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A B S T R A C T   

Conceptual design is crucial for designing offshore jacket substructures because it sets the direction for the entire 
design process. Nevertheless, conventional simulation-based optimization methods for jacket conceptual design 
face challenges, such as high computational costs and restricted optimization objectives. This paper proposes a 
data-driven method for offshore jacket conceptual design using machine learning (ML). First, a novel dataset of 
completed and under-construction jackets worldwide was established as the cornerstone of ML. The dataset 
comprised “in-action” data capturing key structural parameters of jackets and information on design boundary 
conditions. Subsequently, different features were comprehensively selected to identify and visualize their cor
relations for an interpretable data-driven design, ensuring the effectiveness of the dataset for training the ML 
models. Finally, random forest and eXtreme gradient boosting models were trained on the data from the selected 
feature subsets and then employed to predict individual jacket structural parameters. The predictive performance 
of the models indicates that the dataset and feature selection can capture the fundamental and shared charac
teristics of well-designed jackets, thereby improving the accuracy and efficiency of the conceptual design process. 
This study suggests the potential of a data-driven conceptual design for offshore jacket substructures.   

1. Introduction 

The offshore wind industry, initiated in Denmark in 1991, has 
experienced rapid global growth, particularly in Europe, Asia, and North 
America, with turbine sizes expanding from 450 kW in the 1990s to the 
current standard of 6–8 MW (Seidel, 2014). The development of turbines 
of up to 15 MW has driven the evolution of offshore substructures to 
support larger turbines against increased loads and withstand chal
lenging ocean conditions. Various types of offshore substructures exist, 
including bottom-fixed substructures such as monopiles, jackets, tri
pods, gravity-based structures, and floating platforms, each with its own 
suitable application regions. Monopile is the most common type of 
offshore substructure primarily used at shallow to medium water depths 
(Damiani et al., 2016). However, considering the increased rated power 
of wind turbines and the development of wind farms in deeper waters, 
jacket substructures are more competitive than other bottom-fixed 
substructures in the offshore wind industry (Marjan and Huang, 
2023). According to a global estimate spanning 2021 to 2025, a 

minimum of 1083 jacketed turbines will be deployed worldwide. This 
tendency positions jackets as the second most popular bottom-fixed 
substructure type after monopiles (Offshore Engineer Magazine, 
2020). A jacket is a truss-like lattice structure consisting of welded 
tubular steel members. Owing to the nature of its topology (e.g., the 
wide base and multiple legs for support and anchoring) and the rela
tively small diameter of the tubular members, it has higher stability and 
load-bearing capacities than other bottom-fixed substructures. In prin
ciple, jacket substructures have lower self-weight than other sub
structures. Therefore, they can use less material to achieve the same 
strength. This characteristic could result in cost savings in procurement 
and fabrication (Chen et al., 2016). 

The increasing demand for offshore wind energy underscores the 
growing importance of optimized designs for offshore substructures. In 
accordance with developed design codes and industry standards such as 
DNV–OS–J101 (DNV GL, 2014) and IEC 61400–3 (IEC, 2019), the 
design process of offshore substructures in the offshore wind industry 
can generally be divided into three sequential phases: conceptual design, 
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iterative design, and detailed design. In the conceptual design phase, the 
design basis is established at the beginning of the process. These include 
specific design requirements, applicable standards and codes, project 
descriptions, dimensions, site conditions, and assessment methods. 
Based on the design information, the initial structural and cost models of 
the substructure are determined for the subsequent design phase (Stolpe 
and Sandal, 2018). In the iterative design phase, the ultimate limit state 
(ULS) and fatigue limit state (FLS) are assessed, refining the geometry of 
the substructure based on these assessments until all stakeholder re
quirements are met. The detailed design phase involves preparing the 
final designs, drawings, and documentation for certification and con
struction. The conceptual design phase is critical for setting the direction 
of the subsequent design process. Decisions made during this phase can 
significantly influence the design efficiency, cost, and technical feasi
bility of a project. The preliminary topology in the conceptual design 
phase determines the number of iterations required to refine the struc
ture during the iterative design phase (Seidel, 2010). 

The optimization of offshore jacket substructures in the conceptual 
design phase has recently attracted increasing academic interest. To 
date, most investigations have focused on simulation-based methodol
ogies. Chew et al. (2015, 2016) introduced a global optimization 
framework using an analytical gradient-based method to reduce the 
structural mass of offshore substructures. Oest et al. (2017) applied a 
similar method to an OC4 reference jacket, achieving a 40% mass 
reduction. Alternative jacket optimization approaches include genetic 
algorithm techniques, as presented by AlHamaydeh et al. (2017) using a 
genetic algorithm with domain trimming, and the use of surrogate 
models for efficiency, such as the Gaussian process regression (GPR) 
models incorporated in Häfele et al. (2018). Despite these advances, the 
feasibility of these methods under diverse designs and conditions re
quires further investigation. To this end, a jacket-sizing tool was 
developed by the National Renewable Energy Laboratory (NREL) 
(Damiani and Song, 2013; Damiani et al., 2017). Recently, 
multi-objective methods for structural optimization have been proposed 
to achieve balanced and efficient design solutions (Berger et al., 2021; 
Mathern et al., 2022). 

However, the limitations of these simulation-based methodologies 
are also evident, including high computational requirements for solving 
objective functions, limited scope of optimization objectives, simplified 
assumptions regarding loads and structural code checks, and a lack of 
robust evaluations of the proposed methods. This study proposes an 
innovative, transformative shift toward data-driven methodologies 
using machine learning (ML) for the jacket’s conceptual design. The 
insights gained from the existing designs can contribute to developing 
robust and reliable offshore jacket substructures. To this end, consid
ering completed and under-construction offshore jackets in operational 
offshore wind farms is essential because these jackets have already been 
designed to support real loads in wind farms and have demonstrated 
adequate load-bearing capacities. In this context, ML techniques offer 
great potential for learning from data, enabling machines to simulate 
human brain-like learning and thinking processes and to identify pat
terns and relationships in large datasets (Alpaydin, 2020). ML tech
niques are being increasingly explored and applied to challenging tasks 
in structural designs. They apply not only to automated design processes 
for individual structural components, such as the prediction of optimum 
prestressing of concrete members using artificial neural networks (ANN) 
(Torky and Aburawwash, 2018), but also to large-scale structural de
signs, such as ML-based assistant for the conceptual design of steel frame 
halls (Fisch et al., 2023). 

Despite their potential benefits, the aforementioned studies offer 
limited insights into applying ML techniques to the jacket conceptual 
design. This is primarily attributed to the complex nature of jacket to
pologies, which present a wide range of design options, along with the 
challenges in collecting sufficient design data for training ML models. 
This study aims to bridge this gap by developing a novel and compre
hensive dataset of completed and under-construction offshore jackets 

worldwide. The dataset contains the main structural parameters of 
jackets and relevant boundary condition variables, such as information 
on site conditions, rotor-nacelle-assembly (RNA), and tower. This 
dataset forms the foundation of a data-driven method for offshore jacket 
conceptual design leveraging ML techniques, such as predictive models 
of random forest (RF) and eXtreme gradient boosting (XGBoost). 
Applying the dataset, feature selection based on correlation analysis can 
identify the most relevant and influential features (also referred to as 
parameters or variables in this study) within the dataset and uncover 
explicit and implicit correlations between the structural parameters of 
jackets and the boundary condition variables. According to the values of 
the correlation coefficients and structural design requirements, appro
priate feature subsets can be selected as inputs for ML-based predictive 
tasks that aim to estimate various target structural features as outputs in 
an interpretable data-driven design process. 

The remainder of this paper is organized as follows. Section 2 in
troduces the development of a global dataset of offshore jacket sub
structures, including the dataset structure, data source, raw data 
processing methods, and preliminary variable analysis. Section 3 illus
trates the feature selection process for identifying correlations between 
features and extracting influential input features for each target feature. 
The feasibility of feature selection was evaluated using the RF and 
XGBoost models to predict the structural parameters of jackets, 
considering the comparison of selected input features with all input 
features. Section 4 concludes the paper by addressing the benefits and 
limitations of the novel dataset and the feature selection process. It also 
discusses the potential of a data-driven methodology for jacket con
ceptual design using the dataset with associated feature selection results. 

2. Development of the dataset of offshore jackets 

One of the main objectives of this study is to establish a compre
hensive dataset suitable for the data-driven preliminary conceptual 
design of offshore jacket substructures. It should provide an in-depth 
understanding of the interactions between jacket substructures and 
their corresponding offshore wind farms globally. This dataset has the 
following characteristics.  

1) The dataset consists of two groups of data. One group contained the 
structural parameters of the jackets, whereas the other group cor
responded to the external variables that served as boundary condi
tions for the conceptual design of offshore jackets.  

2) The structural variables of the jackets were selected based on the 
Level of Detail of 100 (LOD 100). LOD 100 only requires structural 
variables to form the overall topology of the structure and the initial 
cost model for the conceptual design (Akadiri et al., 2012).  

3) The external variables consider the general influencing factors of 
jacket design, referred to as conceptual information on the design 
basis of an offshore wind turbine project.  

4) The jacket samples in the dataset were diversely distributed in 
temporal and spatial dimensions to provide insights into the struc
tural designs under different site conditions and to capture variations 
and trends in designs over time. 

An initial dataset was preliminarily proposed in Qian et al. (2023) 
and was further improved in this study. First, we introduce the dataset 
structure and data sources. Subsequently, data are derived and analyzed. 

2.1. Dataset structure and data source 

Fig. 1 shows the structure of the dataset, and the definitions of the 
variables in the dataset are listed in Table 1. The starting point of the 
data collection process was a global search for offshore wind farms 
where jacket substructures were applied. The collected information for 
these wind farms encompasses their locations and years of completion, 
providing valuable context regarding each wind farm’s site conditions 
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and construction timeline. After identifying these wind farms, the next 
step involved collecting data related to the structural variables of the 
jackets and corresponding external variables. The structural variables 
consisted of discrete variables, including the leg and brace layer 
numbers, and continuous variables, including the jacket’s weight, 
height, and top and bottom radii. These variables form the overall to
pology of jackets and offer insights into their physical properties and 
load-bearing capacities in real load cases. External variables related to 
the general information of the RNA, tower, site conditions, and main 
influential external loads at the transition piece (TP) were collected. All 
these external variables can influence the conceptual design of jackets, 
as discussed in Section 3. The development of a dataset is an iterative 
refinement and improvement process that continuously enhances data 
collection and processing workflows to maintain the quality and integ
rity of the dataset. 

Based on the dataset structure, various data sources were targeted to 
collect as much comprehensive data as possible. In the initial stage, an 
online database from the 4C Offshore (2023), which summarizes the 
general data of global offshore wind energy projects (particularly in 
Europe), was used to collect wind farm names with jacket substructures 
worldwide. In addition, more wind farms have been identified through 
reports on offshore wind energy development in different regions. Ac
cording to the information on the selected wind farms, the raw data for 
most of the external variables were obtained from online sources, 
including the wind-turbine-models (Bauer and Matysik, 2023), Global 
Wind Atlas (DTU, 2023), and ECMWF Reanalysis v5 (ERA5, 2023) 
websites. Wind-turbine-models website serves as a vast online database 
providing the overall information on wind turbines, manufacturers, and 
models, including rated power, rotor, generator, and tower data. The 
Global Wind Atlas is a freely accessible web-based application to iden
tify high wind areas suitable for wind power generation worldwide. 
Additionally, it facilitates preliminary calculations of wind power gen
eration in these identified areas. ERA5 is the fifth-generation ECMWF 
atmospheric global climate reanalysis, covering the period from January 
1940 to the present. It offers hourly estimates of numerous atmospheric, 
land, and oceanic climate variables and information on the uncertainties 
of all variables at reduced spatial and temporal resolutions. 

In addition to the online sources, the external load of F_z at the TP 
was calculated according to the weights of the superstructures (RNA and 
tower), while the external loads of F_x and M_y were determined using 
the results of aerodynamic simulations of the IEA Wind 15-MW refer
ence turbine (Gaertner, 2020) and the scaling rules proposed by Gasch 
and Twele (2012). Meanwhile, the available design documents of jacket 
substructures and project reports on offshore wind farms were searched 
to collect the jacket structural data. Alternative approaches were 
adopted when accurate data sources were unavailable. First, informa
tion from online public sources, such as actual photos, videos, and jacket 
news articles, was used to estimate the corresponding missing data. 
Second, appropriate imputation methods were applied to impute 
missing data when clear correlations were observed between the 

variable in question and other variables. 
The percentages of data sources for each variable in the dataset are 

shown in Fig. 2. It is evident that the data sources of wind farms and the 
structural variables of jackets were collected from the 4C Offshore 
database, reports, design documents, or estimated through other public 
sources. Therefore, the reliability of these data was sufficient to conduct 
further investigations on data-driven structural designs. The raw data of 
the external variables (rotor diameter, tower height, mean wind speed at 
different heights, and time series of wave height) were mainly collected 
from the three aforementioned websites according to the known wind 
turbine models and locations of the wind farms. The values of external 
variables with the data source of “calculations” were estimated either 
using multiple imputation, such as missing data of the weight variables, 
or using scaling rules and simulation results of reference wind turbines. 
Notably, the extreme wave height with a return period of 50 years and 
the associated wave period were derived through statistical approaches 
based on the corresponding time-series data. The derivation methods of 
these two wave variables and the variables from the data source of 
“calculations” are illustrated in Section 2.2. 

2.2. Processing of raw data 

2.2.1. Missing data on the variables of the wind turbine and tower 
Compared with the jacket variables, the variables of the wind turbine 

and tower were partially estimated, as there were missing data owing to 
the lack of accurate data sources, as shown in Fig. 2. Methods for 
handling missing data in datasets, such as listwise deletion, single 
imputation, and multiple imputation, have been developed and refined 
over the years (Pigott, 2001). Multiple imputation developed by Rubin 
(1987), which has a broader range of applications with fewer limita
tions, was developed to consider the uncertainty in the variables and 
address the problem of increased noise caused by the first two methods. 
A popular approach is multiple imputation by chained equations (MICE) 
and is selected to impute the missing data in this dataset. It predicts 
missing values using other features/variables from the dataset multiple 
times to create “complete” datasets. Each complete dataset is then 
analyzed, and the results are pooled to obtain a final result (Azur et al., 
2011). The MICE algorithm is summarized as follows.  

1) Fill in all missing values of the target variables in the dataset with a 
simple imputation, such as using the mean of the non-missing values. 
Initially, a complete dataset is given, but the filled-in values are just 
temporary placeholders.  

2) Pick one variable (denoted as “var”) with missing values and revert 
the placeholder values for this variable back to missing.  

3) Use the complete variables (those without any missing values) to 
predict the missing values in “var”: this is done by treating “var” as 
the output (or dependent variable) in a regression model and the 
complete variables as inputs (or independent variables). 

Fig. 1. Main structure of the dataset.  
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4) Replace the missing values in “var” with the values predicted by the 
regression model: “var” is a complete variable now, including both 
the observed and predicted values.  

5) Repeat Steps 2–4 for each target variable. The loop through all the 
variables constitutes one iteration, and at the end of this iteration, all 
missing values are replaced with predictions that consider the re
lationships among variables.  

6) Repeat the entire iteration (Steps 2–4 for all variables) several times 
until the imputations converge and the missing data values are 
refined with new predictions. 

In this dataset, the complete and missing data for all instances are 
visualized in Fig. 3, in which each column represents a variable and each 
row corresponds to an individual instance in the dataset. Blue squares 
represent complete data, while white squares indicate missing values. 
According to the top x-axis displaying the number of complete data 
entries for each variable, the imputation of missing data was limited to 
parts of the RNA and tower information. Because the rated power and 
rotor diameter were complete, they were applied as the initial inde
pendent variables. For the imputation of the rotor and nacelle weight, it 
can be assumed that both variables correlate highly with the rated 
power and rotor diameter. These correlations can be captured by the 
regression models in the MICE algorithm, as they are essential param
eters in a specific wind turbine model. Subsequently, the wind turbine 
weight was calculated as the sum of rotor and nacelle weights. 

Furthermore, considering the physical design, the tower height is 
also subject to constraints imposed by the rated power and rotor 
diameter, that is, it must be larger than the blade length (half of the rotor 
diameter) and limited by the cost model in terms of the rated power of 
the wind turbine, whereas the tower height influences the tower weight. 
Therefore, using the rated power and rotor diameter to estimate the 
tower height and weight is reasonable. The MICE imputation procedure 
was conducted in Python via “IterativeImputer” in “sklearn” package 
(Scikit-learn, 2023), and the density distributions of the collected and 
imputed data of target variables are presented in Fig. 4. It can be seen 
that the distributions of variables with missing data remain essentially 
constant before and after the imputations. Therefore, using MICE to 
handle the missing data yielded reliable outcomes for the variables 
related to the wind turbine and tower. 

2.2.2. External loads at the transition piece (the top of jackets) 
Generally, the design of offshore substructures should consider per

manent, variable, environmental, accidental, and deformation loads 
(DNV GL, 2014). Because this study only focused on the preliminary 
conceptual design of jackets, the following assumptions were made.  

1) These loads are limited to the permanent loads of structural members 
and environmental loads owing to wind and waves.  

2) The lack of detailed technical information on real wind turbines in 
the collected wind farms did not allow for simulations for each wind 
turbine. Instead, a reference wind turbine model, the IEA Wind 15- 
MW reference turbine (Gaertner, 2020), was analyzed in essential 
design load cases (DLCs) using the open-source simulation tool 
OpenFAST (Jonkman and Sprague, 2017).  

3) Only extreme loads in the ultimate limit state (ULS) were derived for 
the reference wind turbine and converted to actual wind turbines 
with different rotor diameters using the scaling rules proposed in 
Gasch and Twele (2012). 

In this case, three essential load variables, F_x, F_z, and M_y, were 
collected into the dataset to consider the influence of the interface loads 
at the TP owing to the superstructures on the design of the jackets. The 
load definitions and locations are listed in Table 1 and shown in Fig. 5. 
Force F_z is the compression force due to the self-weight of the super
structures. Force F_x denotes the extreme shear force owing to the thrust 
applied to the rotors and transmitted to the interface. The bending 
moment M_y corresponds to the extreme overturning moment owing to 
thrust. 

The DLCs for the simulation in the ULS should be determined to 

Table 1 
Descriptions of the variables in the dataset.  

Variable 
name 

Abbreviation Variable 
Type 

Unit Annotation 

Wind farm information 
Location LC categorical – Wind farm name and 

country 
Completion 

year 
CY categorical – Actual completion year 

of completed jackets and 
estimated completion 
year of under- 
construction jackets 

Structural variables of jackets 
Leg number LN discrete – Number of jacket legs 
Layer 

number 
BN discrete – Number of brace layers 

(or bays) 
Jacket 

weight 
JW continuous [t] Crucial variable in the 

initial cost model in 
conceptual design 
without considering the 
weight of the foundation 
below the seabed 

Jacket height JH continuous [m] Vertical height of the 
jacket between the TP 
layer and seabed 

Top radius TR continuous [m] Radius of the 
circumcircle formed by 
the locations of jacket 
legs at the TP layer 

Bottom 
radius 

BR continuous [m] Radius of the 
circumcircle formed by 
the locations of jacket 
legs at the ground layer 
of the jacket 

External variables 
Rated power RP continuous [MW] – 
Rotor 

diameter 
RD continuous [m] Diameter of the circular 

area covered by the 
rotating blades 

Rotor weight RW continuous [t] Total weight of the 
blades and hub 

Nacelle 
weight 

NW continuous [t] – 

Wind turbine 
weight 

WW continuous [t] Total weight of the rotor 
and nacelle 

Tower height TH continuous [m] – 
Tower 

weight 
TW continuous [t] – 

Water depth WD continuous [m] Mean water depth in the 
offshore wind farm 

Wind speeds WS continuous [m/s] Mean wind speed at 10/ 
50/100/150/200 m 
above the mean sea level 
(MSL) in the offshore 
wind farm 

Wave height WH continuous [m] Extreme wave height 
with a return period of 
50 years in the wind 
farm 

Wave period WP continuous [s] Wave period associated 
with the extreme wave 
height 

Force_x F_x continuous [kN] Maximum aerodynamic 
thrust applied on the 
rotor and transmitted to 
TP 

Force_z F_z continuous [kN] Compression force due 
to the superstructures 
(RNA and tower) 

Moment_y M_y continuous [kNm] Maximum bending 
moment due to the 
thrust at TP  
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derive the extreme loads at the TP for the reference wind turbine. Ac
cording to IEC-61400-3 (IEC, 2019), three extreme load cases, DLC 1.5, 
1.6, and 6.1, were identified as potentially critical events and were 
therefore selected for the simulation in this study. DLC 1.5 specifies 
transient shear cases in the life of an offshore wind turbine, including 
horizontal positive and negative shear and vertical shear with turned-on 
and turned-off controllers. DLC 1.6 encompasses the specifications for 
the ultimate loading arising from normal turbulence (NTM) conditions, 
in which six wind speeds of 5, 7.5, 10, 13, 18, and 21 m/s at the hub 
height were considered. Both load cases correspond to the design situ
ations of power production. In the design situation of standing or idling, 
DLC 6.1 was analyzed to determine ultimate loads in the extreme wind 
speed model for the wind turbine with a mean yaw misalignment of ±8◦. 
According to the time series simulation results over 10 min under the 
selected load cases, the extreme loads F_x and M_y at the interface be
tween the tower base and TP for the reference wind turbine are sum
marized in Table 2. Therefore, the maximum values of F_x and M_y occur 
in DLC 1.6 with a wind speed of 10 m/s, which are 2744 kN and 304,400 
kNm, respectively. Notably, extreme loads in the same DLC can be 
captured at different time steps. 

According to Gasch and Twele (2012), the effects of a change in rotor 
diameter on the forces at the blade can be determined through the rules 
of similarity. The results of this study show that the aerodynamic forces 
increase with the square of the rotor diameter. Therefore, the shear force 
F_x at the TP of the jackets for wind turbines in the dataset can be 

derived as 

F x = T = T0 •
(
RD2/RD2

0

)
= F x0 •

(
RD2/RD2

0

)
(1)  

with F x0 = 2744 kN and RD0 = 240 m, where T and T0 are the sum of 
the thrust applied to the rotor of the target and reference wind turbine, 
respectively, F x0 is the maximum shear force for the reference wind 
turbine, RD and RD0 are the rotor diameters of the target and reference 
wind turbine, respectively. 

Subsequently, the overturning moment M_y at the TP of the jackets 
for the wind turbines in the dataset is derived as 

M y = T • Hhub =
(
M y0

/
Hhub,0

)
•
(
RD2/RD2

0

)
• Hhub

= M y0 •
(
RD2/RD2

0

)
•
(
Hhub

/
Hhub,0

)
(2)  

with M y0 = 304400 kNm and Hhub,0 = 150 m, where M y0 is the 
maximum overturning moment for the reference wind turbine, Hhub and 
Hhub,0 are the hub heights of the target and reference wind turbines. 

The compression load F_z should be the sum of the self-weights of the 
superstructures and can be calculated as 

F z = RW + NW + TW (3)  

where RW, NW, and TW are the self-weights of the rotor, nacelle, and 
tower, respectively. 

By incorporating the external loads arising from the superstructures, 
the dataset provides valuable insights into the comprehensive 

Fig. 2. Distribution of the data sources for the variables in the dataset.  

Fig. 3. Distribution of complete and missing data in the raw dataset.  
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interactions of the RNA and tower with jacket substructures. This in
clusion serves as a foundation for providing essential design pre
conditions, helping to simulate the intricate design thinking of structural 
engineers during the conceptual design phase of jackets. This part of the 
dataset provides an attempt to translate the understanding of the com
plex mechanics of the system into practical design considerations for the 
further investigation of data-driven methods. 

2.2.3. Extreme wave height and associated wave period 
In this study, a long-term data-based wave characteristic analysis of 

selected offshore wind farms was conducted following the systematic 
flowchart shown in Fig. 6. Initially, raw wave data were collected from 
the ERA5 platform, which provides monthly mean averaged data of the 
global climate and weather from 1940 onwards. The chosen variable is 
the “significant height of combined wind waves and swell,” with data 
covering 50 years from 1973 to 2022. The raw data were initially stored 
in GRIB-format files from the platform and visualized using Panoply 
software (Schmunk, 2023), allowing for the visualization of monthly 
wave data at a spatial resolution of 0.5◦ on longitude and latitude 
globally. The wave height dataset was exported in the CSV format from 
Panoply to facilitate the extraction of wave data specific to the desired 
location of each wind farm. Subsequently, a Python script was imple
mented to extract the required data at user-defined latitude and longi
tude coordinates. For each wind farm, 600 significant wave height data 
points were extracted, representing 50 years of monthly data. 

Following the data extraction process, a statistical analysis of the 
time-series data was performed. In this phase, various statistical distri
butions were employed to identify the appropriate long-term patterns 
for wave height and calculate the extreme wave height for each wind 
farm in the dataset. Analyses of environmental data in offshore wind 
farms by Hübler et al. (2017) indicate that environmental data can be 
adapted to fit several statistical models. In this study, Normal, Weibull, 
Gamma, and Gumbel distributions were used to fit the wave height data, 
enabling the derivation of probability density functions (PDFs) and cu
mulative distribution functions (CDFs). The PDFs of the statistical 

distributions are listed in Table 3. 
For each offshore wind farm, the parameters of four statistical dis

tributions were derived with the raw wave height data in Python via the 
“scipy.stats” package. The goodness of fit of the distributions was eval
uated using the Kolmogorov–Smirnov (KS) test, in which P-values were 
calculated. Subsequently, the optimal distribution of the wave height 
time-series data in each wind farm was selected to further determine the 
significant wave height with a certain return period. The significant 
wave height was derived using the first-order reliability method (FORM) 
illustrated by Liu and Burcharth (1997). According to IEC 61400–3 (IEC, 
2019), the extreme wave height with a return period of 50 years and the 
associated range of wave period were estimated to assess extreme wave 
conditions. To obtain the extreme wave height WH and the associated 
range of the wave period WP, the following relationships were applied: 

WH = 1.86 Hs,50 (4)  

11.1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Hs,50
/

g
√

≤ WP ≤ 14.3
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Hs,50
/

g
√

(5)  

where Hs,50 is the significant wave height with a return period of 50 
years. In this study, the lower limit of the wave period range was 
assumed to yield the most severe loading conditions. 

2.3. Preliminary variable analysis 

2.3.1. Wind farm information 
The distribution of the collected offshore wind farms with jackets is 

shown in Figs. 7 and 8, which describe the locations and completion 
years of the wind farms. More than half of the collected jackets are 
distributed in Asia, with the remainder primarily situated across Europe 
and the United States. The time frame for the completion years of these 
wind farms spans from 2006 to 2028. Before 2017, relatively few in
stances of offshore wind farms were constructed using jacket sub
structures. This primarily occurs because monopiles are optimal for 
offshore wind farms in shallow water areas. However, the landscape 

Fig. 4. Density distributions of the collected and imputed data for the (a) rotor weight, (b) nacelle weight, (c) tower height, and (d) tower weight.  
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began to change around 2019 when jacket substructures started gaining 
traction in wind farms in deeper water areas. According to the GWEC 
(2022), 2021 is the best year ever for the global offshore wind industry, 
which is also reflected in the construction of jacket substructures. 
Additionally, owing to the lack of data after 2022, approximately 20 
wind farms employing jacket substructures completed in 2023 and the 
upcoming years were included in this dataset, as shown by the light blue 
bars in Fig. 8. 

Various types of jackets can be erected within the same wind farms. 
Therefore, the dataset encompasses 100 instances of offshore jacket 
substructures distributed across 90 offshore wind farms. Consequently, 
the instances of jackets within the dataset exhibited rich diversity in 
both temporal and spatial dimensions. This broad distribution aligns 
with the foundational requirement of the dataset, which seeks to provide 
comprehensive insights into structural designs across a spectrum of site 

conditions while also encapsulating the dynamic variations and evolu
tion of designs over time. 

2.3.2. Structural variables of jackets 
As discussed in Section 2.1, in the conceptual design of jacket sub

structures, structural variables can be categorized into two primary 
types: continuous and discrete. For continuous variables, it is assumed 
that there are an infinite number of values within a given range. In 
contrast, discrete variables have distinct values or categories. Specific 
visualization charts were employed to provide a comprehensive un
derstanding of the data distribution associated with these two distinct 
types of variables. For continuous variables, error bar plots were used to 
clearly represent the average values (mean) and the range (standard 
deviation) within which most data points were located. For discrete 
variables, the data were presented using standard bar plots showing the 
frequency of each distinct value, thus providing insights into the prev
alence and distribution of these variables within the dataset. Addition
ally, the means and standard deviations of the continuous variables 
spanned significantly diverse ranges, as shown in Table 4. The data were 
standardized using the min-max scaling method to facilitate a mean
ingful comparison of their distributions, which were calculated as 

x′ = (x − min(X))/(max(X) − min(X)) (6)  

where x′ is the standardized value, x is the original value, min(X) and 
max(X) are the minimum and maximum values of this variable, 
respectively. A comparable representation of these distributions is pre
sented in Tables 4 and is graphically depicted in Fig. 9(a). Some note
worthy findings are noted based on the distributions of the structural 
variables. 

Jacket height is essential in the initial conceptual design, as it is 
usually the first variable determined based on site conditions. According 
to DNV–OS–J101 (DNV GL, 2014), jacket substructures are well-suited 
for sites with water depths ranging from 20 to 50 m. The total jacket 
height is computed as the sum of the water depth and air gap. The air 
gap is the vertical distance between the mean sea level and the lowest 
point of the turbine tower, ensuring that the wave action does not 
directly impact the turbine structure. The air gap size is determined 
based on the wave analysis for a specific site and could exceed 20 m, 
depending on the predicted extreme wave heights for the site. Table 4 
reveals that the jacket height in the dataset, within a confidence interval 
of 68.2% (μ-σ to μ+σ), ranges from 40 m to 70 m. This observed range 
closely aligns with the optimal depth range set by the standard when 
considering the additional height added by the air gap. This corre
spondence suggests that the data investigated in the dataset are 
consistent with recognized industry practices, thus proving the reli
ability of the dataset. 

Concerning the standardized values of continuous variables, the 
standardized means for all variables hover around the range from 0.44 
to 0.51, and their standard deviations were similar, ranging from 0.17 to 

Fig. 5. The sketch of the offshore wind turbine with jacket substructure and the 
external loads in the tower-base coordinate system. 

Table 2 
Extreme loads F_x and M_y at the interface between the tower base and TP for the 
reference wind turbine due to selected DLCs.  

DLC Annotation F_x [kN] M_y [kNm] 

1.5 horizontal positive shear 2522 282,800 
1.5 horizontal negative shear 2522 287,800 
1.5 vertical shear 2522 304,300 
1.5 vertical shear with turned-off controller 2500 303,300 
1.6 wind speed: 5 m/s 1591 136,100 
1.6 wind speed: 7.5 m/s 2396 226,300 
1.6 wind speed: 10 m/s 2744 304,400 
1.6 wind speed: 13 m/s 2305 242,600 
1.6 wind speed: 18 m/s 2134 190,400 
1.6 wind speed: 21 m/s 2193 203,600 
6.1 mean yaw misalignment of +8◦ 2120 118,800 
6.1 mean yaw misalignment of - 8◦ 1832 96,960  
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0.23. This close grouping of standardized values suggests consistency 
and relative similarity in the spread and central tendencies of the jacket 
structural variables in the dataset. This uniformity is crucial because it 
ensures that no particular feature dominates the learning process in ML 
applications owing to its scale or variability. Consequently, ML algo
rithms can converge faster, produce more generalized models, and offer 
enhanced interpretability of feature correlations, as discussed in subse
quent sections. 

Regarding the discrete variables of the brace layer and leg number, 
the dataset reveals that the brace layer numbers are typically two, three, 
or four, whereas the leg number should be either three or four, as shown 
in Fig. 9(b). According to the design codes and standards, the brace layer 

number is usually influenced by the jacket height owing to the specific 
design constraints for brace members in jackets. For instance, NORSOK 
(2004) requires the angle between the brace and the leg to exceed 30◦. 
Four-legged jackets were popular in previous designs owing to their 
structural symmetry and stability. However, recent studies have sug
gested that three-legged jackets may be more advantageous under 
certain boundaries, making it possible to optimize mass-dependent cost 
models when considering the leg numbers (Häfele et al., 2019). Conse
quently, there is a growing trend towards designing three-legged jackets 
for emerging wind farms, although four-legged jackets remain more 
prevalent in the dataset. 

2.3.3. External variables 
The dataset contains 18 external variables, the descriptions of which 

are presented in Table 1. To visualize the distribution of the variables, 
the histograms and associated density curves generated using the kernel 
density estimate (KDE) method are shown in Fig. 10. Similar to the 
structural variables of jackets, different variables exhibited qualitative 
variations across diverse scales, and the ranges of the variables also 
showed apparent differences. The external variables were standardized 
using the min–max scaling method to ensure a consistent comparison. 
The mean and standard deviation of the standardized data are presented 
in Fig. 11. 

By combining Figs. 10 and 11, specific variable pairs exhibit 
considerable correlations, as evidenced by the close alignment of their 
density curves and distributions. Notable correlated pairs include tower 
height with tower weight, wind speeds at different heights, wave height 
with wave period, and force_x with moment_y. Some relationships can 
be explained as inherently physical or empirical among these correlated 
pairs. For instance, the similarity of tower height and weight makes 
intuitive sense, as a higher tower would generally require more mate
rials and, hence, would be heavier. The wind speeds at varying heights 
are correlated, indicating that wind patterns at one height may be pre
dictive of those at other heights, considering the nature of the aero
dynamics and interactions among wind currents. Furthermore, some 

Fig. 6. Flowchart for a long-term data-based wave characteristics analysis.  

Table 3 
Probability density functions and corresponding parameters of the statistical 
distributions.  

Distribution PDF Location 
parameter 

Shape 
parameter 

Scale 
parameter 

Normal 
f(x) =

1
σ

̅̅̅̅̅̅
2π

√ e
−
1
2

(x − μ
σ

)2 μ – σ 

Weibull 

f(x) =

⎧
⎨

⎩

k
λ

(x
λ

)k− 1
e
−

(x
λ

)k

, x ≥ 0

0, x < 0 

– k λ 

Gamma 
f(x) =

1
Γ(k)θkxk− 1e

−
x
θ 

– k θ 

Gumbel f(x) =
1
β
e− (z+e− z), z =

x − μ
β  

μ – β  

Fig. 7. Spatial distribution (location) of the offshore wind farms with jackets in the dataset distributed worldwide.  
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other correlations are mathematically derived. For instance, the wave 
period values are not independent measurements but are calculated 
from extreme wave heights. This derivative relationship is outlined in 
Equation (5), which employs well-established principles from standards. 

Understanding these correlations offers insights into the interaction 
of variables that can assist in decision-making processes while designing 
offshore substructures and is also crucial when preparing data for ML 
applications. In ML, correlated input features can sometimes introduce 
redundancy, which can affect the prediction performance of the trained 
ML models. This issue should be appropriately addressed through 
further feature analyses, allowing for the establishment of more robust 
and efficient ML models. This is one of the most important motivations 
for feature selection, as discussed in Section 3. 

3. Feature selection 

To perform the data-driven conceptual design of jackets, each target 
feature of the structural variables of jackets must find appropriate sub
sets of features as inputs to train ML models and perform predictions. 
Feature selection plays a pivotal role in enhancing the understandability 
of the data-driven method for jacket design. On the one hand, it sim
plifies the ML models and improves the interpretability of the method by 
highlighting the most influential and relevant features. On the other 
hand, it reduces overfitting owing to the small size of the dataset and 
relatively more features, ensuring more reliable and generalizable 

results (Haury et al., 2011). More specifically, by eliminating redundant 
input features in the dataset, feature selection can facilitate more precise 
data visualization and improve predictive performance. Meanwhile, by 
extracting appropriate subsets of input features, it aids in deriving 
meaningful and domain-specific insights that give designers a clearer 
picture of which features should be considered in the ML field and assists 
them in determining whether other necessary influencing factors should 
also be considered in the engineering domain for subsequent data-driven 
conceptual design. A flowchart of the feature selection is shown in 
Fig. 12, which consists of four main steps.  

1) Remove the redundant external features.  
2) Define the prediction order of the target features of the jackets and 

all candidate input features for each target feature.  
3) Determine the subsets of input features for each target feature.  
4) Check the feasibility of the selected subsets of input features using 

ML models. 

The redundancy of the external features in the dataset in the first step 
was identified by applying Spearman’s correlation to measure the linear 
or nonlinear correlations between two external features. High correla
tion values indicate redundancy. According to the correlation coefficient 
values visualized in the heat map, one of the external features in the 
feature pairs with large correlation values should be removed. Subse
quently, the prediction order of the target features and all candidate 
input features for each target feature were defined based on the struc
tural design requirements of the industrial projects and standards. The 
candidate input features consist of external features without redundancy 
and specific structural features. Some structural features of the jackets 
can be regarded as input features for predicting other structural features. 
Subsequently, Spearman’s correlation is applied again in the third step 
to identify the input features that are highly correlated with each target 
feature and to determine the corresponding subsets of input features. 
Finally, the RF and XGBoost models were trained using the data of 
selected subsets of input features (experimental groups) and all external 
features (control groups), respectively. The feasibility of feature 

Fig. 8. Temporal distribution (completion year) of the offshore wind farms with jackets in the dataset between 2006 and 2027.  

Table 4 
Original and standardized mean and deviation values of continuous variables of 
jackets in the dataset.  

Continuous 
variables 

Original 
mean μ 

Original 
deviation σ 

Standardized 
mean 

Standardized 
deviation 

Jacket weight 1101.67 t 361.83 t 0.44 0.23 
Jacket height 55.53 m 15.96 m 0.49 0.21 
Bottom radius 18.77 m 3.90 m 0.51 0.20 
Top radius 9.30 m 2.50 m 0.45 0.17  

Fig. 9. Distribution of structural variables of jackets in the dataset.  
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Fig. 10. Histograms of the external variables.  

H. Qian et al.                                                                                                                                                                                                                                    



Ocean Engineering 303 (2024) 117679

11

selection can be evaluated by comparing the predictive performances of 
the ML models trained using two different sets of input features. It is 
worth noting that this feasibility analysis can also be regarded as a 
preliminary case study for the data-driven conceptual design of jackets, 
which is valuable for future ML-based jacket design. 

3.1. Methodology 

3.1.1. Spearman’s correlation coefficient 
Spearman’s correlation coefficient (SCC), denoted as rs, is a 

nonparametric measure of rank correlation. It assesses the extent to 
which the relationship between two variables can be described using a 
monotonic function. Unlike Pearson’s correlation, which requires linear 
relationships and interval data, Spearman’s correlation works with 
ordinal data and is robust to nonlinear relationships (Sprent and 
Smeeton, 2016). Furthermore, SCC is appropriate for continuous and 
discrete ordinal variables (Lehman et al., 2013), making it ideal for 
analyzing the correlations between features in the dataset with both 
data types in this study. 

For a sample of two random variables (X, Y) of size n, the n raw 
values Xi and Yi are converted to ranks R (Xi) and R (Yi), and rs, the value 

of SCC, is computed as follows: 

rs = ρR(X),R(Y) = cov(R(X),R(Y))
/ (

σR(X) • σR(Y)
)

(7)  

where ρR(X),R(Y) denotes the usual Pearson correlation coefficient applied 
to the rank variables (R(X), R(Y)), σR(X) and σR(Y) are the standard de
viations, and cov (R(X), R(Y)) is the covariance of the rank variables, 
which is computed by: 

cov(R(X),R(Y)) = E
[(

R(X) − μR(X)

)(
R(Y) − μR(Y)

)]
(8)  

where μR(X) and μR(Y) are the mean values of the rank variables (R(X), R 
(Y)), and E is the expectation. If there are no repeated data values, rs =

±1 occurs when each variable is an entirely monotonic function of the 
other, even if their relationship is nonlinear. The SCC sign indicates the 
direction of association between X (independent variable) and Y 
(dependent variable). If Y tends to increase when X increases, rs is 
positive. Conversely, if Y decreases as X increases, rs becomes negative. 
rs = 0 indicates that Y has no tendency to either increase or decrease as X 
increases. This study computed the SCC matrices in Python via the 
“pandas” package. 

3.1.2. RF and XGBoost models 
Both RF and XGBoost models are used for supervised learning 

problems, where a target feature can be predicted using multiple input 
features. They are ideal for feasibility evaluation in the feature selection 
process because of their ability to handle high-dimensional data and 
their robustness against overfitting. Therefore, they are suitable for 
analyzing complex datasets with multiple features, such as the one in 
this study, and ensuring more reliable performance evaluations. These 
models are efficient and accurate for various predictive tasks and pro
vide valuable insights into feature importance, aiding in the evaluation 
of the selected feature subsets in the previous steps. Their versatility in 
handling both regression and classification problems provides flexibility 
in the types of predictions for different target structural features in 
jacket designs, ensuring a comprehensive assessment of the feasibility of 
the selected features. 

RF is an ensemble ML algorithm that operates by constructing several 
decision trees with bagging (also known as bootstrap aggregating) in the 
training phase and outputting class prediction by majority voting in 
classification problems or mean prediction in the regression problems of 
individual trees (Breiman, 2001). A fundamental concept is that a group 
of weak learners (decision trees) combine to form a strong learner. The 
randomness injected in the model-building process helps in improving 
the accuracy of the model and reducing overfitting (Ho, 2002). The RF 
procedure is as follows. 

Fig. 11. Mean and standard deviation of standardized external variables.  

Fig. 12. Flowchart of feature selection.  
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1) Initialize the model and randomly sample: All hyperparameters 
should be defined when initializing the model. Multiple training sets 
are created through bagging (sampling with replacement) the pro
cessed dataset after feature selection.  

2) Construct and train decision trees: Each training set is used to build a 
decision tree. When splitting a node during the construction of the 
tree, only a random subset of the features is considered through 
bagging. 

3) Predict target features: Each tree in the forest outputs a class pre
diction for classification. The class with the majority vote becomes 
the model’s prediction, and the model’s output is the mean of the 
predictions from all trees. 

The bagging technique is key to the RF algorithm and is utilized 
twice in the RF procedure: random sampling with replacement for both 
training sets and features. This implies that each tree knows only the 
data associated with a small constant number of features and a variable 
number of samples less than or equal to that of the original dataset. 
Consequently, decision trees are more likely to return a broader range of 
prediction answers learned from more diverse knowledge, resulting in a 
more robust predictive performance and less overfitting in RF. 

XGBoost is a highly efficient and scalable implementation of the 
gradient boosting algorithm that works by sequentially adding classifi
cation and regression trees (CART), each of which corrects its pre
decessor’s errors. According to the XGBoost Documentation (XGBoost, 
2022), a CART slightly differs from decision trees in RF, in which the leaf 
only contains decision values. In CART, a real score is associated with 
each leaf, providing richer interpretations beyond the classification. 
Unlike bagging in RF, overfitting issues in XGBoost can be prevented by 
adding regularizations controlling the complexity of CART into the 
objective functions as follows: 

obj(θ) =
∑n

i=1
l(yi, ŷi) +

∑K

k=1
ω(fk) (9)  

where θ denotes the parameters to be optimized in the model, l(yi, ŷi) is a 
differentiable convex loss function that measures the difference between 
the target yi and the corresponding prediction ŷi of the i-th instance in 
the training set, and ω(fk) is the regularization of the function of the k-th 
CART. The general procedure for applying XGBoost involves the 
following key steps:  

1) Initialize the model: All hyperparameters, including regularization 
parameters, should be defined when initializing the model. The 
regularization parameters ensure consistency in how the algorithm 
penalizes the model complexity throughout the training process. It 
begins with an initial prediction, such as the mean of the target for 
regression or the log odds for classification.  

2) Build CART sequentially: In each iteration, add a new CART, where 
each tree targets the residuals and errors of the previous trees. At the 
t-th iteration, the substeps are as follows:  
a) Calculate the Gradient and Hessian, and apply regularization: For 

each instance, compute the Gradient gi and Hessian hi of the loss 
function with respect to the current prediction and include reg
ularization in this computation to balance the model complexity: 

obj(t) =
∑n

i=1

[

l
(

yi, ŷi
(t− 1)

+ gift(xi)+
1
2
hif 2

t (xi)

]

+ ω(ft) (10)   

b) Create a new tree: A new tree is built based on the calculated Gra
dients and Hessians to minimize the loss function.  

c) Update the model: After the tree is added, the prediction of the model 
is updated by adding the output of the new tree, and scaled by the 
learning rate.  

3) Repeat the process: The iteration continues until a stopping criterion 
is met, such as the maximum number of trees or no further 
improvement in the loss function.  

4) Output the final trained model and predict the target features: The 
final prediction is the aggregate of the predictions from all the in
dividual trees in the trained model, that is, the majority voting for 
classification and mean prediction for regression. 

For more details on these two ML models, the interested reader is 
referred to Breiman (2001) and Chen and Guestrin (2016), which 
involve comprehensive research and interpretation of two models. The 
RF and XGBoost models in Python were implemented in this study by 
using the “RandomForestRegressor” and “RandomForestClassifier” from 
the “sklearn” package (Scikit-learn, 2023) for RF and the “xgboost” 
package (Cho and Yuan, 2021) for XGBoost. 

3.2. Correlation analysis and feature selection results 

The SCC matrix for all external features is presented in the heat map 
in Fig. 13. Because the definition of redundant features in a dataset 
varies with specific problems and objectives, a definitive threshold for 
redundancy based on the SCC has not been universally established. This 
study defined a conservative threshold of 0.9 to identify redundancy 
among features. This value was chosen to balance minimizing redun
dancy and preserving vital information in the dataset, ensuring that 
essential features were retained while reducing the risk of including 
highly correlated external features. The redundant feature pairs are 
listed in Table 5. 

The SCC values of all wind speed pairs exceeded 0.9, which is 
consistent with the trends observed in Figs. 10 and 11. Because the wind 
effects at greater heights that indirectly influence jacket design are 
already considered in the external loads Force_x and Moment_y, the 
wind speeds above 10 m can be considered redundant. In contrast, a 
wind speed of 10 m was crucial for measuring the wind effects acting 
directly on the jacket. In addition to wind speeds, ten more feature pairs 
exhibited redundancy elements. To identify redundant features within 
the ten pairs, those that recur most frequently were likely candidates. In 
this context, Force_x and Moment_y, appearing in six of the ten pairs, are 
deemed redundant. Theoretically, both features were derived by 
following the scaling rules outlined in Equations (1) and (2), which 
make it expected and reasonable that they are highly correlated with the 
rotor diameter and tower height. 

Similarly, the tower weight, which appears twice in ten pairs, is 
identified as a redundant feature that has an essentially monotonous 
relationship with the tower height owing to the constant gradient of the 
material demand with respect to the tower cross-section along the tower 
height. Concerning the pair of wind turbine and nacelle weights, the 
wind turbine weight consists of the combined weight of the nacelle and 
rotor. Given that the nacelle weight significantly surpasses the rotor 
weight, the wind turbine weight significantly overlaps with the nacelle 
weight and is thus redundant. As for the wave period and wave height, 
the wave period was calculated from the wave height using Equation 
(5). This relationship establishes a significant correlation between the 
two features, categorizing the wave period as redundant. Based on 
Spearman’s correlation analysis, nine external features were removed 
owing to redundancy, whereas the remaining external features were 
retained in the subsequent steps for feature selection. 

The retained external features and all structural features were 
considered for the final feature selection because certain structural 
features are necessary inputs for predicting other structural features. 
The prediction order of the target features was defined according to the 
conceptual design requirements of industrial projects and standards. The 
jacket height largely depends on the site water depth. Therefore, it 
should be the initial predictive target. Subsequently, the bottom and top 
radii were designed and predicted based on various influencing factors, 
such as loads at the TP from the wind turbine and tower, wave and 
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current loads, and mechanical and constructional properties of the 
overall structural framework. Once the general geometrical parameters 
of the jacket are determined, an approximate estimation of the jacket 
weight can be performed for conceptual design because the material and 
commonly used tube models are already standardized in the industry. 
Furthermore, the layer and leg number are essential for topology 
determination, both of which are influenced by specific structural fea
tures and should be determined in the end. As mentioned in Section 

2.3.2, the brace layer number depends on the jacket height owing to the 
design constraints in jackets, whereas the leg number of the jacket could 
be correlated with the mass-dependent cost model. The final prediction 
order for the target features of jackets is listed in Table 6. 

Correlation analysis between target features and all candidate input 
features was conducted using Spearman’s correlation. The heat map of 
the SCC matrix is shown in Fig. 14, in which the first six are target 
features, and the rest are retained external features. According to the 
prediction order, the target features that are higher in order can serve as 

Fig. 13. Heat map of SCC values between the two external features.  

Table 5 
Pairs of external features with SCC values ≥ 0.90.  

External feature 1 External feature 
2 

SCC 
value 

Redundant feature 

Tower weight Rotor diameter 0.90 Tower weight 
Force_x Rotor diameter 1.00 Force_x 
Moment_y Rotor diameter 0.98 Moment_y 
Wind turbine 

weight 
Nacelle weight 0.92 Wind turbine weight 

Tower weight Tower height 0.98 Tower weight 
Moment_y Tower height 0.93 Moment_y 
Force_x Tower weight 0.90 Force_x 
Moment_y Tower weight 0.96 Moment_y 
Wind speed (i m) Wind speed (j 

m) 
≥0.96 Wind speed (50/100/150/ 

200 m) 
Wave period Wave height 0.99 Wave period 
Moment_y Force_x 0.98 Moment_y or Force_x  

Table 6 
Prediction order and results of feature selection.  

Prediction 
order 

Target 
feature 

Selected input feature 
subset 

Corresponding SCC values 

No. 1 Jacket 
height 

[‘WD’, ‘WS’, ‘NW’, 
‘RP’, ‘F_z’, ‘TH’, ‘RD’, 
‘RW’] 

[0.63, 0.63, 0.56, 0.50, 
0.48, 0.26, 0.23, 0.22] 

No. 2 Bottom 
radius 

[‘TH’, ‘F_z’, ‘RW’, ‘RD’, 
‘RP’, ‘WD’, ‘JH’, ‘NW’] 

[0.57, 0.55, 0.53, 0.50, 
0.48, 0.41, 0.39, 0.22] 

No. 3 Top 
radius 

[‘BR’, ‘WS’, ‘JH’, ‘NW’, 
‘F_z’, ‘RP’, ‘RD’, ‘TH’] 

[0.45, 0.40, 0.37, 0.35, 
0.30, 0.27, 0.24, 0.21] 

No. 4 Jacket 
weight 

[‘RW’, ‘F_z’, ‘RP’, ‘BR’, 
‘TH’, ‘RD’, ‘WD’, ‘JH’] 

[0.73, 0.71, 0.69, 0.67, 
0.65, 0.64, 0.62, 0.55] 

No. 5 Layer 
number 

[‘JH’, ‘WS’, ‘WD’, 
‘NW’, ‘JW’, ‘RP’] 

[0.42, 0.41, 0.37, 0.24, 
0.22, 0.12] 

No. 6 Leg 
number 

[‘JH’, ‘TR’, ‘WS’, ‘NW’, 
‘RP’, ‘BR’] 

[-0.44, − 0.35, − 0.30, 
− 0.26, − 0.20, − 0.16]  
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inputs for the later predicted ones. For example, jacket height can be 
applied as an input for all other target features. Based on the absolute 
SCC values in the matrix, the candidate features in the top eight pairs 
were selected for continuous target features, whereas discrete target 
features required the top six. The difference in the number of selected 
input features can be attributed to the nature of different types of pre
dictive tasks. Regression tasks with continuous targets typically require 
more predictors to capture subtle variations in data. By contrast, clas
sification tasks with discrete targets often require fewer predictors to 
differentiate between distinct classes effectively. The finalized input 
feature subsets selected for each target feature according to the selection 
rules are listed in Table 6. 

3.3. Feasibility analysis using RF and XGBoost models 

To evaluate the feasibility of the selected input feature subsets listed 
in Table 6, the RF and XGBoost models played a crucial role in the last 
step of feature selection. These two universal ML algorithms were used 
to assess the predictive strength and overall effectiveness of the selected 
input features for each target feature because they demonstrated high 
robustness and accuracy in complex tabular data scenarios for various 
prediction tasks. 

The continuous target features of the jacket height, bottom radius, 
top radius, and jacket weight were predicted using regression models 
(“RandomForestRegressor” and “XGBRegressor” from Python 

packages). In contrast, the discrete target features of the layer number 
and the leg number were predicted using classification models (“Ran
domForestClassifier” and “XGBClassifier”). Each target feature has two 
sets of input features, one of which is the selected subset in Table 6 and 
the other includes all the external features. 

Prior to model training, data preprocessing was performed. First, the 
raw data in the dataset were standardized using the min–max scaling 
method outlined in Equation (6). Outliers were detected and eliminated 
using box plots, with the threshold set to 1.5 times the interquartile 
range (1.5 IQR). After processing raw data in Section 2.2, all instances in 
the dataset were complete. The dataset was then randomly split into 
training set (80 % of all 100 instances) and testing set (20 % of all 100 
instances) to prevent overfitting of the models. The hyperparameter 
max. Number of trees (n_estimator in the models) was tuned within a 
range of [2, 20], whereas the other hyperparameters were set as default. 

For each target feature, the RF and XGBoost models with varying 
n_estimator values were trained five times to enhance the robustness of 
the results. The predictive performances of the trained models were 
tested using the testing sets. Regression models were assessed using the 
coefficient of determination (R2), and classification models were eval
uated based on the F1 score. Both metrics are used to measure the ac
curacy of the prediction and range from zero to one. Higher values of 
both metrics indicate better predictive performance of the model. The 
mean μ and standard deviation σ of the metrics for all RF and XGBoost 
models with the same n_estimator trained over five times are 

Fig. 14. Heat map of SCC values between candidate input features and target features.  
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summarized in Table 7. The models trained on the selected input fea
tures exhibit better predictive performance than those trained on all 
external features. For each target feature, the means of the metrics for 
both RF and XGBoost models showed a notable increase following 
feature selection, whereas the standard deviations of the metrics after 
feature selection were generally lower than those before feature selec
tion. This indicates that feature selection enhances the accuracy of 
predictions and improves the stability of the trained models. 

Both ML models generally exhibited comparable predictive perfor
mances, with RF showing a slight edge over XGBoost. Visualizations of 
the prediction of the RF models trained on feature sets before and after 
feature selection are presented in Figs. 15 and 16. One of the five trained 
RF models was selected for comparison for each target feature. For 
continuous target features, scatter plots were used to show the proximity 
between the predicted and real data. For discrete target features, 
receiver operating characteristic (ROC) curves were used to assess the 
ability of the model to differentiate between classes (Hand, 2009). 

In Fig. 15, the scatter plots compare the predicted standardized 
values of the continuous target features with the corresponding real 
standardized values based on the two sets of input features. Ideally, if 
the predictions are perfect, all the points lie on the dashed diagonal line, 
representing the point where the predicted value equals the real value. 
The closer a point is to the line, the higher the accuracy of this predic
tion. The distribution of points indicates the performance of the model 
based on each set of input features with potentially different levels of 
accuracy and bias. From the four scatter plots, the blue points for the 
selected feature subset are more tightly clustered around the diagonal 
line than the red points for the set of all external features. This suggests 
that the selected feature subsets generally provide predictions that are 
closer to the real values, indicating a better performance in predicting 
the target features and matching the results in Table 7. 

In Fig. 16, the ROC curves help determine how well the classification 
models can distinguish between the classes of discrete target features 
using two sets of input features. ROC curves were plotted with the True 
Positive Rate (TPR) on the y-axis and the False Positive Rate (FPR) on 
the x-axis. The closer the curve follows the left-hand border and then the 
top border of the ROC space, the more accurate the prediction. The area 
under the curve (AUC) measures the classification ability of a model. An 
AUC of 0.5 suggests no discriminative ability (equivalent to random 
guessing), while an AUC of 1.0 indicates perfect classification. Fig. 16(a) 
shows six ROC curves for the multi-class classification of the layer 
number, in which the solid blue, red, and orange curves represent the 
selected feature subset for the three classes, while the dashed lines of the 
same color represent all external features for each corresponding class. 
The AUCs for the RF models using all external features (i.e., 0.997, 
0.956, and 0.964) are slightly lower than those using the selected feature 
subset (i.e., 1.000, 0.992, and 0.994), suggesting that the selected 
feature subset provides better performance for predicting the layer 
number based on the given dataset. Similarly, Fig. 16(b) shows the ROC 
curves for the binary classification of leg numbers using two sets of input 
features. The selected feature subset (solid blue curve) exhibits a slightly 
higher AUC than the set of all external features (dashed red curve), 

suggesting that it performs better at predicting the correct leg number. 
According to Table 7, Figs. 15 and 16, the selected feature subsets 

generally provide better predictive performance for the ML models than 
the full set of external features, proving their feasibility in both regres
sion and classification tasks based on the developed dataset. 

4. Conclusions 

This study demonstrated a novel and meaningful shift from con
ventional design methodologies to a data-driven approach using trained 
ML models in the conceptual design of offshore jacket substructures, 
automatically predicting jacket structural parameters based on specific 
boundary condition inputs. Establishing a comprehensive dataset for 
jackets and the subsequent feature selection process, including the 
feasibility evaluation of selected input feature subsets, represent the 
interconnected components of the innovative data-driven approach. The 
established dataset lays the foundation for training ML models, such as 
RF and XGBoost, during the entire process. Feature selection enhances 
the interpretability of the approach and ensures that the data-driven 
method aligns with the critical requirements inherent in physical- 
based structural designs. This harmonization of data-driven insights 
with conventional structural design considerations suggests more ac
curate, efficient, and reliable offshore jacket design strategies. 

The dataset was compiled from completed and under-construction 
offshore jackets worldwide. Focusing on the key structural parameters 
and design boundary conditions aligned with LOD 100 ensured that the 
dataset contained the necessary details for conceptual design without 
overwhelming complexity. This balance is essential for practical appli
cations because it represents various real-world scenarios in the con
ceptual design phase. The broad scope of the dataset provided a 
comprehensive perspective on actual jacket designs, enabling more 
informed and robust design decisions. 

Building on this dataset, the proposed feature selection process en
hances the understandability and applicability of the data-driven 
method for the jacket conceptual design. By systematically identifying 
the most influential and relevant features using Spearman’s correlation, 
feature selection not only simplifies the models, making them more 
interpretable, but also addresses the challenges of overfitting and en
sures more generalized predictive outcomes. Furthermore, the feasi
bility of the selected feature subsets was assessed using the RF and 
XGBoost models. These models were trained on both the selected feature 
subsets and all external features, allowing for a comparative analysis of 
their predictive performance. The results of this analysis not only 
demonstrate the effectiveness of the selected feature subsets in accu
rately predicting jacket structural parameters but also validate the 
practicability of the developed dataset for data-driven conceptual 
design. 

However, the limitations of current investigations on data-driven 
design approaches are apparent. There are two main boundary condi
tions in the dataset. First, the development and utilization of offshore 
jackets have gained traction only in the last decade. Therefore, the 
sample size available for the dataset is constrained. Currently, it 

Table 7 
Mean μ and standard deviation σ of R2 of regression models for continuous target features and F1 of classification models for discrete target features.  

Target feature RF XGBoost 

n_estimator Selected features All external features n_estimator Selected features All external features 

μ σ μ σ μ σ μ σ 

Jacket height 4 0.869 0.081 0.798 0.065 7 0.808 0.027 0.576 0.176 
Bottom radius 7 0.744 0.067 0.613 0.172 7 0.687 0.066 0.480 0.077 
Top radius 6 0.794 0.065 0.550 0.127 13 0.793 0.085 0.660 0.097 
Jacket weight 11 0.895 0.050 0.814 0.084 20 0.866 0.034 0.764 0.065 
Layer number 17 0.924 0.031 0.728 0.175 23 0.849 0.013 0.716 0.111 
Leg number 5 0.892 0.035 0.641 0.160 17 0.885 0.071 0.649 0.135  
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contains 100 instances of jacket substructures. Furthermore, because 
this study focuses only on the conceptual design phase of jackets, the 
structural parameters of jackets in this dataset primarily encompass 
general information that forms the topology and initial cost model of the 
jackets. Further detailed structural parameters, such as the cross-section 
sizes of the tubular members, will be determined through structural 
assessments and code checks in the following iterative design phase, 
which are not considered in this study. 

The accuracy and applicability of the model to a broader range of 
design scenarios can be enhanced by expanding and refining the dataset 
with additional instances and more diverse data from new offshore wind 
projects because the accuracy and stability of the trained ML models are 
highly dependent on the size of the dataset. Generative models can be 
applied to generate synthetic jacket instances according to real jackets in 
the dataset, thereby expanding the dataset. 

In addition, it is recommended that more advanced feature selection 

Fig. 15. Diagrams for comparing predicted and real data for continuous target features with respect to two sets of input features.  

Fig. 16. ROC curves for the discrete target features with respect to two sets of input features.  
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methods and ML techniques can be integrated into the data-driven 
approach to capture essential features more robustly and handle more 
complex design scenarios with greater efficiency. 

Furthermore, this approach can be extended to other types of 
offshore substructures, broadening its impact beyond jacket sub
structures. The principles and methodologies developed in this study can 
serve as prototypes for similar advancements in other areas of offshore 
engineering. 
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