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Abstract

To create coherent visual experiences, the brain spatially integrates the complex and dynamic information it receives from the
environment. We previously demonstrated that feedback-related alpha activity carries stimulus-specific information when two
spatially and temporally coherent naturalistic inputs can be integrated into a unified percept. In this study, we sought to deter-
mine whether such integration-related alpha dynamics are triggered by categorical coherence in visual inputs. In an EEG experi-
ment, we manipulated the degree of coherence by presenting pairs of videos from the same or different categories through two
apertures in the left and right visual hemifields. Critically, video pairs could be video-level coherent (i.e., stem from the same
video), coherent in their basic-level category, coherent in their superordinate category, or incoherent (i.e., stem from videos from
two entirely different categories). We conducted multivariate classification analyses on rhythmic EEG responses to decode
between the video stimuli in each condition. As the key result, we significantly decoded the video-level coherent and basic-level
coherent stimuli, but not the superordinate coherent and incoherent stimuli, from cortical alpha rhythms. This suggests that alpha
dynamics play a critical role in integrating information across space, and that cortical integration processes are flexible enough
to accommodate information from different exemplars of the same basic-level category.

NEW & NOTEWORTHY Our brain integrates dynamic inputs across the visual field to create coherent visual experiences. Such
integration processes have previously been linked to cortical alpha dynamics. In this study, the integration-related alpha activity
was observed not only when snippets from the same video were presented, but also when different video snippets from the
same basic-level category were presented, highlighting the flexibility of neural integration processes.

alpha rhythms; cortical feedback; multivariate pattern analysis; natural scenes; spatiotemporal coherence

INTRODUCTION

During everyday life, our visual system continuously
receives intricate and dynamic information from our sur-
roundings. To derive meaningful interpretations from these
stimuli, the brain integrates dynamic sensory inputs across
the visual field, culminating in a seamlessly unified, behav-
iorally adaptive percept of the world (1, 2).

Classic theories of vision conceptualize visual processing as
a feedforward hierarchy, along which stimuli are recon-
structed through hierarchical feature integration (3, 4). Under
such theories, visual integration is solved along the feedfor-
ward cascade. Feedforward theories of vision, however, are
challenged by the abundance of recurrent and feedback con-
nections in the visual system (5), as well as the pivotal role of

attentional feedback processes in constructing visual percepts
(6). Our recent study (7) indeed revealed that feedback proc-
esses are critical for spatial integration when stimuli are spa-
tiotemporally coherent and afford integration. Such feedback
is evident from stimulus-specific representations in neural
alpha dynamics, which can be spatially localized to early vis-
ual cortex. This result suggests that integration-related feed-
back traverses the hierarchy in alpha rhythms from high-level
visual cortex all the way to retinotopic early visual cortex. Our
findings align well with theories that posit a multiplexing of
information, where feedback is specifically routed via low-fre-
quency alpha or beta rhythms (8–11).

However, our previous study used stimuli that were either
coherent at the level of the individual video (i.e., two parts of
the same video played in the left and right hemifields) or
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highly incoherent (i.e., two entirely different videos in the
two hemifields). We thus could not address what level of spa-
tiotemporal coherence in the stimuli is needed to trigger
integration-related alpha dynamics.

In this study, we address this question in an EEG experi-
ment. We manipulated the degree of spatiotemporal coher-
ence by presenting videos from the same or different
categories through two apertures left and right of the central
fixation. Our findings showed that stimuli coherent at the
level of individual videos are coded in cortical alpha dynam-
ics. Critically, similar representations in alpha rhythms were
also observed when different videos from the same basic-
level category were presented, but not when the videos were
from the same superordinate category or from different
superordinate categories. This suggests that neural integra-
tion exhibits some flexibility, so that broadly consistent vid-
eos from the same category can trigger alpha dynamics
linked to integration.

MATERIALS AND METHODS

Participants

Twenty-five healthy participants (14 females, mean age:
24.1±3.9 yr), with normal or corrected-to-normal vision, par-
ticipated in the experiment. A minimum sample size of 24
was determined using G�Power (12), with an effect size of 0.25
(comparison of decoding performance between the coherent
and incoherent conditions in the alpha frequency band in the
EEG study) as derived from our previous study (7), a signifi-
cance level of 0.05, and a power of 0.8. All participants pro-
vided written informed consent before taking part in the
experiment and they received either course credit or mone-
tary reimbursement for their participation. The experiment
was approved by the ethical committee of the Department of
Education and Psychology at Freie Universit€at Berlin and was
conducted following the Declaration of Helsinki.

Stimuli and Design

We selected sixteen 3-s videos (30 Hz) depicting various
everyday events for the experiment. The videos were from
four categories (4 exemplars for each category): birds flying,
camels walking, cars running, and trains moving (Fig. 1A).
We presented videos through two apertures left and right of
the central fixation (7). The apertures had a diameter of 6�

visual angle, and the closest distance between the aperture
and the central fixation point was 2.64� visual angle. The
central fixation dot was displayed at a visual angle of 0.44�.

We designed four different conditions by showing parts
from the same video or different videos (Fig. 1B). In the
video-level coherent condition, we displayed two parts of the
same video through the apertures. In the basic-level coher-
ent condition, the two parts were from two different videos
belonging to the same category (e.g., bird video 1 and bird
video 2). In the superordinate coherent condition, the two
parts were from two different videos belonging to the same
superordinate category (e.g., bird video 1 and camel video 1).
In the incoherent condition, the two parts were from videos
belonging to different superordinate categories (e.g., bird
video 1 and car video 1). In the basic-level coherent condi-
tion, the videos of each category were presented in fixed

pairs (e.g., bird video 1 and bird video 2, bird video 3 and bird
video 4). We similarly paired the videos for the superordi-
nate coherent (e.g., bird video 1 and camel video 1, bird video
2 and camel video 2) and incoherent conditions (e.g., bird
video 1 and car video 1, bird video 2 and car video 2).
Therefore, there were a total of 64 unique video stimuli (16
stimuli for each of the 4 conditions).

Participants were comfortably seated at a distance of 60
cm from a monitor with a resolution of 1,680� 1,050 pixels
and a refresh rate of 60 Hz. The presentation of stimuli and
recording of participants’ behavioral responses were con-
trolled using MATLAB and the Psychophysics Toolbox (13,
14). Each trial began with a 0.5-s fixation dot. Subsequently,
a unique video stimulus was shown for 3 s, during which the
color of the fixation changed periodically (every 200 ms) and
turned either green or yellow at a single random point in the
sequence (but not the first or last point). After the video, par-
ticipants were presented with a response screen, prompting
them to indicate whether a green or yellow fixation dot had
appeared in the sequence. The next trial would not start until
the participant’s response was received. Participants were
instructed to keep central fixation during the video presenta-
tion to ensure that the two videos presented stimulated dif-
ferent visual fields. An example trial for the basic-level
coherent condition is shown in Fig. 1C. In the experiment,
participants performed the color discrimination task on
fixation with very high accuracy (video-level coherent:
95.8 ±2.9%, basic-level coherent: 96.2±3.0%, superordinate
coherent: 96.3 ±3.1%, incoherent: 96.0± 2.9%), indicating
reliable fixation control. In the experiment, each of the 64
unique stimuli was shown 12 times. A total of 768 trials were
presented in random order.

EEG Recording and Preprocessing

EEG data were acquired at a sampling rate of 1,000 Hz
using an EASYCAP 64-electrode system with a Brainvision
actiCHamp amplifier. Electrodes were arranged according to
the 10-10 system. All electrodes were referenced online to
the FCz.

We preprocessed the data using Fieldtrip (15). We first fil-
tered the data at 1–100 Hz and epoched the data from �0.5
to 3.5 s relative to the onset of the stimulus. Then, we per-
formed baseline correction by subtracting themean signal in
the prestimulus window (�0.5 to 0 s), after which we down-
sampled the data to 200 Hz. Next, we conducted visual
inspection to exclude noisy trials and channels, and then
interpolated the removed channels (2.6± 1.2 channels) using
their neighboring channels. Finally, we used independent
component analysis (ICA) to identify and remove artifacts
associated with blinks and eyemovements.

EEG Spectral Analysis

We performed spectral analysis on the preprocessed EEG
data using FieldTrip, in the same way as in our previous
study (7). For each trial, we estimated power spectra sepa-
rately for each channel within the alpha (8–12 Hz), beta (13–
30 Hz), and gamma (31–70 Hz) frequency bands. The analy-
sis was done for the whole period of stimulus presentation
(0–3 s). For the low frequency of 8–30Hz, we applied a single
taper with a Hanning window, with a step size of 1 Hz for the
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alpha band and 2 Hz for the beta band. For the gamma band,
we used the discrete prolate spheroidal sequences (DPSS)
multitapermethod with ±8 Hz smoothing (in steps of 2 Hz).

Multivariate Decoding Analysis

We performedmultivariate decoding analysis to investigate
the frequency-specific representations of video stimuli using
CoSMoMVPA (16) and LIBSVM (17). Given that integration-
related alpha dynamics originate from retinotopic visual cor-
tex (7), we selected 17 parietal and occipital (PO) channels (Oz,
O1, O2, POz, PO3, PO4, PO7, PO8, Pz, P1, P2, P3, P4, P5, P6, P7,
P8) over visual cortex (18) for our analysis. From these chan-
nels, we extracted the patterns of spectral power across these
channels to classify the four video pairings within each condi-
tion (video-level coherent, basic-level coherent, superordinate
coherent, incoherent), separately for the alpha, beta, and
gamma frequency bands. We conducted the classification
using the linear support vector machine (SVM) with leave-
one-trial-out cross-validation. One trial was assigned to the
test set, whereas the remaining n � 1 trials were used to train
the classifier. We conducted the classification repeatedly until
every trial was left out once, and averaged the resulting accu-
racies across trials. In each classification, we balanced the
number of trials across categories, resulting in a maximum of
188 trials for the training set (47 for each category). To reduce
the dimensionality of the data, we applied principal compo-
nent analysis (PCA) to the data before classification (19). We
performed PCA on the training data, and then projected the
resulting PCA solution onto the testing data. We selected a sub-
set of components that explained 99% of the variance of the
training data. As a result, we obtained decoding accuracy for
each frequency band and each condition, indicating the degree
to which the video stimuli were accurately represented in dif-
ferent frequency bands. We performed a one-sample t test to
compare the decoding performance against chance level (25%)
for testing whether the stimuli could be represented in each
frequency band [false discovery rate (FDR)-correction, P <
0.05]. Furthermore, to investigate whether the frequency-spe-
cific representations weremodulated by the degree of stimulus

coherence, we conducted a two-way ANOVA (4 conditions � 3
frequencies) and post hoc paired t tests to compare the decod-
ing performance between conditions separately for each fre-
quency band (FDR-correction, P< 0.05).

It is worth noting that, although in some conditions differ-
ent categories were shown in both hemifields, decoding
between the different videos should still be possible in prin-
ciple: as the left and right side of the display are analyzed in
the right and left hemisphere, respectively, each hemisphere
offers information about the category presented in its con-
tralateral hemifield.

To investigate where the effects are localized and whether
the effects are maximum over visual cortex, we performed
searchlight decoding analysis. For each channel, we defined a
searchlight including itself and its 10 nearest neighboring
channels and then used the spectral power patterns across
these channels to decode between the four video pairings
within each condition, separately for each frequency band
(alpha, beta, and gamma). Identically to the decoding analysis
using PO channels, we used leave-one-trial-out cross-valida-
tion and applied principal component analysis (PCA) for the
classification. The whole classification process was iterated
over all channels. As a result, we obtained decoding accuracy
in each channel separately for each frequency band and each
condition. To localize the significant decoding for each condi-
tion, we used a one-sample permutation test (10,000 itera-
tions), comparing the decoding accuracy against the chance
level (25%) in each channel and then performing cluster-
basedmultiple comparison corrections (P< 0.05).

To investigate the representation of stimuli in time-locked
broadband responses, we performed time-resolved decoding
analysis. We classified between the four video pairings
within each condition using broadband responses across PO
channels at each time point from�0.1 to 1 s relative to stimu-
lus onset (decoding already approached chances level well
before 1 s). The decoding parameters were identical to the
frequency-resolved decoding analysis using PO channels.
The resulting decoding timeseries were smoothed with a
moving average of five time points. Separately for each time

Figure 1. Stimuli and experimental design. A: snapshots from the video stimulus set. B: in the experiment, videos were presented through two apertures
left and right of the central fixation, manipulated in four conditions: video-level coherent, coherent in the basic-level category, coherent in the superordi-
nate category, and incoherent. C: during video presentation, the color of the central dot changed periodically (every 200 ms) and participants were
asked to report whether there was a green or yellow fixation dot included in the sequence.
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point, we used a one-sample t test to compare decoding
against chance and paired t tests to compare the difference
between conditions. Multiple comparison corrections were
conducted using FDR (P < 0.05), and only clusters of at least
five consecutive significant time points were considered (19).

Following our previous study (7), we primarily investi-
gated integration-related effects in spectral EEG power.
However, in principle, such effects may also be represented
in the phase of neural rhythms (e.g., resulting from the dif-
ferent temporal dynamics of the videos). We performed the
Fourier transform on the EEG preprocessed data and
extracted the phase angles from the obtained complex
Fourier spectrum. We then decoded the four video pairings
within each condition using patterns of spectral phase across
PO channels separately for alpha, beta, and gamma bands.
Here, we performed the decoding analysis and statistical
comparisons using the same approaches as in the frequency-
resolved decoding analysis on spectral power.

Eye Tracking Recording and Processing

Eye movements were recorded monocularly (right eye) at
1,000 Hz with an Eyelink 1000 Tower Mount (SR Research
Ltd., Mississauga, ON, Canada) using the Psychophysics and
Eyelink Toolbox extensions (20). At the beginning of the
experiment, we used a standard 9-point calibration to cali-
brate eye position.

We preprocessed eye-tracking data using Fieldtrip. Speci-
fically, we segmented the data into epochs from �0.5 to 3.5 s
relative to stimulus onset and downsampled the data to a
sampling rate of 200 Hz. The preprocessed data were trans-
formed from their original screen coordinate units (pixels) to
visual angle units (degrees). We next excluded the trials that
were removed in the EEG analysis. To check the fixation sta-
bility, we calculated the mean and standard deviation (SD)
of the horizontal and vertical eye movements during video
presentation (0–3 s) in each trial and then averaged the mean
and SD values across trials separately for each condition. We
found no significant differences in both horizontal [compari-
sons of mean: F(3,72) ¼ 0.74, P ¼ 0.53; comparisons of SD:
F(3,72) ¼ 0.56, P ¼ 0.64] and vertical eye movements [com-
parisons of mean: F(3,72) ¼ 0.71, P ¼ 0.55; comparisons of
SD: F(3,72) ¼ 0.97, P ¼ 0.41] between the four conditions.

RESULTS
To study the frequency-specific representations of video

stimuli, we decoded between video stimuli within each con-
dition (video-level coherent, basic-level coherent, superordi-
nate coherent, and incoherent) using patterns of spectral
power across channels separately for each frequency band
(alpha, beta, gamma). In this analysis, we found significant
above-chance decoding only in the alpha band and for the
video-level coherent and basic-level coherent stimuli (Fig.
2A). Using a 4-condition � 3-frequency two-way ANOVA, we
identified a significant interaction effect between condition
and frequency [F(6,144) ¼ 3.75, P ¼ 0.002]. Subsequently, we
conducted post hoc t tests to examine differences between
conditions in each frequency band.

In the alpha band, we observed a decrease in decoding ac-
curacy as the spatial coherence of stimuli reduced, indicat-
ing that integration-related alpha activity is modulated by

the coherence of the stimuli. Specifically, the video-level
coherent stimuli were decoded better than the superordinate
coherent stimuli [t(24) ¼ 3.90, P < 0.001; Fig. 2A] as well as
better than the incoherent stimuli [t(24) ¼ 4.37, P < 0.001;
Fig. 2A]. Similarly, basic-level coherent stimuli were also
more decodable than both the superordinate coherent stim-
uli [t(24) ¼ 3.317, P ¼ 0.004; Fig. 2A] and incoherent stimuli
[t(24) ¼ 3.083, P ¼ 0.005; Fig. 2A]. We found no significant
difference between the video-level coherent and the basic-
level coherent conditions [t(24) ¼ 1.290, P ¼ 0.314].
Importantly, the difference in alpha decoding across condi-
tions was not related to an absence of stimulus representa-
tion in the more incoherent conditions in the first place:
When decoding from time-locked broadband responses, we
found significant decoding for all conditions within the first
500 ms of processing that leveled off toward chance level
during the first second (Fig. 2B). However, there was no sig-
nificant between-condition difference in decoding from the
time-locked responses (Fig. 2B), consistent with our previous
results (7). In addition, we found no significant effects in the
beta and gamma frequency bands (all P> 0.05).

Given that these analyses were only conducted on rhyth-
mic patterns in the PO channels (see MATERIALS AND METHODS),
we aimed to confirm that these effects indeed originate over
visual cortex in a channel-space searchlight analysis (21). In
this analysis, we observed significant decoding only in the
alpha band, primarily in the PO channels, and only for the
video-level coherent and basic-level coherent stimuli (Fig.
2C). We found no effects for the other two, more incoherent
conditions. Together, these results suggest that alpha activity
plays a key role in the integration of visual information across
space. They further highlight that integration-related alpha
dynamics are not only triggered when stimuli are video-level
coherent (i.e., when the same video was shown through the
apertures), but that integration processes are flexible enough
to accommodate information that comes from videos belong-
ing to the same basic-level category.

To investigate whether the integration-related effects
were also represented in the phase of neural rhythms, we
used the spectral phase to decode between stimuli. Although
the basic-level coherent stimuli were decodable in the alpha
band and incoherent stimuli were decodable in the beta
band (Fig. 2D), we did not find reliable differences between
conditions (all P > 0.05, FDR-corrected; Fig. 2D). This sug-
gests that integration-related stimulus information is coded
in the power of cortical alpha dynamics.

DISCUSSION
In this study, we investigated the involvement of alpha dy-

namics in the integration of visual information. We specifi-
cally asked whether integration-related alpha dynamics are
also observed when videos are broadly consistent in cate-
gory. Utilizing multivariate decoding analysis on spectrally
resolved EEG data, we show that both video-level coherent
and basic-level coherent stimuli were decodable from alpha-
band EEG activity. In contrast, we found no alpha-band
decoding for the superordinate coherent and incoherent
stimuli. Our results suggest that categorical coherence of
natural videos modulates the involvement of alpha-fre-
quency activity: Alpha-related integration is triggered not
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only when visual stimuli are entirely coherent but also when
these stimuli share common attributes resulting from their
basic-level category membership.

Our results support our previous finding (7) that alpha dy-
namics play a key role in the integration of visual information
across space. Together with a significant correspondence
between alpha activity and V1 response in our previous study,
we interpret the coding of stimulus-specific information in
alpha as integration-related feedback. This interpretation is in
line with a series of studies demonstrating that alpha rhythms
carry cortical feedback from higher-order brain regions (11, 22,
23), and also encode stimulus-specific information (24, 25).

This perspective highlights the dynamic and active role that
alpha rhythms may play in cognitive processes, in contrast to
the passive or inhibitory roles often ascribed to them (26–30).
As proposed in our previous study (7), the observed integration
processes likely originate from the adaptive comparison of con-
tralateral feedforward information with ipsilateral feedback in-
formation obtained through interhemispheric connections
among regions in high-level visual cortex. This comparison
then triggers rhythmic feedback processes that aid the analysis
of inputs at lower levels of the hierarchy, for instance by pre-
dicting upcoming inputs from the spatiotemporal structure of
the previous input.

Figure 2. EEG decoding analysis. A: EEG frequency-resolved decoding analysis on spectral power. In each condition, we classified the four video pairings
within each condition (video-level coherent, basic-level coherent, superordinate coherent, and incoherent) using patterns of spectral power across 17 pari-
etal and occipital (PO) channels, separately for each frequency band (alpha, beta, gamma). We found significant decoding only in the alpha band and only
for the video-level coherent and basic-level coherent stimuli (indicated by asterisks color-coded as result dots). In addition, the stimuli in the video-level
coherent and basic-level coherent conditions were decoded better than the stimuli in the superordinate coherent and incoherent conditions (indicated by
black asterisks over lines connecting compared data points). These results suggest that integration-related alpha dynamics are not only observed when
videos are video-level coherent, but also when similar videos are from the same basic-level category. Error bars represent standard errors. �P < 0.05
(FDR-corrected). B: EEG time-resolved decoding analysis. We decoded between the four video pairings within each condition using time-resolved broad-
band responses across 17 PO channels at each time point from�0.1 to 1 s relative to the onset of the stimulus. We found significant decoding for all condi-
tions within the first 500 ms of processing but no significant differences between conditions. Line markers denote significant above-chance decoding
color-coded as result curves (P < 0.05, FDR-corrected). C: EEG searchlight decoding analysis. For each channel, we defined a searchlight including itself
and its 10 nearest neighboring channels, and then used the patterns of alpha power across these 11 channels to decode between the four video pairings
within each condition. We found significant decoding only for the video-level coherent and basic-level coherent stimuli primarily in PO channels (circles
reflect significant channel locations). D: EEG frequency-resolved decoding analysis on spectral phase. We classified the four video pairings within each
condition using patterns of spectral phase across 17 PO channels, separately for alpha, beta, and gamma frequency bands. We found no significant differ-
ences between conditions. Error bars represent standard errors. �P< 0.05 (FDR-corrected). FDR, false discovery rate.
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Our results indicate that integration-related alpha dy-
namics can be triggered not only by the presentation of
video snippets from the same video, but also by the pre-
sentation of different videos from the same basic-level
category. This suggests a spectral signature of the cate-
gory-level nature of feedback information used for visual
integration. The basic level is defined as the level that has
the highest degree of cue validity (31). Basic level catego-
ries maximize the number of attributes shared by mem-
bers of the category while minimizing the number of
attributes shared with other categories. This sweet spot
might be the one also used by the brain when implement-
ing integration. However, our study cannot entirely clarify
whether the integration-related alpha activity is indeed
triggered by a more abstract coherence in basic-level cate-
gory, presumably coded in high-level visual cortex (32, 33)
or by the spatiotemporal coherence of visual features
associated with a category (34–36). Establishing a special
role of the basic level in integration would require a sys-
tematic comparison of integration not only on the basic
and superordinate levels but also on the subordinate level.
Another interesting open question concerns whether dif-
ferent task demands (e.g., tasks requiring perceptual deci-
sions on the stimuli themselves) modulate the neural
correlated integration. For instance, the integration-related
brain responses could vary as a function of the task requiring
global versus local perception.

In our previous study, we found that gamma rhythms, pre-
viously associated with feedforward processing in visual cor-
tex (8–11), carried more information about incoherent than
about coherent inputs, suggesting that feedforward process-
ing is to some degree dominated by integration-related feed-
back (7). By contrast, we were not able to decode between the
videos from gamma rhythms across all four conditions in
the current study. Several factors may explain this differ-
ence. First, a different group of participants were scanned
with a different EEG system for the current study. As gamma
activity can be weak and unreliable in EEG recordings, it
may not be systematically observed in each experiment (37).
Second, we used different stimuli than in our previous
report. In the previous study, we tried to maximize incoher-
ence by picking very different videos (featuring different col-
ors, movements, etc.). Here we designed the experiment
without focusing on maximizing such differences. However,
suchmore drastic incoherencemay be needed to induce reli-
able gamma activity: Given the extended presentation dura-
tion of the video stimuli (3 s) and the absence of rapid or
unexpected visual events, reliable predictions may explain
away feedforward inputs carried by gamma rhythms when
the videos are similar enough on some dimensions. Further
studies are needed to clarify the role of gamma dynamics in
coding feedforward information propagation in similar
paradigms.

Taken together, our findings emphasize the key role of
alpha dynamics in the construction of coherent and uni-
fied visual percepts during naturalistic vision. They fur-
ther suggest that integration-related alpha dynamics does
not operate in an all-or-none fashion, but that the coarse
coherence between inputs stemming from the same basic-
level category can effectively trigger neural correlates of
integration.
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