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Abstract
We introduce the concept of energy-variational solutions for hyperbolic conservation laws.
Intrinsically, these energy-variational solutions fulfill the weak-strong uniqueness principle
and the semi-flow property, and the set of solutions is convex and weakly-star closed. The
existence of energy-variational solutions is proven via a suitable time-discretization scheme
under certain assumptions. This general result yields existence of energy-variational solutions
to the magnetohydrodynamical equations for ideal incompressible fluids and to the Euler
equations in both the incompressible and the compressible case. Moreover, we show that
energy-variational solutions to the Euler equations coincide with dissipative weak solutions.
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1 Introduction

Hyperbolic conservation laws form a class of nonlinear evolution equations that is
omnipresent in mathematical physics and its applications. These range from traffic mod-
els [1] over thermomechanics [2, Sec. 2.3] to fluid dynamics and weather forecast [3]. Even
though this class of equations is so fundamental andplays such a prominent role in the research
of partial differential equations, up to now there is no suitable concept of generalized solu-
tions such that existence can be established for a large class of general multi-dimensional
hyperbolic conservation laws. To contribute to filling this gap, in this article we propose the
concept of energy-variational solutions.

We consider general conservation laws

∂tU + div F(U) = 0 in T
d × (0, T ) , (1.1a)

U(·, 0) = U0 in T
d (1.1b)

on the d-dimensional (flat) torus Td , d ∈ N, and for a finite time T ∈ (0,∞). Here U : Td ×
(0, T ) → R

m , m ∈ N, denotes the unknown state variable, F : Rm → R
m×d is a given flux

matrix depending on the state, and U0 ∈ R
m denotes prescribed initial data. As usual (cf. [4,

Sec. 11.4.2]), we assume that there exists a strictly convex entropy η : Rm → [0,∞] such
that the total entropy E(U(t)) := ∫

Td η(U(t)) dx is conserved along smooth solutions, but
which may decrease along non-smooth solutions. To ensure this, we assume that

∫

Td
F(Ũ) : ∇Dη(Ũ) dx = 0

for all suitable Ũ . This condition differs from the usual entropy-pair assumption, where the
existence of a corresponding entropy flux is required, but it allows for more general entropy
functions and therefore a larger class of conservation laws; see Remark 4 below for further
explanation.Observe thatwe use the letter E to denote the total entropy since in the considered
examples the mathematical entropy is always played by the physical energy of the respective
system.

Hyperbolic conservation laws are well understood in one spatial dimension, that is, in the
case d = 1 or m = 1. Going back to the fundamental works of Hopf [5] and Lax [6], the
theory is nowadays fairly standard; see [2, 4] for example. In contrast, the one-dimensional
theory cannot be transferred to the multi-dimensional case m, d ≥ 2 immediately, where a
general solution concept that ensures solvability is missing. Instead, solution concepts are
usually constructed such that they fit to one specific conservation law, and often there are
several different concepts for the same equation.

A prominent example is the Euler system for inviscid fluid flow, for which DiPerna and
Majda established the existence of measure-valued solutions in the incompressible case [7],
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and a weak-strong uniqueness principle was proven later in [8]. Weak-strong uniqueness is
another favorable property for any solution concept and means that a generalized solution
coincides with a strong solution with the same initial data if the latter exists. In the same arti-
cle [8], the weak-strong uniqueness of measure-valued solutions to hyperbolic conservation
laws was shown, but the existence of these solutions is not known and not expected to hold
in general. The weak-strong uniqueness principle for dissipative measure-valued solutions,
where the measure-valued formulation is enriched with a defect measure, was shown for
more general conservation laws in [9], but still their existence remains unclear. In the case
of the compressible Euler equations, the existence of dissipative weak solutions, defined by
enriching the weak formulation with a defect measure, was shown in [10], and a weak-strong
uniqueness principle was proved in [11].

We shall see that both the incompressible and the compressible Euler equations can be
treated in the abstract framework of hyperbolic conservation laws presented here. In particu-
lar, we establish existence of energy-variational solutions to both systems, and we show that
they coincide with the corresponding dissipative weak solutions. In this respect, we present a
new way to construct dissipative weak solutions for these equations. As another example, we
consider the equations of magnetohydrodynamics for an incompressible ideal fluid, which
means that the effects of viscosity and electrical resistivity are neglected. While there are
results on the local existence of strong solutions [12–14], and a weak-strong uniqueness
principle for measure-valued solutions was shown in [9], the global existence of suitably
generalized solutions seems to be unknown. By providing existence of energy-variational
solutions to this system, the present work gives the first result in this direction. We believe
that the class of equations considered here is quite general, and that the presented theory
yields existence results for many other conservation laws.

While in [9] a weak-strong uniqueness result is provided for a very general class of
conservation laws, in the present article we require weaker smoothness assumptions for the
entropyη and theflux F.Moreover, the definition of energy-variational solutions does not rely
on the introduction of (generalized)Youngmeasures andmaybe regarded as easier accessible.
In particular, the solution at time t ∈ (0, T ) has a simpler structure: It is given as the pair of
a vector field U(t) and an auxiliary variable E(t) ∈ R, whereas measure-valued solutions
usually consist of a Young-measure-valued function and additional concentration measures.
In the recentwork [15], existence andweak-strong uniqueness of energy-variational solutions
could be shown for certain viscoelastic fluid models, for which existence of measure-valued
solution is not known until now.

To explain the main idea of our solution concept, let us begin with the classical approach
towards a generalized solution concept for problem (1.1), namely the notionofweak solutions,
defined via the weak formulation of (1.1a), that is, the identity

− 〈U,�〉
∣
∣
∣
t

s
+
∫ t

s

∫

Td
U · ∂t� + F(U) : ∇� dx dτ = 0 (1.2)

for s, t ∈ [0, T ] and all test functions � in a suitable class Y of test functions. As mentioned
above, a natural assumption is that the total entropy is non-increasing along solutions, which
means that E(U)

∣
∣t
s ≤ 0 if s < t . Combing this condition with (1.2), we obtain the variational

inequality

[E(U) − 〈U,�〉]
∣
∣
∣
t

s
+
∫ t

s

∫

Td
U · ∂t� + F(U) : ∇� dx dτ ≤ 0 (1.3)

for s < t and� ∈ Y. Since (1.2) can be recovered from (1.3) (see also Lemma 2.4 below), we
may also take (1.3) to define weak solutions with non-increasing total entropy. As explained
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above, existence of such weak solutions cannot be guaranteed for general hyperbolic conser-
vation laws, which is whywe introduce the concept of energy-variational solutions. Themain
idea is to replace the total mechanical entropy E(U) ∈ L∞(0, T ) with an auxiliary entropy
variable E ∈ BV([0,T]), which may be seen as a turbulent entropy and may exceed the
mechanical entropy of the system. Additionally, we introduce the difference E(U) − E ≤ 0,
weighted by a suitable factor K(�) ≥ 0 depending on the test function, into the equation
(1.3). This leads to the inequality

[E − 〈U,�〉]
∣
∣
∣
t

s
+
∫ t

s

[ ∫

Td
U · ∂t� + F(U) : ∇� dx + K(�) [E(U)−E]

]

dτ ≤ 0

(1.4)

for s < t and � ∈ Y, which will serve as the basic inequality defining energy-variational
solutions. In particular, if we have E = E(U), then (1.3) is equivalent to (1.4), and energy-
variational solutions coincide with weak solutions. The crucial assumption for our approach
is that the function K is chosen in such a way that the mapping

U 
→
∫

Td
F(U) : ∇� dx + K(�)E(U)

is convex for any � ∈ Y. Under this assumption, (U, E) appears in (1.4) in a convex way,
so that inequality (1.4) is preserved under weak∗ convergence.

Note that the idea of relaxing the formulation of an evolution equation to a variational
inequality and providing convexity by introducing an additional term goes back to Pierre-
Louis Lions in the context of the incompressible Euler equations [16, Sec. 4.4]. Similar
solution concepts have recently been used in the context of fluids with viscosity as the
incompressible Navier–Stokes equations [17] and viscoelastic fluid models [18].

Besides showing existence of energy-variational solution by using a semi-discretization
in time, which may justify their usefulness for numerical implementations, we further show
certain properties that are directly included in the solution concept, for example, a weak-
strong uniqueness principle. Furthermore, we introduce the concept of energy-variational
solutions in such a way that the semi-flow property is satisfied. This is a desirable property
of a solvability concept, in particular, when uniqueness of solutions cannot be guaranteed;
see [10, 19] for example.

As is the case for many generalized solution concepts, energy-variational solutions may
not be unique but instead capture all limits of suitable approximations. Hence, additional
selection criteria would have to be applied in order to choose the physically relevant solution.
This definitely requires further research, but we shall see that the class of energy-variational
solutions has desirable properties for such a selection process. In particular, we prove that the
set of energy-variational solutions is convex andweakly∗ closed,whichmightmake it possible
to define an appropriateminimizationproblemon this set (cf. [20]), and to identify the (unique)
minimizer with the physically relevant solution. For scalar conservation laws, Dafermos [21]
proposed the entropy-rate admissibility criterion to select the physically relevant solution.
He was able to prove that in a certain class this selection procedure coincides with a selection
according to the well established Lax-admissibility criterion [21]. It is worth noticing that
for the auxiliary variable E ∈ BV([0,T]) the entropy rate ∂t E is well defined in the space
of Radon measures, and the proposed minimization of this value may be defined at least for
finitely many points in time. Therefore, it might be possible to follow Dafermos’s proposed
criterion in the present case. This is in accordance with the semi-discrete time-stepping
scheme proposed in (3.8) below, where the energy is minimized in every step, which might
provide additional regularity for the minimizer as well as for the solution in the limit. This
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question will be further investigated in the future, together with the performance of the
proposed semi-discretization in numerical experiments.

The article is organized as follows: In Sect. 2, we explain the relevant notation and
introduce the notion of energy-variational solutions for hyperbolic conservation laws. We
formulate the main result on their existence and collect several auxiliary lemmas. Section3
is concerned with the study of energy-variational solutions to these hyperbolic conserva-
tion laws. We derive a number of general properties of energy-variational solutions, and
we prove the existence of energy-variational solutions via the convergence of a suitable
time-discretization based on an iterative minimization procedure. After considering the
incompressible hydrodynamical equations and the incompressible Euler equations in Sect. 4,
we deal with the compressible Euler equations in Sect. 5.

2 Preliminaries andmain result

2.1 Notation

For d ∈ N, we denote the scalar product of two vectors a, b ∈ R
d by a · b := a j b j , and

the Frobenius product of two matrices A, B ∈ R
m×d by A : B := Ai j Bi j . Here and in the

following, we tacitly use Einstein summation convention and implicitly sum over repeated
indices from 1 to d or m depending on the context. By R

d×d
sym , Rd×d

skw and R
d×d
sym,+ we denote

the sets of symmetric, skew-symmetric and symmetric positive semi-definite d-dimensional
matrices, respectively. The symbols (A)sym = 1

2 (A+ AT ) and (A)skw = 1
2 (A− AT ) denote

the symmetric and the skew-symmetric part of a matrix A ∈ R
d×d , and by (A)sym,+ and

(A)sym,−, we denote the positive semi-definite and the negative semi-definite part of the
symmetric matrix (A)sym, respectively. We usually equip matrix spaces with the spectral
norm |·|2 defined by

|A|2 = sup
|a|=1

aT · Aa, (2.1)

that is, |A|2 is the square root of the largest eigenvalue of AT A. The dual norm of the
spectral norm with respect to the Frobenius product is the trace norm and denoted by |·|′2. For
symmetric matrices S ∈ R

d×d
sym we thus have |S|2 = max j∈{1,...,d}|λ j | and |S|′2 = ∑d

i= j |λ j |,
where λ j , j = 1, . . . , d , are the (real) eigenvalues of the matrix S. For symmetric positive
semi-definite matrices S ∈ R

d×d
sym,+ we may write |S|′2 = ∑d

i= j λ j = S : I = tr(S), where

I denotes the identity matrix in R
d×d .

By T
d := R

d/Zd we denote the d-dimensional (flat) torus equipped with the Lebesgue
measure. The Radon measures on T

d taking values in R
d×d
sym are denoted by M(Td ;Rd×d

sym ),
which may be interpreted as the dual space of the corresponding continuous functions, i.e.,
M(Td ;Rd×d

sym ) = (C(Td ;Rd×d
sym ))∗. Moreover,M(Td ;Rd×d

sym,+) is the class of symmetric pos-

itive semi-definite Radon measures, which consists of Radon measures μ ∈ M(Td ;Rd×d
sym )

such that for any ξ ∈ R
d the measure ξ ⊗ ξ : μ is nonnegative.

For a Banach space X, we denote its dual space by X
∗, and we use 〈·, ·〉 to denote the

associated dual pairing. The space Cw([0, T ];X) denotes the class of functions on [0, T ]
taking values in X that are continuous with respect to the weak topology of X. Analogously,
the space Cw∗([0, T ];X∗) denotes the class of functions on [0, T ] taking values inX∗ that are
continuous with respect to the weak∗ topology ofX∗. The space L∞

w∗([0, T ];X∗) is the space
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of all function on [0, T ] taking values in X
∗ that are Bochner measurable and essentially

bounded with respect to X
∗ equipped with the weak∗ topology.

Wewrite xn⇀x if a sequence (xn) ⊂ X converges weakly to some x ∈ X, and ϕn
∗−⇀ ϕ if a

sequence (ϕn) ⊂ X
∗ converges weakly∗ to some ϕ ∈ X

∗. In spaces of the form L∞(0, T ;X)

we usually consider a mixture of the weak convergence in X and weak∗ convergence in

L∞, which we call weak(∗) convergence, and we write un
(∗)−⇀ u if a sequence (un) ⊂

L∞(0, T ;X) converges weakly(∗) to some u ∈ L∞(0, T ;X), that is, if

∀ f ∈ L1(0, T ;X∗) : lim
n→∞

∫ T

0
〈un(t), f (t)〉 dt =

∫ T

0
〈u(t), f (t)〉 dt . (2.2)

The total variation of a function E : [0, T ] → R is given by

|E |TV([0,T ]) = sup
0=t0<...<tn=T

n∑

k=1

|E(tk−1) − E(tk)|,

where the supremum is taken over all finite partitions of the interval [0, T ]. We denote the
space of all integrable functions on [0, T ]with bounded variation by BV([0,T]), andwe equip
this space with the norm ‖E‖BV([0,T]) := ‖E‖L1(0,T ) + |E |TV([0,T ]) (cf. [22]). Recall that
an integrable function E has bounded variation if and only if its distributional derivative E ′ is
an element ofM([0, T ]), the space of finite Radon measures on [0, T ]. Moreover, BV([0,T])
coincides with the dual space of a Banach space, see [23, Remark 3.12] for example, and we
usually work with the corresponding weak∗ convergence, which can be characterized by

En
∗−⇀ E in BV([0,T]) ⇐⇒ En → E in L1(0, T ) and E ′

n
∗−⇀ E ′ in M([0, T ]).

Note that the total variation of a decreasing non-negative function E can be estimated by the
initial value since

|E |TV([0,T ]) = sup
0=t0<...<tn=T

N∑

k=1

(
E(tk−1) − E(tk)

) = E(0) − E(T ) ≤ E(0).

Let η : Rd → [0,∞] be a convex, lower semi-continuous function with η(0) = 0. The
domain of η is defined by dom η = {x ∈ R

d | η(x) < ∞}. We denote the convex conjugate
of η by η∗, which is defined by

η∗(z) = sup
y∈Rm

[z · y − η( y)] for all z ∈ R
m .

Then η∗ is also convex, lower semi-continuous, non-negative and satisfies η∗(0) = 0. We
introduce the subdifferential ∂η of η by

∂η( y) := {
z ∈ R

m | ∀ ỹ ∈ R
m : η( ỹ) ≤ η( y) + z · ( ỹ − y)

}

for y ∈ R
m . The subdifferential ∂η∗ of η∗ is defined analogously. Then the Fenchel equiva-

lences hold: For y, z ∈ R
d we have

z ∈ ∂η( y) ⇐⇒ y ∈ ∂η∗(z) ⇐⇒ η( y) + η∗(z) = z · y. (2.3)

A proof of this well-known result can be found in [24, Prop 2.33] for example. If ∂η( y) is a
singleton for some y ∈ R

m , then η is Fréchet differentiable in y and ∂η( y) = {Dη( y)}. In
this case, we identify ∂η( y) with Dη( y).
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2.2 Main result

We introduce the notion of energy-variational solutions to the hyperbolic conservation law
(1.1). Consider an entropy functional η : Rm → [0,∞], m ∈ N. We define the total entropy
functional

E : L1(Td ;Rm) → [0,∞], E(U) =
∫

Td
η(U) dx (2.4)

with domain dom E := {U ∈ L1(Td ;Rm) | E(U) < ∞}. As the set of test functions, we
consider a closed subspace Y of C1(Td ;Rm). We next collect further assumptions on η, F,
and Y.

Hypothesis 2.1 Assume thatη : Rm → [0,∞] is a strictly convex and lower semi-continuous
function that satisfies η(0) = 0 and has superlinear growth, that is,

lim| y|→∞
η( y)
| y| = ∞. (2.5)

We assume that the set

D := {U ∈ dom E | ∃{�n}n∈N ⊂ Y : Dη∗ ◦ �n⇀U in L1(Td ;Rm)} (2.6)

is convex. Furthermore, let F : Rm → R
m×d be a measurable function such that there exists

a constant C > 0 with

∀ y ∈ R
m : |F( y)| ≤ C(η( y) + 1), (2.7)

and such that

∀� ∈ Y :
∫

Td
F(Dη∗(�(x))) : ∇�(x) dx = 0. (2.8)

We further assume that there exists a convex and continuous function K : Y → [0,∞) such
that for any � ∈ Y the mapping

D → R, U 
→
∫

Td
F(U) : ∇� dx + K(�)E(U) (2.9)

is convex, lower semi-continuous and non-negative.

Before we further explain the assumptions made in Hypothesis 2.1, let us introduce the
notion of energy-variational solutions and formulate the main result on their existence.

Definition 2.2 (Energy-variational solutions) A pair (U, E) ∈ L∞(0, T ;D) ×BV([0,T]) is
called an energy-variational solution to (1.1) if E(U) ≤ E a.e. on [0, T ], if

[E − 〈U,�〉]
∣
∣
∣
t

s
+
∫ t

s

[ ∫

Td
U · ∂t� + F(U) : ∇� dx + K(�) [E(U) − E]

]

dτ ≤ 0

(2.10)

for all � ∈ C1([0, T ];Y) and a.a. s, t ∈ (0, T ), s < t , including s = 0 with U(0) = U0.

While energy-variational solutions may not have much regularity at the outset, we shall
see that the initial value U0 is attained in the weak∗ sense in Y

∗, and that U and E can be
redefined such that E is non-increasing and U ∈ Cw∗([0, T ];Y∗), see Proposition 3.1 below.

As the main result of this article, we show existence of energy-variational solutions under
the previously specified assumptions.
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Theorem 2.3 (Existence of energy-variational solutions) Let Hypothesis 2.1 be satisfied, and
let U0 ∈ D. Then there exists an energy-variational solution in the sense of Definition 2.2
with E(0+) = E(U0).

The proof of this theorem relies on a suitable time discretization and is provided in Sect.
3.3. Next we further comment on the assumptions stated inHypothesis 2.1 and on the solution
concept of energy-variational solutions.

Remark 1 Hypothesis 2.1 ensures, that the integrals in (2.8) and (2.9) are well defined. For
the integral in (2.9) note that the estimate (2.7) implies |F ◦U | ∈ L1(Td) for all U ∈ D. For
the left-hand side of (2.8), we first observe that ∂η∗ is single valued by Lemma 2.7 below,
since η has superlinear growth. The Fenchel equivalences (2.3) yield the identity

η(Dη∗(�(x))) = Dη∗(�(x)) · �(x) − η∗(�(x)),

which shows that x 
→ η(Dη∗(�(x))) is a continuous function on the compact set Td and
thus bounded for any � ∈ Y. Hence Dη∗ ◦ � ∈ dom E . Therefore, inequality (2.7) yields a
bound for the integrand in (2.8).

Remark 2 The convexity assumption on D can be seen as a compatibility condition on the
spaceY and the entropy η. We note that Dη∗ ◦� ∈ dom E for � ∈ Y as shown in Remark 1.
Moreover, for any sequence {Un}n∈N ⊂ D with bounded entropies, E(Un) ≤ C , there
is a convergent subsequence with limit U ∈ D. Indeed, (2.5) yields the existence of a
subsequence weakly converging to U in L1(Td ;Rm) with E(U) ≤ C , see Lemma 2.6
below. A diagonalization argument gives a sequence {�n}n∈N ⊂ Y with Dη∗ ◦ �n⇀U in
L1(Td ;Rm), which shows U ∈ D.

In the case of a quadratic functional η( y) = a| y|2, a > 0, the set D is the weak closure
of Y in L1(Td ;Rm). Since Y is a linear subspace and η is quadratic, this is nothing else than
the strong closure of Y in L2(Td ;Rm). In particular, the convexity of D is satisfied trivially.

In the case Y = C1(Td ;Rm), we have D = dom E . In particular, D is convex. Since
dom(∂E) is dense in dom E (see [24, Corollary 2.44]) this follows from the above approxi-
mation property and dom(∂E) ⊂ D. To see the latter, letU ∈ dom(∂E). From [24, Prop. 2.53],
we infer that the existence of � ∈ L∞(Td ;Rm) such that �(x) ∈ ∂η(U(x)) for a.a. x ∈ T

d ,
that is, Dη∗(�(x)) = U(x) by the Fenchel equivalences (2.3). The density of C1(Td ;Rm)

in L∞(Td ;Rm) with respect to the weak∗ topology, guarantees the existence of a sequence
{�n}n∈N ⊂ C1(Td ;Rm) with ‖�n‖L∞(Td ;Rm ) ≤ ‖�‖L∞(Td ;Rm ) and �n → � a.e. in T

d ,
see [25, Ex. 4.25]. Lebesgue’s convergence theorem allows to conclude that Dη∗(�n) → U
in L1(Td ;Rm) by the continuity of Dη∗, which shows U ∈ D.

Remark 3 Instead of assuming that η(0) = 0 and η ≥ 0, we may consider a function
η : Rm → (−∞,∞] that attains its minimum at 0. Indeed, the original assumptions can
then be recovered by simply adding a suitable constant to η.

Remark 4 Equation (2.8) ensures that the total entropy is conserved along smooth solutions.
Indeed, if U is a solution and all functions are sufficiently smooth, then we formally have

d

dt
E(U) =

∫

Td
∂tU · Dη(U) dx = −

∫

Td
[div F(U)] · Dη(U) dx

=
∫

Td
F(U) : ∇Dη(U) dx = 0,
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where the last identity follows from (2.8) with � = Dη(U). Classically, this conservation
property is ensured by requiring the existence of an entropy flux q : Rm → R

d such that

Dη( y)T DF( y) = Dq( y)T (2.11)

for all y ∈ R
m , which is a shorthand for the relation

Dη( y)T DF j ( y) = Dq j ( y)
T ( j = 1, . . . , d).

Clearly, this identity only makes sense if η and, in particular, F are smooth enough. This
smoothness cannot be guaranteed for general conservation laws as we shall see in Sect. 5
in the context of the compressible Euler equations. However, if this is the case, then (2.8)
follows from (2.11). Indeed, setting U = Dη∗(�), that is, � = Dη(U), and integrating by
parts, we deduce

∫

Td
F(Dη∗(�)) : ∇� dx =

∫

Td
F(U) : ∇Dη(U) dx

= −
∫

Td

[
Dη(U)T DF(U)

] : ∇U dx = −
∫

Td
Dq(U) : ∇U dx

= −
∫

Td
div q(U) dx = 0.

Instead of verifying (2.8) directly, one can also show existence of a vector field q̃ : Rm →
R
d such that q̃ ◦ Dη∗ ∈ C1(Rm;Rd) and

∀z ∈ R
m : F(Dη∗(z)) = D

[
q̃ ◦ Dη∗](z). (2.12)

This implies

F(Dη∗(�))∇� = div
[
q̃(Dη∗(�))

]

for all � ∈ C1(Td ;Rm), so that (2.8) follows from the divergence theorem. Observe that, in
contrast to (2.11), condition (2.12) does not require F to be differentiable. Moreover, we do
not require differentiability of q̃ and Dη∗ but merely of their composition. This distinction
can be helpful since there are standard cases where η∗ is not twice differentiable, for example,
the compressible Euler equations, which we study in Sect. 5.

Formally, the relations (2.12) and (2.11) are equivalent in the case that η∗ ∈ C2(Rm) and
D2η∗(z) is invertible at each z ∈ R

m . Indeed, choosing y = Dη∗(z), we find by (2.3) and
the chain rule that

[
Dη(Dη∗(z))T DF(Dη∗(z)) − Dq(Dη∗(z))

]
D2η∗(z)

= zT D[F(Dη∗(z))] − D[q(Dη∗(z))]
= D

[
zT F(Dη∗(z)) − q(Dη∗(z))

]− F(Dη∗(z)).

Hence, (2.11) is satisfied if and only if (2.12) holds for q̃(U) = Dη(U)T F(U) − q(U).

Remark 5 In case that F is entropy-convex, i.e., there exists a constant λ > 0 such that
|F|+λη is a convex, weakly lower semi-continuous function onRm , wemay chooseK(�) =
λ‖∇�‖L∞(Td ). We shall use a similar functional K in Sect. 4.1, but finer choices may be
possible as we shall see in Sects. 4.2 and 5.

Remark 6 (Boundary conditions) In order to simplify the analysis, we restrict ourselves to
the case of periodic boundary conditions. But the method can also be adapted to more general
boundary conditions. These can usually be included into our framework by modification of
the space of test functions Y; see also Remark 13 below.
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2.3 Auxiliary results

Before we start with the analysis of energy-variational solutions, we prepare several auxiliary
lemmas. We start with the following basic result on an affine linear variational inequality.

Lemma 2.4 Let X be a Banach space, and let a1, a2 ∈ R and y1, y2 ∈ X
∗ such that

a1 + 〈y1, x〉 ≤ a2 + 〈y2, x〉
for all x ∈ X. Then a1 ≤ a2 and y1 = y2.

Proof The choice x = 0 directly yields a1 ≤ a2. To infer y1 = y2, let x̄ ∈ X and λ > 0.
Choosing x = λx̄ and dividing by λ, we deduce

λ−1a1 + 〈y1, x̄〉 ≤ λ−1a2 + 〈y2, x̄〉.
A a passage to the limit λ → ∞ yields 〈y1, x̄〉 ≤ 〈y2, x̄〉. Choosing x = −λx̄ and proceeding
in the same way results in the converse inequality, and we obtain 〈y1, x̄〉 = 〈y2, x̄〉. Since
x̄ ∈ X was arbitrary, this yields y1 = y2 and completes the proof.

The next result yields the equivalence of a pointwise inequality and its variational formu-
lation.

Lemma 2.5 Let f ∈ L1(0, T ), g ∈ L∞(0, T ) and g0 ∈ R. Then the following two statements
are equivalent:

i. The inequality

−
∫ T

0
φ′(τ )g(τ ) dτ +

∫ T

0
φ(τ) f (τ ) dτ − φ(0)g0 ≤ 0 (2.13)

holds for all φ ∈ C1c ([0, T )) with φ ≥ 0.
ii. The inequality

g(t) − g(s) +
∫ t

s
f (τ ) dτ ≤ 0 (2.14)

holds for a.e. s, t ∈ [0, T ) with s < t , including s = 0 if we replace g(0) with g0.

If one of these conditions is satisfied, then g can be identified with a function in BV([0,T])
such that

g(t+) − g(s−) +
∫ t

s
f (τ ) dτ ≤ 0 (2.15)

for all s, t ∈ [0, T ) with s ≤ t , where we set g(0−) := g0. In particular, it holds g(0+) ≤ g0
and g(t+) ≤ g(t−) for all t ∈ (0, T ).

Proof To see that (2.13) implies (2.14), one can use a standard procedure and approximate the
indicator function of the interval (s, t) by elements of C1c ([0, T )). For the inverse implication,
first note that (2.14) implies that g coincides a.e. with an element of BV([0,T]). Hence, one-
sided limits of g exist in each point, and we deduce (2.15) from (2.14). The choice s = t in
(2.14) implies g(t+) ≤ g(t−) and g(0+) ≤ g0. Now let 0 ≤ φ ∈ C1c ([0, T )) and consider a
partition 0 = s0 ≤ t0 < s1 < t1 < · · · < sN < tN < T of [0, T ] such that

φ′ ≥ 0 in [t j−1, s j ], φ′ ≤ 0 in [s j , t j ], φ = φ′ = 0 in [tN , T ].

123



Existence of energy-variational solutions… Page 11 of 40 103

To show (2.13), we subdivide the left-hand side of this inequality accordingly. Since φ′ ≤ 0
in [s j , t j ], we can use (2.15) with s = s j and integration by parts to estimate

−
∫ t j

s j
φ′(τ )g(τ ) dτ ≤ −

∫ t j

s j
φ′(τ )

(

g(s j−) −
∫ τ

s j
f (r) dr

)

dτ

= −φ(t j )

(

g(s j−) −
∫ t j

s j
f (r) dr

)

+ φ(s j )g(s j−) −
∫ t j

s j
φ(τ) f (τ ) dτ,

where for j = 0 we have to replace g(s0−) with g0. Since φ′ ≥ 0 in [t j−1, s j ], we can use
(2.15) with t = s j in a similar way to conclude

−
∫ s j

t j−1

φ′(τ )g(τ ) dτ ≤ −
∫ s j

t j−1

φ′(τ )

(

g(s j+) +
∫ s j

τ

f (r) dr

)

dτ

= −φ(s j )g(s j+) + φ(t j−1)

(

g(s j+) +
∫ s j

t j−1

f (r) dr

)

−
∫ s j

t j−1

φ(τ) f (τ ) dτ.

Summing up and using φ = φ′ = 0 in [tN , T ], we obtain

−
∫ T

0
φ′(τ )g(τ ) dτ +

∫ T

0
φ(τ) f (τ ) dτ − φ(0)g0

= −
N∑

j=0

∫ t j

s j
φ′(τ )g(τ ) dτ −

N∑

j=1

∫ s j

t j−1

φ′(τ )g(τ ) dτ +
∫ T

0
φ(τ) f (τ ) dτ − φ(0)g0

≤
N∑

j=1

φ(s j )
(
g(s j−) − g(s j+)

)+
N−1∑

j=0

φ(t j )

(

g(s j+1+) − g(s j−) +
∫ s j+1

s j
f (r) dr

)

Since φ ≥ 0, invoking inequality (2.15) and that g(t+) ≥ g(t−), we can estimate the terms
in the last line by 0 and finally conclude (2.13).

Next we show an adaption of a well-known theorem by de la Vallée Poussin, see [26,
Sect. 1.2, Theorem 2] for example. For the sake of completeness, we give a proof here.
Observe that the statement remains valid if Td is replaced with any other finite measure
space.

Lemma 2.6 Let ψ : Rm → [0,∞] have superlinear growth, i.e., lim| y|→∞ ψ( y)/| y| = ∞,
and let F ⊂ L1(Td ;Rm) and C > 0 such that

∀U ∈ F :
∫

Td
ψ(U) dx ≤ C .

Then the set F is equi-integrable and thus relatively weakly compact in L1(Td ;Rm).

Proof Let ε > 0 and set M = 2C/ε. By assumption, we can choose R > 0 so large that
| y| > R implies ψ( y) > M | y|. Let A ⊂ T

d be a measurable set with |A| < ε
2R . Then

∫

A
|U | dx =

∫

{x∈A| |U(x)|≤R}
|U | dx +

∫

{x∈A| |U(x)|>R}
|U | dx

≤ R|A| + 1

M

∫

Td
ψ(U(x)) dx ≤ ε.

This shows

lim|A|→0
sup
U∈F

∫

A
|U | dx = 0,
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that is, the equi-integrability of F . The relative weak compactness of F now follows from
the Dunford–Pattis theorem [27, Thm. 3.2.1].

The next lemma collects useful properties of a convex functionals with superlinear growth.

Lemma 2.7 Let η : R
m → [0,∞] be a strictly convex, lower semi-continuous function

with η(0) = 0 and (2.5). Then the set-valued operator ∂η : Rm → R
m is maximal mono-

tone and surjective. Moreover, the convex conjugate η∗ is globally defined and continuously
differentiable. In particular,

∀z ∈ R
d : (∂η)−1({z}) = ∂η∗(z) = {Dη∗(z)}.

Proof The subdifferential ∂η induces a maximal monotone operator according to [24,
Thm. 2.43], and from [24, Prop. 2.47] we infer that this operator is surjective. The Fenchel
equivalences (2.3) allow to identify this inverse with the subdifferential of the conjugate η∗.
Note that η∗ is even Gateaux-differentiable [24, Rem. 2.41 and Prop. 2.40] and continuous
with dom η∗ = R

d [24, Prop. 2.25 and Thm. 2.14]. The assertion that ∂η∗ is single-valued
and continuous can be found in [28, Thm. 5.20].

We use some of these properties to prove the following lemma that shows a way how to
continuously interpolate between 0 and a given value in the range of E defined in (2.4).

Lemma 2.8 In the situation of Lemma 2.7, let � ∈ C(Td ;Rm) and Ũ = Dη∗ ◦ �. Then the
mapping

G : [0, 1] → [0, E(Ũ)], α 
→ E(Dη∗(α�))

is well defined, continuous and surjective.

Proof Fix x ∈ T
d , and let y = Ũ(x) ∈ dom ∂η and z = �(x) ∈ ∂η( y). Consider

f : [0, 1] → [0,∞], α 
→ η(Dη∗(αz))

Since ∂η∗ has full domain and is single valued according to Lemma 2.7, the mapping is well
defined. Via the Fenchel equivalences (2.3), we may further express f as

f (α) = η(Dη∗(αz)) = 〈Dη∗(αz), αz〉 − η∗(αz).

This shows that f (α) is finite and that f is continuous since η∗ and Dη∗ are continuous
by Lemma 2.7. Moreover, f (0) = 0 and f (1) = η( y), and via Fenchel’s identity and the
monotonicity of Dη∗, we further observe for 0 ≤ β < α ≤ 1 that

f (α) − f (β) = 〈Dη∗(αz), αz〉 − 〈Dη∗(β z) β z〉 − (
η∗(αz) − η∗(β z)

)

≥ 〈Dη∗(αz), αz〉 − 〈Dη∗(β z), β z〉 + 〈Dη∗(αz), β z − αz〉
= β

α − β

〈
Dη∗(αz) − Dη∗(β z), αz − β z

〉 ≥ 0.

Hence, f is a continuous and non-decreasing mapping with range [0, η( y)]. This implies that
themappingG iswell definedwith 0 = G(0) ≤ G(α) ≤ G(1) = E(Ũ) for allα ∈ [0, 1].Using
Lebesgue’s theorem on dominated convergence, we further conclude that G is continuous,
which also implies that G is surjective.

We shall alsomake use of the following result on the extension of certain linear functionals.
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Lemma 2.9 Let l : V → R be a linear continuous functional, where V is a closed subspace
of

U := {
ϕ ∈ C10(Td × [0, T );Rd)

∣
∣
∫

Td
ϕ dx = 0

}
.

Set

I : U → L1(0, T ; C(Td ;Rd×d
sym )), I(ψ) = (∇ψ)sym,

and let p : L1(0, T ; C(Td ;Rd×d
sym )) → R be a sublinear mapping such that

∀ψ ∈ V : 〈l,ψ〉 ≤ p(I(ψ)). (2.16)

Then there exists an element

R ∈ (L1(0, T ; C(Td ;Rd×d
sym )))∗ = L∞

w∗(0, T ;M(Td ;Rd×d
sym ))

satisfying

∀� ∈ L1(0, T ; C(Td ;Rd×d
sym )) : 〈−R,�〉 ≤ p(�), ∀ψ ∈ V : 〈−R, I(ψ)〉 = 〈l,ψ〉.

Proof First consider ψ ∈ V with I(ψ) = 0. This implies that ψ(·, t) is affine linear, and
since ψ ∈ V is spatially periodic and has vanishing mean value, this is only possible for
ψ = 0. Therefore, I is injective, and on its image W = I(V) we can define the functional
L by 〈L, �〉 = 〈l,ψ〉 for � = I(ψ) ∈ W . Then estimate (2.16) implies

〈L, �〉 ≤ p(�) (2.17)

for all � ∈ W ⊂ L1(0, T ; C(Td ;Rd×d
sym )). By the Hahn–Banach theorem (see e.g. [25,

Thm 1.1]), we may extend L from W to a linear functional on L1(0, T ; C(Td ;Rd×d
sym )).

Using the Riesz representation theorem, we may identify this extension with an object −R

such that the asserted properties are satisfied.

3 Properties and existence of energy-variational solutions

In this sectionwe collect several general properties of energy-variational solutions that follow
directly fromDefinition 2.2.Moreover, under additional regularity assumptions, we can show
a relative entropy inequality, which yields a weak-strong uniqueness principle. Finally, in
Sect. 3.3, we introduce a time-discrete scheme that leads to the existence of energy-variational
solutions as claimed in Theorem 2.3.

3.1 General properties

Let us begin with some continuity properties of energy-variational solutions, which follow
directly from Definition 2.2.

Proposition 3.1 Let (U, E) be an energy-variational solution in the sense of Definition 2.2.
Then U and E can be redefined on a subset of [0, T ] of measure zero such that E is a
non-increasing function and such that U ∈ Cw∗([0, T ];Y∗) with U(0) = U0 in Y

∗. Then
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inequality (2.10) is fulfilled everywhere in [0, T ] in the sense that for all � ∈ C1([0, T ];Y)

it holds

[E − 〈U,�〉]
∣
∣
∣
t+
s− +

∫ t

s

∫

Td
U · ∂t� + F(U) : ∇� + K(�) [E(U) − E] dx dτ ≤ 0

(3.1)

for all s ≤ t ∈ [0, T ), where E(0−) − 〈U(0−),�(0−)〉 := E(0+) − 〈U0,�(0)〉.
Proof Setting � ≡ 0 in inequality (2.10), we infer that E

∣
∣t
s ≤ 0 for a.e. t > s ∈ (0, T ).

Since E ∈ BV([0,T]), all left-sided and right-sided limits exist and E is continuous except
for countably many points, so that we can redefine E such that it is non-increasing. For any
fixed � ∈ C1([0, T ];Y) we further observe that

[E − 〈U,�〉]
∣
∣
∣
t

s
≤ −

∫ t

s

∫

Td
U · ∂t� + F(U) : ∇� + K(�) [E(U) − E] dx ds

≤
∫ t

s

[ ∫

Td
η(U) + η∗(∂t�) dx + K(�)E

]

dτ

for a.e. t > s ∈ (0, T ), where we used the Fenchel–Young inequality and the non-negativity
of the function in (2.9). This implies that t 
→ E(t)−〈U(t),�(t)〉 ∈ BV([0,T]). In particular,
left-sided and right-sided limits of this function exist, and passing to those limits in (2.10)
yields (3.1). Choosing now s = t and � ∈ Y independent of time, we infer that

[E − 〈U,�〉]
∣
∣
∣
t+
t− ≤ 0 for all t ∈ (0, T ) and � ∈ Y.

Lemma 2.4 now yields U(t+) = U(t−) in Y∗ for all t ∈ (0, T ) i.e., we can redefine U on a
set of measure 0 such that U ∈ Cw∗([0, T ];Y∗).

Proposition 3.2 Assume that for two elements V , W ∈ D with 〈V − W ,�〉 = 0 for all
� ∈ Y it holds V = W . Then we have U ∈ Cw([0, T ]; L1(Td ;Rm)). Furthermore, if
E(U0) = E(0), the initial value is attained in the strong sense in L1(Td ;Rm).

Proof Let t ∈ [0, T ] and consider a sequence {tn}n∈N ⊂ [0, T ]with tn → t . ThenE(U(tn)) ≤
E(tn) ≤ E0 for n ∈ N, and from (2.5) and Lemma 2.6 we infer that the set {U(tn)}n∈N is
relatively weakly compact in L1(Td ;Rm). Hence, we may extract a subsequence such that

U(tnk )⇀At in L1(Td ;Rm)

for some At ∈ D. As shown above, we also have

U(tnk )
∗
⇀ U(t) in Y

∗.

We infer that 〈U(t),�〉 = 〈At ,�〉 for all � ∈ Y. The assumption implies U(t) = At .
Due to the uniqueness of the weak limit, all subsequences converge to this limit, so that
U ∈ Cw([0, T ]; L1(Td ;Rm)).

Moreover, if E(U0) = E(0), we infer

E(0) ≥ lim
t↘0

E(t) ≥ lim
t↘0

E(U(t)) ≥ E(U0) = E(0)

due to the monotonicity of the function E and the weak lower semi-continuity of E . We
conclude that E(U(t)) → E(U0) as t → 0. Since we also have U(t)⇀U0, from the strict
convexity of E , we infer that U(t) → U0 strongly in L1(Td ;Rm) by [29, Thm. 10.20].
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Remark 7 (Semi-flow property) We note that energy-variational solutions fulfill the semi-
flow property. This means that the restriction of a solution to a smaller time interval as well
as the concatenation of two solutions (U1, E1) and (U2, E2) on subsequent time intervals
(t0, t1) and (t1, t2)with (U1(t1−), E1(t1−)) = (U2(t1+), E2(t1+)). is again a solution. This
follows from Proposition 3.1 due to inequality (3.1) for all t ≥ s ∈ [0, T ] and the weak∗
continuity of the solution.

Proposition 3.3 (Solution set) The set of all energy-variational solutions with common initial
value U0 ∈ D is convex. Moreover, let E(U0) ≤ B for some B > 0, and let S be the set of
all energy-variational solutions (U, E) with initial value U0 ∈ D and E(0) ≤ B. Then S is
compact in L∞(0, T ; L1(Td)) × BV([0,T]) with respect to the weak∗ topology in BV([0,T])
and the weak(∗) topology in L∞(0, T ; L1(Td)) defined in (2.2).

Proof Using the convexity of E and of the mapping from (2.9), one readily sees that all terms
involving (U, E) appear in a convex way in (2.10). Therefore, the convex combination of
two energy-variational solutions with coincident initial value is again an energy-variational
solution with the same initial value.

Now consider the set S. By Proposition 3.1, we may assume that for all (U, E) ∈ S
the function E is non-increasing, which implies that |E |TV([0,T ]) ≤ B. Due to the inequality
E(U(t)) ≤ E(t) for a.a. t ∈ [0, T ] and the superlinear growth of η, we infer from Lemma 2.6
and Helly’s selection theorem (cf. [24, Thm. 1.126]) that any sequence in S contains a
subsequence {(Un, En)}n∈N such that

Un (∗)−⇀ U in L∞(0, T ; L1(Td)),

En ∗−⇀ E in BV([0,T]),

En(t) −→ E(t) for all t ∈ [0, T ].

(3.2)

For the initial values, we may further extract a subsequence such that En(0+) → E0 for
some E0 ≤ B, and we have Un(0) = U0 for all n ∈ N. Using Lemma 2.5, we may rewrite
the energy-variational inequality (2.10) in its weak form

−
∫ T

0
φ′ [En − 〈Un,�〉] dt − φ(0)

[
En(0+) − 〈U0,�(0)〉]

+
∫ T

0
φ

[∫

Td
F(Un) : ∇� dx + K(�)

[E(Un) − En]
]

dt ≤ 0

for all φ ∈ C1c ([0, T )) with φ ≥ 0 and for all � ∈ C1([0, T ];Y). Via the convergences (3.2),
we may pass to the limit in this formulation and obtain, again by Lemma 2.5, the for-
mulation (2.10). Moreover, the weak lower semi-continuity of E allows to deduce that
E(t) ≥ E(U(t)) for a.e. t ∈ (0, T ). Consequently, (U, E) is an energy-variational solu-
tion in S.
Proposition 3.4 Let (U, E) ∈ L∞(0, T ;D) × BV([0,T]) be an energy-variational solution
in the sense of Definition 2.2, and let the regularity weightK be homogeneous of degree one,
i.e.,K(α�) = αK(�) for all α ∈ [0,∞) and� ∈ Y. Then the inequality (2.10) is equivalent
to the two inequalities

E
∣
∣
∣
t

s
≤ 0, −〈U,�〉

∣
∣
∣
t

s
+
∫ t

s

∫

Td
U · ∂t� + F(U) : ∇� dx + K(�) [E(U) − E] dτ ≤ 0

(3.3)
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for a.a. s, t ∈ (0, T ), s < t , and for all � ∈ C1([0, T ];Y).

Proof Summation of the two inequalities in (3.3) directly gives the inequality (2.10). For
the converse direction, the first inequality in (3.3) can be deduced from (2.10) by choosing
� ≡ 0. In order to infer the second inequality in (3.3), we choose � = α� in (2.10) for
α > 0 and � ∈ C1([0, T ];Y). Multiplying the resulting inequality by 1

α
implies

[
1

α
E − 〈U, �〉

] ∣
∣
∣
t

s
+
∫ t

s

∫

Td
U · ∂t� + F(U) : ∇� dx + K(�) [E(U) − E] dτ ≤ 0 .

Passing to the limit α → ∞, we infer the second inequality in (3.3).

3.2 Relative entropy and weak-strong uniqueness

In order to derive a relative entropy inequality for energy-variational solutions, we make the
following assumptions on higher regularity of η and F in the interior of the domain of η.

Hypothesis 3.5 Let the assumptions of Hypothesis 2.1 be fulfilled. Set M := int dom η and
assume that η

∣
∣
M ∈ C2(M;R) such that D2η(z) is positive definite for all z ∈ M , and that

F
∣
∣
M ∈ C1(M;Rm×d) such that there exists a q̃ ∈ C1(M;Rd) fulfilling (2.12).

Under these regularity assumptions, we can introduce the relative total entropy functional
R : D × C1(Td ; M) → R, which is given by

R(U | Ũ) := E(U) − E(Ũ) − 〈DE(Ũ),U − Ũ〉. (3.4a)

Additionally, we define the relative form W : D × C1(Td ; M) → R via

W(U | Ũ) =
∫

Td
∇Dη(Ũ) :

(
F(U) − F(Ũ) − DF(Ũ)(U−Ũ)

)
dx

+ K(Dη(Ũ))R(U | Ũ).

(3.4b)

We note that the assumption Ũ ∈ C1(Td ; M) implies Ũ ∈ D, so that R(U | Ũ) is finite.
Indeed, sinceη is continuous in the interior of its domain, the compositionη◦Ũ is a continuous
function on the compact set Td and thus bounded, which yields E(Ũ) < ∞. Similarly, all
compositions of functions in (3.4b) are bounded, and W is well defined. Moreover, both
terms R and W are non-negative due to the convexity of η and of the function from (2.9),
respectively.

Proposition 3.6 (Relative entropy inequality) Let (U, E) be an energy-variational solution
in the sense of Definition 2.2, and let Hypothesis 3.5 be satisfied. Then the relative entropy
inequality

[
R(U | Ũ) + E − E(U)

] ∣∣
∣
t

s
−
∫ t

s
K(Dη(Ũ))

[
R(U | Ũ) + E − E(U)

]
dτ

+
∫ t

s

[

W(U | Ũ) +
∫

Td

(
∂t Ũ + div F(Ũ)

)
· D2η(Ũ)(U − Ũ) dx

]

dτ ≤ 0

(3.5)

holds for a.e. s, t ∈ (0, T ) and all Ũ ∈ C1(Td × [0, T ]; M).

An immediate consequence of inequality (3.5) is the following weak-strong uniqueness
property.
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Corollary 3.7 (Weak-strong uniqueness) Let Hypothesis 3.5 be satisfied. If there exists a
strong solution Ũ ∈ C1(s, t;Y) ∩ C([s, t);Y) to (1.1a) in some interval (s, t) ⊂ [0, T ],
then (Ũ, E(Ũ)) coincides with any energy-variational solution (U, E) ∈ Cw∗(0, T ;Y∗) ×
BV([0,T]) in the sense of Definition 2.2 with (U(s), E(s−)) = (Ũ(s), E(Ũ(s))).

Proof Since Ũ is a strong solution on [s, t], it holds ∂t Ũ + div F(Ũ) = 0 in (s, t). For
any energy-variational solution (U, E) such that U(s) = Ũ(s) and E(s−) = E(Ũ(s)), we
further observe

R(U(s) | Ũ(s)) + E(s−) − E(U(s)) = 0.

From the inequality (3.5), we thus infer that

R(U(r) | Ũ(r)) + E(r+) − E(U(r)) +
∫ r

s
W(U | Ũ) dτ

≤
∫ r

s
K(Dη(Ũ))

[
R(U | Ũ) + E − E(U)

]
dτ

for all r ∈ [s, t]. The convexity of the function from (2.9) impliesW ≥ 0. From Gronwall’s
inequality, we infer thatR(U | Ũ) + E − E(U) ≤ 0 in (s, t). Since E ≥ E(U), this implies
R(U | Ũ) ≤ 0, so that U = Ũ due to the strict convexity of η.

Remark 8 The above weak-strong uniqueness result is stronger than the usual weak-strong
uniqueness results (cf. [8]). Usually, these results are stated in the sense that: If there exists
a strong solution emanating from the same initial data as the generalized solution, then both
solutions coincide as long as the strong one exists. The above result also holds in case that
the energy-variational solution coincides with a strong solution at some later point s in the
evolution. However, the solution has to satisfy E(s−) = E(U(s)) at such a point in time.

Note that herewe do not claim existence of such regular solutions. There aremany different
results on the existence of classical solutions on short time intervals for conservation laws.
We refer to [2, Ch. V] and the references therein.

It remains to show the relative entropy inequality (3.5).

Proof of Proposition 3.6 For any smooth function Ũ ∈ C1(Td × [0, T ]; M), we observe by
the fundamental theorem of calculus and the product rule that

[
〈DE(Ũ), Ũ〉 − E(Ũ)

] ∣∣
∣
t

s
+
∫ t

s

∫

Td
D2η(Ũ)(U − Ũ) · ∂t Ũ − ∂t Dη(Ũ) · U dx dτ = 0.

(3.6)

Note that Ũ only takes values in M such that the following calculations are rigorous. Taking
the derivative of the assumed relation (2.12) with respect to z, we infer

DlFi j (Dη∗(z))D2
lkη

∗(z) = ∂

∂ zk
Fi j (Dη∗(z)) = D2

ki [q j ◦ Dη∗](z) .

Note that since z = Dη(Dη∗(z)), we infer from the implicit function theorem that η∗ is

twice continuously differentiable with D2η∗(z) = [
D2η(Dη∗(z))

]−1
. We may express the

derivative of F via

DlFi j (Dη∗(z)) = D2
ki [q j ◦ Dη∗](z)D2

klη(Dη∗(z)).
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Multiplying the above relation by D2η(Dη∗(z)) from the left, we infer by the symmetry of
the second derivatives of q and η that

D2
imη(Dη∗(z))DlFi j (Dη∗(z)) = D2

imη(Dη∗(z))D2
ki [q j ◦ Dη∗](z)D2

lkη(Dη∗(z))
= D2

lkη(Dη∗(z))DmFk j (Dη∗(z)) .

This symmetry can be used to calculate

D2
imη(Ũ)

∂

∂x j
Fi j (Ũ) = D2

imη(Ũ)DlFi j (Ũ)
∂U l

∂x j

= D2
ilη(Ũ)DmFi j (Ũ)

∂U l

∂x j
= ∂

∂x j
Diη(Ũ)DmFi j (Ũ) ,

which implies

div F(Ũ) · D2η(Ũ)(U − Ũ) = (DF(Ũ) : ∇Ũ) · D2η(Ũ)(U − Ũ)

= DF(Ũ)
...∇Dη(Ũ) ⊗ (U − Ũ)

= ∇Dη(Ũ) :
(
DF(Ũ)(U − Ũ)

)
.

Additionally, we may set � := Dη(Ũ) in (2.8) in order to conclude from the Fenchel
equivalences (2.3) that

∫

Td
∇Dη(Ũ) : F(Ũ) dx =

∫

Td
∇� : F(Dη∗(�)) dx = 0.

Combining the last two equations, we find

0 =
∫

Td
div F(Ũ) · D2η(Ũ)(U − Ũ) dx

−
∫

Td
∇Dη(Ũ) :

[
F(Ũ) + DF(Ũ)(U − Ũ)

]
dx .

(3.7)

Adding the above identities (3.6) and (3.7) to the inequality (2.10) with � = Dη(Ũ) implies
[
E − E(Ũ) − 〈DE(Ũ),U − Ũ〉

] ∣∣
∣
t

s

+
∫ t

s

∫

Td
∇Dη(Ũ) :

(
F(U) − F(Ũ) − DF(Ũ)(U − Ũ)

)
dx dτ

+
∫ t

s

∫

Td

(
∂t Ũ + div F(Ũ)

)
· D2η(Ũ)

(
U − Ũ

)
dx + K(Dη(Ũ)) [E(U) − E] dτ ≤ 0

which is (3.5).

3.3 Existence of energy-variational solutions

In this subsectionweproveTheorem2.3, that is,we showexistence of energy-variational solu-
tions to the hyperbolic conservation law (1.1). To do so, we introduce a semi-discretization
scheme in time. For N ∈ N, we define τ := T /N , and we set tn := τn for n ∈ {0, . . . , N }
to obtain an equidistant partition of [0, T ]. We set U0 := U0 ∈ D, and in the n-th time step,
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n ≥ 1, we compute Un from Un−1 ∈ D by solving the minimization problem

Un =arg minU∈D;E(U)≤E(Un−1) sup
�∈Y

[
(E(U) − E(Un−1)

)− (
U − Un−1,�

)

+ τ

[∫

Td
F(U) : ∇� dx + K(�)

(E(U) − E(Un−1)
)
] ]

.

(3.8)

Remark 9 (Comparison to time discretization for gradient flows) In the theory of gradient
flows it is nowadays standard to consider a time-discretization scheme based on a sequential
minimization [30, Chap. 6]. This is certainly a different setting than in the problem considered
here since the energy is not formally conserved along a gradient flow but dissipated by some
dissipation functional. Nevertheless, a similarity is that a saddle-point problem has to be
solved in every time step. The current algorithm can thus be seen as a first generalization
of this technique from gradient flows to more general systems, also including Hamiltonian
dynamics. A goal for the future is to combine both approaches in order to find a suitable
discretization scheme for general GENERIC systems [31], which combine dissipative and
Hamiltonian effects.

Remark 10 (Solving the min-max problem numerically) It is worth observing that the discrete
optimization problem from (3.8) is given in form of a saddle-point problem. This is a standard
problem in optimization theory and machine learning and there are different tools to solve
such a problem numerically [32].

Theorem 3.8 (Solution of the time-discrete problem) For each Un−1 ∈ D there exists a
unique solution Un to the minimization problem (3.8), and it holds

(1 + τK(�))
(E(Un) − E(Un−1)

)− 〈Un − Un−1,�〉 + τ

∫

Td
F(Un) : ∇� dx ≤ 0 (3.9)

for all � ∈ Y.

Proof The proof is divided into different steps:
Step 1: Functional framework.We define the set

D
n := {

U ∈ D | E(U) ≤ E(Un−1)
}

and the function

Fτ
n (U | �) := (1 + τK(�))

(E(U) − E(Un−1)
)

− 〈
U − Un−1,�

〉+ τ

∫

Td
F(U) : ∇� dx.

Then we solve the time-discrete minimization problem (3.8) if we find a unique minimizer
Un ∈ D

n of the function

H : Dn → R, H(U) = sup
�∈Y

Fτ
n (U | �).

Step 2: Min-max theorem. In order to show that

inf
U∈Dn

sup
�∈Y

Fτ
n (U | �) = sup

�∈Y
inf

U∈Dn
Fτ
n (U | �). (3.10)

we apply a min-max theorem. Since E is superlinear, the set Dn is weakly compact in
L1(Td ;Rm) by Lemma 2.6 and the function U 
→ Fτ

n (U | �) is convex and weakly lower
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semi-continuous for every � ∈ Y. Moreover, the function � 
→ Fτ
n (U | �) is concave for

all U ∈ D
n since K is convex and E(U) ≤ E(Un−1). Therefore, (3.10) follows from Fan’s

min-max theorem [33, Theorem 2].
Step 3: Inequality (3.9). We show infU∈Dn H(U) ≤ 0. To do so, let � ∈ Y be arbitrary

and define Ũ = Dη∗ ◦ � and Û = Dη∗ ◦ (α�), where α > 0 is chosen as follows: If
E(Ũ) ≤ E(Un−1), we set α = 1, so that Û = Ũ . If E(Ũ) > E(Un−1), we let α ∈ (0, 1) such
that E(Û) = E(Un−1), which is possible by Lemma 2.8. Then the assumed identity (2.8)
implies

∫

Td
F(Û) : ∇� dx = 1

α

∫

Td
F(Dη∗(α�(x))) : α∇�(x) dx = 0.

Since α� ∈ ∂E(Û), from the definition of the subdifferential of E we obtain

inf
U∈Dn

Fτ
n (U | �) ≤ Fτ

n (Û | �)

= (1 + τK(�))
(
E(Û) − E(Un−1)

)
− 1

α

〈
Û − Un−1, α�

〉
+ τ

∫

Td
F(Û) : ∇� dx

≤
(

1 + τK(�) − 1

α

)(
E(Û) − E(Un−1)

)
≤ 0.

The last inequality follows since if α = 1, then E(Û) ≤ E(Un−1), and if α ∈ (0, 1), then
E(Û) = E(Un−1). Because� ∈ Ywas arbitrary, identity (3.10) implies infU∈Dn H(U) ≤ 0.

Step 4: Solvability of the optimization problem. From the identity

H(U) = (E(U) − E(Un−1)
)

+ sup
�∈Y

(

τK(�)(E(U) − E(Un−1)) − 〈
U − Un−1,�

〉+ τ

∫

Td
F(U) : ∇� dx

)

,

we conclude the strict convexity of the mapping H from the strict convexity of E and the
convexity the function in the second line, which is the supremum of convex functions. Addi-
tionally, H is not equal to +∞ everywhere due to Step 3. Furthermore, we observe the
coercivity of H via

H(U) ≥ Fτ
n (U | 0) = E(U) − E(Un−1)

since E is superlinear, which also implies thatDn is weakly compact in L1(Td) byLemma2.6.
In total, H is a strictly convex, lower semicontinuous and coercive function on the compact
set Dn and thus has a unique minimizer Un .

Proof of Theorem 2.3 We prove the existence of energy-variational solutions via the conver-
gence of a time-discretization scheme. We divide the proof into three steps.

Step 1: Discretized formulation. For N ∈ N, let τ = T /N and tn = nτ as above.
Set U0 = U0, define Un iteratively by (3.8), and set En := E(Un) for n ∈ {0, . . . , N }.
Theorem 3.8 guarantees that Un ∈ D exists and satisfies

En − En−1 − 〈
Un − Un−1,�

〉

+ τ

[∫

Td
F(Un) : ∇� dx + K(�)[E(Un) − En−1]

]

≤ 0
(3.11)

for all � ∈ Y. For functions φ ∈ C∞
c ([0, T ); [0,∞)) and � ∈ C1([0, T ];Y), we define

φn := φ(tn) and �n := �(tn) for n ∈ {0, . . . , N }. Using � = �n−1 in (3.11), multiplying
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the resulting inequality by φn−1 and summing this relation over n ∈ {1, . . . , N } implies

N∑

n=1

[
φn−1(En − En−1) − φn−1〈Un − Un−1,�n−1〉]

+ τ

N∑

n=1

φn−1
[∫

Td
F(Un) : ∇�n−1 dx + K(�n−1)(E(Un) − En−1)

]

≤ 0.

Since φN = 0, using a discrete integration-by-parts formula, we obtain

−τ

N∑

n=1

[
φn − φn−1

τ

(
En − 〈

Un,�n−1〉)− φn
〈

Un,
�n − �n−1

τ

〉]

− φ0(E(U0) − 〈�0,U0〉
)

+ τ

N∑

n=1

φn−1
[∫

Td
F(Un) : ∇�n−1 dx + K(�n−1)(E(Un) − En−1)

]

≤ 0.

(3.12)

Step 2: Prolongations.We define the piece-wise constant prolongations

U
N
(t) :=

{
Un for t ∈ (tn−1, tn],
U0 for t = 0,

E
N
(t) :=

{
E(Un) for t ∈ (tn−1, tn],
E(U0) for t = 0,

EN (t) :=
{
E(UN ) for t = T ,

E(Un−1) for t ∈ [tn−1, tn).

Analogously, for test functions ψ ∈ C1([0, T ];X), where X is R or Y, we define the piece-
wise constant and piece-wise linear prolongations by

ψ
N
(t) :=

{
ψ(tn) for t ∈ (tn−1, tn],
ψ(0) for t = 0,

ψN (t) :=
{

ψ(T ) for t = T ,

ψ(tn−1) for t ∈ [tn−1, tn),

ψ̂N (t) := ψ(tn) − ψ(tn−1)

τ
(t − tn−1) + ψ(tn−1) for t ∈ [tn−1, tn] .

With this notation, the discrete energy-variational inequality (3.12) becomes

−
∫ T

0

(

∂t φ̂
N
[
E
N − 〈UN

,�N 〉
]

− φ
N 〈UN

, ∂t �̂
N 〉 + φNK(�N )EN

)

dt

+
∫ T

0
φN

[∫

Td
F(U

N
) : ∇�N dx + K(�N )E(U

N
)

]

dt

− φ(0) [E(U0) − 〈�(0),U0〉] ≤ 0

(3.13)

for all � ∈ C1([0, T ];Y) and all φ ∈ C1c ([0, T )) with φ ≥ 0.

Step 3: Convergence. Since we have 0 ≤ E(Un) ≤ E(Un−1), we obtain that t 
→ E
N
(t)

and t 
→ EN (t) are non-negative and non-increasing functions and as such bounded in
BV([0,T]) by the initial value E0 = E(U0). Moreover, by the superlinear growth of η, we

infer from E(U
N
(t)) ≤ E(U0) that the sequence {UN }N∈N is bounded in L∞(0, T ;D).

Thus, we may extract (not-relabeled) subsequences such that there exist E, E ∈ BV([0,T])
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and U ∈ L∞(0, T ;D) such that

U
n (∗)−⇀ U in L∞(0, T ; L1(Td ;Rm)),

(E
N
, EN )

∗−⇀ (E, E) in BV([0,T]),

(E
N
(t), EN (t)) −→ (E(t), E(t)) for all t ∈ [0, T ],

where theweak(∗) convergence in L∞(0, T ; L1(Td ;Rm))was defined in (2.2), andwherewe

usedHelly’s selection theorem (see [24, Thm. 1.126] for example).We next show that E
N
and

EN converge to the same limit, that is, E = E a.e. in (0, T ). Due to themonotony En ≤ En−1,
we find

∫ T

0
|EN − EN | dt =

N∑

n=1

τ(En−1 − En) = τ(E(0) − EN ) ≤ τ E(0) −→ 0 as N → ∞.

Since BV([0,T]) continuously embeds into L1(0, T ), this allows to identify E = E =: E .
Due to the pointwise convergence in [0, T ] of E

N
, we infer from the weak lower semi-

continuity of E that E ≥ E(U) a.e. in (0, T ). We clearly have

∂t φ̂
N → ∂tφ, φ

N → φ, φN → φ pointwise in [0, T ] ,
∂t �̂

N → ∂t�, �N → �, ∇�N → ∇� in C(Td ;Rm) pointwise in [0, T ]
as N → ∞. With these observations, we may pass to the limit in the weak form (3.13).

We note that U
N
occurs linearly in the first line of (3.13). All other terms are bounded and

converge almost everywhere in (0, T ). This implies that

lim
N→∞

∫ T

0

[

∂t φ̂
N
[
E
N − 〈UN

,�N 〉
]

− φ
N 〈UN

, ∂t �̂
N 〉 + φNK(�N )EN

]

dt

=
∫ T

0

[

∂tφ [E − 〈U,�, 〉] − φ〈U, ∂t�〉 + φK(�)E

]

dt .

Observing that the second line in (3.13) is bounded from below due to Hypothesis (2.1) and
that φ ≥ 0 in [0, T ], we may apply Fatou’s lemma and the weak lower semi-continuity of the
function from (2.9) as well as the continuity of K in order to pass to the limit in the second
line of (3.13), which yields

lim inf
N→∞

[∫ T

0
φN

[∫

Td
F(U

N
) : ∇�N dx + K(�N )E(U

N
)

]

dt

]

≥
∫ T

0
lim inf
N→∞

[

φN
[∫

Td
F(U

N
) : ∇�N dx + K(�N )E(U

N
)

] ]

dt

≥
∫ T

0
φ

∫

Td
F(U) : ∇� dx + K(�)E(U) dt .

In total, we infer from (3.13) that

−
∫ T

0
∂tφ [E − 〈U,�〉] dt − φ(0) [E(U0) − 〈U0,�(0)〉]

+
∫ T

0
φ

[

〈U, ∂t�〉 +
∫

Td
F(U) : ∇� dx + K(�)[E(U) − E]

]

dt ≤ 0.
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Via Lemma 2.5, we now end up with the energy-variational inequality (2.10) and with

lim
t↘0

[E(t) − 〈U(t),�(t)〉] ≤ E(U0) − 〈U0,�(0)〉,
after possible redefining the function on a set of measure zero. By Lemma 2.4, this inequality
implies U(t+) = U0 in Y

∗, that is, the initial value is attained in the asserted sense.

4 Two incompressible fluidmodels

Our first two examples are models for incompressible inviscid fluids, the incompressible
magnetohydrodynamical equations and the incompressible Euler system. While the latter
can be seen as a special case of the first system, it allows to derive more properties and the
comparison with weak dissipative solutions for the Euler equations.

4.1 Incompressible magnetohydrodynamics

As the first example, we consider the equations modeling an incompressible, inviscid and
electronically conductive fluid. The corresponding equations of motion are the magnetohy-
drodynamical equations given by

∂tv + (v · ∇)v − μ(H · ∇)H + ∇ p + ∇ μ

2
|H|2 = 0, in T

d × (0, T ) , (4.1a)

∂tH − ∇ × (v × H) = 0 in T
d × (0, T ) , (4.1b)

div v = 0, div H = 0 in T
d × (0, T ) , (4.1c)

v(0) = v0, H(0) = H0 in T
d . (4.1d)

Here v : Td × (0, T ) → R
d denotes the velocity of the fluid, H : Td × (0, T ) → R

d is the
magnetic field, p : Td × (0, T ) → R denotes the pressure, and μ ∈ (0,∞) is the quotient
of the magnetic permeability and the constant density of the fluid.

Remark 11 We note that the above equation is not formally of the form (1.1a). The pressure
is not a function of H and v but should rather be seen as a Lagrange multiplier to fulfill
the divergence-free condition in the evolution. The first equation (4.1a) can be interpreted
as ∂tv + P div(v ⊗ v − μH ⊗ H) = 0, where P denotes the Helmholtz projection on
divergence-free functions, and condition (4.1c) is incorporated in the functional framework
by working in the space of divergence-free functions. Another viewpoint is that one can
derive a weak formulation of (4.1) by testing with divergence-free test functions. Then the
pressure term can be omitted, and the weak formulation is of the form (1.2).

To introduce the notion of energy-varational solutions to the magnetohydrodynamical
equations (4.1), we define the corresponding mathematical entropy as the physical energy

E(v, H) = 1

2

∥
∥v
∥
∥2
L2(Td )

+ μ

2

∥
∥H

∥
∥2
L2(Td )

. (4.2)

Moreover, we we introduce the class of divergence-free vector fields

Lq
σ (Td) :=

{
v ∈ Lq(Td ;Rd)

∣
∣
∣ ∀ϕ ∈ C1(Td) :

∫

Td
v · ∇ϕ dx = 0

}

for q ∈ [1,∞). The mathematical precise sense of energy-variational solutions is given in
the following definition.

123



103 Page 24 of 40 T. Eiter, R. Lasarzik

Definition 4.1 A tuple (v, H, E) ∈ L∞(0, T ; L2
σ (Td))2 × BV([0,T]) is called an energy-

variational solution to the incompressible magnetohydrodynamical equations (4.1) if it
satisfies E(v(t), H(t)) ≤ E(t) for a.a. t ∈ (0, T ), and if the energy-variational inequal-
ity
[

E −
∫

Td
v · ϕ − H · ψ dx

] ∣
∣
∣
t

s
+
∫ t

s

∫

Td

[
v · ∂tϕ + (v ⊗ v − μH ⊗ H) : ∇ϕ dx

+
∫ t

s

∫

Td
H · ∂tψ + (H ⊗ v − v ⊗ H) : ∇ψ dx + K(ϕ,ψ) [E(v, H) − E]

]
ds ≤ 0

(4.3)

holds for a.e. s < t ∈ (0, T ) including s = 0 with (v(0), H(0)) = (v0, H0) and all test
functions (ϕ,ψ) ∈ C1(Td × [0, T ];Rd)2 with divϕ = divψ = 0. Here,

K(ϕ,ψ) = 2‖(∇ϕ)sym‖L∞(Td ;Rd×d ) + 2√
μ

‖(∇ψ)skw‖L∞(Td ;Rd×d ) (4.4)

with

‖�‖L∞(Td ;Rd×d ) = ess supx∈Td |�(x)|2,
where |·|2 denotes the spectral norm defined in (2.1).

Theorem 4.2 For every initial datum (v0, H0) ∈ L2
σ (Td) × L2

σ (Td), there exists an energy-
variational solution in the sense of Definition 4.1 with E(0) = E(v0, H0) and (v, H) ∈
Cw([0, T ]; L2

σ (Td) × L2
σ (Td)), and the initial values are attained in the strong sense.

Proof We have to show that the Hypothesis 2.1 is fulfilled. To realize the system (4.1) in
the abstract framework introduced above, we introduce the quadratic entropy functional
η : R2d → R via η( y1, y2) = 1

2 | y1|2 + μ
2 | y2|2, which is obviously strictly convex, lower

semi-continuous and has superlinear growth. The space of test functions is given by Y ={
(ϕ,ψ) ∈ C1(Td ;Rd)2

∣
∣ divϕ = divψ = 0

}
, and we have D = L2

σ (Td) × L2
σ (Td)

(see Remark 2), which is obviously convex. Note that η∗(z1, z2) = 1
2 |z1|2 + 1

2μ |z2|2, and
the corresponding total entropy is given by the physical energy E from (4.2). The function
F : R2d → R

2d×d is given by

F(v, H) =
(

v ⊗ v − μH ⊗ H
H ⊗ v − v ⊗ H

)

.

Observing that Dη∗(z1, z2) = (z1,
z2
μ

)T , we find that the condition (2.8) is fulfilled due to

∫

Td
F(Dη∗(ϕ,ψ)) : ∇

(
ϕ

ψ

)

dx

=
∫

Td

(

ϕ ⊗ ϕ − 1

μ
ψ ⊗ ψ

)

: ∇ϕ + 1

μ
(ψ ⊗ ϕ − ϕ ⊗ ψ) : ∇ψ dx

=
∫

Td
(ϕ · ∇)

|ϕ|2
2

− 1

μ

[
(ψ ⊗ ψ) : ∇ϕ − (ϕ · ∇)

|ψ |2
2

− ∇ϕ : (ψ ⊗ ψ) − ϕ · ψ divψ
]
dx

= 0 ,
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where we integrated by parts in the last term. The last equality follows by another integration
by parts since ϕ and ψ are solenoidal vector fields. Moreover, inequality (2.7) is fulfilled for
C = 2 + 2√

μ
since from Young’s inequality, it follows

|F(v, H)| ≤ |v|2 + μ|H|2 + 2|v||H| ≤ 2η(v, H) + 2√
μ

η(v, H) .

Finally, we have to show that the choice (4.4) of the regularity weightK yields the convexity
of the function from (2.9). We infer similarly to the previous estimate that

∣
∣
∣

∫

Td
F(v, H) : ∇

(
ϕ

ψ

)

dx
∣
∣
∣

≤ (‖v ⊗ v − μH ⊗ H‖L1(Td ;Rd×d )

) ‖(∇ϕ)sym‖L∞(Td ;Rd×d )

+ 2‖v ⊗ H‖L1(Td ;Rd×d )‖(∇ψ)skw‖L∞(Td ;Rd×d )

≤ K(ϕ,ψ)E(v, H) .

This implies that the mapping

(v, H) 
→
∫

Td
F(v, H) : ∇

(
ϕ

ψ

)

dx + K(ϕ,ψ)E(v, H)

is quadratic and non-negative, and thus convex and weakly lower semi-continuous. In total,
Hypothesis 2.1 is satisfied, and from Theorem 2.3 we infer the existence of a solution in
the sense of Definition 4.1 with the regularity from Proposition 3.1. Finally, Proposition 3.2
implies the additional regularity.

Remark 12 (Alternative choice of F) We could also define the function F by

F(v, H) =
(

v ⊗ v − μH ⊗ H + I
( |v|2

2 + μ|H|2
2

)

H ⊗ v − v ⊗ H − (v · H)I

)

.

With this definition, we can derive the relation (2.12) for the function q̃ given by

q̃(v, H) = v

( |v|2
2

+ μ|H|2
2

)

− μH(H · v),

and the function F fits better into our abstract framework with Hypothesis 3.5. But since
both choices yield the same when tested with solenoidal functions, we rather use the simpler
version in the above proof. Note that both choices fulfill the condition (2.8).

Remark 13 (Boundary conditions) The concept can be transferred to the usual impermeability
boundary conditions. Indeed, on a bounded Lipschitz domain � ⊂ R

d , we may equip the
system (4.1) with the boundary conditions n ·v = 0 = n ·H on ∂�, where n denotes the outer
unit normal vector at ∂�. The associated space for the test functions Y has to be restricted to
(ϕ,ψ) ∈ Y := C1(� × [0, T ];R2d) with n · ϕ = 0 = n · ψ on ∂� and divϕ = 0 = divψ

in �. Similarly to the above calculation, one may verify that condition (2.8) is still fulfilled,
where the integral is taken over � instead of Td .

4.2 Incompressible Euler equations

For the sake of completeness, we apply the abstract result to the incompressible Euler equa-
tions, even though the existence of energy-variational solution to this system was already
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proven in [20]. Actually, this can be seen as a special case of the magnetohydrodynamical
equations (4.1) by setting H ≡ 0. However, here we can give a finer choice of the regularity
weight K that allows us to show that energy-variational solutions are also dissipative weak
solutions.

The incompressible Euler equations are given by

∂tv + (v · ∇)v + ∇ p = 0, div v = 0 in T
d × (0, T ) , (4.5a)

v(0) = v0 in T
d . (4.5b)

Again, v : Td × (0, T ) → R
d denotes the velocity of the fluid and p : Td × (0, T ) → R

denotes the pressure. We introduce the energy E : L2
σ (Td) → R with E(v) := 1

2

∥
∥v
∥
∥2
L2(Td )

.

Definition 4.3 A pair (v, E) ∈ L∞(0, T ; L2
σ (Td)) × BV([0,T]) is called an energy-

variational solution to the incompressible Euler system (4.5) if E(t) ≥ E(v) for a.e. t ∈ (0, T )

and if the inequality
[

E −
∫

Td
v · ϕ dx

] ∣
∣
∣
t

s
+
∫ t

s

∫

Td
v · ∂tϕ + v ⊗ v : ∇ϕ dx + K(ϕ) [E(v) − E] ds ≤ 0

(4.6)

holds for a.e. s < t ∈ (0, T ), including s = 0 with v(0) = v0, and for all test functions
ϕ ∈ C1(Td × [0, T ];Rd) with divϕ = 0, where

K(ϕ) = 2‖(∇ϕ)sym,−‖L∞(Td ;Rd×d ). (4.7)

Besides existence of energy-variational solutions, we shall show that they can be identified
with so-called weak dissipative solutions to the incompressible Euler equations (4.5). The
following definition is an adaption of the compressible case, see Definition 5.7 below.

Definition 4.4 (Dissipative weak solution) A pair (v, E) ∈ L∞(0, T ; L2
σ (Td)) × BV([0,T])

is called a dissipative weak solution to the Euler equations, if there exists a Reynolds defect
R ∈ L∞

w∗(0, T ;M(Td ;Rd×d
sym,+)) such that the equation

∫

Td
v · ϕ dx

∣
∣
∣
t

s
=
∫ t

s

∫

Td
v · ∂tϕ + v ⊗ v : ∇ϕ dx ds +

∫ t

s

∫

Td
∇ϕ : dR(s) ds (4.8)

is fulfilled for allϕ ∈ C1(Td×[0, T ];Rd)with divϕ = 0, and for a.a. s, t ∈ (0, T ), including
s = 0 with v(0) = v0, and if E is a non-increasing function with E(0+) = E(v0) such that

E(v(t)) + 1

2

∫

Td
I : dR(t) ≤ E(t) (4.9)

for a.a. t ∈ (0, T ).

Theorem 4.5 For every initial datum v0 ∈ L2
σ (Td), there is an energy-variational solu-

tion in the sense of Definition 4.3 with E(0) = E(v0) with v ∈ Cw([0, T ]; L2
σ (Td))

such that the initial condition is attained in the strong sense. Moreover, a pair (v, E) ∈
L∞(0, T ; L2

σ (Td)) × BV([0,T]) is an energy-variational solution in the sense of Defini-
tion 4.3 if and only if it is a dissipative weak solution in the sense of Definition 4.4.

Proof At first, we show that the Hypothesis 2.1 is fulfilled, which is very similar to the proof
of Theorem 4.2. To the most extent, we can copy the above proof with H ≡ 0 or vanishing
second component in all functionals. But since we assert that the regularity weight K can be
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chosen in the finer manner stated in (4.7), it remains to verify the convexity of the function
from (2.9) with this choice. Indeed, we have

∫

Td
F(v) : ∇ϕ dx + K(ϕ)E(v)

=
∫

Td
v ⊗ v : (∇ϕ)sym,+ dx

+
∫

Td
(v ⊗ v) : [(∇ϕ)sym,− + ‖(∇ϕ)sym,−‖L∞(Td ;Rd×d ) I

]
dx,

where we infer the convexity and weak lower semi-continuity of both terms in the second
line since they are non-negative and quadratic. Hence, Hypothesis 2.1 is satisfied, and from
Theorem 2.3, we infer the existence of an energy-variational solution.

Now let (v, E) be an energy-variational solution in the sense of Definition 4.3. The choice
ϕ = 0 implies that E is non-increasing. Since the regularity weight K is homogeneous of
degree one, we infer from Proposition 3.4 that

−
∫

Td
v · ψ dx

∣
∣
∣
T

0
+
∫ T

0

∫

Td
v · ∂tψ + (v ⊗ v) : ∇ψ dx dt ≤

∫ T

0
K(ψ)[E − E(v)] dt

(4.10)

for all ψ ∈ C1(Td × [0, T ];Rd) with divψ = 0. We define

V := {ϕ ∈ C10(Td × [0, T );Rd) | divϕ = 0 a.e. in T
d × (0, T ),

∫

Td
ϕ dx = 0},

l : V → R, 〈l,ψ〉 := −
∫

Td
v · ψ dx

∣
∣
∣
T

0
+
∫ T

0

∫

Td
v · ∂tψ + (v ⊗ v) : ∇ψ dx dt,

p : L1(0, T ; C(Td ;Rd×d
sym )) → R, p(�) :=

∫ T

0
2‖(�)−‖C(Td ;Rd×d )(E − E(v)) dt .

Due to (4.10), Lemma 2.9 implies that there exists R ∈ L∞
w∗(0, T ;M(Td ;Rd×d

sym )) with

∀� ∈ L1(0, T ; C(Td ;Rd×d
sym )) : 〈−R,�〉 ≤ p(�), ∀ψ ∈ V : 〈−R,∇ψ〉 = 〈l,ψ〉.

The first property implies 〈R,�〉 ≥ 0 if � is positive semi-definite in T
d × (0, T ), so that

we have R ∈ L∞
w∗(0, T ;M(Td ;Rd×d

sym,+)). The second property yields (4.8) for ψ ∈ V .
Using ψ = e j in (4.10), where e j is the j-th unit vector in R

d , we see that
∫
Td v dx is

constant in time. Therefore, we can drop the mean-value condition on ψ and infer (4.8) for
all ψ ∈ C1(Td × [0, T ];Rd) with divψ = 0. Considering �(x, t) = −φ(t)I for some
φ ∈ C10([0, T )) with φ ≥ 0, we further have

∫ T

0
φ(t)

∫

Td
I : dR(t) dt = 〈−R,�〉 ≤ p(�) = 2

∫ T

0
φ(t)(E − E(v)) dt .

Since φ ≥ 0 is arbitrary, this directly implies (4.9) for a.a. t ∈ (0, T ). In total, we see that
(v, E) is a dissipative weak solution.

In order to prove the converse implication, let (v, E) ∈ L∞(0, T ; L2
σ (Td)) × BV([0,T])

be a dissipative weak solution to (4.5). Due to R(t) ∈ M(Td ;Rd×d
sym,+), the duality of the

spectral norm and the trace norm for matrices, Hölder’s inequality and inequality (4.9) allow
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to infer
∫

Td
∇ψ : dR ≥

∫

Td
(∇ψ)sym,− : dR ≥ −‖(∇ψ)sym,−‖L∞(Td ;Rd×d )

∫

Td
I : dR

≥ 2‖(∇ψ)sym,−‖L∞(Td ;Rd×d ) [E(v) − E]

a.e. in (0, T ). Estimating the last term of (4.8) with ϕ = −ψ in this way, we obtain

−
[∫

Td
v · ψ dx

] ∣
∣
∣
t

s
+
∫ t

s

∫

Td
v · ∂tψ + v ⊗ v : ∇ψ dx + K(ψ) [E(v) − E] ds ≤ 0.

Since E is non-increasing, we may add the term E
∣
∣t
s to the left-hand side to infer the formu-

lation (4.6).

Remark 14 (Trace-free measures) Due to the fact that the equation (4.8) holds for solenoidal
test functions, one may change the measureR in this formulation by adding a multiplicative
of the identity. This can be done in such a way that the resulting measure R̄ is trace-free by
setting R̄ = R − 1

d tr(R)I . Consequently, we could adapt Definition 4.4 by requiring R ∈
L∞

w (0, T ;M(Td ;Rd×d
sym,0)), where R

d×d
sym,0 denotes the set of symmetric trace-free matrices,

and by demanding the simpler inequality E(v) ≤ E instead of inequality (4.9).We could infer
this formulation with the same arguments as above, but by choosing I(ψ) = (∇ψ)sym −
1
d tr(∇ψ)I in Lemma 2.9 and p(�) = ∫ T

0 2‖�‖C(Td ;Rd×d )(E − E(v)) dt . However, we
prefer the choice made in Definition 4.4 since in inequality (4.9) the dissipative nature of the
Reynolds defect R becomes visible.

5 Compressible Euler equations

Now, we turn to the compressible Euler system. Here, instead of formulating the equations
in terms of the density h and the fluid velocity v, we use the density and the momentum
m = hv. This is often done in the literature, see for instance [34]. The main reason for this
choice is that the associated energy functional is convex in the variables (h,m) as we will
see below. The Euler equations then read

2∂t h + divm = 0 in T
d × (0, T ), (5.1a)

∂tm + div

(
m ⊗ m

h

)

+ ∇ p(h) = 0 in T
d × (0, T ), (5.1b)

(h,m)(·, 0) = (h0,m0) in T
d . (5.1c)

Here h : Td × (0, T ) → [0,∞) and and m : Td × (0, T ) → R
d denote the mass density and

the momentum field of an inviscid fluid flow, and the pressure p is related to the density h
by a barotropic pressure law p = p(h). Note that we follow [11] and use h for the density
variable instead of ρ, which fits to our notation to use Latin letters for the state variables and
Greek letters for the test functions.

To see that (5.1) belongs to the class of hyperbolic conservation laws introduced above,
we set

F(h,m) =
(

mT
(m⊗m

h + p(h)I
)
χ(0,∞)(h)

)

.
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Then (5.1) is equivalent to (1.1) withU = (h,m). Themathematical entropy η for the system
is defined as

η(h,m) =

⎧
⎪⎨

⎪⎩

1
2

|m|2
h + P(h) if h > 0,

0 if (h,m) = (0, 0),

∞ else,

and E(h,m) = ∫
Td η(h(x),m(x)) dx is the total physical energy. Here P denotes the poten-

tial energy, which is associated to the pressure p via

P(h) = h
∫ h

0

p(z)

z2
dz. (5.2)

Vice versa, the pressure p can be derived from the potential energy P via

p(h) = hP ′(h) − P(h). (5.3)

For conditions ensuring that all expressions in (5.2) and (5.3) are well defined, we refer to
(5.7) and (5.6) below, respectively.

5.1 Energy-variational solutions to the compressible Euler equations

For the sake of convenience, we now transfer Definition 2.2 to the compressible Euler system,
and express all quantities in the way considered here.

Definition 5.1 A triple (h,m, E) ∈ L1
loc(T

d × (0, T ); [0,∞)) × L1
loc(T

d × (0, T );Rd) ×
BV([0,T]) is called an energy-variational solution to the compressible Euler system (5.1) if
E(h(t),m(t)) ≤ E(t) for a.e. t ∈ (0, T ) and if the energy-variational inequality
[

E −
∫

Td
hρ + m · ϕ dx

] ∣
∣
∣
t

s
+
∫ t

s

∫

Td
h∂tρ + m · ∇ρ dx dτ

+
∫ t

s

∫

Td
m · ∂tϕ +

(
m ⊗ m

h
+ p(h)I

)

: ∇ϕ dx + Kα(ρ,ϕ) [E(h,m) − E] dτ ≤ 0

(5.4)

holds for a.e. s < t ∈ (0, T ), including s = 0 with (h(0),m(0)) = (h0,m0), and for all test
functions (ρ,ϕ) ∈ C1(Td × [0, T ]) × C1(Td × [0, T ];Rm), where Kα is given by

Kα(ρ,ϕ) = Kα(ϕ) = max
{
2, αd

}‖(∇ϕ)sym,−‖L∞(Td ;Rd×d ) (5.5)

for a suitable choice of α > 0.

Remark 15 (Choice of regularity weight) There are different choices possible for the regu-
larity weight Kα . A finer choice would be given by

K̃α(ϕ) = max
{
2‖(∇ϕ)sym,−‖L∞(Td ;Rd×d ), α‖(div ϕ)−‖L∞(Td ;R)

}

≤ max
{
2, αd

}‖(∇ϕ)sym,−‖L∞(Td ;Rd×d ) = Kα(ϕ).

Note that the solution concept is finer for a smaller regularity weight, since the energy-
variational inequality (2.10) remains valid, if the regularity weight increases (cf. [18,
Prop. 4.4]). Nevertheless, we use the above choice since it yields the equivalence to dis-
sipative weak solutions; see Theorem 5.8 below.
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To show existence of energy-variation solutions to (5.1), we restrict the class of admissible
pressure laws and assume that p is of the form p(h) = ahγ . Then we show the following
result.

Theorem 5.2 Let p(h) = ahγ for some a > 0, γ > 1, and set q = 2γ /(1 + γ ) and
α = γ − 1. For every initial data (h0,m0) ∈ L1

loc(T
d ;Rd+1) with E(h0,m0) < ∞ there

exists an energy-variational solution

(h,m, E) ∈ Cw([0, T ]; Lγ (Td)) × Cw([0, T ]; Lq(Td ;Rd)) × BV([0,T])

to the compressibleEuler equations (5.1) in the sense ofDefinition5.1with E(0) = E(h0,m0)

and such that the initial conditions are attained in the strong sense.

5.2 Existence of energy-variational solutions

To prove existence of an energy-variational solution, we show that all assertions of Theorem
2.3 are satisfied. Actually, most of them can be shown for more general pressure laws than
those in the statement of Theorem 5.2. For the moment, we shall merely assume that the
potential energy P satisfies

P ∈ C1[0,∞) ∩ C2(0,∞), P ′′(z) > 0 for all z > 0, (5.6a)

lim
z→∞

P(z)

z
= ∞, P(0) = P ′(0) = 0. (5.6b)

In particular, P is a strictly convex function with superlinear growth, and p is well defined
via (5.3).

Remark 16 In (5.6) we introduced assumptions on the potential energy P , while in the liter-
ature it is much more common to state assumptions on the pressure p directly. To guarantee
(5.6a) and (5.6b), one may assume that p satisfies

p ∈ C0[0,∞) ∩ C1(0,∞), p′(z) > 0 for all z > 0, (5.7a)

lim
z→∞

p(z)

z
= ∞,

∫ 1

0

p(z)

z2
dz < ∞. (5.7b)

One readily verifies that then the right-hand side of (5.2) is well defined, and that (5.6a)
and (5.7a) are equivalent since P ′′(z) = p′(z)/z. Moreover, the second condition in (5.7b)
implies limz→0 p(z)/z = 0, and it is equivalent to the second condition in (5.6b), which
follows with the identity

∫ 1

0

p(z)

z2
dz =

∫ 1

0

d

dz

[ P(z)

z

]
dz = P(1) − lim

z→0

P(z)

z
= P(1) − P ′(0).

Additionally, superlinear growth of p implies superlinear growth of P . Indeed, the first
condition in (5.6b) yields the existence of h0 > 0 such that p(z) ≥ z for all z ≥ h0, whence
we have

P(h)

h
≥
∫ h0

0

p(z)

z2
dz +

∫ h

h0

1

z
dz =

∫ h0

0

p(z)

z2
dz + log(h) − log(h0) → ∞

as h → ∞. However, the converse is not true. For example, the function P(h) = (1 +
h) log(1+h)−h satisfies (5.6a) and (5.6b), but the associated pressure p(h) = h−log(1+h)

does not have superlinear growth. Therefore, the assumption on the potential P in (5.6) are
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less restrictive than the assumptions on the pressure p in (5.7), which explains why we work
with the former in what follows.

We separate the proof into several lemmas, the first one concerns properties of η.

Lemma 5.3 If P satisfies (5.6), then η is strictly convex and has superlinear growth.

Proof By (5.6a), we have P ′′ > 0, and the strict convexity of η directly follows by com-
puting the second derivatives. To show the superlinear growth, let (hn,mn) ⊂ R × R

n

be a sequence with |(hn,mn)| → ∞. If hn → −∞ as n → ∞, then we clearly
have η(hn,mn)/|(hn,mn)| → ∞. So we may assume hn > 0 in the following. If
limn→∞|mn |/hn = ∞, then

η(hn,mn)

|(hn,mn)| ≥ |mn |2
2hn |(hn,mn)| = |mn |√

h2n + |mn |2
|mn |
2hn

→ ∞

as n → ∞; if lim infn→∞|mn |/hn = c ≥ 0, then we have hn → ∞ and

η(hn,mn)

|(hn,mn)| ≥ P(hn)

|(hn,mn)| = hn√
h2n + |mn |2

P(hn)

hn
→ ∞

as n → ∞ due to (5.6b). In total, this completes the proof.

Next we calculate the convex conjugate η∗ of η. To this end, we use that P ′ is an invertible
mapping.

Lemma 5.4 If P satisfies (5.6), then themapping Q := P ′ is strictly increasing andabijective
self-mapping on [0,∞). The convex conjugate η∗ of η is given by

η∗(ρ,ϕ) =
∫ (ρ+ |ϕ|2

2

)
+

0
Q−1(z) dz = p ◦ Q−1

((

ρ + |ϕ|2
2

)

+

)

, (5.8)

and it holds

Dη∗(ρ,ϕ) = Q−1
((

ρ + |ϕ|2
2

)

+

)(
1
ϕ

)

(5.9)

where z+ := max{z, 0} for z ∈ R.

Proof By (5.6), the function Q = P ′ is strictly increasing and continuous on [0,∞) with
Q(0) = 0, and the convexity of P yields

Q(z) = P ′(z) ≥ P(z)

z
→ ∞

as z → ∞. Therefore, Q is a bijective self-mapping on [0,∞)with inverse Q−1. The second
equality in (5.8) is now a direct consequence of the identity

d

dz
p(Q−1(z))= p′(Q−1(z))(Q−1)′(z)= p′(Q−1(z))

1

Q′(Q−1(z))
=Q−1(z),

where we used Q′(z) = P ′′(z) = p′(z)/z. To verify the first equality in (5.8), consider the

case ρ + |ϕ|2
2 ≤ 0 at first. We employ Young’s inequality to estimate

h ρ + m · ϕ − η(h,m) ≤ −h
|ϕ|2
2

+ |m|2
2h

+ h|ϕ|2
2

− η(h,m) ≤ 0,
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which shows η∗(ρ,ϕ) ≤ 0. Since we also have η∗ ≥ 0, we infer η∗(ρ,ϕ) = 0, which is

(5.8) if ρ + |ϕ|2
2 ≤ 0. This also implies (5.9) in this case. If ρ + |ϕ|2

2 > 0, then (ρ,ϕ) belongs
to the range of Dη, which is given by

Dη(h,m) =
(

−|m|2
2h2

+ Q(h),
m
h

)

for h > 0, m ∈ R
d . Computing the inverse, we arrive at (5.9) in this case. This further yields

(5.8) for ρ + |ϕ|2
2 > 0 since Q(0) = 0. In total, we have thus verified (5.8) and (5.9).

In the next lemma, we verify the compatibility condition (2.8) between F and the entropy
functional η.

Lemma 5.5 If P satisfies (5.6), then the condition (2.8) is satisfied.

Proof We first consider the integrand of (2.8). Using (5.9), for all (ρ,ϕ) ∈ C1(Td ;Rd+1)

we have

F(Dη∗(ρ,ϕ)) : ∇
(

ρ

ϕ

)

=
(

ϕT Q−1
((

ρ + |ϕ|2
2

)
+
)

ϕ ⊗ ϕ Q−1
((

ρ + |ϕ|2
2

)
+
)+ p ◦ Q−1

((
ρ + |ϕ|2

2

)
+
)
I

)

: ∇
(

ρ

ϕ

)

= ϕ · ∇
(

ρ + |ϕ|2
2

)

Q−1
((

ρ + |ϕ|2
2

)

+

)

+ p ◦ Q−1
((

ρ + |ϕ|2
2

)

+

)

divϕ

= div
[
ϕ η∗(ρ,ϕ)

]
,

where the last equality follows from (5.8). Integrating this identity yields (2.8).

Remark 17 We can also show (2.8) by verifying the alternative condition (2.12). Indeed, we
can use (5.8) and (5.9) to derive

F(Dη∗(ρ,ϕ)) =
(

ϕT Q−1
((

ρ + |ϕ|2
2

)
+
)

ϕ ⊗ ϕ Q−1
((

ρ + |ϕ|2
2

)
+
)+ p ◦ Q−1

((
ρ + |ϕ|2

2

)
+
)
I

)

=
(

ϕT Dρη∗(ρ,ϕ)

ϕ ⊗ Dϕη∗(ρ,ϕ) + η∗(ρ,ϕ) I

)

= D
[
ϕ η∗(ρ,ϕ)

] = D
[
ϕ p(Dρη∗(ρ,ϕ))

] = D
[
q̃ ◦ Dη∗](ρ,ϕ)

for q̃(h,m) = m
h p(h). This shows (2.12), which implies (2.8) by Remark 4. However, we

cannot use the classical entropy-flux condition (2.11) in the present situation, since F is not
differentiable.

It remains to show that the function K defined in (5.5) is a suitable choice. To show this,
we have to impose more restrictive conditions on p and P .

Lemma 5.6 Assume that additionally to (5.6) there exist constants c, α > 0 such that

p(h) ≤ c(1 + P(h)), (5.10)

for all h ≥ 0, and such that the functions p and αP − p are convex and non-negative. Then
(2.7) holds for some C > 0, and for any ϕ ∈ C1(Td ;Rd) the mapping

dom E → R, (h,m) 
→
∫

Td

(
m ⊗ m

h
+ p(h)I

)

: ∇ϕ dx + Kα(ϕ)E(h,m) (5.11)
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is convex, lower semi-continuous and non-negative for Kα as in (5.5).

Proof For h ≤ 0, estimate (2.7) is trivial, and for h > 0 we use Young’s inequality and (5.10)
to conclude

|F(h,m)| ≤ C

( |m|√
h

√
h + |m|2

h
+ p(h)

)

≤ C

(

h + |m|2
h

+ 1 + P(h)

)

≤ C
(
1 + η(h,m)

)
,

where we used the superlinear growth of P in the last estimate. In total, this shows (2.7). To
deduce that (5.11) is convex and non-negative, firstly note that the mapping

(h,m) 
→
∫

Td

m ⊗ m
h

: ∇ϕ dx + Kα(ϕ)

∫

Td

|m|2
2h

dx

=
∫

Td

m ⊗ m
h

: ((∇ϕ)sym + 1

2
Kα(ϕ)I ) dx

is convex and non-negative because the matrix

(∇ϕ)sym + 1

2
Kα(ϕ)I = (∇ϕ)sym,+ + (∇ϕ)sym,− + 1

2
Kα(ϕ)I

is symmetric and positive semi-definite. For the term (∇ϕ)sym,+ this is clear, and for the
remaining term this follows from 1

2Kα(ϕ) ≥ ‖(∇ϕ)sym,−‖L∞(Td ;Rd×d ). Secondly, the map-
ping

h 
→
∫

Td
p(h)I : ∇ϕ dx + Kα(ϕ)

∫

Td
P(h) dx

=
∫

Td
p(h)I : (∇ϕ)sym,+ + 1

d

∫

Td
P(h)I : (Kα(ϕ)I + αd(∇ϕ)sym,−

)
dx

+
∫

Td

(
p(h) − αP(h)

)
I : (∇ϕ)sym,− dx

is also convex and non-negative. Indeed, this follows from the convexity of p, P and
αP − p and from the fact that (∇ϕ)sym,+, −(∇ϕ)sym,− and Kα(ϕ)I + αd(∇ϕ)sym,−
are positive semi-definite in T

d . Note that for the last term, this follows from Kα(ϕ) ≥
αd‖(∇ϕ)sym,−‖L∞(Td ;Rd×d ). In total, the asserted convexity and non-negativity of (5.11)
follows. Finally, since strong convergence implies point-wise convergence almost every-
where of a subsequence, the non-negativity of the mapping (5.11) and Fatou’s lemma imply
the lower semi-continuity of (5.11).

Finally, we prove Theorem 5.2 on existence of energy-variational solutions to the com-
pressible Euler system.

Proof of Theorem 5.2 If p(h) = ahγ , then P(h) = (γ − 1)−1ahγ , and one directly sees
that all properties from (5.6) (or even (5.7) are satisfied, and Lemma 5.3 and Lemma 5.5 are
applicable. Moreover, we have p(h) = (γ − 1)P(h), so that the assumptions of Lemma 5.6
are satisfiedwith c = α = γ −1.Moreover, wemay identifyD = dom E , which is convex, cf.
Remark 2. From Theorem 2.3 we thus conclude the existence of energy-variational solutions
(h,m) in the sense of Definition 5.1. Moreover, Young’s inequality implies

|m|q =
( |m|√

h

)q

h
q
2 ≤ q

2

|m|2
h

+ 2 − q

2
h

q
2−q = γ

1 + γ

|m|2
h

+ 1

1 + γ
hγ ,
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whence
∫

Td
h(t)γ + |m(t)|q dx ≤ C E(h(t),m(t)) ≤ C E(h0,m0)

for a.a. t ∈ (0, T ) and some C = C(γ ) > 0. Finally, the assumptions of Proposition 3.2 are
clearly satisfied such that (h,m) belongs to the asserted function class.

Remark 18 It is readily seen that the previous proof also works for more general pressure
laws than the above choice p(h) = ahγ since it suffices to satisfy condition (5.6) and the
assumptions from Lemma 5.6 to obtain existence. For example, one may consider pressure
laws of the form p(h) = a1hγ1+a2hγ2 with a1, a2 > 0 and γ1, γ2 > 1.One easily checks that
then (5.6) is satisfied, and the assumptions of Lemma 5.6 hold with c = α = max{γ1, γ2}−1.
Another example would be the pressure law p(h) = h− log(1+h)with associated potential
energy P(h) = (1 + h) log(1 + h) − h from Remark 16, where one can choose c = α = 1.

5.3 Comparison with dissipative weak solutions

To compare the notion of energy-variational solutions with existing solution concepts for
the compressible Euler system (5.1), we recall the notion of dissipative weak solutions for
pressure laws p(h) = ahγ (cf. [34, Def. 2.1]).

Definition 5.7 Atuple (h,m, E) ∈ L∞(0, T ; Lγ (Td))×L∞(0, T ; Lq(Td ;Rd))×BV([0,T])
with q = 2γ /(1+ γ ) is called a dissipative weak solution to the compressible Euler system
(5.1) if there exists a so-called Reynolds defect R ∈ L∞

w∗(0, T ;M(Td ;Rd×d
sym,+)) such that

the equations
∫

Td
hρ dx

∣
∣
∣
t

s
=
∫ t

s

∫

Td
h∂tρ + m · ∇ρ dx dτ, (5.12a)

∫

Td
m · ϕ dx

∣
∣
∣
t

s
=
∫ t

s

∫

Td
m∂tϕ +

(
m ⊗ m

h

)

: (∇ϕ)sym + ahγ (divϕ) dx dτ

+
∫ t

s

∫

Td
∇ϕ : dR(τ ) dτ (5.12b)

are fulfilled for allρ ∈ C1(Td×[0, T ]) andϕ ∈ C1(Td×[0, T ];Rd), and for a.a. s, t ∈ (0, T ),
including s = 0with (h(0),m(0)) = (h0,m0). The function E is non-increasing and satisfies
E(0+) = E(h0,m0) and

E(h(t),m(t)) + cR

∫

Td
d tr[R(t)] ≤ E(t) (5.12c)

for a.a. t ∈ (0, T ) and a constant cR ≥ 0.

Now we show that energy-variational solutions to (5.1) coincide with dissipative weak solu-
tions in the above sense.

Theorem 5.8 Let p(h) = ahγ with a > 0 and γ > 1, and let (h0,m0) ∈ L1(Td) ×
L1(Td ;Rd) satisfy E(h0,m0) < ∞. Consider a tuple (h,m, E) ∈ L∞(0, T ; Lγ (Td)) ×
L∞(0, T ; Lq(Td ;Rd)) × BV([0,T]) with q = 2γ /(1 + γ ). Then (h,m, E) is an energy-
variational solution in the sense of Definition 5.1 with α = γ − 1 if and only if it is a

dissipative weak solution in the sense of Definition 5.7 with cR = min
{
1
2 ,

1
d(γ−1)

}
.
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Proof Let (h,m, E) be an energy-variational solution in the sense of Definition 5.1. Since
the regularity weight K = Kα given in (5.5) is homogeneous of degree one, we may apply
Proposition 3.4 in order to infer E

∣
∣t
s ≤ 0 and

−
[∫

Td
hρ + m · ϕ dx

] ∣
∣
∣
t

s
+
∫ t

s

∫

Td
h∂tρ + m · ∇ρ dx ds

+
∫ t

s

∫

Td
m · ∂tϕ +

(
m ⊗ m

h
+ I hγ

)

: ∇ϕ dx + K (ϕ) [E(h,m) − E] ds ≤ 0

(5.13)

for every (ρ,ϕ) ∈ C1([0, T ]; C1(Td ;Rm)) and a.e. s < t ∈ [0, T ], where E(0+) =
E(h0,m0). For the choice ϕ ≡ 0 we infer (5.12a), but first merely with an inequality sign.
However, since ρ varies in a linear space, the equality (5.12a) follows immediately. Choosing
ρ = 0 in (5.13) instead implies

−
∫

Td
m · ϕ dx

∣
∣
∣
t

s
+
∫ t

s

∫

Td
m · ∂tϕ +

(
m ⊗ m

h
+ I hγ

)

: ∇ϕ dx dτ

≤
∫ t

s
K(ϕ) [E − E(h,m)] dτ .

(5.14)

The left-hand side of (5.14) defines a linear functional l by

〈l,ϕ〉 = −
∫

Td
m · ϕ dx

∣
∣
∣
T

0
+
∫ T

0

∫

Td
m · ∂tϕ +

(
m ⊗ m

h
+ I hγ

)

: ∇ϕ dx dτ (5.15)

for ϕ ∈ V , where

V := {ϕ ∈ C1(Td × [0, T ];Rd) |
∫

Td
ϕ dx = 0}.

We define the sublinear mapping p by

p : L1(0, T ; C(Td ;Rd×d
sym )) → R,

p(�) := max
{
2, d(γ − 1)

}
∫ T

0
‖(�)−‖C(Td ;Rd×d )(E − E(h,m)) dt .

From (5.14), we infer the estimate 〈l,ϕ〉 ≤ p(I(ϕ)) for all ϕ ∈ V . Lemma 2.9 shows the
existence of an element R ∈ L∞

w∗(0, T ;M(Td ;Rd×d
sym )) satisfying

∀� ∈ L1(0, T ; C(Td ;Rd×d
sym )) : 〈−R,�〉 ≤ p(�), ∀ϕ ∈ V : 〈−R,∇ϕ〉 = 〈l,∇ϕ〉.

As for the incompressible Euler equations (see the proof of Theorem 4.5), we show that
R ∈ L∞

w∗(0, T ;M(Td ;Rd×d
sym,+)) and that (5.12b) holds for all ϕ ∈ C1(Td × [0, T ];Rd).

Considering �(x, t) = −ψ(t)I for some ψ ∈ C10([0, T )) with ψ ≥ 0, we further have

∫ T

0
ψ(t)

∫

Td
d tr[R](t) dt = 〈−R,�〉

≤ p(�) = max
{
2, d(γ − 1)

}
∫ T

0
ψ(t)(E − E(h,m)) dt .

Since ψ ≥ 0 is arbitrary, this directly implies (5.12c) for a.a. t ∈ (0, T ), where
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In order to infer the converse implication, let (h,m, E) be a dissipative weak solution in
the sense of Definition 5.7. Adding E |ts ≤ 0 for s < t and the identities (5.12a) and (5.12b)
with ρ = −φ and ϕ = −ψ , we infer
[

E −
∫

Td
hφ + m · ψ dx

] ∣
∣
∣
t

s
+
∫ t

s

∫

Td
h∂tφ + m · ∇φ dx dτ

+
∫ t

s

∫

Td
m · ∂tψ +

(
m ⊗ m

h
+ hγ I

)

: ∇ψ dx dτ +
∫ t

s

∫

Td
∇ψ : dR(t) dτ ≤ 0

(5.16)

for a.e. s < t ∈ (0, T ) and all test functions (φ,ψ) ∈ C1(Td ×[0, T ])×C1(Td ×[0, T ];Rm).
From R ∈ L∞

w∗(0, T ;M(Td ;Rd×d
sym,+)), the duality between spectral norm and trace norm,

Hölder’s inequality, and inequality (5.12c), we infer
∫

Td
∇ψ : dR ≥

∫

Td
(∇ψ)sym,− : dR ≥ −‖(∇ψ)sym,−‖L∞(Td ;Rd×d )

∫

Td
I : dR

≥ ‖(∇ψ)sym,−‖L∞(Td ;Rd×d )c
−1
R

[E(h,m) − E
] = Kα(ψ)

[E(h,m) − E
]

a.e. in (0, T ), where α = γ − 1. Using these estimates in (5.16) yields (5.4).

5.4 Relative entropy inequality and weak-strong uniqueness

It is readily shown that the Hypothesis 3.5 is fulfilled for the compressible Euler equa-
tions (5.1), and that theweak-strong uniqueness principle of Corollary 3.7 holds. In particular,
relation (2.12) was already observed in Remark 17. Nevertheless, the calculation of the rel-
ative entropy inequality (3.5) for this non-quadratic energy remains a nonstandard task, and
we exemplify it here for the reader’s convenience. All calculations are done along the lines
of Proposition 3.6. Note that during the calculations only (5.3) is used, but in order to derive
weak-strong uniqeness, we explicitly need (5.6) and the assumptions of Lemma 5.6.

The relative total entropy R is given by

R(h,m | h̃, m̃) =
∫

Td

|m|2
2h

− |m̃|2
2h

− m̃

h̃
· (m − m̃) + |m̃|2

2h̃2
(h − h̃) dx

+
∫

Td
P(h) − P(h̃) − P ′(h̃)(h − h̃) dx

=
∫

Td

h

2

∣
∣
∣
∣
m
h

− m̃

h̃

∣
∣
∣
∣

2

+ P(h) − P(h̃) − P ′(h̃)(h − h̃) dx ,

the system operator A by

A(h̃, m̃) =
(

∂t h̃ + div m̃

∂t m̃ + div
(
m̃⊗m̃
h̃

+ p(h̃)I
)
)

,

and the relative Hamiltonian is defined via

W(h,m | h̃, m̃) =
∫

Td

[
h

(
m
h

− m̃

h̃

)

⊗
(
m
h

− m̃

h̃

)

+
(
p(h) − p(h̃) − p′(h̃)(h − h̃)

)
I
]

:
(

∇
(
m̃

h̃

))

sym
dx

+ K
(m
h

)
R(h,m | h̃, m̃),

123



Existence of energy-variational solutions… Page 37 of 40 103

where the regularity measure K is given as above.

Proposition 5.9 Let (h,m) be energy-variational solution in the sense of Definition 5.1 with
initial value (h0,m0). Then (h,m) fulfills the relative entropy inequality

[
R(h,m | h̃, m̃) + E − E(h,m)

] ∣∣
∣
t

s
−
∫ t

s
K
(
m̃

h̃

)[
R(h,m | h̃, m̃) + E − E(h,m)

]
dτ

+
∫ t

s
W(h,m | h̃, m̃) +

〈

A(h̃, m̃),

⎛

⎝
P ′′(h̃)(h − h̃) − hm̃

h̃2

(
m
h − m̃

h̃

)

h
h̃

(
m
h − m̃

h̃

)

⎞

⎠

〉

dτ ≤ 0

(5.17)

for all h̃ ∈ C1(Td ×[0, T ]; (0,∞)) and m̃ ∈ C1(Td ×[0, T ];Rd). Moreover, if p(h) = ahγ ,
and (h̃, m̃) is a (classical) solution to (5.1) with (h̃, m̃)(0) = (h̃0, m̃0), then (h,m) = (h̃, m̃).

Proof First we calculate the second derivative of the entropy function η and mulitply it with
the difference (h − h̃,m − m̃), which implies

D2η(h̃, m̃)

(
h − h̃
m − m̃

)

=
(
P ′′(h̃) + |m̃|2

h̃3
− m̃T

h̃2

− m̃
h̃2

1
h̃
I

)(
h − h̃
m − m̃

)

=
(

P ′′(h̃)(h − h̃) − hm̃

h̃2

(
m
h

− m̃

h̃

)

,
h

h̃

(
m
h

− m̃

h̃

))T

.

This gives the term the system operatorA(h̃, m̃) is tested with in (5.17). For this, we observe

by some calculations and the identity p′(h̃)

h̃
= P ′′(h̃) that

〈
A(h̃, m̃),

⎛

⎝
P ′′(h̃)(h − h̃) − hm̃

h̃2

(
m
h − m̃

h̃

)

h
h̃

(
m
h − m̃

h̃

)

⎞

⎠
〉

=
∫

Td
∂t h̃ P

′′(h̃)(h − h̃) − ∂t h̃
hm̃

h̃2

(
m
h

− m̃

h̃

)

dx

+
∫

Td
div m̃

(

P ′′(h̃)(h − h̃) − hm̃

h̃2

(
m
h

− m̃

h̃

))

dx

+
∫

Td
(∂t h̃

m̃

h̃
+ h̃∂t

m̃

h̃
)
h

h̃

(
m
h

− m̃

h̃

)

dx

+
∫

Td

(

div m̃
m̃

h̃
+ m̃∇

(
m̃

h̃

)

+ ∇h̃ p′(h̃)

)
h

h̃

(
m
h

− m̃

h̃

)

dx

=
∫

Td

[
∂t h̃ + div m̃

]
P ′′(h̃)(h − h̃) dx

+
∫

Td

[

∂t

(
m̃

h̃

)

+ m̃

h̃
· ∇

(
m̃

h̃

)

+ ∇h̃ P ′′(h̃)

]

h

(
m
h

− m̃

h̃

)

dx.

(5.18)

Adding and substracting the energy E(h,m) in the first term of the energy-variational formu-

lation (5.4) and choosing ρ = P ′(h̃) − |m̃|2
2h̃2

and ϕ = m̃
h̃
as test functions, we further observe
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that
[

E − E(h,m) +
∫

Td
P(h) − P ′(h̃)h + |m|2

2h
− m · m̃

h̃
+ |m̃|2

2h̃2
h dx

] ∣
∣
∣
t

s

+
∫ t

s

∫

Td
h∂t h̃ P

′′(h̃) − h∂t
m̃

h̃
· m̃
h̃

+ m · ∇h̃ P ′′(h̃) − m · ∇ m̃

h̃
· m̃
h̃
dx ds

+
∫ t

s

∫

Td
m · ∂t

m̃

h̃
+
(
m ⊗ m

h
+ p(h)I

)

: ∇ m̃

h̃
dx + K

(
m̃

h̃

)

[E(h,m) − E] ds ≤ 0.

We now invoke the identity

h∂t h̃ P
′′(h̃) = ∂t h̃ P

′′(h̃)h̃ + ∂t h̃ P
′′(h̃)(h − h̃) = −∂t

[
P(h̃) − P ′(h̃)h̃

]+ ∂t h̃ P
′′(h̃)(h − h̃)

to introduce the relative energy in the first line. Subsequently, we use equation (5.18) to
deduce

[
E − E(h,m) + R(h,m | h̃, m̃)

] ∣∣
∣
t

s
+
∫ t

s
K
(
m̃

h̃

)

[E(h,m) − E] ds

+
∫ t

s

∫

Td

(
m ⊗ m

h
+ p(h)I

)

: ∇ m̃

h̃
− m · ∇ m̃

h̃
· m̃
h̃

− m̃

h̃
· ∇ m̃

h̃
· m dx dτ

+
∫ t

s

∫

Td

[
m̃

h̃
· ∇

(
m̃

h̃

)

+ ∇ h̃ P ′′(h̃)

]

· h m̃
h̃
dx dτ

−
∫ t

s

∫

Td

[

h̃ div
m̃

h̃
+ ∇ h̃ · m̃

h̃

]

P ′′(h̃)(h − h̃) dx dτ

+
∫ t

s

〈

A(h̃, m̃),

⎛

⎝
P ′′(h̃)(h − h̃) − hm̃

h̃2

(
m
h − m̃

h̃

)

h
h̃

(
m
h − m̃

h̃

)

⎞

⎠

〉

dτ ≤ 0.

With the identity h̃ P ′′(h̃) = p′(h̃) and integration by parts, the second and the third line can
be transformed to

∫ t

s

∫

Td
div

m̃

h̃

(
p(h) − p(h̃) − p′(h̃)(h − h̃)

)

+ h

(
m
h

− m̃

h̃

)

⊗
(
m
h

− m̃

h̃

)

:
(

∇ m̃

h̃

)

sym
dx dτ,

which implies the relative entropy inequality (5.17). The weak-strong uniqueness principle
now follows as in the proof of Corollary 3.7, where we required that the relative entropy R
and the relative Hamiltonian W are non-negative. For this purpose, we assume p(h) = ahγ

again, which satisfies (5.6) and the assumptions of Lemma 5.6.
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11. Gwiazda, P., Świerczewska Gwiazda, A., Wiedemann, E.: Weak-strong uniqueness for measure-valued
solutions of some compressible fluid models. Nonlinearity 28(11), 3873–3890 (2015). https://doi.org/10.
1088/0951-7715/28/11/3873

12. Schmidt, P.G.: On a magnetohydrodynamic problem of Euler type. J. Differ. Equ. 74(2), 318–335 (1988)
13. Secchi, P.: On the equations of ideal incompressiblemagneto-hydrodynamic. Rend SemMatUniv Padova.

90(4), 103–119 (1993)
14. Díaz, J.I., Lerena, M.B.: On the inviscid and non-resistive limit for the equations of incompressible

magnetohydrodynamics. Math. Models Methods Appl. Sci. 12(10), 1401–1419 (2002)
15. Agosti, A., Lasarzik, R., Rocca, E.: Energy-variational solutions for viscoelastic fluids. WIAS Preprint,

No 3048, Berlin. 2023; https://doi.org/10.20347/wias.preprint.3048
16. Lions, P.L.: Mathematical Topics in Fluid Mechanics, vol. 1. The Clarendon Press, New York (1996)
17. Lasarzik, R.: Maximally dissipative solutions for incompressible fluid dynamics. Z. Angew. Math. Phys.

73(1), 21 (2022). https://doi.org/10.1007/s00033-021-01628-1
18. Eiter, T., Hopf, K., Lasarzik, R.: Weak-strong uniqueness and energy-variational solutions for a class of

viscoelastoplastic fluid models. Adv. Nonlinear Anal. 12(1), 20220274 (2023). https://doi.org/10.1515/
anona-2022-0274
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