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For decades, de Casteljau’s algorithm has been used as a fundamental building block in curve 
and surface design and has found a wide range of applications in fields such as scientific 
computing and discrete geometry, to name but a few. With increasing interest in nonlinear data 
science, its constructive approach has been shown to provide a principled way to generalize 
parametric smooth curves to manifolds. These curves have found remarkable new applications in 
the analysis of parameter-dependent, geometric data. This article provides a survey of the recent 
theoretical developments in this exciting area as well as its applications in fields such as geometric 
morphometrics and longitudinal data analysis in medicine, archaeology, and meteorology.

1. Introduction

When what we call today Bézier curves were first studied in 1912 by Sergei Natanovich Bernstein (Bernstein, 1912) as a means to 
function approximation, they were a purely theoretical tool. This changed about 40 years later when Paul de Faget de Casteljau and 
Pierre Étienne Bézier,1 almost simultaneously but independently, searched for mathematical tools that would provide the means to 
intuitively construct and manipulate complex shapes using the still novel digital computers (Farouki, 2012). Both chose to use what 
are today called Bézier curves. With their elegant geometric properties, they meet the requirements; furthermore (as was found out 
later), they exhibit excellent numerical stability (Farouki and Rajan, 1987). The influence of the work of de Casteljau and Bézier was 
tremendous, and today, Bézier curves are used in a multitude of applications. Especially in computer graphics and computer-aided 
geometric design, they are indispensable (Farin, 2002).

One of de Casteljau’s great contributions is the algorithm that bears his name today. It is the fundamental tool to compute Bézier 
curves from a finite number of control points. (Boehm and Müller (1999) provide an introduction to the algorithm with historical 
remarks; a short autobiographical sketch by de Casteljau himself about the time leading to its invention can be found in (de Casteljau, 
1999).) Given 𝑘 + 1 control points 𝑝0, … , 𝑝𝑘 ∈ℝ𝑑 , the value of the corresponding Bézier curve 𝛽 at 𝑡 ∈ [0, 1] is computed iteratively 
according to the rule
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de Casteljau was employed, had a more restrictive policy, and his contributions were only made public several years after Bézier’s.
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𝛽0
𝑖 (𝑡) ∶= 𝑝𝑖,

𝛽𝑟
𝑖 (𝑡) ∶= (1 − 𝑡)𝛽𝑟−1

𝑖 (𝑡) + 𝑡𝛽𝑟−1
𝑖+1 (𝑡), 𝑟 = 1,… , 𝑘 𝑖 = 0,… , 𝑘 − 𝑟.

(1)

The resulting curve 𝛽 is a polynomial curve with coefficients 𝑝0, … , 𝑝𝑘 when expanded in the Bernstein basis; i.e., with basis polyno-
mials 𝑏𝑘

𝑗
∶ [0, 1] → [0, 1] defined by

𝑏𝑘
𝑗 (𝑡) ∶=

(
𝑘

𝑗

)
(1 − 𝑡)𝑘−𝑗 𝑡𝑗 , 𝑗 = 0,… , 𝑘,

it is of the form

𝛽(𝑡) =
𝑘∑

𝑗=0
𝑝𝑗 𝑏𝑘

𝑗 (𝑡).

Although 𝛽 is written in terms of 𝑘 + 1 polynomials, its actual degree may be less than 𝑘 (Farouki, 2012, Sec. 5). The algorithm can 
be extended to build triangular and quadrangular nets (de Casteljau, 1963; Boehm and Müller, 1999). Furthermore, one can string 
together Bézier curves to form Bézier splines, and simple geometric conditions determine the smoothness of the composite curve. 
Another extension of de Casteljau’s algorithm yields so-called polar forms, or blossoms (de Casteljau, 1985; Ramshaw, 1989), which 
are particularly useful in the theoretical analysis of Bézier splines and algorithms for their computation.

Interest in modeling manifold-valued curves (such as trajectories in the Lie group of rigid body motions) emerged roughly 30 years 
ago. It was then discovered that de Castejau’s algorithm can be generalized from flat Euclidean space to curved manifolds (Park and 
Ravani, 1995; Crouch et al., 1999; Lin and Walker, 2001). The necessary observation is that (1) can be seen as following a straight line 
from 𝛽𝑟−1

𝑖
to 𝛽𝑟−1

𝑖+1 for a fixed amount of time 𝑡. As straight lines are the geodesics of Euclidean space, one can follow the geodesics 
of a curved space to generalize the algorithm. Although there is no analog to the Bernstein basis in manifolds (which facilitates 
theoretical analyses in the Euclidean case), it can be shown that the resulting generalized Bézier curves inherit many geometric 
properties their Euclidean special cases possess (Popiel and Noakes, 2007; Nava-Yazdani and Polthier, 2013), including the easy 
construction of differentiable Bézier splines. One of the most important features of generalized Bézier curves is the (generalized) de 
Casteljau algorithm itself: Whenever, in a given manifold, geodesics can be computed efficiently, this is also true for generalized 
Bézier curves.

Several traditional applications of Bézier curves can also be found for their manifold-valued generalizations: They have been 
used, e.g., for curve modeling (Morera et al., 2008; Sharp and Crane, 2020; Mancinelli et al., 2023) and computer animation through 
interpolation (Park and Ravani, 1995; Gousenbourger et al., 2014; Effland et al., 2015; Brandt et al., 2016; Samir and Adouani, 
2019).

To an increasing extent, manifold-valued Bézier curves have been used in data analytic tasks—applications that de Casteljau 
probably did not envision when he derived his algorithm. Indeed, a wide range of applications in areas like morphology (Kendall et 
al., 2009; Dryden and Mardia, 2016), action recognition (Park et al., 1995; Veeriah et al., 2015; Vemulapalli and Chellapa, 2016; 
Huang et al., 2017), and medical imaging (Arsigny et al., 2007; Bauer et al., 2014; Pennec et al., 2020; Ambellan et al., 2021; 
Ambellan, 2022) work with manifold-valued data to the extent that relying on a (possibly hard to find) Euclidean embedding space 
does not suffice. Several data-fitting approaches relying on generalized Bézier splines have been proposed and tested on different 
types of data (Bergmann and Gousenbourger, 2018; Gousenbourger et al., 2019; Bak et al., 2023).

A methodically related line of research has focused on the statistical analysis of manifold-valued data using generalized Bézier 
splines as the underlying model. As one of the most fundamental statistical procedures, regression methods play an important role 
in the statistical analysis of the dependence of a response variable on an explanatory variable. Parametric linear regression was 
first brought to manifolds in (Fletcher, 2013) by modeling trends as geodesics. The latter, while adequate in various circumstances, 
frequently falls short, e.g., when saturation effects or cyclic behavior are observed. Generalized Bézier splines, which are far more 
adaptable than geodesics, have successfully been utilized in (Hanik et al., 2020) to capture such effects.

When the data has more complicated correlations, e.g., longitudinal data, hierarchical (or mixed-effects) models are needed 
to account for them. Extending the regression approach, a hierarchical model based on generalized Bézier splines was proposed 
that can capture a multitude of manifold-valued effects (Hanik et al., 2022). An important concept underlying the model is that 
of Bézierfolds: the manifolds consisting of all Bézier splines of the same type over a certain neighborhood. It was first discussed 
in (Hanik et al., 2022) and then further clarified in (Nava-Yazdani et al., 2023). Two different Riemannian metrics were proposed 
for Bézierfolds, namely, an “integral” metric (Hanik et al., 2022) that can be used for arbitrary splines and a generalization of the 
Sasaki metric (Nava-Yazdani et al., 2023) for cubic splines.

There are several closely related concepts for modeling smooth curves, such as B-splines and subdivision schemes. Replacing affine 
by geodesic averaging, subdivision schemes were generalized to manifolds (Wallner and Dyn, 2005; Nava-Yazdani and Yu, 2011) and 
more recently applied to the modeling of curves in shape spaces (Brandt et al., 2016; Huber et al., 2017). Additionally, spacetime 
constraints were used to compute optimal trajectories as generalizations of traditional cubic B-splines, named wiggly splines (Kass 
and Anderson, 2008), and were adapted to curved shape spaces (Schulz et al., 2014, 2015). While these types of manifold-valued 
curves can exhibit similar flexible shapes, their computation requires expensive approximation methods. This also applies to curves 
that are derived from a variational setting on Riemannian manifolds, such as Riemannian cubics (Hinkle et al., 2014; Noakes and 
2

Ratiu, 2016; Camarinha et al., 2022).
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The goal of this article is to give an overview of manifold-valued Bézier splines in data analysis and, in doing so, to provide an 
introduction to an intriguing subfield that builds upon de Casteljau’s research. It is thus a survey article. Nevertheless, some results 
are more general than what can be found in the literature.2 In particular, the notion of Bézierfolds (Riemannian manifolds of Bézier 
splines) and their essential properties (i.e., Theorem 2 and Corollary 3.1) have not been established before aside from the cubic 
case. Additionally, the equivalence of maximum likelihood and least squares estimation for regression in manifolds has only been 
established when the underlying curves are geodesics; we show that it also holds for arbitrary Bézier splines in Theorem 3.

As a disclaimer, we emphasize that the exposition in this paper should not be read as an objective and balanced overview of 
applications of generalized Bézier curves as a whole, but rather as a personal perspective biased by the authors’ research interests.

This article is structured as follows: Sec. 2 starts with a short summary of the necessary mathematical facts from differential 
geometry. Then, we define Bézier splines in Riemannian manifolds and collect some of their properties. In Sec. 3, we prove that there 
is a smooth manifold structure for certain sets of Bézier splines and discuss 2 possible choices of a Riemannian metric for them. We 
also state a conjecture that the results hold more generally. Sec. 4 shows how Bézier splines can be used for highly flexible regression 
in manifolds. In Sec. 5, we then show how the results from Sec. 3 are utilized for the hierarchical modeling of manifold-valued data. 
Last but not least, applications to real-world data are summarized in Sec. 6.

It is not necessary to read all sections linearly. Sec. 2 is the only prerequisite for the regression scheme presented in Sec. 4. The 
hierarchical model from Sec. 5, on the other hand, builds on all prior sections.

2. Manifold-valued Bézier splines

In this section, we recall manifold-valued Bézier splines and discuss their properties. In particular, we show that certain sets of 
Bézier curves constitute manifolds; two Riemannian metrics—one that is generally usable and one for the cubic case—are also given. 
We start with a brief summary of the necessary facts from Riemannian geometry; a good reference on this is (do Carmo, 1992). We 
always use “smooth” for “infinitely often differentiable.”

2.1. Background: Riemannian geometry

A Riemannian manifold is a differentiable manifold 𝑀 with a Riemannian metric ⟨ ⋅ , ⋅ ⟩ that, for each 𝑝 ∈ 𝑀 , assigns a smoothly 
varying scalar product ⟨ ⋅ , ⋅ ⟩𝑝 to the tangent space 𝑇𝑝𝑀 . The metric induces a distance function dist on 𝑀 . If 𝑓 ∶ 𝑀 → 𝑁 is a 
smooth map between two manifolds 𝑀 and 𝑁 , we denote the derivative of 𝑓 at 𝑝 in direction 𝑣 ∈ 𝑇𝑝𝑀 by d𝑝𝑓 (𝑣). It yields a linear 
mapping d𝑝𝑓 ∶ 𝑇𝑝𝑀 → 𝑇𝑓 (𝑝)𝑁 .

One of the fundamental objects every manifold possesses is the so-called Levi-Civita connection. Given two vector fields 𝑋, 𝑌 on 
𝑀 , the latter allows to differentiate 𝑌 along 𝑋, resulting in a new vector field ∇𝑋 𝑌 . For the special case of Euclidean space, the 
Levi-Civita connection is simply the directional derivative.

The connection induces the Riemannian curvature tensor 𝑅, which intuitively measures the local deviation of 𝑀 from flat 
space by quantifying the failure of “partial derivatives” to commute. It takes three vector fields 𝑋, 𝑌 , 𝑍 as input and is defined by 
𝑅(𝑋, 𝑌 )𝑍 ∶= ∇𝑋∇𝑌 𝑍 −∇𝑌 ∇𝑋 𝑍 −∇[𝑋,𝑌 ]𝑍 , where [ ⋅ , ⋅ ] denotes the Lie bracket of vector fields; see (do Carmo, 1992, Ch. 4) for 
more details.

A vector field 𝑋 along 𝛼 is called parallel if ∇𝛼′𝑋 = 0; we also say that 𝑋𝛼(𝑏) is the parallel transport of 𝑋𝛼(𝑎) to 𝑇𝛼(𝑏)𝑀 .

A geodesic 𝛾 is a generalized straight line. Denoting its derivative by 𝛾 ′ ∶= d
d𝑡

𝛾 , it is a curve without acceleration, i.e., ∇𝛾′𝛾 ′ = 0. 
In Euclidean space, geodesics are simply straight lines that are traced with constant velocity.

It will be crucial for us that every point in 𝑀 has a normal convex neighborhood3 𝑈 , in which each pair 𝑝, 𝑞 ∈ 𝑈 is joined by a 
unique length-minimizing geodesic [0, 1] ∋ 𝑡 ↦ 𝛾(𝑡; 𝑝, 𝑞) that never leaves 𝑈 . Each geodesic is also differentiable w.r.t. its start and 
endpoints. We will fix some normal convex neighborhood 𝑈 in the following.

The Riemannian exponential is another very important map. Let 𝑣 ∈ 𝑇𝑝𝑀 and 𝛾 be a geodesic in 𝑈 with 𝑣 = 𝛾 ′(0; 𝑝, 𝑞). Then, 
exp𝑝(𝑣) ∶= 𝑞 defines the exponential map at 𝑝. It has an inverse log𝑝 called the logarithm at 𝑝, which fulfils log𝑝(𝑞) = 𝛾 ′(0; 𝑝, 𝑞). Thus, 
the derivative (d exp𝑝)𝑣 ∶ 𝑇𝑣𝑇𝑝𝑀 ≅ 𝑇𝑝𝑀 → 𝑇exp𝑝(𝑣)𝑀 of exp𝑝 at 𝑣 is invertible for all 𝑣 ∈ log𝑝(𝑈 ).

Using the metric, we can define the gradient of a smooth function 𝑓 ∶ 𝑀 →ℝ implicitly by requiring

d𝑓𝑝(𝑣) = ⟨grad𝑝𝑓 , 𝑣⟩𝑝, (2)

for all 𝑣 ∈ 𝑇𝑝𝑀 and all 𝑝 ∈ 𝑀 , generalizing the ordinary Euclidean gradient. Importantly, just like in the Euclidean case, d𝑝𝑓 = 0
if and only if grad𝑝𝑓 = 0. Furthermore, the gradient still points in the direction of the steepest ascent, so optimization algorithms 
relying on gradients can be transferred to Riemannian manifolds (Absil et al., 2007).

Finally, the mean as the most fundamental statistic of a data set can be generalized to manifolds in the form of the (sample) 
Fréchet mean. Given data 𝑞1, … , 𝑞𝑛 ∈ 𝑈 , it is defined by

𝑞 ∶= argmin
𝑝∈𝑈

𝑛∑
𝑖=1

dist(𝑞, 𝑞𝑖)2. (3)

2 They are also in the Ph.D. thesis of Hanik (2023).
3

3 Other names are also used for such a neighborhood; (at least) “geodesically convex” and “strongly convex” neighborhood can also be found.
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Fig. 1. Cubic Bézier curve 𝛽 on the sphere 2 and the construction of 𝛽(1∕2) by the de Casteljau algorithm.

2.2. Bézier splines

We can now define Bézier curves in 𝑀 by generalizing de Casteljau’s algorithm (1).

Definition 2.1 (De Casteljau’s Algorithm on Manifolds). Let control points 𝑝0, … , 𝑝𝑘 ∈ 𝑈 be given. For all 𝑡 ∈ [0, 1], we set

𝛽0
𝑖 (𝑡) ∶= 𝑝𝑖,

𝛽𝑟
𝑖 (𝑡) ∶= 𝛾(𝑡;𝛽𝑟−1

𝑖 (𝑡), 𝛽𝑟−1
𝑖+1 (𝑡)), 𝑟 = 1,… , 𝑘, 𝑖 = 0,… , 𝑘 − 𝑟.

We call 𝛽 ∶= 𝛽𝑘
0 ∶ [0, 1] → 𝑈 Bézier curve of degree 𝑘 with control points 𝑝0, … , 𝑝𝑘.

We also write 𝛽(𝑡; 𝑝0, … , 𝑝𝑘) instead of 𝛽(𝑡) whenever we want to make the dependence on the control points explicit. The 
algorithm is visualized for the 2-dimensional sphere 2 in Fig. 1.

The following theorem collects important properties of generalized Bézier curves from (Popiel and Noakes, 2007).

Theorem 1. Let 𝛽 be a Bézier curve of degree 𝑘 with control points 𝑝0, … , 𝑝𝑘 ∈ 𝑈 . Then,

(i) 𝛽(0) = 𝑝0 and 𝛽(1) = 𝑝𝑘;

(ii) 𝛽′(0) = 𝑘 log𝑝0
(𝑝1) and 𝛽′(1) = −𝑘 log𝑝𝑘

(𝑝𝑘−1);
(iii) ∇𝛽′𝛽′(0) = 𝑘(𝑘 − 1)𝑢̃0, where

𝑢̃0 ∶=

{
𝛾 ′(0;𝑝1, 𝑝2), if 𝑝0 = 𝑝1,

(d exp𝑝0
)−1

𝛾′(0;𝑝0 ,𝑝1)
(

𝛾 ′(0;𝑝1, 𝑝2) − 𝛾 ′(1;𝑝0, 𝑝1)
)

, if 𝑝0 ≠ 𝑝1;

(iv) ∇𝛽′𝛽′(1) = 𝑘(𝑘 − 1)𝑢̃𝑘, where

𝑢̃𝑘 ∶=

{
−𝛾 ′(1;𝑝𝑘−2, 𝑝𝑘−1), if 𝑝𝑘−1 = 𝑝𝑘,

(d exp𝑝𝑘
)−1−𝛾′(1;𝑝𝑘−1 ,𝑝𝑘)

(
𝛾 ′(0;𝑝𝑘−1, 𝑝𝑘) − 𝛾 ′(1;𝑝𝑘−2, 𝑝𝑘−1)

)
, if 𝑝𝑘−1 ≠ 𝑝𝑘.

The theorem yields the following corollary.

Corollary 2.1. Let 𝛽 be a Bézier curve of degree 𝑘 with control points 𝑝0, … , 𝑝𝑘 ∈ 𝑈 . Then,

(i) 𝑝1 = exp𝑝0

(
1
𝑘

𝛽′(0)
)

and 𝑝𝑘−1 = exp𝑝𝑘

(
−1

𝑘
𝛽′(1)

)
;

(ii) 𝑝2 = exp𝑝1

(
1

𝑘(𝑘−1)𝑤0

)
and 𝑝𝑘−2 = exp𝑝𝑘−1

(
1

𝑘(𝑘−1)𝑤𝑘

)
, where 𝑢0 ∶= ∇𝛽′𝛽′(0), 𝑢𝑘 ∶= ∇𝛽′𝛽′(1) and

𝑤0 ∶=

{
𝑢0, if 𝑝0 = 𝑝1,

(d exp𝑝0
)𝛾′(0;𝑝0 ,𝑝1)

(
𝑢0 + 𝑘(𝑘 − 1)𝛾 ′(0;𝑝0, 𝑝1)

)
, if 𝑝0 ≠ 𝑝1,{

𝑢𝑘, if 𝑝𝑘−1 = 𝑝𝑘,
4

𝑤𝑘 ∶=
(d exp𝑝𝑘

)−𝛾′(1;𝑝𝑘−1 ,𝑝𝑘)
(

𝑢𝑘 − 𝑘(𝑘 − 1)𝛾 ′(1;𝑝𝑘−1, 𝑝𝑘)
)

, if 𝑝𝑘−1 ≠ 𝑝𝑘.
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These properties can be exploited to define 𝐶1 or 𝐶2 Bézier splines (Popiel and Noakes, 2007; Gousenbourger, 2020). We give 
the definition for the 𝐶1 case.

Definition 2.2. For 𝑖 = 0, … , 𝐿 − 1, let 𝑝(𝑖)0 , … , 𝑝(𝑖)
𝑘𝑖

∈ 𝑈 be the control points of 𝐿 ≥ 2 cubic Bézier curves 𝛽(0), … , 𝛽(𝐿−1) such that

𝑝
(𝑖)
𝑘𝑖
= 𝑝

(𝑖+1)
0 and 𝛾

(
𝑘𝑖+1

𝑘𝑖 + 𝑘𝑖+1
;𝑝

(𝑖)
𝑘𝑖−1

, 𝑝
(𝑖+1)
1

)
= 𝑝

(𝑖)
𝑘𝑖

(4)

for all 𝑖 = 0, … , 𝐿 − 2. The (𝑘1,… , 𝑘𝐿)-Bézier spline 𝐵 with control points(
𝑝
(𝑖)
0 ,… , 𝑝

(𝑖)
𝑘𝑖

)
𝑖=0,…,𝐿−1

is then defined by

𝐵(𝑡) ∶=
⎧⎪⎨⎪⎩

𝛽(0)
(

𝑡;𝑝
(0)
0 , 𝑝

(0)
1 , 𝑝

(0)
2 , 𝑝

(0)
3

)
, 𝑡 ∈ [0,1],

𝛽(𝑖)
(

𝑡 − 𝑖;𝑝
(𝑖)
0 , 𝑝

(𝑖)
1 , 𝑝

(𝑖)
2 , 𝑝

(𝑖)
3

)
, 𝑡 ∈ (𝑖, 𝑖 + 1], 𝑖 = 1,… , 𝐿 − 1.

When it is clear from context, we do not mention the degrees. It follows directly from Theorem 1 and Corollary 2.1 that Bézier 
splines are 𝐶1. We also consider Bézier curves as splines with a single segment (the 𝐿 = 1 case).

We can also ensure that a Bézier spline is cyclic. Indeed a Bézier spline is closed if and only if (4) extends cyclically; this holds if 
additionally

𝑝
(𝐿−1)
𝑘

= 𝑝
(0)
0 and 𝛾

(
𝑘0

𝑘0 + 𝑘𝐿−1
;𝑝

(𝐿−1)
𝑘𝐿−1−1

, 𝑝
(0)
1

)
= 𝑝

(0)
0 , (5)

Closed 𝐶1 splines can readily be extended to 𝐶1 cyclic curves defined on the whole of ℝ when the input parameter is viewed modulo 
𝐿. There are many applications where (quasi)-periodic behavior in manifolds is of central interest, e.g., the motion of a beating heart 
and gait patterns, which have been successfully modeled in curved shape space, and the group of rigid-body motions, respectively.

The fact that one can model periodic behavior with Bézier splines with simple conditions on their control points is a striking 
feature. Other generalizations of polynomial curves like Riemannian cubics (Noakes and Ratiu, 2016), which are defined as solutions 
to initial value problems, do not allow for such easy modeling of cyclic trends.

Because of the restrictions (4) and (5), not all control points are free parameters of a Bézier spline. Indeed, if 𝑝
(𝑖)
𝑘𝑖

= 𝑝
(𝑖+1)
0 are 

connecting control points, joining the 𝑖-th to the (𝑖 + 1)-th segment,4 we omit 𝑝(𝑖+1)0 as a variable. Furthermore, we choose that 𝑝(𝑖)
𝑘𝑖

and 

its predecessor 𝑝
(𝑖)
𝑘𝑖−1

are free variables, while the successor 𝑝
(𝑖+1)
1 shall also be eliminated as a variable. With 𝑘 ∶= (𝑘𝑖−1 + 𝑘𝑖)∕𝑘𝑖 we, 

therefore, have the additional condition 𝑝(𝑖+1)1 = 𝛾(𝑘; 𝑝(𝑖)
𝑘𝑖−1

, 𝑝(𝑖)
𝑘𝑖
) at the connection. Setting{

𝐾̊ ∶= 𝑘0 + 𝑘1 +⋯+ 𝑘𝐿−2 + 𝑘𝐿−1 − 𝐿 − 1, if 𝐵 is closed,

𝐾 ∶= 𝑘0 + 𝑘1 +⋯+ 𝑘𝐿−2 + 𝑘𝐿−1 − 𝐿 + 1, else,
(6)

it then follows that the number of independent control points of a general 𝐶1 Bézier spline 𝐵 is 𝐾 + 1, while for closed Bézier splines 
have 𝐾̊ + 1.

Remark 1. Clearly, closed Bézier splines are Bézier splines as well. Therefore, when considering all Bézier splines of given degrees, 
we include closed splines and think of all 𝐾 +1 control points as free parameters; only when we restrict to closed splines, this number 
drops to 𝐾̊ + 1.

We denote the set of 𝐾 + 1 independent control points of a general spline 𝐵 by 𝑝0, … , 𝑝𝐾 , i.e.,

(𝑝0,… , 𝑝𝐾 ) ∶=
(

𝑝
(0)
0 ,… , 𝑝

(0)
𝑘0

, 𝑝
(1)
2 ,… , 𝑝

(1)
𝑘1

,… , 𝑝
(𝐿−1)
2 ,… , 𝑝

(𝐿−1)
𝑘𝐿−1

)
∈ 𝑈 𝐾+1.

When restricting to closed splines, 𝑝
(0)
0 and 𝑝

(0)
1 are left out. An example of a non-closed 𝐶1 spline with three cubic segments and 

nine independent control points is shown in Fig. 2a, while a closed 𝐶1 spline with two cubic segments and four independent control 
points is depicted in Fig. 2b. When it is important, we make the dependence of 𝐵 on its control points clear by writing 𝐵(𝑡; 𝑝0, … , 𝑝𝐾 )
or 𝐵(𝑡; 𝑝0, … , 𝑝𝐾̊ ).
5

4 For closed splines, the segment numbers are meant modulo 𝐿, so the connection between the first and last segment is included.
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Fig. 2. Examples of Bézier splines. The unlabeled green points are dependent control points. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

3. Spaces of Bézier splines

We will now see that certain sets of Bézier splines over manifolds form manifolds themselves. To the best of our knowledge, this 
was first discussed in (Hanik et al., 2022), albeit without rigorous proof; the latter was then given for cubic splines in (Nava-Yazdani 
et al., 2023). Here, we will extend the proof to splines with segments of maximal degree 5. After that, two Riemannian metrics for 
the resulting manifolds are discussed. The following background is the prerequisite for the Sasakian metric.

3.1. Background: geometry of the tangent bundle

Next comes a summary of facts about the geometry of the tangent bundle; a good reference on the differential geometric properties 
of the tangent bundle is (Jost, 2017); see (Gudmundsson and Kappos, 2002) for a reference on the Sasaki metric.

Let 𝑀 be a 𝑑-dimensional Riemannian manifold. The disjoint union 𝑇 𝑀 ∶=
⨆

𝑝∈𝑀 𝑇𝑝𝑀 is the tangent bundle of 𝑀 . It comes with 
the bundle projection 𝜋 ∶ 𝑇 𝑀 → 𝑀 , (𝑝, 𝑣) ↦ 𝑝. The tangent bundle is a 2𝑑-dimensional manifold itself, and its natural Riemannian 
metric is the Sasaki metric. To define the latter, we use the fact that the tangent bundle 𝑇 𝑇 𝑀 of 𝑇 𝑀 is the direct sum of a vertical 
subbundle 𝑉 𝑇 𝑀 (the kernel of the derivative d𝜋 of 𝜋) and a horizontal subbundle 𝐻𝑇 𝑀 that is determined by the Levi-Civita 
connection of 𝑀 as vectors tangent to parallel vector fields; both 𝑉 𝑇 𝑀 and 𝐻𝑇 𝑀 have rank 𝑑. Intuitively, horizontal vectors are 
directions in which only the footpoint changes, whereas the former is constant in vertical directions. The Sasaki metric (Sasaki, 1962) 
is the unique Riemannian metric ⟨ ⋅ , ⋅ ⟩𝑆 on 𝑇 𝑀 with the following properties:

(i) The bundle projection 𝜋 is a Riemannian submersion, i.e., 𝜋 has maximal rank, and d𝜋 preserves the lengths of horizontal 
vectors.

(ii) For any 𝑝 ∈ 𝑀 , the restriction of ⟨ ⋅ , ⋅ ⟩𝑆 to the tangent space 𝑇𝑝𝑀 ⊂ 𝑇 𝑀 coincides with ⟨ ⋅ , ⋅ ⟩𝑝.
(iii) Let 𝑢 be a parallel vector field along a curve 𝑞 ∶ (−𝜀, 𝜀) → 𝑀 . Define 𝜁 = (−𝜀, 𝜀) → 𝑇 𝑀 , 𝑡 ↦ (𝑞(𝑡), 𝑢(𝑡)). Let further 𝑝 = 𝑞(0) lie 

on 𝑞 and 𝑣 ∶ (−𝜀, 𝜀) → 𝑇𝑝𝑀 such that 𝑢(0) = 𝑣(0). Define 𝜂 ∶ (−𝜀, 𝜀) → 𝑇 𝑀 , 𝑡 ↦ (𝑝, 𝑣(𝑡)). Then 𝜁̇(0) ∶= 𝑑

𝑑𝑡
𝜁(0) ∈ 𝐻(𝑝,𝑢(0))𝑇 𝑀 and 

𝜂̇(0) = 𝑑

𝑑𝑡
𝜂(0) ∈ 𝑉(𝑝,𝑢(0))𝑇 𝑀 are orthogonal.

It follows that horizontal and vertical vectors are orthogonal.
Let (𝑝, 𝑢) ∈ 𝑇 𝑀 . Because 𝐻(𝑝,𝑢)𝑇 𝑀 and 𝑉(𝑝,𝑢)𝑇 𝑀 are 𝑑-dimensional vector spaces, both can be identified with 𝑇𝑝𝑀 ; in other 

words, we can view an element of 𝑇(𝑝,𝑢)𝑇 𝑀 as a tuple (𝑣, 𝑤) ∈ (𝑇𝑝𝑀)2. As horizontal and vertical components are orthogonal, the 
Sasaki metric between (𝑣1, 𝑤1), (𝑣2, 𝑤2) ∈ 𝑇(𝑝,𝑢)𝑇 𝑀 then reads

⟨(𝑣1, 𝑤1), (𝑣2, 𝑤2)⟩𝑆
(𝑝,𝑢) = ⟨𝑣1, 𝑣2⟩𝑝 + ⟨𝑤1, 𝑤2⟩𝑝. (7)

Geodesics of the Sasaki metric can be characterized in terms of geometric features of the underlying space. Let 𝜂 = (𝑞, 𝑢) ∶
(−𝜀, 𝜀) → 𝑇 𝑀 be a curve in 𝑇 𝑀 and 𝜂̇ = (𝑣, 𝑤). Denoting the Riemannian curvature tensor of 𝑀 by 𝑅, 𝜂 is a geodesic if (and only 
if) the coupled system

∇𝑣𝑣 = −𝑅(𝑢, 𝑤)𝑣, (8)

∇𝑣𝑤 = 0 (9)

holds. Intuitively, the above equations say that the footpoint curve 𝑞 bends according to the curvature of 𝑀 , while the vector 
6

component 𝑢 changes at a constant rate.
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Further properties of 𝑇 𝑀 with the Sasaki metric ⟨ ⋅ , ⋅ ⟩𝑆 , e.g., its curvature tensor and Levi-Civita connection, can be found 
in (Gudmundsson and Kappos, 2002).

3.2. Bézierfolds

We start with the definition of Bézierfolds.

Definition 3.1 (Bézierfolds). Let 𝑈 be a normal convex neighborhood of a Riemannian manifold 𝑀 . We define the Bézierfold of 
(𝑘0, … , 𝑘𝐿−1)-Bézier splines over 𝑈 by

𝐿
𝑘0 ,…,𝑘𝐿−1

(𝑈 ) ∶= {𝐵 ∶[0, 𝐿]→ 𝑈
||| 𝐵 is a (𝑘0,… , 𝑘𝐿−1)-Bézier spline}. (10)

Its subset of closed splines

̊𝐿
𝑘0 ,…,𝑘𝐿−1

(𝑈 ) ∶= {𝐵 ∶[0, 𝐿]→ 𝑈
||| 𝐵 is a closed (𝑘0,… , 𝑘𝐿−1)-Bézier spline}, (11)

is called Bezierfold of closed (𝑘0, … , 𝑘𝐿−1)-Bézier splines over 𝑈 .

We often only say “Bézierfold” and write (𝑈 ) when the exact values of the parameters (𝑘0, … , 𝑘𝐿−1) are unimportant or clear.
The following theorem shows that many Bézierfolds are not only arbitrary sets of functions but can be given the structure of 

finite-dimensional smooth manifolds.

Theorem 2. Let 𝑀 be a 𝑑-dimensional Riemannian manifold and 𝑈 ⊆ 𝑀 a normal convex neighborhood. Furthermore, let 1
𝑘
(𝑈 ) and 

̊1
𝑘
(𝑈 ) be defined by (3.1) and (11), respectively. Then, 1

𝑘
(𝑈 ) can be given the structure of a (𝑘 + 1)𝑑-dimensional smooth manifold 

for 𝑘 ∈ {0, 1, 2, 3, 4, 5}. Furthermore, with this structure, ̊1
𝑘
(𝑈 ) is a smooth (𝑘 − 1)𝑑-dimensional embedded submanifold of 𝐵1

𝑘
(𝑈 ) for 

𝑘 ∈ {2, 3, 4, 5}.

Proof. Let 1 ≤ 𝑘 ≤ 5. We define the map

𝐹 ∶ 𝑈 𝑘+1 →1
𝑘
(𝑈 ), (12)

(𝑝0,… , 𝑝𝑘)↦ 𝛽( ⋅ ;𝑝0,… , 𝑝𝑘). (13)

Theorem 1 and Corollary 2.1 imply that 𝐹 is injective and, thus, bijective. We can then push the product-manifold structure of 𝑈 𝑘+1

forward along 𝐹 to 𝐵1
𝑘
(𝑈 ) to turn it into a smooth manifold, thereby securing that 𝐹 is a smooth diffeomorphism (Postnikov, 2013, 

Ch. 30 § 9).5 Analogously, we can push the structure of 𝑈 𝑘−1 to ̊1
𝑘
(𝑈 ) turning it into an embedded submanifold. □

This structure allows us to identify Bézier splines of low degrees and their control points. Application-wise, the spaces covered in 
Theorem 2 are the most important ones as, traditionally, the degree of the underlying polynomial curve in regression is kept as low 
as possible to avoid overfitting, and this should not be different for regression in manifolds. Also, when curves of low degrees are not 
adequate, it can be advisable to use splines (built from them) instead of curves of higher degrees (Marsh and Cormier, 2001).

From a theoretical perspective, it is nevertheless interesting to advance the result to higher degrees. Indeed, it seems very likely 
that 1

𝑘
(𝑈 ) and ̊1

𝑘
(𝑈 ) can always be given a manifold structure in the above way. We, therefore, state the following conjecture.

Conjecture. Theorem 2 also holds for all 𝑘 ≥ 6.

We are unaware of explicit formulas for further control points, which would be necessary to extend our proof. What is known 
is that the 𝓁-th covariant derivative of a Bézier curve at 𝑡 = 0 and 𝑡 = 1 is determined by the first and last 𝓁 + 1 control points, 
respectively (Popiel and Noakes, 2007, p. 112); but not that a subset of them never suffices.

Of course, one could also try to use the inverse function theorem to show that 𝐹 is locally invertible. Then, by restricting to a 
subset 𝑈 ⊆ 𝑈 , we would obtain that 1

𝑘
(𝑈 ) is a manifold. To this end, delicate investigations of sums of Jacobi fields along different 

curves are necessary. We leave this for future work.
Turning to Bézier splines, we can extend Theorem 2.

Corollary 3.1. Let 𝑀 be a 𝑑-dimensional Riemannian manifold and 𝑈 ⊆ 𝑀 a normal convex neighborhood. Furthermore, let 𝐿
𝑘0,…,𝑘𝐿−1

(𝑈 )
and ̊𝐿

𝑘0 ,…,𝑘𝐿−1
(𝑈 ) be defined by (3.1) and (11), respectively. Then, 𝐿

𝑘0,…,𝑘𝐿−1
(𝑈 ) can be given the structure of a smooth manifold of 

dimension

5 More precisely, we obtain a topology on 1
𝑘
(𝑈 ) by requiring that a subset is open if and only if its preimage under 𝐹 is open. A maximal atlas is then given 
7

analogously: If (𝑉 , 𝜙) is a chart of 𝑈 𝑘+1 , then (𝐹 (𝑈 ), 𝜙◦𝐹 −1) is a chart of 𝐵1
𝑘
(𝑈 ) (and all charts are constructed this way).
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dim
(𝐿

𝑘0 ,…,𝑘𝐿−1
(𝑈 )

)
= 𝑑

(
𝐿−1∑
𝑖=0

𝑘𝑖 − 𝐿 + 2

)
if 𝑘𝑖 ∈ {1, 2, 3, 4, 5} for all 𝑖 = 0, … , 𝐿 − 1. Furthermore, if 𝑘𝑖 ∈ {1, 2, 3, 4, 5} for all 𝑖 = 1, … , 𝐿 − 2 such that 

∑𝐿−1
𝑖=0 𝑘𝑖 > 𝐿, then 

̊𝐿
𝑘0 ,…,𝑘𝐿−1

(𝑈 ) is a smooth embedded submanifold in this structure. The dimension of ̊𝐿
𝑘0 ,…,𝑘𝐿−1

(𝑈 ) is

dim
(̊𝐿

𝑘0 ,…,𝑘𝐿−1
(𝑈 )

)
= 𝑑

(
𝐿−1∑
𝑖=0

𝑘𝑖 − 𝐿

)
.

Proof. We extend 𝐹 so that

𝐹 ∶ 𝑈 𝐾+1 →𝐿
𝑘0 ,…,𝑘𝐿−1

(𝑈 ),

(𝑝0,… , 𝑝𝐾 )↦ 𝐵( ⋅ ;𝑝0,… , 𝑝𝐾 ),
(14)

where 𝐾 is given by Definition 6. The assertion now follows using the arguments from the proof of Theorem 2 for every segment. 
(Thereby, 𝐹 is also turned into a diffeomorphism.) The construction for ̊𝐿

𝑘0 ,…,𝑘𝐿−1
(𝑈 ) works analogously. □

Remark 2. Several Bézierfolds coincide with sets of constant maps into 𝑈 . Whereas for spaces that contain non-closed curves, this is 
(only) true for 1

0(𝑈 ), there are infinitely many spaces of closed curves, including ̊1
0(𝑈 ), ̊1

1(𝑈 ), ̊1
2(𝑈 ), ̊2

1,2(𝑈 ), ̊3
1,1,2(𝑈 ), etc. It is 

then clear that these spaces are all diffeomorphic to 𝑈 .

Since derivatives of diffeomorphisms map tangent spaces bijectively into each other, we can characterize the tangent spaces of a 
Bézierfold 𝐿

𝑘0 ,…,𝑘𝐿−1
(𝑈 ) with the help of the map (14): For each 𝐵 ∈𝐿

𝑘0 ,…,𝑘𝐿−1
(𝑈 ), we find

𝑇𝐵𝐿
𝑘0 ,…,𝑘𝐿−1

(𝑈 ) = {𝑋 ∶ [0, 𝐿]→ 𝑇 𝑀
||| ∃ 𝑣0 ∈ 𝑇𝑝0

𝑀,… , 𝑣𝐾 ∈ 𝑇𝑝𝐾
𝑀 ∀ 𝑡 ∈ [0, 𝐿] ∶

𝑋(𝑡) =
𝐾∑

𝑗=0
d𝑝𝑗

𝐵(𝑡;𝑝0,… , 𝑝𝑗−1, ⋅ , 𝑝𝑗+1,… , 𝑝𝐾 )(𝑣𝑗 )}. (15)

Every element 𝑋 ∈ 𝑇𝐵𝐿
𝑘0 ,…,𝑘𝐿−1

(𝑈 ) is thus a vector field along 𝐵. We say that it is induced by the vectors 𝑣0, … , 𝑣𝐾 . The tangent 
spaces 𝑇𝐵̊𝐿

𝑘0 ,…,𝑘𝐿−1
(𝑈 ) of spaces with closed curves are given by the right-hand side of (15) when 𝐾 is replaced by 𝐾̊ . Bergmann 

and Gousenbourger (2018) studied vector fields such as those in (15): They derived explicit formulas for their computation if 𝑀 is a 
symmetric space, i.e., Riemannian manifolds for which reflections about points are isometries.

In (Nava-Yazdani et al., 2023), a closely connected identification was used to give the space of cubic6 Bézier splines a smooth 
manifold structure: The authors use the fact that an ordered pair (𝑝, 𝑞) ∈ 𝑈 can be identified with (𝑝, log𝑝(𝑞)) ∈ 𝑇 𝑀 . A cubic spline 
𝐵 ∈𝐿

3,…,3(𝑈 ) can then be encoded using the mapping

𝐹 ∶𝐿
3,…,3(𝑈 )→ (𝑇 𝑈 )𝐿+1,

𝐵 ↦

((
𝐵(0), 𝐵̇(0)∕3

)
,… ,

(
𝐵(𝐿), 𝐵̇(𝐿)∕3

))
;

(16)

Theorem 1 and Corollary 2.1 yield

𝐹 (𝐵) =

((
𝑝
(0)
0 , log

𝑝
(0)
0

(
𝑝
(0)
1
))

,… ,

(
𝑝
(𝐿−1)
0 , log

𝑝
(𝐿−1)
0

(
𝑝
(𝐿−1)
1

))
,

(
𝑝
(𝐿−1)
3 ,−log

𝑝
(𝐿−1)
3

(
𝑝
(𝐿−1)
2

)))
.

For splines in ̊𝐿
3,…,3(𝑈 ), the last element is left out.

The equivalence of the induced structures follows from the fact that the differentiable structure of the tangent bundle 𝑇 𝑀 is 
induced by the one of 𝑀 . The mapping 𝐹 is helpful in obtaining a Riemannian metric for cubic Bézierfolds, as we will see shortly.

The map 𝐹 −1 can be used for another characterization of the tangent spaces (15) for cubic Bézierfolds. We obtain

𝑇𝐵𝐿
3,…,3(𝑈 ) = {𝑋 ∶ [0, 𝐿]→ 𝑇 𝑀

||| ∃ (𝑣0, 𝑤0) ∈ 𝑇(𝑝0 ,𝑢0)𝑇 𝑀,… ,

(𝑣𝐿, 𝑤𝐿) ∈ 𝑇(𝑝𝐿,𝑢𝐿)𝑇 𝑀 ∶ 𝑋 =
𝐿∑

𝑖=0
d(𝑝𝑖,𝑢𝑖)𝐹

−1((𝑣𝑖, 𝑤𝑖)
)
},

(17)
8

6 It is relatively straightforward to extend the construction to odd-degrees-only Bézierfolds, i.e., 𝐿
𝑘0 ,…,𝑘𝐿−1

(𝑈 ) with 𝑘0 , … , 𝑘𝐿−1 ∈ {1, 3, 5}.
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while for 𝑇𝐵̊𝐿
3,…,3(𝑈 ) the last summand of the vector fields is left out. The derivatives of 𝐹 −1 and 𝐹 can be computed using the 

same tools (so-called Jacobi fields). In particular, there are explicit formulas available in symmetric spaces to compute the terms 
d(𝑝𝑖,𝑢𝑖)𝐹

−1((𝑣𝑖, 𝑤𝑖) in (17); see (Fletcher, 2013; Nava-Yazdani et al., 2023).

3.3. Riemannian metrics on Bézierfolds

As a manifold, a Bézierfold can be endowed with a Riemannian metric. In the following, we describe two different possible 
choices—one general and one for the special case of cubic Bézier splines. We state everything for spaces (𝑈 ) of general splines, but, 
clearly, the metrics can be restricted to submanifolds ̊(𝑈 ) of closed curves.

3.3.1. Integral-based metric

In (Hanik et al., 2022), the authors proposed to endow 𝐿
𝑘0,…,𝑘𝐿−1

(𝑈 ) with the metric of Srivastava and Klassen from (Srivastava 
and Klassen, 2016, Sec. 3.3).

Definition 3.2. Let ⟨ ⋅ , ⋅ ⟩ be the Riemannian metric of 𝑀 and 𝐵 ∈ 𝑇𝐵𝐿
𝑘0 ,…,𝑘𝐿−1

(𝑈 ). The integral-based metric on 𝐿
𝑘0 ,…,𝑘𝐿−1

(𝑈 ) is 
defined by

⟨⟨𝑋, 𝑌 ⟩⟩𝐵 ∶=

𝐿

∫
0

⟨
𝑋(𝑡), 𝑌 (𝑡)

⟩
𝐵(𝑡)d𝑡

for all 𝑋, 𝑌 ∈ 𝑇𝐵(𝑈 ).

Bézier splines depend smoothly on their control points, hence the structure is smooth. The metric gives Bézier splines a natural 
distance. For general manifolds, explicit formulas for geodesics or the Riemannian exponential exp

𝐵
and logarithm log

𝐵
at 𝐵 ∈(𝑈 )

seem hard to find; nevertheless, one can approximate them efficiently using variational time-discretization (see Sec. 5.2).

Remark 3. Consider the Bézierfolds discussed in Remark 2 that consist of constant maps to 𝑈 only. Since their tangent vectors are 
constant maps into 𝑇 𝑈 , they are isometric to 𝑈 under the map (14) when endowed with the integral-based metric (3.2).

3.3.2. Sasakian metric for cubic splines

As first done in (Nava-Yazdani et al., 2023), the (product) Sasaki metric (7) can be bulled back to a cubic Bézierfold.
They endow 𝐿

3,…,3(𝑈 ) with the pullback ⟨⟨ ⋅ , ⋅ ⟩⟩𝑆 of the product Sasaki metric (7) under 𝐹 .

Definition 3.3. Let 𝑋, 𝑌 ∈ 𝑇𝐵𝐿
3,…,3(𝑈 ) and (𝑣𝑋

0 , 𝑤𝑋
0 ), … , (𝑣𝑋

𝐿
, 𝑤𝑋

𝐿
) ∈ (𝑇 𝑀)2 and (𝑣𝑌

0 , 𝑤𝑌
0 ), … , (𝑣𝑌

𝐿
, 𝑤𝑌

𝐿
) ∈ (𝑇 𝑀)2 the vectors that 

induce them. The Sasakian metric on 𝐿
3,…,3(𝑈 ) is defined by

⟨⟨𝑋, 𝑌 ⟩⟩𝑆
𝐵
∶=

𝐿∑
𝑖=0

⟨𝑣𝑋
𝑖 , 𝑣𝑌

𝑖 ⟩𝑝𝑖
+ ⟨𝑤𝑋

𝑖 , 𝑤𝑌
𝑖 ⟩𝑝𝑖

.

An advantage when using this metric is that 𝐿
3,…,3(𝑈 ) and (𝑇 𝑀)𝐿+1 become isometric (with isometry 𝐹 ). Hence, all computa-

tions can be done in (𝑇 𝑀)𝐿+1. In particular, it is never necessary to compute vector fields along Bézier splines explicitly; only the 
vectors that induce it are needed. Still, iterative procedures are often needed for computations in (products of) 𝑇 𝑀 ; algorithms for 
the exponential and logarithm maps have been presented in (Muralidharan and Fletcher, 2012; Nava-Yazdani et al., 2022a) and are 
summarized in Sec. 5.2.

4. Regression with Bézier splines

Regression techniques are essential in contemporary statistics, as they analyze the relationship between a dependent variable and 
explanatory variables. Normal multivariate regression methods are inapplicable when the observed variable takes values in general 
manifolds. Therefore, a lot of effort has been put into generalizing regression to nonlinear spaces. Non-parametric (Davis et al., 
2007; Yuan et al., 2012; Mallasto and Feragen, 2018), semi-parametric (Shi et al., 2009; Zhu et al., 2009), and parametric (Hinkle 
et al., 2014; Kim et al., 2014; Cornea et al., 2017) regression models have been studied using Riemannian tools; some of these are 
applicable to data from general manifolds (Davis et al., 2007; Shi et al., 2009; Hinkle et al., 2014; Kim et al., 2014; Mallasto and 
Feragen, 2018) while others are formulated for specific ones (Zhu et al., 2009; Cornea et al., 2017; Yuan et al., 2012).

Parametric models are usually faster to compute and easier to interpret; therefore, they are often preferred when one can be 
confident that the relationship between the measured and explanatory variables is of a known type. If the latter cannot be guessed, 
then non-parametric models should be used. The simplest parametric regression model in Euclidean space is linear regression, and 
9

geodesic regression (Niethammer et al., 2011; Fletcher, 2013) was introduced as its generalization to Riemannian manifolds.
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Fig. 3. Sketch of regression with non-geodesic Bézier splines in 2 . The orange dots are data points, while 𝐵 indicates the underlying spline 𝐵 in (19).

Although geodesics are a helpful tool for describing many processes, they are not always accurate for certain types of relation-
ships, such as periodic or saturated processes. In such cases, higher-order (parametric) models are adequate. Therefore, Riemannian 
polynomials (Hinkle et al., 2014) have been considered as underlying curves. They are far more flexible than geodesics and, thus, can 
describe a much bigger class of relationships. Nevertheless, they often cannot be used due to their high computational complexity. 
They are defined (through variational principles) as solutions to differential equations involving curvature terms. Since closed-form 
solutions of the equations are usually not available, evaluation and optimization are complicated and computationally expensive.

The authors of (Hanik et al., 2020) suggest using manifold-valued Bézier splines as an alternative to Riemannian polynomials. 
Bézier splines have explicit formulas in many manifolds, which makes computations faster. They are also easily concatenated, which 
is a notable advantage: Riemannian polynomials allow for piecewise composition when degrees are odd, but for even degrees, it is 
unclear how to define splines (Hinkle et al., 2014, p. 34).

In this section, we will provide a summary of how to use Bézier splines for regression in manifolds. It is possible to use either 
general or closed splines; we formulate everything using the former. For closed splines, one must simply replace (𝑈 ) with ̊(𝑈 )
and 𝐾 with 𝐾̊ . After defining the model, we discuss the estimation of the involved notions. As a novel contribution that is not 
included in (Hanik et al., 2020), we prove the equivalence of the least-squares and maximum-likelihood estimation in symmetric 
spaces under the assumption of a Gaussian-like distribution for the errors. Finally, we discuss an application of the regression to 
normalize manifold-valued data w.r.t. a confounding variable. This method was introduced in (Hanik et al., 2023).

4.1. The model

For 𝑘-th order polynomial regression in Euclidean space ℝ𝑑 one assumes that the relationship between an ℝ𝑑 -valued random 
variable 𝑌 and a scalar variable 𝑡 is given by the model

𝑌 (𝑡) = 𝑃 (𝑡) + 𝜖(𝑡), (18)

with 𝑃 being a (deterministic) polynomial of degree at most 𝑘 and 𝜖 a vector-valued, random variable representing the error. In 
the following, we generalize this model to Riemannian manifolds using Bézier splines; furthermore, we extend it conceptually by 
including closed curves.

Let 𝑀 be a Riemannian manifold and 𝑈 ⊆ 𝑀 be a normal convex neighborhood. Further, let 𝑛 data points (𝑡1, 𝑞1), … , (𝑡𝑛, 𝑞𝑛) ∈
[0, 1] ×𝑈 with corresponding scalar parameters (e.g., points in time) be given. We suppose that there is a Bézier spline 𝐵 ∈(𝑈 ) such 
that the data points 𝑞1, … , 𝑞𝑛 are independent realizations of an 𝑀 -valued random variable  that is connected to a deterministic 
variable 𝑡 ∈ℝ according to the model

(𝑡) = exp𝐵(𝑡;𝑝0 ,…,𝑝𝐾 )
(

𝜖(𝑡)
)

. (19)

Here, for each 𝑡 ∈ [0, 1] the random error variable 𝜖 takes values in 𝑇𝐵(𝑡)𝑀 whose realizations are (generally non-continuous) random 
vector fields along 𝐵. The assumption that the explanatory variable 𝑡 is in the interval [0, 1] is purely for reasons of consistency: For 
a finite set of samples, the realizations of 𝑡 must be in an interval of finite length, which can always be linearly re-scaled to [0, 1]. The 
unknown parameters of the model are the control points 𝑝0, … , 𝑝𝐾 . A visualization of the model for samples on the sphere is shown 
in Fig. 3.

In Euclidean space, (19) reduces to (18) when restricting to Bézier curves; i.e., (19) is a generalization of polynomial regression. 
It also generalizes geodesic regression (Fletcher, 2013, Eqn. 3), to which it reduces when 𝐵 consists of a single segment with two 
control points.

In the following, we always assume that the type of 𝐵 is known. In practice, this must be determined first. As for polynomial 
regression, knowledge-driven (first) guesses of the degrees should be tested, e.g., by holding back a testing set from the data to 
10

validate the model.
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4.2. Least squares estimation

We now discuss how the Bézier spline 𝐵 in (19) should be estimated. It is often difficult to use maximum likelihood estimation or 
empirical Bayes due to the rarity of tractable noise distributions on manifolds. Therefore, geometric least squares estimation, which 
will be discussed first, is commonly employed. Nevertheless, we will show towards the end of this section that the former coincides 
with maximum likelihood estimation in some situations.

To motivate our method, we again look at the multivariate case first. A standard way to estimate the polynomial 𝑃 in (18) is 
ordinary least squares. Let 𝑁 measurements (𝑡1, 𝑦1), … , (𝑡𝑛, 𝑦𝑛) ∈ [0, 1] ×ℝ𝑑 be given. Denoting the set of polynomial curves over [0, 1]
of degree at most 𝑘 by 𝑘, we can approximate 𝑃 by the least squares estimator

𝑃 ∶= argmin
𝑃∈𝑘

1
2

𝑛∑
𝑖=1

‖𝑃 (𝑡𝑖) − 𝑦𝑖‖2.

This idea directly translates to Riemannian manifolds. Let  ⊂ 𝑈 𝐾+1 be the largest (i.e., containing all others with the same 
property) compact, simply-connected subset such that each point in  defines an element of (𝑈 ). Then, we can define the least 
squares estimator of (19) as follows:

Definition 4.1. Let 𝑛 realizations (𝑡1, 𝑞1), … , (𝑡𝑛, 𝑞𝑛) ∈ [0, 1] × 𝑈 of (19) be given. Then, the sum-of-squared error of a Bézier spline 
𝐵 ∈(𝑈 ) is defined by

(𝑝0,… , 𝑝𝐾 ) ∶= 1
2

𝑛∑
𝑖=1

dist
(

𝐵(𝑡𝑖;𝑝0,… , 𝑝𝐾 ), 𝑞𝑖

)2
. (20)

Furthermore, the least squares estimator 𝐵 ∈(𝑈 ) of the spline 𝐵 in (19) is determined by its control points

(𝑝0,… , 𝑝𝐾 ) ∈ 
according to

(𝑝0,… , 𝑝𝐾 ) ∶= argmin
(𝑝0 ,…,𝑝𝐾 )∈

(𝑝0,… , 𝑝𝐾 ). (21)

Note that, for two control points, this definition also boils down to Fletcher’s definition (Fletcher, 2013, Eqn. 5) so that in the 
geodesic case, the least squares estimates from geodesic regression and our method coincide. Generally, none of the control points 
coincides with a data point, as with spline interpolation (Bergmann and Gousenbourger, 2018; Gousenbourger et al., 2019).

Before going on, a comment on our use of  seems in order. Like Fletcher in (Fletcher, 2013, Thms. 2 and 3), we introduce it 
to ensure the existence of a least squares estimator. The existence question in an open set is very involved and, as far as we can 
see, depends strongly on the “layout” of the data, the geometry of the space, and the degree of the underlying curve. E.g., if we 
want to use a polynomial of high degree for sparse data with similar values of 𝑡 but highly varying realizations of , this will often 
lead to strongly oscillating least squares estimators (a well-known effect for polynomials of a higher degree in Euclidean space), the 
“extrema” eventually “trying” to leave 𝑈 . We leave this question for future work and use a compact set instead.

In general, the minimizer (21) is not known analytically, which makes iterative schemes necessary. Therefore, we apply Rie-
mannian gradient descent. (For a reference on optimization on manifolds, see (Absil et al., 2007).) The gradient of  can be 
computed for each control point individually when the product manifold 𝑀 𝐾+1 is endowed with the so-called product structure 
(see, e.g., (do Carmo, 1992))—a very natural choice since we have no reason to assume that there are dependencies between the 
control points.

It is shown in (Bergmann and Gousenbourger, 2018, Sec. 4.2) that grad𝑝𝑗
 can be computed explicitly in symmetric spaces.

As an initial guess for the gradient descent, choosing (𝑝0, … , 𝑝𝐾 ) along the geodesic polygon whose corners interpolate the data 
points closest to knot points (in terms of 𝑡) has worked well. Note that gradient descent methods converge to local minima. Thus, we 
implicitly assume that there is no “badly behaved” local minimum “far away” from the least squares estimator.

4.3. Maximum likelihood estimation

In Euclidean space, the least-squares estimation coincides with the maximum likelihood estimation under the assumption that the 
distribution of the errors is Gaussian. In (Fletcher, 2013, Sec. 4.4), Fletcher showed that this is also true for geodesic regression in 
symmetric spaces under a generalized isotropic normal distribution. In the following, we extend his result to regression with Bézier 
splines. To this end, we deal with integrals of functions on manifolds; see (Jost, 2017, Ch. 2) for a reference.

The maximum likelihood method is another probabilistically motivated method to obtain an estimator for the parameters of 
a statistical model from given data. The idea is to view the parameters (the control points of 𝐵 in our case) as variables of the 
underlying probability density function (pdf). The maximum likelihood estimator is the set of parameters that maximizes the so-called 
likelihood function under the given data. In practice, because it has the same extrema but is often easier to analyze, one usually applies 
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the logarithm to the likelihood function and works with the log-likelihood function instead.
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An assumption on the pdf underlying the model is needed to apply the maximum likelihood method. Let 𝑀 be a connected 
symmetric space, 𝑞 ∈ 𝑀 , and define

𝐶(𝜎) ∶= ∫
𝑀

exp
(
−dist(𝑝, 𝑞)2

2𝜎2

)
d𝑝.

It is important to note that 𝐶 does not depend on 𝑞: The distance function and thus 𝐶 are invariant under isometries, and for any 
two points in a symmetric space, there is always an isometry of the space mapping one into the other (Helgason, 2001). Given 𝑞 and 
𝜎 > 0, Fletcher’s generalized normal distribution is now defined via the pdf

𝜌 ∶ 𝑀 →ℝ≥0

𝑝 ↦ 𝜌(𝑝; 𝑞, 𝜎) ∶= 1
𝐶(𝜎)

exp
(
−dist(𝑝, 𝑞)2

2𝜎2

)
. (22)

The distance function in the exponential leads to an isotropic assignment of probability mass. Two advantageous properties of 𝜌 are 
(apart from being an isotropic normal distribution in Euclidean space) that it is continuous and nonzero everywhere; both need not 
hold for other generalizations of the normal distribution. (They need not, e.g., for the maximum entropy distribution introduced 
in (Pennec, 2006), which, on the other hand, has the advantage that anisotropy can be modeled.)

We say that the model (19) has Gaussian errors if the random variable  is conditionally distributed according to (22), i.e., with 
pdf

𝜈(𝑞|𝑡 = 𝑡0) = 𝜌
(

𝑞;𝐵(𝑡0;𝑝0,… , 𝑝𝐾 ), 𝜎
)

(23)

for some 𝜎 > 0. Under this assumption, the log-likelihood function of our model is given by

𝑙
(

𝑝0,… , 𝑝𝐾 ;𝜎
)
∶= 𝑁 log

(
𝐶(𝜎)

)
− 1

2𝜎2

𝑛∑
𝑖=1

dist
(

𝐵(𝑡𝑖;𝑝0,… , 𝑝𝐾 ), 𝑞𝑖

)2
for given data (𝑡1, 𝑞1), … , (𝑡𝑛, 𝑞𝑛) ∈ [0, 1] × 𝑈 ; the maximum likelihood estimator of the model is then the spline whose control points 
maximize 𝑙 (with control points in  ⊆ 𝑈 𝐾+1).

Extending Fletcher’s arguments for geodesic regression to arbitrary Bézier splines, the following theorem shows that, in symmetric 
spaces, maximum likelihood and least squares estimators coincide under the above assumption.

Theorem 3. Let 𝑀 be a symmetric space, 𝑈 ⊆ 𝑀 a normal convex neighborhood, and (𝑡1, 𝑞1), … , (𝑡𝑛, 𝑞𝑛) ∈ [0, 1] × 𝑈 realizations of the 
model (19). Then, least squares optimization and maximum likelihood approximation are equivalent for (19) with Gaussian errors.

Proof. Bergmann and Gousenbourger (2018, Sec. 4.2) showed that the gradients

grad𝑝dist
(

𝐵(𝑡𝑖;𝑝0,… , 𝑝𝑗−1, ⋅ , 𝑝𝑗+1,… , 𝑝𝐾 ), 𝑞𝑖

)2
, 𝑗 = 0,… , 𝐾,

exist for any 𝑝 ∈ 𝑈 by deriving an explicit procedure for their computation. Therefore, for each 𝑗 = 1, … , 𝐾 and 𝑝 ∈ 𝑈 , we find

grad𝑝𝑙 = − 1
2𝜎2

𝑛∑
𝑖=1

grad𝑝dist
(

𝐵(𝑡𝑖;𝑝0,… , 𝑝𝑗−1, ⋅ , 𝑝𝑗+1,… , 𝑝𝐾 ), 𝑞𝑖

)2
= − 1

𝜎2 grad𝑝 .

Hence, in the interior of , local minimizers of the sum-of-squared error  are local maximizers of the log-likelihood function 𝑙, and 
vice versa. It is also clear that the same holds for global extrema. □

4.4. Normalization via regression

In statistics, one almost always needs to control confounding and other extraneous variables that are not of interest to a study 
but might influence the outcome. If the pool of samples is large enough, the controlling can be done through sample selection, 
enforcing, e.g., that the variable is constant or follows a particular distribution. Another possibility, which is also applicable in 
the case of a small data pool, is normalization, i.e., shifting/scaling the data’s statistics such that the influence of the confounding 
variables is minimized. Such procedures can also be necessary when analyzing manifold-valued data. In this section, we summarize 
the Bézier spline-based normalization method from (Hanik et al., 2023) that helps to reduce the interference of continuous influence 
parameters. While motivated by a specific application, it can be applied when several sets of manifold-valued data shall be compared 
that are influenced by a continuous confounding variable. Conceptually similar procedures are used in Euclidean space, e.g., when 
12

analyzing molecules (Shen et al., 2016; Wahid et al., 2016; Hafemeister and Satija, 2019).
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Fig. 4. Normalization w.r.t. some parameter 𝑡 for a single data group (𝑞𝑗 , 𝑡𝑗 ), 𝑗 = 1, 2, 3, 4, in a Riemannian manifold 𝑀 . The curve 𝐵 is the result of spline regression 
w.r.t. 𝑡. The points 𝐵(𝑡𝑗 ) are depicted in light grey, while the tangent vectors 𝑣𝑗 are the black arrows attached to them. Finally, the parallel translation 𝑤𝑗 of each 𝑣𝑗

is a tangent vector at 𝐵(𝑡0) (also black); it yields the normalized data 𝑞𝑗 shown in orange.

4.4.1. The model

Let 𝑀 be a Riemannian manifold, 𝑈 ⊆ 𝑀 a normal convex neighborhood, and 𝐼𝑠 ⊂ ℝ, 𝑠 = 1, … , 𝑆 , closed intervals with non-
empty intersection, i.e., ∩𝑆

𝑠=1𝐼𝑠 ≠ ∅. (The latter assumption guarantees a shared parameter value that can serve as a reference point 
for normalization.) Let further 𝑠 groups of 𝑈 -valued data points be given, each element coming with a parameter:(

𝑡
(𝑠)
𝑗

, 𝑞
(𝑠)
𝑗

)
∈ 𝐼𝑠 × 𝑈 , 𝑠 = 1,… , 𝑆, 𝑗 = 1,… , 𝑛𝑠.

We assume that the data from 𝑠-th group behaves according to the model (19), i.e.,

(𝑠)(𝑡) ∶= exp𝐵(𝑠)(𝑡;𝑝0 ,…,𝑝𝐾 )
((𝑠)(𝑡)

)
𝑠 = 1,… , 𝑆. (24)

In contrast to the previous sections, here it is supposed that we are interested in the 𝑇 𝑀 -valued variables (𝑠) (thus the change 
of notation). We further assume that the “drifts” in the data given by the Bézier splines 𝐵(𝑠), 𝑖 = 1, … , 𝑆 , are caused by the single 
confounding but deterministic variable 𝑡.

4.4.2. Normalization

In this section, we discuss how the data can be normalized at some 𝑡0 ∈ ∩𝑆
𝑖=1𝐼𝑖 so that further analysis is not influenced by the 

variability caused by 𝑡. The procedure is as follows: First, calculating the least squares estimators (21) for each group yields the 
best-fitting splines 𝐵(𝑠) ∶ 𝐼𝑖 → 𝑀 , 𝑖 = 1, … , 𝑆 . It is possible that the regressed curves already provide valuable information about the 
data, as we will see in Sec. 6.3. Approximations 𝑅(𝑠)(𝑡𝑖) ∈ 𝑇 𝑀 of the realizations of (𝑠)(𝑡𝑖) ∈ 𝑇 𝑀 of (24) are then given by the 
logarithms

𝑅(𝑠)(𝑡𝑖) ∶= log
𝐵(𝑠)(𝑡(𝑠)

𝑗
)

(
𝑞
(𝑠)
𝑗

)
∈ 𝑇

𝐵(𝑠)(𝑡(𝑠)
𝑗
)𝑀, 𝑖 = 1,… , 𝑆, 𝑗 = 1,… , 𝑛𝑖.

To minimize the influence caused by the variable 𝑡, we want to normalize the data at some chosen point 𝑡0. Since, for each group, 
𝐵(𝑠) approximates the trend that 𝑡 enforces, we propose to parallel translate the vectors 𝑅

(𝑠)
𝑗

along 𝐵(𝑠) to 𝐵(𝑠)(𝑡0). This results in 
vectors

𝑤
(𝑠)
𝑗

∈ 𝑇
𝐵(𝑠)(𝑡0)

𝑀, 𝑖 = 1,… , 𝑆, 𝑗 = 1,… , 𝑛𝑖. (25)

They represent the differences of the data points to the Bézier splines normalized at 𝑡0. Mapping them back to the manifold gives the 
normalized data points:

𝑞
(𝑠)
𝑗

∶= exp
𝐵(𝑠)(𝑡0)

(
𝑤

(𝑠)
𝑗

)
, 𝑖 = 1,… , 𝑆, 𝑗 = 1,… , 𝑛𝑖. (26)

Now, we can perform inter-group comparison with the normalized data (26). E.g., we can compute the Fréchet means (Pennec et al., 
2020, Ch. 2) and perform group tests for equality as in (Muralidharan and Fletcher, 2012, Sec. 3.3). If the curvature near the points 
𝐵(𝑠)(𝑡0) is small (i.e., all sectional curvatures are close to 0), then we can also use the linearized data (25) and apply methods from 
multivariate statistics; the higher the curvature, though, the stronger will be the introduced distortion. The normalization process 
and its result for data from two groups are visualized in Figs. 4 and 5. It is important to note that the choice of 𝑡0 will influence the 
results, just like in multivariate statistics. (Imagine, e.g., that we measure the height of a group of people; only considering children 
at age ten will give results different from those of 20-year-old adults.)

Computation-wise, for geodesics as underlying trends, explicit formulas for parallel transport are known for many manifolds that 
appear in applications. Otherwise, several numerical schemes can provide approximations of parallel transport along curves (Kheyfets 
13

et al., 2000; Louis et al., 2018; Guigui and Pennec, 2021).
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Fig. 5. Normalization results for two groups. Both splines 𝐵1 and 𝐵2 are defined for the value 𝑡 = 𝑡0 , so the two data sets can be normalized at 𝐵(1)(𝑡0) and 𝐵(2)(𝑡0), 
respectively. The groups (orange and red) can now be compared without bias caused by the influence of 𝑡.

Fig. 6. Conceptual comparison of a hierarchical model and regression analysis on a longitudinal data set. The measurements are shown as grey dots (without time). 
Each subject’s (correlated) measurements follow its trend (broken lines). Spline regression on the full data set yields the red curve; its direction deviates strongly from 
all individual trends. The mean of the individual trends (green curve) is a better estimator of the average longitudinal trend in the cohort.

5. Hierarchical models

Time-dependent data analysis is becoming increasingly relevant for a wide range of applications, including the investigation 
of disease onset and progression, physical performance assessment from biomechanical gait data, and face expression analysis in 
video sequences. All of these are examples of longitudinal data, in which individual instances of a common underlying process are 
observed repeatedly over a period of time. While popular statistical tools such as mean-variance analysis and regression allow for the 
investigation of phenomena among individuals or inside a single one, longitudinal data contains correlations within measurements 
of single individuals, which violates the independence assumptions of such cross-sectional methods. Fig. 6 sketches the difference 
between cross-sectional and longitudinal models. Another concern is missing data, which can occur as a result of acquisition problems 
or when subjects drop out of a clinical trial. Proper statistical inference for longitudinal data, thus, needs to account for both within-
individual correlations of observations as well as potentially sparse or non-uniform sampling.

From this perspective, hierarchical models—specifically mixed-effects models—offer a suitable and versatile framework for the 
analysis of longitudinal data (Locascio and Atri, 2011; Gerig et al., 2016). These approaches address the multitude of inherent 
interrelations by formulating a model that assumes that each subject possesses an individual functional relationship between the 
dependent variable and the time-related predictor(s). Therefore, a parametric spatiotemporal model is estimated to fit the data for 
each individual. Any discrepancy in the fit is attributed to a random error variation in the observed dependent variable. The subject-
specific coefficients that characterize these models (such as the intercept and slope in the case of straight lines) are assumed to exhibit 
random variation within the population. In addition to these random effects, there exists a “fixed” effect that is frequently the main 
focus of interest. This effect is defined as a “fixed” coefficient that represents the average spatiotemporal model for the entire group.

The existing body of literature extensively covers the mixed-effects framework for scalar and vector-valued measurements. How-
ever, the extension of this framework to other types of data with structured domains, such as shapes or graphs, has only emerged 
in recent years. Based on geodesics, i.e., generalizations of straight lines, multiple works (Muralidharan and Fletcher, 2012; Singh 
et al., 2013; Hong et al., 2015; Muralidharan, 2017; Nava-Yazdani et al., 2022b) derived geodesic hierarchical models that encode 
both subject-specific as well as group trends in terms of geodesics. Nonmonotonous shape changes, e.g., those present in a time series 
of cardiac motion or anatomical changes in the human brain over decades, do not, in general, adhere to constraints of geodesic-
ity. This assumption can, hence, be a limiting factor, diminishing the flexibility and fidelity of such approaches and calling for the 
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development of higher-order models.
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5.1. The model

In line with the regression approach presented in the previous section, we can obtain higher-order, hierarchical models building 
upon intrinsic Bézier splines. We now introduce such a nonlinear hierarchical model following the derivation in (Hanik et al., 2022). 
Since a key application of mixed-effects models is in the life sciences, we speak of measurements taken from “subjects” in the 
following. Nevertheless, the model is not restricted to data from this field.

Let 𝑀 be a Riemannian manifold and 𝑈 ⊆ 𝑀 a normal convex neighborhood. Further, let (𝑈 ) be a Bézierfold over 𝑈 . Consider 
that 𝑆 subjects are given and that, for each, there is (a possibly different number of) 𝑛𝑠, 𝑠 = 1, … , 𝑆 , measurements of the pair of an 
independent, deterministic scalar variable 𝑡 and a manifold-valued dependent variable (𝑠). The data thus reads(

𝑡
(𝑠)
𝑖

, 𝑞
(𝑠)
𝑖

)
∈ℝ × 𝑈 , 𝑖 = 1,… , 𝑛𝑠, 𝑠 = 1,… , 𝑆. (27)

While cross-sectional measurements (i.e., points 𝑞(𝑠)
𝑖

with mutually different 𝑠) can be assumed to be independent of each other, 
intra-subject measurements (i.e., samples 𝑞(𝑠)

𝑖
with the same 𝑠) are correlated and, thus, have to be treated separately. To this end, a 

hierarchical two-stage model consisting of the following two consecutive levels can be employed.

Individual level: On the lower, individual level, we assume that (19) underlies each subject’s data independently from the others; 
the type and the degrees of all Bézier splines are supposed to be the same; i.e., it is assumed that the data (27) is drawn from random 
variables

(𝑠)(𝑡) ∶= exp
𝐵(𝑠)(𝑡;𝑝(𝑠)0 ,…,𝑝

(𝑠)
𝐾
)
(

𝜖(𝑠)(𝑡)
)

, 𝑠 = 1,… , 𝑆.

Group level: On the upper group level, we view each trajectory as a perturbation of a common mean trajectory 𝐵 ∶=
𝐵( ⋅ ; 𝑝0, … , 𝑝𝐾 ) ∈(𝑈 ) in the Bézierfold (𝑈 ) according to

𝐵(𝑠) = exp
𝐵

(
𝑋(𝑠)) , 𝑠 = 1,… , 𝑆,

with random tangent vector fields 𝑋(𝑠) ∈ 𝑇
𝐵
(𝑈 ). This model first deals with the correlated samples, encoding them as a single, 

subject-specific spline model; so, on the group level, independence can be assumed again.

5.2. Parameter estimation

As the individual level does not depend on the group level parameter, the control points of the individual developments and those 
of the mean trend can be estimated efficiently by a two-step least squares procedure. In particular, in the first step, the parameters 
of the individual trends can be determined in parallel using the estimator (21) as discussed in Sec. 4.2. The second step then consists 
of finding the Fréchet mean 𝐵 in (𝑈 ) of the estimated individual trends. The following discussion is, therefore, only concerned 
with approximating the control points of the mean spline. As the Fréchet mean (3) is defined with respect to geodesic distances, the 
estimated model depends on a choice of Riemannian metric for (𝑈 ).

5.2.1. Integral-based metric

For the Riemannian metric discussed in Sec. 3.3.1, we can obtain an estimation scheme in terms of the discrete geodesic calculus 
by Rumpf and Wirth (2014) that employs a variational time-discretization.

Let 𝐵1, 𝐵2 ∈ 𝐿
𝑘0 ,…,𝑘𝐿−1

(𝑈 ). A path between 𝐵1 and 𝐵2 through 𝐿
𝑘0 ,…,𝑘𝐿−1

(𝑈 ) (and defined in [0, 1]) may be represented as a 
parametrized surface in 𝑈 , because it induces a map 𝐻 ∶ [0, 1] × [0, 𝐿] → 𝑈 , (𝑟, 𝑡) ↦ 𝐻(𝑟, 𝑡), with 𝐻(0, ⋅ ) = 𝐵1 and 𝐻(1, ⋅ ) = 𝐵2. A 
geodesic between 𝐵1 and 𝐵2 is a minimizer of the path energy7

𝐸(𝐻) ∶=

1

∫
0

𝐿

∫
0

⟨
d𝐻

d𝑟
(𝑟, 𝑡), d𝐻

d𝑟
(𝑟, 𝑡)

⟩
d𝑡 d𝑟.

Discretizing in 𝐿
𝑘0,…,𝑘𝐿−1

(𝑈 ) and identifying splines with their control points, we obtain a discrete 𝓁-geodesic (𝑝𝑗

0, … , 𝑝𝑗

𝐾
)𝑗=0,…,𝓁 ∈

(𝑈 𝐾+1)𝓁+1 between 𝐵1 and 𝐵2 as the minimizer of the discrete path energy

𝐸𝓁

((
𝑝

𝑗

0,… , 𝑝
𝑗

𝐾

)
𝑗=0,…,𝓁

)
∶= 𝓁

𝓁−1∑
𝑗=1

𝐿

∫
0

dist

(
𝐵
(

𝑡;𝑝
𝑗

0,… ,𝑝
𝑗

𝐾

)
,

𝐵
(

𝑡;𝑝
𝑗+1
0 ,… , 𝑝

𝑗+1
𝐾

))2
d𝑡.
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7 Indeed, a curve minimizes the path energy if and only if it is a geodesic; see, e.g., (do Carmo, 1992, p. 196).
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When distances on 𝑀 can be computed, the integral can be evaluated using a suitable quadrature rule.
To approximate minimizers of 𝐸𝓁 , Hanik et al. (2022) extend the iterative procedure from (Nava-Yazdani et al., 2022b) to this 

setting. The algorithm is motivated by the general characteristic of shortest paths that are induced by Srivastava’s metric and the 
corresponding connection in the space of curves: If 𝛼1, 𝛼2 ∶ [0, 𝐿] → 𝑈 are two smooth curves, then the map 𝐻( ⋅ , 𝑡) ∶ [0, 1] → 𝑈

that is induced by the shortest curve between 𝛼1 and 𝛼2 is a geodesic in 𝑀 for all 𝑡 ∈ [0, 𝐿]; see (Srivastava and Klassen, 2016). 
Approximating the integrals in 𝐸𝓁 with a quadrature and applying an alternating optimization scheme (i.e., block coordinate descent) 
lets us compute the discrete 𝓁-geodesics between two curves by iteratively performing spline regression. First, we initialize the control 
points of the inner curves equidistantly along the geodesics that connect the corresponding control points of 𝐵1 and 𝐵2. The inner 
trajectories are then updated so that they lie “in the middle” of their neighbors; to this end, we replace them with the result of a 
spline regression on the 𝐾 + 1 data points given by (equidistant) evaluations of the neighboring curves.

Next, we discuss the computation of the discrete 𝓁-mean of 𝑆 curves 𝐵1, … , 𝐵𝑆 ∈𝐿
𝑘0,…,𝑘𝐿−1

(𝑈 ), with which we approximate the 

common mean (curve). It is the spline 𝐵 ∈𝐿
𝑘0 ,…,𝑘𝐿−1

(𝑈 ) minimizing

𝐺𝓁(𝑝0,… , 𝑝𝐾 ) ∶=
𝑆∑

𝑠=1
𝐸𝓁

((
𝑝

𝑗

0,… , 𝑝
𝑗

𝐾

)(𝑠)

𝑗=0,…,𝓁

)
,

s.t. (𝑝𝓁0 ,… , 𝑝𝓁
𝐾
)(𝑠) = (𝑝0,… , 𝑝𝐾 )(𝑠), 𝑠 = 1,… , 𝑆,

where (𝑝𝑗

0, … , 𝑝𝑗

𝐾
)(𝑠)

𝑗=0,…,𝓁 denotes the control points of the discrete 𝓁-geodesic between 𝐵𝑠 and 𝐵( ⋅ ; 𝑝0, … , 𝑝𝐾 ). It can be computed 
with an alternating optimization scheme. We initialize the control points of 𝐵 with the Fréchet means of the corresponding control 
points of the data curves. Then, we compute discrete geodesics toward the mean and update the latter by a spline regression. This 
process is repeated in an alternating fashion.

5.2.2. Sasakian metric

To estimate the Fréchet mean (3) in a cubic Bézierfold 𝐿
3,…,3(𝑈 ) endowed with the Sasakian metric given in Definition 3.3, we 

can employ the common Newton-type iteration

𝐵
𝑖+1

= exp
𝐵

𝑖

(
1
𝑆

𝑆∑
𝑠=1

log
𝐵

𝑖 (𝐵𝑠)

)
.

Since all computations in 𝐿
3,…,3(𝑈 ) can be performed in (𝑇 𝑀)𝐿+1 (cf. Sec. 3.3.2), it is sufficient to have procedures to compute the 

exponential and logarithmic maps on 𝑇 𝑀 under the Sasaki metric. As the former computes geodesics on 𝑇 𝑀 for a given pair of 
initial position (𝑝0, 𝑢0) ∈ 𝑇 𝑀 and velocity (𝑣0, 𝑤0) ∈ 𝑇(𝑝0 ,𝑢0)𝑇 𝑀 , it can be approximated by shooting a geodesic (Muralidharan and 
Fletcher, 2012) using a forward Euler integration of the geodesic equations (9) given by

𝑝𝑘+1 = exp𝑝𝑘
(𝜀𝑣𝑘),

𝑢𝑘+1 = 𝜙(𝑢𝑘 + 𝜀𝑤𝑘, 𝑝𝑘+1),

𝑣𝑘+1 = 𝜙(𝑣𝑘 − 𝜀𝑅(𝑢𝑘, 𝑤𝑘)𝑣𝑘, 𝑝𝑘+1),

𝑤𝑘+1 = 𝜙(𝑤𝑘, 𝑝𝑘+1),

with step size 𝜀 = 1∕𝓁 and map 𝜙(𝑣, 𝑝) realizing the parallel transport of vector 𝑣 to point 𝑝.
Given two points (𝑝0, 𝑢0) ∈ 𝑇 𝑀 and (𝑝𝓁 , 𝑢𝓁) ∈ 𝑇 𝑀 , the logarithmic map is the inverse of the exponential map, thus returning the 

initial velocity (𝑣0, 𝑤0) ∈ 𝑇(𝑝0 ,𝑢0)𝑇 𝑀 of the geodesic segment that connects both points. As for the integral-based metric, we utilize a 
time-discrete path denoted by (𝑝𝑘, 𝑢𝑘)𝑘=0,…,𝓁 that is relaxed iteratively to a discrete geodesic by minimizing the path energy

𝐸𝑆
𝓁

(
(𝑝𝑘, 𝑢𝑘)𝑘=0,…,𝓁

)
= 𝜀

2

𝓁∑
𝑘=1

(||𝑣𝑘||2 + ||𝑤𝑘||2) ,

where 𝑣𝑘, 𝑤𝑘 ∈ 𝑇𝑝𝑘
𝑀 encode the change in 𝑝𝑘, 𝑢𝑘 via forward finite differences, respectively. Discrete geodesics, i.e., minimizers of 

𝐸𝑆
𝓁 , are then computed via (intrinsic) steepest descent into the negative gradient direction, which is in turn given by

grad𝑝𝑘
𝐸𝑆
𝓁 = −𝜀

(
∇𝑣𝑘

𝑣𝑘 + 𝑅(𝑢𝑘, 𝑤𝑘)𝑣𝑘

)
,

grad𝑢𝑘
𝐸𝑆
𝓁 = −𝜀∇𝑣𝑘

𝑤𝑘.

Concrete expressions in terms of intrinsic, finite differences for the involved quantities can be found in (Nava-Yazdani et al., 2022a).

5.3. Second-order statistics and group tests

Capturing higher-order statistics can provide a more comprehensive description of the underlying distributions that go beyond 
16

the estimation of group average trends. In particular, the presented Riemannian metrics allow for geometric statistical tools such as 
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Fig. 7. Reconstructed meshes from regression of longitudinal mitral valve data covering a full cardiac cycle. The spline consists of two cubic segments fitted to surfaces 
extracted from ultrasound images.

principal geodesic analysis (PGA) (Fletcher et al., 2004) to be applied. PGA provides the estimation of the variance and principal 
directions of the distribution of trajectories in (𝑈 ) that summarize variations within the time-dependent data. The representation of 
the longitudinal observations within the hierarchical basis of principal components in turn yields a highly compact, yet descriptive 
encoding that is amenable for downstream tasks such as classification and visualization.

One of the major motivations of longitudinal data analysis is to test whether differences found between two groups are statistically 
significant or due to random chance. To this end, Riemannian generalizations of two-sample hypothesis tests can be applied. A 
prominent example is the Hotelling 𝑇 2 statistic, which can be thought of as a squared Mahalanobis distance between group-wise 
means with respect to a pooled sample covariance matrix. As there is no straightforward way for pooling covariance matrices defined 
in different tangent spaces, Muralidharan and Fletcher (2012) proposed a manifold version, which averages the differences in means 
gauged in each mean’s tangent space weighted by the respective single-group covariance. This statistic can further be extended to 
also account for differences in second-order statistics, yielding a generalized Bhattacharyya distance (Hong et al., 2015). Regardless 
of the used statistic, it is typically difficult to formulate the corresponding parametric distribution for samples on general manifolds. 
Moreover, even if such a formulation were at hand, it would often not be preferable to impose the underlying assumptions on the 
data distributions. Both concerns can be circumvented by estimating the distribution of the statistic employing a non-parametric 
permutation test design.

6. Applications

6.1. Background: shape analysis

An object’s geometric characteristics that are invariant through similarity transformations, i.e., under translations, rotations, and 
scalings, are collectively referred to as its “shape” in mathematics. Different methods are used to encode this information, depending 
on the application. As a result, many “shape spaces” that can be utilized to model object shapes exist. Kendall shape space (Kendall 
et al., 2009), which uses landmark configurations as its foundation, is a prime example; (Dryden and Mardia, 2016) is an excellent 
textbook on shape spaces based on landmarks. References (Bauer et al., 2014; Srivastava and Klassen, 2016; Younes, 2019) provide 
further in-depth treatments on shape spaces that rely on the group of diffeomorphisms. The discussion of skeletal models can be 
found in (Siddiqi and Pizer, 2008; Pizer et al., 2020). Last, research on physics-based spaces has been done in (Heeren et al., 2014; 
von Tycowicz et al., 2018; Ambellan et al., 2021).

Full invariance under similarity transformations is not implemented in all of these spaces for a variety of reasons, including 
methodological ones (such as when size information is considered crucial), to keep computational costs in check, or because the 
representation does not support all three (though it is still useful in applications). Nevertheless, invariance is always attained to some 
extent. Nearly all of the aforementioned shape spaces have (at least locally) a non-Euclidean manifold structure. As a result, they 
require methods from geometric statistics for data analysis.

In all the applications of shape analysis that we describe in the following, the shape space from (von Tycowicz et al., 2018) was 
used; we denote it in the following by Σ.

6.2. Shape analysis in medicine

Several of the methods that were discussed in the previous sections were successfully applied to shape analysis problems in 
medicine; the importance of the underlying geometry for shape data analysis is well-established in this field (Pennec et al., 2020). In 
the following, we summarize the findings.

6.2.1. Reconstruction of shape trajectories of the mitral valve

Diseases of the mitral valve are the second-most common form of valve disease in adults needing surgery (Madesis et al., 2014). 
Mitral valve regurgitation is an important example thereof. It can have different causes and is characterized by a (backward) blood flow 
17

from the left ventricle into the left atrium during systole. This is possible, e.g., when the valve’s leaflets do not close fully or prolapse 
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Fig. 8. Cubic regression of distal femora. Healthy regressed shape (KL = 0) together with subsequent grades overlaid wherever the distance is higher than 0.5 mm, 
colored accordingly (0.5 mm 3.0 mm).

into the left atrium during systole (Enriquez-Sarano et al., 2009). Mitral valve diseases are often characterized by specific movement 
patterns. The corresponding shape anomalies can be observed (at least) at some point in the cardiac cycle. Early detection and 
assessment of mitral valve regurgitation are necessary for the best short-term and long-term results of treatment (Enriquez-Sarano et 
al., 2009). Therefore, reconstruction and simulation of 3D mitral valve geometries are active areas of research (Tautz et al., 2020; 
Walczak et al., 2022).

In (Hanik et al., 2020), regression with closed Bézier splines was applied to longitudinal shape data of a mitral valve from a 
patient with mitral valve regurgitation. To this end—sampling the first half of the cycle (closed to fully open) at equidistant time 
steps—five meshes were extracted from a 3D+t transesophageal echocardiography (TEE) sequence as described in (Tautz et al., 
2020). To reconstruct a full motion cycle, the same five shapes were used in reversed order as data for the second half of the 
curve. Because of the periodic behavior, a closed spline ̊2

3,3(𝑈 ), 𝑈 ⊂ Σ, with two cubic segments was chosen as the model and an 
equidistant distribution of the data points along the spline was assumed; i.e., with 𝑞1, … , 𝑞5 representing the shapes in the space of 
differential coordinates, the authors employed((

0, 𝑞1
)

,
(
1∕4, 𝑞2

)
,
(
1∕2, 𝑞3

)
,
(
3∕4, 𝑞4

)
,
(
1, 𝑞5

)
,
(
5∕4, 𝑞4

)
,
(
3∕2, 𝑞3

)
,
(
7∕4, 𝑞2

))
as the full data set.

The regressed cardiac trajectory is shown in Fig. 7. The spline regression successfully estimates the cyclic motion of the valve 
and also captures the prolapsing posterior leaflet. The former is remarkable since other regression methods in manifolds do have 
a hard time modeling cyclic motion (cf. Sec. 4), while the latter shows that relevant features are preserved. The experiment thus 
demonstrates the possibility for enhanced reconstruction of mitral valve motion.

6.2.2. Remodeling of knee bones under osteoarthritis

Osteoarthritis (OA) is a degenerative disease of the joints that affects millions of people worldwide (Arden and Nevitt, 2006). It 
develops when the protective cartilage that cushions the ends of the meeting bones degenerates. While the joint pathology is diverse, 
the most prominent features are the loss of articular cartilage and remodeling of the adjacent bones; the former also leads to the 
so-called joint space narrowing as less cartilage is there to keep the bones apart. Although any joint can be affected, the population 
impact is highest for OA of the hip and knee (Arden and Nevitt, 2006). While OA treatment traditionally consists of pain management 
and joint replacements for patients with severe symptoms, an improved understanding of the pathogenesis is shifting the focus to 
disease prevention (Glyn-Jones et al., 2015).

Regression for OA severity: In (Hanik et al., 2020), the authors also use regression with Bézier splines to investigate the development 
of the shape of the distal femur under OA. Therefore, they regressed the 3D shape against OA severity as determined by the KL 
grade (Kellgren and Lawrence, 1957): an ordinal scoring system with grades 0 (healthy) to 4 (severe OA). The data set comprised 
100 shapes (20 per grade) of randomly selected subjects from the Osteoarthritis Initiative8 from which they extracted triangle meshes 
of each bone.

Associating the value 𝑡𝑖 = 𝑖∕4 with shapes of grade 𝑖, they computed the best-fitting curves in 1
1(𝑈 ), 1

2(𝑈 ), 1
3(𝑈 ), 𝑈 ⊂ Σ, i.e., 

the least squares estimators for regression with geodesic, quadratic, and cubic Bézier curves. The 𝑅2-values (Pennec et al., 2020, p. 
56) of the regressed curves strongly indicated that the cubic model has far more explanatory power. Particularly, regression with 
Bézier curves yields results superior to those of standard geodesic regression. A further test also showed that the difference to the 
geodesic model is not only due to a reparametrization.

The computed cubic Bézier curve is displayed in Fig. 8. The obtained shape changes consistently describe OA-related malfor-
mations of the femur, namely, the widening of the condyles and osteophytic growth. Furthermore, we observe only minute bone 
remodeling for the first half of the trajectory, while accelerated progression is visible for the second half.

Hierarchical modeling of the femur under OA: In the last application, the authors investigated the shape development of the femur 
under OA by using inter-subject data (i.e., only one measurement from each subject). In (Hanik et al., 2022), they complement this 
18
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Fig. 9. Mean of cubic femoral trends of 22 subjects evaluated at five equidistant points. The surface distance to the baseline (value of the computed mean at 𝑡 = 0) is 
color-coded wherever the distance is larger than 0.25 mm according to the color map (0.25 mm 1.6 mm).

with a group-wise analysis of femoral shape trajectories that included intra-subject, longitudinal data from the OAI. They analyzed 
this data with the hierarchical model from Sec. 5, utilizing the integral-based metric discussed in Sec. 3.3.1.

To show that the model is not limited to estimating average, group-level trends, they derived a statistical descriptor for shape 
trajectories in terms of principal component scores (i.e., the coefficients encoding the trajectories based on principal geodesic 
modes (Fletcher et al., 2004)) and used it for trajectory classification.

They determined three groups of shapes trajectories: HH (healthy, i.e., no OA), HD (healthy to diseased, i.e., healthy onset 
followed by a progression to severe OA), and DD (diseased, i.e., OA at baseline) which where defined by a Kellgren-Lawrence score 
of grade 0 for all visits, an increase of at least three grades throughout the study, and grade 3 or 4 for all visits, respectively. For each 
group, they assembled 22 trajectories, each comprising shapes of all acquired MR images, i.e., at baseline, the 1-, 2-, 3-, 4-, 6-, and 
8-year visits.

They estimated a hierarchical model for the HD group using cubic Bézier curves from 1
3(𝑈 ), 𝑈 ⊂ Σ, to model the individual 

trends. The degree was chosen because of the results we discussed above.
Time discrete computations were performed based on 2-geodesics under the integral-based metric. Fig. 9 illustrates the estimated 

group-level trend. Changes along the cartilage plate’s ridge are the most prominent OA-related malformations of the femur that are 
revealed by the determined shape changes. The latter region is known for osteophytic growth. Naturally, the changes are weaker 
than those of the trajectory in Fig. 8 because the patients that are considered here only “reached” KL grade 4 at the end of the study, 
whereas severe malformations due to several years of grade-4-OA were included in the data that was used in the last section. Similar 
to the previous experiment, only minute bone remodeling can be observed during the first half of the captured interval, while bone 
malformations develop more rapidly after four years. Therefore, this experiment also suggests that there are nontrivial phenomena 
of higher order for which geodesic models are inadequate.

For the classification, the authors first computed the (discrete) mean trajectory of all 66 subjects and used it to calculate an 
approximation 𝐺 of the data’s Gram matrix; see (Heeren et al., 2018) for details on the latter. For each subject trajectory, they then 
deduced a 65-dimensional descriptor in the form of the coefficients with respect to the eigenvectors (i.e., PGA modes (Fletcher et al., 
2004)) of 𝐺 and trained a simple support vector machine (linear kernel) on the descriptors in a leave-one-out cross-validation setup. 
The percentage of correctly classified trajectories was 64%. Performing the same experiment with a Euclidean model (Cootes et al., 
1995) results in 59% correct classifications, demonstrating the advantage of the Riemannian model over shape spaces that come with 
the assumption that the data lies in a vector space.

6.3. Shape analysis in archaeology

In (Hanik et al., 2023), the authors proposed regression with Bézier splines in curved shape space for the analysis of parameter-
dependent shape trends in artifacts. They also introduced the statistical normalization scheme from Sec. 4.4 for detrending. As a 
use case, they investigated the construction principles of ancient Roman and Greek sundials (Graßhoff et al., 2016). Therefore, they 
analyzed the dependence of the shape of the shadow-receiving surface—the “shadow surface”—of spherical sundials on the latitude 
of the installation site. For the study, they obtained triangle meshes of the shadow surface of 11 Roman and 3 Greek sundials, all in 
correspondence; this data is publicly available (Hanik and von Tycowicz, 2022).

Using geodesic regression using 1
1(𝑈 ), 𝑈 ⊂ Σ, they find that the shape of the Roman sundials’ shadow surface was adapted 

by means of a latitude-dependent bending; see Fig. 10. They further utilize this knowledge to determine the working latitude of a 
Roman sundial with an unknown installation site: It can be placed on a latitude only a little north of Rome. They also show how 
the uncertainty of their prediction can be quantified from the known data and obtain a mean average error of about 80 km in the 
north-south direction for their prediction.

Finally, the authors used the scheme from Sec. 4.4 to the shadow surfaces of Greek and Roman at the same latitude. After 
separately normalizing the shapes at 38, 5° latitude. Since the Greek group only contains 3 samples, the results can only be seen as a 
first hint. Nevertheless, the 2 mean shapes of the normalized groups clearly look different, which might indicate different construction 
19

principles in both regions.
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Fig. 10. Bending of regressed Roman shadow surfaces, with colors silver, green, yellow, and red ranging (in this order) from the most northern (40.7030°) to the most 
southern site (43.3155°).

Fig. 11. Left: Regressed spline models (grey) of selected Hurricane tracks together with 6 hourly (white) observations. Right: Group-level average track (white) and 
most dominant mode of variation (orange, sampled within ±1.5 standard deviation).

6.4. An application in meteorology: statistical analysis of hurricane tracks

Tropical cyclones, also referred to as hurricanes or typhoons, belong to the most supreme natural phenomena with enormous 
impacts on the environment, economy, and human life. The most common indicator for the intensity of a hurricane is its maximum 
sustained wind (maxwind), which classifies the storm into categories via the Saffir–Simpson hurricane wind scale. For instance, 
maxwind ≥ 137 knots correspond to category 5. The maximal category over a track is called its category. The high variability of 
tracks and the out-most complexity of hurricanes has led to a huge number of works to classify, rationalize and predict them. We refer 
to (Rekabdarkolaee et al., 2019) for a Bayesian function model, (Asif et al., 2018) for intensity estimation via machine learning and 
the overview of recent progress in tropical cyclone intensity forecasting (Cangialosi et al., 2020). We remark that many approaches 
are not intrinsic and use linear approximations. Notable exceptions are the works (Su et al., 2014, 2018) that employ an intrinsic 
Riemannian approach based on the square root velocity framework, albeit only as illustrative examples and without consideration of 
intensities.

In (Nava-Yazdani et al., 2023), the authors analyzed the 2010-2021 Atlantic hurricane tracks (total number 218) recorded in the 
open-access HURDAT 2 database. The analysis was based on a hierarchical model of the hurricane tracks employing cubic Bézier 
splines to encode the time-dependent geographical location of each track in 𝑆2. Empirically 2-segment splines have been found to 
provide a concise encoding with a very high fidelity in terms of the geometric 𝑅2-value. Fig. 11 (left) provides a visualization of 
selected hurricane tracks showing both the discrete measurements and the corresponding regressed spline representations. Subse-
quently, group-level analysis of the hurricane tracks was carried out via PGA, thus, deriving a summary of the interrelations and 
characteristic variability in terms of a group-level average track and principal modes of variation. In Fig. 11 (right), the average 
together with the most dominant mode of variation is shown.

Furthermore, they investigated to which extent the (maximal) intensity of a hurricane can be inferred from its trajectory. To 
this end, a support vector machine conditioned on the hierarchical encoding provided by PGA was trained to differentiate between 
the three intensity classes: (i) tropical storms/depressions (category < 1), (ii) hurricanes (category 1 − 3) with some to devastating 
damage, and (iii) major hurricanes (category > 3) with catastrophic damage. Using a cross-validation experimental design, a sig-
nificantly improved discrimination ability of the spline-based representation (61% and 59% accuracy in average using the Sasakian 
and integral-based metric, respectively) in comparison to state-of-the-art approaches (≈ 49% accuracy) that model general, manifold-
valued curves was observed. This discrepancy in classification performance also prevailed for dimensionality-reduced representations 
of the general curves, suggesting that the increase in performance can be attributed to the ability of regression schemes to suppress 
confounding factors such as noise or variances in parameterization.

7. Conclusion

Ever since its introduction de Casteljau’s has proven itself as a fundamental tool in numerous applications ranging well beyond 
20

its initially intended use case in digital automotive design. In this overview article, we elaborated on its role in the novel field 
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of geometric data analysis. In particular, we showcased its practicability in obtaining spatiotemporal models that allow for the 
characterization of parameter-dependent effects in manifold-valued processes.

The presented geometric statistical tools, i.e., regression and mixed-effects models, are central concepts in statistics and there 
exist various applications and extensions. While the normalization method we summarized is one example, there are still many 
fruitful avenues for future developments ranging from geometric model selection to multi-covariate models. Similarly, the presented 
applications only scratch the surface of potential use cases that will benefit from an intrinsic treatment.

We further attempted to cover some of the challenges that appear when moving away from the familiar Euclidean domain to 
manifolds. The lack of properties such as a global system of coordinates and the non-uniqueness of shortest paths often prohibits 
straightforward generalizations of existing concepts. Also, the lack of closed-form expressions can lead to computational challenges, 
in particular, for high-dimensional data.
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