in the upcoming investigations.

• Rice parameter selection: The selection of the Rice parameter should depend on the preceding
scanning positions with a coded remainder (i.e., with an absolute value x ≥ t0), which is aligned with
the tracking variables and the context modeling of the second coding phase. Two options have to be
investigated for the Rice parameter update: Either allowing an unconstrained update of k or allowing
k to increase only. Note that the latter design is comparable to the context modeling of the second
coding phase, where the context model index δx>2 never decreases.

Binarization with Rice Codes

With the analyses presented in this chapter, a starting point for the binarization with Rice codes can be
established, where the cut-off threshold is t0 ∈ {2, 3, 4}. Let us assume that there is a way to determine
the Rice parameter k for each remainder value z to be coded depending on the preceding scanning position.
Then, the static binarization process denoted in equation (4.1) changes as follows, where fR (·, k) denotes
the Rice code with Rice parameter k:

f (x) = fTRU (x, t0) ∗ gR (x− t0, k) , (4.11)

where

gR (z, k) =

{
(∅) , if z < 0,

fR (z, k) , otherwise.
(4.12)

Rice Parameter Selection

The BD-rates summarized in figure 4.10 also represent the improvements necessary for each t0 configuration
to achieve virtually the same coding efficiency as provided by the static binarization of AVC. Further encoding
experiments were conducted to identify the remainder values of the preceding scanning position for which
the Rice parameter should be changed, so that the coding efficiency is improved and the losses introduced
by reducing the cut-off threshold t0 are minimized.

52



4.3. ADAPTIVE BINARIZATION

(0
,
2
)

(1
,
2
)

(2
,
2
)

(3
,
2
)

(4
,
2
)

(5
,
2
)

(6
,
2
)

(7
,
2
)

(8
,
2
)

(9
,
2
)

(0
,
3
)

(1
,
3
)

(2
,
3
)

(3
,
3
)

(4
,
3
)

(5
,
3
)

(6
,
3
)

(7
,
3
)

(8
,
3
)

(9
,
3
)

(0
,
4
)

(1
,
4
)

(2
,
4
)

(3
,
4
)

(4
,
4
)

(5
,
4
)

(6
,
4
)

(7
,
4
)

(8
,
4
)

(9
,
4
)

Tested Configuration (z1, t0)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

B
D

-r
at

e
All-Intra (AI)
Random-Access (RA)

AI with Reinitialization
RA with Reinitialization

Figure 4.11
Coding efficiency of the investigation on the switch to k = 1 for different combinations of z1 and t0 for the QP set
{22, 27, 32, 37} (IMP4-2). The illustration includes the BD-rates for both variants, with and without reinitializing
the Rice parameter to k = 0 at the beginning of each sub-block.
Anchor for BD-rate computations: IMP3-7∗

Let zlast denote the remainder of the preceding scanning position, and let zlast = 0 for a scanning position
without coded remainder, i.e., when x < t0. Since it can be expected that, on average, the remainders increase
from high-frequency to low-frequency locations, the following approach is investigated: The last remainder
zlast is compared to a set of thresholds, and the Rice parameter used for coding the current remainder is
selected based on the result of these comparisons. Algorithm 4.2 summarizes the implementation used for all
investigations, where z1, z2, and z3 denote the thresholds that have to be determined. Furthermore, i denotes
the current scanning position, and klast is the Rice parameter of the preceding scanning position. Note that i
denotes the forward scanning position, whereas the second coding phase, where the Rice codes are employed,
uses the reverse scanning pattern within a sub-block. Therefore, the preceding scanning position within a
sub-block is i+1, whereas the preceding scanning position for the first coding position of the second coding
phase is i − (i&15) − 16 for sub-blocks not covering the DC frequency position. Let the array containing
the Rice parameters for the scanning positions k [·] further be initialized with zeros at the beginning of a
transform block. Finally, the two boolean variables reinit and constrained denoted in algorithm 4.2 control
the behavior of the update algorithm. When reinit = true, the Rice parameter k is set equal to zero for the
first coding position of the second coding phase in a sub-block, whereas it is not reinitialized at the beginning
of each sub-block when reinit = false. For constrained = true, the Rice parameter cannot decrease within
a sub-block, whereas constrained = false enables more freedom and k depends solely on zlast.

Switch to k = 1: The investigations started with the first threshold z1 where the transition from the
initial Rice parameter k = 0 to k = 1 should occur. The implementation for this investigation is referred to
as IMP4-2, and the anchor used for calculating the BD-rates is IMP3-7∗. In this investigation, k is set equal
to one when the remainder of the preceding scanning position is greater than the threshold z1, where each
set of encoding experiments employed a different value for z1. Because this investigation step determines z1
only, the other two thresholds z2 and z3 were set to ∞. Both boolean variables denoted in algorithm 4.2
were set to true for all experiments of this set, meaning that k = 0 for the first coding position of the second
coding phase in a sub-block, and k cannot be decreased within a sub-block. This investigation step further
analyzed the effect of reinitializing the Rice parameter at the beginning of each sub-block. That was achieved
by performing another set of experiments, where each experiment employed a different value for z1 as before,
but the boolean variable reinit was set to false for all experiments of this set.

The experimental results for the QP set {22, 27, 32, 37} are summarized in figure 4.11, where the x-axis

53



4.3. ADAPTIVE BINARIZATION

(0
,
2
)

(1
,
2
)

(2
,
2
)

(3
,
2
)

(4
,
2
)

(5
,
2
)

(6
,
2
)

(7
,
2
)

(8
,
2
)

(9
,
2
)

(0
,
3
)

(1
,
3
)

(2
,
3
)

(3
,
3
)

(4
,
3
)

(5
,
3
)

(6
,
3
)

(7
,
3
)

(8
,
3
)

(9
,
3
)

(0
,
4
)

(1
,
4
)

(2
,
4
)

(3
,
4
)

(4
,
4
)

(5
,
4
)

(6
,
4
)

(7
,
4
)

(8
,
4
)

(9
,
4
)

Tested Configuration (z1, t0)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

B
D

-r
at

e
All-Intra (AI)
Random-Access (RA)

AI with Reinitialization
RA with Reinitialization

Figure 4.12
Coding efficiency of the investigation on the switch to k = 1 for different combinations of z1 and t0 for the QP set
{2, 7, 12, 17} (IMP4-2). The illustration includes the BD-rates for both variants, with and without reinitializing
the Rice parameter to k = 0 at the beginning of each sub-block.
Anchor for BD-rate computations: IMP3-7∗

denotes the configuration of the z1 and t0 combination and the y-axis denotes the BD-rate. Note that both
variants, i.e., with and without reinitialization at the beginning of each sub-block, are included in figure 4.11.
In all three cut-off configurations, the coding efficiency of the variant with Rice parameter reinitialization
is superior compared to the corresponding variant without reinitialization. The experimental results show
that the optimal remainder value z1 depends on the configuration of t0 and is equal to z1 = 1 for t0 = 2 and
z1 = 0 for t0 ∈ {3, 4}.

The same set of experiments were performed for the QP set {2, 7, 12, 17} representing the high bit-rate opera-
tion points, and figure 4.12 summarizes the obtained BD-rates. As observed for the QP set {22, 27, 32, 37} in
figure 4.11, the variant with Rice parameter reinitialization outperforms the variant without reinitialization.
Furthermore, when the threshold z1 is relatively high, the coding efficiency losses are significant, which was
not observed for the QP set {22, 27, 32, 37}. For this set of experiments, the optimal remainder values z1 are
equal to those derived from the experiments with the QP set {22, 27, 32, 37}.

Besides the derivation of the optimal z1, which depends on t0, this investigation step proves that the Rice
parameter reinitialization at the beginning of each sub-block is feasible. For the next investigation steps,
the Rice parameter is always reinitialized to k = 0 at the first scanning position of each sub-block, i.e.,
reinit = true for all further investigations. This implementation with z1 = 1 for t0 = 2 and z1 = 0 for
t0 ∈ {3, 4} is referred to as IMP4-2∗ and serves as the basis for the following implementations.

Switch to k = 2: For this investigation, z3 is set to ∞, while constrained and reinit are set to true.
The implementation for this investigation is referred to as IMP4-3 and is based on IMP4-2∗. Each set of
coding experiments used a different value for z2 to determine the switch to k = 2. Note that the update rule
denoted in algorithm 4.2 implies that the Rice parameter k can increase by more than one, i.e., from k = 0
to k = 2. In this investigation step, the effect for an unconstrained update of k was further analyzed by
setting constrained to false, i.e., the Rice parameter for the current scanning position i can become smaller
than the Rice parameter k of the preceding scanning position, implying that the derivation of k does not
depend on klast.

The experimental results are summarized in figure 4.13 for the QP set {22, 27, 32, 37} Those BD-rate results
in figure 4.13 show that the unconstrained update of the Rice parameter k is not feasible as its coding
efficiency is inferior to its constrained counterpart. For this investigation step, the optimal thresholds are

54



4.3. ADAPTIVE BINARIZATION

(1
,
2
)

(2
,
2
)

(3
,
2
)

(4
,
2
)

(5
,
2
)

(6
,
2
)

(7
,
2
)

(8
,
2
)

(9
,
2
)

(1
0
,
2
)

(1
,
3
)

(2
,
3
)

(3
,
3
)

(4
,
3
)

(5
,
3
)

(6
,
3
)

(7
,
3
)

(8
,
3
)

(9
,
3
)

(1
0
,
3
)

(1
,
4
)

(2
,
4
)

(3
,
4
)

(4
,
4
)

(5
,
4
)

(6
,
4
)

(7
,
4
)

(8
,
4
)

(9
,
4
)

(1
0
,
4
)

Tested Configuration (z2, t0)

−0.10
−0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

B
D

-r
at

e
All-Intra (AI)
Random-Access (RA)
AI Unconstrained Update
RA Unconstrained Update

Figure 4.13
Coding efficiency of the investigation on the switch to k = 2 for different combinations of z2 and t0 for the QP set
{22, 27, 32, 37} (IMP4-3). The illustration includes the BD-rates for both the variant where the Rice parameter
update is unconstrained, i.e., the Rice parameter is independent of klast, and the variant where the Rice parameter
is dependent on klast.
Anchor for BD-rate computations: IMP3-7∗

z2 = 5 for t0 = 2, z2 = 4 for t0 = 3, and z2 = 2 for t0 = 4. With those thresholds, the coding efficiency is
further improved relative to the previous investigation step, where the maximum Rice parameter is k = 1.
Note that the coding efficiency of the AVC binarization is already achieved for the cut-off configurations
t0 ∈ {3, 4}.

In figure 4.14, the experimental results are summarized for the QP set {2, 7, 12, 17}, where the performance
of the unconstrainted update variant is also inferior to the constrained counterpart, as already observed for
the QP set {22, 27, 32, 37}. For the high bit-rate operation points, the optimal thresholds are z2 = 4 for
t0 = 2, z2 = 3 for t0 = 3, and z2 = 2 for t0 = 4. Except for t0 = 2 in the Random-Access configuration,
superior coding efficiency is achieved relative to the AVC binarization.

The experimental results show that the unconstrained update of the Rice parameter is not feasible, and the
Rice parameter should never become smaller within a sub-block. This observation corresponds to the usage
of the tracking variables c1 and c2, which are responsible for the context modeling of the second coding
phase. Moreover, the existing coding efficiency provided by the AVC binarization can already be achieved
for the CTC QPs when t0 ∈ {3, 4}, whereas superior coding efficiencies are obtained for the high bit-rate
operation points. The final configuration of IMP4-3 with z2 equal to z2 = 5 for t0 = 2, z2 = 4 for t0 = 3,
and z2 = 2 for t0 = 2, is referred to as IMP4-3∗ and serves as the basis for the following implementations.

Switch to k = 3: The same investigation was performed for the final switch to k = 3. The corresponding
implementation is referred to as IMP4-4, and it is based on IMP4-3∗. Again, the anchor used to calculate the
BD-rates is IMP3-7∗. Note that for z1 and z2, the values determined by previous investigations were used,
and both variables constrained and reinit are set equal to true. Figure 4.15 summarizes the experimental
results for both QP sets. For the CTC QPs, the coding efficiencies converge towards a limit, i.e., insignificant
improvements relative to the coding efficiency provided by the previous investigation are obtained. This
observation also means that for the cut-off configuration t0 = 2, the coding efficiency remains inferior relative
to the AVC binarization. That, in turn, excludes the cut-off configuration t0 = 2 from further consideration
as a final cut-off configuration.

For the high bit-rate operation points, both candidate cut-off configurations (t0 ∈ {3, 4}) provide superior
coding efficiencies relative to the AVC binarization with a further improvement relative to the previous

55



4.3. ADAPTIVE BINARIZATION

Algorithm 4.2 Generic implementation for the investigations of the switching points to different Rice
parameters, where i denotes the current scanning position, ilast the last significant scanning position, z1,
z2, and z3 are thresholds for selecting the Rice parameter. The boolean variable reinit = true enables the
reinitialization of the Rice parameter at the beginning of each sub-block, whereas the variable constrained =
true disables an unconstrained update of the Rice parameter k.
Require: z1, z2, z3, reinit, constrained
1: if i = ilast ∨ i mod 16 = 15 then
2: if reinit ∨ i < 16 then
3: klast = 0
4: zlast = 0
5: else
6: klast = k [i− (i&15)− 16]
7: zlast = z [i− (i&15)− 16]
8: end if
9: else

10: klast ← k [i+ 1]
11: zlast ← z [i+ 1]
12: end if
13: if zlast > z3 then
14: k [i]← 3
15: else if zlast > z2 then
16: k [i]← 2
17: else if zlast > z1 then
18: k [i]← 1
19: else
20: k [i]← 0
21: end if
22: if constrained then
23: k [i] = max (k [i] , klast)
24: end if

investigation. The best BD-rate in the All-Intra configuration is -2.03% obtained by a cut-off threshold of
t0 = 3, which is better than a BD-rate of -1.95% for t0 = 4, wheras the best BD-rate in the Random-Access
configuration in the t0 = 4 configuration is with -0.29% slightly better than for t0 = 3 with -0.25%.

Final update rules of the Rice parameter: As a consequence of the above experimental results, the
final cut-off configuration t0 = 3 was selected, because it provides roughly the same coding efficiency for the
QP set {22, 27, 32, 37} as t0 = 4 and the AVC binarization, but it avoids the usage of the same context model
for consecutive bins. Furthermore, the configuration t0 = 3 provides the best coding efficiency for the QP
set {2, 7, 12, 17} in the All-Intra configuration, and almost the same coding efficiency in the Random-Access
configuration as t0 = 4. The final configuration of IMP4-4 with t0 = 3 and z3 = 10 is referred to as IMP4-4∗,
and it is summarized as pseudo-code in algorithm 4.3.

4.3.5 | Nested Rice Codes with EG0

Transform coefficient levels are commonly specified to be 16 bits and the range is [−215, 215 − 1] ∩N, which
yields a maximum absolute transform coefficient level of xmax = 215. Let ℓEG0 (·) denote the codeword
length when using the EG0 code, and let ℓR (·, k) denote the corresponding codeword length when using the
Rice code k. For the AVC binarization (t0 = 15) and the previously established adaptive binarization with
Rice codes (t0 = 3), the maximum codeword length, i.e., the maximum number of the bypass-coded bins for
x, are:

ℓEG0 (xmax − 15) = 29,

ℓR (xmax − 3, 0) = 32766,

ℓR (xmax − 3, 1) = 16384,

ℓR (xmax − 3, 2) = 8194,

ℓR (xmax − 3, 3) = 4099.

(4.13)

56



4.3. ADAPTIVE BINARIZATION

(1
,
2
)

(2
,
2
)

(3
,
2
)

(4
,
2
)

(5
,
2
)

(6
,
2
)

(7
,
2
)

(8
,
2
)

(9
,
2
)

(1
0
,
2
)

(1
,
3
)

(2
,
3
)

(3
,
3
)

(4
,
3
)

(5
,
3
)

(6
,
3
)

(7
,
3
)

(8
,
3
)

(9
,
3
)

(1
0
,
3
)

(1
,
4
)

(2
,
4
)

(3
,
4
)

(4
,
4
)

(5
,
4
)

(6
,
4
)

(7
,
4
)

(8
,
4
)

(9
,
4
)

(1
0
,
4
)

Tested Configuration (z2, t0)

−1.3

−0.8

−0.3

0.2

0.7

1.2

1.7

2.2

2.7

B
D

-r
at

e
All-Intra (AI)
Random-Access (RA)
AI Unconstrained Update
RA Unconstrained Update

Figure 4.14
Coding efficiency of the investigation on the switch to k = 2 for different combinations of z2 and t0 for the QP
set {2, 7, 12, 17} (IMP4-3). The illustration includes the BD-rates for both the variant where the Rice parameter
update is unconstrained, i.e., the Rice parameter is independent of klast, and the variant where the Rice parameter
is dependent on klast, respectively.
Anchor for BD-rate computations: IMP3-7∗

For remainders close to xmax, the codeword length of Rice codes is significantly larger than the codeword
length of the EG0 code used in the AVC binarization. Although bypass-coded bins require fewer resources
for processing, the significant increase in the bin string length relative to the AVC binarization counteracts
the achievement of the context-coded bins reduction.

Because the EG0 code provides a significantly shorter codeword length for values close to xmax, the pursued
solution is to reintroduce the EG0 code into the binarization process. The Rice codes are nested in between
the TRU code and the EG0 code to combine the achievements provided by Rice codes, i.e., the coding
efficiency improvements for the high bit-rate operation points and the reduction of context-coded bins, with
the shorter codeword length for values close to xmax of the EG0 code.

Binarization with Rice and EG0 Codes

Figure 4.16 visualizes the concept on the bin string of transform coefficient levels, as already used in figure 4.1
to visualize the bin strings of the static binarization process in AVC. Embedding Rice codes between the
TRU and EG0 code introduces a further parameter that has to be determined: the transition point t1 that
specifies the maximum remainder value x − 3 to be represented with Rice codes. The static binarization
process expressed as a formula in equation (4.1) is changed to the following notation, where gR (·, k,maxVal)
denotes the Rice code with maxVal being the maximum value that can be coded with a Rice code, and
fbinary (q,m) the m least significant bits of q:

f (x) = fTRU (x, 3) ∗ gR (x− 3, k, t1) ∗ gEG0 (x− 3− t1) , (4.14)

where,

gR (x, k,maxVal) =

{
∅, if x < 0,

fTRU (x≫ k,maxVal≫ k) ∗ fbinary (x, k) , otherwise.
(4.15)

Note that a truncation of the codeword for the maximum value of Rice codes is applicable to save unnecessary
signaling, where the maximum value for the remainder is equal to t1. This aspect is not analyzed in detail,
because its impact on the coding efficiency is insignificant. A truncation approach is selecting the threshold
t1 equal to n · 2k − 1, with n > 0 being an integer, so that the last bucket is complete, and using the TRU

57



4.3. ADAPTIVE BINARIZATION

(7
,
2
)

(8
,
2
)

(9
,
2
)

(1
0
,
2
)

(1
1
,
2
)

(1
2
,
2
)

(1
3
,
2
)

(1
4
,
2
)

(1
5
,
2
)

(1
6
,
2
)

(1
7
,
2
)

(1
8
,
2
)

(7
,
3
)

(8
,
3
)

(9
,
3
)

(1
0
,
3
)

(1
1
,
3
)

(1
2
,
3
)

(1
3
,
3
)

(1
4
,
3
)

(1
5
,
3
)

(1
6
,
3
)

(1
7
,
3
)

(1
8
,
3
)

(7
,
4
)

(8
,
4
)

(9
,
4
)

(1
0
,
4
)

(1
1
,
4
)

(1
2
,
4
)

(1
3
,
4
)

(1
4
,
4
)

(1
5
,
4
)

(1
6
,
4
)

(1
7
,
4
)

(1
8
,
4
)

Tested Configuration (z3, t0)

−2.2
−2.0
−1.8
−1.6
−1.4
−1.2
−1.0
−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4

B
D

-r
at

e

All-Intra (AI)
AI in Low QP

Random-Access (RA)
RA Low QP

Figure 4.15
Coding efficiency of the investigation on the switch to k = 3 for different combinations of z3 and t0 for both QP
sets (IMP4-4).
Anchor for BD-rate computations: IMP3-7∗

code in the prefix instead of the unary code. This truncation is applied later after determining the maximum
remainder for the Rice codes.

Maximum Remainder for Rice Codes

The first investigation in this context is to determine whether a single t1 configuration for all Rice codes is
feasible. The implementation for this investigation is based on IMP4-4∗ and is referred to as IMP4-5. A set
of coding experiments using IMP4-5 was conducted, where each experiment employed a different value for t1.
Specifically, only zR = min (z, t1) is binarized using the specified Rice code, whereas zEG0 = z−t1 is binarized
using the EG0 code. For calculating the BD-rates, again IMP3-7∗ was used. In contrast to the previously
performed experiments, simulations were conducted for the QP set {2, 7, 12, 17} only, because it is expected
that a change in coding efficiency is only measurable for the higher bit-rate operation points. Figure 4.17
summarizes the BD-rates obtained after performing the encoding experiments. The horizontal solid line
denotes the coding efficiency for the variant without the EG0 code (IMP4-4∗) in the All-Intra configuration,
and the dashed horizontal line the corresponding coding efficiency in the Random-Access configuration. With
an increased value of t1, the coding efficiency of the nested Rice codes converges towards the corresponding

truncated unary

kth-order Rice

x ∊ {0,1,2}

x ∊ {3,4,…,t1+2}

x ∊ {t1+3,t1+4,…,xmax}

0th-order Exp-Golomb

t1+3

t0=3

bin string

Figure 4.16
Binarization of transform coefficient levels with nested Rice codes and the EG0 code. For x ∈ {0, 1, 2}, the bin
string consists of a TRU code only, whereas for x ∈ {3, 4, . . . , t1 + 2}, the bin string consists of the TRU code for
x = 3 and a Rice code for x − 3. When x ≥ t1 + 3, the bin string consists of a TRU code for x = 3, which is
followed by the Rice code for x− 3 and the EG0 code for x− t1 − 3.

58



4.3. ADAPTIVE BINARIZATION

Algorithm 4.3 IMP4-4∗: Implementation of the final Rice parameter selection, where a reinitialization of
the Rice parameter to k = 0 at the beginning of each sub-block and the constraint that k cannot decrease
within a sub-block are always enabled.
1: if i = ilast ∨ i mod 16 = 15 then
2: klast = 0
3: zlast = 0
4: else
5: klast ← k [i+ 1]
6: zlast ← z [i+ 1]
7: end if
8: if zlast > 10 then
9: k [i]← 3

10: else if zlast > 4 then
11: k [i]← 2
12: else if zlast > 0 then
13: k [i]← 1
14: else
15: k [i]← 0
16: end if
17: k [i] = max (k [i] , klast)

variant without the EG0 code. However, encoding experiments beyond a configuration of t1 ≥ 40 were not
conducted for practical reasons and because the maximum codeword length would become significantly larger
for a coding efficiency that is virtually the same as for the variant without the EG0 code.

The experimental results of this investigation showed that a single t1 configuration for all Rice codes is
not feasible. Instead, the next investigation determined t1 for each Rice parameter k, because the maximum
codeword length highly depends on the Rice code. A set of encoding experiments was conducted to determine
the best value for t1 (k = 0) by selecting the configuration that provides a coding efficiency close to or equal
to the variant without the EG0 code. When multiple values are possible, the lowest value for t1 (k = 0) is
selected, as the value directly controls the final bin string length. After the determination of the configuration
for t1 (k = 0), new encoding experiments were conducted to identify the optimal value for t1 (k = 1), which
is then followed by the determination of the optimal value for t1 (k = 2), and finally for t1 (k = 3). The
corresponding implementation is based on IMP4-4∗, and it is referred to as IMP4-6, and the anchor for
BD-rate computations is again IMP3-7∗.

Figure 4.18 summarizes the experimental results for all steps of this investigation. The main observation is
that for k ∈ {0, 1}, the value of t1 can be chosen significantly smaller than the values of t1 for k ∈ {2, 3}.
Furthermore, nesting the Rice code can insignificantly improve the coding efficiency for k ∈ {0, 1, 2}, but it
is measurable and visibile in figure 4.18. For k = 3, it is expected that an improved coding efficiency relative
to the variant without the EG0 code can be achieved by setting t1 (k = 3) to a very large value. The finally
determined t1 (k) values are:

t1 (k) =


9, if k = 0,

23, if k = 1,

47, if k = 2,

95, if k = 3.

(4.16)

Note that the final values for t1 (k) were selected according to the condition t1 (k) = n · 2k − 1 so that the
TRU code can be used for the prefix of the Rice codes. After determining t1 (k), which depends on the Rice
parameter k, the maximum codeword length for a remainder is:

ℓR (xmax − 3, 0) + ℓEG0 (xmax − 3− t1 (k = 0))− 1 = 38,

ℓR (xmax − 3, 1) + ℓEG0 (xmax − 3− t1 (k = 1))− 1 = 41,

ℓR (xmax − 3, 2) + ℓEG0 (xmax − 3− t1 (k = 2))− 1 = 42,

ℓR (xmax − 3, 3) + ℓEG0 (xmax − 3− t1 (k = 3))− 1 = 42.

(4.17)

59



4.3. ADAPTIVE BINARIZATION

0 5 10 15 20 25 30 35 40 45

Cut-Off Threshold t1

−2.1
−1.9
−1.7
−1.5
−1.3
−1.1
−0.9
−0.7
−0.5
−0.3
−0.1
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9

B
D

-r
at

e
Reference (AI)
Reference (RA)

same t1 for all k (AI)
same t1 for all k (RA)

Figure 4.17
Coding efficiency of the investigation on fixed t1 configurations for the nested Rice codes with the QP set
{2, 7, 12, 17} (IMP4-5). The solid horizontal line denotes the coding efficiency of the variant without the EG0
code in the All-Intra configuration, and the dashed horizontal line denotes the Random-Access configuration.
Anchor for BD-rate computations: IMP3-7∗

4.3.6 | Final Design with Nested Rice Codes

The final implementation of the adaptive binarization with nested Rice codes provides about the same coding
efficiency as achieved by the binarization in AVC for transform coefficient levels. However, it achieves the
coding efficiency with a reduction of the cps for transform coefficient levels by 80% in the worst-case scenario.
That reduction of the worst-case cps significantly alleviates hardware implementations. Furthermore, the
developed binarization achieves a superior coding efficiency relative to the AVC binarization of transform
coefficient levels for high and very-high bit-rates.

Table 4.2 summarizes the coding efficiency for the final implementation of the adaptive binarization with
nested Rice codes. Its implementation is based on IMP4-6 with the configuration of t1 denoted in equa-

Class Luma CB CR

All-Intra
A -0.01 (-2.57)% -0.08 (-2.54)% -0.07 (-2.52)%
B -0.03 (-0.84)% -0.05 (-0.82)% -0.04 (-0.86)%
C 0.02 (-2.62)% 0.01 (-2.62)% 0.01 (-2.70)%
D -0.03 (-3.87)% -0.05 (-3.89)% -0.07 (-4.03)%
E -0.01 (-0.19)% -0.06 (-0.23)% -0.10 (-0.23)%

Overall -0.01 (-2.05)% -0.05 (-2.05)% -0.05 (-2.10)%
Random-Access

A 0.03 (-0.41)% 0.12 (-0.40)% -0.08 (-0.35)%
B -0.01 (-0.02)% -0.04 (-0.01)% -0.17 ( 0.00)%
C -0.01 (-0.38)% -0.01 (-0.36)% 0.10 (-0.36)%
D -0.04 (-0.54)% -0.17 (-0.55)% -0.18 (-0.51)%
E 0.05 ( 0.06)% -0.16 ( 0.04)% 0.18 ( 0.08)%

Overall 0.00 (-0.26)% -0.05 (-0.26)% -0.05 (-0.23)%

Table 4.2
Coding efficiency of the final adaptive binarization with nested Rice codes with the implementation is referred to
as IMP4-6∗. BD-rates not in brackets denote the coding efficiency for the QP set {22, 27, 32, 37}. BD-rates in
brackets denote the coding efficiency for the QP set {2, 7, 12, 17}.
Anchor for BD-rate computations: IMP3-7∗ (IMP3-7∗)

60



4.4. FINDINGS AND TECHNICAL ACHIEVEMENTS

0 10 20 30 40 50 60 70 80 90 100

Cut-Off Threshold t1

−2.1
−1.9
−1.7
−1.5
−1.3
−1.1
−0.9
−0.7
−0.5
−0.3
−0.1

B
D

-r
at

e

Reference (AI)
Reference (RA)
t1(k = 0) (AI)
t1(k = 0) (RA)
t1(k = 1) (AI)

t1(k = 1) (RA)
t1(k = 2) (AI)
t1(k = 2) (RA)
t1(k = 3) (AI)
t1(k = 3) (RA)

Figure 4.18
Coding efficiency of the investigation on variable t1 (k) configurations for the nested Rice codes with the QP set
{2, 7, 12, 17} (IMP4-6). The solid horizontal line denotes the coding efficiency of the variant without the EG0
code in the All-Intra configuration, and the dashed horizontal line denotes the Random-Access configuration,
respectively.
Anchor for BD-rate computations: IMP3-7∗

tion (4.16), and this implementation is referred to as IMP4-6∗. Values not in brackets denote the BD-rates
for the CTC QPs, whereas values in brackets denote the BD-rates for the QP set {2, 7, 12, 17}, which repre-
sent high bit-rate operation points. The anchor for the BD-rates calculation is the 4×4 sub-block processing
developed in the chapter chapter 3, i.e., IMP3-7∗. Finally, algorithm 4.4 summarizes IMP4-6∗ as pseudo-code,
which is an extended version of algorithm 3.6.

4.4 | Findings and Technical Achievements

The findings and technical achievements of the adaptive binarization for transform coefficient levels with
nested Rice codes are:

• The context-coded bins per sample (cps) of transform coefficient levels dominate the overall cps when
using the AVC binarization. It is, therefore, sufficient to reduce the number of context-coded bins for
transform coefficient levels to reduce the overall cps.

• Remainders of absolute transform coefficient levels can be modeled as being geometrically distributed.
This observation can be exploited by Golomb and Rice codes, which are optimal for geometrical prob-
ability distributions.

• A reduction of the cut-off threshold that defines the transition from context-coded bins to bypass-coded
bins can be achieved without sacrificing the coding efficiency for the QPs specified in the CTC, when
using adaptive Rice codes.

• The developed adaptive Rice code selection provided coding efficiency improvements for high and very
high bit-rate operation points.

• The cut-off threshold could be reduced to three, for which the usage of the same context model for
successive bins of a bin string could be avoided.

The developed adaptive binarization for transform coefficient levels with Rice codes was successfully proposed
[79] to be included in the HEVC standard. The VVC standard, which is the successor of HEVC, also specifies
an adaptive binarization with Rice codes for absolute transform coefficient levels. Consequently, the adaptive
binarization for transform coefficient levels plays an important role in practical applications, because it made

61



4.5. CHAPTER SUMMARY

the CABAC entropy coding scheme more implementation friendly in both the HEVC and the VVC standard.
Further refinements were included during the development of HEVC, which further eased the implementation
efforts, but the basic design presented in this chapter and first proposed by the author in [79] remained
untouched. In both video coding standards, Rice codes are embedded between the TRU code and the EG0
code as proposed in [79]. The backward-adaptive determination of the Rice parameter, the maximum Rice
parameter equal to three, and the transition to EG0 depending on the current Rice parameter can be found
in both video coding standards.

In contrast to its predecessor AVC, the HEVC standard specifies CABAC as the only entropy coding scheme,
which in turn requires an essential reduction of the number of context-coded bins to make HEVC feasible
for hardware implementations. That reduction was mainly achieved by adopting the adaptive binarization
of transform coefficient levels with Rice codes, as proposed in [79]. Further modifications were applied to the
parameters of the design, such as the values of the thresholds z1, z2 and z3, and the transition cut-off t1. A
more detailed description of the design specified in the first version of the HEVC standard can be found in
[62].

The successor of the HEVC standard is VVC. It initially employed the same binarization for transform
coefficient levels as used in HEVC at the beginning of its development. Further adjustments to the Rice
parameter selection were applied to comply with the modified coding order and context modeling. Instead
of determining the Rice parameter based on the preceding scanning position only, VVC employs a local
template that evaluates the already reconstructed neighboring scanning positions [71]. That adjustment is
an integral part of the modified context modeling to achieve a more efficient coding efficiency, which is the
topic of chapter 5.

4.5 | Chapter Summary

This chapter described the problems that exist for the static binarization of transform coefficient levels in
AVC in hardware implementations, where the cps of transform coefficient levels dominate the overall cps.
An investigation presented in this chapter showed that the cut-off threshold t0 of the AVC binarization,
which defines the transition from context-coded bins to bypass-coded bins, could be lowered with a little
penalty on the coding efficiency. However, the reduction of t0 = 15 to t0 = 6 is not sufficient, because the
cps of transform coefficient levels still dominates the overall cps, and the usage of the same context model
for successive context-coded bins is still necessary. When using the zero-mean Laplacian distribution as a
probability model for transform coefficients and the quantization described in this chapter, the conditional
probability model for the remainders is geometric. With this knowledge, the remainders can be binarized
with Rice codes, a subset of Golomb codes, where further investigation results presented in this chapter
proved the feasibility of the approach. Particularly, a Rice code is determined backward-adaptively for each
scanning position by evaluating the remainder of the preceding scanning position. The final Rice parameter
update rule achieves virtually the same coding efficiency as provided by the static binarization scheme in
AVC with a maximum cps equal to 4.5 instead of 22.5. Finally, the Rice codes were nested between the TRU
code and the EG0 code to limit the bin string length without negatively impacting the coding efficiency.

62



4.5. CHAPTER SUMMARY

Algorithm 4.4 Pseudo-code of the final implementation for the adaptive binarization with nested Rice
codes, which is implemented on top of the level coding with 4×4 sub-blocks.
1: . . .
2: while ilast < 0 do
3: . . .
4: k [i0 +m+ 1]← 0
5: while m ≥ 0 do
6: k [i0 +m]← k [i0 +m+ 1]
7: if bsig [i0 +m] = 1 then
8: δx>1 (i0 +m)← 5n2 +min (c1 [i0 +m] , 4)
9: transmit b|x|>1 [i0 +m] using Cx>1 [δx>1 (i0 +m)]

10: if b|x|>1 [i0 +m] = 1 then
11: δx>2 (i0 +m)← 5n2 +min (c2 [i0 +m] , 4), j ← 1
12: transmit b|x|>2 [i0 +m] using Cx>2 [δx>2 (i0 +m)]
13: if b|x|>2 [i0 +m] = 1 then
14: z ← |x [i0 +m]| − 3
15: if k [i0 +m] = 0 then
16: zmax ← 9
17: else if k [i0 +m] = 1 then
18: zmax ← 23
19: else if k [i0 +m] = 2 then
20: zmax ← 47
21: else
22: zmax ← 95
23: end if
24: zR ← min (z, zmax)
25: transmit zR ≫ k [i0 +m] in bypass mode using TRU
26: with maxVal = zmax ≫ k [i0 +m]
27: transmit k [i0 +m] least significant bits of zR in bypass mode
28: if z ≥ zmax then
29: transmit z − zmax in bypass mode using EG0
30: end if
31: if zR > 10 then
32: k [i0 +m]← 3
33: else if zR > 4 then
34: k [i0 +m]← 2
35: else if zR > 0 then
36: k [i0 +m]← 1
37: else
38: k [i0 +m]← 0
39: end if
40: k [i0 +m]← max (k [i0 +m] , k [i0 +m+ 1])
41: end if
42: . . .
43: else if c1 (i0 +m) ̸= 0 then
44: . . .
45: end if
46: transmit bsign [i0 +m] in bypass mode
47: end if
48: . . .
49: end while
50: . . .
51: end while

The presented adaptive binarization with nested Rice codes, where the Rice parameter is derived backward-
adaptively for each scanning position, can be found in practical video coding standards. Both the HEVC
standard and its successor, the VVC standard, employ the adaptive binarization presented in this chapter
for transform coefficient levels.

63



CHAPTER 5

Template-Based Context Modeling

Contents
5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Extra Coding Tools Inherited from HEVC . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 Last Significant Scanning Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 Diagonal Scanning Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.3 Coded Sub-Block Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.4 Reference Implementation and Experimental Setup . . . . . . . . . . . . . . . . . . . 66

5.3 Template-Based Context Modeling for Significance . . . . . . . . . . . . . . . . . 67
5.3.1 Local Template Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.2 Impact of a Single Neighboring Frequency Location . . . . . . . . . . . . . . . . . . 68
5.3.3 Determination of the Local Template Geometry . . . . . . . . . . . . . . . . . . . . . 70
5.3.4 Trade-Off Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Single Coding Phase and Level Magnitudes . . . . . . . . . . . . . . . . . . . . . 72
5.4.1 Enabling Evaluation of Absolute Transform Coefficient Levels . . . . . . . . . . . . . 73
5.4.2 Non-Zero Locations with Absolute Level Magnitudes . . . . . . . . . . . . . . . . . . 73
5.4.3 Coding of Magnitudes with a Local Template . . . . . . . . . . . . . . . . . . . . . . 74
5.4.4 Position-Dependent Context Model Sets . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.5 Reported Implementation and Performance in VVC . . . . . . . . . . . . . . . . . . 79

5.5 Findings and Technical Achievements . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Variable transform block sizes initiated the development of the 4×4 sub-block processing presented in chap-
ter 3, and implementation feasibility of the Rice codes in chapter 4. Coding efficiency improvement is the
motivation for developing the level coding presented in this chapter, which utilizes an advanced mapping of
the already coded transform coefficient levels inside the transform block to context model offsets and the
Rice parameter.

The final version of the level coding developed in this chapter implements a single coding phase combined
with evaluating the already coded transform coefficient levels of neighboring frequency locations for context
modeling. This concept is referred to as template-based context modeling. Its development used the design
developed in chapter 3 and chapter 4 as the basis and started with a template-based context modeling for
the bsig flags. Instead of relying mainly on the frequency location of the current scanning position for the
context model offset, the bsig flags located at neighboring frequency locations are evaluated for context model
selection in the first development. In the second development, the two coding phases of the level coding are
combined into a single coding phase, i.e., the level magnitudes are coded completely for each frequency
location, instead of transmitting the level magnitudes within a sub-block partially in multiple iterations.
With that single coding phase, the template-based context modeling can be extended in a way that not only
bsig flags are utilized for the context modeling, but absolute transform coefficient levels, which yields further
improvement in coding efficiency.

From the viewpoint of the context modeling task (see section 2.2), modifying the context modeling of the
bsig flags by utilizing a template can be described as evaluating different input parameters of the conditional
function C (·). Employing a single coding phase and utilizing level magnitudes for context modeling represents
an extension of the set of input parameters of C (·).

The presented level coding using template-based context modeling and a single coding phase achieves a
substantial coding efficiency improvement. That, in turn, makes the design the anchor point for further
developments, which finally results in the level coding in the Versatile Video Coding (H.266/MPEG-I Part 3)
(VVC) standard [64, 49].

64



5.1. PROBLEM STATEMENT

× 
4 

sa
m

pl
es

4 samples

Figure 5.1
Example of the last significant scanning position signaling for a
4×4 transform block using the xlast = 2 coordinate, which is sig-
naled first, and the ylast = 1 coordinate. With both coordinates,
the last significant scanning position, marked by an ×, is uniquely
determined.

5.1 | Problem Statement

In High Efficiency Video Coding (H.265/MPEG-H Part 2) (HEVC), the level coding, based on the design
described in chapter 3 and chapter 4, provided a reasonable trade-off between coding efficiency and imple-
mentation feasibility at the given time. With the development of its successor, the VVC standard, more
complexity was accepted, provided the achieved coding efficiency improvement would be significant enough.
Evaluating partially reconstructed level information of already coded neighboring locations with a template
for each scanning position can improve the coding efficiency, because the corresponding conditional C (·)
may provide probability estimates that generate a shorter average codeword length (see section 2.2.8). The
challenge in this approach is to find a suitable mapping of the available data about the bsig flags or absolute
transform coefficient levels (when they can be utilized for context modeling by coding in a single coding
phase) located in the vicinity of the current scanning position to context model offsets.

5.2 | Extra Coding Tools Inherited from HEVC

From this chapter onwards, the software basis for coding experiments is the VVC reference software imple-
mentation version 17 (VTM-17). The initial VVC development started with the level coding of its predecessor,
the HEVC standard. The level coding in HEVC is based on 4×4 sub-block processing, but includes three
additional coding tools for implementation feasibility. A brief review of these coding tools is given in the
following subsections.

5.2.1 | Last Significant Scanning Position

In Advanced Video Coding (H.264/MPEG-4 Part 10) (AVC), a blast flag, which denotes whether the current
non-zero (or significant) scanning position is the last non-zero scanning position, is transmitted immediately
after the coding of bsig = 1, as described in section 3.2.1. Its signaling is, therefore, interleaved with the sig-
naling of the bsig flags, which allows an efficient representation of the zero-valued (or insignificant) area within
a transform block. This concept can become problematic for decoders implementing speculative processing,
where all possible context models that could be selected in the next few coding steps are precalculated. It is
more feasible for such implementations when only the context model selection of bsig has to be considered.

For this reason, the technique that replaced the interleaved approach in HEVC signals the last non-zero
scanning position as absolute offsets relative to the top-left corner of the transform block [29] when using
the forward scanning pattern. The last position is coded before transmitting any transform coefficient levels
of the transform block. Figure 5.1 illustrates an example for a 4×4 transform block. The x-coordinate is
signaled first and is followed by the y-coordinate. This concept achieves virtually the same coding efficiency
as the interleaving method. With the introduction of the modified last significant scanning position signaling,
the first coding phase, where the bsig flags are transmitted, is modified to employ the reverse scanning pattern,
the same as used in the second coding phase (see section 3.2.1). As for the design presented in the previous
chapter, transform coefficient levels are transmitted completely for each 4×4 sub-block before moving on to
the next sub-block in reverse scanning order.

65



5.2. EXTRA CODING TOOLS INHERITED FROM HEVC

16 samples 4 samples
4 sam

ples16
 s

am
pl

es

diagonal diagonal

Figure 5.2
Reverse diagonal scanning pattern when applied to the whole transform block, exemplarily for 4×4 on the right,
and larger block sizes with 4×4 sub-block processing on the left. The diagonal scanning patterns can be derived
from the zigzag scanning pattern by keeping the scanning direction for the diagonals within sub-blocks and of
sub-block diagonals constant.

5.2.2 | Diagonal Scanning Pattern

The previously used zigzag scanning pattern within the 4×4 sub-block processing alters the direction for
each diagonal within a sub-block, illustrated on the right in figure 3.5, and for each sub-block diagonal,
illustrated on the left in figure 3.5. In HEVC, the scan direction for diagonals within a sub-block and of
sub-block diagonals is always from bottom-left to top-right [80] (forward scanning pattern). This so-called
diagonal scanning pattern is illustrated in figure 5.2 for the 4×4 sub-block processing, which utilizes the
reverse variant only. Its advantage is a uniform memory access order, which limits the addressing overhead
for hardware implementations.

5.2.3 | Coded Sub-Block Flags

For large transform block sizes and low bit-rate operation points, there may be a vast amount of 4×4 sub-
blocks along the scanning path containing only zero-valued frequency locations. The coded sub-block flag
(bcsf ) was introduced to take advantage of such situations and is usually transmitted for each 4×4 sub-block
[30]. Its definition is comparable to the coded block flag for a transform block, but applied to 4×4 sub-
blocks. For bcsf = 0, the sub-block contains zero-valued transform coefficient levels only, while for bcsf = 1,
at least one frequency location within the sub-block consists of a non-zero transform coefficient level. In the
latter case, the value of the absolute level at the last coding position can be inferred to be non-zero when
all previous coding positions within the sub-block have a zero-valued transform coefficient level. There are
two cases where bcsf is not coded: for the 4×4 sub-block containing the DC frequency position and for the
4×4 sub-block containing the last significant scanning position. For the 4×4 sub-block containing the DC
frequency position, all frequency locations are coded as if the bcsf syntax element is nonexistent. When the
initially mentioned assumption does not hold, i.e., when each sub-block along the scanning path contains at
least one non-zero frequency location, the coding of bcsf is very efficient due to adaptive context models.

5.2.4 | Reference Implementation and Experimental Setup

The software basis for the investigations conducted in this and the following chapters is the VVC reference
implementation version 17.0 (VTM-17). For this chapter, the level coding implementation of VTM-17 is
replaced by the design implemented in IMP4-6∗, presented in chapter 4. Furthermore, the described extra
coding tools inherited from HEVC were integrated into that implementation, and the resulting implementa-
tion is referred to as IMP5-0. In the first coding phase of this implementation, the context modeling of bsig
relies on the frequency location and adaptive context model sets, introduced in section 3.3.3.

66



5.3. TEMPLATE-BASED CONTEXT MODELING FOR SIGNIFICANCE

For all conducted coding experiments, the coding performance was evaluated by measuring the Bjøntegaard
delta bit-rate (BD-rate) [66] for the luma component between two codec versions, where the encoder con-
figurations mainly follow the VVC common test conditions (CTC) [81]. In the coding experiments for the
analyses, all adaptive context models used for level coding were initialized as equi-probable (EP) to avoid any
interference from initial probabilities, and only the first second of each test sequence was coded. Further-
more, the coding tools sign data hiding (SDH), rate-distortion optimized quantization (RDOQ), transform
skip mode (TSM), and trellis-coded quantization (TCQ) were disabled. These coding tools interact with level
coding, i.e., a modification in level coding requires adjustments for each of these tools. Past experience has
shown that when an approach in level coding provides coding efficiency improvements without these tools,
the performance is maintained upon their reactivation with corresponding adjustments.

Disabling the adaptive context model sets for the context modeling of bsig in the first coding phase provides
virtually the same coding efficiency relative to IMP5-0. A reason for the ineffectiveness of the adaptive
context model sets when used in the first coding phase is the scanning of sub-blocks, which is reversed after
incorporating the extra coding tools inherited from HEVC. This inefficiency could presumably be resolved by
updating the parameters of the adaptive context model sets. Nevertheless, the pursued and desired design
in this chapter should not rely on 4×4 sub-blocks for context modeling anymore, and therefore, the adaptive
context model sets were disabled for the context modeling of bsig. This implementation is called IMP5-1 in
the following paragraphs and is used as the basis for the investigations described in the next section.

5.3 | Template-Based Context Modeling for Significance

The context modeling of the bsig flags implemented in the level coding presented in the previous chapters, to
which the implementations IMP5-0 and IMP5-1 correspond, depends mainly on the frequency location. This
concept implicitly assumes that the bin probabilities are determined by the frequencies, but are independent
of other transform coefficient levels within the same transform block. Nevertheless, one can observe from
actual bitstreams that transform blocks with low and high residual energy coexist within the same picture at
the same operating point. An approach that considers such dependencies could be based on analyzing already
transmitted data of neighboring frequency locations, which can detect, for example, whether a transform
block is one with low or high residual energy.

For each scanning position, a so-called local template specifies the already coded frequency locations whose
level data should be analyzed regarding their statistical properties. The result of the statistical analysis can
then be used to determine context model offsets and the Rice parameter. The shape of a local template
is 2-dimensional, which is suitable for the separable transforms used in video coding, because the resulting
transform coefficients are arranged in a 2-dimensional structure within the block. Moreover, one can also
observe from actual bitstreams that for the separable transforms used in HEVC and VVC, non-zero transform
coefficients are often concentrated in local clusters, which vary among the blocks and supposedly depend on
the prediction mode, block size, and the original input signal. An example for a local template within a
4×4 transform block is illustrated in figure 5.3, where the ×-marked location represents the current scanning
position. The white-shaded locations represent uncoded locations, and the numbered locations represent
already coded locations, whereas the orange-shaded locations illustrate an example of a local template
geometry.

Evaluating a local activity for the current position is a straightforward and long-established approach to
analyze the statistical properties of a location. For example, the lossless image coding standard JPEG-LS
[65] uses a local template to predict the current sample. In [37], which the author of this thesis co-authored,
the local template was investigated for the context modeling of the bsig flags in the context of HEVC. Note
that in [37], the scanning pattern is adaptive, and different context model sets are used for the top and the left
edges of the transform block. Both employed techniques indicate that certain statistical dependencies remain
after the transform, for example, in the form of a concentration of non-zero transform coefficient levels along
the edges of the transform block. Alternatively, such a concentration could be detected and exploited by
using alternative scanning patterns, such as in the horizontal or the vertical directions, which, in turn, lead
to less coded scanning positions with zero-valued transform coefficient levels [82]. Nevertheless, adaptive
scanning patterns cannot exploit statistical dependencies caused by the input signal itself. They require

67



5.3. TEMPLATE-BASED CONTEXT MODELING FOR SIGNIFICANCE

7

10 11

1

3 4

5

8 9

6

× 
2

4 
sa

m
pl

es

4 samples

Figure 5.3
Example of a local template geometry within a 4×4 transform
block, where each number represents an identification number for
already coded neighboring frequency locations. The ×-marked box
denotes the current scanning position, and the numbered boxes
represent already coded locations with their corresponding iden-
tification number. The orange-shaded boxes represent the local
template finally chosen based on coding experiments described in
this chapter.

some form of existing information that indicates the prevalence of dependencies, such as the direction of the
intra predictor. A template-based context modeling is much more flexible; additional zero-valued scanning
positions that have to be coded due to a fixed scanning pattern can be represented efficiently using the same
adaptive context model.

In the first part of this chapter, the properties of the local template are analyzed by investigating different
configurations for the context modeling of the bsig flags. For the first investigation, the anchor implementation
IMP5-2 is based on IMP5-1 with a further modification to the context modeling of bsig. More precisely, the
level coding of implementation IMP5-2 replaces the frequency-based context modeling for bsig of IMP5-1
with a single context model. Furthermore, a single context model set is used for all transform block sizes.
This implementation IMP5-2 provides a better understanding of the experimental results when analyzing
the impact of a single neighboring frequency location. Compared to the frequency-based variant, which is
IMP5-1, a bit-rate overhead of 0.86% in the All-Intra and 0.33% in the Random-Access configurations can
be observed for IMP5-2.

5.3.1 | Local Template Configuration

A local template is specified by its shape or geometry, and the challenge in this design is to find the best
function C (·), i.e., the mapping of already coded level data inside the local template to a context model offset
for the current scanning position. However, the direct determination of the mapping includes many degrees
of freedom and requires multidimensional optimization, which is impractical. Therefore, the optimization
is split into multiple steps to overcome this problem, where the first optimization step is to find a suitable
geometry for the local template. Two investigations were performed to determine the geometry of the local
template, and in both investigations, the local template was applied to the context modeling of bsig only.
The first investigation analyzes the impact of each neighboring frequency location individually. Based on the
experimental results of the first investigation, an appropriate geometry for the local template is established
in the second investigation.

5.3.2 | Impact of a Single Neighboring Frequency Location

The impact of a neighboring frequency location on the context modeling of bsig mainly depends on its
relative spatial distance to the current scanning position. Therefore, coding experiments evaluating a single
neighboring location with a fixed spatial offset to the current scanning position were conducted to assess the
impact of a single neighboring location. Let x and y denote the spatial coordinates of the current scanning
position, and let ∆x and ∆y denote fixed spatial offsets relative to x and y, respectively. Then, each conducted
coding experiment evaluates the bsig flag at a different location (x+∆x, y +∆y). The value of bsig at the
neighboring location (x+∆x, y +∆y) is 0 when the corresponding transform coefficient level is zero-valued,
and it is one when the partially reconstructed level is non-zero. For context modeling, the value of bsig at
the neighboring location is mapped directly to the context model offset, i.e., δsig = bsig (x+∆x, y +∆y).

It might happen that the bsig (x+∆x, y +∆y) flag of the considered neighboring frequency location is un-
available, because it is located outside of the block or has not been coded yet. Therefore, two implementations
were tested, denoted as IMP5-3 and IMP5-4, where an unavailable value for bsig (x+∆x, y +∆y) is treated

68



5.3. TEMPLATE-BASED CONTEXT MODELING FOR SIGNIFICANCE

1 2 3 4 5 6 7 8 9 10 11

Identification Number of Neighboring Frequency Position

−0.6
−0.5
−0.4
−0.3
−0.2
−0.1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

B
D

-r
at

e

0
10
20
30
40
50
60
70
80
90
100

R
el

at
iv

e
Fr

eq
ue

nc
y

IMP5-3: All-Intra
IMP5-3: Random-Access
IMP5-4: All-Intra

IMP5-4: Random-Access
Availability

Figure 5.4
Coding efficiency of the investigations on evaluating one fixed neighboring location for the context modeling of
bsig (IMP5-3 and IMP5-4). The x-axis denotes the identification number of the neighboring frequency location
used in each experiment (compare figure 5.3). An unavailable neighboring location is interpreted as zero-valued
in IMP5-3, whereas a dedicated context model is used for it in IMP5-4.
Anchor for BD-rate computations: IMP5-2

differently in these two implementations. In the implementation IMP5-3, an unavailable location is con-
sidered zero-valued (δsig = 0), resulting in δsig ∈ {0, 1} and two context models. For the implementation
IMP5-4, an additional context model (δsig = 2) is used for an unavailable location, resulting in δsig ∈ {0, 1, 2}
and three context models. Note that for the two neighboring frequency locations above the current scanning
position (one and two in figure 5.3) and the location in the left column (8 in figure 5.3), an additional check
on whether the location was coded before is necessary, because they may be unavailable due to sub-block
processing.

Experimental Results

Figure 5.4 summarizes the obtained BD-rates for both tested implementations, where the x-axis denotes the
tested neighboring location according to the numbering in figure 5.3. For example, only the neighboring
frequency location number three outlined in figure 5.3 was considered in the coding experiment that yields
the BD-rates for the entry three of figure 5.4. Besides the BD-rates, figure 5.4 includes the relative frequency
for the availability of a neighboring frequency location, denoted by orange bars. The BD-rates for IMP5-3
and IMP5-4 are denoted in figure 5.4 by the corresponding colored bars.

If the neighboring locations are roughly sorted according to the provided BD-rates for IMP5-3, the order is
(3, 5, 6, 9, 4, 7, 10, 11, 1, 2, 8), where the last three frequency locations of the list yield a bit-rate overhead. A
probable reason for the bit-rate overhead is that when the availability is low, the effectiveness of a location
may be biased compared to the case where the location would always be available. However, at least for
those three mentioned locations, there is no such relationship, because their availability is between 33% and
58%, whereas location 11, with an availability of 19%, provides coding efficiency improvement. Nevertheless,
the assumption that unavailable locations result in biased statistics is supported by the BD-rates obtained
for IMP5-4, where a dedicated context model is employed for unavailable locations. The coding efficiency of
IMP5-4 is superior to that of IMP5-3 for all neighboring locations providing coding efficiency improvement
in IMP5-3.

69



5.3. TEMPLATE-BASED CONTEXT MODELING FOR SIGNIFICANCE

5.3.3 | Determination of the Local Template Geometry

In this second analysis, the local template size is incrementally increased by one neighboring location to deter-
mine its geometry. Two implementations, denoted as IMP5-5 and IMP5-6, were tested for this investigation,
and the test procedure was the same for both implementations. In the first experiment of each implementa-
tion, the coding efficiency for the local template consisting of the two neighboring locations {3, 5}, which are
the two neighboring locations providing the best coding performance in the previous analysis (section 5.3.2),
is evaluated. For each further experiment of each configuration, the template incorporates one additional
neighboring location, where neighboring locations were included according to the list (6, 9, 4, 7, 10, 11, 1, 2, 8).
Note that this order is chosen according to the obtained coding efficiencies of IMP5-3.

An unavailable neighboring location is considered zero-valued in IMP5-5 of this investigation, and the context
model offset is set equal to the number of non-zero neighboring locations within the local template. Let T
be the template size or the number of frequency locations covered by the template, and let bsig (i) be a bsig
flag of a neighboring location inside the template, with i ∈ [0, T ). Then, the context index offset of bsig at
the current scanning position is derived by:

δsig =
T−1∑
i=0

bsig (i) . (5.1)

In IMP5-5, the number of context models is T + 1. Furthermore, this implementation implicitly uses a
context quantizer that removes the spatial relationship between the individual neighboring locations inside
the template and the current scanning position. The effect of a context quantizer is analyzed with IMP5-6,
where a dedicated context model is used for each distinctive combination of the bsig flags inside the template.
For the same interpretation of an unavailable location as in IMP5-4, the number of possible distinctive
combinations is equal to 2T , and the context index offset is derived by:

δsig =
T−1∑
i=0

bsig (i) · 2i. (5.2)

When considering the non-availability of a neighboring location as a third possible value for bsig, the number
of possible combinations is 3T . This implementation was not tested extensively, because preliminary results
indicated that the coding performance is worse than IMP5-6, probably due to context dilution.

Experimental Results

The experimental results for IMP5-5 and IMP5-6 are summarized in figure 5.5, both relative to IMP5-2.
Local template sizes up to eleven neighboring locations were tested for both implementations. As indicated
in figure 5.5 for IMP5-5, an increased template size improves the coding efficiency, except for the last three
experiments, where the neighboring locations that provided coding efficiency losses in IMP5-3 of the preceding
investigation are included into the template geometry. This observation indicates that only neighboring
frequency locations with a positive impact on the coding efficiency (when considered individually) contribute
positively to the local template. When increasing the template size from one to two, the bit-rate saving is
greater than the sum of the two bit-rate savings of IMP5-3, where a single neighboring location was considered
in each experiment only. The sum of BD-rates obtained from IMP5-3 is illustrated in figure 5.5 by orange
and yellow bars. A further conclusion from the observation is that the first investigation is suitable for
determining the template size but does not directly relate to the final performance. In IMP5-6, a dedicated
context model is used for each distinctive combination of the local template, where unavailable neighboring
locations are considered zero-valued. The obtained bit-rate savings are slightly smaller than for the same
template geometry in IMP5-5, indicating that the employed context quantizer is feasible. Furthermore, the
number of context models of IMP5-6, which is 2T , becomes significantly greater than that of IMP5-5, which
is T + 1, when T > 2.

With the obtained BD-rates, the recommended local template size is equal to 5, because the coding efficiency
improvement is relatively small when further increasing the template size. IMP5-5 with the recommended

70



5.3. TEMPLATE-BASED CONTEXT MODELING FOR SIGNIFICANCE

{3, 5} +6 +9 +4 +7 +10 +11 +1 +2 +8
Template Geometry Configuration

−1.4
−1.3
−1.2
−1.1
−1.0
−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1
0.0

B
D

-r
at

e
IMP5-5: All-Intra
IMP5-5: Random-Access
IMP5-6: All-Intra

IMP5-6: Random-Access∑
BD-rate IMP5-3 (AI)∑
BD-rate IMP5-3 (RA)

Figure 5.5
Coding efficiency of the investigations on increasing template size incrementally for the context modeling of bsig
(IMP5-5 and IMP5-6). In this plot, the x-axis denotes the neighboring frequency locations considered by the
template, e.g., the first tick mark represents the first experiment, where the local template consists of the locations
{3, 5}. The second tick mark denotes the second experiment, where the local template consists of the locations
{3, 5, 6}, and each further tick mark denotes the neighboring location further included by the local template.
Anchor for BD-rate computations: IMP5-2

template size configuration is referred to as IMP5-5∗ in the following text. Compared to the level coding
developed in the previous chapter and implemented in VTM-17.0 with the extra coding tools inherited from
HEVC, which is the implementation IMP5-0 described in section 5.2, the coding efficiency is improved by
-0.30% and -0.53% in the All-Intra and Random-Access configurations, respectively, for IMP5-5∗.

Consideration of Unavailable Locations

Previous coding experiments demonstrated that the coding efficiency could be further improved when con-
sidering unavailable neighboring locations separately by using different context models. Such consideration
can become complicated for larger templates due to the number of additional context models and context
dilution. An alternative implementation IMP5-7 was tested to analyze the aspect of unavailable neighboring
locations. This implementation IMP5-7 only requires twice the amount of context models of IMP5-5 and is
straightforward to implement. The context model offset is derived as in IMP5-5, denoted by equation (5.1).
However, in the case that at least one neighboring location inside the template is unavailable, a second con-
text model set is used. Consequently, the number of context models required in IMP5-7 is doubled compared
to IMP5-5, i.e., it is 2T + 2 instead of T + 1.

The coding efficiency for IMP5-7 is summarized in figure 5.6 for template sizes up to eleven neighboring
locations relative to IMP5-2; the BD-rate were calculated using the same anchor as for IMP5-3 to IMP5-6.
Compared to IMP5-5, which is included in figure 5.6 for reference, the implemented consideration of un-
available locations provides at least -0.1% coding efficiency improvements for the recommended template size
equal to 5. For other template sizes, the coding efficiency improvement is up to -0.3%, e.g., for a template
size equal to 11. Nevertheless, the case where unavailable frequency locations are treated separately will not
be pursued further in this chapter and is a topic for future research.

5.3.4 | Trade-Off Analysis

In the previous design, which is represented by the implementation IMP5-0, the context model offsets of bsig
can be determined simultaneously for all frequency locations inside a 4×4 sub-block. The local template
seems more complex than the variant implemented in IMP5-0, because the context model offset can only be

71



5.4. SINGLE CODING PHASE AND LEVEL MAGNITUDES

{3, 5} +6 +9 +4 +7 +10 +11 +1 +2 +8
Template Geometry Configuration

−1.3
−1.2
−1.1
−1.0
−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1
0.0

B
D

-r
at

e
IMP5-5: All-Intra
IMP5-5: Random-Access

IMP5-7: All-Intra
IMP5-7: Random-Access

Figure 5.6
Coding efficiency of the investigation on increasing template size incrementally for the context modeling of bsig
(IMP5-7). In IMP5-7, the occurrence of an unavailable location within the template results in the usage of a
different context model set. The performance of IMP5-5 is included for comparison purposes.
Anchor for BD-rate computations: IMP5-2

determined for a location when all preceding frequency locations are reconstructed. Nonetheless, additional
complexity is mainly introduced by the local template with additional memory accesses, i.e., more recon-
structed information is necessary. These additional memory accesses can be limited in practical applications.
For example, the processing performance can be significantly improved by employing caching mechanism in
hardware and stack or local memory in both hardware and software implementations. Especially interesting
for hardware implementations is the significantly reduced number of context models, where for the final and
recommended local template configuration, only six context models are necessary for luma, whereas the pre-
vious design requires 32 context models. In IMP5-0, 4×4 transform blocks require a dedicated context model
set, whereas the same context models can be used for all transform block sizes in the template-based variant.
The conjecture assumed here is that a different context model set for 4×4 transform blocks should no longer
be necessary, because the local template can detect low and high residual energy transform blocks. This
aspect will be investigated in the context of additional context model sets in the second part of this chapter,
which focuses on the evaluation of absolute transform coefficient levels. In summary, the obtained results
prove the feasibility of a template-based context modeling, and indicate that improved coding efficiency can
be achieved with fewer context models.

5.4 | Single Coding Phase and Level Magnitudes

Employing the local template in a meaningful configuration for context modeling of the bsig flags provides
improved coding efficiency, as demonstrated in the preceding section. This concept can be extended to the
second coding phase, described in section 3.2.1, where the remaining level magnitudes are transmitted. It
is even reasonable to investigate different template geometries for the context modeling of the b|x|>1 and
the b|x|>2 flags, and for determining the Rice parameter. However, such an approach appears unattractive,
because templates with different geometries have to be evaluated multiple times with different level data,
which makes the concept impractical. An alternative strategy to incorporate the local template for the
coding of remaining level magnitudes is to combine the two coding phases into a single coding phase and
analyze the level data inside the template only once.

72



5.4. SINGLE CODING PHASE AND LEVEL MAGNITUDES

5.4.1 | Enabling Evaluation of Absolute Transform Coefficient Levels

The level magnitudes were transmitted in two coding phases in all previously considered level coding designs.
Combining the two coding phases into a single phase without further modifications to the context modeling
became possible after introducing the reverse scanning pattern for the first coding phase. This combination
does not alter the coding performance, because the different context modeling techniques rely on the same
syntax element type. At the same time, a single coding phase enables the availability of level magnitudes for
already transmitted frequency locations, which can be exploited for context modeling. It is reasonable to ex-
pect that, for example, the probability for a non-zero location is greater when the reconstructed neighborhood
consists of transform coefficient levels with large magnitudes. However, a disadvantage of a single coding
phase is that speculative processing for context modeling becomes challenging, because context models for
the same type of flags are not determined successively. That can be faced by providing improved coding
efficiency, or by a design where all context model offsets and the Rice parameter are derived by evaluating
the local template only once. In the first part of this section, the context modeling of bsig is analyzed when
evaluating absolute transform coefficient levels located in the vicinity using a local template.

5.4.2 | Non-Zero Locations with Absolute Level Magnitudes

For this first investigation, the starting point is IMP5-5∗, but employing a single coding phase instead of two
coding phases. This implementation served as the anchor for BD-rate computations and is referred to as
IMP5-8. After merging the two coding phases of IMP5-5∗ into a single coding phase, limited experiments were
conducted to investigate the influence of the sign information. The experimental results of this investigation
indicated that no statistical dependencies exist between the level of the current scanning position and the
signs of neighboring locations. Therefore, the following investigations only consider absolute transform
coefficient levels, denoted by x.

Motivated by the simplicity and the coding performance of the context modeling for the bsig flags in IMP5-5∗,
this investigation reuses the context quantizer approach. But in the single coding phase implementation,
bsig (i) of equation (5.1) implemented in IMP5-8 is replaced by x (i). The absolute sum of the level magnitudes
inside the local template is assigned to δsig, and unavailable frequency locations are considered zero-valued.
Unlike the sum in equation (5.1), the sum with absolute level magnitudes can significantly exceed the number
of neighboring frequency locations. This fact may not only face a challenge to the number of necessary context
models but may also lead to suboptimal coding performance due to context dilution. Therefore, the context
quantizer has to be extended to limit the number of context models, and the selected approach is to clip the
sum when it exceeds a threshold Msig. Let T be the size of the template, and let x (i) be an absolute level
flag of a neighboring location inside the template, with i ∈ [0, T ). Then, the context index offset for a bsig
flag is derived by:

δsig = min

(
Msig,

T−1∑
i=0

x (i)

)
. (5.3)

In contrast to the context modeling denoted by equation (5.1), the number of context models is Msig + 1
instead of T + 1 in this implementation. The implementation used for this investigation is referred to as
IMP5-9 in the following paragraphs.

Experimental Results

In the coding experiments for this investigation, clipping values Msig ∈ [1, 11] were tested. The corresponding
BD-rates are summarized in figure 5.7, where the anchor for all BD-rate calculations is IMP5-8. The first
finding based on the results illustrated in figure 5.7 is that evaluating absolute level magnitudes inside the
template improves coding efficiency compared to the variant where only bsig is considered. A second finding
is that the coding efficiency is already improved with a clipping value Msig = 2, which means that only three
context models can provide a higher coding efficiency than IMP5-8 with six context models. For Msig = 5
that requires six context models in total, which is equivalent to the number of context models of IMP5-8, the
tested implementation IMP5-9 yields BD-rates of -0.14% and -0.12% in the All-Intra and Random-Access
configurations, respectively. Further investigations regarding the impact of specific or unavailable neighboring

73



5.4. SINGLE CODING PHASE AND LEVEL MAGNITUDES

1 2 3 4 5 6 7 8 9 10 11

Clipping Threshold Msig

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

B
D

-r
at

e
All-Intra
Random-Access

Figure 5.7
Coding efficiency of the investigation on clipping the sum of absolute levels located at the neighboring frequency
locations inside the local template (IMP5-9). The sum of the neighboring absolute levels is clipped to Msig and
mapped directly to the context model offset of bsig.
Anchor for BD-rate computations: IMP5-8

locations are conceivable. Nevertheless, these considerations are not further pursued in this thesis and are
topics for future research, as mentioned during the presentation of the investigations for the local template
geometry. IMP5-9 with Msig = 5 was chosen as the basis for further investigations and it is referred to as
IMP5-9∗.

5.4.3 | Coding of Magnitudes with a Local Template

The second coding phase of IMP5-9∗ implements tracking variables for context modeling of the b|x|>1 and
b|x|>2 flags, which are reinitialized at the beginning of each sub-block, and utilizes adaptive context model
sets, both described in section 3.3. Furthermore, x−3 is binarized using a combination of Rice and 0th-order
exponential-golomb (EG0) codes, as described in section 4.3. These approaches derive the probabilities for
the coding of b|x|>1, b|x|>2, and the Rice parameter for x−3 by evaluating the same kind of data transmitted
for preceding scanning positions within the transform block. Investigations on a suitable template-based
replacement for coding the remaining level magnitudes are pursued in the following paragraphs. The opti-
mization is broken down into two investigations. In the first investigation, a suitable context modeling for
both the b|x|>1 and b|x|>2 flags is studied, and the following second investigation pursues a reasonable Rice
parameter derivation.

Context Modeling of b|x|>1 and b|x|>2 with the Local Template

For both flags, the context modeling of IMP5-9∗ relies on the number of already coded b|x|>1 flags within
the same sub-block, denoted by equation (3.1) for b|x|>1 and equation (3.2) for b|x|>2. It can, therefore, be
presumed that there are high statistical dependencies between the transmitted b|x|>1 flags and the probability
of b|x|>1 and b|x|>2 for the current scanning position. A translation of this concept to the local template-based
context modeling is analyzing either the b|x|>1 flags or x− 1 of the frequency locations inside the template.
Although it would be possible to consider the b|x|>2 flags or x − 2 for the context modeling of b|x|>2, this
implementation is not further investigated, because the existing context modeling of IMP5-9∗ indicates a
relationship to b|x|>1 rather than b|x|>2. Furthermore, it was revealed in the previous investigation that
analyzing the level magnitudes for the context modeling of bsig provides a higher coding performance than
analyzing the bsig flags. With this background, it is straightforward to consider the level magnitudes instead
of the b|x|>1 flags for context modeling. As for the previous investigation, the number of context models

74



5.4. SINGLE CODING PHASE AND LEVEL MAGNITUDES

becomes extensive when mapping the sum directly to a context index offset. Therefore, the implementation
IMP5-10 validates different clipping values MgtX , i.e., the sum is clipped when it exceeds a threshold MgtX .
Furthermore, the context model offsets for b|x|>1 and b|x|>2 are derived in the same manner for a scanning
position, but each flag uses its own context model set. Let δgtX = δx>1 = δx>2, then the context index offset
for the b|x|>1 and b|x|>2 flags of IMP5-10 is derived by:

δgtX = min

(
MgtX ,

T−1∑
i=0

max (x (i)− 1, 0)

)
. (5.4)

The context modeling of b|x|>1 and b|x|>2 in IMP5-10 is derived from the existing context modeling imple-
mented in IMP5-9∗, which implies that x (i) = 1 inside the template has no relationship to the probability.
This case is expressed in equation (5.4) by excluding neighboring frequency locations with x (i) ≤ 1 while
calculating the sum. It can be speculated that levels with x (i) = 1 affect the probability of b|x|>1 and b|x|>2

positively, i.e., the context modeling can attain a higher coding efficiency when considering x (i) = 1. For
example, let the neighboring frequency locations inside the template consist of x (i) = 1 only. It can be
presumed that the probability of b|x|>1 = 1 is higher than for the case where the neighboring frequency lo-
cations consist of zero-valued levels. For this hypothesis, absolute levels x are analyzed for context modeling
instead of x − 1, and this hypothesis is tested with the implementation IMP5-11, where the context index
offset for the b|x|>1 and b|x|>2 flags is derived by:

δgtX = min

(
MgtX ,

T−1∑
i=0

x (i)

)
. (5.5)

Clipping values MgtX ∈ [1, 11] were tested for both implementations, with a summary of the BD-rates
illustrated in figure 5.8. For both tested implementations, the anchor for BD-rate computations is IMP5-9∗.
Different than expected, IMP5-10 does not provide coding efficiency improvements relative to IMP5-9∗ for
all tested MgtX thresholds. For comparison, the context modeling of b|x|>1 and b|x|>2 in IMP5-9∗ converges
to a final setting after the coding of a b|x|>1 = 1 flag for the context modeling of b|x|>1, and after the coding
of five b|x|>1 = 1 flags for the context modeling of b|x|>2 (equation (3.1) and equation (3.2)). This results
in a setting where fixed context index offsets are used for the remaining scanning positions (δx>1 = 0 and
δx>2 = 4), which stabilizes the context modeling. In contrast to IMP5-10, the implementation IMP5-11
provides improved coding performance relative to IMP5-9∗. Given the experimental results for IMP5-11, it
can be assumed that analyzing x provides a more robust context modeling than considering x− 1, when the
explanation for the coding performance of IMP5-10 is correct. For clipping values MgtX > 5, further coding
efficiency improvements are insignificant, which results in the selection of MgtX = 5 as the recommendation.
This configuration in IMP5-11 is referred to as IMP5-11∗ in the following paragraphs.

Based on IMP5-11 with MgtX = 5, two further investigations were performed to resolve the following
questions: Is it feasible to use the same context model set for both b|x|>1 and b|x|>2, and is it feasible to
employ a dedicated context model for the last significant scanning position? The first question addresses
the number of context models, where the underlying expectation is that the same context model set can
be employed, because the b|x|>2 flags rarely occur. For the second question, it is assumed that the last
significant scanning position has a higher probability for b|x|>1 = 0 than other scanning positions, especially
for operation points with lower bit-rates. The implementation for the first question is referred to as IMP5-12,
and it provides -0.04% in the All-Intra and -0.02% in the Random-Access configurations, respectively, relative
to IMP5-11∗. Consequently, sharing the same context model set for b|x|>1 and b|x|>2 provides virtually the
same coding performance while saving context memory. The implementation for the second question is
based on IMP5-12 and is referred to as IMP5-13. This IMP5-13 provides the same coding performance
in the All-Intra and 0.03% in the Random-Access configurations, respectively, relative to IMP5-12. These
results indicate that a dedicated context model used for coding the b|x|>1 and b|x|>2 flags at the last significant
scanning position provides no additional coding efficiency improvement. Further investigations are based on
IMP5-12 that requires six context models in luma for coding the b|x|>1 and b|x|>2 flags, whereas the context
modeling in IMP5-9∗ and earlier requires more than 30 context models.

75



5.4. SINGLE CODING PHASE AND LEVEL MAGNITUDES

1 2 3 4 5 6 7 8 9 10 11

Clipping Threshold MgtX

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

B
D

-r
at

e
IMP5-10: All-Intra
IMP5-10: Random-Access
IMP5-11: All-Intra
IMP5-11: Random-Access

Figure 5.8
Coding efficiency of the investigations on clipping of the sum of absolute levels located at the neighboring frequency
locations inside the local template (IMP5-10 and IMP5-11). The sum of the neighboring absolute levels is clipped
to MgtX and mapped directly to the context model offset of b|x|>1 and b|x|>2.
Anchor for BD-rate computations: IMP5-9∗

Rice Parameter Selection with the Local Template

The preceding investigations of this section indicated that analyzing the absolute levels inside the template
provides higher coding efficiency than analyzing the same syntax element type, e.g., b|x|>1 (i) are considered
for context modeling of b|x|>1 only. Based on this finding, the investigation on selecting the Rice parameter
with a local template only analyzes absolute transform coefficient levels. Let the Rice parameter be k, and
let S be the sum of absolute transform coefficient levels for the neighboring frequency locations inside the
template. The investigated Rice parameter selection chooses a value for k by comparing S against the fixed
thresholds Mk=1

Rice, M
k=2
Rice, and Mk=3

Rice (with 0 ≤ Mk=1
Rice < Mk=2

Rice < Mk=3
Rice) for each scanning position. This

Rice parameter assessment can be summarized by:

k =


1, if S > Mk=1

Rice ∧ S ≤Mk=2
Rice,

2, if S > Mk=2
Rice ∧ S ≤Mk=3

Rice,

3, if S > Mk=3
Rice,

0, otherwise.

(5.6)

The implementations of this investigation are called IMP5-14, followed by IMP5-15 based on IMP5-14,
and finally IMP5-16 based on IMP5-15. In IMP5-14, different values for Mk=1

Rice are tested, while the other
thresholds are set to be Mk=2

Rice = Mk=3
Rice =∞, meaning that the Rice parameter is limited to k ∈ {0, 1}. After

obtaining the coding performances of IMP5-14, an appropriate value for Mk=1
Rice is chosen, on which IMP5-15

is based to verify different values for Mk=2
Rice. In the final IMP5-16, the value for Mk=3

Rice is determined after
choosing a suitable value for Mk=2

Rice, which also completes the investigation. For all implementations, the
anchor for the BD-rate computation is IMP5-12, i.e., the Rice parameter selection developed in chapter 4.
In contrast to the Rice parameter selection of IMP5-12, the Rice parameter k can be selected freely for each
scanning position in IMP5-14, IMP5-15, and IMP5-16. Furthermore, this template-based Rice parameter
selection does not implement a fixed setting, where the same Rice parameter is used for the remaining
scanning positions of a sub-block when a certain condition is met, such as in IMP5-12.

The obtained coding efficiencies for all three implementations are summarized in figure 5.9. The finally chosen
thresholds are Mk=1

Rice = 5, Mk=2
Rice = 9, and Mk=3

Rice = 18, and IMP5-16 with the corresponding thresholds is
referred to as IMP5-16∗ for further investigations. Note that the selected thresholds represent a compromise

76



5.4. SINGLE CODING PHASE AND LEVEL MAGNITUDES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Clipping Threshold Mk
Rice

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

B
D

-r
at

e
IMP5-14: All-Intra
IMP5-14: Random-Access
IMP5-15: All-Intra
IMP5-15: Random-Access
IMP5-16: All-Intra
IMP5-16: Random-Access

Figure 5.9
Coding efficiency of the investigations on updated thresholds for the Rice parameter selection with the local
template evaluation (IMP5-14 to IMP5-16). In IMP5-14, the sum of absolute levels for frequency locations
inside the template is compared against different Mk=1

Rice thresholds, while the other thresholds are set to be
Mk=2

Rice = Mk=3
Rice =∞. In IMP5-15, different Mk=2

Rice thresholds are evaluated, while the other thresholds are set to
be Mk=1

Rice = 5 and Mk=3
Rice =∞. In IMP5-16, different Mk=3

Rice thresholds are evaluated, while the other thresholds
are set to be Mk=1

Rice = 5 and Mk=2
Rice = 9.

Anchor for BD-rate computations: IMP5-12

between the coding performance in the All-Intra and the Random-Access configurations. Compared to the
variant developed in chapter 4 and implemented in IMP5-12, the Rice parameter selection with the local
template provides the same coding performance.

5.4.4 | Position-Dependent Context Model Sets

The underlying assumption for adaptive context model sets used in IMP5-0 is that absolute levels can be
clustered spatially within a transform block. The variance of the absolute levels may differ for each cluster,
which the context modeling can exploit to improve the coding efficiency. In IMP5-0, the implementation
exploits this assumption by analyzing the number of b|x|>1 = 1 flags within the preceding sub-block, and
this implementation serves two purposes. Firstly, a change in the variance of the absolute level distribution
is exploited by using different context model sets, i.e., whether the current sub-block distribution is one
with a low or high variance is estimated. Secondly, the context modeling is reinitialized, which enables the
adaptation to a possibly changed distribution for the absolute levels of the current sub-block. It is worth
mentioning that reinitialization is necessary, because both the context modeling (for the b|x|>0 and b|x|>1

flags) and the Rice parameter estimation include a state leading to fixed settings, i.e., the same context
models and Rice parameter are used for the remaining scanning positions. The second purpose can be
resolved using the local template due to its high flexibility and its current configuration without a state
using fixed settings. However, the first purpose is not adequately covered by the local template, because for
a sudden change in the variance, the context modeling has to code enough data so that the context models
can adapt to the updated statistics. This circumstance is investigated by introducing additional context
model sets, where the selection of a context model set should depend on a spatial property of the current
scanning position.

Context Model Sets for Context-Coded Flags

The chosen spatial property, on which the selected context model set should depend, is the diagonal D (x, y) =
x+y of the current scanning position (x, y), because of the 2-dimensional structure that appears for transform
coefficients due to the used transforms in VVC. This investigation is limited to two additional context model

77



5.4. SINGLE CODING PHASE AND LEVEL MAGNITUDES

1 2 3 4 5 6 7 8 9 10 11

Threshold Diagonal Dn
sig

−0.50
−0.45
−0.40
−0.35
−0.30
−0.25
−0.20
−0.15
−0.10
−0.05
0.00

0.05

0.10

B
D

-r
at

e
IMP5-17: All-Intra
IMP5-17: Random-Access
IMP5-18: All-Intra
IMP5-18: Random-Access

Figure 5.10
Coding efficiency of the investigations on the switch to a different context model sets for bsig depending on the
diagonal D (x, y) = x+ y (IMP5-17 and IMP5-18). In IMP5-17, a second context model set is selected for coding
the bsig flags when D (x, y) < D0

sig, while the second threshold is set to be D1
sig =∞. In IMP5-18, a third context

model set is selected when D (x, y) < D1
sig, while a second context model set is selected when D0

sig = 2.
Anchor for BD-rate computations: IMP5-16∗

sets for luma. IMP5-17 of this investigation, which is based on IMP5-16∗, different context model sets are
selected by comparing the diagonal D (x, y) against the thresholds D0

sig and D1
sig. Let δ∗sig denote the context

index offset calculated using equation (5.3) with Msig = 5, then the final context offset δsig is derived by:

δsig = δ∗sig +


6, if D (x, y) < D0

sig,

12, if D (x, y) < D1
sig ∧D (x, y) ≥ D0

sig,

0, otherwise.
(5.7)

This investigation involves the two implementations IMP5-17 and IMP5-18. In IMP5-17, different values
for D0

sig are tested while D1
sig = ∞, i.e., only one additional context model set is tested. After choosing

an appropriate value for D0
sig, IMP5-18 based on IMP5-17 evaluates different values for D1

sig. A summary
of the coding performances for both implementations is illustrated in figure 5.10, where the anchor used
to calculate the BD-rates is IMP5-16∗. For IMP5-17, the diagonal providing the best coding performance
for the All-Intra and Random-Access configurations differs, and the chosen compromise is D0

sig = 2. The
compromise for IMP5-18 is D1

sig = 6, which provides, in total, a significant coding efficiency improvement
relative to IMP5-16∗ that employs a single context model set. IMP5-18 with D0

sig = 2 and D1
sig = 6 is

referred to as IMP5-18∗ and serves as the basis for the last investigation in this chapter.

As in the preceding investigation on the context modeling of bsig with additional context model sets, a second
context model set for coding of the b|x|>1 and b|x|>2 flags is selected when D (x, y) < DgtX . This time,
however, only one configuration is tested, because the obtained improvement in coding efficiency is relatively
small compared to the previous investigation. IMP5-19 of this investigation is based on IMP5-18∗, which is
also used to calculate the BD-rates. Figure 5.11 summarizes the experimental results and demonstrates that
further coding efficiency improvement is also achievable by using an additional context model set for the
coding of b|x|>1 and b|x|>2. For the sake of convenience, IMP5-19 with DgtX = 2 is referred to as IMP5-19∗

in the remainder of this chapter.

Summary of the Investigations on Position-Dependent Context Model Sets

Both investigations on additional context model sets for the context-coded flags provide coding efficiency
improvements relative to a corresponding variant using a single context model set for each flag. It should

78



5.4. SINGLE CODING PHASE AND LEVEL MAGNITUDES

1 2 3 4 5 6 7 8 9 10

Threshold Diagonal DgtX

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05
B
D

-r
at

e

All-Intra
Random-Access

Figure 5.11
Coding efficiency of the investigation on the switch to a different context model sets for b|x|>1 and b|x|>2 depending
on the diagonal D (x, y) = x + y (IMP5-19). A second context model set is selected for coding the b|x|>1 and
b|x|>2 flags when D (x, y) < DgtX .
Anchor for BD-rate computations: IMP5-18∗

be noted that the investigations were conducted for luma only, and using additional context model sets for
chroma might provide further coding efficiency improvements. Moreover, different settings of the thresholds
in the All-Intra and the Random-Access configurations, respectively, could be investigated in future research.
It is even conceivable to apply the concept for the Rice parameter estimation, e.g., by using different values
for the thresholds Mk=1

Rice, M
k=2
Rice, and Mk=3

Rice for specific areas of the transform block.

Assessment of Dedicated Context Models for 4 × 4 Transfrom Blocks

While discussing the implementation IMP5-1 in section 5.3, where the impact of a neighboring frequency
location was investigated, it was suspected that a dedicated context model set for 4×4 transform blocks is
not required when using the local template for context modeling. Two coding experiments were conducted
to support this hypothesis. In both coding experiments, dedicated context model sets for bsig, b|x|>1, and
b|x|>2 are employed for transform blocks with a width or a height smaller than or equal to four. IMP5-20 of
the first experiment is based on IMP5-16∗, which represents the condition before introducing the position-
dependent context model sets. IMP5-21 of the second experiment is based on IMP5-19∗ and represents
the condition after introducing the position-dependent context model sets. The coding performance of both
implementations is virtually the same compared to the corresponding basis implementation, which indicates
that the hypothesis is accurate.

5.4.5 | Reported Implementation and Performance in VVC

A context modeling that evaluates the absolute levels inside the local template was presented to the Joint
Video Experts Team (JVET) during the development of VVC in [43]. The VTM software version employed for
the coding experiments in [43] is version 1.0 (VTM-1), which implements the level coding of HEVC. Table 5.1
summarizes the BD-rates reported to the JVET for the template-based level coding that analyzes absolute
transform coefficient levels inside the template in [43], relative to the implementation in VTM-1, and with
RDOQ enabled. A comparable investigation using the implementations presented in this chapter is between
the configuration IMP5-19∗ and IMP5-0, but without RDOQ. In the All-Intra configuration, a BD-rate of
-1.55% was measured, and -1.20% was measured for the Random-Access configuration, respectively. Both
BD-rates are close to the corresponding numbers reported in [43]. A direct comparison between the level
coding implemented in VTM-17 and IMP5-19∗ with the encoders configured according to the description in

79



5.5. FINDINGS AND TECHNICAL ACHIEVEMENTS

Class Luma CB CR

All-Intra
A1 -1.32% -1.19% -1.68%
A2 -1.67% -0.63% -2.22%
B -1.60% -1.86% -1.33%
C -1.93% -1.77% -1.84%
E -2.25% -2.71% -2.46%

Overall -1.75% -1.67% -1.84%
D -1.98% -1.47% -1.36%

Random-Access
A1 -1.06% -0.78% -0.91%
A2 -0.99% -0.15% -1.51%
B -1.11% -1.57% -0.79%
C -1.42% -1.29% -1.10%

Overall -1.16% -1.05% -1.04%
D -1.39% -0.77% -0.66%

Table 5.1
Coding efficiency of a template-based context modeling proposed in [43] that evaluates absolute transform coef-
ficient levels in VTM-1. The anchor for BD-rate computations is the level coding in VTM-1, which corresponds
to that specified for HEVC.
Anchor for BD-rate computations: VTM-1

section 5.2.4, i.e., with EP initialized context models and without RDOQ, IMP5-19∗ achieves BD-rates of
-0.18% in the All-Intra configuration and 0.19% in the Random-Access configuration.

It should be noted that the parameters for binarization and context modeling of IMP5-19∗ and [43] are
different. The discrepancies are supposedly due to coding tools not present in VTM-1 but included in VTM-
17, such as multiple transform set or matrix-based intra prediction, and their presence leads to changes in
the statistics for the transform coefficient levels. The main differences are:

• Coding of additional context-coded flags b|x|>3 and b|x|>4 in [43], while the presented implementations
do not include these two context-coded flags.

• Different context model sets are used for b|x|>1, b|x|>2, b|x|>3, and b|x|>4 in [43], while the presented
implementations employ the same context model sets for b|x|>1 and b|x|>2.

• Context modeling of the b|x|>1, b|x|>2, b|x|>3, and b|x|>4 flags in [43] uses x (i)− 1 instead of x (i) as in
IMP5-19∗.

• Rice parameter estimation in [43] relies on x (i)− 1 instead of x (i) as in IMP5-11∗.

• Clipping thresholds have different values, and the implementation of [43] utilizes more position-dependent
context model sets in luma and chroma for all context-coded flags.

5.5 | Findings and Technical Achievements

The findings and achievements of the presented context modeling based on the analysis of the absolute
transform coefficient levels inside a local template can be summarized as follows:

• A significant coding efficiency improvement (in the context of level coding) is achieved with the
template-based context modeling and Rice parameter selection.

• The introduced configuration of the template-based context modeling has a limited complexity impact
on practical implementations since the absolute levels inside a template are analyzed only once.

• An improved coding efficiency relative to the initial implementation IMP5-0 is achieved with fewer
context models. In the initial variant IMP5-0, the context modeling corresponds to the implementation
presented in chapter 3 and the binarization corresponds to the implementation presented in chapter 4.

80



5.6. CHAPTER SUMMARY

• Further coding efficiency improvements can be achieved by additional context model sets for the
context-coded bins. The chosen context model set depends on the diagonal of the scanning position.

The performed investigations revealed statistical dependencies that were not further pursued in this thesis,
but preliminary analyses indicate that they can be exploited to achieve higher coding efficiency. These
findings can be analyzed in-depth when developing a level coding for a video coding technology beyond
VVC. They can be summarized as follows:

• The impact of a neighboring frequency location is depending on the spatial distance, as indicated by
the analysis of the impact of a single neighboring frequency location. This variation may depend on
the coding tools used for prediction and transform, the input signal itself, and could be exploited by
utilizing a weighted sum. An extensive analysis in conjunction with the configuration of the context
quantizer is necessary to find a weighting configuration that could provide further coding efficiency
improvement.

• Treating the unavailable neighboring frequency locations as zero-valued can be interpreted as biasing
the statistic. Considering the unavailable locations in the context modeling can improve the coding
efficiency, as indicated by the experimental results in this chapter.

• The position-dependent context model sets for the context-coded flags, which depend on the diagonal
within the transform block of the current scanning position, turned out to be efficient in this chapter.
Investigations for an adaptive variant, where alternative context model sets are selected depending on
the absolute levels located at the preceding diagonal, may provide further coding efficiency. Further-
more, this concept can be extended to the Rice parameter selection. For example, different thresholds
are employed for different areas within a transform block, and the maximum Rice parameter may differ
depending on the area.

A template-based context modeling for coding the significance flags of transform blocks larger than 8×8
samples was used for the level coding in the Fraunhofer HHI response [39] to the Call for Proposals [40]
that initiated the development of HEVC. The coding efficiency for that template-based context modeling
was further analyzed in [68]. It was included in the first Test Models, from the initial Test Model under
Consideration (TMuC) [41] to HM version 6, inclusively, but was later replaced by a simplified variant that
evaluates the number of absolute levels greater than one located in the neighboring sub-blocks right and below
the current sub-block [69]. Note that the context modeling of the significance flags in [69] can be regarded as
a variation of the concept developed in chapter 3. A template-based context modeling that utilizes absolute
levels was later proposed to be included in the HEVC standard in [42]. Even though the proposal successfully
demonstrated that coding efficiency improvements could be achieved by exploiting statistical dependencies
between transform coefficient levels, the technology was not adopted into the HEVC standard because of
complexity concerns. During the exploration phase for video coding technologies beyond HEVC, a software
package, referred to as Joint Exploration Model (JEM), served as the basis for coding tool experiments. The
level coding in JEM was derived from the level coding proposed in [42] with some refinements. An improved
template-based level coding utilizing absolute levels was employed in the Fraunhofer HHI response [83] to
the Call for Proposals [84] that initiated the development of VVC. The level coding in VVC [56] employs a
template-based level coding that is based on the basic concept presented in this chapter. Modifications to
the level coding described in [83] that led to the level coding design in VVC are presented in the following
chapter.

5.6 | Chapter Summary

This chapter presented an approach for level coding that provides improved coding efficiency relative to the
initial design developed in the chapter 3 and chapter 4. In the first step, an improved coding efficiency is
achieved by a template-based context modeling that analyzes the already coded bsig flags inside the local
template. In the next step, the coding order within a sub-block is modified, resulting in a single coding phase,
where the level magnitudes are transmitted completely for each scanning position instead of in multiple
iterations for each sub-block. This modification, in turn, enables the analysis of the absolute transform

81



5.6. CHAPTER SUMMARY

coefficient levels inside the local template, which further improves the coding efficiency when applying it to
the context modeling of the context-coded flags and the Rice parameter selection. In the final step, additional
context model sets are introduced for the context-coded flags, where the selection of a context model set
depends on the diagonal of the current scanning position. The concepts used for the level coding presented
in this chapter served as the basis for an implementation proposed initially for the VVC [64] development
[43]. Although the final level coding of VVC differs from the level coding regarding some details presented
in this chapter, the basic concepts presented in this chapter can be found in the level coding of VVC.

82



CHAPTER 6

Level Coding Suitable for Trellis-Coded Quantization

Contents
6.1 Scalar Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.1 Reconstruction of Transform Coefficients . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.2 Simple Quantization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.3 Rate-Distortion Optimized Quantization . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Trellis-Coded Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.1 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.2 TCQ Implementation in VVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.3 Coding Performance of TCQ in VVC . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Extended Context Modeling for TCQ . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Separation of Context- and Bypass-Coded Bins . . . . . . . . . . . . . . . . . . . 89

6.4.1 Solution and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4.2 Level Coding with Parity Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4.3 Rice Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4.4 Reported Coding Performance in VVC . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Reduction of Context-Coded Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.5.1 Adaptive Binarization Bound in HEVC . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.5.2 Adaptation of the Concept to VVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6 Using Intermediate Levels for Context Modeling in TCQ . . . . . . . . . . . . . 101
6.6.1 Impact of Intermediate Levels on Context Modeling . . . . . . . . . . . . . . . . . . 102
6.6.2 Context Modeling Adjustments for Intermediate Levels . . . . . . . . . . . . . . . . 102
6.6.3 Refinements for Context Modeling of b|x|>1, b|x|>3, and bpar . . . . . . . . . . . . . . 103
6.6.4 Refinements for Context Modeling of bsig . . . . . . . . . . . . . . . . . . . . . . . . 104
6.6.5 Refinements to the Rice Parameter Derivation . . . . . . . . . . . . . . . . . . . . . 104
6.6.6 Conclusion on Intermediate Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.7 Findings and Technical Achievements . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Both the Advanced Video Coding (H.264/MPEG-4 Part 10) (AVC) and the High Efficiency Video Coding
(H.265/MPEG-H Part 2) (HEVC) standards specify uniform reconstruction quantization (URQ) for the
reconstruction of transform coefficients. In URQ, the reconstruction of a transform coefficient depends on
the associated quantization index (or transform coefficient level) and the quantization step size. A transform
coefficient can be reconstructed independently of other transform coefficients within the block, and the
reconstruction of transform coefficients is independent of the level coding.

The coding efficiency of scalar quantization, however, highly depends on how an encoder selects the quanti-
zation indices. A simple quantization algorithm would only minimize the distortion by selecting the closest
quantization level to the value obtained after dividing the transform coefficient by the quantization step size.
In order to achieve higher coding efficiency, it is beneficial to additionally consider the codeword lengths or
bit-rates yielded by entropy coding during quantization. More sophisticated scalar quantization algorithms
that consider both the distortion and the codeword lengths are referred to as rate-distortion optimized quan-
tization (RDOQ) [85, 86, 87]. The quantization levels providing the lowest Lagrangian cost D + λR for a
transform block are selected in RDOQ algorithms, with D being the distortion, R the bit-rate, and λ a fixed
Lagrangian multiplier, which depends on the selected quantization parameter (QP).

Compared to scalar quantization, significantly higher coding efficiency can be achieved with vector quan-
tization [88]. Unfortunately, due to its complexity, unconstrained vector quantization is impractical for
real-world applications.

This chapter is based on the concept of trellis-coded quantization (TCQ) [89], which provides a significant
coding efficiency improvement over scalar quantization with RDOQ. In contrast to other constrained vector
quantization algorithms, the existing level coding can be reused in TCQ due to its resemblance to URQs.

83



6.1. SCALAR QUANTIZATION

Even though TCQ could be implemented in combination with the level coding specified in HEVC, several
key elements of that design impede the full potential provided by TCQ. From the review of TCQ in this
chapter, it becomes clear why the level coding developed in chapter 5 is more suitable for TCQ.

In the first part of this chapter, a brief review of scalar quantization and RDOQ is presented. This review
is followed by a description of TCQ, its implementations for both encoders and decoders, and the variant
proposed and implemented in Versatile Video Coding (H.266/MPEG-I Part 3) (VVC). The works developed
in this thesis begin with section 6.3 and start with a modification of the context modeling for the bsig flags for
TCQ. In the following section 6.4, a modified level coding for the design presented in chapter 5 is developed,
which separates the coding of context-coded and bypass-coded bins to reduce implementation efforts. This
separation is achieved via different coding phases while the design preserves its compatibility with TCQ. In
a final investigation presented in section 6.5, the limitation on the number of context-coded bins is studied.
This investigation leads to a level coding with a reduced worst-case number of context-coded bins.

6.1 | Scalar Quantization

Two classes of quantization algorithms exist: Scalar quantization [90, 74] and vector quantization [88, 91].
Until the VVC standard, scalar quantization has been used in all practical hybrid video coding applications
by specifying URQ for the reconstruction of transform coefficients. Encoders can improve the coding perfor-
mance by implementing more enhanced scalar quantization algorithms, such as considering the bit-rates in
RDOQ algorithms.

From the decoder point-of-view, the reconstruction of transform coefficients within a transform block can
generally be denoted by a mapping:

Q′ : J→ RN , (6.1)

where J is an index set. For scalar quantization, J can be written as:

J = J1 × · · · × JN . (6.2)

The reconstruction of transform coefficients in scalar quantization is given by:

Q′ (x1, . . . , xN ) =
(
Q′

1 (x1) , . . . , Q
′
N (xN )

)
, (6.3)

where
Q′

k : Jk → R, k ∈ {1, . . . , N}. (6.4)

Equation (6.3) and equation (6.4) signify that the transform coefficient levels of a block can be reconstructed
independently of each other. All reconstruction rules that do not correspond to equation (6.3) and equa-
tion (6.4) are referred to as vector quantization. An independent reconstruction of transform coefficients
according to equation (6.3) is not possible for vector quantization.

6.1.1 | Reconstruction of Transform Coefficients

The only parameter necessary for reconstructing a transform coefficient c′ in URQ is the quantization step
size ∆. If x is a quantization index or transform coefficient level, then c′ is reconstructed as:

c′ = Q′ (x) = x ·∆. (6.5)

This reconstruction rule is specified in both the AVC and HEVC standards.

6.1.2 | Simple Quantization Algorithm

Let sgn (·) be the signum function. An example of a simple quantization for a transform coefficient c is given
by:

x = ⌊ |c|
∆

+ a⌋ · sgn (c) . (6.6)

In this example, a quantization level is selected by adding a rounding offset a ∈ [0, 0.5] to |c|/∆ and rounding
down the result to the next integer.

84



6.2. TRELLIS-CODED QUANTIZATION

0 Δ 2Δ 3Δ 4Δ 5Δ 6Δ 7Δ 8Δ -2Δ -Δ -4Δ -3Δ -6Δ -5Δ -8Δ -7Δ 

Q0

Q1

0

0 1

1

2

2

3

3

4

4

-1

-1

-2

-2

-3

-3

-4

-4

Figure 6.1
Quantizer configuration in TCQ with the two scalar quantizers Q0 and Q1. Both quantizers include the recon-
struction value equal to zero, and even multiples of the quantization step size ∆ are assigned to Q0, whereas odd
multiples of ∆ are assigned to Q1. The numbers above each dot denote the quantization indices associated with
the corresponding reconstruction values.

6.1.3 | Rate-Distortion Optimized Quantization

The idea of RDOQ is to select a set of quantization levels for a transform block that minimizes the Lagrangian
cost D + λR. An actual implementation highly depends on the used entropy coding. The following review
is based on the RDOQ algorithm implemented in the VTM reference encoder.

For each scanning position, the cost for two candidate quantization levels x− = sgn (c) · ⌊|c|/∆⌋ and x+ =
sgn (c) · ⌈|c|/∆⌉ should be different. The algorithm selects the candidate with the lower rate-distortion cost.
After determining the quantization levels for all scanning positions, further optimizations are performed,
such as testing different scanning positions as the last significant scanning position, evaluating the uncoded
case, where all quantization levels are zero-valued, and more. Because the codeword lengths for all candidate
quantization levels are necessary to calculate the Lagrangian cost, the level coding has to be emulated during
quantization.

6.2 | Trellis-Coded Quantization

The structural constraints of transform coding, i.e., an orthogonal transform followed by scalar quantization,
cannot achieve the fundamental rate-distortion bound. The cause behind this circumstance is that the set of
representable blocks containing N samples forms an orthogonal lattice in the N-dimensional space [91]. This
efficiency gap can only be reduced by incorporating a vector quantization algorithm, where unconstrained
approaches are too complex for practical implementations. To this end, TCQ represents a low-complex vector
quantization that can be embedded into the existing transform coding pipeline with limited modifications.

6.2.1 | Design Overview

Conceptually, TCQ consists of two scalar quantizers, denoted as Q0 and Q1 in the following description, and
a mechanism for switching between the two quantizers. In the TCQ implementation of VVC, both quantizers
include the reconstruction value equal to zero, and Q0 further includes even multiples of the quantization
step size ∆, whereas Q1 further includes odd multiples of ∆. This quantizer configuration is illustrated in
figure 6.1 with the associated reconstruction values for a given quantization step size ∆.

The switching between the two quantizers in TCQ is realized via a finite-state machine (FSM) that requires
a specification of the number of states and the state transitions. Half of the states defined by the FSM are
assigned to the quantizer Q0 and the other half to the quantizer Q1. The number of states is determined by
the parameter K ≥ 1, which results in 2K states. Given the number of states, a definition for the transitions
from one state to the other states is finally necessary to complete a TCQ design. On the right of figure 6.2,
an example of a four-state FSM is illustrated, where a node represents a state, and the arrows represent state
transitions. A further property of TCQ is that the coding efficiency increases with the number of states used
in an actual implementation.

85



6.2. TRELLIS-CODED QUANTIZATION

S (i) Q (i)
S (i − 1)

ui = 0 ui = 1
S0 Q0 S0 S2

S1 Q0 S2 S0

S2 Q1 S1 S3

S3 Q1 S3 S1

S0 S1

S2 S3

Figure 6.2
On the left: State-transition table summarizing the FSM used in the implemented four-state TCQ. On the right:
Graphical representation of the four-state FSM used in TCQ. For each transform block, the initial state is S0,
and the dotted lines represent the state transitions when the parity ui = 0, whereas solid lines denote the state
transitions for ui = 1. The assignment of a state to one of the two quantizers is given by the background shading
of the state nodes, where white-shaded states represent Q0 and gray-shaded states represent Q1.

6.2.2 | TCQ Implementation in VVC

The TCQ implementation in VVC utilizes four states, which represents a reasonable trade-off between coding
efficiency and complexity. The state for the first scanning position of the transform block is S (i) = S0. For
the remaining scanning positions, the state S (i) is determined by the state S (i+ 1) and the parity of the
quantization level x (i+ 1) for the preceding scanning position i + 1. This means that even quantization
levels, i.e., for the parity ui = x (i) mod 2 = 0, and odd quantization levels, i.e., for ui = x (i) mod 2 = 1,
result in different transitions. The state transitions for the four-state FSM are illustrated on the right of
figure 6.2 by solid and dotted arrows. The solid arrows denote transitions for ui = 1, and dotted arrows
denote transitions for ui = 0.

Although conceptually not necessary, the scanning pattern used for reconstructing the transform coefficients
is the same as in the level coding. This design choice enables the derivation of the quantization states already
during entropy coding. Furthermore, the bit-rate estimation necessary for the quantization at the encoder
side is more practicable when using the same scanning pattern for the reconstruction of transform coefficients
and the entropy coding.

Reconstruction of Transform Coefficients

To reconstruct a transform coefficient c′ (i) at the scanning position i, the quantization step size ∆, the
quantization level x (i), and the state S (i) are necessary. Instead of using a quantization level x as the input
for the reconstruction of c′, an intermediate quantization level x′ is derived first according to:

x′ =

(
2 · |x| − ⌊S (i)

2
⌋
)
· sgn (x) . (6.7)

The existing reconstruction process of c′ can be reused with x′ instead of x as the input, i.e., c′ = x′ · ∆.
When TCQ is disabled, S (i) = S0 for all scanning positions i of the transform block, resulting in the usage
of Q0 only. In this case, the reconstruction of c′ is analogous to the URQ case with the quantization step
size 2∆. In summary, a TCQ support on the decoder side requires the derivation of x′ and a state-dependent
context model selection, which will be discussed after reviewing the quantization with TCQ on the encoder
side.

Quantization of Transform Coefficients

The assignment of states to quantizers in VVC is summarized by the table on the left in figure 6.2. In
this table, it is denoted that Q0 is used when S (i) ∈ {S0, S1} and Q1 is used when S (i) ∈ {S2, S3}. This
assignment is coupled to the reconstruction of the transform coefficients denoted in equation (6.7).

86



6.2. TRELLIS-CODED QUANTIZATION

S0

S1

S2

S3

...

...

...

...

Figure 6.3
Example of a four-state trellis, where each transition (dotted for ui = 0 and solid for ui = 1) is associated with
a rate-distortion cost C = D + λR. An encoder implementing TCQ selects the path with the lowest total rate-
distortion cost, which is the sum of the costs for each edge along the path.

For the quantization process, the level coding has to be emulated to estimate the codeword lengths. Fur-
thermore, the correct quantization states are necessary for calculating the distortion. Therefore, using the
same scanning pattern for reconstructing transform coefficients and entropy coding is reasonable, because it
simplifies the whole design. All potential quantization options for a transform block can be represented as
paths through a trellis. Figure 6.3 exemplarily illustrates the trellis for the implemented four-state TCQ.
The state transitions from one scanning position to the next scanning position correspond to those specified
by the FSM and are associated with a rate-distortion cost. The set of quantization levels that provides the
lowest rate-distortion cost corresponds to a certain path through the trellis. This path can be found by
utilizing the Viterbi algorithm [92] when ignoring some minor dependencies in the entropy coding.

Context Modeling in TCQ

The distance between two quantization levels is always 2∆ for Q0. For Q1, it is 2∆ except for the quantization
interval around zero, where it is ∆, as illustrated in figure 6.1. This quantization configuration results in
a higher probability for non-zero transform coefficient levels when Q1 is used compared to the case that
Q0 is used. Therefore, it is reasonable to determine the context models for the bsig flags depending on the
quantizer used. Because the context modeling now depends on the used quantizer, which can be derived by
S (i), the state derivation has to be performed already during the level coding to select the correct context
models for bsig. From this relationship, it becomes clear that the single coding phase variant developed in
chapter 5 is suitable for TCQ, because the parity of the level at the preceding scanning position is available
before coding the bsig flag of the current scanning position. This parity information is not available in the
HEVC level coding that uses multiple coding phases to transmit the level magnitudes.

Let δ∗sig denote the context model index derived after analyzing the neighboring frequency locations inside
the template and the diagonal of the current scanning position. Furthermore, let |C∗

sig| be the number of
context models used for coding the bsig flags without TCQ. Then, the context model index for the bsig flags
is calculated by:

δsig = δ∗sig +

{
0, if S (i) ∈ {S0, S1},
|C∗

sig|, otherwise.
(6.8)

Statistical investigations indeed showed that the probability for a non-zero valued scanning position is signif-
icantly higher when the current state is S (i) ∈ {2, 3} compared to S (i) ∈ {0, 1}. Actual coding experiments
confirm that context modeling with different context model sets for the bsig flags, as denoted in equation (6.8),
provide higher coding efficiency. In VTM-17, the variant with two context model sets provides -1.36% in
All-Intra and -1.27% in Random-Access, compared to an implementation without state-dependent context
model sets. Further investigations analyzing the same approach for other context-coded flags indicated that
a slight improvement in coding efficiency is achieved for the b|x|>1 flags, while the coding efficiency remains
virtually the same for b|x|>2.

87



6.3. EXTENDED CONTEXT MODELING FOR TCQ

Class Luma CB CR

All-Intra
A1 -3.16% -2.48% -1.63%
A2 -3.88% -1.63% -0.91%
B -3.30% -0.05% 0.06%
C -3.16% 0.99% 0.89%
E -2.66% 0.92% 0.61%

Overall -3.31% -0.32% -0.11%
D -3.16% 1.46% 1.40%

Random-Access
A1 -2.25% -1.67% -0.56%
A2 -1.98% -1.09% -1.28%
B -2.62% -0.32% -0.27%
C -2.09% -0.58% -0.86%

Overall -2.27% -0.81% -0.69%
D -2.09% 0.67% -0.75%

Table 6.1
Coding efficiency of TCQ on top of the template-based context modeling proposed in [43] in VTM-1. The anchor
for BD-rates computations is the template-based level coding also proposed in [43] with RDOQ enabled.
Anchor for BD-rate computations: VTM-1

6.2.3 | Coding Performance of TCQ in VVC

The presented four-state TCQ was implemented on top of the template-based level coding and was presented
to the Joint Video Experts Team (JVET) during the development of VVC in the same input document [43].
Table 6.1 summarizes the Bjøntegaard delta bit-rates (BD-rates) reported to the JVET for the four-state
TCQ relative to the template-based level coding in [43], i.e., the improvement is on top of the level coding.
Note that in this comparison, the anchor implementation used for BD-rate computations has RDOQ enabled.

In a late development phase of VVC, an eight-state TCQ implementation was presented in [93], which yields
a coding efficiency improvement of -0.42% in the All-Intra and -0.34% in the Random-Access configurations
relative to the four-state TCQ implementation.

6.3 | Extended Context Modeling for TCQ

Given the improved coding efficiency provided by the state-dependent context model sets, the question arises
whether additional context model sets can achieve further improvements. In-depth statistical analyses were
carried out with the level data extracted from bitstreams coded with TCQ enabled. It was discovered that
the probability distribution of bsig for S2 is different than for S3. This discovery suggests that the variant
with two context model sets denoted in equation (6.8) could be improved by adding a third context model
set. Let |C∗

sig| be again the number of context models used for coding the bsig flags without TCQ, and δ∗sig
denote the context model index derived by evaluating the template. Then, the context model index for the
bsig flags for the additional context model set is calculated by:

δsig = δ∗sig +


0, if S (i) ∈ {S0, S1},
|C∗

sig|, if S (i) = S2,

2 · |C∗
sig|, otherwise.

(6.9)

The first conducted coding experiment is based on VTM-17 and investigates the coding efficiency of the three
state-dependent context model sets denoted in equation (6.9) relative to two state-dependent sets according
to equation (6.8). All context models related to level coding in both the anchor and the tested candidate were
initialized as equi-probable (EP). This implementation with two state-dependent context model sets for the
context modeling of bsig is referred to as IMP6-0, while the implementation utilizing three state-dependent
context model sets is referred to as IMP6-1. For the All-Intra configuration, using three context model sets
according to equation (6.9) results in 0.09% bit-rate overhead, and for the Random-Access configuration, the
bit-rate overhead is 0.11%. These experimental results do not match the statistical findings.

88



6.4. SEPARATION OF CONTEXT- AND BYPASS-CODED BINS

Class Luma CB CR

All-Intra
A1 -0.25% -0.20% -0.01%
A2 -0.32% -0.28% -0.10%
B -0.10% -0.03% -0.09%
C -0.06% -0.14% 0.16%
E 0.00% -0.33% -0.24%

Overall -0.14% -0.17% -0.05%
D -0.08% 0.04% -0.68%

Random-Access
A1 -0.09% 0.09% -0.17%
A2 -0.09% -0.44% -0.12%
B -0.08% -0.13% 0.29%
C -0.07% -0.37% -0.38%

Overall -0.09% -0.21% -0.06%
D 0.05% -0.90% -0.34%

Table 6.2
Coding efficiency of the investigation on an additional state-dependent context model set for the coding of the
bsig flags (IMP6-1).
Anchor for BD-rate computations: IMP6-0

A detailed analysis of the BD-rates revealed coding efficiency improvements for test sequences with relatively
high bit-rates, such as ultra-high-definition content coded in the All-Intra configuration. This observation
indicates that the initialization of the context models as EP negatively impacts the coding performance.
Different methods for determining initial values of context models were investigated in [94, 95, 96, 97]. The
initialization values were determined according to the first method described in [95] for both the anchor and
the variant with three state-dependent context model sets. This time, the introduction of the third state-
dependent context model set for the bsig flags provides improved coding efficiency, which is summarized in
table 6.2. These experimental results demonstrate that any context modeling optimization with TCQ should
derive updated initialization values for the context models, because the performance highly depends on the
initialization of the context models.

6.4 | Separation of Context- and Bypass-Coded Bins

For high bit-rate operation points, the throughput of the entropy coding engine can be improved significantly
when a high amount of bypass-coded bins are processed successively [72]. The level coding plays an important
role in the throughput at high bit-rate operation points, because most of the bins belong to transform
coefficient levels, as shown in section 4.2.2.

A possibility to improve the throughput in this context is to separate the coding of context-coded and bypass-
coded bins, i.e., to split the single coding phase into at least two coding phases [72]. In the case of two coding
phases, the first coding phase contains context-coded bins, whereas the second coding phase transmits the
remaining level magnitudes in bypass mode. These two coding phases differ from those initially used in
the level coding for AVC, as described in section 3.2. In AVC, the bsig flags are coded in the first coding
phase with context models, whereas the second coding phase transmits the remaining level magnitudes.
This second coding phase involves an interleaving of context-coded and bypass-coded bins, which should be
avoided for higher throughput.

Although a transmission of coefficient levels in two coding phases would increase the number of bypass-
coded bins that can be coded successively, the compatibility with TCQ would become broken due to the
unavailability of the parity information in the first coding phase. Particularly, the level magnitude has
to be reconstructed to determine the parity. However, an absolute level may become available only after
reconstructing the remaining magnitude, which is coded in the second phase. Therefore, the determination
of the context model set for the coding of the bsig flag with TCQ enabled, as denoted in equation (6.9),
becomes impossible.

89



6.4. SEPARATION OF CONTEXT- AND BYPASS-CODED BINS

6.4.1 | Solution and Constraints

The chosen solution presented in this thesis is to code the parity of the levels as a dedicated flag, denoted
by bpar in the following description. This bpar flag has to be coded in the first coding phase so that the
parity becomes available for the context modeling of the bsig flag. Furthermore, the chosen level coding
design should provide a competitive coding efficiency relative to the existing design when TCQ is disabled.
Because the intention is to have phases with context-coded or bypass-coded bins only, the bpar flags have
to be context-coded. Let |x|parmax be the maximum value that can be represented by the flags coded before
transmitting the bpar flag. Then, a consequence of the bpar flag is that the remaining absolute magnitude is
halved, i.e., only ⌊max (0, (|x| − |x|par

max)/2)⌋ has to be transmitted after coding the bpar flag.

Even though the chosen solution seems straightforward, aspects regarding hardware implementations should
already be considered during the development. Firstly, a binarization with bpar flag increases the maximum
number of context-coded bins per sample (mcps) of the levels by one bin from three to four bins. Secondly,
a direct dependency between successively context-coded bins should be avoided by design, i.e., the context
modeling of a bin should not directly depend on the value of the preceding bin. Both aspects, when considered
already during the development, could ease practical hardware implementations [72]. Finally, the coding
efficiency provided by the binarization with bpar flags should be similar to that of the existing level coding.
Unfortunately, there is no optimal solution for the chosen design, as indicated by the results provided at the
end of this section, and all available options only form a compromise among the mentioned aspects.

6.4.2 | Level Coding with Parity Flag

The bpar flag can be transmitted before coding the bsig flag, after coding the bsig flag, after the b|x|>1 flag,
or after the b|x|>2 flag. When coding the bpar flag before the bsig flag, bpar = 1 indicates that the level
is non-zero, while bpar = 0 allows no statement whether the level is zero-valued or not. Although all four
options have the same mcps, this option should result in the highest context-coded bins per sample (cps)
on average, because it requires two context-coded bins to signal a zero-valued transform coefficient level.
Therefore, this binarization option is not considered for further investigations.

Binarization Options

Each of the three remaining binarizations for the bpar flag results in different bin strings, which is summarized
in table 6.3 for the context-coded bins. Each of the options for placing the bpar flag is referred to as
binarization #n in the following description, with n ∈ {1, 2, 3}. From table 6.3, it can be observed that a
binarization #n increases the number of necessary context-coded bins for the absolute level |x| = n by one
bin relative to a straightforward unary binarization without bpar and three context-coded bins. This property
also explains the significantly higher cps when coding bpar before bsig, because most of the coded levels are
zero-valued, as demonstrated by the histograms illustrated in figure 3.2 of chapter 3. To avoid a significant
increase in the cps, the optimal binarization should be #3, i.e., coding the bpar flag after the signaling of
b|x|>2 = 1. However, this option has the disadvantage that the context modeling of the bsig flags relies on
the value of the directly preceding bin, which is the bpar flag of the preceding scanning position. As already
mentioned, such a dependency should be avoided, and in most cases, such a dependency does not exist for
the template-based context modeling.

Let |x|1max denote the absolute values that can be represented if the remainder, which is signaled after the
first coding phase, is equal to zero. Its actual value depends on the value of the bpar flag and represents
the maximum magnitudes that can be reconstructed for a scanning position after the context-coded phase.
Without changing the binarization, i.e., without the bpar flags, one has |x|1max = 3 when separating the
single coding phase into one context-coded phase and one bypass-coded phase. When switching over to a
binarization that includes the bpar flag, the value of |x|1max depends on the selected binarization. The values
of |x|1max for the different binarization with the bpar flags are delineated in the rightmost column of table 6.3.
As can be seen from table 6.3, the values of |x|1max increase the further forward the bpar flag is transmitted in
the first coding phase. The optimal binarization that does not affect the template-based context modeling,
described in section 5.4, is #1. In this case, |x|1max is not smaller than the clipping value applied to the sum
of absolute levels inside the template for context modeling (see section 5.4.2). This insight represents an

90



6.4. SEPARATION OF CONTEXT- AND BYPASS-CODED BINS

Binarization #1
|x| bsig bpar b|x|>2 b|x|>4 |x|1max

0 0
1 1 1 0
2 1 0 0
3 1 1 1 0
4 1 0 1 0
5 1 1 1 1 5
6 1 0 1 1 6

Binarization #2
|x| bsig b|x|>1 bpar b|x|>3 |x|1max

0 0
1 1 0
2 1 1 0 0
3 1 1 1 0
4 1 1 0 1 4
5 1 1 1 1 5

Binarization #3
|x| bsig b|x|>1 b|x|>2 bpar |x|1max

0 0
1 1 0
2 1 1 0
3 1 1 1 1 3
4 1 1 1 0 4

Table 6.3
Context-coded bins of the bin string and for the different binarizations with bpar and the corresponding |x|1max

values. The actual value of |x|1max itself depends on the value of the corresponding bpar flag.

opposite effect to the earlier statement that the bpar flag should be coded as the last context-coded flag of
the first coding phase to reduce the cps. Therefore, a first investigation was performed to analyze the impact
of the limitation on |x|1max for the template-based context modeling.

Limitation to Non-Fully Reconstructed Levels for Context Modeling

All coding experiments in this investigation were performed with TCQ disabled to analyze and encapsulate
the effects of the modified binarization and context modeling. A further reason why TCQ is disabled is
that supporting two different level coding paths, one for TCQ enabled and another for TCQ disabled,
would be undesirable for practical implementations. For this reason and because of supporting encoder
implementations that do not implement TCQ, the level coding with TCQ disabled has to provide a suitable
coding performance. Furthermore, there is no reason to assume that a level coding providing an inferior
coding efficiency for conventional quantization with URQs could achieve a reasonable performance when
TCQ is enabled.

In IMP6-2 of this investigation, absolute transform coefficient levels of neighboring frequency locations inside
the template were clipped to different |x|1max values. As the implementation basis, as well as the anchor for
BD-rates computations, the final implementation of the previous chapter, denoted as IMP5-19∗ in chapter 5,
was used. In addition to the sum S formed by the absolute transform coefficient levels of the neighboring
frequency locations inside the template (see equation (5.3)), the clipped sum Sc is calculated by:

Sc =

T−1∑
i=0

min
(
|x (i)|, |x|1max

)
. (6.10)

The sum Sc is then used as the input for context model selection without further modifications to the existing
context modeling in IMP5-19∗ (see equation (5.4) and subsequent). For the Rice parameter selection, S is
used instead, because the fully reconstructed absolute transform coefficient levels would be available in the
second coding phase. Because the impact of the non-fully reconstructed absolute levels for context modeling

91



6.4. SEPARATION OF CONTEXT- AND BYPASS-CODED BINS

1 2 3 4

Clipping Threshold |x|1max

0.00

0.05

0.10

0.15

0.20

0.25

0.30

B
D

-r
at

e
All-Intra
Random-Access

Figure 6.4
Coding efficiency of the investigation on clipping the template sum S to |x|1max for the context modeling of
all context-coded flags without changing the context modeling and the Rice parameter selection (IMP6-2). In
IMP6-2, each neighboring absolute level inside the template is clipped to |x|1max.
Anchor for BD-rate computations: IMP5-19∗

is investigated only, the level coding still employs a single coding phase, and the bpar flag is nonexistent, i.e.,
|x|1max consists of a single value and is independent of bpar.

The results of this investigation are summarized in figure 6.4 for |x|1max ∈ {1, 2, 3, 4}. For |x|1max > 4,
the coding efficiency is the same as for the reference IMP5-19∗, because of the clipping of S to five before
selecting a context model. The observed losses in coding efficiency are negligible for |x|1max > 2, which is
unexpected compared to the improvements obtained by the investigations in section 5.4.3 on Msig and MgtX .
The position-dependent context model sets described in section 5.4.4, introduced after the investigations in
section 5.4.3, could be considered as the reason for the negligible losses in coding efficiency. Presumably,
the introduction of additional context model sets allows the reduction of the clipping values Msig and MgtX

without negatively impacting the coding efficiency. Given the experimental results, all binarizations with
bpar under consideration are acceptable, and no loss in coding efficiency is achieved with binarization #1,
where |x|1max ∈ {5, 6}.

This investigation shows that the impact on the existing context modeling is marginal for all candidate
binarizations of bpar. However, more aspects that come with the bpar flags may negatively affect the coding
performance, which is investigated next.

Coding Performance of Binarizations with bpar

In IMP6-3, IMP6-4, and IMP6-5 of this investigation, where IMP6-3 corresponds to binarization #1, IMP6-4
corresponds to binarization #2, and IMP6-5 corresponds to binarization #3, further aspects are analyzed
by coding the bpar flags in the existing single coding phase. Again, as the implementation basis, as well as
the anchor for BD-rate computations, IMP5-19∗ of chapter 5 was used. No modifications were made to the
context modeling of the existing context-coded flags. Furthermore, the Rice parameter selection was kept
unmodified, and all performed coding experiments had TCQ disabled. For the bpar flags, the same context
modeling as implemented for b|x|>1 and b|x|>2 is used, but with dedicated context model sets for bpar. Due
to the presence of bpar, the remaining absolute value after coding bpar is halved.

Figure 6.5 summarizes the results of the coding experiments conducted for this investigation. For all tested
binarizations, the coding efficiency is worse than the anchor. However, the bit-rate overhead varies signifi-
cantly depending on the binarization. The lowest bit-rate overhead in the All-Intra configuration is achieved

92



6.4. SEPARATION OF CONTEXT- AND BYPASS-CODED BINS

IMP6-3: bsig IMP6-4: b|x|>1 IMP6-5: b|x|>2

Binarization with bpar (after)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

B
D

-r
at

e
All-Intra
Random-Access

Figure 6.5
Coding efficiency of the investigations on different binarizations with the bpar flags, based on the level coding
implementation with a single coding phase (IMP6-3 to IMP6-5).
Anchor for BD-rate computations: IMP5-19∗

by IMP6-3 (coding bpar after bsig), and the lowest bit-rate overhead in the Random-Access configuration is
achieved by IMP6-5 (coding bpar after b|x|>2). For both configurations, IMP6-4 (coding bpar after b|x|>1)
provides significantly higher bit-rate overheads than IMP6-3 and IMP6-5. Given the coding performance
in both configurations, binarization #1 should be used to minimize the loss in coding efficiency. Note that
these bit-rate overheads are not due to the context modeling, because all implementations use a single coding
phase, i.e., the template-based context modeling is not altered.

Besides losses in coding efficiency, the cps has to be evaluated in the actual coding environment to assess
the impact of the different binarizations with bpar. A statistical investigation is presented next to analyze
the cps and to understand why binarization #2 provides the highest loss in coding efficiency. Furthermore,
the investigation helps to study whether updating the Rice parameter selection is feasible.

Statistical Analysis of Data Samples from Bitstreams

Bitstreams generated by the coding experiments of the previous investigations were analyzed by extracting
the number of bins and bits and comparing those numbers. It should be noted that the bitstreams were
generated with different encoder decisions, because of the different binarizations, and different statistics
are needed to interpret the data. In the following paragraphs, three different tables are presented. They
provide different point-of-views on the data, which should then lead to some indicators for the effect of each
binarization on the encoder decisions.

For the following presentation, the number of bins and bits are mainly compared to those of the anchor for
each bitstream to extract the different ratios, i.e., for the same configuration, test sequence, and QP. An
average ratio is then calculated by averaging the calculated ratios of all bitstreams.

Relative change in bins and bits due to binarization: The first analysis compares the change in
the number of coded bins and the corresponding compression ratio for absolute levels. Let |x|h (head)
and |x|t (tail) denote sections of the bin string containing successive bins, such that the bin string can be
reconstructed by concatenating |x|h and |x|t. Their exact definition depends on the binarizations that should
be compared. For the tail |x|t, bins signaled after the bpar flag and the bpar flag itself are counted, and for the
head |x|h, only bins signaled before the bpar flag are counted. For the comparison between the anchor and
binarization #1, |x|h = {bsig} for both the anchor and binarization #1, while the remaining bins form |x|t, i.e.,
|x|t = {b|x|>1, b|x|>2, bypass bins} for the anchor and |x|t = {bpar, b|x|>2, b|x|>4, bypass bins} for binarization

93



6.4. SEPARATION OF CONTEXT- AND BYPASS-CODED BINS

All-Intra Random-Access
Bins Bits Bins Bits

Binarization Bins of |x|h
#1 -1.51% -1.26% -2.60% -2.48%
#2 -0.40% 0.50% -0.41% 0.63%
#3 -0.84% -0.61% -0.64% -0.59%

Bins of |x|t
#1 37.64% 2.41% 36.98% 4.47%
#2 9.50% 2.99% 11.32% 4.37%
#3 8.44% 6.69% 9.00% 7.50%

Table 6.4
Differences of bins and bits for different binarizations with bpar relative to anchor implementation without bpar
flag and the three context-coded bins bsig, b|x|>1, and b|x|>2. For the tail |x|t, bins signaled after the bpar flag and
the bpar flag itself are counted, and for the head |x|h, only bins signaled before the bpar flag are counted. In the
anchor without the bpar flag, the counting of |x|h and |x|t is split at the position of the bin string where bpar of
the corresponding binarization would be coded.

#1. Correspondingly, |x|h = {bsig, b|x|>1} for the comparison between the anchor and binarization #2, while
|x|t = {b|x|>2, bypass bins} for the anchor and |x|t = {bpar, b|x|>3, bypass bins} for binarization #2. For the
comparison between the anchor and binarization #3, |x|h = {bsig, b|x|>1, b|x|>2} and |x|t = {bypass bins} for
the anchor, while |x|t = {bpar, bypass bins} for binarization #3.

Condensed simulation results are listed in table 6.4 for the three considered binarizations, where all numbers
are relative to the data extracted from bitstreams coded without the bpar flag, i.e., from the anchor used
for the BD-rate computations in the previous investigation (IMP5-19∗). All three binarizations result in
bitstreams with fewer bins than in the anchor for the head |x|h. While the corresponding compression ratio
or efficiency of the context-coded bins is higher than in the anchor (negative percentage) for the binarization
#1 and #3, the binarization #2 is less efficient. The circumstance for |x|t is completely different, where
the number of bins is significantly higher for all binarizations than for the anchor. A notable increase can
be observed for binarization #1, while the increase for binarizations #2 and #3 is significantly lower and
relatively similar. Nonetheless, the efficiency loss of |x|t provided by binarization #1 is less than for the
other binarizations, meaning that binarization #1 achieves a particularly high compression ratio for those
bins. Given these results, it is interesting to know whether the observed increase in the number of bins for
|x|t, especially for binarization #1, also affects the number of bins for the whole bitstream.

All-Intra Random-Access
Bins Bits Bins Bits

Binarization Bins of |x|
#1 16.22% 12.92% 15.19% 11.56%
#2 1.12% 1.26% 1.43% 1.45%
#3 0.01% 0.39% 0.17% 0.42%

All Bins
#1 6.84% 0.19% 4.37% 0.11%
#2 1.13% 0.85% 0.89% 0.62%
#3 0.47% 0.56% 0.39% 0.41%

Table 6.5
Differences of bins and bits for different binarizations with bpar relative to anchor implementation without bpar
for coded absolute levels and all bitstream data.

Relative change in bins and bits for absolute levels and all syntax elements: The same comparison
of bins and bits was performed for absolute levels and the whole bitstream, and the numbers are summarized
by table 6.5. While the increase in the number of bins is marginal when considering absolute levels and all
bins of the bitstream for binarizations #2 and #3, the increase for binarization #1 remains significantly
higher. These results show that binarization #1 provides a disproportional increase in the cps compared to
the other binarization options, which impacts the complexity of encoder and decoder implementations. A

94



6.4. SEPARATION OF CONTEXT- AND BYPASS-CODED BINS

potential cause for the increase in cps is the inefficiency of the existing Rice parameter selection when using
a binarization with bpar, which could be addressed by updating the thresholds.

Relative change in bit-to-bin ratio for absolute levels and all syntax elements: The efficiency of
the entropy coding, the efficiency of context-coded bins for the absolute levels, and the number of bypass-
coded bins of the absolute levels relative to the anchor are analyzed in a final investigation. A summary for
these analyzes is summarized in table 6.6, where the efficiency is in terms of the bit-to-bin ratio, but denoted
as percentages, e.g., 72.25% means that one bin requires 0.7225 bits on average. The values for all bins and
bits of the bitstreams also include the bypass-coded bins, while the values for absolute levels only consider
the context-coded bins. The numbers of bypass-coded bins of the absolute levels relative to the anchor are
denoted in the two rightmost columns of table 6.6. Further, the bit-to-bin ratios of the bpar flag for the
different binarization options were measured (not listed in the tables). Although all three binarizations use
the same context modeling, the efficiency of bpar varies significantly with 67% for binarization #1, 87% for
#2, and 96% for #3 (combined for All-Intra and Random-Access).

For binarization #3, these numbers indicate that the loss in coding efficiency is introduced by the inefficiency
of the bpar flag and, supposedly, by the inefficiency of the Rice parameter selection. For binarization #2, the
overall inefficiency may be further increased by the inefficiency of the b|x|>3 flags that are coded after the
bpar flags. The binarization #1 has a position of its own in this context, because of the significant increase
in the cps and the substantial decrease in the number of bypass-coded bins.

Conclusions of the Investigations

Coding efficiency losses are more significant for the change in binarization than for the change in the template-
based context modeling. Given the available options, the analyses reveal that there is no optimal solution for
a binarization with bpar. The optimal binarization in terms of coding efficiency is #1, but this binarization
significantly increases the number of context-coded bins. The optimal binarization in terms of the num-
ber of context-coded bins is binarization #3, but this binarization results in a direct dependency between
two context-coded flags, i.e., the context modeling of bsig depends on the bpar flag directly coded before.
The optimal binarization that would form a trade-off between the other two binarizations is #2, but this
binarization results in the highest overhead in coding efficiency.

Nevertheless, the analyses provide different aspects that are useful for further investigations. Firstly, the
encoding using binarization #1 results in a disproportionate increase in the cps compared to binarizations
#2 and #3, which negatively impacts the complexity of encoder and decoder implementations. Secondly,
the number of bypass-coded bins decreases, and the reduction depends on the selected binarization with bpar.
However, they do not completely vanish, indicating that a sufficient number of remainders are present that
are binarized with Rice codes. Consequently, updating the thresholds of the Rice parameter selection could
reduce the loss in coding efficiency.

Relative Bit-to-Bin Ratio
All Bins |x| Level Bypass

Binarization AI RA AI RA AI RA
#1 77.22% 77.25% 67.43% 68.17% 29.65% 29.89%
#2 82.07% 80.31% 77.21% 77.03% 46.23% 46.07%
#3 82.38% 80.54% 77.63% 77.51% 70.38% 70.56%

IMP5-19∗ 82.31% 80.52% 76.76% 76.78%

Table 6.6
Efficiency of the entropy coding for different binarizations with bpar and that of the anchor. The numbers for all
bins denote the overall efficiency of the entropy coding in percentage, meaning that one bin requires 0.8231 bits
on average when the percentage value is equal to 82.31%. For the numbers of |x|, only the context-coded bins are
considered, i.e., without an offset that would be introduced when including the bypass-coded bins. Finally, the
number of bypass-coded bins for absolute transform coefficient levels relative to the anchor is denoted on the two
rightmost columns for each binarization.

95



6.4. SEPARATION OF CONTEXT- AND BYPASS-CODED BINS

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Clipping Threshold Mk
Rice

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
D

-r
at

e
IMP6-6: #1 Mk=1

Rice

IMP6-7: #2 Mk=1
Rice

IMP6-8: #3 Mk=1
Rice

IMP6-9: #1 Mk=2
Rice

IMP6-10: #2 Mk=2
Rice

IMP6-11: #3 Mk=2
Rice

Figure 6.6
Coding efficiency of the investigations on updated thresholds for the Rice parameter selection for binarizations
with bpar (IMP6-6 to IMP6-11). In IMP6-6 to IMP6-8, Mk=1

Rice is determined for binarization #1 (IMP6-6), #2
(IMP6-7), and #3 (IMP6-8), while Mk=2

Rice is set equal to ∞. In IMP6-9 to IMP6-11, Mk=2
Rice is determined for

binarization #1 (IMP6-9 with Mk=1
Rice = 8), #2 (IMP6-10 with Mk=1

Rice = 9), and #3 (IMP6-11 with Mk=1
Rice = 10).

Anchor for BD-rate computations: IMP5-19∗

6.4.3 | Rice Parameter Selection

Because bpar is coded in the first coding phase, the probability distribution of the remainder z, binarized
with Rice codes, is different from that of the unmodified variant. Depending on the selected binarization
with bpar, the remaining level coded in the second coding phase with Rice binarization is z = ⌊ (|x| − |x|1max)/2⌋.
Consequently, it can be expected that the bit-rate overhead introduced by the binarizations with bpar can
be reduced by determining new thresholds for the Rice parameter selection, as denoted in equation (5.6).
However, this time the threshold for k = 3 should be unnecessary, because the geometric distributions of the
remainder z should have a significantly larger model parameter. Let z = ⌊z′/2⌋ denote the remainder for the
binarization with the bpar flag, where z′ represents the remainder without coding a parity flag. Then, the
probability of the remainder z for the binarization with bpar flag is equal to p (z′) + p (z′ + 1), which results
in a higher value for the model parameter of the geometric distribution. Another consequence is that more
remainders are coded with k = 0 than before, which should decrease the overall efficiency of the Rice codes.

Determination of Thresholds

Coding experiments were performed to determine updated thresholds for the Rice parameter selection, as
described in section 5.4.3. In IMP6-6 to IMP6-8, Mk=1

Rice is determined for the different binarizations with bpar,
while Mk=2

Rice = ∞ for all implementations. After performing the coding experiments of IMP6-6 to IMP6-8,
Mk=2

Rice is determined in IMP6-9 to IMP6-11. In IMP6-9, the threshold Mk=1
Rice = 8 was selected based on

the obtained BD-rates for IMP6-6. Accordingly, the selected thresholds are Mk=1
Rice = 9 for IMP6-10, and

Mk=1
Rice = 10 for IMP6-11.

The measured BD-rates are summarized in figure 6.6 for the All-Intra configuration only for the sake of
a compact representation. For the tested operation points, the determination of Mk=2

Rice does not provide
a significant coding efficiency improvement, an assumption that was made for Mk=3

Rice, but not already for
Mk=2

Rice in all binarization options. This observation is due to the higher model parameter of the geometric
distribution (compare figure 4.7) when using a binarization with bpar, for which k = 0 is often the optimal
Rice code. For the representation of the final BD-rates, the thresholds used in IMP6-9 (binarization #1) are
Mk=1

Rice = 8 and Mk=2
Rice = 23, and the implementation is denoted as IMP6-9∗. Correspondingly, the thresholds

are Mk=1
Rice = 9 and Mk=2

Rice = 26 for IMP6-10∗ (binarization #2), and are Mk=1
Rice = 10 and Mk=2

Rice = 26 for

96



6.4. SEPARATION OF CONTEXT- AND BYPASS-CODED BINS

IMP6-9∗: bsig IMP6-10∗: b|x|>1 IMP6-11∗: b|x|>2

Binarization with bpar (after)

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
D

-r
at

e
All-Intra
Random-Access
∆ All-Intra
∆ Random-Access

Figure 6.7
Coding efficiency of updated thresholds for the Rice parameter selection (IMP6-9∗ to IMP6-11∗). The bars
labeled by ∆ denote the achieved coding efficiency improvement of each binarization, i.e., the corresponding
BD-rate computations are between IMP6-9∗ and IMP6-6, IMP6-10∗ and IMP6-7, and between IMP6-11∗ and
IMP6-7.
Anchor for BD-rate computations: IMP5-19∗

IMP6-11∗ (binarization #3).

Coding Efficiency of Updated Thresholds

The coding efficiency achieved by updating the thresholds for the Rice parameter selection is summarized in
figure 6.7. The loss in coding efficiency is reduced for all three binarizations compared to the configuration
IMP6-3 to IMP6-5, where the thresholds of the Rice parameter selection are unmodified. In figure 6.7,
the changes in the BD-rates due to the updated thresholds for Rice parameter selection for the different
binarizations are denoted by the corresponding bars labeled with ∆. Although the updated Rice parameter
selection alleviates the overall loss in coding efficiency, the binarization with bpar remains less efficient than
the binarization without bpar.

6.4.4 | Reported Coding Performance in VVC

A level coding implementing the presented separation for the context-coded and bypass-coded bins was
presented to JVET during the development of VVC in the input document JVET-K0072 [98]. The chosen
binarization in [98] is #1, i.e., the bpar flag is coded after the bsig flag. However, the first coding phase
implemented in [98] includes the context-coded flags bsig, bpar, and b|x|>2 only. Instead of separating the
single coding phase into two coding phases, the chosen design consists of three coding phases, two context-
coded phases, and one bypass-coded phase. In the second coding phase, the context-coded flags b|x|>4

are transmitted exclusively, while the third coding phase consists of the remainders coded in the bypass
mode (compare binarizations with bpar in table 6.3). This design does not retain the coding efficiency
provided by the template-based context modeling with absolute levels, as described in section 5.4, because of
|x|1max ∈ {3, 4} instead of |x|1max ∈ {5, 6}. However, the introduced losses in coding efficiency are negligible,
as indicated by the investigation presented in section 6.4.2 with IMP6-2. For the presentation here, the
different experiments and associated results reported in [98] are denoted as follows:

721 In this experiment, the coding efficiency of the presented level coding using three coding phases is
evaluated for the case that TCQ is not used, i.e., TCQ is disabled, while RDOQ is enabled (short for
JVET-K0072).

97



6.5. REDUCTION OF CONTEXT-CODED BINS

721 711 ∆(711, 721) 712 712 ∆(712, 722)
Tested Implementation

−5.0
−4.5
−4.0
−3.5
−3.0
−2.5
−2.0
−1.5
−1.0
−0.5
0.0

0.5

B
D

-r
at

e

1RDOQ enabled
2TCQ enabledAll-Intra

Random-Access

Figure 6.8
Coding efficiency of 711, 721, 712, and 722, where 711 and 712 correspond to the level coding of JVET-K0071.
721 and 722 correspond to the level coding of JVET-K0072 [98]. In 711 and 721, as well as in the corresponding
anchor for BD-rate the computations, RDOQ is enabled, and TCQ is disabled. In 712, 712, and the corresponding
anchor, TCQ is enabled in the coding experiments.
Anchor for BD-rate computations: VTM-1

711 This experiment summarizes the coding efficiency of the template-based context modeling with a
single coding phase (see chapter 5) to show the change in coding efficiency caused by the introduction
of the bpar flag in IMP6-13 (short for JVET-K0071). The experimental results correspond to those
summarized in table 5.1 in section 5.4.5, i.e., TCQ is disabled, while RDOQ is enabled.

722 This experiment corresponds to 721 with TCQ enabled.

712 This experiment corresponds to 711 with TCQ enabled.

For all experiments, the anchor for BD-rate computations is the level coding implemented in VTM-2 [99]. A
summary of the reported experimental results is illustrated in figure 6.8, which includes the relative change
in BD-rate between 711 and 721, as well as between 712 and 722. A slight loss in coding efficiency can be
observed when TCQ is disabled, and that loss remains relatively similar when TCQ is enabled. Compared
to the overall improvement in coding efficiency provided by the level coding developed in this thesis for both
configurations, i.e., with and without TCQ enabled, the losses introduced by the binarization with the bpar
flag are comparably small.

6.5 | Reduction of Context-Coded Bins

The parameter t0 of the binarization for absolute levels illustrated in figure 4.1 (section 4.2.1) regulates the
mcps for the transform coefficient levels. This mcps for absolute levels is equal to the value of t0, which is 15 in
AVC and was reduced significantly to three with the introduction of the adaptive binarization with Rice codes
presented in section 4.3. Such a reduction was necessary to allow for feasible hardware implementations of
context-based adaptive binary arithmetic coding (CABAC), i.e., the mcps indicates the achievable throughput
of the overall design and should be as low as possible. In the final HEVC level coding, the parameter t0 is
equal to three and is reduced backward-adaptively, which leads to a further reduction of the mcps without
negatively impacting the coding efficiency [100]. While the mcps for the adaptive binarization used in HEVC
is equal to 1.5625 only, the mcps of the level coding in VVC increases from three to four with the introduction
of the binarization with bpar flags. This possible discrepancy between HEVC and VVC is undesirable, and
a similar number of mcps as in HEVC is pursued during the development of VVC. This section starts with
a brief review of the technique specified in HEVC and is followed by a description of the concept developed

98



6.5. REDUCTION OF CONTEXT-CODED BINS

in this thesis and implemented in VVC.

6.5.1 | Adaptive Binarization Bound in HEVC

Instead of reducing the number of context-coded bins by decreasing the maximum value binarized with
the truncated unary (TRU) code, which leads to a significant loss in coding efficiency (as indicated by the
investigations in chapter 4), the parameter t0 is selected backward-adaptively during the level coding [100].
This approach reduces the mcps from three, when using a fixed t0 = 3, to 1.5625. Its implementation is as
follows.

Implicit Restriction of Context-Coded Bins

The concept behind the adaptive reduction of context-coded bins implemented in HEVC is that for transform
coefficient levels with high magnitudes, fewer context-coded bins are necessary to achieve a similar coding
efficiency. This condition can be achieved because the bypass-coded bins dominate the codeword length
in such a case. This aspect can be exploited by evaluating the coded b|x|>1 and b|x|>2 flags to estimate
the beginning of an area consisting of levels with high magnitudes. Conceptually, the reduction is based
on limiting the number of coded b|x|>1 and b|x|>2 flags within each 4×4 sub-block. At the beginning of a
4×4 sub-block, the binarization bound t0 is set equal to three, i.e., the context-coded flags coded for this
configuration are bsig, b|x|>1, and b|x|>2 (see figure 4.1 and figure 4.16 of chapter 4). After coding one b|x|>2

flag within the sub-block, t0 is set equal to two, i.e., no more b|x|>2 flags are coded for the current sub-block.
When eight b|x|>1 flags have been coded within the sub-block, the bound is further decreased to t0 = 1,
i.e., the only context-coded flag left for the remaining levels in the sub-block is bsig. A direct transition
from t0 = 3 to t0 = 1 occurs when eight b|x|>1 flags with a value equal to zero have been coded for the
sub-block. Besides reducing the mcps, this approach also saves context memory, because only one context
model is necessary for coding the b|x|>2 flag (compare context modeling of b|x|>2 in AVC and HEVC denoted
in equation (3.2) in section 3.2.1).

Reported Coding Efficiency and Number of Context-Coded Bins

The technique above reduces the mcps to roughly 50% compared to the fixed configuration t0 = 3. Virtually
the same coding efficiency relative to the fixed configuration t0 = 3 was reported in [100] for both the All-Intra
and Random-Access configurations. Furthermore, the amount of context-coded bins is reported to be up to
15% lower than for the fixed configuration t0 = 3 for operation points targeting consumer applications, as
reported in [100]. These relative savings in context-coded bins are higher for high bit-rate operation points.

6.5.2 | Adaptation of the Concept to VVC

A similar reduction of context-coded bins as in HEVC was targeted during the development of VVC, where
the mcps was equal to four due to the binarization with bpar at the time. However, the approach implemented
in HEVC cannot be applied directly on top of the level coding in VVC, because the level coding in HEVC
employs a dedicated coding phase for each context-coded flag. This coding in multiple phases for context-
coded flags does not have direct dependencies among the different context-coded flags, e.g., between bsig
and b|x|>1. However, when applying this approach to the context-coded phase implemented in VVC, direct
dependencies emerge, where the context modeling of a flag depends on the value of the previously coded
flag. For example, when implementing the HEVC scheme straightforwardly, only the bsig and the bpar flags
are coded (binarization #1) after transmitting eight b|x|>2 flags. In this state, the context modeling of
bsig depends on the bpar flag coded directly before the bsig flag. Another problem arises in combination
with template-based context modeling, where the maximum available level magnitude of the neighboring
frequency locations inside the template frequently changes.

Explicit Restriction of Context-Coded Bins

Instead of limiting the mcps implicitly, as in HEVC, the concept of the approach developed in this thesis
is explicit by specifying a maximum number of context-coded bins for a sub-block, which is tracked by a
variable A. This variable A is initialized to a specific value at the beginning of each sub-block, and no

99



6.5. REDUCTION OF CONTEXT-CODED BINS

more context-coded flags are transmitted for the remaining scanning positions of the sub-block when A < n,
with n being the maximum number of context-coded flags transmitted for each scanning position within the
coding phase. That implies that all remaining absolute levels of the sub-block are binarized with Rice codes
only, and the resulting bins are coded in the bypass mode, which corresponds to the setting t0 = 0. For the
absolute levels coded completely in bypass mode, the Rice parameter selection is updated to accommodate
the change in the probability distribution parameter. Instead of evaluating the local template, the Rice
parameter is selected according to algorithm 4.3, described in section 4.3.4, but using different thresholds
than described in section 4.3.4.

The developed approach, proposed in [101], is implemented on top of the level coding presented in [98],
which consists of two coding phases for the context-coded flags to avoid a direct dependency between b|x|>2

and b|x|>4. Because of the two coding phases, two variables tracking the number of context-coded bins are
necessary to control and limit the context-coded flags of the level coding. These two variables, denoted as
A1 and A2, are maintained for each sub-block and are initially set equal to A1 = 28 and A2 = 4 for a 4×4
sub-block. This initialization of A1 and A2 corresponds to a limitation to a mcps equal to two. For a given
absolute level, the flags bsig, bpar and b|x|>2 are only coded in the first coding phase if A1 (i) ≥ 3. After
coding a context-coded flag in the first coding phase, the number of remaining context-coded bins stored
in A1 is decremented by one. Correspondingly, A2 is decremented by one after the coding a b|x|>4 flag in
the second coding phase, and further b|x|>4 flags are only coded when A2 ≥ 1. This configuration with two
variables tracking the number of context-coded bins and their initial values is a trade-off between coding
efficiency and the number of context-coded bins. Note that the setting t0 = 0 can occur without coding a
b|x|>4 flag, i.e., when A1 < 3 and all coded b|x|>2 flags have a value equal to zero. To further reduce the
number of context-coded bins in actual coding conditions, the coding order of bpar and b|x|>1 is exchanged,
which corresponds to binarization #2 as described in section 6.4.2. This change significantly reduces the
actual number of context-coded bins, as the investigation presented in section 6.4.2 demonstrated. However,
the modification introduces a dependency between the context modeling of bsig and the previously coded
bpar flag. Nonetheless, the reduction in the number of context-coded bins (on average) was deemed more
significant. A summary of the implementation is provided in algorithm 6.1.

Reported Coding Efficiency

The above restriction of context-coded bins was implemented on top of the level coding in VTM-2, and with
TCQ enabled, it provides BD-rates of -0.20% in the All-Intra and -0.14% in the Random-Access configu-
rations, relative to the unmodified level coding of VTM-2. For the configuration with TCQ disabled, the
coding efficiency is virtually the same as provided by the level coding of VTM-2. A reason for the improved
coding efficiency with TCQ enabled, which cannot be expected due to the analysis in section 6.4.2, is the
disappearance of CABAC zero words [102]. 1

Further Refinements Towards Final Version of VVC

The explicit restriction of context-coded bins developed in this chapter was further refined in the finalized
version of VVC. In VTM-17, which implements the first published VVC specification, the level coding consists
of a single context-coded phase, i.e., the second context-coded phase is integrated into the first coding phase
[104]. Because of this change, a single variable A tracking the number of context-coded bins remained, and
the first coding phase is only executed when A ≥ 4. A second refinement changes the granularity of the
restriction from the sub-block to the transform block level, i.e., the tracking variable A is initialized once at
the beginning of a transform block [105], and the resulting mcps was reduced to 1.75. For absolute levels
coded completely in the bypass mode, the Rice parameter selection evaluates the template, as for the case
where the levels are not coded completely in the bypass mode, but using different thresholds. Finally, the
binarization of the absolute levels was further modified by swapping the codeword of the remainder z = 0
and a predicted value zp, which depends on the TCQ state and the sum S [101].

1Without the presented restriction of the number of context-coded bins, it was observed that the generated bitstreams were
padded with CABAC zero words [103]. These CABAC cabac zero words are necessary to lower the bin-to-bit ratio, i.e., the
number of bins that can be extracted from a single bit [72], which is important for practical hardware implementations.

100



6.6. USING INTERMEDIATE LEVELS FOR CONTEXT MODELING IN TCQ

Algorithm 6.1 Pseudo-code of the context-coded bins reduction scheme with two budgets that limits the
number of context-coded bins to a maximum of two bins per sample.
Require: first scanning position of sub-block i0
1: last coded scanning position of first pass i1 ← i0
2: i← i0 + 15, A1 (i)← 28
3: while i ≥ i0 ∧A1 (i) ≥ 3 do
4: if bsig (i) cannot be inferred to be equal to one then
5: transmit bsig (i) using a context model
6: A1 (i)← A1 (i)− 1
7: end if
8: if bsig (i) = 1 then
9: transmit b|x|>1 (i) using a context model

10: A1 (i)← A1 (i)− 1
11: if b|x|>1 (i) = 1 then
12: transmit bpar (i) using a context model
13: A1 (i)← A1 (i)− 1
14: end if
15: end if
16: if A (i) < 3 then
17: i1 ← i
18: end if
19: A1 (i− 1)← A1 (i)
20: i← i− 1
21: end while
22: last coded scanning position of second pass i2 ← i1
23: i← i0 + 15, A2 (i)← 4
24: while i ≥ i1 ∧A2 (i) ≥ 1 do
25: if b|x|>1 (i) = 1 then
26: transmit b|x|>3 (i) using a context model
27: A2 (i)← A2 (i)− 1
28: end if
29: if A2 (i) = 0 then
30: i2 ← i
31: end if
32: A2 (i− 1)← A2 (i)
33: i← i− 1
34: end while
35: i← i0 + 15
36: while i ≥ i2 do
37: if b|x|>3 (i) = 1 then
38: transmit z (i) = ⌊ (|x (i)| − 4)/2⌋ in bypass mode
39: end if
40: i← i− 1
41: end while
42: i← i2 − 1
43: while i ≥ i1 do
44: if b|x|>1 (i) = 1 then
45: transmit z (i) = ⌊ (|x (i)| − 2)/2⌋ in bypass mode
46: end if
47: i← i− 1
48: end while
49: i← i1 − 1
50: while i ≥ i0 do
51: transmit |x (i)| in bypass mode
52: end while

6.6 | Using Intermediate Levels for Context Modeling in TCQ

The dequantization process with TCQ, as outlined in section 6.2.2, necessitates the calculation of an inter-
mediate level x′, as summarized in equation (6.7). This intermediate level x′ is derived from x, which is
the level reconstructed based on the binarization table, and the TCQ state S (i), with i being the scanning
position. After the computation of x′, the intermediate level is used as the input for the subsequent scaling
process instead of x.

101



6.6. USING INTERMEDIATE LEVELS FOR CONTEXT MODELING IN TCQ

In contrast to the transmitted quantization indices x, the intermediate levels x′ are proportional to the
reconstructed transform coefficients c′, which are calculated by multiplying the intermediate levels x′ with
the quantization step size ∆ (when rounding operations of the actual scaling process are neglected). Since
the intermediate levels x′ incorporate the TCQ state S (i), they offer a greater precision than the transmitted
quantization indices x. This additional precision, attributed to the TCQ state, could be exploited in the
context modeling to improve the coding efficiency. In some respect, such an approach resembles the context
modeling of bsig, where the TCQ state is employed to select a context model set, as outlined in section 6.2.2.
Since the intermediate levels could be already computed during the parsing of the bitstream, the idea of
using them for context modeling is feasible. In the subsequent sections, the potential of incorporating these
intermediate levels to improve the coding efficiency is investigated.

6.6.1 | Impact of Intermediate Levels on Context Modeling

The computation of x′ during the parsing of the bitstream was first proposed in [106] in an early phase of
the VVC development. The authors of [106] observed that computing x′ during the parsing of the bitstream
offers the advantage that only one pass of TCQ state transitions is required instead of two. As a consequence,
the scaling process can be conducted in parallel since all intermediate levels of a block are available before the
scaling process begins. Adjustments to context modeling are important to maintain similar coding efficiency,
as the amplitudes of x′ are roughly double those of x (see equation (6.7)). The authors of [106] focused on
implementation feasibility, and the modifications described in [106] ensured the coding efficiency achieved
was comparable to the unaltered version. In contrast, the potential of coding efficiency improvement by
using intermediate levels is investigated in this section.

6.6.2 | Context Modeling Adjustments for Intermediate Levels

In the first investigation, the adjustments to the context modeling described in [106] are examined using VTM-
17.0. This version corresponds to the final VVC standard, whereas the investigations in [106] were based on
a software implementation used during the development phase of VVC. Both the software implementation
used in [106] and the VVC standard utilize the template sums Sc and S for context modeling. Specifically, the
template sum Sc, calculated according to equation (6.10) in VVC, is utilized to derive the context models for
all context-coded bins. In contrast, the template sum S =

∑T−1
i=0 |x (i)|, with T denoting the template size,

is used to derive the Rice parameter. Considering that the amplitude of x′ is approximately twice that of x,
the adjustments in [106] involve halving the template sums. This halving is accomplished by right-shifting
the template sums by one, which preserves the range of the template sums and the output range of the final
context model indices.

Note that the clipping value |x|1max used in equation (6.10) for the computation of Sc alters when using
intermediate levels. This clipping value denotes the maximum amplitude that can be signaled by the first
coding phase that only contains context-coded bins, and it is required for encoder implementations only. In
VVC, |x|1max = 4 + (|x (i)|&1) with |x (i)|&1 being the value of the corresponding bpar flag at the scanning
position i. When using the intermediate levels, this clipping value has to be changed to |x′|1max = 7 +
(|x′ (i)|&3).

Based on the description of [106], three adjustments were made in VTM-17.0 for the initial investigation.
The first adjustment concerns the calculation of the context index offset δsig, which specifies the context
model for coding a bsig flag. In VVC, the δsig is calculated according to:

δsig = min ((Sc + 1)≫ 1, 3) . (6.11)

Let S′c and S′ denote the template sums using the intermediate levels, which are given by:

S′c =

T−1∑
i=0

min
(
|x′ (i)|, |x′|1max

)
, (6.12)

and

S′ =
T−1∑
i=0

|x′ (i)|. (6.13)

102



6.6. USING INTERMEDIATE LEVELS FOR CONTEXT MODELING IN TCQ

According to [106], the derivation of δsig with intermediate levels becomes:

δsig = min
(((

S′c ≫ 1
)
+ 1
)
≫ 1, 3

)
. (6.14)

The second adjustment affects the derivation of the context index offset δgtX for the context-coded flags
b|x|>1, b|x|>3, and bpar. For the last significant scanning position, the context index offset is δgtX = 0, which
remains unchanged when using intermediate levels. For all other scanning positions along the scanning path,
δgtX is computed in VVC as:

δgtX = min
(
Sc −

∑
bsig, 4

)
+ 1, (6.15)

where
∑

bsig represents the number of occurrences of bsig = 1 inside the local template. When using the
intermediate levels, the computation of δgtX , according to [106], updates to:

δgtX = min
((

S′c ≫ 1
)
−
∑

bsig, 4
)
+ 1. (6.16)

However, it was observed that δgtX can become negative when modifying the context modeling as in the
above equation, an issue not mentioned in [106]. To avoid a negative δgtX , the following calculation is used
instead:

δgtX = max
(
0,min

((
S′c − 2

∑
bsig

)
≫ 1, 4

))
+ 1. (6.17)

For the Rice parameter k, the template sum S =
∑T−1

i=0 |x (i)|, with T denoting the template size, is used
in VVC. After determining S, an intermediate value s is calculated according to s = max (S− 5β, 0), where
β is the so-called base level. This base level β is equal to 4 during the coding phase where remainders
are encoded, i.e., partial values have already been coded by context-coded flags for the respective scanning
positions. When only bypass coding is employed, i.e., when the budget for context-coded bins is exhausted
(see section 6.5), β = 0. This intermediate value s is then utilized to determine the Rice parameter k as
follows:

k =


0, if s < 7,

1, if s ≥ 7 ∧ s < 14,

2, if s ≥ 14 ∧ s < 28,

3, otherwise.

(6.18)

Following the concept of [106], the derivation of s is updated to s = max ((S′ ≫ 1)− 5β, 0).

For the first and all subsequent investigations in this subsection, the anchor used for BD-rate computations is
the unaltered version of VTM-17.0. The experimental results of the first investigation, i.e., using intermediate
levels and applying the concept of [106] for context modeling, showed inferior coding efficiency. For the All-
Intra configuration, a bit-rate overhead of 0.49% was observed. In the Random-Access configuration, the
overhead was 0.25%. The coding efficiency achieved with the modified VTM-17.0 does not align with the
coding performance reported in [106]. A possible explanation is that, in comparison to the VTM version
used in [106], the VVC standard includes a modified binarization and a reduction of context models. It is
still surprising that straightforward context modeling adjustments, specifically halving the template sums as
outlined in the equations above, yielded suboptimal results. Note that to match the coding efficiency of VVC,
the only required modification pertains to the computation of the template sums, since the absolute values
of the quantization indices |x| can be recovered from the absolute intermediate levels |x′| according to |x| =
(|x′|+ 1)≫ 1. In such a setting, the context index offsets and the Rice parameter should be calculated as in
VVC, but with the template sums given by Sc =

∑T−1
i=0 min ((|x′ (i)|+ 1)≫ 1, 4 + (((|x′ (i)|+ 1)≫ 1)&1))

and S =
∑T−1

i=0 (|x′ (i)|+ 1)≫ 1. Compared to the adjustments introduced above, the differences appear to
be minimal. In the following investigations, each adjustment is evaluated individually to better understand
its impact on the coding performance.

6.6.3 | Refinements for Context Modeling of b|x|>1, b|x|>3, and bpar

In the second investigation, the adjustment to the context modeling of the context-coded flags b|x|>1, b|x|>3,
and bpar is examined. The reason that δgtX can become negative when using equation (6.16) is that the

103



6.6. USING INTERMEDIATE LEVELS FOR CONTEXT MODELING IN TCQ

intermediate value |x′| for |x| = 1 can be either 1 or 2, depending on the TCQ state. But equation (6.16)
implicitly assumes that when bsig = 1, the corresponding intermediate level is |x′| ≥ 2. This assumption
can lead to a negative value of δgtX under specific circumstances. Furthermore, assuming that |x′| ≥ 2 may
overestimate the influence of bsig = 1. To address these issues, one could assume that |x′| ≥ 1 when bsig = 1.
As a consequence, in the second investigation, the calculation of δgtX is revised from equation (6.17) to:

δgtX = min
((

S′c −
∑

bsig

)
≫ 1, 4

)
+ 1. (6.19)

The experimental results for this second investigation led to noticeable coding efficiency improvements. With
just this one adjustment, the average BD rate for the All-Intra configuration was observed to be 0.03%,
improving from 0.49%. For the Random-Access configuration, an average BD rate of -0.03% was recorded,
improving from 0.24%. These experimental findings suggest that equation (6.17) does overestimate the
effect of bsig = 1 and that assuming |x′| ≥ 1 for bsig = 1 gives a more accurate estimation of the conditional
probabilities.

6.6.4 | Refinements for Context Modeling of bsig

The third investigation examines the context modeling of bsig with the corresponding computation of δsig.
Its derivation according to the concept of [106] is denoted in equation (6.14) and consists of two right shift
operations. Generally, when a right shift operation is involved in the computation, the precision of the
computation is enhanced by performing the right shift operation at the very end. This is because the right
shift operation not only represents a division by an positive integer power of two but also rounds off the
result due to integer precision. Furthermore, when incrementing S′c by one, the output after the right shift
operation changes so that the information whether a significant neighboring location is inside the template
remains. This can be seen from the following example. The output of the input values n = {0, 1, 2, 3, 4}
using the operation n ≫ 1 are {0, 0, 1, 1, 2}, while the output for the variant (n+ 1) ≫ 1 are {0, 1, 1, 2, 2}.
Considering both aspects, the calculation for δsig can be reformulated as:((

S′ + 1
) 1
2
+ 1

)
1

2
=

S′ + 3

4
. (6.20)

Based on the above considerations, the computation of δsig is modified according to:

δsig = min
((
S′c + 3

)
≫ 2, 3

)
. (6.21)

The experimental results for this third investigation, where the adjustment in the context modeling of δsig was
additionally incorporated, show further improvement in coding efficiency. For the All-Intra configuration, an
average BD-rate of -0.09% was observed, improving from a previous 0.03% for the second investigation. For
the Random-Access configuration, an average BD rate of -0.13% was measured, which is an improvement from
a previous -0.03% for the second investigation. These experimental results demonstrate that the precision of
calculations is important when dealing with integer-based implementations.

6.6.5 | Refinements to the Rice Parameter Derivation

In the final investigation, the last adjustment for the intermediate levels is examined, which is the mod-
ification to S′ before selecting the Rice parameter. As for the third investigation, S′ is incremented by
one before applying the right shift operation. The calculation of s = max ((S′ ≫ 1)− 5β, 0) is updated
to s = max (((S′ + 1)≫ 1)− 5β, 0). The experimental results of this final coding experiment showed the
same coding efficiency for the All-Intra configuration as for the third investigation. For the Random-Access
configuration, a marginal improvement is observed with an average BD-rate of -0.15%.

6.6.6 | Conclusion on Intermediate Levels

The detailed experimental results for the final coding experiments are summarized in table 6.7. Compared
to the initial version using the context modeling described in [106], the adjustments to the context modeling
are relatively minor. These experiments indicate that incorporating intermediate levels can enhance coding

104



6.7. FINDINGS AND TECHNICAL ACHIEVEMENTS

Class Luma CB CR

All-Intra
A1 -0.11% 0.27% -0.06%
A2 -0.15% 0.22% 0.07%
B -0.10% 0.18% 0.33%
C 0.02% 0.33% -0.05%
E -0.11% 0.31% 0.08%

Overall -0.09% 0.26% 0.10%
D -0.06% 0.07% 0.83%

Random-Access
A1 -0.29% 0.67% 0.18%
A2 -0.05% 0.29% 0.12%
B -0.14% 0.21% 0.00%
C -0.12% 0.08% 0.12%

Overall -0.15% 0.28% 0.09%
D -0.29% 0.64% -0.67%

Table 6.7
Coding efficiency of the investigation on intermediate levels and adjusted context modeling.
Anchor for BD-rate computations: VTM-17.0

efficiency for TCQ. However, the primary focus of the investigations was on directly modifying the existing
context modeling. Analyzing the statistics of intermediate levels and developing a dedicated context modeling
may provide additional benefits.

6.7 | Findings and Technical Achievements

The modified level coding presented in this chapter, based on the design of chapter 5, represents a suitable
trade-off among several aspects. Its development leads to the following technical achievements:

• An additional context model set for coding the bsig flags improves the coding efficiency when TCQ is
enabled.

• It is known that the level coding impacts the throughput significantly. The developed level coding
achieves the desired throughput increase while maintaining its compatibility with TCQ.

• The number of context-coded bins is further reduced by decreasing the first binarization threshold
backward-adaptively.

• When using TCQ, intermediate levels are calculated before the actual scaling process, i.e., the multi-
plication with the quantization step size. These intermediate levels can already be computed during
the parsing of the bitstream and exploited for context modeling, which provides coding efficiency im-
provements.

The presented developments directly impact practical video coding applications, because their design ele-
ments are specified in the VVC standard. The following list summarizes the key elements:

• The state-dependent context modeling of the bsig flags in VVC utilizes three context model sets with
the same mapping of state to context model set as presented in this chapter.

• The level coding in VVC implements the developed separation of context-coded and bypass-coded bins
using multiple coding phases, as described in this chapter.

• The developed support for TCQ when separating the context-coded and bypass-coded bins with a
modified binarization that includes the bpar flag is specified for VVC.

• The basic concept of reducing the (worst-case) number of context-coded bins developed and adjusted
to the level coding with separated context-coded and bypass-coded phases is used by the level coding
of VVC.

105



6.8. CHAPTER SUMMARY

The VVC standard specifies a level coding based on the design developed in this chapter, with the final design
inheriting further refinements. Instead of three coding phases, as initially proposed in [98], the level coding
in VVC employs two coding phases as described later in this chapter. Furthermore, the binarization with
the bpar flag corresponds to the binarization #2 (IMP6-4) described in this chapter to reduce context-coded
bins, as proposed in [101]. The only adjustment to the context-coded bins reduction with a single tracking
variable A is extending the concept to the whole transform block with the initialization A = 1.75 ·WH, with
W being the width and H being the height of the block [101]. An in-depth description for four coding tools
improving the residual coding, i.e., TCQ, joint chroma residual coding, the arithmetic core coding engine,
and the level coding specified in the final version of VVC, are presented in [56]. Among these coding tools,
level coding was reported to have a share of 25% of the total coding efficiency improvement.

6.8 | Chapter Summary

A brief review of scalar quantization and TCQ was given at the beginning of this chapter, which included an
explanation for the practicality of the level coding developed in chapter 5 for TCQ. In the first section that
describes the work developed in this chapter, the state-dependent context model sets, used to code the bsig
flags with TCQ enabled, were extended. This extension exploits differences in the probability distribution
of bsig for each state by using different context model sets for S2 and S3. Next, the throughput for practical
implementations was increased by separating the coding of context-coded and bypass-coded bins. The reason
for the throughput improvement is that this separation increases the number of bypass-coded bins that can be
transmitted successively. Because the parity of the level located at the preceding scanning position becomes
unavailable in that design, which is necessary to determine to state for TCQ, the parity is transmitted as
a dedicated bpar flag in the first context-coded phase. Based on the results of different coding experiments,
a level coding design was developed that achieves a suitable coding performance with both TCQ enabled
and disabled. Next, a concept for reducing the maximum number of context-coded bins is presented. As
discussed in chapter 4, the second binarization bound could be reduced to achieve fewer context-coded
bins. This strategy would introduce undesirable coding efficiency losses. The concept developed for and
finally specified in VVC varies the first binarization bound of the adaptive binarization backward-adaptively
by limiting the number of context-coded bins via tracking variables. Whenever the remaining number of
context-coded bins, stored in tracking variables, could be insufficient for coding the context-coded bins of the
next scanning position, the first binarization bound is reduced so that the absolute levels of the remaining
scanning positions are binarized with Rice and EG0 only. The resulting bins are then coded in bypass
mode. In the last part of this chapter, it was investigated whether the additional information contained in
intermediate levels can be exploited for the context modeling of transform coefficient levels. The experimental
results indicate that by carefully adjusting the derivation of context index offsets, the coding efficiency of
TCQ can be improved by using intermediate levels instead of quantization indices for the context modeling.

106



CHAPTER 7

Transform Skip Residual Coding

Contents
7.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2 Transform Skip Mode in HEVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2.1 Modifications for TSM in HEVC Range Extensions . . . . . . . . . . . . . . . . . . . 109
7.2.2 Reference Implementation and Experimental Setup . . . . . . . . . . . . . . . . . . . 109
7.2.3 Block Size Restriction and Coding Efficiency . . . . . . . . . . . . . . . . . . . . . . 110
7.2.4 Comparision to Other Screen Content Tools in VVC . . . . . . . . . . . . . . . . . . 111
7.2.5 Impact of Level Coding Components on Coding Efficiency . . . . . . . . . . . . . . . 112

7.3 Binarization and Context Modeling of TSM Levels . . . . . . . . . . . . . . . . . 112
7.3.1 Statistics of TSM Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.3.2 Additional Context-Coded b|x|>1+2n Flags . . . . . . . . . . . . . . . . . . . . . . . . 114
7.3.3 Template-Based Context Modeling of bsig . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3.4 Template-Based Context Modeling of b|x|>1+2n . . . . . . . . . . . . . . . . . . . . . 118
7.3.5 Rice Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3.6 Context-Coded Sign Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3.7 Coding Efficiency Provided by TSRC, IBC, and PLT Enabled . . . . . . . . . . . . . 122
7.3.8 Binarization Without the bpar Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.3.9 Implementation of TSRC in VVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4 Findings and Technical Achievements . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Video coding applications were mainly dominated by camera-captured content up to the time of the develop-
ment of Advanced Video Coding (H.264/MPEG-4 Part 10) (AVC). However, during the development of High
Efficiency Video Coding (H.265/MPEG-H Part 2) (HEVC) and Versatile Video Coding (H.266/MPEG-I
Part 3) (VVC), non-camera-captured content became steadily more popular. Typical signals representing
non-camera-captured content are computer screen desktop recordings or animations created by computer
rendering. Such signals are commonly referred to as screen content. In screen content applications, non-
camera-captured signals often do not cover the whole video sequence, but rather some specific regions of
the frames. Examples of signals in such applications are graphics and character content rendered, mixed
or overlaid with traditional camera-generated content. Due to the different signal characteristics of screen
content, such as sharp edges, repeated patterns, or the non-existence of sensor noise, not all coding tech-
nologies suitable for camera-captured content are efficient for screen content. Furthermore, the subjective
quality perception for screen content is different than for camera-captured signals. Coding tools optimized for
camera-captured content tend to cause blurriness, ringing, and “mosquito” artifacts with computer-generated
content in a way that is commonly more disturbing to viewers than for camera-captured content. As a con-
sequence, dedicated screen content coding tools have been developed, such as intra block copy (IBC) [107]
or the palette mode (PLT) [108]. A relatively simple approach to improve the coding efficiency of screen
content, which is specified in HEVC, is to bypass the transform, referred to as transform skip mode (TSM)
[109], where the residual samples are quantized directly.

This chapter presents an alternative level coding for the quantization levels of blocks where the transform
is bypassed, and these levels are referred to as TSM levels. While the existing level coding, used when the
transform is not bypassed, is referred to as conventional level coding, an alternative second level coding
specifically designed for transform skip blocks is referred to as transform skip residual coding (TSRC) in this
chapter. For TSM levels, TSRC provides a higher coding efficiency than the conventional level coding. This
improvement in coding efficiency can be achieved because the conventional level coding is not designed for
the statistics of directly quantized residual samples. The development of TSRC started with the design of the
existing conventional level coding and was then refined with respect to both increasing the coding efficiency
and simplifying implementations. This chapter starts with a brief review of the TSM and its coding efficiency
compared to other dedicated screen content coding tools. TSRC is then presented with an in-depth analysis

107



7.1. PROBLEM STATEMENT

Figure 7.1
Example of a 32×32 DCT-II transform, quantization, and inverse transform for a camera-captured image. The
leftmost illustration shows the original block samples, and the next illustration shows the transform coefficients
after applying a DCT-II transform. The following illustration shows the transform coefficients after quantization,
and the rightmost illustration shows the reconstructed block of samples.

of its components.

7.1 | Problem Statement

The introduction of dedicated screen content coding tools in HEVC was a major leap towards support-
ing screen content applications [110]. This step also shows that dedicated screen content coding tools are
necessary to assist video coding architectures in achieving higher coding efficiency, because coding tools for
camera-captured content are less effective for screen content due to different signal characteristics. Bypassing
the transform improves coding efficiency for screen content, because the residual samples of screen content
show no or negligible energy compaction after applying a transform, e.g., an integer approximation of the
discrete cosine transform (DCT) or discrete sine transform (DST). An example of this behavior is illus-
trated in figure 7.1 and figure 7.2. In figure 7.1, the leftmost illustration shows a 32×32 block of samples of a
camera-captured image, and the following illustration shows the transform coefficients after applying a 32×32
DCT-II transform. The following illustration in figure 7.1 shows the transform coefficients after quantiza-
tion, while the rightmost illustration shows the reconstructed block of samples. This example demonstrates
the energy compaction property of the transform and its effectiveness in combination with quantization for
camera-captured content. On the contrary, for screen content, the transform typically yields a much smaller
energy compaction, as it is illustrated for a 32×32 block of a desktop screenshot in figure 7.2. Furthermore,
for screen content, the inverse transformed quantization noise appearing in the reconstructed block of samples
is more disturbing, demonstrating that applying a transform is ineffective. While camera-captured content
commonly consists of textures that are distributed smoothly over an area, screen content does not consist of
such textures. Instead, sharp edges can typically be found in screen content (compare original block samples
of figure 7.1 and figure 7.2). This difference is the reason for the transform being less effective for screen
content than for camera-captured content.

An important reason that prevents even higher coding efficiency for screen content when bypassing the
transform is that, in the approach typically used, the directly quantized residual samples are coded with
the same entropy coding as the quantized transform coefficients in conventionally coded blocks. Although
it is known that the coding efficiency of TSM can be further improved by adjusting the level coding, as
done by modifications to the context modeling in HEVC Range Extensions (RExt) [45], the potential coding
efficiency improvement achievable by a dedicated TSRC remains unclear.

7.2 | Transform Skip Mode in HEVC

TSM is an additional coding mode for which the residual samples of a block obtained after prediction are
quantized directly, and the resulting TSM levels are coded with the conventional level coding in HEVC.
A dedicated flag called btsm specifying whether the transform is bypassed or not is transmitted after the
signaling of bcbf = 1 (coded block flag) for each block. This signaling order, i.e., btsm after bcbf = 1, ensures
that the signaling overhead is minimized, because the inverse transform also yields zero residual samples for
a block with only zero levels. The coding of btsm employs a single context model in HEVC, which makes the

108



7.2. TRANSFORM SKIP MODE IN HEVC

Figure 7.2
Example of a 32×32 DCT-II transform, quantization, and inverse transform for a desktop screenshot. The
leftmost illustration shows the original block samples, and the next illustration shows the transform coefficients
after applying a DCT-II transform. The following illustration shows the transform coefficients after quantization,
and the rightmost illustration shows the reconstructed block of samples.

signaling efficient also for camera-captured content, where blocks with btsm = 0 are primarily coded. TSM
is restricted to 4×4 blocks in HEVC [111, 112, 113], i.e., the btsm flag is only signaled when the transform
block has a size of 4×4 samples. Although allowing TSM for larger transform block sizes improves the
coding efficiency significantly, the block size restriction was only lifted in HEVC RExt. Nonetheless, the
default configuration of the RExt reference software encoder still restricts the block size for TSM to 4×4
blocks to limit the encoding time. The concept of HEVC was initially maintained for the VVC development,
i.e., TSM was restricted to 4×4 blocks, because of the availability of coding tools dedicatedly developed for
screen content, such as IBC or PLT. These coding tools provide significant coding efficiency improvements
for screen content, which cannot be achieved by TSM restricted to 4×4 blocks.

7.2.1 | Modifications for TSM in HEVC Range Extensions

Some refinements to the conventional level coding for TSM levels were introduced in HEVC RExt to provide
higher coding efficiency for screen content. Two components of the level coding for TSM levels differ from
the conventional level coding in HEVC RExt. Firstly, a dedicated context model is used to code the bsig
flags of TSM levels to avoid interference with the context models used for transform coefficient levels [114].
This modification is effective because, in contrast to transform coefficient levels, the probability of non-zero
TSM levels tends to be rather constant across the block. Secondly, the block of TSM levels is rotated by
180◦ prior to the level coding, which is equivalent to reversing the scanning pattern [114]. It was observed
that for intra-predicted blocks, the prediction errors usually become greater with increasing spatial distance
from the reference samples located at the top and left border of the block. This observation implies that the
reverse scanning pattern used in the conventional level coding leads to a processing of TSM levels from high
to low magnitudes. However, the employed reverse scanning pattern in the conventional level coding expects
that the processing of the levels is from low to high magnitudes, which is certainly true for conventional
transform coefficient levels due to the energy compaction in the transform domain. Therefore, the rotation
adjusts the processing of the levels to be more suitable for the existing context modeling and binarization.
Coding efficiency improvements of -2.1% in the All-Intra configuration and of -1.4% in the Random-Access
configuration for class F were reported in [114] when both modifications are utilized, compared to the case
without these modifications.

7.2.2 | Reference Implementation and Experimental Setup

In the first investigation of this chapter, the impact of the TSM block size restriction is examined. Therefore,
a brief review of the reference software implementation and the experimental setup used for the investigations
in this chapter is given first.

The VVC reference software implementation in version 17.0 (VTM-17) is employed as the basis for the
investigations conducted in this chapter. VTM-17 implements a conventional level coding and a TSRC,
with the latter being a refinement of the variant developed in this thesis. Although the TSRC presented in
this chapter was originally developed using older VTM versions, VTM-17 is selected as the software basis,

109



7.2. TRANSFORM SKIP MODE IN HEVC

4×4 8×8 16×16 32×32
Maximum Block Size for TSM

−18.0
−16.5
−15.0
−13.5
−12.0
−10.5
−9.0
−7.5
−6.0
−4.5
−3.0
−1.5
0.0

B
D

-r
at

e

Class F: All-Intra
Class F: Random-Access
TGM: All-Intra
TGM: Random-Access

Figure 7.3
Coding efficiency of the investigation on the TSM block size restriction (IMP7-0). The permitted setting for
the maximum allowed TSM block size is 4×4, 8×8, 16×16, or 32×32. Let Nmax denote the edge length of the
maximum allowed TSM block size, then TSM is supported for blocks with both the width and height less than
or equal to Nmax.
Anchor for BD-rate computations: IMP7-0 with TSM disabled

because it includes all coding tools supported in the VVC specification. In the initial implementation IMP7-0
of this chapter, the TSRC of VTM-17 is replaced by the conventional level coding of VTM-17, but without
the restriction on the number of context-coded bins described in section 6.5 for TSRC. Furthermore, all
context models used for the transform coefficient level coding are initialized as equi-probable (EP). This
implementation is comparable to the development state prior to the development of the TSRC presented in
this chapter. For all conducted coding experiments, the coding performance was evaluated by measuring
the Bjøntegaard delta bit-rate (BD-rate) [66] for the luma component between two codec versions, where
the encoder configurations mainly follow the VVC common test conditions (CTC) [81]. Besides disabling
the coding tools sign data hiding (SDH), rate-distortion optimized quantization (RDOQ), and trellis-coded
quantization (TCQ), as in the preceding chapters, for the investigation in this chapter, IBC, PLT, and block-
based differential pulse-code modulation were additionally disabled to exclude the impact of other screen
content coding tools on TSRC. Finally, BD-rates are reported only for the test sequences of class F and text
and graphics with motion (TGM) [115], which are screen content test sequences, and only the first second of
each test sequence was coded.

7.2.3 | Block Size Restriction and Coding Efficiency

In HEVC, luma transform blocks have a size of 4×4, 8×8, 16×16, or 32×32 samples, while non square-blocks
of size W ×H, with W,H ∈ {4, 8, 16, 32, 64} are additionally permitted in VVC. The restriction of TSM to
4×4 blocks reintroduced at the beginning of the VVC development is implemented in a way that if the width
or the height is greater than the allowed edge size of the square block, TSM is not supported. This restriction
poses the question of the achievable coding performance when allowing TSM to be applied to larger block
sizes in VVC. A set of coding experiments using IMP7-0 with different settings for the maximum allowed TSM
block size was conducted, and the experimental results are summarized in figure 7.3. Four different settings
for the maximum allowed TSM block size (4×4, 8×8, 16×16, and 32×32) are investigated. Let Nmax denote
the edge length of the maximum allowed TSM block size, then TSM is permitted for a block when both its
width W and height H are less than or equal to Nmax, i.e., W ≤ Nmax and H ≤ Nmax. Significant coding
efficiency improvements can be achieved for screen content sequences when increasing the maximum allowed
TSM block size. A certain saturation in coding efficiency can be observed when increasing the maximum
allowed TSM block size from 16×16 to 32×32. Consequently, a further increase in the maximum allowed

110



7.2. TRANSFORM SKIP MODE IN HEVC

TSM 32×32 IBC PLT
Screen Content Coding Tools Comparison

−42
−39
−36
−33
−30
−27
−24
−21
−18
−15
−12
−9
−6
−3
0

B
D

-r
at

e

Class F: All-Intra
Class F: Random-Access
TGM: All-Intra
TGM: Random-Access

Figure 7.4
Coding efficiency of the investigations on the impact of different screen content coding tools, including TSM with
the conventional level coding, but without restricting the number of context-coded bins (IMP7-0).
Anchor for BD-rate computations: IMP7-0 with all screen content tools disabled

TSM block size does not improve the coding efficiency significantly, as analyzed in [116]. The encoding time
with TSM enabled increases by about 30% when setting the maximum allowed TSM block size to 32×32
[117] relative to an encoder configuration with TSM disabled.

Because TSRC would provide significantly improved coding efficiency only for the case that TSM can be
utilized for larger blocks, a fast encoder control was developed by the author during the development of TSRC
presented in this chapter. This fast encoder control for TSM makes a maximum allowed TSM block size
equal to 32×32 feasible [116, 46]. For camera-captured content, the developed fast encoder control results in
virtually the same coding efficiency and the same encoding time with TSM enabled and a maximum allowed
TSM block size equal to 32×32 as for the configuration with TSM disabled. For screen content, this fast
encoder control results in the same coding efficiency as the configuration without the encoder speed-up, while
the encoding time provided by this fast encoder control is almost the same as for the case where TSM is
disabled. In VTM-17, the default setting for the maximum allowed TSM block size is 32×32, because the
aforementioned fast encoder control is implemented in the encoder. This fast encoder control is also used for
the coding experiments conducted in this chapter, including the results in figure 7.3.

7.2.4 | Comparision to Other Screen Content Tools in VVC

Another set of coding experiments using IMP7-0 was conducted to assess the coding efficiency improvements
for the individual screen content coding tools supported in VVC. In figure 7.4, the coding efficiencies are
summarized for TSM configured with a maximum allowed block size equal to 32×32 samples (IBC and
PLT disabled), for IBC enabled (TSM and PLT disabled), and for PLT enabled (IBC and TSM disabled),
relative to IMP7-0 with TSM, IBC, and PLT disabled. The highest coding efficiency is provided by PLT,
closely followed by IBC with a slightly lower coding efficiency, while TSM provides roughly half the coding
efficiency provided by IBC or PLT. Given these results, the TSM path as it is, i.e., quantizing and coding
the residual samples directly, is not sufficient to achieve a coding efficiency comparable with that provided
by IBC or PLT. Note that TSM can be combined with IBC, because IBC is implemented as a prediction
mode, while a combination with PLT is not possible, because PLT replaces the transform coding completely.
The decoding times for all three coding tools are similar to that of the anchor, whereas the encoding times
vary significantly. While the encoding time of TSM is similar to that of the anchor due to the fast encoder
control of [46], the encoding time of IBC is twice that of the anchor. For PLT, the encoding time is about
10% higher than that of the anchor.

111



7.3. BINARIZATION AND CONTEXT MODELING OF TSM LEVELS

7.2.5 | Impact of Level Coding Components on Coding Efficiency

The modifications introduced in HEVC RExt are based on observations about the signal characteristics of
screen content, which can be classified as follows. Firstly, non-zero TSM levels are typically concentrated in a
specific region of a given block, where the location of the region may vary across the blocks. Secondly, when
non-zero TSM levels exist within a block, their absolute magnitudes tend to increase slightly from the top-left
to the bottom-right of the block. This property is different from the typical behavior of absolute transform
coefficient levels, where a significant decrease in absolute magnitudes can be observed from the top-left to
the bottom-right of the block. A varying local concentration of non-zero TSM levels would also mean that
signaling the last significant scanning position might not be beneficial. This assumption is investigated in
IMP7-1, which is based on IMP7-0. In IMP7-1, the coding of the last significant scanning position described
in section 5.2.1 is disabled for the level coding of transform skip blocks. When no last significant scanning
position is transmitted, the bsig flags are coded for all scanning positions. Two exceptions exist: For sub-
blocks with bcsf = 0, where the TSM levels of all scanning positions within the sub-block are inferred to be
zero-valued, and for the last scanning position of a sub-block when all previously coded scanning positions
of the sub-block are zero-valued. HEVC RExt employs a single dedicated context model for coding the bsig
flags, which raises the general question of whether separate context models for TSM levels should be used
due to different statistics. An investigation is performed with IMP7-2, which is based on IMP7-1. The
template-based context modeling and the position-dependent context model sets are disabled in IMP7-2,
and a single context model is used for each context-coded flag. Because the conventional level coding, from
which TSRC is derived, utilizes binarization #2 denoted in table 6.3, the context-coded flags are bsig, b|x|>1,
bpar, and b|x|>3. A single context model is used for bsig, another context model is used for bpar, and a further
context model is employed for both b|x|>1 and b|x|>3, where all context models are initialized as EP. For
luma and chroma, different context model sets are used. The investigation on the efficiency of the level
coding is further extended in IMP7-3, which is based on IMP7-2. In IMP7-3, the Rice parameter selection
is disabled, i.e., the Rice parameter k = 0 is always used independently of the sum of absolute levels inside
the template. Finally, in IMP7-4 that is based on IMP7-3, the scanning pattern is reversed. Instead of a
sub-block-wise scanning from the bottom-right to the top-left of the block as illustrated in figure 5.2, the
scanning is sub-block-wise from the top-left to the bottom-right of the block. This modification evaluates
the rotation by 180◦ implemented in HEVC RExt for TSM levels described in section 7.2.1.

The BD-rates for the investigations are summarized in figure 7.5 relative to IMP7-0 with the maximum TSM
block size set equal to 32×32. Without signaling the last significant scanning position, the coding efficiency
is virtually the same as provided by the anchor for class F, while a slight loss in coding efficiency can be
observed for TGM. Disabling the template-based context modeling further improves the coding efficiency for
the class F test sequences in the All-Intra configuration, while the losses in coding efficiency are significant
for TGM. For all test sequences, disabling the Rice parameter selection introduces a significant loss in coding
efficiency, while reversing the scanning pattern improves the coding efficiency for all test sequences, even in the
Random-Access configuration. These investigations provide a starting point and reveal which components of
the level coding improve and which components harm the coding efficiency. Firstly, coding the last significant
scanning position is unnecessary for transform skip residual samples. Secondly, the template-based context
modeling and the Rice parameter selection can provide coding efficiency improvements, and the approach
implemented in HEVC RExt is not optimal for all test sequences. Thirdly, reversing the scanning pattern
improves coding efficiency for all test sequences, and even for a configuration with inter-predicted blocks.
IMP7-4 serves as the basis for further investigations, which are mainly focused on binarization, context
modeling, and Rice parameter selection. An advantage of using IMP7-4 is that the context modeling and
the Rice parameter selection are extremely simplified, facilitating further investigations for improving the
context modeling and Rice parameter selection for transform skip blocks.

7.3 | Binarization and Context Modeling of TSM Levels

The investigations IMP7-1 to IMP7-4 demonstrate that the context modeling and the Rice parameter selec-
tion of the conventional level coding provide improved coding efficiency also for the TSM levels. This section
focuses on further investigating both mentioned aspects and starts with a brief analysis of the statistics of

112



7.3. BINARIZATION AND CONTEXT MODELING OF TSM LEVELS

IMP7-1 IMP7-2 IMP7-3 IMP7-4
Tested Implementation

−0.2
−0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

B
D

-r
at

e
Class F: All-Intra
Class F: Random-Access
TGM: All-Intra
TGM: Random-Access

Figure 7.5
Coding efficiency of the investigations on the impact of different level coding components on the coding efficiency
(IMP7-1 to IMP7-4). In IMP7-1, the coding of the last significant scanning position is removed, and in IMP7-2
that is based on IMP7-1, each context-coded flag uses a single dedicated context model. In IMP7-3 that is based
on IMP7-2, the Rice parameter k = 0 is always used, and in IMP7-4 that is based on IMP7-3, the scanning
pattern is reversed.
Anchor for BD-rate computations: IMP7-0 with maximum TSM block size equal to 32×32

TSM levels. Based on the findings, investigations on the number of additional context-coded flags and the
context modeling are presented.

7.3.1 | Statistics of TSM Levels

The conventional level coding has been designed with the statistics of the absolute levels that appear for
camera-captured content in mind, as exemplarily illustrated by the histograms in figure 3.2. These empirical
distributions mainly arise from the transform and its energy compaction property for the residual signals
of camera-captured content. Without the transform, it is expected that the distributions are completely
different. The diagram on the left-hand side of figure 7.6 illustrates the histogram of absolute TSM levels for
8×8 blocks, which is dominated by zero-valued levels. On the right-hand side in figure 7.6, the histogram is
illustrated for the same data, but only considering non-zero absolute TSM levels. When ignoring the bsig flags,

0 1 2 3 4 5 6 7 8
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|)

Ĥ(|X|) = 1.15

8×8

1 2 3 4 5 6 7 8 9
|x|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(|x
|∣ ∣ X̸=

0)

Ĥ(|X|
∣∣X ̸= 0) = 2.83

8×8

Figure 7.6
Histograms of absolute and non-zero absolute TSM levels for 8×8 blocks, acquired by coding the first frame of
the SlideShow sequence using VTM-17. Quantized residual samples greater than eight were grouped into the last
bin of the histogram, and the QP was set to 32.

113



7.3. BINARIZATION AND CONTEXT MODELING OF TSM LEVELS

1 2 3 4 5 6 7 8

Number N of Additional Context-Coded b|x|>1+2n Flags

−8.5

−7.5

−6.5

−5.5

−4.5

−3.5

−2.5

−1.5

−0.5

0.5

B
D

-r
at

e

IMP7-5: AI (Class F)
IMP7-5: RA (Class F)
IMP7-5: AI (TGM)
IMP7-5: RA (TGM)

IMP7-6: AI (Class F)
IMP7-6: RA (Class F)
IMP7-6: AI (TGM)
IMP7-6: RA (TGM)

Figure 7.7
Coding efficiency of IMP7-5 and IMP7-6 implementing additional context-coded b|x|>1+2n flags. In IMP7-5, a
single context model is used for all b|x|>1+2n flags, a concept that is inherited from the conventional level coding.
In IMP7-6, each b|x|>1+2n flag employs a single dedicated context model.
Anchor for BD-rate computations: IMP7-4

the distribution of the absolute TSM levels is relatively flat, e.g., the probabilities for successive values may be
very similar, as illustrated on the right-hand side in figure 7.6 for |x| ∈ {2, 3, 4}. A further observation is that
for some specific values of |x|, the probability is smaller than for both the next smaller and the next greater
values. In the example illustrated in figure 7.6, a value with that property is |x| = 6. Both observations,
i.e., a relatively flat distribution and specific values with higher or lower probabilities than their neighboring
values, can also be observed in the histograms of absolute TSM levels of other block sizes. Consequently, the
geometric distribution used to model the empirical distribution of absolute transform coefficient levels does
not fit the observed data for absolute TSM levels. Based on this conclusion, the representation of absolute
transform coefficient levels, optimized for a geometric distribution (compare section 4.3), will be modified
for TSM levels by increasing the number of context-coded flags to improve the coding efficiency. Note that
increasing the number of context-coded flags for each level does not pose a problem to the throughput,
because the number of context-coded bins is subsequently limited by a budget, as described in section 6.5.

7.3.2 | Additional Context-Coded b|x|>1+2n Flags

The binarization of TSM levels in IMP7-4 is the same as for absolute transform coefficient levels, which
corresponds to binarization #2 denoted in table 6.3 and specifies the context-coded flags bsig, b|x|>1, bpar,
and b|x|>3. In the following description, the b|x|>1 and the b|x|>3 flags are represented as b|x|>1+2n flags,
with n ∈ {0, 1}. Because TCQ is not used in combination with TSM, the bpar flag is no longer required
and could therefore be removed from the binarization. However, to keep the syntax and semantics of TSRC
aligned with that of the conventional level coding, the binarization of the conventional level coding is only
extended by additional context-coded flags for TSRC. In the following investigations, the context modeling
of bpar remains unchanged compared to IMP7-2, i.e., a single dedicated context model is used, because a
modification to its context modeling revealed a negligible impact.

Let N denote the total number of additional context-coded b|x|>1+2n flags which are coded after b|x|>3. An
example of such a binarization is summarized in table 7.1 for the configuration with four additional context-
coded b|x|>1+2n flags. In the first investigation implemented in IMP7-5, the context modeling is untouched,
and each additional b|x|>1+2n flag with n ∈ {2, . . . , N + 1} uses the same context model as b|x|>1 and b|x|>3.
This concept of using the same context models for b|x|>1 and b|x|>3 was inherited from the conventional level
coding, where the original investigation, presented in section 5.4.3, showed that using the same set of context

114



7.3. BINARIZATION AND CONTEXT MODELING OF TSM LEVELS

models for b|x|>1 and b|x|>2 is feasible for transform coefficient levels that are geometrically distributed, as
shown in section 4.3. However, the context modeling for b|x|>1+2n in IMP7-5 inherited from the conventional
level coding may be unsuitable for TSM levels that are not geometrically distributed. Therefore, a second
investigation is performed to address the context modeling, where each b|x|>1+2n flag with n ∈ {0, . . . , N+1}
employs a single dedicated context model. This investigation is implemented in IMP7-6, and the total number
of context models for coding the b|x|>1+2n flags is equal to N + 2.

The experimental results for both investigations on additional context-coded b|x|>1+2n flags are summarized
in figure 7.7. While coding additional context-coded b|x|>1+2n flags generally provides coding efficiency
improvements, except in the All-Intra configuration for the TGM test sequences with IMP7-5, a suitable
context modeling has a much greater impact, as indicated by the coding efficiencies provided by IMP7-6. The
inappropriate context modeling implemented in IMP7-5 results in varying coding efficiency when increasing
the number of additional b|x|>1+2n flags. In contrast, for IMP7-6, the coding efficiency increases steadily
with the number of additional b|x|>1+2n flags. Given these results, the context modeling of IMP7-6 with
four additional context-coded b|x|>1+2n flags is selected as a compromise between coding efficiency and the
maximum number of context-coded bins per sample (mcps) for the TSM levels. This configuration is referred
to as IMP7-6∗ and is used as the basis for the following investigations.

7.3.3 | Template-Based Context Modeling of bsig

In IMP7-6∗, a single context model is utilized for coding the bsig flags, and the following investigations
analyze the impact of a template-based context modeling for bsig. In the conventional level coding, five
neighboring locations are evaluated, as depicted by the leftmost illustration in figure 7.8. This local template
is mirrored as depicted by the following illustration in figure 7.8, because the forward scanning is used in
TSRC, which was introduced in IMP7-4. In the first investigation implemented in IMP7-7, the efficiency of
the context modeling design for the conventional level coding is analyzed, where the template consists of five
neighboring locations, i.e., the shape of the template is as in the second illustration in figure 7.8. A further
investigation analyzes the impact of reducing the template to three neighboring locations as depicted by the
third illustration in figure 7.8. This template configuration is investigated in an additional coding experiment
using the implementation IMP7-8. In the final investigation implemented in IMP7-9, the template is further
reduced to two neighboring locations as depicted in the rightmost illustration of figure 7.8, because screen
content signals often consist of horizontal and vertical edges.

|x| bsig b|x|>1 bpar b|x|>3 b|x|>5 b|x|>7 b|x|>9 b|x|>11 z
0 0
1 1 0
2 1 1 0 0
3 1 1 1 0
4 1 1 0 1 0
5 1 1 1 1 0
6 1 1 0 1 1 0
7 1 1 1 1 1 0
8 1 1 0 1 1 1 0
9 1 1 1 1 1 1 0
10 1 1 0 1 1 1 1 0
11 1 1 1 1 1 1 1 0
12 1 1 0 1 1 1 1 1 0
13 1 1 1 1 1 1 1 1 0
14 1 1 0 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1

Table 7.1
Binarization table when coding four additional context-coded b|x|>1+2n flags in TSRC. The additional context-
coded b|x|>1+2n flags are b|x|>5, b|x|>7, b|x|>9, and b|x|>11 in this case.

115



7.3. BINARIZATION AND CONTEXT MODELING OF TSM LEVELS

× 
× × × 

Figure 7.8
Template configuration for IMP7-7 to IMP7-9, where the template-based context modeling of bsig in TSRC is
investigated. The leftmost template configuration corresponds to IMP7-4, i.e., the template configuration of
the conventional level coding. The following template configurations are implemented for IMP7-7, IMP7-8, and
IMP7-9.

Experimental Results for Different Template Shapes

For all tested implementations, the context modeling for bsig inherited from the conventional level coding is
used. Let T be the size of the template, then, in the first step, the clipped sum Sc is derived by:

Sc =
T−1∑
i=0

min (|x (i)|, 12 + bpar). (7.1)

Recall that two coding phases are used for the level coding, as in the case of conventional level coding, and
only the partially reconstructed values available after the first coding phase can be used as input for the
template-based context modeling. Therefore, the maximum absolute level magnitude that can be utilized for
the template-based context modeling depends on the number of coded b|x|>1+2n flags, which is equal to six
in all tested implementations. For six context-coded b|x|>1+2n flags, the absolute maximum level magnitudes
are 12 or 13, depending on the value of bpar, as illustrated in table 7.1. In the following second step, Sc is
mapped to the context model offset δsig according to

δsig = min (5, Sc) . (7.2)

Compared to IMP7-6∗, the only modification is the context modeling of the bsig flags and the number of
context models for bsig is equal to six for all tested implementations.

The experimental results of the investigations are summarized by figure 7.9 using IMP7-6∗ as the anchor
for BD-rate computations. Compared to the experimental results of IMP7-2, where the template-based
context modeling for all context-coded flags was disabled, two aspects can be observed. Firstly, the coding
efficiency is improved for all tested configurations and implementations, which could not be expected since
disabling the template-based context modeling in IMP7-2 resulted in a coding efficiency improvement for
class F in the All-Intra configuration, but coding efficiency losses in all other configurations. Secondly, all
tested template configurations provide higher absolute BD-rate values than those of IMP7-2, meaning that
the template-based context modeling of IMP7-7 to IMP7-9 provides higher coding efficiency than the variant
of the conventional level coding implemented in IMP7-1 or IMP7-0. The differences between IMP7-7 and
IMP7-1 are the sub-block-wise scanning from the top-left to the bottom-right corner of the block, the fixed
Rice parameter selection with k = 0, and a single context model for all other context-coded flags. None of
these changes explain that using the template-based context modeling for bsig, as in IMP7-7 to IMP7-9, has
a different effect on the compression efficiency compared to the investigation in IMP7-2, where the template-
based context modeling was disabled. Consequently, the main effect can be traced back to separating the
context models used for coding the TSM levels and absolute transform coefficient levels. Furthermore,
reducing the template size from five to two neighboring locations improves the coding efficiency for TSM
levels.

116



7.3. BINARIZATION AND CONTEXT MODELING OF TSM LEVELS

IMP7-7 IMP7-8 IMP7-9
Tested Implementation

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5
B
D

-r
at

e

Class F: All-Intra
Class F: Random-Access
TGM: All-Intra
TGM: Random-Access

Figure 7.9
Coding efficiency of the investigations on different local template configurations for the context modeling of bsig.
In IMP7-7, the local template consists of five neighboring locations similar to the conventional level coding. In
IMP7-8, the local template is reduced to the three next neighboring locations, while in IMP7-9, only the top and
the left neighboring locations are considered.
Anchor for BD-rate computations: IMP7-6∗

Investigation on the Clipping Value Msig

In IMP7-7 to IMP7-9, the shape of the template was experimentally investigated, while the mapping of Sc to
the context model offset δsig was inherited from the conventional level coding by clipping Sc to five. A further
investigation implemented in IMP7-10, based on the template configuration consisting of two neighboring
locations (IMP7-9), was conducted to justify the choice of the selected clipping value. This investigation
corresponds to the investigation IMP5-9 performed in section 5.4.2, but for TSM levels and a template
configuration with two neighboring locations. Let Msig denote the clipping value, then equation (7.2) is
changed in IMP7-10 to:

δsig = min (Msig, Sc) . (7.3)

For IMP7-10, the number of context models for the significance flag is equal to Msig+1. The coding efficiencies
provided by different values of Msig are summarized in figure 7.10. While increasing the clipping value
provides further coding efficiency improvements, the achievements are insignificant compared to the coding
efficiency improvement provided by, for example, the introduction of additional context-coded b|x|>1+2n

flags. For this reason, the clipping value is kept equal to five, as in the conventional level coding, for further
investigations.

Alternative Context Modeling Evaluating bsig

For absolute transform coefficient levels, neighboring frequency locations consisting of a high absolute magni-
tude increase the probability that the current scanning position is non-zero, as indicated by the investigations
in section 5.4.2. For TSM levels, this property is less pronounced, meaning that the estimation of the con-
ditional probabilities for bsig are not improved significantly by evaluating absolute TSM levels greater than
one. Consequently, evaluating the value of the neighboring bsig flags could be sufficient. This aspect is
briefly analyzed in a further investigation, which is based on the template-based context modeling with two
neighboring locations (IMP7-9). Instead of deriving the sum Sc as in equation (7.1), the sum Sc is calculated
according to

Sc =

T−1∑
i=0

min (|x| (i) , 1). (7.4)

117



7.3. BINARIZATION AND CONTEXT MODELING OF TSM LEVELS

1 2 3 4 5 6 7 8

Clipping Threshold Msig

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

B
D

-r
at

e
Class F: All-Intra
Class F: Random-Access
TGM: All-Intra
TGM: Random-Access

Figure 7.10
Coding efficiency of IMP7-10 that implements different configurations for the clipping value Msig, which is used
to limit Sc prior to the mapping to the context model offset δsig.
Anchor for BD-rate computations: IMP7-9

The number of context models for coding bsig is equal to three in this investigation. Compared to IMP7-9 that
uses equation (7.1) to derive a context model for bsig and serves as the anchor for BD-rate computations,
using equation (7.4) results in BD-rates of 0.04% (All-Intra Class F), 0.19% (Random-Access Class F),
-0.02% (All-Intra TGM), and 0.09% (Random-Access TGM). This alternative context modeling offers slight
implementation advantages. The context modeling of bsig for the next scanning positions can be determined
already in parallel after parsing a bsig flag, instead of after parsing the last b|x|>1+2n flag for the current
scanning position.

7.3.4 | Template-Based Context Modeling of b|x|>1+2n

The investigations on the number of additional context-coded b|x|>1+2n flags (section 7.3.2) showed that for
b|x|>1+2n flags with different values of n, different context model sets should be used., because the geometric
distribution does not accurately represent the TSM levels. This aspect has to be considered for the following
investigations on the template-based context modeling of b|x|>1+2n flags. In the conventional level coding
implemented in IMP5-19∗, which represents the final configuration of the template-based context modeling
presented in chapter 5, the sum Sc is used for deriving a context model for b|x|>1 and b|x|>2, while both flags
share the same context model set. This approach would result in a significant loss in coding efficiency due
to sharing the context model sets, as indicated by the experimental results for IMP7-5 and IMP7-6. An
adjustment is necessary to comply with the fact that different context model sets should be used for b|x|>1+2n

flags with different values of n. In the first investigation implemented in IMP7-11, the sum Sc is derived as
for bsig denoted in equation (7.1), and it is mapped to the context model offset for b|x|>1+2n according to

δ|x|>1+2n = min (5, Sc) + 6n. (7.5)

The selected clipping value of five should not impact the coding efficiency significantly, as indicated by the
investigations on the clipping value MgtX in IMP5-10 and IMP5-11, presented in section 5.4.3. In IMP7-11,
the number of context models for each set is extended by five additional context models, which results in
6(N + 2) context models for the b|x|>1+2n flags in total.

For typical TSM levels, it can be assumed that the neighboring horizontal or vertical location has a similar
magnitude, as shown by the leftmost illustration in figure 7.2. Therefore, for the currently coded b|x|>1+2n

flag, evaluating whether the neighboring locations inside the template exceed the threshold 1 + 2n might
provide more accurate probability estimates. This aspect is examined in implementation IMP7-12, where Sc

118



7.3. BINARIZATION AND CONTEXT MODELING OF TSM LEVELS

IMP7-11 IMP7-12
Tested Implementation

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

B
D

-r
at

e

Class F: All-Intra
Class F: Random-Access
TGM: All-Intra
TGM: Random-Access

Figure 7.11
Coding efficiency of the investigations on different template-based context modeling for the b|x|>1+2n flags. In
IMP7-11, Sc is clipped to five and mapped to δ|x|>1+2n. In IMP7-12, S|x|>1+2n is used instead of Sc to derive the
context model offsets δ|x|>1+2n.
Anchor for BD-rate computations: IMP7-9

is replaced by S|x|>1+2n, which is derived by evaluating the value of the neighboring b|x|>1+2n flags with the
same value for n as for the b|x|>1+2n flag to be coded. Thus, S|x|>1+2n represents the number of locations
inside the template for which the absolute levels have a value strictly greater than 1 + 2n. This evaluation
can be summarized by:

S|x|>1+2n =

T−1∑
i=0

min (max (|x (i)| − (1 + 2n), 0) , 1). (7.6)

The number of context models for this investigation is equal to 3 (N + 2), and a clipping of S|x|>1+2n, as for
Sc in IMP7-11, is not required for the derivation of a context model offset. The coding efficiencies obtained
for both investigations are summarized in figure 7.11. When using Sc to derive the context model as in
the conventional level coding, the template-based approach provides slight coding efficiency improvements
(IMP7-11), especially in the All-Intra configuration. For TSM levels, considering only the neighboring
b|x|>1+2n flags with the same value of n improves the coding efficiency further, as the BD-rates achieved
by IMP7-12 demonstrate. However, these coding efficiency improvements are relatively small compared to
the coding efficiency achieved by using a single dedicated context model for each b|x|>1+2n. The position-
dependent context model sets used in the conventional level coding are not investigated for TSRC, because
this approach implicitly assumes that the level magnitudes decrease from the top-left to the bottom-right of
a block. Such a concentration of the absolute levels is not given for TSM levels, and therefore, the concept of
the position-dependent context model sets is unsuitable for the context modeling of the context-coded flags
in TSRC.

7.3.5 | Rice Parameter Selection

For the investigation implemented in IMP7-3 and presented in section 7.2.5, the template-based Rice pa-
rameter selection of the conventional level coding was replaced by a fixed Rice parameter of k = 0. This
investigation indicated that disabling the template-based Rice parameter selection of the conventional level
coding harms the coding efficiency. The fixed Rice parameter of k = 0 was used throughout all coding
experiments from IMP7-3 to IMP7-12. With the introduction of additional b|x|>1+2n flags in section 7.3.2,
the probability distribution of the remainders is changed significantly. Due to the additional b|x|>1+2n flags,
the number of coded remainders should be less, and the corresponding magnitudes of the remainders should
be significantly smaller compared to a configuration without additional b|x|>1+2n flags. Consequently, the

119



7.3. BINARIZATION AND CONTEXT MODELING OF TSM LEVELS

Template-Based k = 1 k = 2 k = 3 k = 4 k = 5

Rice Parameter Selection

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

B
D

-r
at

e
Class F: All-Intra
Class F: Random-Access
TGM: All-Intra
TGM: Random-Access

Figure 7.12
Coding efficiency of IMP7-13 and IMP7-14 implementing different techniques for selecting the Rice parameter
in TSRC. Different fixed Rice parameters k are investigated in IMP7-13, while in IMP7-14, the template-based
Rice parameter selection is utilized using updated thresholds. The anchor uses a Rice parameter of k = 0.
Anchor for BD-rate computations: IMP7-9

template-based Rice parameter selection would become less efficient compared to a configuration without
additional b|x|>1+2n flags. Based on this indication, the first investigation implemented in IMP7-13 analyzes
different fixed Rice parameters. The coding efficiency of the template-based Rice parameter selection with
updated thresholds is verified in the second investigation implemented in IMP7-14. The thresholds were
determined according to the description in section 5.4.3, and similar to the determination in section 6.4.3 for
the binarizations with bpar, the maximum useful Rice parameter is equal to two. In IMP7-14, the updated
thresholds for the Rice parameter selection are M1

Rice = 11 and M2
Rice = 24.

In figure 7.12, experimental results for both investigations are summarized, where the bars of the first tick
mark on the x-axis denote the coding efficiencies obtained for the template-based Rice parameter selection
with updated thresholds implemented in IMP7-14. The coding efficiency provided by fixed Rice parameters
implemented in IMP7-13 is summarized in figure 7.12 by the bars of tick marks denoting the used Rice
parameter k on the x-axis. Compared to IMP7-9, which serves as the anchor for BD-rate computations and
employs a fixed Rice parameter of k = 0, updating the thresholds for the template-based Rice parameter se-
lection results in a slight improvement in coding efficiency (IMP7-14). This improvement is, however, almost
identical to the improvement provided by using a fixed Rice parameter of k = 1 (IMP7-13). Consequently,
the assumption that the impact of the Rice parameter selection is marginal after introducing additional
b|x|>1+2n flags is reasonable. Based on the experimental results, a fixed Rice parameter of k = 1 is chosen
for further investigations, and this configuration is referred to as IMP7-13∗.

7.3.6 | Context-Coded Sign Information

Up to this point, only absolute TSM levels or absolute transform coefficient levels were considered, because
the probability for a positive or negative sign is approximately equal. During the TSRC development, it was
discovered that the TSM levels are often asymmetrically distributed around zero, and histograms of non-zero
TSM levels are illustrated in figure 7.13 to demonstrate the observation. A probable reason for the observed
property is that the predictions supported in the underlying VVC are inefficient on sharp edges commonly
found in screen content, resulting in a locally constant signal. Because of this local concentration of constant
samples, the predicted samples are either constantly below or above the original samples. Based on this
observation, coding bsign with adaptive context models could improve coding efficiency, and the following
investigations were performed on the context modeling of bsign:

120



7.3. BINARIZATION AND CONTEXT MODELING OF TSM LEVELS

-8-7-6-5-4-3-2-1 1 2 3 4 5 6 7 8
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(x
∣ ∣ x̸=

0
) p̂(sgn(X) = 1) = 0.70

Ĥ(sgn(X)) = 0.88

4×4

-8-7-6-5-4-3-2-1 1 2 3 4 5 6 7 8
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(x
∣ ∣ x̸=

0)

p̂(sgn(X) = 1) = 0.77

Ĥ(sgn(X)) = 0.78

8×8

-8-7-6-5-4-3-2-1 1 2 3 4 5 6 7 8
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(x
∣ ∣ x̸=

0)

p̂(sgn(X) = 1) = 0.85

Ĥ(sgn(X)) = 0.60

16×16

-8-7-6-5-4-3-2-1 1 2 3 4 5 6 7 8
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p̂
(x
∣ ∣ x̸=

0
) p̂(sgn(X) = 1) = 0.80

Ĥ(sgn(X)) = 0.71

32×32

Figure 7.13
Histograms of TSM levels for different block sizes, acquired by coding the first frame of the SlideShow sequence
using VTM-17. Quantized residual samples with an absolute value greater than eight were grouped into the first
or last bin of the histogram, and the QP was set to 32. The empirical probability for a negative sign and the
empirical entropy for the sign are denoted below the block size notation on the top of each histogram.

IMP7-15 This investigation aims to verify the effectiveness of an adaptive context model for coding bsign,
and the corresponding implementation employs a single dedicated context model for coding the
bsign flags.

IMP7-16 In this investigation, it is verified whether a template-based context modeling for the bsign flags
can provide additional coding efficiency improvements. The same template as for coding the
bsig flags is employed (rightmost illustration in figure 7.8), and the total number of neighboring
locations with a negative sign is used as context model offset, resulting in three context models
for the bsign flags.

IMP7-17 This implementation further extends the template-based context modeling, which is implemented
in IMP7-16, by mapping each unique combination of negative signs inside the template to a
context model offset, which results in four context models in total. The goal of this study is
to find out whether a more advanced context modeling can provide further coding efficiency
improvements.

IMP7-18 An observation made during the development is that the difference in the probability of positive
and negative signs becomes more significant with increasing absolute level magnitude. This
property can also be observed for the empirical probabilities shown in the example histograms
of figure 7.13. This implementation is based on IMP7-16, and it investigates the mentioned
observation by using a dedicated context model for |x| = 1, which occurs most frequently after
zero.

In contrast to the other context-coded flags, where different context model sets are employed in luma and
chroma, it was discovered that the distributions of the bsign flags in luma and chroma are comparable.

121



7.3. BINARIZATION AND CONTEXT MODELING OF TSM LEVELS

15-1 15-2 16-1 16-2 17-1 17-2 18-1 18-2
Tested Implementation

−7

−6

−5

−4

−3

−2

−1
B
D

-r
at

e
Class F: All-Intra
Class F: Random-Access

TGM: All-Intra
TGM: Random-Access

Figure 7.14
Coding efficiency of IMP7-15 to IMP7-18 implementing different context modeling for coding the bsign flags in
TSRC, abbreviated as 15 to 18 on the x-axis. The number following the hyphen for each label denotes whether
different context models are used for luma and chroma for each implementation. “1” denotes that the same
context models are used for luma and chroma, while “2” denotes that different context models are used for luma
and chroma.
Anchor for BD-rate computations: IMP7-13∗

Therefore, additional coding experiments were conducted for all investigations, where the context models
are shared between luma and chroma.

The experimental results of the investigations on coding bsign with context models are summarized in fig-
ure 7.14, where the label of each tick mark is the abbreviation of the tested implementation, e.g., 15 is the
abbreviation for IMP7-15. The number that follows the hyphen for each label denotes whether different
context models are used for luma and chroma for each implementation. “1” denotes that the same context
models are used for luma and chroma, while “2” denotes that different context models are used for luma and
chroma. Coding the bsign flags with a single context model improves coding efficiency significantly (IMP7-15
as 15-1 in figure 7.14), and using different context models for luma and chroma further increases the im-
provements (IMP7-15 as 15-2 in figure 7.14). This improvement achieved by different context models for
luma and chroma disappeared when using a template-based context modeling, as indicated, for example, by
the BD-rates obtained for IMP7-16 in the third and fourth tick marks. Both investigations on using more
context models in IMP7-17 and IMP7-18 do not offer a higher coding efficiency than the template-based
variant in IMP7-16 that is based on counting the number of negative signs. Based on these experimental
results, the chosen context modeling for the bsign is the template-based variant implemented in IMP7-16
with the same context models used for luma and chroma.

7.3.7 | Coding Efficiency Provided by TSRC, IBC, and PLT Enabled

The development of TSRC with its final design implemented in IMP7-16 was presented without considering
other screen content tools. Different coding experiments were conducted to investigate the coding efficiencies
of TSM and TSRC in combination with the other screen content coding tools, including an analysis of the
interference between TSRC and IBC and between TSRC and PLT.

Coding Efficiency of TSM with TSRC

The combined coding efficiency provided by TSM and TSRC is added to the summary presented in figure 7.4
to be able to make a comparison, and the resulting summary is illustrated figure 7.15. For all coding
experiments, the anchor used for BD-rate computations is VTM-17 without screen content coding tools

122



7.3. BINARIZATION AND CONTEXT MODELING OF TSM LEVELS

TSM TSM+TSRC IBC PLT
Screen Content Coding Tools Comparison

−42
−39
−36
−33
−30
−27
−24
−21
−18
−15
−12
−9
−6
−3
0

B
D

-r
at

e

Class F: All-Intra
Class F: Random-Access
TGM: All-Intra
TGM: Random-Access

Figure 7.15
Coding efficiency provided by TSM (maximum allowed block size equal to 32×32 samples) with TSRC, IBC, and
PLT.
Anchor for BD-rate computations: IMP7-0 without screen content coding tools

(IMP7-0) and the corresponding coding tool is enabled in the tested configuration. The BD-rates achieved
by enabling TSM change from -5.82% to -11.54% (All-Intra) and from -5.86% to -10.30% (Random-Access)
for test sequences of Class F when using TSRC. For the test sequences of TGM, the bit-rate savings are
increased by about 12% in the All-Intra configuration and 6% in the Random-Access configuration. Note
that TSM with TSRC achieves coding efficiencies close to that of IBC for test sequences of class F. For the
test sequences of TGM, virtually the same coding efficiency as for IBC is achieved in the Random-Access
configuration, while IBC provides a higher coding efficiency in the All-Intra configuration. Although the
coding efficiency achieved by the combination TSM+TSRC is slightly less than that for IBC or PLT in a
configuration using one screen content coding tool, the concept of TSM+TSRC is comparably simple. It
requires only small modifications at the encoder side, which is particularly suitable for camera-captured
content augmented by screen content overlays, as for some of the test sequences of class F.

Coding Efficiency of IBC and PLT with and without TSRC

Different coding experiments were performed to investigate the interference between TSRC and IBC and
between TSRC and PLT. In figure 7.16, the coding efficiency provided by enabling IBC and PLT is reported
separately in two different configurations. For the first and second tick marks in figure 7.16, TSM is enabled
without the dedicated TSRC in both the anchor and the test candidate, which corresponds to IMP7-0. The
configuration used for the BD-rates of the third and fourth tick marks in figure 7.16 has additionally TSRC
enabled in both the anchor and the test candidate, which corresponds to IMP7-16. The BD-rates of these
coding experiments indicate that the coding efficiency improvements achieved by IBC are higher with a
dedicated TSRC, meaning that IBC benefits from TSRC, and both coding tools can be combined effectively,
even though TSRC was developed with IBC disabled (compare the BD-rates denoted in the first and third
tick marks). Since PLT uses a dedicated coding path, meaning TSRC is not active when a block utilizes
PLT, improving the coding efficiency for TSM with TSRC reduces the observed improvement for PLT when
TSRC is enabled (compare the BD-rates denoted in the second and the fourth tick marks). However, future
research could address this incompatibility because the signaling in PLT is not entirely different from that
of TSRC [118].

123



7.3. BINARIZATION AND CONTEXT MODELING OF TSM LEVELS

1: IBC 1: PLT 2: IBC 2: PLT
Screen Content Coding Tools Comparison

−35
−32
−29
−26
−23
−20
−17
−14
−11
−8
−5
−2

B
D

-r
at

e

Class F: All-Intra
Class F: Random-Access
TGM: All-Intra
TGM: Random-Access

Figure 7.16
Coding efficiency provided IBC and PLT with and without TSRC enabled. The first and second tick marks denote
the BD-rates for enabling IBC and PLT, where TSM without TSRC is enabled in both the anchor and the tested
candidate. In the third and fourth tick marks, the BD-rates for enabling IBC and PLT are summarized, where
TSM with TSRC is enabled in both the anchor and the tested candidate.
Anchor for BD-rate computations: 1: IMP7-0 with TSM enabled
Anchor for BD-rate computations: 2: IMP7-16 with TSM and TSRC enabled

Coding Efficiency of Individual Coding Tools

Figure 7.17 summarizes the coding efficiency achieved by individual screen content coding tools in a con-
figuration with TSM+TSRC, IBC, and PLT enabled. The tested candidate is IMP7-16 with TSM, TSRC,
IBC, and PLT enabled, whereas the anchor for the coding tool under investigation has the corresponding
coding tool disabled. TSRC proves its effectiveness in this configuration by achieving slight coding efficiency
improvement. The combination of TSM+TSRC, for which TSRC is mainly developed, achieves a coding
efficiency improvement similar to that for PLT, while IBC achieves the highest improvement in this configu-
ration. That IBC provides the highest coding efficiency in this investigation further supports the indication
that TSRC is beneficial in combination with IBC, since it also improves the coding of the IBC residual signal.

Encoding and Decoding Times

A benefit of TSRC is that the encoding and decoding times in the VTM implementation are about 5%
faster than an anchor using conventional residual coding for TSM levels. IBC requires about 200% encoding
time for the test sequences of class F and 110% for test sequences of TGM, while the decoding time is
similar to that of the anchor. These encoding times of IBC suggest that search efforts implemented in the
reference encoder are less the more screen content can be found within the video sequence. For PLT, the
encoding times are about 105% for test sequences of class F and 100% for the test sequences of TGM.
Among the investigated screen content coding tools, the combination of TSM and TSRC has the smallest
encoding overhead to achieve a high coding efficiency for screen content. For further improving the coding
efficiency and for coding screen content video sequences, the combination of TSM+TSRC with IBC and PLT
is suitable, because the required encoder search effort for IBC and PLT is significantly reduced when the
video sequence purely consists of screen content.

7.3.8 | Binarization Without the bpar Flags

In the investigations on additional context-coded b|x|>1+2n flags in section 7.3.2, it was noted that the bpar
flag is not required, because TCQ is not supported for transform skip blocks. Nevertheless, the binarization
of the conventional level coding (with the parity flag bpar) was maintained to keep the syntax and semantics

124



7.3. BINARIZATION AND CONTEXT MODELING OF TSM LEVELS

TSRC TSM+TSRC IBC PLT
Screen Content Coding Tools Comparison

−25
−23
−21
−19
−17
−15
−13
−11
−9
−7
−5
−3
−1

B
D

-r
at

e

Class F: All-Intra
Class F: Random-Access
TGM: All-Intra
TGM: Random-Access

Figure 7.17
Coding efficiency provided by individual screen content coding tools. The tested candidate is IMP7-16 with TSM,
TSRC, IBC, and PLT enabled, whereas the anchor is IMP7-16 configured with the coding tool under investigation
disabled, but the other screen content coding tools are enabled.
Anchor for BD-rate computations: IMP7-16 with TSRC, TSM+TSRC, IBC, or PLT disabled

of TSRC aligned with that of the conventional level coding. The binarization without bpar is briefly studied
in the following investigations.

Coding of Additional Context-Coded b|x|>m Flags

In the following investigation, the binarization without the bpar flag is implemented by removing the bpar flag,
and the impact of the additional context-coded b|x|>m flags is analyzed. The corresponding implementation
is referred to as IMP7-19 and it is based on IMP7-16. If no additional context-coded b|x|>m flags are coded,
the first coding phase of IMP7-19 consists of the context-coded flags bsig, bsign, b|x|>1, and b|x|>2. Because the
meanings of bsig, b|x|>1, and bsign are the same as for the binarization with bpar, the corresponding context
modeling is unmodified. Each context-coded flag transmitted after b|x|>1 uses a dedicated context model, as
used for the b|x|>1+2n flags in the binarization with bpar. Let N be the number of additional context-coded
b|x|>m flags. Then, the derivation of Sc used for the template-based context modeling of bsig is changed to

Sc =

T−1∑
i=0

min (|x (i)|, 3 +N). (7.7)

The coding efficiencies of IMP7-19 for different numbers of additional context-coded b|x|>m flags are sum-
marized in figure 7.18. The anchor used for BD-rate computations is IMP7-16, i.e., the final design of
TSRC using the binarization with bpar. Compared to the binarization with bpar, a similar coding efficiency
is achieved by coding nine additional context-coded b|x|>m flags. For this configuration, the maximum level
magnitude that can be signaled by the context-coded flags for a scanning position is equal to 12, which
corresponds to the value for the binarization with bpar and four additional context-coded b|x|>1+2n flags.
This relationship indicates that the coding efficiency is mainly impacted by the maximum level magnitude
that can be signaled by the context-coded flags only, while the impact of the actual binarization (with or
without a parity flag) is comparably small.

Comparison Between the Binarization With and Without bpar

The previous investigation showed that the cut-off value between the context-coded flags and bypass-coded
remainder mainly impacts the coding efficiency, because the absolute TSM levels are not geometrically dis-
tributed. To directly compare the binarizations with and without the parity flag, the same coding experiment

125



7.3. BINARIZATION AND CONTEXT MODELING OF TSM LEVELS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number N of Additional Context-Coded b|x|>m Flags

−1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

B
D

-r
at

e
Class F: All-Intra
Class F: Random-Access

TGM: All-Intra
TGM: Random-Access

Figure 7.18
Coding efficiency of IMP7-19 implementing additional context-coded b|x|>m flags for a binarization without the
bpar flag in TSRC.
Anchor for BD-rate computations: IMP7-16

as for the investigation using IMP7-5 was conducted, i.e., the impact of additional context-coded b|x|>1+2n

flags was analyzed, but with the final TSRC design implemented in IMP7-16. This implementation is referred
to as IMP7-20, and the coding efficiency in comparison to the binarization without bpar is summarized in
figure 7.19. Each tick mark in the x-axis denotes the total number of context-coded flags, starting at six.
For the binarization with bpar, the six context-coded flags are bsig, bpar, bsign, and three b|x|>1+2n flags, while
for the binarization without bpar, the flags are bsig, bsign, and four b|x|>m flags. The anchor for BD-rate com-
putations is IMP7-16, which consists of nine context-coded flags. From figure 7.19, it can be concluded that
the binarization with bpar is more effective, because the coding efficiency is higher than for the binarization
without bpar for the same number of context-coded flags.

Conclusion on Binarization Without bpar

Because the geometric distribution does not represent a suitable model for the distribution of the absolute
TSM levels, the critical factor for the coding efficiency is the cut-off value between the context-coded flags and
the bypass-coded remainder. Therefore, for achieving the same coding efficiency, the binarization without
parity flag requires three to four more context-coded bins than the binarization with parity flag.

7.3.9 | Implementation of TSRC in VVC

The initial TSRC design integrated into VVC originated from the development presented in this chapter
[116, 119]. In the TSRC finally specified for VVC, additional aspects contributed by other authors were
included. The TSRC in VVC uses eight instead of nine context-coded bins, and the context-coded bins in
VVC are coded in two coding phases, where the first coding phase includes the bsig, bsign, bpar, and b|x|>1

flags and the second coding phase includes the b|x|>3, b|x|>5, b|x|>7, and b|x|>9 flags. These two aspects
were not addressed explicitly in this thesis, because they mainly affect the interaction with the concept
for reducing the maximum number of context-coded bins, which is not covered in this chapter. The basic
concept used for limiting the maximum number of context-coded bins in TSRC is similar to the concept
used for conventional level coding, which effectively limits the mcps to 1.75 [119, 120]. In addition, the
template-based context modeling for bsig evaluates whether the neighboring locations are zero-valued, as
presented in the investigations in section 7.3.3 [116]. The context modeling of the b|x|>1+2n flags is a mixture
of a single dedicated context model and the template-based approach. For the b|x|>1 flag coded in the first
coding phase, the template-based context modeling, as investigated in IMP7-11, is employed, while for the

126



7.4. FINDINGS AND TECHNICAL ACHIEVEMENTS

6 7 8 9 10 11 12 13 14 15 16 17 18

Number of Context-Coded Flags

−1
0

1

2

3

4

5

6

7

8

9

10

B
D

-r
at

e
IMP7-19: AI (Class F)
IMP7-19: RA (Class F)
IMP7-19: AI (TGM)
IMP7-19: RA (TGM)

IMP7-20: AI (Class F)
IMP7-20: RA (Class F)
IMP7-20: AI (TGM)
IMP7-20: RA (TGM)

Figure 7.19
Impact of the total number of context-coded bins on the coding efficiency for a binarization with a parity flag
(IMP7-20) and a binarization without the parity flag (IMP7-19).
Anchor for BD-rate computations: IMP7-16

b|x|>1+2n flags coded in the second coding phase, a single dedicated context model is used for each flag.
The derivation of the context model offset for the template-based context modeling of bsign was modified by
comparing the signs of the neighboring locations instead of counting the number of negative signs [121]. Let
sgn (xl) denote the sign of the left neighboring location and sgn (xt) that of the neighboring location above.
Then, the context model offset δsign is derived according to

δsign =


0, if (sgn (xl) = 0 ∧ sgn (xt) = 0) ∨ (sgn (xl) · sgn (xt) < 0) ,

1, if (sgn (xl) ≥ 0 ∧ sgn (xt) ≥ 0) ∧ (sgn (xl) ̸= 0 ∨ sgn (xt) ̸= 0) ,

2, otherwise.
(7.8)

Finally, the binarization of the absolute TSM levels is altered by swapping the codewords for |x| = 1 and the
maximum absolute value of the levels located above and to the left [121], similar to the concept implemented
in the conventional level coding for completely bypass-coded levels [101]. Let |x|l denote the absolute TSM
level of the left neighbor, and |x|t the absolute TSM level of the above neighbor. Furthermore, let |x|r denote
the absolute TSM level reconstructed from the bitstream and |x|p = max (|x|l, |x|t). Then, the final absolute
TSM level |x| is derived according to

|x| =


|x|p, if |x|r = 1 ∧ |x|p > 0,

|x|r − 1, if 1 < |x|r < |x|p,
|x|r, otherwise.

(7.9)

7.4 | Findings and Technical Achievements

The development of TSRC, a level coding designed for TSM levels presented in this chapter, is based on
statistical analyses of TSM levels and subsequent findings, which can be summarized as follows:

• The signaling of the last significant scanning position, beneficial for coding transform coefficient levels,
has no advantage for the coding of TSM levels.

• Scanning the TSM levels sub-block-wise from the top-left to the bottom-right corner of the block is
more suitable for coding TSM levels than the sub-block-wise scanning from the bottom-right to the
top-left corner of the block used in the conventional level coding.

127



7.5. CHAPTER SUMMARY

• Coding additional context-coded b|x|>1+2n flags in combination with a dedicated context model set for
each value of n improves the coding efficiency significantly, because the distribution of absolute TSM
levels significantly deviates from a geometrical distribution.

• The concept of template-based context modeling of the conventional level coding (introduced in chap-
ter 5) remains suitable for coding the bsig flags in TSRC, but fewer neighboring locations and context
models provide higher coding efficiency when coding TSM levels.

• A fixed Rice parameter of k = 1 can be used due to the introduction of additional context-coded
b|x|>1+2n flags, which provides virtually the same coding efficiency as a template-based Rice parameter
selection.

• The distributions of TSM levels are not symmetric around zero, which can be exploited by coding the
bsign flags with adaptive context models.

The presented TSRC impacts practical video coding applications, because it is a component of the VVC
specification. The following list summarizes the key elements:

• VVC specifies a level coding for TSM levels that provides a similar coding efficiency as the variant
presented in this chapter.

• The integration of a dedicated TSRC into VVC originated from the development presented in this
chapter [116, 119].

• No last significant scanning position is coded in TSRC of VVC, as presented in this chapter.

• The sub-block-wise scanning from the top-left to the bottom-right corner of the block is specified for
TSRC of VVC, as presented in this chapter.

• The template-based context modeling of bsig together with the template configuration consisting of the
top and the left neighboring locations, as presented in this chapter, is specified for TSRC of VVC.

• The coding of additional context-coded b|x|>1+2n flags, as developed and presented in this chapter, is
also specified for TSRC of VVC.

• The coding of the bsign flags in TSRC with a template-based context modeling, as presented in this
chapter and later extended, can also be found in the specification of TSRC in VVC.

7.5 | Chapter Summary

This chapter started with a review of the coding efficiency that can be achieved with TSM and compared it to
that of other dedicated screen content coding tools. In the first investigations presented in this chapter, differ-
ent modifications to the conventional level coding were investigated, including the impact of coding the last
significant scanning position, the effectiveness of the template-based context modeling and the Rice parameter
selection, as well as reversing the scanning pattern, i.e., using the sub-block-wise scanning from the top-left
to the bottom-right corner instead of sub-block-wise scanning from the bottom-right to the top-left corner.
Further investigations were focused on context modeling and the coding of additional context-coded b|x|>1+2n

flags. With an appropriate context modeling for the b|x|>1+2n flags, the coding of four additional context-
coded b|x|>1+2n flags provides significant coding efficiency improvements. The following studies investigated
the efficiency of the template-based context modeling for bsig with the conclusion that the template-based
context modeling achieves improved coding efficiency. This improvement in coding efficiency is higher for a
template shape that consists of only two neighboring locations and requires fewer context models compared
to the context modeling of the conventional level coding. However, the effect of the template-based context
modeling on the b|x|>1+2n flags is only marginal. After increasing the number of context-coded b|x|>1+2n flags,
a fixed Rice parameter of k = 1 turned out to provide virtually the same coding efficiency as a template-
based variant. Finally, the coding of the bsign flags with adaptive context models, based on the observation
that the TSM levels are not symmetrically distributed around zero, further improves the coding efficiency of
TSRC significantly. With the achieved coding efficiency improvement delivered by TSRC, the combination

128



7.5. CHAPTER SUMMARY

of TSM and TSRC provides an attractive screen content coding tool, especially suitable for camera-captured
video sequences with some screen content overlays. It was also shown that IBC benefits from the presented
TSRC, because the IBC residuals can often be represented more efficiently by the combination of TSM and
TSRC than by transform coding or transform skip combined with conventional level coding.

129



CHAPTER 8

Summary and Conclusion

This thesis presented various binarization and context modeling techniques for coding transform coefficient
levels and directly quantized residual samples in video coding. The works are based on context-based adaptive
binary arithmetic coding (CABAC), the entropy coding framework widely used in practical video coding
standards, such as Advanced Video Coding (H.264/MPEG-4 Part 10) (AVC), High Efficiency Video Coding
(H.265/MPEG-H Part 2) (HEVC), and Versatile Video Coding (H.266/MPEG-I Part 3) (VVC). In CABAC,
which was reviewed in chapter 2, the estimation of conditional probabilities for entropy coding is separated
from the binary arithmetic coding engine. Instead of deriving a conditional probability for coding a binary
symbol (bin) directly, an adaptive context model, which implements an estimator for conditional binary
probabilities, is selected. The set of rules defining which context model should be selected for a given bin is
referred to as context modeling. For non-binary inputs, such as integer-valued transform coefficient levels,
a mapping of the input symbols into a sequence of bins, which is referred to as binarization, is required for
coding with a binary arithmetic coding engine. The developed context modeling and binarization techniques
presented in this thesis focus on a higher coding efficiency or a complexity reduction for the level coding by
analyzing statistical properties of the transform coefficient levels. The complexity can be reduced by limiting
the computational complexity or the number of used adaptive context models, which is crucial for practical
video coding applications.

The introduction of variable transform block sizes in HEVC required the development of a transform coeffi-
cient level coding that is suitable for multiple transform block sizes. A potential candidate was a generalized
variant of the transform coefficient level coding specified for 4×4 and 8×8 transform blocks in AVC. However,
for this approach, the number of context models scales linearly with the number of supported transform sizes.
In order to overcome that problem, a level coding based on the coding of 4×4 sub-blocks was developed and
presented in chapter 3. The main idea of this concept is based on the partitioning of transform blocks larger
than 4×4 samples into 4×4 sub-blocks and the individual coding of each 4×4 sub-block. For the context
modeling, a similar set of rules as for the 4×4 transform blocks in AVC is used for the coding of each 4×4
sub-block. Instead of using a dedicated context model set for each transform size, the context models are
shared across different transform block sizes except for 4×4 transform blocks. This sharing of context mod-
els decouples the number of context models from the number of supported transform sizes. Further coding
efficiency improvements were achieved by selecting a context model set for a 4×4 sub-block depending on the
number of coded absolute levels greater than one in the preceding sub-block. The concept of sub-block-wise
processing is established by its specification for the transform coefficient level coding in HEVC and VVC.

The binarization of absolute transform coefficient levels in AVC is a concatenation of the truncated unary
(TRU) code followed by the 0th-order exponential-golomb (EG0) code, where the maximum absolute value
that can be represented by the TRU code is equal to 15. Because all bins of the TRU code are coded
with adaptive context models, up to 15 context-coded flags are coded for each transform coefficient. In
order to increase the throughput for hardware implementations, this number can be reduced by lowering the
maximum value representable by the TRU code. A first investigation presented in chapter 4 showed that
reducing that number results in coding efficiency penalties. Based on a study verifying that the geometric
distribution is a suitable model for the remainders of absolute transform coefficient levels, Rice codes were
introduced. Rice codes form a subset of Golomb codes, which are optimal scalar variable-length codes for
geometrically distributed sources. Compared to Golomb codes, the Rice codes have the advantage that the
construction of the codewords and the reconstruction of the values can be performed without multiplications.
Rice codes replaced the EG0 code in the binarization, meaning that all bins of the Rice codes are coded in the
low-complex bypass mode. Rice codes are parameterized by a so-called Rice parameter, which specifies the
actual Rice code that is used for the binarization of an absolute transform coefficient level. For choosing the
Rice parameter, a backward-adaptive concept was developed that selects the Rice parameter for a scanning
position by evaluating the remainder coded in the preceding scanning position. The combination of Rice codes
with a reduction of the maximum number of context-coded bins to three resulted in virtually the same coding

130



efficiency as provided by the binarization used in AVC for operation points targeting consumer applications.
For high bit-rate operation points, the developed adaptive binarization with Rice codes significantly improves
coding efficiency. However, using Rice codes only as a replacement for the EG0 code would significantly
increase the maximum bin string length, which is impractical for hardware implementations. The solution
was to reintroduce the EG0 code and place the EG0 code at the end of the binarization, meaning that
the maximum value representable by Rice codes was limited. This combination of the TRU code followed
by a Rice code and the EG0 code limits the maximum bin string length and provides a similar coding
efficiency as provided by the binarization with TRU and Rice codes only. The developed and presented
adaptive binarization of absolute transform coefficient levels with Rice codes achieved a similar or improved
coding efficiency with a reduced implementation complexity. Given these benefits, both the HEVC and VVC
standards specify adaptive binarization schemes based on the presented approach for the binarization of
absolute transform coefficient levels.

A higher coding efficiency for entropy coding can be achieved by taking advantage of statistical dependencies
between transform coefficient levels within a transform block. These statistical dependencies can be used to
select a more appropriate conditional probability (or context) model. A straightforward way of exploiting
statistical dependencies between neighboring transform coefficient levels is to evaluate the reconstructed
level information inside a local template around the level to be coded. Different investigations on a suitable
shape for the local template and the context modeling for coding the significance flags were presented first
in chapter 5. Since the experimental results for this investigation showed the feasibility of a template-
based context modeling, more conditionals for the context modeling were enabled by maximizing the level
information inside the template. That is achieved when the neighboring frequency locations inside the local
template consist of completely reconstructed levels. The initially employed level coding did not provide this
property because the level magnitudes were gradually transmitted in multiple coding phases for a sub-block.
These coding phases were merged into a single coding phase, which requires the instantaneous reconstruction
of the level magnitude for each scanning position. A template-based context modeling for the remaining
context-coded flags as well as a template-based Rice parameter selection were then developed. The adaptive
context model set selection used for the 4×4 sub-blocks was replaced by position-dependent context model
sets, where the selection of a context model set depends on the diagonal of the current scanning position.
This context model set selection scheme further improves the coding efficiency of the template-based context
modeling. With the template-based context modeling, the sharing of context model sets was extended to
include 4×4 transform blocks. In the VVC standard, the level coding utilizes a template-based context
modeling based on the presented development in this thesis.

VVC supports an optional vector quantizer, commonly referred to as trellis-coded quantization (TCQ), which
improves coding efficiency. A brief review of TCQ was given at the beginning of chapter 6. The reconstruction
process for TCQ employs a finite state machine, where the TCQ variant specified in VVC uses four states.
It derives the state for a current scanning position from the state and the parity of the level at the preceding
scanning position. Furthermore, the context model set for coding the significance flags depends on the current
state when TCQ is enabled, where the first two and the last two states specify the usage of different context
model sets. Because of the state-dependent context model sets, the level coding requires that the parities of
preceding levels in coding order are available at the decoder. This aspect is the reason why the template-
based context modeling with a single coding phase developed in chapter 5 is suitable for TCQ. A modification
of the state-dependent context model sets for TCQ was developed after discovering that the probability
distributions of the significance flag differ for the third and fourth states. In the second part of chapter 6,
the throughput for practical implementations was increased by separating the coding of context-coded and
bypass-coded bins. This separation increases the number of bypass-coded bins that can be transmitted
successively. However, since the parity, which is required for the context modeling of the significance flag,
becomes unavailable after the separation, a dedicated parity flag was introduced. Based on the results of
different coding experiments, a binarization with the parity flag was chosen that achieves a suitable coding
performance with and without TCQ enabled. Next, an adaptive scheme for reducing the maximum number
of context-coded bins for transform coefficient levels was presented. This technique reduces the maximum
number of context-coded bins for transform coefficient levels to 1.75 without negatively affecting the coding
efficiency. In the final part of chapter 6, the usage of intermediate levels for context modeling to improve the

131



coding efficiency of TCQ was investigated. The investigations showed that employing intermediate levels, in
combination with minor adjustments to the template sums, which maintain the basic design of the context
modeling in VVC, can provide coding efficiency improvements.

The statistical properties of screen content differ from that of camera-captured content, requiring dedicated
screen content coding tools to achieve reasonable coding efficiency. A straightforward technique that reuses
the block-based transform coding architecture and improves coding efficiency is to skip the transform and
quantize the residual samples directly. However, the statistical properties of the directly quantized residual
samples of screen content are entirely different from that of transform coefficient levels. This difference in
the statistical properties is exploited by developing a transform skip residual coding used for entropy coding
the directly quantized residual samples in chapter 7. In the first part of chapter 7, different aspects regarding
the design of such a level coding for transform skip residuals were investigated. These investigations resulted
in an initial design without signaling the last significant scanning position, since the non-zero levels are
typically spread across a block. Furthermore, the scanning was modified to proceed sub-block-wise from the
top-left to the bottom-right corner instead of from the bottom-right to the top-left corner of the block. This
change in the scanning direction improves the coding efficiency, because the level magnitudes of transform
skip screen content blocks tend to increase in the forward scanning direction. A statistical analysis of
the quantized residual samples for transform skip blocks was presented in the next step, showing that the
geometric distribution cannot sufficiently model the distribution of absolute levels for transform skip blocks.
Based on this finding, further investigations focused on the coding of additional context-coded flags and
the associated context modeling. These additional context-coded flags specify whether the absolute level is
greater than a specific threshold (greater flags). With an appropriate context modeling for these greater flags,
the coding of four additional context-coded greater flags provides significant coding efficiency improvements.
The template-based context modeling used in the conventional level coding was then optimized for the coding
of transform skip levels to further improve the coding efficiency. This investigation revealed that a reduced
local template consisting of only two neighboring locations achieves the best coding efficiency. For the Rice
parameter selection, a fixed Rice parameter provided virtually the same coding efficiency as a template-based
variant due to coding more context-coded greater flags, which reduces the number and the magnitudes of the
coded remainders. It was further found that, in contrast to transform coefficient levels, transform skip levels
are not symmetrically distributed around zero, meaning that the probability of a positive or negative level
is not equal to 1/2. Based on this observation, the sign information is coded with adaptive context models,
which further improves the coding efficiency of the developed level coding for transform skip residuals.

The developed binarization and context modeling techniques presented in this thesis demonstrated that,
compared to the state-of-the-art, more accurate estimations of conditional probabilities are possible and
lead to coding efficiency improvements. Besides coding efficiency improvements or complexity reduction,
the presented context modeling and binarization techniques also have a practical impact, because the level
codings of HEVC and VVC are based on the developments for this thesis.

132



List of Implementations

The software implementations discussed in chapter 3 and chapter 4 are based on the HEVC reference soft-
ware implementation, version 16.22 (HM-16.22). For the remaining chapters, the VVC reference software
implementation, version 17.0 (VTM-17), serves as the basis for the implementations. The implementations
often allow for the setting of parameters or thresholds to various values for experimental purposes. When
an implementation is denoted by a star in the text, for example, IMP6-9∗, it indicates that the specific
implementation was used with a designated value for the corresponding parameter.

Chapter 3 – Transform Coefficient Level Coding for Variable Block Sizes

IMP3-0 Transform coefficient level coding of AVC generalized for larger transform blocks.

IMP3-1 First and second coding phases are interleaved on a sub-block granularity.

IMP3-2 Second coding phase starts after the first coding phase is completed for the entire transform block.

IMP3-3 Identical to IMP3-1, but with reinitialization of tracking variables.

IMP3-4 Identical to IMP3-2, but with reinitialization of tracking variables.

IMP3-5 Modified context quantizer for δsig and δlast.

IMP3-6 Allows for the evaluation of different n2DC and q2 combinations.

IMP3-7 Allows for the evaluation of different n1DC and q1 combinations.

Chapter 4 – Adaptive Binarization of Transform Coefficient Levels

IMP4-0 Allows for the evaluation of different cut-off thresholds t0.

IMP4-1 Allows for the evaluation of binarization with Rice code for t0 ∈ {2, 3, 4} for the remainders z.

IMP4-2 Allows for the evaluation of different combinations of z1 and t0 to switch to k = 1.

IMP4-3 Allows for the evaluation of different combinations of z1 and t0 to switch to k = 2.

IMP4-4 Allows for the evaluation of different combinations z1 and t0 to switch to k = 3.

IMP4-5 Fixed t1 configurations for the nested Rice codes.

IMP4-6 Variable t1 (k) configurations for the nested Rice codes.

Chapter 5 – Template-Based Context Modeling

IMP5-0 Implementing transform coefficient level coding developed in chapter 4 in VTM-17.

IMP5-1 Identical to IMP5-0, but without the adaptive context model sets.

IMP5-2 Single context model for coding bsig, serving as the anchor for subsequent investigations.

IMP5-3 Evaluating the impact of using one fixed neighboring frequency location for coding bsig.

IMP5-4 Employing a third context model when the neighboring location is unavailable.

IMP5-5 Evaluating template size, considering an unavailable location as zero-valued.

IMP5-6 Employing a dedicated context model for each template combination.

IMP5-7 Employing a different context model set when a neighboring location is unavailable.

IMP5-8 Using a single coding phase instead of two, without modifications to the context modeling.

IMP5-9 Clipping the sum of neighboring absolute levels inside the template for context modeling of bsig.

IMP5-10 Clipping of the sum of neighboring absolute levels inside the template for coding b|x|>1 and b|x|>2.

IMP5-11 Alternative context modeling for coding b|x|>1 and b|x|>2.

133



IMP5-12 Using the same context model set for coding b|x|>1 and b|x|>2.

IMP5-13 Using a dedicated context model for coding b|x|>1 and b|x|>2 of the last significant scanning position.

IMP5-14 Evaluating different Mk=1
Rice thresholds.

IMP5-15 Evaluating different Mk=2
Rice thresholds.

IMP5-16 Evaluating different Mk=3
Rice thresholds.

IMP5-17 Using a second context model set depending on the diagonal D (x, y) for coding bsig.

IMP5-18 Using a third context model set depending on the diagonal D (x, y) for coding bsig.

IMP5-19 Using a second context model set for coding b|x|>1 and b|x|>2 depending on the diagonal D (x, y).

IMP5-20 Identical to IMP5-16, but using separate context models for 4×4 transform blocks.

IMP5-21 Identical to IMP5-18, but using separate context models for 4×4 transform blocks.

Chapter 6 – Level Coding Suitable for Trellis-Coded Quantization

IMP6-0 TCQ context modeling using two context model sets for coding bsig.

IMP6-1 TCQ context modeling using three context model sets for coding bsig.

IMP6-2 Evaluating the impact of clipping each neighboring absolute level inside the template to |x|1max.

IMP6-3 Alternative binarization #1 implementing the bpar flag.

IMP6-4 Alternative binarization #2 implementing the bpar flag.

IMP6-5 Alternative binarization #3 implementing the bpar flag.

IMP6-6 Evaluating different Mk=1
Rice thresholds for binarization #1.

IMP6-7 Evaluating different Mk=1
Rice thresholds for binarization #2.

IMP6-8 Evaluating different Mk=1
Rice thresholds for binarization #3.

IMP6-9 Evaluating different Mk=2
Rice thresholds for binarization #1.

IMP6-10 Evaluating different Mk=2
Rice thresholds for binarization #2.

IMP6-11 Evaluating different Mk=2
Rice thresholds for binarization #3.

Chapter 7 – Transform Skip Residual Coding

IMP7-0 Conventional level coding for transform skip mode.

IMP7-1 Alternative level coding for TSM without coding the last significant scanning position.

IMP7-2 Each context-coded flag employs a dedicated, single context model.

IMP7-3 The Rice parameter k = 0 is consistently employed.

IMP7-4 The scanning pattern is reversed.

IMP7-5 A single context model is used for all b|x|>1+2n flags.

IMP7-6 Each b|x|>1+2n flag employs a dedicated, single context model.

IMP7-7 Template as used in the conventional level coding for coding bsig.

IMP7-8 Reduced template containing three neighboring locations for coding bsig.

IMP7-9 Reduced template containing two neighboring locations for coding bsig.

IMP7-10 Clipping Msig to limit Sc.

134



IMP7-11 Sc is clipped to five and mapped to δ|x|>1+2n.

IMP7-12 S|x|>1+2n is used instead of Sc to derive the context model offsets δ|x|>1+2n.

IMP7-13 Employing different fixed Rice parameters k.

IMP7-14 Template-based Rice parameter selection is utilized, using updated thresholds.

IMP7-15 Using a single context model for coding the bsign flags.

IMP7-16 Template-based context modeling for coding the bsign flags.

IMP7-17 Extended template-based context modeling for coding the bsign flags.

IMP7-18 Dedicated context model for coding the bsign flags when |x| = 1.

IMP7-19 Additional context-coded b|x|>m flags for a binarization without the bpar flag.

IMP7-20 Additional context-coded b|x|>1+2n flags flags for a binarization with the bpar flag.

135



List of Publications

Multiple aspects of the present thesis have been published in journal papers and conference proceedings. In
addition, the techniques developed in the thesis have been proposed to the standardization bodies respon-
sible for the specification of the video coding standards HEVC and VVC. These published papers and the
standardization documents are summarized in the following. Besides papers and standardization documents
closely related to the presented work on entropy coding, the list additionally includes published documents
on other areas of video coding.

Journal Papers on the Topic of Level Coding

1. T. Nguyen, X. Xu, F. Henry, R.-L. Liao, M. G. Sarwer, M. Karczewicz, Y.-H. Chao, J. Xu, S. Liu,
D. Marpe, and G. J. Sullivan. “Overview of the Screen Content Support in VVC: Applications, Coding
Tools, and Performance”. In: IEEE Transactions on Circuits and Systems for Video Technology 31.10
(2021), pp. 3801–3817. doi: 10.1109/TCSVT.2021.3074312

2. J. Pfaff, H. Schwarz, D. Marpe, B. Bross, S. De-Luxán-Hernández, P. Helle, C. R. Helmrich, T. Hinz,
W.-Q. Lim, J. Ma, T. Nguyen, J. Rasch, M. Schäfer, M. Siekmann, G. Venugopal, A. Wieckowski, M.
Winken, and T. Wiegand. “Video Compression Using Generalized Binary Partitioning and Advanced
Techniques for Prediction and Transform Coding”. In: IEEE Transactions on Circuits and Systems for
Video Technology 30.5 (2020), pp. 1281–1295. doi: 10.1109/TCSVT.2019.2945918

3. T. Nguyen, P. Helle, M. Winken, B. Bross, D. Marpe, H. Schwarz, and T. Wiegand. “Transform Coding
Techniques in HEVC”. in: Journal of Selected Topics in Signal Processing 7.6 (2013), pp. 978–989. issn:
1932-4553. doi: 10.1109/JSTSP.2013.2278071. url: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6578061

4. D. Marpe, H. Schwarz, S. Boße, B. Bross, P. Helle, T. Hinz, H. Kirchhoffer, H. Lakshman, T. Nguyen,
S. Oudin, M. Siekmann, K. Sühring, M. Winken, and T. Wiegand. “Video Compression Using Nested
Quadtree Structures, Leaf Merging, and Improved Techniques for Motion Representation and Entropy
Coding”. In: Transaction on Circuits and Systems for Video Technology 20.12 (2010), pp. 1676–1687.
issn: 1051-8215. doi: 10.1109/TCSVT.2010.2092615. url: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5638132

Conference Papers on the Topic of Level Coding

1. T. Nguyen, B. Bross, H. Schwarz, D. Marpe, and T. Wiegand. “Residual Coding for Transform Skip
Mode in Versatile Video Coding”. In: 2020 Data Compression Conference (DCC). 2020, pp. 83–92. doi:
10.1109/DCC47342.2020.00016

2. T. Nguyen, B. Bross, P. Keydel, H. Schwarz, D. Marpe, and T. Wiegand. “Extended Transform Skip
Mode and Fast Multiple Transform Set Selection in VVC”. in: 2019 Picture Coding Symposium (PCS).
2019, pp. 1–5. doi: 10.1109/PCS48520.2019.8954540

3. B. Bross, T. Nguyen, H. Schwarz, D. Marpe, and T. Wiegand. “Transform Skip Residual Coding for
the Versatile Video Coding Standard”. In: Proc. SPIE. vol. 11137. 2019

4. H. Schwarz, T. Nguyen, D. Marpe, T. Wiegand, M. Karczewicz, M. Coban, and J. Dong. “Improved
Quantization and Transform Coefficient Coding for the Emerging Versatile Video Coding (VVC) Stan-
dard”. In: 2019 IEEE International Conference on Image Processing (ICIP). 2019, pp. 1183–1187. doi:
10.1109/ICIP.2019.8803768

5. H. Schwarz, T. Nguyen, D. Marpe, and T. Wiegand. “Hybrid Video Coding with Trellis-Coded Quantiza-
tion”. In: 2019 Data Compression Conference (DCC). 2019, pp. 182–191. doi: 10.1109/DCC.2019.00026

6. B. Bross, P. Helle, S. Oudin, T. Nguyen, D. Marpe, H. Schwarz, and T. Wiegand. “Quadtree Structures
and Improved Techniques for Motion Representation and Entropy Coding in HEVC”. in: Proc. IEEE
International Conference on Consumer Electronics. 2012

7. T. Nguyen, P. Helle, M. Winken, D. Marpe, H. Schwarz, and T. Wiegand. “Entropy Coding of Syntax

136

https://doi.org/10.1109/TCSVT.2021.3074312
https://doi.org/10.1109/TCSVT.2019.2945918
https://doi.org/10.1109/JSTSP.2013.2278071
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6578061
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6578061
https://doi.org/10.1109/TCSVT.2010.2092615
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5638132
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5638132
https://doi.org/10.1109/DCC47342.2020.00016
https://doi.org/10.1109/PCS48520.2019.8954540
https://doi.org/10.1109/ICIP.2019.8803768
https://doi.org/10.1109/DCC.2019.00026


Elements Related to Block Structures and Transform Coefficient Levels in HEVC”. in: Proc. SPIE.
vol. 8499. 2012

8. T. Nguyen, D. Marpe, H. Schwarz, and T. Wiegand. “Reduced-Complexity Entropy Coding of Transform
Coefficient Levels Using Truncated Golomb-Rice Codes in Video Compression”. In: 2011 18th IEEE
International Conference on Image Processing. 2011, pp. 753–756. doi: 10.1109/ICIP.2011.6116664

9. D. Marpe, H. Schwarz, T. Wiegand, S. Boße, B. Bross, P. Helle, T. Hinz, H. Kirchhoffer, H. Lakshman, T.
Nguyen, S. Oudin, M. Siekmann, K. Sühring, and M. Winken. “Improved Video Compression Technology
and the Emerging High Efficiency Video Coding (HEVC) Standard”. In: Proc. IEEE International
Conference on Consumer Electronics. 2011

10. M. Winken, D. Marpe, H. Schwarz, T. Wiegand, S. Boße, B. Bross, P. Helle, T. Hinz, H. Kirchhoffer, H.
Lakshman, T. Nguyen, S. Oudin, M. Siekmann, and K. Sühring. “Highly Efficient Video Coding Based
on Quadtree Structures, Improved Motion Compensation, and Probability Interval Partitioning Entropy
Coding”. In: Proc. 14th ITG Conference on Electronic Media Technology. 2011

11. T. Nguyen, H. Schwarz, H. Kirchhoffer, D. Marpe, and T. Wiegand. “Improved Context Modeling for
Coding Quantized Transform Coefficients in Video Compression”. In: 28th Picture Coding Symposium.
2010, pp. 378–381. doi: 10.1109/PCS.2010.5702513

12. H. Kirchhoffer, D. Marpe, H. Schwarz, T. Wiegand, S. Boße, B. Bross, P. Helle, T. Hinz, H. Lakshman,
T. Nguyen, S. Oudin, M. Siekmann, K. Sühring, and M. Winken. “Next-Generation Video Coding
Technology Using Quadtree-Based Partitioning and Improved Techniques for Motion Compensation and
Entropy Coding”. In: Proc. 13. Symposium Maritime Elektrotechnik. 2010

13. D. Marpe, H. Schwarz, S. Bosse, B. Bross, P. Helle, T. Hinz, H. Kirchhoffer, H. Lakshman, T. Nguyen,
S. Oudin, M. Siekmann, K. Sühring, M. Winken, and T. Wiegand. “Highly Efficient Video Compression
Using Quadtree Structures and Improved Techniques for Motion Representation and Entropy Coding”.
In: 28th Picture Coding Symposium. 2010, pp. 206–209. doi: 10.1109/PCS.2010.5702464

Contributions to Standardizations on the Topic of Level Coding

1. H. Schwarz, P. Haase, T. Nguyen, J. Pfaff, D. Marpe, and T. Wiegand. EE2-4.1: Results for Dependent
Quantization With 8 States. JVET-V0082. Web Conference: ITU-T and ISO/IEC, Apr. 2021

2. H. Schwarz, S. Schmidt, P. Haase, T. Nguyen, D. Marpe, and T. Wiegand. Additional Support of
Dependent Quantization with 8 States. JVET-Q0243. Brussels, Belgium: ITU-T and ISO/IEC, Jan. 2020

3. T. Nguyen, B. Bross, H. Schwarz, D. Marpe, and T. Wiegand. CE3-Related: Modified Transform Skip
Residual Coding for Lossless Coding. JVET-Q0462. Brussels, Belgium: ITU-T and ISO/IEC, Jan. 2020

4. B. Bross, T. Nguyen, H. Schwarz, D. Marpe, and T. Wiegand. AHG18: Two Stage Residual Coding for
Lossless. JVET-P0607. Geneva, Switzerland: ITU-T and ISO/IEC, Oct. 2019

5. T. Nguyen and B Bross. Performance of CE7-1.3b* in Lossless Mode. JVET-P1025. Geneva, Switzer-
land: ITU-T and ISO/IEC, Oct. 2019

6. T. Nguyen, B. Bross, H. Schwarz, D. Marpe, and T. Wiegand. CE7-3.3/4: Context Modelling of Sign
for TS Residual Coding. JVET-O0089. Gothenburg, Sweden: ITU-T and ISO/IEC, July 2019

7. G. Clare, F. Henry, B. Bross, T. Nguyen, P. Keydel, H. Schwarz, D. Marpe, T. Wiegand, X. Zhao, X.
Li, X. Xu, and S. Liu. CE8: BDPCM with Harmonized Residual Coding and CCB Limitation (CE8-3.1a,
CE8-3.1b, CE8-5.1a, CE8-5.1b). JVET-N0214. Geneva, Switzerland: ITU-T and ISO/IEC, Mar. 2019

8. B. Bross, T. Nguyen, H. Schwarz, D. Marpe, and T. Wiegand. CE8: Residual Coding for Transform
Skip Mode (CE8-4.3a, CE8-4.3b, CE8-4.4a, and CE8-4.4b). JVET-N0280. Geneva, Switzerland: ITU-T
and ISO/IEC, Mar. 2019

9. B. Bross, T. Nguyen, H. Schwarz, D. Marpe, and T. Wiegand. CE8-Related: Context Modelling of Sign
for TS Residual Coding. JVET-N0357. Geneva, Switzerland: ITU-T and ISO/IEC, Mar. 2019

137

https://doi.org/10.1109/ICIP.2011.6116664
https://doi.org/10.1109/PCS.2010.5702513
https://doi.org/10.1109/PCS.2010.5702464


10. B. Bross, T. Nguyen, P. Keydel, H. Schwarz, D. Marpe, and T. Wiegand. Non-CE8: Unified Transform
Type Signalling and Residual Coding for Transform Skip. JVET-M0464. Marrakech, Morocco: ITU-T
and ISO/IEC, Jan. 2019

11. H. Schwarz, T. Nguyen, D. Marpe, T. Wiegand, M. Karczewicz, M. Coban, and J. Dong. CE7: Trans-
form Coefficient Coding with Reduced Number of Regular-Coded Bins (Tests 7.1.3a, 7.1.3b). JVET-L0274.
Macao, China: ITU-T and ISO/IEC, Oct. 2018

12. H. Schwarz, T. Nguyen, D. Marpe, and T. Wiegand. CE7: Transform Coefficient Coding and Dependent
Quantization (Tests 7.1.2, 7.2.1). JVET-K0071. Ljubljana, Slovenia: ITU-T and ISO/IEC, July 2018

13. H. Schwarz, T. Nguyen, D. Marpe, and T. Wiegand. Non-CE7: Alternative Entropy Coding for Depen-
dent Quantization. JVET-K0072. Ljubljana, Slovenia: ITU-T and ISO/IEC, July 2018

14. M. Albrecht, C. Bartnik, S. Boße, J. Brandenburg, B. Bross, J. Erfurt, V. George, P. Haase, P. Helle,
C. Helmrich, A. Henkel, T. Hinz, S. de Luxan Hernandez, S. Kaltenstadler, P. Keydel, H. Kirchhoffer,
C. Lehmann, W.-Q. Lim, J. Ma, D. Maniry, D. Marpe, P. Merkle, T. Nguyen, J. Pfaff, J. Rasch, R.
Rischke, C. Rudat, M. Schäfer, T. Schierl, H. Schwarz, M. Siekmann, R. Skupin, B. Stallenberger, J.
Stegemann, K. Sühring, G. Tech, G. Venugopal, S. Walter, A. Wieckowski, T. Wiegand, and M. Winken.
Description of SDR, HDR and 360◦ Video Coding Technology Proposal by Fraunhofer HHI. JVET-J0014.
San Diego, USA: ITU-T and ISO/IEC, Apr. 2018

15. H. Kirchhoffer, M. Siekmann, C. Bartnik, D. Marpe, T. Nguyen, and T. Wiegand. AHG5: Unified
Coefficient Scan for JCTVC-H0228. JCTVC-I0397. Geneva, Switzerland: ITU-T and ISO/IEC, Apr.
2012

16. T. Nguyen, H. Kirchhoffer, C. Bartnik, and D. Marpe. CE3: Report for CE3 Subtest 3. JCTVC-I0406.
Geneva, Switzerland: ITU-T and ISO/IEC, Apr. 2012

17. T. Nguyen, D. Marpe, and T. Wiegand. Non-CE11: Proposed Cleanup for Transform Coefficient Coding.
JCTVC-H0228. San Jose, USA: ITU-T and ISO/IEC, Jan. 2012

18. T. Nguyen, D. Marpe, M. Siekmann, and T. Wiegand. Non-CE1: High Throughput Coding Scheme with
Rice Binarization. JCTVC-H0458. San Jose, USA: ITU-T and ISO/IEC, Jan. 2012

19. T. Nguyen. CE11: Coding of Transform Coefficient Levels With Golomb-Rice Codes. JCTVC-E253.
Geneva, Switzerland: ITU-T and ISO/IEC, Mar. 2011

20. T. Nguyen, H. Schwarz, D. Marpe, and T. Wiegand. CE11: Evaluation of Transform Coding tools in
HE Configuration. JCTVC-D061. Daegu, South Korea: ITU-T and ISO/IEC, Jan. 2011

21. T. Nguyen, M. Winken, D. Marpe, S. Heiko, and T. Wiegand. Reduced-Complexity Entropy Coding
of Transform Coefficient Levels Using a Combination of VLC and PIPE. JCTVC-D336. Daegu, South
Korea: ITU-T and ISO/IEC, Jan. 2011

Journal Papers on the Topic of Video Coding

1. T. Nguyen and D. Marpe. “Compression Efficiency Analysis of AV1, VVC, and HEVC for Random
Access Applications”. In: APSIPA Transactions on Signal and Information Processing 10 (2021), e11.
doi: 10.1017/ATSIP.2021.10

2. S. Wiedemann, H. Kirchhoffer, S. Matlage, P. Haase, A. Marban, T. Marinč, D. Neumann, T. Nguyen,
H. Schwarz, T. Wiegand, D. Marpe, and W. Samek. “DeepCABAC: A Universal Compression Algorithm
for Deep Neural Networks”. In: IEEE Journal of Selected Topics in Signal Processing 14.4 (2020), pp. 700–
714. doi: 10.1109/JSTSP.2020.2969554

3. W.-S. Kim, W. Pu, A. Khairat, M. Siekmann, J. Sole, J. Chen, M. Karczewicz, T. Nguyen, and D.
Marpe. “Cross-Component Prediction in HEVC”. in: IEEE Transactions on Circuits and Systems for
Video Technology 30.6 (2020), pp. 1699–1708. doi: 10.1109/TCSVT.2015.2496821

138

https://doi.org/10.1017/ATSIP.2021.10
https://doi.org/10.1109/JSTSP.2020.2969554
https://doi.org/10.1109/TCSVT.2015.2496821


4. M. Siekmann, A. Khairat, T. Nguyen, D. Marpe, and T. Wiegand. “Extended Cross-Component Pre-
diction in HEVC”. in: APSIPA Transactions on Signal and Information Processing 6 (2017), e3. doi:
10.1017/ATSIP.2017.3

5. D. Flynn, D. Marpe, M. Naccari, T. Nguyen, C. Rosewarne, K. Sharman, J. Sole, and J. Xu. “Overview of
the Range Extensions for the HEVC Standard: Tools, Profiles, and Performance”. In: IEEE Transactions
on Circuits and Systems for Video Technology 26.1 (2016), pp. 4–19. doi: 10.1109/TCSVT.2015.2478707

6. T. Nguyen and D. Marpe. “Objective Performance Evaluation of the HEVC Main Still Picture Profile”.
In: IEEE Transactions on Circuits and Systems for Video Technology 25.5 (2015), pp. 790–797. doi:
10.1109/TCSVT.2014.2358000

Conference Papers on the Topic of Video Coding

1. C. Rudat, C. R. Helmrich, J. Lainema, T. Nguyen, H. Schwarz, D. Marpe, and T. Wiegand. “Inter-
Component Transform for Color Video Coding”. In: 2019 Picture Coding Symposium (PCS). 2019, pp. 1–
5. doi: 10.1109/PCS48520.2019.8954496

2. S. De-Luxán-Hernández, V. George, J. Ma, T. Nguyen, H. Schwarz, D. Marpe, and T. Wiegand. “An
Intra Subpartition Coding Mode for VVC”. in: 2019 IEEE International Conference on Image Processing
(ICIP). 2019, pp. 1203–1207. doi: 10.1109/ICIP.2019.8803777

3. M. Schäfer, J. Pfaff, J. Rasch, T. Hinz, H. Schwarz, T. Nguyen, G. Tech, D. Marpe, and T. Wie-
gand. “Improved Prediction via Thresholding Transform Coefficients”. In: 2018 25th IEEE International
Conference on Image Processing (ICIP). 2018, pp. 2546–2549. doi: 10.1109/ICIP.2018.8451076

4. T. Nguyen and D. Marpe. “Future Video Coding Technologies: A Performance Evaluation of AV1, JEM,
VP9, and HM”. in: 2018 Picture Coding Symposium (PCS). 2018, pp. 31–35. doi: 10.1109/PCS.2018.
8456289

5. D. Grois, T. Nguyen, and D. Marpe. “Performance Comparison of AV1, JEM, VP9, and HEVC En-
coders”. In: Proc. SPIE. vol. 10396. 2017

6. D. Grois, T. Nguyen, and D. Marpe. “Coding Efficiency Comparison of AV1/VP9, H.265/MPEG-
HEVC, and H.264/MPEG-AVC Encoders”. In: 2016 Picture Coding Symposium (PCS). 2016, pp. 1–5.
doi: 10.1109/PCS.2016.7906321

7. T. Nguyen, A. Khairat, D. Marpe, M. Siekmann, and T. Wiegand. “Extended Cross-Component Pre-
diction in HEVC”. in: 2015 Picture Coding Symposium (PCS). 2015, pp. 164–168. doi: 10.1109/PCS.
2015.7170068

8. A. Khairat, T. Nguyen, M. Siekmann, D. Marpe, and T. Wiegand. “Adaptive Cross-Component Predic-
tion for 4:4:4 High Efficiency Video Coding”. In: 2014 IEEE International Conference on Image Processing
(ICIP). 2014, pp. 3734–3738. doi: 10.1109/ICIP.2014.7025758

9. D. Grois, T. Nguyen, D. Marpe, and O. Hadar. “Comparative Assessment of H.265/MPEG-HEVC,
VP9, and H.264/MPEG-AVC Encoders for Low-Delay Video Applications”. In: Proc. SPIE. vol. 9217.
2014

10. M. Preiß, D. Marpe, B. Bross, V. George, H. Kirchhoffer, T. Nguyen, M. Siekmann, J. Stegemann, and
T. Wiegand. “A Unified and Complexity Scalable Entropy Coding Scheme for Video Compression”. In:
2012 19th IEEE International Conference on Image Processing. 2012, pp. 729–732. doi: 10.1109/ICIP.
2012.6466963

11. T. Nguyen, D. Marpe, B. Bross, V. George, H. Kirchhoffer, M. Preiß, M. Siekmann, J. Stegemann, and
T. Wiegand. “A Complexity Scalable Entropy Coding Scheme for Video Compression”. In: Picture Coding
Symposium. IEEE, May 2012, pp. 421–424. isbn: 978-1-4577-2049-9. doi: 10.1109/PCS.2012.6213377.
url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6213377

12. T. Nguyen and D. Marpe. “Performance Analysis of HEVC-Based Intra Coding for Still Image Com-
pression”. In: 2012 Picture Coding Symposium. 2012, pp. 233–236. doi: 10.1109/PCS.2012.6213335

139

https://doi.org/10.1017/ATSIP.2017.3
https://doi.org/10.1109/TCSVT.2015.2478707
https://doi.org/10.1109/TCSVT.2014.2358000
https://doi.org/10.1109/PCS48520.2019.8954496
https://doi.org/10.1109/ICIP.2019.8803777
https://doi.org/10.1109/ICIP.2018.8451076
https://doi.org/10.1109/PCS.2018.8456289
https://doi.org/10.1109/PCS.2018.8456289
https://doi.org/10.1109/PCS.2016.7906321
https://doi.org/10.1109/PCS.2015.7170068
https://doi.org/10.1109/PCS.2015.7170068
https://doi.org/10.1109/ICIP.2014.7025758
https://doi.org/10.1109/ICIP.2012.6466963
https://doi.org/10.1109/ICIP.2012.6466963
https://doi.org/10.1109/PCS.2012.6213377
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6213377
https://doi.org/10.1109/PCS.2012.6213335


Contributions to Standardizations on the Topic of Video Coding

1. H. Kirchhoffer, B. Bross, T. Nguyen, D. Marpe, H. Schwarz, and T. Wiegand. AHG14: Throughput and
Coding Efficiency Report of JVET-P0300 on VTM-7.0. JVET-Q0387. Brussels, Belgium: ITU-T and
ISO/IEC, Jan. 2020

2. S. De-Luxán-Hernández, T. Nguyen, B. Bross, H. Schwarz, D. Marpe, and T. Wiegand. MTS Dependent
Coefficient Subblock Scanning for Zero-Out. JVET-Q0448. Brussels, Belgium: ITU-T and ISO/IEC, Jan.
2020

3. T. Nguyen, T.-C. Ma, and A. Nalci. Suggested Common Test Conditions and Reference Software Con-
figurations for Lossless and Mixed Lossy/Lossless Applications. JVET-Q0824. Brussels, Belgium: ITU-T
and ISO/IEC, Jan. 2020

4. T.-C. Ma, A. Nalci, and T. Nguyen. JVET Common Test Conditions and Software Reference Configu-
rations for Lossless, Near Lossless, and Mixed Lossy/Lossless Coding. JVET-Q2014. Brussels, Belgium:
ITU-T and ISO/IEC, Jan. 2020

5. H. Kirchhoffer, B. Bross, T. Nguyen, D. Marpe, H. Schwarz, and T. Wiegand. QP-Independent and
Slice Type-Independent Initialization of Context Models for the High Throughput CABAC Mode of JVET-
P0300. JVET-Q0461. Brussels, Belgium: ITU-T and ISO/IEC, Jan. 2020

6. H. Kirchhoffer, D. Marpe, B. Bross, T. Nguyen, C. Rudat, H. Schwarz, and T. Wiegand. High Throughput
CABAC Mode for VVC. JVET-P0300. Geneva, Switzerland: ITU-T and ISO/IEC, Oct. 2019

7. B. Bross, T. Nguyen, H. Schwarz, D. Marpe, T. Wiegand, M. Karczewicz, Y.-H. Chao, H. Wang, and M.
Coban. AHG18: Enabling Lossless Coding With Minimal Impact on VVC Design. JVET-P0606. Geneva,
Switzerland: ITU-T and ISO/IEC, Oct. 2019

8. T. Nguyen. AHG18: Non-Lossless Coding Tools in VVC. JVET-P0612. Geneva, Switzerland: ITU-T
and ISO/IEC, Oct. 2019

9. S. De-Luxán-Hernández, T. Nguyen, B. Bross, H. Schwarz, D. Marpe, T. Wiegand, T.-C. Ma, X.-Y.
Xiu, Y.-W. Chen, and X. Wang. CE8-3.1: Enable Transform Skip in CUs using ISP. JVET-O0097.
Gothenburg, Sweden: ITU-T and ISO/IEC, July 2019

10. C. Helmrich, H. Schwarz, T. Nguyen, C. Rudat, D. Marpe, T. Wiegand, B. Ray, G. Van der Auwera,
A. K. Ramasubramonian, M. Coban, and M. Karczewicz. CE7: Joint Chroma Residual Coding With
Multiple Modes (Tests CE7-2.1, CE7-2.2). JVET-O0105. Gothenburg, Sweden: ITU-T and ISO/IEC,
July 2019

11. A. K. Ramasubramonian, G. Van der Auwera, T. Hsieh, V. Seregin, L. Pham Van, M. Karczewicz, S.
De-Luxán-Hernández, B. Bross, T. Nguyen, V. George, B. Stabernack, H. Schwarz, D. Marpe, and T.
Wiegand. CE3-1.6: On 1xN and 2xN Subblocks of ISP. JVET-O0106. Gothenburg, Sweden: ITU-T and
ISO/IEC, July 2019

12. T. Nguyen, B. Bross, H. Schwarz, D. Marpe, and T. Wiegand. Non-CE8: Minimum Allowed QP for
Transform Skip Mode. JVET-O0405. Gothenburg, Sweden: ITU-T and ISO/IEC, July 2019

13. S. De-Luxán-Hernández, V. George, G. Venugopal, J. Brandenburg, B. Bross, T. Nguyen, H. Schwarz,
D. Marpe, and T. Wiegand. Non-CE3: Proposed ISP Cleanup. JVET-O0502. Gothenburg, Sweden:
ITU-T and ISO/IEC, July 2019

14. C. Helmrich, H. Schwarz, T. Nguyen, C. Rudat, D. Marpe, and T. Wiegand. CE7-Related: Alterna-
tive Configuration for Joint Chroma Residual Coding. JVET-O0543. Gothenburg, Sweden: ITU-T and
ISO/IEC, July 2019

15. C. Helmrich, H. Schwarz, T. Nguyen, C. Rudat, D. Marpe, T. Wiegand, B. Ray, G. Van der Auwera,
A. K. Ramasubramonian, M. Coban, and M. Karczewicz. CE7-Related: Alternative Configuration of
CE7-2.2 Joint Chroma Residual Coding. JVET-O0935. Gothenburg, Sweden: ITU-T and ISO/IEC, July
2019

140



16. C. Helmrich, C. Rudat, T. Nguyen, H. Schwarz, D. Marpe, and T. Wiegand. CE7-Related: Joint Chroma
Residual Coding With Multiple Modes. JVET-N0282. Geneva, Switzerland: ITU-T and ISO/IEC, Mar.
2019

17. S. De-Luxán-Hernández, B. Bross, T. Nguyen, V. George, B. Stabernack, H. Schwarz, D. Marpe, and
T. Wiegand. AHG16/Non-CE3: Restriction of the Maximum CU Size for ISP to 64x64. JVET-N0308.
Geneva, Switzerland: ITU-T and ISO/IEC, Mar. 2019

18. S. De-Luxán-Hernández, B. Bross, T. Nguyen, V. George, B. Stabernack, H. Schwarz, D. Marpe, and
T. Wiegand. Non-CE3: ISP With Independent Sub-Partitions for Certain Block Sizes). JVET-N0372.
Geneva, Switzerland: ITU-T and ISO/IEC, Mar. 2019

19. S. De-Luxán-Hernández, T. Nguyen, B. Bross, H. Schwarz, D. Marpe, and T. Wiegand. Non-CE3/Non-
CE8: Enable Transform Skip in CUs using ISP. JVET-N0401. Geneva, Switzerland: ITU-T and ISO/IEC,
Mar. 2019

20. A. Wieckowski, T. Nguyen, H. Schwarz, D. Marpe, and T. Wiegand. Availability Based Context Mod-
elling for mtt_split_cu_vertical_flag. JVET-N0696. Geneva, Switzerland: ITU-T and ISO/IEC, Mar.
2019

21. S. De-Luxán-Hernández, V. George, J. Ma, T. Nguyen, H. Schwarz, D. Marpe, and T. Wiegand. CE3:
Intra Sub-Partitions Coding Mode (Tests 1.1.1 and 1.1.2). JVET-M0102. Marrakech, Morocco: ITU-T
and ISO/IEC, Jan. 2019

22. A. Wieckowski, T. Nguyen, H. Schwarz, D. Marpe, and T. Wiegand. Non-CE1: Split-First Signalling
for Partitioning. JVET-M0421. Marrakech, Morocco: ITU-T and ISO/IEC, Jan. 2019

23. S. De-Luxán-Hernández, V. George, J. Ma, T. Nguyen, H. Schwarz, D. Marpe, and T. Wiegand. CE3-
Related: Improvement on the Intra Sub-Partitions Coding Mode. JVET-M0426. Marrakech, Morocco:
ITU-T and ISO/IEC, Jan. 2019

24. H. Schwarz and T. Nguyen. CE7-Related: Analysis of Padding Bytes for VTM-2. JVET-L0276. Macao,
China: ITU-T and ISO/IEC, Oct. 2018

25. A. Wieckowski, T. Hinz, B. Bross, T. Nguyen, J. Ma, K. Sühring, H. Schwarz, D. Marpe, and T.
Wiegand. NextSoftware as Test Software. JVET-J0095. San Diego, USA: ITU-T and ISO/IEC, Apr.
2018

26. A. Wieckowski, T. Hinz, B. Bross, T. Nguyen, J. Ma, K. Sühring, H. Schwarz, D. Marpe, and T.
Wiegand. Benchmark Set Results. JVET-J0100. San Diego, USA: ITU-T and ISO/IEC, Apr. 2018

27. K. Sühring and T. Nguyen. Bit Rate Measurement in CTC. JCTVC-Z0038. Geneva, Switzerland:
ITU-T and ISO/IEC, Jan. 2017

28. A. Khairat, T. Nguyen, and D. Marpe. AHG5 and AHG8: Extended Cross-Component Decorrelation
for Animated Screen Content. JCTVC-P0097. San Jose, USA: ITU-T and ISO/IEC, Jan. 2014

29. W.-S. Kim and T. Nguyen. RCE1: Summary Report of HEVC Range Extensions Core Experiment 1
on Inter-Component Decorrelation Methods. JCTVC-O0035. Geneva, Switzerland: ITU-T and ISO/IEC,
Oct. 2013

30. A. Khairat, T. Nguyen, M. Siekmann, and D. Marpe. Non-RCE1: Extended Adaptive Inter-Component
Prediction. JCTVC-O0150. Geneva, Switzerland: ITU-T and ISO/IEC, Oct. 2013

31. T. Nguyen. RCE1: Description and Results for Experiment 3, 5, and 6. JCTVC-N0170. Vienna,
Austria: ITU-T and ISO/IEC, July 2013

32. T. Nguyen, A. Khairat, and D. Marpe. Non-RCE1/Non-RCE2/AHG5/AHG8: Adaptive Inter-Plane
Prediction for RGB Content. JCTVC-M0230. Incheon, South Korea: ITU-T and ISO/IEC, Apr. 2013

141



33. T. Nguyen and D. Marpe. Performance Comparison of HM 6.0 With Existing Still Image Compression
Schemes Using a Test Set of Popular Still Images. JCTVC-I0595. Geneva, Switzerland: ITU-T and
ISO/IEC, Apr. 2012

34. H. Kirchhoffer, B. Bross, P. Helle, D. Marpe, T. Nguyen, M. Siekmann, J. Stegemann, and T. Wiegand.
CE1: Report of Test Results Related to Subtests B2 (8-bit-init) and C3 (Alt. PMU). JCTVC-H0266. San
Jose, USA: ITU-T and ISO/IEC, Jan. 2012

35. T. Nguyen, D. Marpe, H. Schwarz, and T. Wiegand. Modified Binarization and Coding of MVD for
PIPE/CABAC). JCTVC-F455. Torino, Italy: ITU-T and ISO/IEC, July 2011

36. H. Kirchhoffer, B. Bross, A. Henkel, D. Marpe, T. Nguyen, M. Preiß, M. Siekmann, J. Stegemann, and
T. Wiegand. CE1: Report of Test Results Related to PIPE-based Unified Entropy Coding. JCTVC-G633.
Geneva, Switzerland: ITU-T and ISO/IEC, Nov. 2011

37. D. Marpe, H. Kirchhoffer, B. Bross, V. George, T. Nguyen, M. Preiß, M. Siekmann, J. Stegemann, and
T. Wiegand. Unified PIPE-Based Entropy Coding for HEVC. JCTVC-F268. Torino, Italy: ITU-T and
ISO/IEC, July 2011

38. T. Nguyen and K. Sühring. Report on Bugfix for CABAC Sub-Block Coding Reported in JCTVC-D027.
JCTVC-D451. Daegu, South Korea: ITU-T and ISO/IEC, Jan. 2011

39. T. Nguyen. Improved Intra Smoothing for UDI and new AIS Fast Mode. JCTVC-C302. Guangzhou,
China: ITU-T and ISO/IEC, Oct. 2010

142



List of Figures

1.1 Example application that requires video compression: Live broadcasting of an event . . . . . 2

2.1 Snapshot of BQTerrace partitioned into 64×64 blocks of samples . . . . . . . . . . . . . . . . 11

2.2 Block-based hybrid video coding architecture from encoder viewpoint . . . . . . . . . . . . . . 12

2.3 Partitioning in HEVC using quadtree structures . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Bucket model of the EG0 or Elias-γ code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Block diagram of CABAC from the encoder viewpoint . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Zigzag scanning pattern used in AVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Histograms of coded absolute transform coefficient levels . . . . . . . . . . . . . . . . . . . . . 26

3.3 Histograms of absolute levels for the sub-block containing the DC frequency position . . . . . 27

3.4 Histograms of absolute levels for various sub-blocks of different transform sizes . . . . . . . . 28

3.5 Decomposition of a 16×16 transform block into 4×4 sub-blocks . . . . . . . . . . . . . . . . . 29

3.6 Coding efficiency of IMP3-1 to IMP3-4: Scanning options . . . . . . . . . . . . . . . . . . . . 30

3.7 Histograms of sub-blocks with the identifier #01 (x = 4, y = 0) of 8×8 transform blocks . . . 33

3.8 Coding efficiency of IMP3-6: n2DC and q2 combinations . . . . . . . . . . . . . . . . . . . . . 34

3.9 Coding efficiency of IMP3-7: n1DC and q1 combinations . . . . . . . . . . . . . . . . . . . . . 35

3.10 ℓ̄(Csig[δ|x|>1]) in generalized AVC design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.11 ℓ̄(Csig[δ|x|>1]) with adaptive context model sets . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Static binarization scheme for transform coefficient levels in AVC . . . . . . . . . . . . . . . . 42

4.2 The cps depending on the operation point (selected via the QP) . . . . . . . . . . . . . . . . . 43

4.3 Coding efficiency of IMP4-0: Cut-off threshold t0 . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Histograms of absolute transform coefficient levels in 4×4 transform blocks and estimated
geometric distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Bucket model of Golomb codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Codeword lengths ℓ (z) for unary, EG0, and different Rice codes, where the actual Rice pa-
rameters are k ∈ [1, 4] ∩ N0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Optimal Rice parameter k given the model parameter y of the geometric distribution, derived
according to equation (4.9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Optimal Rice parameters k for a single remainder value z. . . . . . . . . . . . . . . . . . . . . 50

4.9 Histogram denoting the relative frequency for a Rice code that generates the shortest codeword
length given a remainder z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10 Coding efficiency of IMP4-1: Binarization with Rice code for t0 ∈ {2, 3, 4} for the remainders z 51

4.11 Coding efficiency of IMP4-2: Switch to k = 1 for different combinations of z1 and t0 for the
QP set {22, 27, 32, 37} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.12 Coding efficiency of IMP4-2: Switch to k = 1 for different combinations of z1 and t0 for the
QP set {2, 7, 12, 17} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

143



LIST OF FIGURES

4.13 Coding efficiency of IMP4-3: Switch to k = 2 for different combinations of z2 and t0 for the
QP set {22, 27, 32, 37} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.14 Coding efficiency of IMP4-3: Switch to k = 2 for different combinations of z2 and t0 for the
QP set {2, 7, 12, 17} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.15 Coding efficiency of IMP4-4: Switch to k = 3 for different combinations of z3 and t0 for both
QP sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.16 Binarization of transform coefficient levels with nested Rice codes and the EG0 code . . . . . 58

4.17 Coding efficiency of IMP4-5: Fixed t1 configurations for the nested Rice codes with the QP
set {2, 7, 12, 17} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.18 Coding efficiency of IMP4-6: Variable t1 (k) configurations for the nested Rice codes with the
QP set {2, 7, 12, 17} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Last significant scanning position with spatial coordinates . . . . . . . . . . . . . . . . . . . . 65

5.2 Reverse diagonal scanning pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Local template geometry within a 4×4 transform block . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Coding efficiency of IMP5-3 and IMP5-4: Impact of one fixed neighboring frequency location 69

5.5 Coding efficiency of IMP5-5 and IMP5-6: Incremental template size increase . . . . . . . . . . 71

5.6 Coding efficiency of IMP5-7: Incremental template size increase with alternative context
modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.7 Coding efficiency of IMP5-9: Clipping of the sum of neighboring absolute levels inside the
template for context modeling of bsig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.8 Coding efficiency of IMP5-10 and IMP5-11: Clipping of the sum of neighboring absolute levels
inside the template for context modeling of b|x|>1 and b|x|>2 . . . . . . . . . . . . . . . . . . . 76

5.9 Coding efficiency of IMP5-14 to IMP5-16: Determining the thresholds of the Rice parameter
selection with local template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.10 Coding efficiency of IMP5-17 and IMP5-18: Context model set of bsig depending on diagonal 78

5.11 Coding efficiency of IMP5-19: Context model set of b|x|>1 and b|x|>2 depending on diagonal . 79

6.1 Configuration of the TCQ quantizers used in VVC . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 FSM and mapping of state to quantizer in the used four-state TCQ implementation . . . . . . 86

6.3 Example of a four-state trellis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 Coding efficiency of IMP6-2: Limited |x|1max on the context modeling of the context-coded flags 92

6.5 Coding efficiency of IMP6-3 to IMP6-5: Different binarization with bpar . . . . . . . . . . . . 93

6.6 Coding efficiency of IMP6-6 to IMP6-11: Determining updated thresholds of the Rice param-
eter selection for binarizations with bpar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.7 Coding efficiency of IMP6-9∗ to IMP6-11∗: Different binarizations with bpar and updated
thresholds for the Rice parameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.8 Coding efficiency of 711, 721, 712, and 722: Modified template-based level coding and TCQ
reported in JVET-K0072 [98] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1 Example of a 32×32 DCT-II transform, quantization, and inverse transform for a natural image108

144



LIST OF FIGURES

7.2 Example of a 32×32 DCT-II transform, quantization, and inverse transform for a desktop
screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Coding efficiency of IMP7-0: Maximum allowed block size for TSM . . . . . . . . . . . . . . . 110

7.4 Coding efficiency of IMP7-0: Comparison of screen content coding tools and TSM with con-
ventional level coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.5 Coding efficiency of IMP7-1 to IMP7-4: Impact of different level coding components on the
coding efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.6 Histograms of absolute and non-zero absolute TSM levels for 8×8 blocks . . . . . . . . . . . . 113

7.7 Coding efficiency of IMP7-5 and IMP7-6: Increased number of additional b|x|>1+2n flags . . . 114

7.8 Template configuration of IMP7-7 to IMP7-9 and the template configuration of IMP7-4 . . . 116

7.9 Coding efficiency of IMP7-7 to IMP7-9: Template configuration for context-modeling of bsig . 117

7.10 Coding efficiency of IMP7-10: Clipping of the sum of neighboring absolute TSM levels inside
the template for context modeling of bsig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.11 Coding efficiency of IMP7-11 to IMP7-12: Template-based context modeling of b|x|>1+2n . . . 119

7.12 Coding efficiency of IMP7-13 and IMP7-14: Updated thresholds for the template-based Rice
parameter selection and fixed Rice parameters in TSRC . . . . . . . . . . . . . . . . . . . . . 120

7.13 Histograms of TSM levels for different block sizes . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.14 Coding efficiency of IMP7-15 to IMP7-18: Context modeling of the bsign flags . . . . . . . . . 122

7.15 Coding efficiency provided by TSM and TSRC, IBC, and PLT . . . . . . . . . . . . . . . . . . 123

7.16 Coding efficiency provided by IBC and PLT with and without TSRC enabled . . . . . . . . . 124

7.17 Coding efficiency provided by the individual screen content coding tools . . . . . . . . . . . . 125

7.18 Coding efficiency of IMP7-19: Additional context-coded b|x|>m flags in TSRC . . . . . . . . . 126

7.19 Impact of the total number of context-coded bins on the coding efficiency for binarizations
with and without parity flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

145



List of Tables

2.1 Example of the TRU code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Example of the EG0 or Elias-γ code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Binarization of absolute transform coefficient levels in AVC . . . . . . . . . . . . . . . . . . . 22

3.2 Coding efficiency of IMP3-5: Modified context quantizer for δsig and δlast . . . . . . . . . . . 32

3.3 Coding efficiency IMP3-7∗: 4×4 sub-blocks in its final configuration . . . . . . . . . . . . . . . 37

4.1 Codewords for the remainders z ∈ {0, 1, . . . , 7} when using Rice codes with the parameter
k ∈ {1, 2, 3, 4} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Coding efficiency of IMP4-6∗: Final implementation of the adaptive binarization with nested
Rice codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Coding Efficiency of a Template-Based Context Modeling Proposed in JVET-K0071 [43] . . . 80

6.1 Coding efficiency of TCQ proposed in JVET-K0071 [43] . . . . . . . . . . . . . . . . . . . . . 88

6.2 Coding efficiency of IMP6-1: Extended context modeling for TCQ . . . . . . . . . . . . . . . 89

6.3 Context-coded bins of the bin string and |x|1max for different binarizations with bpar . . . . . . 91

6.4 Relative differences of bins and bits for different binarizations with bpar . . . . . . . . . . . . . 94

6.5 Relative differences of bins and bits for absolute levels and all bins . . . . . . . . . . . . . . . 94

6.6 Efficiency of context-coded bins for different binarizations with bpar and anchor . . . . . . . . 95

6.7 Coding efficiency of intermediate levels and adjusted context modeling . . . . . . . . . . . . . 105

7.1 Binarization table when coding four additional context-coded b|x|>1+2n flags in TSRC . . . . . 115

146



Acronyms

AVC
Advanced Video Coding (H.264/MPEG-4 Part 10) . . . . . . . . . . . . . .1, 20, 41, 65, 83, 107, 130

BD-rate
Bjøntegaard delta bit-rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 44, 67, 88, 110

CABAC
context-based adaptive binary arithmetic coding . . . . . . . . . . . . . . . . . . 2, 13, 20, 41, 98, 130

CAVLC
context-based adaptive variable length coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

cps
context-coded bins per sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43, 61, 90

CTC
common test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 44, 67, 110

DCT
discrete cosine transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 13, 108

DST
discrete sine transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 108

EBCOT
embedded block coding with optimised truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

EG0
0th-order exponential-golomb . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 15, 21, 42, 62, 74, 130

EP
equi-probable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 67, 88, 110

EZW
embedded zerotree wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

FSM
finite-state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 85

HEVC
High Efficiency Video Coding (H.265/MPEG-H Part 2) . . . . . . . . 1, 11, 20, 41, 65, 83, 107, 130

IBC
intra block copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

JCT-VC
Joint Collaborative Team on Video Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

JEM
Joint Exploration Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

JVET
Joint Video Experts Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 79, 88

LSB
least-significant bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

Mbps
megabits per second . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

mcps
maximum number of context-coded bins per sample . . . . . . . . . . . . . . . . . . . . . . . . 90, 115

147



Acronyms

MPEG-2
H.262/MPEG-2 Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

MPEG-4 Visual
MPEG-4 Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

MSB
most-significant bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

PACC
partitioning, aggregation, and conditional coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

pdf
probability density function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

PLT
palette mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

pmf
probability mass function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 42, 45

QP
quantization parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13, 25, 43, 83

RDOQ
rate-distortion optimized quantization . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 45, 67, 83, 110

RExt
Range Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 108

SDH
sign data hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 67, 110

SPIHT
set partitioning in hierarchical trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

TCQ
trellis-coded quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 67, 83, 110, 131

TGM
text and graphics with motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

TRU
truncated unary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15, 21, 42, 62, 99, 130

TSM
transform skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 67, 107

TSRC
transform skip residual coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

URQ
uniform reconstruction quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 83

VVC
Versatile Video Coding (H.266/MPEG-I Part 3) . . . . . . . . . . . . 1, 11, 40, 41, 64, 84, 107, 130

148



Bibliography

[1] T. Wiegand and H. Schwarz. Source Coding: Part I of Fundamentals of Source and Video Coding.
Vol. 4. 2010. 2011, pp. 1–222. doi: 10.1561/2000000010.

[2] Statistica. Average Internet Connection Speed (Fixed Network) in Germany from October 2020 to
February 2023. Mar. 2023. url: https://www.statista.com/statistics/1338657/average-
internet-speed-germany/.

[3] Cisco Annual Internet Report (2018–2023) White Paper. Cisco, Sept. 2020. url: https://www.
cisco . com / c / en / us / solutions / collateral / executive - perspectives / annual - internet -
report/white-paper-c11-741490.html.

[4] V. K. Goyal. “Theoretical Foundations of Transform Coding”. In: IEEE Signal Processing Magazine
18.5 (2001), pp. 9–21. doi: 10.1109/79.952802.

[5] J. W. Cooley and J. W. Tukey. “An Algorithm for the Machine Calculation of Complex Fourier
Series”. In: Mathematics of Computation 19.90 (1965), pp. 297–301.

[6] N. Ahmed, T. Natarajan, and K. R. Rao. “Discrete Cosine Transform”. In: IEEE Transactions on
Computers 100.1 (1974), pp. 90–93.

[7] H. C. Andrews and W. K. Pratt. “Fourier Transform Coding of Images”. In: Hawaii International
Conference on System Sciences. 1968, pp. 671–619.

[8] W. K. Pratt, J. Kane, and H. C. Andrews. “Hadamard Transform Image Coding”. In: Proceedings of
the IEEE 57.1 (1969), pp. 58–68. doi: 10.1109/PROC.1969.6869.

[9] A. H. Robinson and C. Cherry. “Results of a Prototype Television Bandwidth Compression Scheme”.
In: Proceedings of the IEEE 55.3 (1967), pp. 356–364. doi: 10.1109/PROC.1967.5493.

[10] ISO/IEC. 10918-1: Digital Compression and Coding of Continuous-Tone Still Images: Requirements
and Guidelines. 1992. url: https://www.iso.org/standard/18902.html.

[11] ITU-T. Recommendation H.262. 1995. url: http://www.itu.int/rec/T-REC-H.262.

[12] ISO/IEC. 13818-2: Generic Coding of Moving Pictures and Associated Audio Information - Part 2:
Video. 2000. url: https://www.iso.org/standard/61152.html.

[13] ITU-T. Recommendation H.263. 1998. url: http://www.itu.int/rec/T-REC-H.263.

[14] ISO/IEC. 14496-2: Coding of Audio-Visual Objects - Part 2: Visual. 2001. url: https://www.iso.
org/standard/61152.html.

[15] G. K. Wallace. “The JPEG Still Picture Compression Standard”. In: IEEE Transactions on Consumer
Electronics 38.1 (1992), pp. xviii–xxxiv. doi: 10.1109/30.125072.

[16] P. N. Tudor. “MPEG-2 Video Compression Tutorial”. In: IEE Colloquium on MPEG-2 - What it is
and What it isn’t. 1995, pp. 2/1–2/8. doi: 10.1049/ic:19950036.

[17] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra. “Overview of the H.264/AVC Video
Coding Standard”. In: IEEE Transactions on Circuits and Systems for Video Technology 13.7 (2003),
pp. 560–576. doi: 10.1109/TCSVT.2003.815165.

[18] I. Richardson. H.264/AVC Context Adaptive Variable Length Coding. VCodex. url: https://www.
vcodex.com/h264avc-context-adaptive-variable-length-coding/.

[19] S. G. Mallat. “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 11.7 (1989), pp. 674–693. doi:
10.1109/34.192463.

[20] J. M. Shapiro. “Embedded Image Coding Using Zerotrees of Wavelet Coefficients”. In: IEEE Trans-
actions on Signal Processing 41.12 (1993), pp. 3445–3462. doi: 10.1109/78.258085.

[21] A. Graps. “An Introduction to Wavelets”. In: IEEE Computational Science and Engineering 2.2 (1995),
pp. 50–61. doi: 10.1109/99.388960.

149

https://doi.org/10.1561/2000000010
https://www.statista.com/statistics/1338657/average-internet-speed-germany/
https://www.statista.com/statistics/1338657/average-internet-speed-germany/
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://doi.org/10.1109/79.952802
https://doi.org/10.1109/PROC.1969.6869
https://doi.org/10.1109/PROC.1967.5493
https://www.iso.org/standard/18902.html
http://www.itu.int/rec/T-REC-H.262
https://www.iso.org/standard/61152.html
http://www.itu.int/rec/T-REC-H.263
https://www.iso.org/standard/61152.html
https://www.iso.org/standard/61152.html
https://doi.org/10.1109/30.125072
https://doi.org/10.1049/ic:19950036
https://doi.org/10.1109/TCSVT.2003.815165
https://www.vcodex.com/h264avc-context-adaptive-variable-length-coding/
https://www.vcodex.com/h264avc-context-adaptive-variable-length-coding/
https://doi.org/10.1109/34.192463
https://doi.org/10.1109/78.258085
https://doi.org/10.1109/99.388960


BIBLIOGRAPHY

[22] A. Said and W. A. Pearlman. “A New, Fast, and Efficient Image Codec Based on Set Partitioning in
Hierarchical Trees”. In: IEEE Transactions on Circuits and Systems for Video Technology 6.3 (1996),
pp. 243–250. doi: 10.1109/76.499834.

[23] M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek. “An Overview of JPEG-2000”. In:
Proceedings DCC 2000. Data Compression Conference. 2000, pp. 523–541. doi: 10.1109/DCC.2000.
838192.

[24] D. Taubman, E. Ordentlich, M. Weinberger, G. Seroussi, I. Ueno, and F. Ono. “Embedded Block
Coding in JPEG2000”. In: Proceedings 2000 International Conference on Image Processing (Cat.
No.00CH37101). Vol. 2. 2000, 33–36 vol.2. doi: 10.1109/ICIP.2000.899218.

[25] X. Wu and J.-H. Chen. “Context Modeling and Entropy Coding of Wavelet Coefficients for Image
Compression”. In: 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.
Vol. 4. 1997, pp. 3097–3100. doi: 10.1109/ICASSP.1997.595447.

[26] D. Marpe and H. L. Cycon. “Very Low Bit-Rate Video Coding Using Wavelet-Based Techniques”.
In: IEEE Transactions on Circuits and Systems for Video Technology 9.1 (1999), pp. 85–94. doi:
10.1109/76.744277.

[27] Sullivan, Gary. Q.15/16 Meeting Report (Geneva, Jan.26 - Feb.6, 1998). 9801q15r. Geneva, Switzer-
land: ITU-T, Jan. 1998.

[28] D. Marpe, H. Schwarz, and T. Wiegand. “Context-Based Adaptive Binary Arithmetic Coding in the
H.264/AVC Video Compression Standard”. In: IEEE Transaction on Circuits and Systems for Video
Technology 13.7 (July 2003), pp. 620–636. issn: 1051-8215. doi: 10.1109/TCSVT.2003.815173. url:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1218195.

[29] J. Sole, R. Joshi, I.-S. Chong, M. Coban, and M. Karczewicz. Parallel Context Processing for the
Significance Map in High Coding Efficiency. JCTVC-D262. Daegu, South Korea: ITU-T and ISO/IEC,
Jan. 2011.

[30] N. Nguyen, T. Ji, D. He, G. Martin-Cocher, and L. Song. Multi-Level Significance Maps for Large
Transform Units. JCTVC-G644. Geneva, Switzerland: ITU-T and ISO/IEC, Nov. 2011.

[31] Y. Piao, W. Choi, and K. Chanyul. CE7.1.3: Scan Region-Based Coefficient Coding. JVET-K0138.
Ljubljana, Slovenia: ITU-T and ISO/IEC, July 2018.

[32] C. Auyeung, X. Zhao, X. Li, and S. Liu. CE7-Related: Context Reduction of Transform Coefficient
Significance Flag. JVET-O0617. Gothenburg, Sweden: ITU-T and ISO/IEC, July 2019.

[33] M. Gao, X. Fan, D. Zhao, and W. Gao. “An Enhanced Entropy Coding Scheme for HEVC”. In: Signal
Processing: Image Communication 44 (2016), pp. 108–123. issn: 0923-5965. doi: https://doi.org/
10.1016/j.image.2016.03.008. url: https://www.sciencedirect.com/science/article/pii/
S0923596516300315.

[34] P. de Rivaz and J. Haughton. AV1 Bitstream & Decoding Process Specification. 2018. url: https:
//aomediacodec.github.io/av1-spec/av1-spec.pdf.

[35] J. Han, B. Li, D. Mukherjee, C.-H. Chiang, A. Grange, C. Chen, H. Su, S. Parker, S. Deng, U. Joshi, Y.
Chen, Y. Wang, P. Wilkins, Y. Xu, and J. Bankoski. “A Technical Overview of AV1”. In: Proceedings
of the IEEE 109.9 (2021), pp. 1435–1462. doi: 10.1109/JPROC.2021.3058584.

[36] J. Han, C.-H. Chiang, and Y. Xu. “A Level-Map Approach to Transform Coefficient Coding”. In:
2017 IEEE International Conference on Image Processing (ICIP). 2017, pp. 3245–3249. doi: 10.
1109/ICIP.2017.8296882.

[37] T. Nguyen, H. Schwarz, H. Kirchhoffer, D. Marpe, and T. Wiegand. “Improved Context Modeling for
Coding Quantized Transform Coefficients in Video Compression”. In: 28th Picture Coding Symposium.
2010, pp. 378–381. doi: 10.1109/PCS.2010.5702513.

150

https://doi.org/10.1109/76.499834
https://doi.org/10.1109/DCC.2000.838192
https://doi.org/10.1109/DCC.2000.838192
https://doi.org/10.1109/ICIP.2000.899218
https://doi.org/10.1109/ICASSP.1997.595447
https://doi.org/10.1109/76.744277
https://doi.org/10.1109/TCSVT.2003.815173
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1218195
https://doi.org/https://doi.org/10.1016/j.image.2016.03.008
https://doi.org/https://doi.org/10.1016/j.image.2016.03.008
https://www.sciencedirect.com/science/article/pii/S0923596516300315
https://www.sciencedirect.com/science/article/pii/S0923596516300315
https://aomediacodec.github.io/av1-spec/av1-spec.pdf
https://aomediacodec.github.io/av1-spec/av1-spec.pdf
https://doi.org/10.1109/JPROC.2021.3058584
https://doi.org/10.1109/ICIP.2017.8296882
https://doi.org/10.1109/ICIP.2017.8296882
https://doi.org/10.1109/PCS.2010.5702513


BIBLIOGRAPHY

[38] T. Nguyen, D. Marpe, H. Schwarz, and T. Wiegand. “Reduced-Complexity Entropy Coding of Trans-
form Coefficient Levels Using Truncated Golomb-Rice Codes in Video Compression”. In: 2011 18th
IEEE International Conference on Image Processing. 2011, pp. 753–756. doi: 10.1109/ICIP.2011.
6116664.

[39] M. Winken, S. Boße, B. Bross, P. Helle, T. Hinz, H. Kirchhoffer, H. Lakshman, D. Marpe, S. Oudin,
M. Preiß, H. Schwarz, M. Siekmann, K. Sühring, and T. Wiegand. Video Coding Technology Oroposal
by Fraunhofer HHI. JCTVC-A116. Dresden, Germany: ITU-T and ISO/IEC, Apr. 2010.

[40] ITU-T SG16/Q6 and ISO/IEC JTC1/SC29/WG11. Joint Call for Proposals on Video Compression
Technology. VCEG-AM91 and N11113. Kyoto, Japan: ITU-T and ISO/IEC, Jan. 2010.

[41] JCT-VC. Test Model under Consideration (TMuC). JCTVC-A205. Dresden, Germany: ITU-T and
ISO/IEC, Apr. 2010.

[42] T. Nguyen, D. Marpe, and T. Wiegand. Non-CE11: Proposed Cleanup for Transform Coefficient
Coding. JCTVC-H0228. San Jose, USA: ITU-T and ISO/IEC, Jan. 2012.

[43] H. Schwarz, T. Nguyen, D. Marpe, and T. Wiegand. CE7: Transform Coefficient Coding and Depen-
dent Quantization (Tests 7.1.2, 7.2.1). JVET-K0071. Ljubljana, Slovenia: ITU-T and ISO/IEC, July
2018.

[44] H. Schwarz, T. Nguyen, D. Marpe, T. Wiegand, M. Karczewicz, M. Coban, and J. Dong. “Improved
Quantization and Transform Coefficient Coding for the Emerging Versatile Video Coding (VVC)
Standard”. In: 2019 IEEE International Conference on Image Processing (ICIP). 2019, pp. 1183–
1187. doi: 10.1109/ICIP.2019.8803768.

[45] D. Flynn, D. Marpe, M. Naccari, T. Nguyen, C. Rosewarne, K. Sharman, J. Sole, and J. Xu. “Overview
of the Range Extensions for the HEVC Standard: Tools, Profiles, and Performance”. In: IEEE Trans-
actions on Circuits and Systems for Video Technology 26.1 (2016), pp. 4–19. doi: 10.1109/TCSVT.
2015.2478707.

[46] T. Nguyen, B. Bross, P. Keydel, H. Schwarz, D. Marpe, and T. Wiegand. “Extended Transform Skip
Mode and Fast Multiple Transform Set Selection in VVC”. In: 2019 Picture Coding Symposium (PCS).
2019, pp. 1–5. doi: 10.1109/PCS48520.2019.8954540.

[47] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand. “Overview of the High Efficiency Video
Coding (HEVC) Standard”. In: IEEE Transactions on Circuits and Systems for Video Technology
22.12 (2012), pp. 1649–1668. doi: 10.1109/TCSVT.2012.2221191.

[48] B. Bross, Y.-K. Wang, Y. Ye, S. Liu, J. Chen, G. J. Sullivan, and J.-R. Ohm. “Overview of the
Versatile Video Coding (VVC) Standard and its Applications”. In: IEEE Transactions on Circuits
and Systems for Video Technology (2021).

[49] B. Bross, J. Chen, J.-R. Ohm, G. J. Sullivan, and Y.-K. Wang. “Developments in International
Video Coding Standardization After AVC, With an Overview of Versatile Video Coding (VVC)”. In:
Proceedings of the IEEE (2021), pp. 1–31. doi: 10.1109/JPROC.2020.3043399.

[50] Y.-W. Huang, J. An, H. Huang, X. Li, S.-T. Hsiang, K. Zhang, H. Gao, J. Ma, and O. Chubach.
“Block Partitioning Structure in the VVC Standard”. In: IEEE Transactions on Circuits and Systems
for Video Technology (2021), pp. 1–1. doi: 10.1109/TCSVT.2021.3088134.

[51] J. Lainema, F. Bossen, W.-J. Han, J. Min, and K. Ugur. “Intra Coding of the HEVC Standard”. In:
IEEE Transactions on Circuits and Systems for Video Technology 22.12 (2012), pp. 1792–1801. doi:
10.1109/TCSVT.2012.2221525.

[52] J. Pfaff, A. Filippov, S. Liu, X. Zhao, J. Chen, S. De-Luxán-Hernández, T. Wiegand, V. Rufitskiy,
A. K. Ramasubramonian, and G. Van der Auwera. “Intra Prediction and Mode Coding in VVC”. In:
IEEE Transactions on Circuits and Systems for Video Technology (2021), pp. 1–1. doi: 10.1109/
TCSVT.2021.3072430.

[53] J.-L. Lin, Y.-W. Chen, Y.-W. Huang, and S.-M. Lei. “Motion Vector Coding in the HEVC Standard”.
In: IEEE Journal of Selected Topics in Signal Processing 7.6 (2013), pp. 957–968. doi: 10.1109/
JSTSP.2013.2271975.

151

https://doi.org/10.1109/ICIP.2011.6116664
https://doi.org/10.1109/ICIP.2011.6116664
https://doi.org/10.1109/ICIP.2019.8803768
https://doi.org/10.1109/TCSVT.2015.2478707
https://doi.org/10.1109/TCSVT.2015.2478707
https://doi.org/10.1109/PCS48520.2019.8954540
https://doi.org/10.1109/TCSVT.2012.2221191
https://doi.org/10.1109/JPROC.2020.3043399
https://doi.org/10.1109/TCSVT.2021.3088134
https://doi.org/10.1109/TCSVT.2012.2221525
https://doi.org/10.1109/TCSVT.2021.3072430
https://doi.org/10.1109/TCSVT.2021.3072430
https://doi.org/10.1109/JSTSP.2013.2271975
https://doi.org/10.1109/JSTSP.2013.2271975


BIBLIOGRAPHY

[54] W.-J. Chien, L. Zhang, M. Winken, X. Li, R. Liao, H. Gao, C.-W. Hsu, H. Liu, and C.-C. Chen. “Mo-
tion Vector Coding and Block Merging in Versatile Video Coding Standard”. In: IEEE Transactions
on Circuits and Systems for Video Technology (2021).

[55] X. Zhao, S.-H. Kim, Y. Zhao, H. E. Egilmez, M. Koo, S. Liu, J. Lainema, and M. Karczewicz.
“Transform Coding in the VVC Standard”. In: IEEE Transactions on Circuits and Systems for Video
Technology (2021), pp. 1–1. doi: 10.1109/TCSVT.2021.3087706.

[56] H. Schwarz, M. Coban, M. Karczewicz, T.-D. Chuang, F. Bossen, A. Alshin, J. Lainema, C. Helmrich,
and T. Wiegand. “Quantization and Entropy Coding in the Versatile Video Coding (VVC) Standard”.
In: IEEE Transactions on Circuits and Systems for Video Technology (2021), pp. 1–1. doi: 10.1109/
TCSVT.2021.3072202.

[57] D. Marpe, H. Schwarz, S. Boße, B. Bross, P. Helle, T. Hinz, H. Kirchhoffer, H. Lakshman, T. Nguyen,
S. Oudin, M. Siekmann, K. Sühring, M. Winken, and T. Wiegand. “Video Compression Using Nested
Quadtree Structures, Leaf Merging, and Improved Techniques for Motion Representation and Entropy
Coding”. In: Transaction on Circuits and Systems for Video Technology 20.12 (2010), pp. 1676–1687.
issn: 1051-8215. doi: 10.1109/TCSVT.2010.2092615. url: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5638132.

[58] A. Moffat and A. Turpin. Compression and Coding Algorithms. Boston, MA: Springer US, 2002. isbn:
978-1-4613-5312-6. doi: 10.1007/978-1-4615-0935-6. url: http://link.springer.com/10.1007/
978-1-4615-0935-6.

[59] S. Forchhammer, X. Wu, and J. D. Andersen. “Optimal Context Quantization in Lossless Compression
of Image Data Sequences”. In: IEEE Transaction on Image Processing 13.4 (2004), pp. 509–517. issn:
1057-7149. doi: 10.1109/TIP.2003.822613. url: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1284387.

[60] M. Xu, X. Wu, and P. Franti. “Context Quantization by Kernel Fisher Discriminant”. In: IEEE
Transaction on Image Processing 15.1 (2006), pp. 169–177. issn: 1057-7149. doi: 10.1109/TIP.2005.
860357. url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1556635.

[61] ITU-T. Recommendation H.264. 2003. url: http://www.itu.int/rec/T-REC-H.264.

[62] T. Nguyen, P. Helle, M. Winken, B. Bross, D. Marpe, H. Schwarz, and T. Wiegand. “Transform Coding
Techniques in HEVC”. In: Journal of Selected Topics in Signal Processing 7.6 (2013), pp. 978–989.
issn: 1932-4553. doi: 10.1109/JSTSP.2013.2278071. url: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6578061.

[63] ITU-T. Recommendation H.265. 2013. url: http://www.itu.int/rec/T-REC-H.265.

[64] ITU-T. Recommendation H.266. 2021. url: http://www.itu.int/rec/T-REC-H.266.

[65] M. J. Weinberger, G. Seroussi, and G. Sapiro. “LOCO-I: A Low Complexity, Context-Based, Lossless
Image Compression Algorithm”. In: Proceedings of Data Compression Conference - DCC ’96. 1996,
pp. 140–149. doi: 10.1109/DCC.1996.488319.

[66] G. Bjøntegaard. Calculation of Average PSNR Differences between RD Curves. VCEG-M33. Austin,
USA: ITU-T, Apr. 2001.

[67] K. Sharman and K. Sühring. Common Test Conditions. JCTVC-AC1100. Macao, China: ITU-T and
ISO/IEC, Oct. 2017.

[68] T. Nguyen, H. Schwarz, D. Marpe, and T. Wiegand. CE11: Evaluation of Transform Coding tools in
HE Configuration. JCTVC-D061. Daegu, South Korea: ITU-T and ISO/IEC, Jan. 2011.

[69] T. Kumakura and S. Fukushima. Non-CE3: Simplified Context Derivation for Significance Map.
JCTVC-I0296. Geneva, Switzerland: ITU-T and ISO/IEC, Apr. 2012.

[70] T. Ji, N. Nguyen, D. He, and G. Martin-Cocher. Sub-Block Based Significance Map Region Classifi-
cation. JCTVC-H0432. San Jose, USA: ITU-T and ISO/IEC, Jan. 2012.

152

https://doi.org/10.1109/TCSVT.2021.3087706
https://doi.org/10.1109/TCSVT.2021.3072202
https://doi.org/10.1109/TCSVT.2021.3072202
https://doi.org/10.1109/TCSVT.2010.2092615
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5638132
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5638132
https://doi.org/10.1007/978-1-4615-0935-6
http://link.springer.com/10.1007/978-1-4615-0935-6
http://link.springer.com/10.1007/978-1-4615-0935-6
https://doi.org/10.1109/TIP.2003.822613
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1284387
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1284387
https://doi.org/10.1109/TIP.2005.860357
https://doi.org/10.1109/TIP.2005.860357
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1556635
http://www.itu.int/rec/T-REC-H.264
https://doi.org/10.1109/JSTSP.2013.2278071
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6578061
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6578061
http://www.itu.int/rec/T-REC-H.265
http://www.itu.int/rec/T-REC-H.266
https://doi.org/10.1109/DCC.1996.488319


BIBLIOGRAPHY

[71] H. Schwarz, M. Coban, M. Karczewicz, T.-D. Chuang, F. Bossen, A. Alshin, J. Lainema, C. Helmrich,
and T. Wiegand. “Quantization and Entropy Coding in the Versatile Video Coding (VVC) Standard”.
In: IEEE Transactions on Circuits and Systems for Video Technology (2021), pp. 1–1. doi: 10.1109/
TCSVT.2021.3072202.

[72] V. Sze and A. P. Chandrakasan. “A Highly Parallel and Scalable CABAC Decoder for Next Generation
Video Coding”. In: IEEE Journal of Solid-State Circuits 47.1 (2012), pp. 8–22. doi: 10.1109/JSSC.
2011.2169310.

[73] E. Y. Lam and J. W. Goodman. “A Mathematical Analysis of the DCT Coefficient Distributions
for Images”. In: Transaction on Image Processing 9.10 (2000), pp. 1661–1666. issn: 10577149. doi:
10.1109/83.869177. url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
869177.

[74] A. Gyorgy and T. Linder. “Optimal Entropy-Constrained Scalar Quantization of a Uniform Source”.
In: IEEE Transactions on Information Theory 46.7 (2000), pp. 2704–2711. doi: 10.1109/18.887885.

[75] J. Stankowski, C. Korzeniewski, M. Domański, and T. Grajek. “Rate-Distortion Optimized Quantiza-
tion in HEVC: Performance Limitations”. In: 2015 Picture Coding Symposium (PCS). 2015, pp. 85–89.
doi: 10.1109/PCS.2015.7170052.

[76] S. W. Golomb. “Run-Length Encodings (Corresp.)” In: IEEE Transaction on Information Theory
12.3 (July 1966), pp. 399–401. issn: 0018-9448. doi: 10.1109/TIT.1966.1053907. url: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1053907.

[77] P. G. Howard. The Design and Analysis of Efficient Lossless Data Compression Systems. 1993.

[78] A. Kiely. Selecting the Golomb Parameter in Rice Coding. IPN Progress Report 42-159, Nov. 2004.
url: https://ipnpr.jpl.nasa.gov/progress_report/42-159/159E.pdf.

[79] T. Nguyen, M. Winken, D. Marpe, S. Heiko, and T. Wiegand. Reduced-Complexity Entropy Coding of
Transform Coefficient Levels Using a Combination of VLC and PIPE. JCTVC-D336. Daegu, South
Korea: ITU-T and ISO/IEC, Jan. 2011.

[80] V. Sze and M. Budagavi. CE11: Parallelization of HHI_TRANSFORM_CODING (Fixed Diagonal
Scan). JCTVC-F129. Torino, Italy: ITU-T and ISO/IEC, July 2011.

[81] F. Bossen, X. Li, V. Seregin, K. Sharman, and K. Sühring. VTM and HM Common Test Condi-
tions and Software Reference Configurations for SDR 4:2:0 10 bit Video. JVET-Y2010. ITU-T and
ISO/IEC, Jan. 2022.

[82] Y. Zheng, M. Coban, X. Wang, J. Sole, R. Joshi, and M. Karczewicz. CE11: Mode Dependent Coef-
ficient Scanning. JCTVC-D393. Daegu, South Korea: ITU-T and ISO/IEC, Jan. 2011.

[83] M. Albrecht, C. Bartnik, S. Boße, J. Brandenburg, B. Bross, J. Erfurt, V. George, P. Haase, P. Helle,
C. Helmrich, A. Henkel, T. Hinz, S. de Luxan Hernandez, S. Kaltenstadler, P. Keydel, H. Kirchhoffer,
C. Lehmann, W.-Q. Lim, J. Ma, D. Maniry, D. Marpe, P. Merkle, T. Nguyen, J. Pfaff, J. Rasch,
R. Rischke, C. Rudat, M. Schäfer, T. Schierl, H. Schwarz, M. Siekmann, R. Skupin, B. Stallenberger,
J. Stegemann, K. Sühring, G. Tech, G. Venugopal, S. Walter, A. Wieckowski, T. Wiegand, and M.
Winken. Description of SDR, HDR and 360◦ Video Coding Technology Proposal by Fraunhofer HHI.
JVET-J0014. San Diego, USA: ITU-T and ISO/IEC, Apr. 2018.

[84] ITU-T SG16/Q6 and ISO/IEC JTC1/SC29/WG11. Joint Call for Proposals on Video Compression
with Capability Beyond HEVC. JVET-H1002. Macao, China: ITU-T and ISO/IEC, Oct. 2017.

[85] K. Ramchandran and M. Vetterli. “Rate-Distortion Optimal Fast Thresholding with Complete JPEG
/ MPEG Decoder Compatibility”. In: IEEE Transactions on Image Processing 3.5 (1994), pp. 700–
704. doi: 10.1109/83.334973.

[86] M. Karczewicz, Y. Ye, and I. Chong. Rate Distortion Optimized Quantization. VCEG-AH21. Antalya,
Turkey: ITU-T, Jan. 2008.

153

https://doi.org/10.1109/TCSVT.2021.3072202
https://doi.org/10.1109/TCSVT.2021.3072202
https://doi.org/10.1109/JSSC.2011.2169310
https://doi.org/10.1109/JSSC.2011.2169310
https://doi.org/10.1109/83.869177
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=869177
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=869177
https://doi.org/10.1109/18.887885
https://doi.org/10.1109/PCS.2015.7170052
https://doi.org/10.1109/TIT.1966.1053907
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1053907
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1053907
https://ipnpr.jpl.nasa.gov/progress_report/42-159/159E.pdf
https://doi.org/10.1109/83.334973


BIBLIOGRAPHY

[87] E.-h. Yang and X. Yu. “Soft Decision Quantization for H.264 with Main Profile Compatibility”. In:
IEEE Transactions on Circuits and Systems for Video Technology 19.1 (2009), pp. 122–127. doi:
10.1109/TCSVT.2008.2009260.

[88] R. M. Gray. “Vector Quantization”. In: IEEE ASSP Magazine 1.2 (1984), pp. 4–29. doi: 10.1109/
MASSP.1984.1162229.

[89] M. W. Marcellin and T. R. Fischer. “Trellis Coded Quantization of Memoryless and Gauss-Markov
Sources”. In: IEEE Transactions on Communications 38.1 (1990), pp. 82–93. doi: 10.1109/26.46532.

[90] G. J. Sullivan. “Efficient Scalar Quantization of Exponential and Laplacian Random Variables”. In:
IEEE Transactions on Information Theory 42.5 (1996), pp. 1365–1374. doi: 10.1109/18.532878.

[91] T. Lookabaugh and R. M. Gray. “High-Resolution Quantization Theory and the Vector Quantizer
Advantage”. In: IEEE Transactions on Information Theory 35.5 (1989), pp. 1020–1033. doi: 10.1109/
18.42217.

[92] G. D. Forney. “The Viterbi Algorithm”. In: Proceedings of the IEEE 61.3 (1973), pp. 268–278. doi:
10.1109/PROC.1973.9030.

[93] H. Schwarz, S. Schmidt, P. Haase, T. Nguyen, D. Marpe, and T. Wiegand. Additional Support of
Dependent Quantization with 8 States. JVET-Q0243. Brussels, Belgium: ITU-T and ISO/IEC, Jan.
2020.

[94] F. Bossen, J. Dong, and H. Kirchhoffer. CE1: Summary Report on CABAC Initialization. JVET-
O0021. Gothenburg, Sweden: ITU-T and ISO/IEC, July 2019.

[95] J. Dong, A. Said, H. Wang, V. Seregin, and M. Karczewicz. CE1-1.2 and CE1-2.1: Simplification of
CABAC Initialization Process. JVET-O0065. Gothenburg, Sweden: ITU-T and ISO/IEC, July 2019.

[96] H. Kirchhoffer, D. Marpe, H. Schwarz, and T. Wiegand. CE1-1.1: Simplification of the Initialization
Process for Context Variables. JVET-O0085. Gothenburg, Sweden: ITU-T and ISO/IEC, July 2019.

[97] F. Bossen. CE1: CABAC Initialization, All Experiments. JVET-O0112. Gothenburg, Sweden: ITU-T
and ISO/IEC, July 2019.

[98] H. Schwarz, T. Nguyen, D. Marpe, and T. Wiegand. Non-CE7: Alternative Entropy Coding for De-
pendent Quantization. JVET-K0072. Ljubljana, Slovenia: ITU-T and ISO/IEC, July 2018.

[99] J. Boyce, K. Sühring, X. Li, and V. Seregin. JVET Common Test Conditions and Software Reference
Configurations. JVET-J1010. San Diego, USA: ITU-T and ISO/IEC, Apr. 2018.

[100] J. Chen, W.-J. Chien, R. Joshi, J. Sole, and M. Karczewicz. Non-CE1: Throughput Improvement on
CABAC Coefficients Level Coding. JCTVC-H0554. San Jose, USA: ITU-T and ISO/IEC, Jan. 2012.

[101] H. Schwarz, T. Nguyen, D. Marpe, T. Wiegand, M. Karczewicz, M. Coban, and J. Dong. CE7:
Transform Coefficient Coding with Reduced Number of Regular-Coded Bins (Tests 7.1.3a, 7.1.3b).
JVET-L0274. Macao, China: ITU-T and ISO/IEC, Oct. 2018.

[102] F. Bossen. CABAC Cleanup and Complexity Reduction. JVT-E086. Geneva, Switzerland: ITU-T and
ISO/IEC, Oct. 2002.

[103] M. Zhou. AHG16/Non-CE7: A Study of Bin to Bit Ratio for VTM-5.0. JVET-O0068. Gothenburg,
Sweden: ITU-T and ISO/IEC, July 2019.

[104] T.-D. Chuang, S.-T. Hsiang, Z.-Y. Lin, C.-Y. Chen, H. Yu-Wen, and S.-M. Lei. CE7 (Tests 7.1, 7.2,
7.3, and 7.4): Constraints on Context-Coded Bins for Coefficient Coding. JVET-M0173. Marrakech,
Morocco: ITU-T and ISO/IEC, Jan. 2019.

[105] T.-D. Chuang, S.-T. Hsiang, Z.-Y. Lin, C.-Y. Chen, Y.-W. Huang, S.-M. Lei, M. Coban, and M. Kar-
czewicz. CE7-1: TB-Level Constraints on Context-Coded Bins for Coefficient Coding. JVET-O0052.
Gothenburg, Sweden: ITU-T and ISO/IEC, July 2019.

[106] Z.-Y. Lin, T.-D. Chuang, C.-Y. Chen, Y.-W. Huang, and S.-M. Lei. CE7-Related: Context Model-
ing Using Quantization Index for Dependent Quantization. JVET-L0097. Macao, China: ITU-T and
ISO/IEC, Oct. 2018.

154

https://doi.org/10.1109/TCSVT.2008.2009260
https://doi.org/10.1109/MASSP.1984.1162229
https://doi.org/10.1109/MASSP.1984.1162229
https://doi.org/10.1109/26.46532
https://doi.org/10.1109/18.532878
https://doi.org/10.1109/18.42217
https://doi.org/10.1109/18.42217
https://doi.org/10.1109/PROC.1973.9030


BIBLIOGRAPHY

[107] X. Xu, S. Liu, T.-D. Chuang, Y.-W. Huang, S.-M. Lei, K. Rapaka, C. Pang, V. Seregin, Y.-K. Wang,
and M. Karczewicz. “Intra Block Copy in HEVC Screen Content Coding Extensions”. In: IEEE Journal
on Emerging and Selected Topics in Circuits and Systems 6.4 (2016), pp. 409–419. doi: 10.1109/
JETCAS.2016.2597645.

[108] W. Pu, M. Karczewicz, R. Joshi, V. Seregin, F. Zou, J. Sole, Y.-C. Sun, T.-D. Chuang, P. Lai, S.
Liu, S.-T. Hsiang, J. Ye, and Y.-W. Huang. “Palette Mode Coding in HEVC Screen Content Coding
Extension”. In: IEEE Journal on Emerging and Selected Topics in Circuits and Systems 6.4 (2016),
pp. 420–432. doi: 10.1109/JETCAS.2016.2605661.

[109] M. Mrak and J.-Z. Xu. “Improving Screen Content Coding in HEVC by Transform Skipping”. In: 2012
Proceedings of the 20th European Signal Processing Conference (EUSIPCO). 2012, pp. 1209–1213.

[110] J. Xu, R. Joshi, and R. A. Cohen. “Overview of the Emerging HEVC Screen Content Coding Exten-
sion”. In: IEEE Transactions on Circuits and Systems for Video Technology 26.1 (2016), pp. 50–62.
doi: 10.1109/TCSVT.2015.2478706.

[111] M. Mrak, A. Gabriellini, N. Sprljan, and D. Flynn. Transform Skip Mode. JCTVC-F077. Torino, Italy:
ITU-T and ISO/IEC, July 2011.

[112] X. Peng, C. Lan, J. Xu, and G. J. Sullivan. Inter Transform Skipping. JCTVC-J0237. Stockholm,
Sweden: ITU-T and ISO/IEC, July 2012.

[113] C. Lan, J. Xu, G. J. Sullivan, and F. Wu. Intra Transform Skipping. JCTVC-I0408. Geneva, Switzer-
land: ITU-T and ISO/IEC, Apr. 2012.

[114] J. Sole, R. Joshi, and M. Karczewicz. RCE2 Test B.1: Residue Rotation and Significance Map Context.
JCTVC-N0044. Vienna, Austria: ITU-T and ISO/IEC, July 2013.

[115] X. Xu, Y.-H. Chao, Y.-C. Sun, and J. X. Xu. Description of Core Experiment 8 (CE8): Screen Content
Coding Tools. JVET-M1028. Marrakech, Morocco: ITU-T and ISO/IEC, Jan. 2019.

[116] B. Bross, T. Nguyen, P. Keydel, H. Schwarz, D. Marpe, and T. Wiegand. Non-CE8: Unified Transform
Type Signalling and Residual Coding for Transform Skip. JVET-M0464. Marrakech, Morocco: ITU-T
and ISO/IEC, Jan. 2019.

[117] T. Tsukuba, M. Ikeda, and T. Suzuki. Non-CE6: On Transform Skip for Larger Block. JVET-M0072.
Marrakech, Morocco: ITU-T and ISO/IEC, Jan. 2019.

[118] T. Nguyen, X. Xu, F. Henry, R.-L. Liao, M. G. Sarwer, M. Karczewicz, Y.-H. Chao, J. Xu, S. Liu, D.
Marpe, and G. J. Sullivan. “Overview of the Screen Content Support in VVC: Applications, Coding
Tools, and Performance”. In: IEEE Transactions on Circuits and Systems for Video Technology 31.10
(2021), pp. 3801–3817. doi: 10.1109/TCSVT.2021.3074312.

[119] B. Bross, T. Nguyen, H. Schwarz, D. Marpe, and T. Wiegand. CE8: Residual Coding for Transform
Skip Mode (CE8-4.3a, CE8-4.3b, CE8-4.4a, and CE8-4.4b). JVET-N0280. Geneva, Switzerland: ITU-
T and ISO/IEC, Mar. 2019.

[120] M. Xu, X. Li, X. Xu, M. Gao, and S. Liu. CE8-Related: BDPCM Entropy Coding with Reduced Number
of Context Coded Bins. JVET-M0449. Marrakech, Morocco: ITU-T and ISO/IEC, Jan. 2019.

[121] M. Karczewicz and M. Coban. CE8-Related: Sign Context Modelling and Level Mapping for TS Resid-
ual Coding. JVET-N0405. Geneva, Switzerland: ITU-T and ISO/IEC, Mar. 2019.

155

https://doi.org/10.1109/JETCAS.2016.2597645
https://doi.org/10.1109/JETCAS.2016.2597645
https://doi.org/10.1109/JETCAS.2016.2605661
https://doi.org/10.1109/TCSVT.2015.2478706
https://doi.org/10.1109/TCSVT.2021.3074312

	1 Introduction
	1.1 Organization of the Thesis
	1.2 State-of-the-Art
	1.3 Main Contributions
	1.4 Practical Importance

	2 Video and Entropy Coding
	2.1 Hybrid Video Coding
	2.1.1 Partitioning
	2.1.2 Prediction
	2.1.3 Transform
	2.1.4 Quantization
	2.1.5 Entropy Coding

	2.2 Context-Based Adaptive Binary Framework
	2.2.1 Shannon-Fano-Elias Codes
	2.2.2 Iterative Shannon-Fano-Elias Codes
	2.2.3 Arithmetic Codes
	2.2.4 Challenges in Entropy Coding
	2.2.5 Design Principles of CABAC
	2.2.6 Binarization
	2.2.7 Adaptive Context Models
	2.2.8 Context Modeling

	2.3 Chapter Summary

	3 Transform Coefficient Level Coding for Variable Block Sizes
	3.1 Problem Statement
	3.2 Transform Coefficient Level Coding in AVC
	3.2.1 Coding Phases in AVC
	3.2.2 Context Modeling
	3.2.3 88 Transform Blocks and Generalization
	3.2.4 Reference Implementation and Experimental Setup
	3.2.5 Properties of Variable Transform Sizes

	3.3 Alternative Design with 44 Sub-Blocks
	3.3.1 Properties of 44 Sub-Blocks
	3.3.2 Coding Phases with 44 Sub-Blocks
	3.3.3 Context Modeling for 44 Sub-Blocks
	3.3.4 Final Design with 44 Sub-Blocks

	3.4 Findings and Technical Achievements
	3.5 Chapter Summary

	4 Adaptive Binarization of Transform Coefficient Levels
	4.1 Problem Statement
	4.2 Static Binarization
	4.2.1 Binarization of Transform Coefficient Levels in AVC
	4.2.2 Context-Coded Bins per Sample
	4.2.3 Alternative Fixed Thresholds

	4.3 Adaptive Binarization
	4.3.1 Probability Model
	4.3.2 Empirical Conditional Distribution
	4.3.3 Golomb and Rice Codes
	4.3.4 Backward-Adaptive Rice Parameter Estimation
	4.3.5 Nested Rice Codes with EG0
	4.3.6 Final Design with Nested Rice Codes

	4.4 Findings and Technical Achievements
	4.5 Chapter Summary

	5 Template-Based Context Modeling
	5.1 Problem Statement
	5.2 Extra Coding Tools Inherited from HEVC
	5.2.1 Last Significant Scanning Position
	5.2.2 Diagonal Scanning Pattern
	5.2.3 Coded Sub-Block Flags
	5.2.4 Reference Implementation and Experimental Setup

	5.3 Template-Based Context Modeling for Significance
	5.3.1 Local Template Configuration
	5.3.2 Impact of a Single Neighboring Frequency Location
	5.3.3 Determination of the Local Template Geometry
	5.3.4 Trade-Off Analysis

	5.4 Single Coding Phase and Level Magnitudes
	5.4.1 Enabling Evaluation of Absolute Transform Coefficient Levels
	5.4.2 Non-Zero Locations with Absolute Level Magnitudes
	5.4.3 Coding of Magnitudes with a Local Template
	5.4.4 Position-Dependent Context Model Sets
	5.4.5 Reported Implementation and Performance in VVC

	5.5 Findings and Technical Achievements
	5.6 Chapter Summary

	6 Level Coding Suitable for Trellis-Coded Quantization
	6.1 Scalar Quantization
	6.1.1 Reconstruction of Transform Coefficients
	6.1.2 Simple Quantization Algorithm
	6.1.3 Rate-Distortion Optimized Quantization

	6.2 Trellis-Coded Quantization
	6.2.1 Design Overview
	6.2.2 TCQ Implementation in VVC
	6.2.3 Coding Performance of TCQ in VVC

	6.3 Extended Context Modeling for TCQ
	6.4 Separation of Context- and Bypass-Coded Bins
	6.4.1 Solution and Constraints
	6.4.2 Level Coding with Parity Flag
	6.4.3 Rice Parameter Selection
	6.4.4 Reported Coding Performance in VVC

	6.5 Reduction of Context-Coded Bins
	6.5.1 Adaptive Binarization Bound in HEVC
	6.5.2 Adaptation of the Concept to VVC

	6.6 Using Intermediate Levels for Context Modeling in TCQ
	6.6.1 Impact of Intermediate Levels on Context Modeling
	6.6.2 Context Modeling Adjustments for Intermediate Levels
	6.6.3 Refinements for Context Modeling of bx  > 1, bx  > 3, and bpar
	6.6.4 Refinements for Context Modeling of bsig
	6.6.5 Refinements to the Rice Parameter Derivation
	6.6.6 Conclusion on Intermediate Levels

	6.7 Findings and Technical Achievements
	6.8 Chapter Summary

	7 Transform Skip Residual Coding
	7.1 Problem Statement
	7.2 Transform Skip Mode in HEVC
	7.2.1 Modifications for TSM in HEVC Range Extensions
	7.2.2 Reference Implementation and Experimental Setup
	7.2.3 Block Size Restriction and Coding Efficiency
	7.2.4 Comparision to Other Screen Content Tools in VVC
	7.2.5 Impact of Level Coding Components on Coding Efficiency

	7.3 Binarization and Context Modeling of TSM Levels
	7.3.1 Statistics of TSM Levels
	7.3.2 Additional Context-Coded bx  > 1 + 2n Flags
	7.3.3 Template-Based Context Modeling of bsig
	7.3.4 Template-Based Context Modeling of bx  > 1 + 2n
	7.3.5 Rice Parameter Selection
	7.3.6 Context-Coded Sign Information
	7.3.7 Coding Efficiency Provided by TSRC, IBC, and PLT Enabled
	7.3.8 Binarization Without the bpar Flags
	7.3.9 Implementation of TSRC in VVC

	7.4 Findings and Technical Achievements
	7.5 Chapter Summary

	8 Summary and Conclusion
	List of Implementations
	List of Publications
	List of Figures
	List of Tables
	Acronyms
	Bibliography

