
New Multiobjective Shortest Path
Algorithms

Dissertation

zur Erlangung des Grades eines Doktors der Naturwissenschaften
(Dr. rer. nat.)

am Fachbereich Mathematik und Informatik
der Freien Universität Berlin

vorgelegt von

Pedro Maristany de las Casas

Berlin 2023

Erstgutachter: Prof. Dr. Ralf Borndörfer
Zweitgutachterin: Prof. Dr. Dorothea Wagner
Tag der Disputation: 15.05.2024





D E C L A R AT I O N O F A U T H O R S H I P

I declare to the Freie Universiät Berlin that I have completed the submitted
dissertation independently and without the use of sources and aids other
than those indicated. The present thesis is free of plagiarism. I have marked
as such all statements that are taken literally or in content from other writ-
ings. This dissertation has not been submitted in the same or similar form
in any previous doctoral procedure.

I agree to have my thesis examined by a plagiarism examination software.

Date: Signature:

3





Z U S A M M E N FA S S U N G

In dieser Arbeit beschäftigen wir uns hauptsächlich mit dem Multikriterielle
Kürzeste Wege (MOSP) Problem. Es ist eine Verallgemeinerung des klassi-
schen Kürzeste Wege Problems, bei der Kanten im Eingangsgraphen mit
d-dimensionalen Vektoren anstelle von Skalaren gewichtet sind. Der Haupt-
beitrag der Arbeit ist der Multiobjective Dijkstra Algorithmus (MDA), ein label-
setting Algorithmus, der in der Theorie und in der Praxis eine Verbesserung
der in der Literatur vorhandenen Ergebnissen darstellt. Motiviert durch die-
ses Ergebnis entwickeln wir im weiteren Verlauf der Arbeit Varianten des
MDAs für verschiedene Varianten des MOSP Problems.

Für das Punkt-zu-Punkt MOSP Problem hat der Targeted MDA (T-MDA)
die gleiche asymptotische Laufzeit wie der MDA. Durch einen erhöhten
Speicherverbrauch ist er in der Praxis aber deutlich schneller. Die zusätzlich
gespeicherten Pfade werden auf eine pseudo-lazy Art verwaltet. Dies ist
eine neuartige Methode zur Organisation von explorierten Pfaden, die si-
cherstellt, dass die Größe der Prioritätswarteschlange des Algorithmus auf
höchstens einen Pfad pro Knoten im Graphen beschränkt bleibt. Die Pfade,
die aus der Warteschlange zurückgehalten werden, werden in Listen orga-
nisiert, die durch Voranstellen oder Anhängen von Pfaden sortiert bleiben.
Das heißt, dass nur Konstantzeit-Operationen benötigt werden. Der T-MDA
löst größere Instanzen als der MDA und ist auch schneller.

Wir untersuchen die Verallgemeinerung des zeitabhängigen Kürzeste We-
ge Problems auf den multikriteriellen Fall. Wir bieten eine detaillierte Analy-
se der Grenzen und Möglichkeiten dieser Verallgemeinerung und diskutie-
ren, wann der MDA hierauf anwendbar ist. Für MOSP Instanzen mit großen
Mengen optimaler Pfade sind gute Approximationsalgorithmen wichtig. Wir
kombinieren den MDA mit einer Technik zur Partitionierung des Ergebnis-
raums aus der Literatur, um einen neuen FPTAS für das MOSP Problem zu
erhalten. Der resultierende MD-FPTAS funktioniert auch für Instanzen mit
verallgemeinert zeitabhängigen Kostenfunktionen, was neuartig ist.

Schließlich verwenden wir den MDA und seine bikriterielle Version als
Unterroutinen, um jeweils das Multiobjective Minimum Spanning Tree (MO-
MST) Problem und das k-Shortest Simple Path (k-SSP) Problem zu lösen.
Eine MO-MST Instanz wird gelöst, indem der MDA auf einen sogenann-
ten Übergangsgraphen angewendet wird. In diesem Graphen haben Pfade
äquivalente Kosten zu den Bäumen im ursprünglichen Graphen und somit
entsprechen die optimalen Lösungen, die vom MDA im Übergangsgraphen
berechnet werden, den optimalen Bäumen im ursprünglichen Graphen. Da
der Übergangsgraph eine exponentielle Größe im Verhältnis zur Größe des
ursprünglichen Graphen hat, diskutieren wir neue Techniken zur Reduzie-
rung seiner Anzahl von Kanten. Die Lösung des k-SSP Problems, ein skala-
res Optimierungsproblem, unter Verwendung einer bikriteriellen Unterrouti-
ne ist überraschend, aber unser neuer Algorithmus ist sowohl in der Theorie
als auch in der Praxis auf dem neuesten Stand.
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A B S T R A C T

The main problem studied in this thesis is the Multiobjective Shortest Path
(MOSP) problem. We focus on the problem variant with three or more
objectives. It is a generalization of the classical Shortest Path problem in
which arcs in the input graph are weighted with vectors instead of scalars.
The main contribution is the Multiobjective Dijkstra Algorithm (MDA), a label-
setting algorithm that achieves state of the art performance in theory and
in practice. Motivated by this result, the thesis goes on with the design of
variants of the MDA for different variants of the MOSP problem.

For the One-to-One MOSP problem the Targeted MDA (T-MDA) has the
same asymptotic running time than the MDA but trades in memory for
speed in practice. The additional paths stored during the T-MDA are man-
aged in a pseudo-lazy way. This is a novel way to organize explored paths
that ensures that the algorithm’s priority queue stores at most one path per
node in the input graph simultaneously. The paths that are held back from
the queue are organized in lists that are kept sorted by just prepending or
appending paths to them, i.e., using constant time insertions. The resulting
implementation of the T-MDA solves bigger instances than the MDA and is
also faster.

We study the generalization of the Time-Dependent Shortest Path prob-
lem to the multiobjective case. We provide a detailed analysis of the gener-
alization’s limitations and discuss when the MDA is applicable. For MOSP
instances with large sets of optimal paths, good approximation algorithms
are important. We combine the MDA with an outcome space partition tech-
nique from the literature to obtain a new FPTAS for the MOSP problem. The
resulting MD-FPTAS works also for multiobjective instances of the Time-
Dependent Shortest Path problem, which is a novelty.

Finally, we use the MDA and its biobjective version, the BDA, to solve
the Multiobjective Minimum Spanning Tree (MO-MST) problem and the
k-Shortest Simple Path (k-SSP) problem, respectively. For the solution of
instances of these two problems, the MDA and the BDA are used as sub-
routines. An MO-MST instance is solved applying the MDA on a so called
transition graph. In this graph paths have equivalent costs to trees in the
original graph and thus, the optimal solutions computed by the MDA in the
transition graph correspond to optimal trees in the original graph. Since the
transition graph has an exponential size w.r.t. the size of the original graph,
we discuss new pruning techniques to reduce its number of arcs effectively.
The solution of the k-SSP, which is a scalar optimization problem, using a
biobjective subroutine is surprising but our new algorithm is state of the art
in theory and in practice.
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P R E FA C E

This thesis puts together the results published in five papers: Maristany
de las Casas, Sedeño-Noda, and Borndörfer (2021), Maristany de las Casas,
Borndörfer, et al. (2021), Maristany de las Casas, Kraus, et al. (2023), Maris-
tany de las Casas, Sedeño-Noda, and Borndörfer (2023), and Maristany de
las Casas, Sedeño-Noda, Borndörfer, and Huneshagen (2023). My aim has
been to improve the exposition that I would have gotten by merging these
five papers together in a cumulative dissertation. To establish comparability
when it is needed I also re-ran multiple experiments using newer versions of
the algorithms’ implementations and partially also different instances. Thus,
results presented here are not comparable to the ones in the original publi-
cations. The bottom lines in the papers and in the thesis coincide.

All implementations used throughout the thesis with exception of the one
closely related to the code used by our industry partner Lufthansa Systems
GmbH (Chapter 11) are publicly available in my GitHub. Additionally, the
repositories contain the detailed results obtained from every instance, the
scripts used to evaluate them, and the plots not included explicitly in the
thesis. While it has gained more attention in the last five years, research on
Multiobjective Shortest Paths was scarce prior to this period. A consequence
was that most implementations were not publicly available. For this reason I
re-implemented every benchmark algorithm in this thesis1 s.t. the speedups
possibly result in an isolated head-to-head comparison of the relevant tech-
niques in every chapter. By doing so, the speedups reported in the thesis are
sometimes lower than the ones reported in the original publications. I see it
as a small price to pay to hopefully increase the relevance of the thesis.

I expect the thesis to be self contained regarding the used notions from
Multiobjective Optimization. However, I point the reader to the book by
Ehrgott (2005) for an in depth introduction to the field. A good introduction
to Network Flow problems is the book by Ahuja et al. (1993). Necessary
background on data structures and sorting techniques can be read for exam-
ple in the book by Mehlhorn (1984). I use the Bachmann-Landau notation
to describe the asymptotic behavior of algorithms throughout the thesis. An
introduction is given in (Korte & Vygen, 2005, Section 1.2) and in the refer-
ences therein.

I am the first author of all publications mentioned at the beginning of this
preface. During my time as a PhD student I was the informal advisor (the
formal advisor being Professor Borndörfer) of multiple Student Assistants
and two of them wrote a Bachelor’s or Master’s thesis on the topic of two of
the papers. Luitgard Kraus’ Bachelor’s thesis (Kraus, 2021) is on the content
of (Maristany de las Casas, Borndörfer, et al., 2021) and Max Huneshagen’s
Master’s thesis (Huneshagen, 2023) is related to the contents of (Maristany
de las Casas, Sedeño-Noda, Borndörfer, & Huneshagen, 2023).

1 With exception of the KM algorithm used in Chapter 14.
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Part I

I N T R O D U C T I O N





1 M OT I VAT I O N A N D O U T L I N E

It is difficult to trace back the history of the shortest path prob-
lem. One can imagine that even in very primitive (even animal)
societies, finding short paths (for instance, to food) is essential.
Compared with other combinatorial optimization problems, like
shortest spanning tree, assignment and transportation, the math-
ematical research in the shortest path problem started relatively
late.

(Schrijver (2012))

Even if mathematical research in the field started late, it has been a big
success story in the past 60 years. The perceptibility of solution strategies
for shortest path problems and their applicability in practice constitute a
loop in which researchers keep adding features (resource constraints, time
dependency, ...) to the original Shortest Path problem while still controlling
the theoretical problem complexity and the computational running times.
Each cycle in this loop brings shortest path problems closer to real world de-
mands from industry or from everyday users (Geisberger et al., 2008; Delling
et al., 2009; Delling & Wagner, 2009; Nannicini, 2009; Bast et al., 2015; Blanco
et al., 2016; Blanco et al., 2017; Blanco et al., 2022; Baum et al., 2020; Euler
et al., 2022). One of these problem variants that has gotten less attention
so far is the Multiobjective Shortest Path (MOSP) problem in which optimal
paths w.r.t. to multiple and conflicting optimization criteria are computed
simultaneously.

1.1 the application behind the thesis

The Network Optimization department at ZIB has been successfully coop-
erating for many years with Lufthansa Systems GmbH, a market leader in
flight planning systems. As part of this industry cooperation that is funded
by the German Federal Ministry for Research and Education (BMBF) within
the context of the MobilityLab of the Research Campus MODAL, we could
identify room for improvement in state of the art MOSP algorithms. Two
of Lufthansa Systems’s main cost drivers when planning aircraft trajectories
are the flight duration and the fuel consumption. Often, an optimal solu-
tion for a single criterion scenario, using a weighted sum of time and fuel
costs, is enough. However, whenever infrastructures become overstrained
and big delays become a threat, a front of optimal paths w.r.t. both cost
drivers gives decision makers in the planning stages after the optimization
the possibility to choose a faster route even if more fuel is consumed. While
doing so, choosing only between the fastest and the cheapest route, two
single-criterion optimizations, might be to aggressive. This is how Multiob-
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18 motivation and outline

jective Optimization and its multiple solutions in the output fronts becomes
an interesting modeling choice.

Lufthansa Systems was interested not only in MOSP instances with two
cost criteria but wanted to assess the possibilities to model problems with
three and more objectives. We started our journey delving into the MOSP
literature with the aim of customizing a MOSP algorithm to suit Lufthansa
System’s requirements. During our search, we observed a scarcity of recent
publications and noted that the fundamental methodology has remained
unchanged since the introduction of E. Q. V. Martins (1984) classical label-
setting MOSP algorithm.

Back then, in 2019, the publication of the Biobjective Dijkstra Algorithm
(BDA) in (Sedeño-Noda & Colebrook, 2019) was very recent and we got in
touch with the main author of the publication. A fruitful cooperation started.
It led to the contributions/publications that are contained in this thesis. They
are mostly detached from the Flight Planning application even though the
gained knowledge is now being transferred back to Lufthansa Systems to be
built in in their optimization core: one more cycle in the loop described in
the first paragraph.

1.2 multiobjective shortest paths

An instance of the One-to-All MOSP problem consists of a weighted digraph
G = (V ,A) and a source node s ∈ V . The weights defined on the arcs are
d-dimensional vectors, d ∈ N. For an arc a ∈ A we refer to its weight as
a’s cost vector or simply a’s costs. We assume throughout the thesis that
the arc cost vectors only contain nonnegative components. Given a path
in G, the cost vector of the path is the d-dimensional vector obtained after
summing up the cost vectors of the arcs along the path. An s-v-path p for
any v ∈ V is said to be optimal if there is no other s-v-path q in G s.t. q
is better than or equal to p in every cost dimension and strictly better in at
least one dimension. This notion of optimality is commonly called efficiency
in the Multiobjective Optimization jargon. If a path is not efficient, it is
called a dominated path. For any node v the set of efficient s-v-paths in G is
often called the Pareto front of s-v-paths in the literature. In this thesis, we
simply call it the set of efficient s-v-paths. The goal in a MOSP instance is to
find the set of efficient s-v-paths for every v ∈ V . The One-to-One problem
variant includes a target node t ∈ V in an instance’s input and the goal is
then to find the set of efficient s-t-paths. The problems are defined formally
in Definition 3.2.

Example 1.1. Consider the example in Figure 1 and in particular the three
s-v-paths in the graph on the left hand side . If we consider the orange path
p and the green path q that consume 1kg and 2kg fuel, respectively, it is clear
that p is optimal if consumption is the minimization criterion. However if we
optimize also the paths’ duration, things become more difficult. Traversing p

takes 3min and traversing q takes 2min. The costs of p and q are (3min, 1kg)
and (2min, 2kg), respectively. Optimizing both criteria simultaneously, it is
not possible to decide which one is preferable. In fact, they are both efficient
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Figure 1: Exemplary Biobjective Shortest Path instance.

paths in the shown example. The blue path r however with costs (4min, 4kg)
is a dominated path.

In Example 1.1 if r’s cost vector would be (1min, 4kg), r would also be an
efficient path. Hence, the structure of the arcs’ costs influences the cardinal-
ity of the solution sets in MOSP instances. In fact, Hansen (1980) proved that
there exists a directed graph with bidimensional arc costs and an exponen-
tial number of paths w.r.t. the graph’s size in which all paths are efficient.

Going back to the practitioners’ point of view, this opens up a dilemma.
Single-criterion Shortest Path problems can be solved very fast but they de-
liver little flexibility in later planning stages. In contrast, a MOSP instance
with arcs weighted using vectors can contain multiple interesting solutions
but also too many to be either computed in a reasonable amount of time or
to be practical.

1.2.1 Intractability

An optimization problem is said to be intractable if there is no algorithm
that can solve all problem instances in polynomial time with respect to the
size of the input (cf. Garey & Johnson, 1990, Section 1.3). A possible reason
for a problem’s intractability is that ”the solution itself is required to be so ex-
tensive that it cannot be described with an expression having length bounded by a
polynomial function on the input length” (Garey & Johnson, 1990, Section 1.4).

Even easy combinatorial optimization problems become intractable when
their multiobjective siblings are considered. The reason is that the number
of feasible solutions is usually exponential in the input size and cost vectors
can be constructed s.t. every feasible solution is efficient. This is also the
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case for MOSP as proven by Hansen (1980). His results hold even for bidi-
mensional arc costs. We use his MOSP instances throughout the thesis in
our experiments. Given that the number of paths in a graph is exponential
in the graph’s encoding size, we end up with an exponentially sized output
that a MOSP algorithm needs to compute, store, and output.

The intractability of discrete multiobjective problems does not hold re-
searchers off from developing exact algorithms for these problems. In the
case of MOSP, conventional wisdom in the Operations Research community
states that the practical advantages of multiobjective models and multiobjec-
tive optimization outweigh the theoretical hurdles. In other words: Even if
the MOSP problem is hard in theory, it can be solved fast in practice.

Instances of the classical Shortest Path problem on road networks are
nowadays solvable in fractions of a second (cf. Delling et al., 2009; Bast et
al., 2015) and the latest improvements focus on how to use ground breaking
preprocessing techniques like e.g., Contraction Hierarchies (Geisberger et
al., 2008) to reduce the number of iterations performed in the actual Shortest
Path query. For MOSP, the situation was different when the research journey
that led to the contents of this thesis started: the single iterations in state of
the art algorithms contained inefficiencies with negative impact on both the
algorithms’ asymptotic running time bounds and their performance in prac-
tice. Thus, our goal was to design new MOSP algorithms that circumvent
this inefficiencies and hopefully equip the research community with tools
to further study MOSP applications knowing that fast algorithms are used
under the hood. Thereby, we need to differentiate between instances with
bidimensional arc costs and instances with higher-dimensional arc costs.

1.2.2 Biobjective Shortest Paths

A special case of MOSP is the Biobjective Shortest Path (BOSP) problem in
which arc costs are two-dimensional vectors. Hansen (1980) published proba-
bly the first in depth study of the problem. For this special case, the research
community has been more active than for general MOSP problems. The pub-
lication by Raith and Ehrgott (2009) gives a good overview of the algorithms
used until 2009 to solve BOSP problems. Besides Martins’ label-setting algo-
rithm, two phase approaches were often used. Algorithms of this type search
supported solutions in the first phase. Supported solutions are obtained by
using weighted sums of the objective functions and solving the resulting
single-criterion Shortest Path instances. Different methods from Branch and
Bound to Ranking algorithms can be used to compute unsupported solutions
in the second phase.

In Sanders and Mandow (2013) the authors discuss a parallel BOSP algo-
rithm. The parallelized component is the algorithm’s queue. They achieve
an asymptotic running time improvement in their work. The work has two
main limitations. First, the parallel queue is ”too complicated to be practical”
and is thus not implemented. Second, it is not known how to generalize the
queue to MOSP instances with more than two arc cost components.

Two phase approaches for BOSP problems seem to be less relevant ever
since, in 2015, Duque et al. (2015) published the Pulse algorithm. It was
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a novel approach since it is an exact BOSP algorithm that generates ef-
ficient paths by repeatedly calling Depth-First searches. The Pulse algo-
rithm remained state of the art for some time until Sedeño-Noda and Cole-
brook (2019) introduced the first version of their Biobjective Dijkstra Algorithm
(BDA). Since then, the BOSP community has had good news. One one hand,
the publication of the BDA improved the best known asymptotic running
time bound for BOSP and raised the bar regarding the solvability of large
scale BOSP instances in a reasonable amount of time. On the other hand,
some groups from the Artificial Intelligence community started to be inter-
ested in the topic. Ulloa et al. (2020) published a Biobjective A∗ (BOA∗)
algorithm for One-to-One BOSP. The most notable work on the topic was
however published one year later by Ahmadi et al. (2021). Their Enhanced
Biobjective A∗ (BOA∗

enh) algorithm is a milestone for BOSP solvability. In
our first version of the preprint (Maristany de las Casas, Kraus, et al., 2021)
we enhanced the BDA with the techniques used in (Ahmadi et al., 2021) and
achieved better running times. However, the authors informed us that they
had improved their (publicly available) implementation of the BOA∗

enh algo-
rithm and were faster than the improved BDA. Since this version of the BDA
pairs the results of two publications without further contribution and is cur-
rently slower than the BOA∗

enh algorithm, we decided not to include it in this
thesis. However, an in-depth comparison of the asymptotic running time of
the BDA with other BOSP algorithms is not included in Sedeño-Noda and
Colebrook (2019). We include it as a byproduct-contribution in this thesis.

1.2.3 Higher Dimensional Multiobjective Shortest Paths

After the biobjective case was studied by Hansen (1980), the generalization to
higher-dimensional arc cost vectors started to be considered in the literature.
White (1982) and Loui (1983) considered first variants of the Multiobjective
Shortest Path problem. In particular Loui (1983) already recognizes the Dy-
namic Programming structure of the problem and gives an exact algorithm.
He works in a maximization and thus, as in the Longest Path problem, heavy
on assumptions to guarantee that Dynamic Programming is applicable.

Similar to Dijkstra’s algorithm (Dijkstra, 1959) for the Shortest Path prob-
lem, the MOSP algorithm by Martins (E. Q. V. Martins, 1984) is a label-setting
algorithm (cf. Section 3.4) and remained state of the art for decades after it
was published. The exposition in the original paper is coined to cover One-
to-One MOSP problems but it is clear from how the problem is stated and
how the algorithm (E. Q. V. Martins, 1984, Algorithm 1) is designed that it
is also a One-to-All MOSP algorithm. We give an overview of the literature
for One-to-One MOSP problems in Chapter 9.

First Guerriero and Musmanno (2001) and later Paixão and Santos (2013)
perform extensive computational analysis of different labeling and sorting
methods in the design of One-to-All MOSP algorithms. On different artificial
graphs, they conclude that label-correcting methods outperform label-setting
methods. Making use of the dimensionality reduction technique first used in
(Pulido et al., 2015) in the context of MOSP problems, the superiority of
label-setting algorithms seems nowadays granted. Dimensionality reduction
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(cf. Section 3.5) is used in conjunction with lexicographic sorting of paths
according to their costs and with a priority queue to design today’s state of
the art MOSP algorithms.

An interesting concept to compare the asymptotic behavior of MOSP al-
gorithms is the notion of output sensitivity. An output sensitive asymptotic
running time bound for an algorithm is a bound that depends on the al-
gorithm’s output size and possibly also on its input size. Throughout the
thesis, we are interested in output sensitive running time and memory con-
sumption bounds that are polynomial in the size of the input and the output.
If an algorithm achieves such a bound for every instance of the problem it
solves, we say that it is an output sensitive algorithm. Martins does not bound
the running time of his MOSP algorithm in (E. Q. V. Martins, 1984). The lack
of details regarding data structures makes it hard to derive a bound from his
pseudocode. However, it is well known that the One-to-All MOSP problem
is solvable using output sensitive algorithms (see e.g., Bökler, 2018). Inter-
estingly, Bökler (2018) also proves that this does not hold for the One-to-One
MOSP problem unless P = NP.

Consider a One-to-All MOSP instance with d-dimensional arc costs d ⩾ 3.
We denote the number of nodes and the number of arcs in the input graph by
n and m, respectively. Moreover, we denote the overall number of efficient
paths by N and the maximal number of efficient s-v-paths for a node v ∈ V ,
by Nmax. Demeyer et al. (2013) published an improved version of Martins’s
algorithm. As described in their paper, the algorithm has an output sensitive
running time bound of

O
(
N log(dnNmax) + dmnN2

max
)

. (1)

In (Breugem et al., 2017) the authors also use Martins’s algorithm for their
contribution. In Lemma 3.1. of their paper, they derive an output sensitive
running time bound of O

(
nN2

)
for Martins’s algorithm, which is worse than

(1). In Chapter 5 of this thesis we discuss a version of Martins’s algorithm
that has a running time bound of

O
(
N log(dn) + dmnN2

max
)

. (2)

While at a first glance it is debatable to what extent our version still adheres
to the original Martins’s algorithm, we believe that we are only interpreting
the high level pseudocode in (E. Q. V. Martins, 1984, Algorithm 1) in the
best possible way we can think of to make our benchmarks as meaningful
as possible.

The Multiobjective Dijkstra Algorithm (MDA) is the generalization of the
BDA to general-dimensional arc costs and is, together with its variants, the
main contribution from the thesis. Using the same notation as before, the
MDA has an output sensitive running time bound of

O
(
N log(dn) + dmN2

max
)

. (3)

How do these output sensitive bounds translate into practice and into the
mentioned conventional wisdom of MOSP being hard in theory by solvable in
practice? Finding solid answers to these questions is our main goal in Part ii
and Part iii of the thesis.
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1.2.4 The Algorithm’s Name

Besides being label-setting algorithms for MOSP it is not clear at the first
glance why the name for the Biobjective Dijkstra Algorithm (BDA) and the
Multiobjective Dijkstra Algorithm (MDA) is justified. Time will decide whether
the current naming of the BDA and the MDA is kept. An anecdote to end
the introduction:

Möhring (1999) describes Martins’s MOSP algorithm for instances with
bidimensional arc costs. He states, loosely translated from German:

For every efficient path, the algorithm is as fast as Dijkstra’s algo-
rithm.

(Möhring (1999, Section 2.1, Page 9))

Since today’s implementations of Dijkstra’s algorithm are extremely fast, we
can interpret these words as the possibility to solve MOSP instances if the
number of efficient paths remains small. This is indeed the case when, for
example, shortest paths on road networks are searched w.r.t. time and w.r.t.
distance. Both objectives tend to be strongly correlated and thus, not many
efficient paths exist between two nodes.

However, Dijkstra’s algorithm runs in O (n log(n) +m) time. Thus, none
of the above bounds for Martins’s algorithm second Möhring’s claim. Since
he is this thesis’s author first optimization lecturer, we want him to be right.
Indeed, using the BDA, his statement holds. The running time (3) of the
MDA drops to O (N logn+mNmax) in the biobjective case (cf. Sedeño-Noda
& Colebrook, 2019), i.e., for the BDA. By definition, we have that N ⩽ nNmax

and thus, we can write the last bound as a worse bound and obtain the
output sensitive running time bound

O (Nmax(n log(n) +m)) .

The term states that the running time of the BDA is bounded by the size of
the largest set of efficient paths multiplied by the running time of Dijkstra’s
algorithm. This is probably a better reason than just being a label-setting
BOSP algorithm for the naming choice leading to the BDA’s name. Since the
MDA is a generalization of the BDA to the general-dimensional case and its
running time bound (3) is lower than the bound (2) for Martins’s algorithm,
its name feels justified.

1.3 contributions and outline

The thesis has three parts besides this introduction. Chapters not mentioned
in this outline are introductions or conclusions.

In Part ii we discuss label-setting algorithms for MOSP. In Chapter 4 we
introduce the MDA. This is the main contribution in this thesis. Immediately
after, in Chapter 5, we discuss our new version of Martins’s algorithm. This
chapter is needed to better understand the relevance of the MDA and also
to get a deeper insight into the results obtained in Chapter 6 in which we
benchmark both label-setting MOSP algorithms against each other. For our
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benchmarks we use large scale three-dimensional instances and manage to
solve instances that were unsolved so far in the literature. We also add some
four-dimensional instances that are defined on artificial graphs.

Part iii is devoted to making the MDA more suitable for practical pur-
poses. First, in Chapter 9, we design a One-to-One version of the MDA. The
resulting version is called the Targeted Multiobjective Dijkstra Algorithm (T-
MDA). It trades in a higher memory consumption than the MDA to speed
up its single iterations. Moreover, using A∗-like techniques, it reduces the
number of iterations needed to solve a given One-to-One MOSP instance. In
Chapter 10 we study the possibilities to generalize the MOSP problem to a
setting in which arc costs depend on the costs with which the tail node of
the arc is reached. In other words, we study possible generalizations of the
Time-Dependent Shortest Path problem to a multiobjective scenario. We call
it a dynamic costs setting. While in this chapter we end up with a setting in
which the MDA and the T-MDA work out of the box, discussing the model-
ing possibilities in the studied scenario is, to the best of our knowledge, an
addition to the available literature on the topic. Part iii ends with the design
of a new FPTAS for MOSP based on the MDA. We describe the new approx-
imation algorithm in Chapter 11. It combines the MDA with a partition of
the output set of costs from the literature. The partition bounds the output
size with a term that is polynomial in the input size and 1/ε for any given
value of ε > 0. We then use the resulting MD-FPTAS to solve instances of the
Horizontal Flight Planning problem. Instances of the problem have multiob-
jective dynamic arc cost functions and the output sets in the exact scenario
are too dense for practical purposes. Thus, the study of the performance of
the MD-FPTAS in this scenario is particularly interesting.

Finally, in Part iv we discuss two problems in which the MDA can be used
as a subroutine. In Chapter 13 we solve the Multiobjective Minimum Spanning
Tree problem using a version of the MDA that handles the search graph
implicitly. We see this chapter as an example of how the MDA can be used
to solve discrete Multiobjective Dynamic Programming problems. The last
contribution in the thesis is discussed in Chapter 14 where we study the k-
Shortest Simple Path problem. Using a recent black box algorithm from the
literature, it can be solved by solving O (k) instances of the Second-Shortest
Simple Path problem. We show that this subroutine can be solved efficiently
using a modified version of the BDA.

The introduction to the thesis so far serves in particular as an introduction
for Part ii. The other two parts have their own introduction and conclusion
as they are unrelated and mirror different stations of our MOSP-journey.



2 N OTAT I O N : M U LT I O B J E C T I V E
D I S C R E T E O P T I M I Z AT I O N A N D
G R A P H S

In this chapter, we briefly introduce notions from the field of Discrete Multi-
objective Optimization (DMO) that are needed throughout the thesis. For an
in depth discussion of the topic, we refer the reader to Ehrgott (2005) and
Emmerich and Deutz (2018). We also settle our notation for directed graphs
and paths therein. Formal definitions can be found in (Ahuja et al., 1993).

2.1 discrete multiobjective optimization

An instance of a d-dimensional DMO problem, d ∈ N considers a discrete
set X of feasible solutions and d cost functions ci : X → R, i ∈ {1, . . . ,d},
map every x ∈ X to its unique cost vector c(x) := (c1(x), . . . cd(x)) ∈ Rd.
d is the number of objectives of the instance at hand, also referred to as
the dimension of the instance. The set X is called the state space and the
set Y := {c(x) | x ∈ X} is called the outcome space. For a subset X ′ of feasible
solutions, we denote their cost vectors by c(X ′) := {c(x ′) | x ′ ∈ X}. Optimality
is defined using the following strict partial order on Y.

Definition 2.1 (Dominance relation). Consider a subset Y ⊆ Rd for some
d ∈N. Let y, y ′ ∈ Y be two vectors. y dominates y ′ if and only if yi ⩽ y ′

i for
all i ∈ {1, . . . ,d} and y ̸= y ′. If x dominates y, we write x ≺ y.

Then, in Multiobjective Optimization optimality is defined as follows.

Definition 2.2 (Nondominance and Efficiency). Using the notation from
this section, consider a tuple (X, c, Y,≺) encoding a d-dimensional DMO
instance.

• Let x, x ′ such that c(x) ≺ c(x ′). We say that x dominates x ′ and c(x)

dominates c(x ′).

• y ∈ Y is called nondominated if and only if there is no y ′ ∈ Y s.t. y ′ ≺ y.

• x ∈ X is called an efficient solution if c(x) ∈ Y is nondominated.

• Y∗ := {y ∈ Y | y is nondominated} is called the nondominated set.

• X∗
max := {x ∈ X | x is efficient} is called the instance’s set of efficient

solutions or maximum complete set of efficient solutions.

• X∗
min ⊂ X∗

max containing exactly one efficient solution for every non-
dominated vector is called a minimal complete set of efficient solutions.

25



26 notation: multiobjective discrete optimization and graphs

The nondominated set and the maximum complete set of efficient solu-
tions of a DMO instance are unique. However, like it is often the case
in single-criterion optimization, we are not interested in the set of all effi-
cient/optimal solutions. Instead, it suffices to have one efficient solution for
every nondominated cost vector. Throughout this thesis, we thus discuss
algorithms that output a minimal complete set of efficient solutions. For this
reason, we drop the min subscript when referring to minimal complete sets
of efficient solutions.

Definition 2.3 (Dominance or Equivalence Relation). For solutions x, x ′ ∈ X

we write x ⪯ x ′ if c(x) ⩽ c(x ′). For a set X ′ ⊆ X and an x ∈ X we write
X ′ ⪯D x or c(X ′) ⪯D c(x) if there is x ′ ∈ X ′ s.t. x ′ ⪯ x.

The ⪯D operator is useful to build a minimal complete set of solutions
iteratively. If we have a set X ′ containing only efficient solutions with pair-
wise different cost vectors and we consider a candidate solution x /∈ X ′, then
X ′ ⪯D x holds if X ′ contains a solution that dominates x or a solution that is
cost equivalent to x.

We assume the reader is familiar with the asymptotic analysis of algo-
rithms. An introduction can be read in (e.g., Garey & Johnson, 1990; Cormen,
2022). Let |X ′| denote the cardinality of X ′. Then the following statement
holds.

Proposition 2.1 (Complexity of dominance checks). Let X ′ be a set of feasible
solutions of a d-dimensional DMO instance. For a feasible solution x ′, the check
c(X ′) ⪯D c(x ′) uses O (d|X ′|) comparisons.

2.2 graphs and paths

If not specified otherwise, we consider directed graphs G = (V ,A) in which
V is the set of nodes and A ⊆ V × V is the set of directed arcs. For an arc
(u, v) ∈ A, we call u the tail of a and v the head of a. For a node v ∈ V , the
set δ−(v) ⊆ A denotes the set of arcs in A whose head node is v. For a node
u ∈ V , we write u ∈ δ−(v) if (u, v) ∈ A exists, i.e. if (u, v) ∈ δ−(v). Similarly,
the set δ+(v) denotes the set of arcs in A whose tail node is v and we write
w ∈ δ+(v) if (v,w) ∈ A exists. As a convention, we set n := |V | to be the
number of nodes and m := |A| the number of arcs in a given graph G.

Between two nodes s, t ∈ V , an s-t-path p is an ordered sequence of arcs.
The tail of the first arc in p must be s and the head of the last arc of p must
be t. For every arc but the last arc of p, the head of the arc must coincide
with the tail of the next arc in p. For a node v ∈ V , we write v ∈ p if v is
the tail or the head node of an arc in p. An s-t-path p is simple if for every
node v ∈ p, v has exactly one incoming and one outgoing arc in p. A path
in which s and t are equal and no other nodes are repeated is called a cycle.
Paths containing cycles are called walks.

Let p be a simple s-t-path and u, v ∈ p two nodes. We refer to the u-v-
subpath of p by pu→v. If p is an s-t-path and q is an t-r-path, the concatena-
tion of both paths is an s-r-path and we refer to it by p ◦ q. In the same way,
we write p ◦ a for an arc a ∈ δ+(t) if we consider the path obtained after
adding the arc a to p. We denote the set of all s-t-paths in G by Pst.
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3 M U LT I O B J E C T I V E S H O R T E S T PAT H
P R O B L E M

In this chapter we introduce the main problem studied in this thesis, the
Multiobjective Shortest Path (MOSP) problem. It is a DMO problem and more
specifically, a Multiobjective Combinatorial Optimization problem. We start the
exposition with the formal definition of the problem in Section 3.1. Sec-
tion 3.2 is about complexity of the problem. The results presented therein
are not a contribution in this thesis; they can be found in the literature. In
Section 3.4 we define label-setting algorithms for MOSP. This class of algo-
rithms is known from the single-criterion Shortest Path problem. Defining it
in a multiobjective context is important because the dominance order used
to decide upon the optimality/efficiency of paths is a partial order. How-
ever, during the solution process of MOSP instances and particularly during
label-setting algorithms, paths have to be sorted according to a total order
until the algorithm can decide whether they are efficient or irrelevant. In Sec-
tion 3.3 we discuss how to store paths with multidimensional cost vectors
as labels in memory efficient MOSP algorithms. The interplay of the domi-
nance order and the possibly used total orders is thus clarified in Section 3.4.
One of the suitable total orders, the lexicographic order, stands out because
it allows to use a technique called dimensionality reduction to speed up the
⪯D-checks introduced in Definition 2.3. This technique was first used in a
MOSP algorithm by Pulido et al. (2015). We describe it in Section 3.5. Finally,
in Section 3.6 we discuss how we denote the different stages in which paths
can be during label-setting MOSP algorithms. This introduces a disjoint par-
tition of the set of paths in the considered digraph that is convenient for the
description of the algorithms.

3.1 problem definition

We consider a directed graph and multiple arc cost functions. Using so
called sum objective functions (cf. Ehrgott, 2005) these functions are extended
to the paths in the considered graph.

Definition 3.1. Consider a directed graph G = (V ,A) and d ∈ N arc cost
functions ci : A → R, i ∈ {1, . . . ,d}. For an arc a ∈ A, we write c(a) :=(
c1(a), . . . , cd(a)

)
.

For nodes s, v ∈ V let p be an s-v-path in G. Then the costs of p w.r.t c are

c(p) :=
∑
a∈p

c(a) ∈ Rd. (4)

We can now define the MOSP problem formally.

Definition 3.2 (Multiobjective Shortest Path Problem). A d-dimensional Mul-
tiobjective Shortest Path (MOSP) instance consists of a digraph G = (V ,A), a

29
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designated source node s ∈ V , and d ∈ N arc cost functions ci : A → R,
i ∈ {1, . . . ,d}. Assume that the arc costs c are extended to the paths in G as
in Definition 3.1.

one-to-one Given an additional target node t ∈ V in the input, the One-to-
One MOSP problem (from s to t) is to find a minimal complete set P∗

st

of s-t-paths in G. The tuple I := (D, s, t,d, c) is a One-to-One MOSP
instance.

one-to-all If no target node is given in the input, the One-to-All MOSP
problem is to solve the One-to-One MOSP problem from s to v for
every v ∈ V \ {s}. The tuple I := (D, s,d, c) is a One-to-All MOSP
instance.

The MOSP problem variants with bidimensional instances are called One-to-
One/One-to-All Biobjective Shortest Path (BOSP) problem.

In the remainder of the thesis if we do not specify if the considered MOSP
instances are a One-to-One or a One-to-All MOSP instance, the statement
holds for both types of instances. Moreover, we assume w.l.o.g. that every
node v ∈ V is reachable from s.

Remark 3.1. Given a MOSP instance and a Shortest Path instance defined on
the same graphs with the same source and possibly target node, the sets of feasible
solutions coincide. In particular, the solution sets of One-to-All MOSP instances,
can be characterized using arborescences in G (Raith & Ehrgott, 2009; Mote et al.,
1991). For the scope of this thesis, this characterization is not required which is why
in Definition 3.2 we define One-to-All MOSP instances as n One-to-One instances.

In the single-criterion Shortest Path problem, arc cost functions that are
not conservative can lead to the non-existence of an optimal finite path. A
walk looping infinitely around a cycle with negative cost improves its cost
after every loop. In a multiobjective setting, a single arc cost function that is
not conservative suffices to have an infinite set of efficient paths. Let C be a
cycle in G with cj(C) < 0 for an index j ∈ {1, . . . ,d}. In all other dimensions
let C have positive costs. Moreover, for nodes s, v in G, let p be an efficient
s-v-path containing a node u that is also in C. For any k ∈ N, define the
sequence of paths

P = (p1, . . . ,pk), pj := ps→u ◦C ◦ . . . ◦C︸ ︷︷ ︸
j times

◦pu→v, j ∈ {1, . . . ,k}.

Then, no two walks in P dominate each other and since p is efficient, all
walks in P are also efficient. As a consequence, we consider MOSP instances
without cycles with negative costs in the input graph.

Definition 3.3 (Conservative Arc Costs (cf. Definition 7.1 Korte & Vygen,
2005)). Let G = (V ,A) be a directed graph and c : A → R an arc cost
function. Then, c defines conservative arc costs if there is no cycle in G with
negative total cost w.r.t. c.

If we consider MOSP instances with conservative arc costs only, minimal
complete sets of efficient paths containing only simple paths exist. Note
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that conservative arc cost functions do not rule out the possibility of having
negative arc cost components. However, it is well known that in the single-
criterion case, when the arc cost function defines conservative arc costs, we
can transform the arc costs in polynomial time w.r.t. the size of G to obtain
nonnegative arc costs c̄ w.r.t. which the ordering of the paths remains the
same as w.r.t. the original costs c. This also holds in the multiobjective sce-
nario (cf. Sedeño-Noda & Colebrook, 2019) and thus, we consider MOSP
instances with nonnegative arc costs only.

In this setting if an efficient path contains a cycle C with c(C) = 0, a cycle-
free representation of the path at hand exists and it has equivalent costs. In
addition, we can derive the following structural property for efficient paths.
It is a Bellman condition, often referred to as subpath-optimality in the single-
criterion shortest paths literature.

Theorem 3.1 (Bellman condition for efficient paths. (E. Q. V. Martins, 1984,
Lemma 4)). Consider a d-dimensional MOSP instance with d conservative arc
cost functions. For a node v ∈ V , let p be an efficient and simple s-v-path. Then,
for every node u ∈ p, the s-u-subpath ps→u of p is an efficient s-u-path w.r.t. c.

Proof. Since p is a simple path, its s-u-subpath is well defined. We prove the
statement by contradiction. If ps→u is not an efficient s-u-path, there exists
an s-u-path q that dominates it. As a direct consequence,

c(q ◦ pu→v) = c(q) + c(pu→v) ≺ c(ps→u) + c(pu→v) = c(p)

which contradicts the efficiency of p.

As a direct consequence of the last theorem, we can formulate the follow-
ing result.

Corollary 3.1. Consider a d-dimensional MOSP instance with conservative arc
cost functions and a node v ∈ V . For all nodes u ∈ δ−(v) let P∗

su be a minimal
complete set of efficient s-u-paths. Then, the set{

p ◦ (u, v)
∣∣ p ∈ P∗

su, (u, v) ∈ δ−(v)
}

(5)

contains a minimal complete set of efficient s-v-paths.

From now on, we refer to d-dimensional MOSP instances with conservative
arc cost functions simply as d-dimensional MOSP instances. Moreover, the fol-
lowing remark simplifies the proofs and the notation.

Remark 3.2 (Paths and Walks). The MOSP algorithms considered in this thesis
generate paths arc by arc starting with an arc-less path at s. By doing so, we cannot
guarantee that, given a simple s-v-path p for some v ∈ V , its expansion along an
arc (v,w) ∈ δ+(v) is a simple s-w-path q = p ◦ (v,w). In this scenario, let q ′ be
the s-w-path obtained after removing the w-w-cycle from q.

If we consider only MOSP instances with conservative arc costs, we have c(q ′) ⩽
c(q). Hence, since paths and walks are built arc by arc, any MOSP algorithm
considered in this thesis processes q ′ before q. Then, while building a minimal
complete set of efficient s-w-paths, the walk q is dominated by or equivalent to
q ′. Hence, the conservative costs and the ⪯D-checks ensure that walks are not
contained in the returned minimal complete sets of efficient paths. Thus, in the
upcoming chapters, we do not differentiate between paths and walks.



32 multiobjective shortest path problem

v1 v2 v3 vn−2 vn−1 vn(0, 1) (0, 0) (
0, 2⌊

n−2
2

⌋
) (0, 0)

(1, 0)

(
2

⌊
n−2
2

⌋
, 0

)

. . .

Figure 2: BOSP instance by Hansen (1980). Every path is efficient.

3.2 hardness, intractability, and output sensi-
tivity

Serafini (1987) proved that MOSP problems are NP-hard. Recent discussions
about the suitability of the notion of NP-hardness for MOSP problems are
conducted in (Bökler, 2018, 2017). Our contributions focus on the intractabil-
ity of MOSP problems and the resulting output sensitive running time and
space consumption bounds for MOSP algorithms.

MOSP instances in which every path is efficient first appeared in (Hansen,
1980). The author designed instances with two arc cost functions, i.e., BOSP
instances. Since the number of paths in a graph is generally exponential
w.r.t. the graph’s input size, these instances prove the intractability of the
problem. In Figure 2 we show one of these graphs.

Theorem 3.2 (Hansen (cf. 1980, Theorem 1)). The MOSP problem is intractable.

A consequence of intractability is that an exponentially sized output needs
to be stored and returned by a MOSP algorithm. Even if the storage of
efficient paths consumes O (1) memory per path, returning all of them is
a linear time operation w.r.t. the number of efficient paths. As shown by
Bökler (2018), the One-to-All MOSP problem is output sensitive. Indeed, the
classical MOSP algorithm (E. Q. V. Martins, 1984) that we discuss in detail
in Chapter 5 has an asymptotic running time bound that is polynomial w.r.t.
the input and the output size of the given instance. In (Bökler, 2018) the au-
thor also proves that the One-to-One MOSP problem is not output sensitive
unless P = NP. An intuitive reasoning is that the size of the output of a
One-to-One MOSP algorithm, i.e., of a minimal complete set P∗

st of efficient
s-t-paths can contain less paths than the efficient s-v-paths, v ∈ V \ {s, t},
that are needed to ensure that P∗

st is correct.

Theorem 3.3 (e.g., Breugem et al. (2017, Lemma 3.1.)). The One-to-All MOSP
problem is output sensitive.

The main theoretical contribution in this part of the thesis is the so called
Multiobjective Dijkstra Algorithm. Its output sensitive running time bound im-
proves the lowest output sensitive running time bound for MOSP problems
known so far.

3.3 labels

As mentioned earlier, we discuss MOSP algorithms that output minimal
complete sets of efficient paths containing simple paths only. Thus, the
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longest possible output path w.r.t. the number of arcs contains (n− 1) arcs.
Labels in a MOSP context are an abstract encoding of feasible paths that is
memory efficient and that allows to reconstruct the encoded path in O (n)

time. We assume that a label uses O (d) memory to encode the path it repre-
sents. In the single-criterion case labels use O (1) memory but in our scenario,
we store the paths’ cost vectors in the labels. Since a simple path p has O (n)

s-v-subpaths, v ∈ p, storing p and all its subpaths using a label per subpath
uses O (dn) memory. Due to the one-to-one correspondence between a path
and the label that represents it, both notions can be used interchangeably.

Let G = (V ,A) be a digraph and p a simple s-v-path in G, v ∈ V . A label
encoding p can be a tuple ℓp = (v, lastArcp,predLabelp, c(p)) that contains
the final node v of p, the incoming arc lastArcp = (u, v) of v in p, a reference
predLabelp to the label encoding the ps→u subpath of p, and the costs of p.
Then, using Algorithm 1, p is reconstructed in O (n) time. Asymptotically
it is safe to assume that the effort for rebuilding p vanishes in comparison
with the time needed to compute ℓp in a label-setting MOSP algorithm.

Algorithm 1: Reconstruction of a path p given its label.
Input : Digraph G = (V ,A), label

ℓp = (v, lastArcp, predLabelp, c(p)) encoding a simple
s-v-path p in G.

Output : s-v-path p

1 Path p← ();
2 Label ℓ← ℓp;
3 while Node in ℓ is not s do
4 Prepend arc in ℓ to p;
5 ℓ← predLabel stored in ℓ;
6 return p.

If the costs of p are d-dimensional, ℓp as described above indeed uses O (d)

space. Storing p itself, would require O (n) space since its arcs would need
to be stored. Note that if needed, labels can store more information about
the path they encode if the additional information requires O (d) memory.
I.e., labels are implementation dependent data structures.

3.4 label-setting algorithms for mosp

In this section, we define label-setting MOSP algorithms as algorithms that
exploit Corollary 3.1.

Definition 3.4 (Label-Setting MOSP Algorithm). Consider a MOSP instance
and let A be a MOSP algorithm and v ∈ V be a node in G. A label-setting
MOSP algorithm is a MOSP algorithm that only adds efficient paths to the
set P∗

sv and only explores new s-v-paths by expanding efficient s-u-paths for
u ∈ δ−(v) along the incoming arcs (u, v) of v.

Thus, when a label-setting algorithm stores a path p in the output set P∗
sv

it must be sure that a path that is stored later in this set does not dominate
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p. To ensure this, we use the notion of compatible orders. Without giving the
property a name, it has been already discussed in (Paixão & Santos, 2013).

Definition 3.5 (Compatible Orders). Consider a d-dimensional MOSP in-
stance and a total order ≺Q on the outcome space c(P) induced by the set
P of paths in G. ≺Q is called compatible with the dominance order (Defini-
tion 2.1) if for any v ∈ V and any two s-v-paths p, q we have:

c(p) ≺Q c(q)⇒ c(q) does not dominate c(p). (6)

Example 3.1. Compatible Orders The following two total orders often used
in the literature are compatible with the dominance order. Consider two
vectors x, y ∈ Rd, d ∈N.

lexicographic order We write x ≺lex y and say that x is lexicographi-
cally (lex.) smaller than y if for the first index i ∈ {1, . . . , i} for which
xi ̸= yi, we have xi < yi.

sum order We write x ≺Σ y if
∑d

i=1 xi <
∑d

i=1 yi.

Proving that the orders in Example 3.1 are compatible with the dominance
order is immediate. The sets of paths in a digraph used to define a MOSP
instance inherits the ≺Q order from the instance’s outcome space. The sum
order is sometimes beneficial for a large number of objective vectors because
the ordering of paths is achieved using comparisons of scalars only. How-
ever, this sorting key needs to be calculated for every path and does not
outperform label-setting MOSP algorithms taking advantage of the benefits
that come with the lexicographic ordering. Namely, it is particularly ben-
eficial with regard to the ⪯D-checks. These checks are, in theory and in
practice, the main bottleneck in the performance of MOSP algorithms.

3.5 dimensionality reduction

A technique called dimensionality reduction can be used in conjunction with
the lexicographic ordering of paths to reduce, in practice, the number of
comparisons needed to answer c(P) ⪯D c(p) for a set of paths P and a path
p. Dimensionality reduction in MOSP algorithms was first used in Pulido et
al. (2015). The technique is not specific to paths which is why in this section
we reproduce their exposition using d-dimensional vectors, d ∈N.

Consider a discrete set of vectors X ⊂ Rd that is sorted in ≺lex-increasing
order and assume that the vector y ∈ Rd is lex. greater than every element
in X. By definition, we have y1 ⩾ x1 for every x ∈ X. Thus, to check if y is
dominated by a vector in X we compare the 2nd to dth entries of the vectors.

Definition 3.6 (Dimensionality Reduced Front). The dimensionality reduced
front Xdr of X is the discrete set of (d− 1)-dimensional vectors obtained by

1. Neglecting the first component of every vector in X and

2. deleting all dominated (d− 1)-dimensional vectors obtained after the
first step and keeping just one representative of equivalent cost vectors.
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We always assume that the dimensionality reduced fronts are maintained
in lex. increasing order. If Xdr ⊂ Rd−1 is such a front and we want to
answer Xdr ⪯D x for a vector x ∈ Rd−1, we only need to compare x with
the vectors in Xdr that are not lex. greater than x. This yields big running
time improvements in practice.

Example 3.2. Consider the set X = {(1, 2, 3), (3, 2, 1), (2, 1, 3)}. To build Xdr,
we consider the set {(2, 3), (2, 1), (1, 3)} obtained after neglecting the first
component of the original vectors. Since (2, 3) is dominated by the other
vectors in this set, it is discarded. Finally after re-sorting the remaining
vectors, we obtain Xdr = {(1, 3), (2, 1)}.

The following theorem explains why dimensionality reduced fronts are
relevant in practice. Its proof is straightforward and can be found in the
original publication.

Lemma 3.1 (Pulido et al. (2015, Lemma 2)). Let X ⊂ Rd be a discrete set and
y ∈ Rd a vector that is lex. greater than every vector in X. Then, we have

X ⪯D y⇔ Xdr ⪯D (y2, . . . ,yd). (7)

Running Time

Because of the removal of elements in Item 2 of the enumeration in Defi-
nition 3.6, there holds |Xdr| ⩽ |X| but, the inequality can be tight. Thus,
even though the vectors in Xdr are (d− 1)-dimensional, the technique can-
not be used to reduce the asymptotic running time of the ⪯D-check derived
in Proposition 2.1. The number of comparisons to solve Xdr ⪯D (y2, . . . ,yd)

is in O ((d− 1)|X|) = O (d|X|) for any d ⩾ 3.
Assume Xdr is sorted in lex. non-decreasing order and we need to possibly

update Xdr to contain the vector x ∈ Rd−1. In order for Xdr ∪ {x} to be a
dimensionality reduced front and remain sorted after x’s possible insertion,
we need to make sure that x is not dominated by or equivalent to a vector
in Xdr, find the correct insert position for x and delete vectors in Xdr that
are dominated by x. This operation is called a merge operation. It is used
extensively in classical label-setting MOSP algorithms in a different context
than dimensionality reduction.

Definition 3.7 (Merge Operation). In any dimension d ⩾ 2, consider a dis-
crete set X ⊂ Rd, a vector x ∈ Rd, and a total order ≺Q on Rd that is
compatible with the dominance order (cf. Definition 3.5). Assume that the
elements in X are sorted in ascending order w.r.t. ≺Q. A merge operation
(Algorithm 2) has three purposes:

1. Answer X ⪯D x, i.e., whether there is an element in X that dominates
x or is equivalent to x. If not,

2. insert x into X s.t. X remains sorted in ascending order w.r.t. ≺Q.

3. Finally, remove elements in X that are dominated by x.

Algorithm 2 contains the pseudocode of a merge operation. We refer to
it using the merge link from now on. Note that X is a linked list in the
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pseudocode and thus, accessing its ith element using X[i] is not a constant
time operation. From the pseudocode we can immediately see the following
complexity result.

Algorithm 2: merge
Input : Discrete set X ⊂ Rd implemented as a doubly linked list, sorted

in ascending order w.r.t. ≺Q, and indexed from 0 to |X|− 1. Vector
x ∈ Rd.

Output : Updated set X according to Definition 3.7.

1 Index i← 0;
2 Vector y← X[i]; // [·] accesses the ith vector in the list.

3 while i ̸= |X|− 1 and y ⪯Q x do
4 if y ⪯D x then return X ;
5 i← i+ 1;
6 y← X[i];
7 X← X with x inserted in position i;
8 while i ̸= |X− 1| do
9 if not x ⪯D y then
10 i← i+ 1;
11 y← X[i];
12 else
13 X← remove y from X; // Don’t update i. X[i] is now the successor

of v in the original X.

14 return X;

Proposition 3.1. Algorithm 2 runs in O (d|X|).

Recall that in the context of the dimensionality reduction technique, we re-
quire the total order ≺Q in Definition 3.7 to be the ≺lex order. We conclude
that the addition of x ∈ Rd−1 to a dimensionality reduced front Xdr ⊂ Rd−1

s.t. Xdr ∪ {x} is a sorted dimensionality reduced front is done in O (d|Xdr|)

comparisons using merge operations.

Dimensionality Reduction in Biobjective Shortest Path Problems

The greatest impact of performing dominance tests using the right hand side
of (7) is achieved if the original vectors in X are bidimensional.

Proposition 3.2. Let X be a discrete set in R2. Then, Xdr is a single number.

Corollary 3.2. Let X be a discrete set in R2 and y ∈ R2 a vector that is not lex.
smaller than any vector in X. Then, X ⪯D y is checked in Θ(1).

Our implementations of label-setting MOSP algorithms always use the di-
mensionality reduction to obtain best possible running times in practice. The
impact of the technique is assessed in the benchmarks in the original pub-
lication (Pulido et al., 2015). However, since the use of the dimensionality
reduction technique does not improve the asymptotic running time bound
of the ⪯D-checks in general dimensions, we do not include it in our algo-
rithmic discussions in the next two chapters. As an additional benefit, we
can describe the label-setting algorithms in this part of the thesis using an
unspecified ≺Q order that is compatible with the dominance order.
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unexplored explored

permanent

discarded

Figure 3: For any v ∈ V every s-v-path is in one of these sets during a label-setting
algorithm (cf. Definition 3.8). If a path reaches the set of permanent paths
or the set of discarded paths, it stays there until the end of the algorithm.
At the end of the algorithm, the set of explored paths is empty.

3.6 partition of the set of paths

We assume that any label-setting MOSP algorithm maintains a list P∗
sv of

s-v-paths for every v ∈ V . At the beginning of the algorithm, these lists
are empty. Exploiting the label-setting property of the algorithm, we fur-
ther assume that only efficient s-v-paths are stored in P∗

sv. In a One-to-All
MOSP algorithm these sets are the algorithms’ output and are thus proven to
then contain a minimal complete set of efficient s-v-paths. In a One-to-One
scenario this property does not necessarily hold and only P∗

st is a minimal
complete set of efficient s-t-paths.

Label setting MOSP algorithms implicitly partition the set of paths in G.
See also Figure 3.

Definition 3.8 (Paths Partition). Consider a MOSP instance and a label-
setting MOSP algorithm A. Then, A implicitly partitions the set of paths
in G in four disjoint sets.

unexplored paths This set contains every path in G that has not been
processed by the algorithm.

permanent paths A path p ∈
⋃

v∈V P∗
sv is a permanent path. I.e., perma-

nent paths are the efficient paths already computed and stored by the
algorithm.

discarded paths An s-v-path p for some v ∈ V is a discarded path if it is
not an unexplored path and if c(P∗

sv) ⪯D c(p).

explored paths This set contains every path that is neither of the last
three sets of paths. In other words, a path is an explored path if A

has processed it already but could not yet determine whether it is a
permanent path or a discarded path. Note that the list P∗

sv is modified
with every efficient s-v-path that is found. Thus, the check c(P∗

sv) ⪯D

c(p) to determine whether an explored s-v-path p is discarded or made
permanent needs to be performed in the right moment. At the end of a
label-setting algorithm, the set of explored paths is empty.

The partition of paths is implicit because neither unexplored paths nor
discarded paths are stored. Label setting algorithms clearly maintain the
sets P∗

sv with the labels encoding the efficient s-v-paths found so far. On
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one hand and particularly in a One-to-All scenario these sets are the algo-
rithms’ output. On the other hand, the storage of these sets is needed to take
advantage of Corollary 3.1: once an s-v-path p is stored in P∗

sv, it can be ex-
panded along the outgoing arcs of v to generate new candidate s-w-paths for
w ∈ δ+(v). These new paths are explored paths until they are either made
permanent or discarded. The handling of explored paths is a key issue in
the development of efficient MOSP algorithms. MOSP algorithms existing
before the publications that are reproduced in this thesis, stored explored
paths explicitly. Our new Multiobjective Dijkstra Algorithm (see Chapter 4)
accentuates the benefits of the Bellman condition for MOSP (Theorem 3.1) to
achieve better asymptotic bounds.



4 M U LT I O B J E C T I V E D I J K S T R A
A LG O R I T H M

In this chapter we introduce the Multiobjective Dijkstra Algorithm (MDA). The
algorithm is the main contribution in this thesis. As discussed initially, the
algorithm is a One-to-All MOSP algorithm. Out of the box it then also
solves a One-to-One MOSP instance defined on the same graph. Already in
this chapter we discuss on a high level some improvements to enhance the
MDA’s performance when applied to One-to-One MOSP instances. Chap-
ter 9 is devoted completely to the design of a tuned One-to-One version of
the MDA.

The remaining contributions in this thesis build upon the base version of
the MDA. The pseudocode is given in Algorithm 3, which we link to using
the MDA hyperlink throughout the thesis. The MDA is, to the best of our
knowledge, the first label-setting MOSP algorithm that handles explored
paths implicitly. In particular, at any point in time during its execution and
for any node v ∈ V , it stores at most one explored path. When the stored s-v-
path for a node v ∈ V is either made permanent or discarded, a new explored
path for v is generated out of the permanent s-u-paths for u ∈ δ−(v), taking
advantage of Corollary 3.1.

For the description of the algorithm, we assume that a d-dimensional One-
to-All MOSP instance I = (D, s,d, c) is given. The data structures used in
the MDA are a priority queue Q of paths that are sorted in nondecreasing
order w.r.t. a total order ≺Q that is compatible with the dominance order
and the lists P∗

sv of s-v-paths for every v ∈ V .

short description In every iteration, the MDA extracts a ≺Q-minimal
path p from Q (Line 7). Let p be an s-v-path for a node v ∈ V . It is guaranteed
that p is not dominated by and not cost-equivalent to any path already stored
in P∗

sv. Thus, p is made permanent, i.e., added to P∗
sv (Line 8). Then, new

explored s-w-paths for w ∈ δ+(v) are generated by concatenating p with the
outgoing arcs of v (Line 9). We discuss later how the new explored paths are
handled. Possibly, some of them are added to Q. Since the priority queue
Q contains at most one s-v-path at any point in time, it has no s-v-path after
p is extracted. Hence, in the current iteration, other previously explored s-
v-paths are reconsidered. If it exists, a minimal one w.r.t. ≺Q that is neither
dominated by nor cost-equivalent to a path already stored in P∗

sv is inserted
into Q (Line 10 and Line 11). The MDA terminates when the priority queue
Q is empty at the beginning of an iteration.

39
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4.1 mda, propagate, and nextqueuepath

We proceed with a detailed description of the MDA and its subroutines.
The main novelty is the handling of explored paths that are not stored in the
priority queue Q.

The datastructures of the algorithm are initialized in Line 1-Line 5. Ini-
tially, they are all empty. The trivial path from s to itself with costs 0 ∈ Rd is
added to the priority queue Q and is the only explored path before the first
iteration of the algorithm’s main loop. We call this path pinit and initialize it
in Line 4.

Algorithm 3: Multiobjective Dijkstra Algorithm (MDA)
Input :d-dimensional One-to-All MOSP instance (G, s,d, c).

Output : Minimal complete set P∗
sv of efficient s-v-paths for every

v ∈ V .

1 Priority queue of paths Q← ∅; // Sorted according to c.

2 ∀(u, v) ∈ A – explored s-v-paths that use (u, v) as last arc: lpluv ← ∅;
3 ∀v ∈ V – permanent s-v-paths: P∗

sv ← ∅ ;
4 pinit ← () ;
5 Q← Q.insert(pinit);

6 while Q ̸= ∅ do
7 s-v-path p← Q.extractMin();
8 P∗

sv ← Append p to P∗
sv;

9 Q← propagate(p,Q,P∗
sw for every w ∈ δ+(v))

10 s-v-path pnew ← solve (8) and if no solution is found, set pnew to
NULL ;

11 if pnew ̸= NULL then Q.insert(pnew);
12 return ∪v∈VP

∗
sv;

As noted in the short description of the MDA, for every node v ∈ V , the
priority queue Q contains at most one s-v-path at any point in time. We
thus refer to v’s queue path and mean the s-v-path in Q if one exists. In every
iteration the MDA performs three tasks.

extraction and storage A minimal (w.r.t. ≺Q) path p is extracted from
Q in Line 7. Assume that p is an s-v-path, v ∈ V . It is guaranteed that
p is an efficient path and thus, it is added to P∗

sv in Line 8.

exploring new paths Algorithm 4 is called in Line 9 of the MDA. The
call is triggered in every iteration. The subroutine is called propagate
and linked using the propagate link. In it, the extracted s-v-path p is
expanded along the arcs (v,w) ∈ δ+(v). This produces new explored
s-w-paths. Let q = p ◦ (v,w) be such a path (Line 2 of propagate). If
q is neither dominated by nor equivalent to a path in P∗

sw (Line 3 of
propagate), two cases are distinguished:

• If there is no s-w-path in Q, q is inserted into Q (Line 8 of propa-
gate of propagate).
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• If there is an s-w-path q ′ in Q and q ′ is greater than q w.r.t. ≺Q,
q replaces q ′ in Q (Line 5 of propagate).

In any other case, q is ignored. The MDA considers it again later
to either discard it or make it w’s queue path. Hence, q is now an
explored path in the MDA but it might not stored. It can be restored
efficiently later.

Algorithm 4: propagate.
Input : s-v-path p, priority queue Q,

s-w-paths P∗
sw for every w ∈ δ+(v).

Output : Updated priority queue Q.

1 for (v,w) ∈ δ+(v) do
2 s-w-path q← p ◦ (v,w);
3 if c(P∗

sw) ⪯D c(q) then continue;
4 if Q contains an s-w-path q ′ then
5 if c(q) ≺Q c(q ′) then Replace q ′ with q in Q ;
6 else
7 Insert q into Q;
8 return Q;

finding next queue paths After p’s extraction from Q at the beginning
of the iteration (Line 7 of the MDA), there is no s-v-path in Q. Thus, the
MDA needs to rebuild explored s-v-paths to possibly find a new queue
path for v. The set of candidate s-v-paths consists of s-v-paths that have
been already processed in calls to propagate in earlier iterations. These
paths were built in Line 2 of propagate as the extension of an s-u-path
for some u ∈ δ−(v). In the corresponding iteration of the MDA, this
s-u-path was extracted from Q and stored in P∗

su. Thus, in the current
iteration of the MDA the next queue path for v is searched among the
permanent s-u-paths for u ∈ δ−(v). The candidate paths must not be
dominated by or cost-equivalent to paths already stored in P∗

sv. All in
all, a new queue path for v is an element in

arg min
≺Q

{
c(q ◦ (u, v))

∣∣q ∈ P∗
su, (u, v) ∈ δ−(v), not c(P∗

sv) ⪯D c(p)
}

.

(8)
Thus, w.r.t. to the total order of the paths induced by ≺Q, the new path
is the most promising path to become a new permanent s-v-path. The
compatibility of ≺Q with the dominance relation ensures that this path
is not dominated by ≺Q-greater ones. Finally if (8) is nonempty, the
new s-v-path becomes the new queue path for v and is inserted into
Q in Line 11 of the MDA. In Section 4.3 we discuss how to solve (8)
efficiently in every iteration of the MDA.

If the queue Q of the MDA is empty at the beginning of an iteration, no
new permanent paths can be extracted and the algorithm ends. Its output is
the union of all sets P∗

sv for v ∈ V and we claim that these sets are a minimal
complete set of s-v-paths for every v ∈ V .
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4.2 correctness

First note that in the MDA unexplored paths become explored paths (cf.
Figure 3) in Line 2 of propagate only. To solve (8) in Line 10 of the MDA the
algorithm also reconstructs explored s-v-paths p = q ◦ (u, v) but such paths
p have already become explored paths in the iteration of the MDA in which
q was extracted from Q and added to P∗

su. Even though not storing the set
of explored paths explicitly is one of the main innovations of the MDA, in
this section we need to characterize, for every v ∈ V , the set Esv of explored
s-v-paths. Esv is, precisely, the set considered to solve (8). The next lemma
explains the interplay between the queue path for v and the paths in the list
Esv at the end of an iteration of the MDA.

Lemma 4.1. Fix a node v ∈ V . At the end of an iteration of the MDA there are
two options. If there is an s-v-path p in Q, then p is minimal w.r.t. ≺Q among the
paths in Esv. Moreover, Esv is empty iff there is no queue path from v.

Proof. Assume p is an s-v-path in Q at the end of an iteration of the MDA.
p is inserted into Q in Line 11 of the MDA, in Line 8 of propagate, or in
Line 5 of propagate. In any case, the insertion is preceded by a ⪯D-check
that guarantees that p is neither dominated by nor cost-equivalent to a path
in P∗

sv.
Let p ′ be the queue path for v before p was inserted into Q. If p is inserted

into Q in Line 11 of the MDA, then p ′ was extracted from Q at the beginning
of this iteration and thus, p enters Q as a solution to (8). This proves the
statement for this scenario.

Otherwise if p replaces p ′ in Q after a decrease key operation triggered
in Line 5 of propagate, we have c(p) ≺Q c(p ′). Applying the arguments
from this proof recursively until the first time an s-v-path is inserted into
Q during the MDA and using the transitivity of the total order ≺Q we can
then conclude that p is ≺Q minimal among the paths in Esv.

Proving that Esv is empty at the end of an iteration of the MDA iff there
is no queue path for v in Q, uses the same arguments.

As a consequence, we formulate the following result.

Lemma 4.2. Let p be the path extracted from Q at the beginning of the ith iteration
of the MDA for some i ∈ N and let v be its end node. Moreover if a solution to (8)
exists in the ith iteration of the MDA , call it pnew. Then, c(p) ≺Q c(pnew).

Proof. Before it is made permanent, p is an explored s-v-path and thus in
Esv. By Lemma 4.1, we know that at the end of the (i− 1)th iteration, p is
a ≺Q-minimal path in Esv. After p is added to P∗

sv it becomes a permanent
path. Thus, (8) is solved over the set Esv that no longer contains p. If the
result pnew would be≺Q-smaller than p, p would not have been≺Q-minimal.
Since a solution to (8) must also not be cost-equivalent to a path in P∗

sv, we
have c(p) ≺Q c(pnew).

We stick to the consideration of s-v-paths for a fixed node v ∈ V for now.
As so far, let p be such a path. Assume that p is contained in P∗

sv at the
end of the MDA. Then, p is extracted from Q in Line 7 of the MDA at
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the beginning of an iteration. A particular behavior of the MDA is that
once p is inserted into Q, it can be replaced before its final extraction. This
replacement happens in Line 5 of propagate. If it happens, p is reinserted
into Q in a later iteration as a solution to (8). This explains why in the proof
of the next lemma and also in other results in this chapter, we refer to the
last time p is inserted into Q. The next lemma is a direct consequence of the
two previous ones.

Lemma 4.3. Let p be an s-v-path that is made permanent during the MDA. p is
neither dominated by nor equivalent to a path previously appended to P∗

sv.

Proof. Before p is inserted into Q for the last time after its extraction from
Q in Line 7 of the MDA, it is inserted into Q in propagate or after nex-
tQueuePath. Before every insertion, c(P∗

sv) ⪯D c(p) is checked. Since p is
the queue path for v in Q until its extraction, no other s-v-path is made per-
manent after c(P∗

sv) ⪯D c(p) is checked. Thus, after its extraction, p is still
neither dominated by nor equivalent to a path in P∗

sv.

Now, to prove that the MDA is a label-setting algorithm and to derive
its correctness, we need to prove that paths added to P∗

sv after p do not
dominate p and are not cost-equivalent to p. Lemma 4.2, paired with the
compatibility of the ≺Q order with the dominance order, gives a strong hint
already. For the formal proof however we first need to prove the following
lemma that does not consider s-v-paths only.

Lemma 4.4. Let p and q be two paths extracted from Q in Line 7 of the MDA. If
p is extracted in an earlier iteration than q, then p ⪯Q q.

Proof. We prove the statement by induction over the iterations of the MDA.
We take advantage of the nonnegativity of the arc cost functions and of the
transitivity of ≺Q.

At the beginning of the first iteration Q contains only the trivial path p

from s to s with 0 cost. New paths are created and inserted into Q during
propagate and for each such path q we have c(p) ⪯Q c(q). Thus, the path
extracted from Q at the beginning of the second iteration of the MDA is not
≺Q-smaller than p.

Let the statement hold until the kth iteration for some k ∈N. Let p be the
path extracted from Q at the beginning of the iteration and v ∈ V be its end
node. Any path in Q is not smaller than p w.r.t. ≺Q since Q is ordered and
p is a minimal element. New explored paths q generated in propagate and
possibly added to Q are concatenations of p along outgoing arcs of v and
hence c(p) ⪯ c(q).

The only further insertion of a path to Q during the kth iteration is done
in Line 11 of the MDA after solving (8). By Lemma 4.2 the path inserted into
Q after solving (8) in the kth iteration is ≺Q-greater than the path extracted
from Q in this iteration. All in all if p is a ≺Q-minimal path in Q when it is
extracted and in the same iteration only paths that are not ≺Q-smaller than
p are inserted into Q, the extracted path in the (k+ 1)th iteration of the MDA
is not ≺Q-smaller than p.

Since the lists of permanent paths in the MDA are only modified in Line 8

of the algorithm by appending paths at the lists’ end, we can conclude from
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the last lemmas that the paths in the lists are ordered increasingly w.r.t. ≺Q.
Finally, we use the compatibility of ≺Q with the dominance order to prove
the label-setting property of the MDA.

Lemma 4.5. Let v ∈ V be a node and consider the list P∗
sv of permanent s-v-paths in

the MDA. The paths in P∗
sv are sorted in ≺Q-increasing order and a new permanent

path does not dominate any path already in P∗
sv and is also not cost-equivalent to a

path in P∗
sv.

Proof. Paths are stored in P∗
sv after their extraction from Q in Line 7 of the

MDA. The storage happens by appending new paths to the list. Thus, as
a direct consequence from Lemma 4.4 we know that the paths in P∗

sv are
stored in ≺Q non-decreasing order. If we consider Lemma 4.2 additionally,
we know that no two paths in P∗

sv are cost-equivalent and thus, we can
conclude that the paths in the list are sorted in strict increasing order w.r.t.
≺Q. At any stage of the MDA, let p and q be two paths in P∗

sv and assume
that p was appended to the list before q. Then, the compatibility of ≺Q

and the dominance order (Definition 3.5) ensures that q does not dominate
p. Moreover, the ⪯D-checks performed before paths are inserted into Q

also exclude the possibility of q being cost-equivalent to p, which proves the
statement.

Pairing Lemma 4.3 and Lemma 4.5 we know that paths in P∗
sv for any

v ∈ V do not dominate each other and are not cost-equivalent. Finally, the
correctness of the MDA follows proving that at the end of the algorithm for
every v ∈ V and for every nondominated cost vector in c(Psv) there is an
efficient path in P∗

sv.

Theorem 4.1. Consider a node w ∈ V and let Psw be the set of all simple s-w-paths
in G. For every nondominated point in c(Psw) there is a path in the list P∗

sw of
s-w-paths output by the MDA.

Proof. We prove the statement by contradiction. Assume that for w ∈ V

γ ∈ c(Psw) is a nondominated point and that there is no s-w-path p in P∗
sw

with c(p) = γ. Consider the subset Pγ ⊆ Psw containing all simple s-w-
paths with cost γ and fix a path p ∈ Pγ for the remainder of the proof. Since
p is an efficient path, the Bellman condition in Theorem 3.1 guarantees that
for every node u ∈ p, the s-u-subpath ps→u of p is an efficient s-u-path. Let
u be the last node along p for which the s-u-subpath ps→u of p is contained
in P∗

su at the end of the MDA. The extreme case is u = s. Let v be the
successor node of u along p, i.e., (u, v) ∈ p. During the expansion of ps→u

along (u, v) in Line 2 of propagate or while solving (8) the subpath ps→v is
ignored. Given that ps→v is an efficient s-v-path, the reason must be that
during a ⪯D-check, a cost-equivalent s-v-path q is found in P∗

sv. Note that
r = q ◦ pv→w is an efficient s-w-path and r ∈ Pγ. Thus, by assumption, it is
not in P∗

sw.
We follow, arc by arc, the expansions of q along pv→w. Since r is efficient,

they are all efficient paths by Theorem 3.1. Let rs→v ′
= q ◦ pv→v ′

be the
first subpath of r that is not made permanent, i.e., that is not stored in P∗

sv ′ .
Again, it is ignored because a cost-equivalent s-v ′-path p ′ exists in P∗

sv ′ .
We have progressed at least one arc along pu→w and have proven the

existence of a path p ′ ∈ P∗
sv ′ that is cost-equivalent to ps→v ′

. After repeating
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the same argument at most (n− 1) time (because we consider simple paths)
we obtain an explored s-w-path p ′′ ∈ Pγ considered in Line 2 of propagate
and possibly while solving (8). Since p ′′ is efficient and P∗

sw ∩ Pγ is empty,
the check c(P∗

sw) ⪯D c(p ′′) does not discard p ′′.

The final result in this section is now easy to prove.

Theorem 4.2. At the end of the MDA, the list P∗
sv of s-v-paths output by the

algorithm is a minimal complete set of efficient s-v-paths.

Proof. By Theorem 4.1 for every v ∈ V the set P∗
sv contains at least one effi-

cient path for every non dominated point in c(Psv). Lemma 4.5 guarantees
that the paths in P∗

sv are sorted in monotonically increasing order w.r.t. ≺Q

which implies that no two paths are cost-equivalent. Thus, for every non
dominated point in c(Psv) there is one path in P∗

sv. Finally, Lemma 4.3 and
Lemma 4.5 also state that no two paths in P∗

sv dominate each other, ensuring
that no dominated paths are output by the MDA.

4.3 calculating next queue paths

To prove the correctness of the MDA it was not necessary to discuss how to
solve (8) in Line 10 of the MDA efficiently. We close this gap in this section.
We call this step, performed in every iteration of the MDA, the calculation
of a node’s next queue path. Recall that the set Esv is not stored implicitly.

How to compute a node’s next queue path has a big impact on the MDA’s
asymptotic and computational running time. If we recall Figure 3, we also
realize that we have not yet discussed when an explored path is finally dis-
carded by the MDA. This question is also answered in this section.

Let v ∈ V be a node. Solving (8) in a naive way in every iteration in which
a new queue path for v is needed requires to rebuild explored s-v-paths
repeatedly. But we know that the list P∗

sv is built incrementally appending
new permanent paths at its end and never deleting paths from it. Thus if for
an explored s-v-path p we have c(P∗

sv) ⪯D c(p), this holds until the end of
the algorithm and thus p does not need to be further considered, i.e., it can
be discarded.

Let Nv be the cardinality of a minimal complete set of efficient s-v-paths.
At the end of the MDA we have |P∗

sv| = Nv and the MDA solves (8) for node
v exactly Nv times. Let i and j, i < j, be the indices of two iterations of the
MDA in which an s-v-path is extracted from Q and assume that between
both iterations no s-v-path is extracted from Q. We refer by Ei

sv and E
j
sv to

the sets of s-v-paths built to solve (8) in Line 10 of the MDA in the ith and in
the jth iteration, respectively. Every path p ∈ Ei

sv s.t. c(P∗
sv) ⪯D c(p) can be

ignored when building E
j
sv.

Moreover, for every u ∈ δ−(v) the paths in P∗
su are sorted in≺Q-increasing

order by Lemma 4.5. Since they are all expanded along the arc (u, v), their
concatenations with the arc (u, v) are sorted equally. Let p ∈ P∗

su be a per-
manent s-u-path and q = p ◦ (u, v) its expansion along (u, v). If q is neither
dominated by nor equivalent to a path in P∗

sv, i.e. if c(P∗
sv) ⪯D c(p ◦ (u, v))
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does not hold, q is a candidate to be a solution to (8). Since (8) is a mini-
mization problem w.r.t. ≺Q, every path that comes after p in P∗

su yields a
worse candidate s-v-path. Hence, while solving (8) the first path in P∗

su that
yields an expansion along (u, v) that is neither dominated by nor equivalent
to a path in P∗

sv yields the only needed solution candidate for this incoming
arc of v. The expansions of paths that come after p in P∗

su are considered in
later iterations of the MDA.

The considerations in the last two paragraphs can be used to design a
solution algorithm to (8) that considers a reduced range of candidates paths
as opposed to an algorithm that just considers every path in P∗

su for all
u ∈ δ−(v). The pseudocode of this algorithm is given in Algorithm 5. We
call it nextQueuePath.

Algorithm 5: Algorithm nextQueuePath to solve (8)

Input : Node v, Indices lastProcessedPath ∈N|A|, Permanent
paths P∗

su for u ∈ δ−(v), Permanent paths P∗
sv.

Output : Solution to (8) if one exists and updated indices
lastProcessedPath.

1 s-v-path p← NULL with c(p)← (∞, . . . ,∞) ∈ Rd
⩾0;

2 for u ∈ δ−(v) do
3 if P∗

su is empty then continue;
4 for k ∈

[
lastProcessedPath[(u, v)], |P∗

su|
]

do
5 s-v-path q← expansion of the kth path in P∗

su along (u, v);
6 lastProcessedPath[(u, v)]← k ;
7 if c(P∗

sv) ⪯D c(q) then
8 continue;
9 else
10 if c(q) ≺lex c(p) then p← q ;
11 break;
12 return p and lastProcessedPath;

The algorithm requires that in the initialization of the MDA we allocate
a vector of last processed paths indexed by the arcs in the input graph. I.e.,
for every arc (u, v) ∈ A, the vector lastProcessedPath has an entry. The
entries of the vector are integers and they are initialized to 1. They are
increased by one in Line 6 of nextQueuePath. This is the only modification
of the indices. The following invariants explain the meaning of the entry
lastProcessedPath[(u, v)] during the MDA.

Invariant 4.1. For any arc (u, v) ∈ A, there holds:

range lastProcessedPath[(u, v)] ∈ {1, . . . |P∗
su|}.

interpretation Assume lastProcessedPath[(u, v)] = j > 1 at the beginning
of an iteration of the MDA. For any i ∈ {1, . . . , j− 1} let p be the ith path in
P∗
su and q = p ◦ (u, v). Then, the dominance or equivalence check c(P∗

sv) ⪯D

c(q) in Line 7 of nextQueuePath has been answered positively in a previous
call of the MDA to nextQueuePath with v as its input. I.e., for i < j, the
expansion of the ith path in P∗

su along (u, v) is a discarded s-v-path.
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Proof. The range invariant holds since the lastProcessedPath indices are up-
dated to the value of k in Line 6 of nextQueuePath and k is not greater than
the cardinality of the set P∗

su.
We prove the second invariant. k is initialized to lastProcessedPath[(u, v)]

at the beginning of the inner loop of nextQueuePath. This loop has two pos-
sible outcomes: either a new iteration is triggered by the continue statement
in Line 8 or the loop is stopped by the break statement in Line 11. The
continue statement is reached if c(P∗

sv) ⪯D c(q), where q = p ◦ (u, v) and
p is the kth permanent path in P∗

su. Then, the next iteration of the inner
loop starts and k’s value is increased by one. In every iteration the value
of lastProcessedPath[u, v] is set to the new value of k (Line 6). Hence, let
i be the value of lastProcessedPath[(u, v)] at the beginning of a call to nex-
tQueuePath and j be the value of lastProcessedPath[(u, v)] at the end of this
call to nextQueuePath. The expansions of all paths in the ith to (j − 1)th

position of P∗
su along (u, v) are dominated by or are equivalent to a path

in P∗
sv. The updated final value of lastProcessedPath[u, v] when the inner

loop concludes, is returned by the algorithm s.t. the MDA can pass it to nex-
tQueuePath the next time a queue path for v is searched. This means that
in this search, the expansions from paths in P∗

su start with the path stored
in position lastProcessedPath[u, v] = j of the list. The paths before the jth

position have been proven to be dominated by or equivalent to paths in P∗
sv.

This proves the statement.

We can now fully characterize a path’s cycle from its first exploration
until it is either made permanent or discarded in the MDA. Consider an
explored s-v-path p = q ◦ (u, v). It becomes an explored path in Line 2 of
propagate in the iteration in which the s-u-path q becomes a permanent
path. Assume it is the ith permanent path stored in P∗

su for some i ⩽ Nu. If
p does not become a permanent s-v-path in a later iteration, it is discarded
after the lastProcessedPath[(u, v)] index becomes greater than i in Line 6 of
nextQueuePath. Of course there might be s-v-paths that are inserted into Q

directly after they become explored paths and never leave Q before they are
extracted and made permanent. These paths’ life cycle in the MDA is not
influenced by the nextQueuePath subroutine.

Since the outmost loop in nextQueuePath iterates over all incoming arcs
of v, we can state the following result.

Theorem 4.3. nextQueuePath solves (8).

Proof. After the discussion in the last paragraphs and in particular using
Invariant 4.1 it is clear that for every node u ∈ δ−(v) the inner loop of
nextQueuePath stops when it finds the ≺Q-smallest s-v-path coming from a
permanent s-u-path in P∗

su that is neither dominated by nor equivalent to a
path in P∗

sv.
When nextQueuePath begins, a dummy path p is initialized to NULL and

it is assumed to have infinite cost. Fix u ∈ δ−(v). At most one update of
p is attempted in Line 10 the first time a new found s-v-path coming from
u turns out not to dominated by or equivalent to a path in P∗

sv. Then, the
inner loop is interrupted by the break statement in Line 11. This update is
only conducted if the candidate path coming from u is ≺Q-smaller than the
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current s-v-path p. Hence, the s-v-path p at the end of nextQueuePath is a
solution to (8).

Remark 4.1 (Repeated ⪯D-checks). Assume a new queue path for a node v ∈ V

is searched in nextQueuePath during the ith, i ∈N, iteration of the MDA. Consider
an arc (u, v) ∈ δ−(v) and let the lastProcessedPath[u, v] index point at path p in
P∗
su at the end of the search. The next time a new queue path for v is searched

because an s-v-path p∗ is extracted from Q, lastProcessedPath[u, v] is unaltered
at the beginning of the search and thus q = p ◦ (u, v) is reconsidered. Moreover,
between the search in the ith iteration and the current search, the list P∗

sv has only
been modified by appending p∗ to it. Thus, we have

c(P∗
sv) ⪯D c(q)⇔ c(p∗) ⪯D c(q). (9)

This means that for every arc (u, v) ∈ δ−(v), the first iteration of the inner
loop in nextQueuePath does not need to consider any path in P∗

sv other than p∗.
Then, the number of comparisons to answer the ⪯D -check drops from O (d|P∗

sv|) to
O (d). While this complexity drop is not enough to have an impact in the overall
asymptotic behavior of the MDA, it enhances the performance in practice noticeably.
The technique is easy to explain and implement but harms the readability of the
pseudocode which is why we do not include it in nextQueuePath. We refer the
reader to our implementation of the MDA in (Maristany de las Casas, 2023a) for
the details.

We start our transition towards the study of the output sensitive running
time and space consumption bounds of the MDA.

Lemma 4.6. Consider a node v ∈ V and a permanent s-u-path p in P∗
su for

u ∈ δ−(v). The s-v-path p ◦ (u, v) is built at most Nv + 1 times in all calls to
nextQueuePath with v as its input.

Proof. The node v is the input node for nextQueuePath in Line 10 of the MDA
in every iteration of the MDA in which an s-v-path is extracted from Q in
Line 7. Every time this happens, the extracted path is appended to P∗

sv in
Line 8. In the iteration in which the last path in P∗

sv is stored, nextQueuePath
is called one last time to try to find a new queue path for v. Since no new
s-v-paths are added to P∗

sv, this search returns NULL. Hence, a new queue
path for v calling nextQueuePath is searched Nv + 1 times.

In every call if p ◦ (u, v) is considered in Line 5 of nextQueuePath, it is
considered only in one iteration of the inner loop of nextQueuePath. This
iteration either ends with the continue statement in Line 8 after which the
next iteration of the inner loop begins and a new s-v-path is built or it ends
after the break statement in Line 11 after which a new iteration of the outer
loop of nextQueuePath starts. Hence, p ◦ (u, v) is built at most once in every
call to nextQueuePath with v as its input.

An immediate question arising after Lemma 4.6 is if it is possible that all
paths in P∗

su for u ∈ δ−(v) need to be considered Nv + 1 times during the
searches for new queue paths for v in nextQueuePath. Luckily that is not
the case as we prove in the next two lemmas.

Lemma 4.7. For every arc (u, v) ∈ A there holds lastProcessedPath[(u, v)] = Nu

at the end of the MDA.
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Proof. The index lastProcessedPath[(u, v)] is initialized to 1. It is increased
by one in Line 6 in every new iteration of the inner loop of nextQueuePath.
Assume a new queue path for v is searched for the last time during the MDA.
This implies that in this search, no new queue path for v is determined..
Otherwise a new queue path for v is inserted into Q and, in a later iteration,
also extracted and made permanent. Thus, the update line of p (Line 10)
is not reached during this call to nextQueuePath and every iteration of the
inner loop ends with the continue statement in Line 8. The loop itself ends
when k = Nu. This proves the statement because in every iteration of the
inner loop in nextQueuePath lastProcessedPath[(u, v)] takes the value of k.

Lemma 4.8. For any arc (u, v) ∈ A, at most Nv +Nu + 1 dominance or equiva-
lence (⪯D) checks are conducted in Line 7 of nextQueuePath during all searches for
a next queue path for v.

Proof. A direct consequence of Lemma 4.7 is that every path in P∗
su is ex-

panded during the searches for a new queue path for v in the MDA at least
once. After every such expansion, a ⪯D-check is conducted in Line 7 of
nextQueuePath. This explains the Nu summand in the statement.

The MDA searches for a new queue path for v exactly Nv + 1 times and
after these searches, lastProcessedPath[(u, v)] = Nu by Lemma 4.7. This
implies that if the kth path in P∗

su, k ∈ {1, . . . ,Nu}, is expanded along
(u, v) for the first time during the ith search for a new queue path for v,
i ∈ {1, . . . ,Nv + 1}, the index lastProcessedPath[(u, v)] can remain at position
k during at most Nv + 1− i calls to nextQueuePath with v as its input node.

All in all, without knowing exactly how often every path in P∗
su is ex-

panded along (u, v), we know that the sum of all expansions of paths in P∗
su

along (u, v) is at most Nv + 1. Hence, the total number of ⪯D-checks for an
arc (u, v) is at most Nu +Nv + 1.

Dominance checks using ⪯D are the main driver of comparisons in the
asymptotic running time bound of the MDA. Knowing how many of them
are conducted for every arc in the graph during calls to nextQueuePath
enables us to derive the asymptotic bounds for the MDA in the next section.

4.4 space and running time complexity

We denote the cardinality of the biggest minimal complete set of efficient
paths output by the MDA by Nmax, i.e.,

Nmax := max
v∈V

{|P∗
sv|} = max

v∈V
{Nv}.

Moreover, we set N to be the total number of efficient paths computed by
the MDA, i.e., N :=

∑
v∈V Nv. Since in every iteration of the MDA the

path extracted from Q is added to the corresponding set of efficient paths,
N coincides with the overall number of iterations in the MDA.

We assume that Q is a Fibonacci Heap (Fredman & Tarjan, 1987). In every
iteration the extraction of an s-v-path p from Q requires O (log(dn)) time
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since the size of the queue is bounded by the number of nodes in the graph.
The addition of p at the end of the list P∗

sv in Line 8 of the MDA is a O (1)

operation.

Remark 4.2 (Storage of permanent paths using Dimensionality Reduction).
In Section 3.5 we discussed how the dimensionality reduction technique can be used
to speedup dominance checks in practice. We further remarked that we use the
technique implicitly in our description of label-setting MOSP algorithms. To use it
in practice, we need to maintain, for every list P∗

sv of permanent paths, an associated
dimensionality reduced front cdr(P

∗
sv) ⊂ Rd−1. Maintaining this list correctly

requires the use of merge operations. Thus, when an s-v-path p is extracted from Q

in the MDA, we update the list cdr(P∗
sv) and this takes O (d|Psv|

∗) ⊂ O (dNmax)

according to Proposition 3.1. All in all, for the extraction and storage of permanent
paths, the MDA requires O (N(logdn+ dNmax)) if dimensionality reduction is
used. Since N ⩽ nNmax we get an asymptotic running time of

O
(
N log(dn) + dnN2

max
)

(10)

for the extraction and storage of permanent paths in the MDA if dimensionality
reduction is used. We will see later that asymptotically, the second summand can be
neglected.

If dimensionality reduction is not used, the second summand in (10) is
neglected. In what follows, we bound, for every arc, the effort made during
the calls of the MDA to its two subroutines propagate and nextQueuePath.

complexity of calls to propagate Let (v,w) ∈ A be an arc. For every
s-v-path p that is extracted from Q, the path q := p ◦ (v,w) is build in Line 2

of propagate. For every such path q, this is the first time it is analyzed by
the MDA. The dominance check in Line 3 of propagate requires O (dNw)

comparisons. This linear time check w.r.t. the size of P∗
sw dominates the

remaining operations in propagate. If q is ignored because it is dominated
by or equivalent to a path in P∗

sw, nothing else happens; otherwise q is
either inserted into Q directly (Line 8) or it updates an existing s-w-path in
Q (Line 5). Using a Fibonacci Heap, the insertion takes O (log(dn)) time and
the update Θ(d) time. Hence if the MDA stores Nv permanent and efficient
s-v-paths, the overall effort for the propagations of these paths along the arc
(v,w) is O (dNvNw) ∈ O

(
dN2

max
)

since Nv and Nw are bounded by Nmax. If
we consider all arcs in the input graph G, we obtain that the expansions of
extracted paths in the MDA take O

(
dmN2

max
)

time.

complexity of calls to nextqueuepath The number of ⪯D -checks
triggered in nextQueuePath for an arc (u, v) ∈ A is in O (Nmax) (Lemma 4.8).
Every ⪯D-check uses O (dNmax) comparisons. Thus, as in propagate, the
calls to nextQueuePath for an arc (u, v) use O

(
dN2

max
)

time. Summing over
all arcs, we get an overall complexity of O

(
dmN2

max
)

for the searches for new
queue paths after the extraction of a path from the queue Q of the MDA.

In the next theorem, recall that extracting and making paths permanent is
bounded in (10).

Theorem 4.4 (Time Complexity of the MDA). The MDA using
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• a Fibonacci Heap for the priority queue Q,

• vectors for the sets P∗
sv of permanent s-v-paths for all v ∈ V ,

• and the flags lastProcessedPath[a] for every arc a ∈ A to efficiently solve
(8) using nextQueuePath.

runs in

O
(
N logdn+ dnN2

max + dmN2
max + dmN2

max
)
= O

(
N log(dn) + dmN2

max
)

(11)
using the common connectivity assumption of G that allows us to assume n < m.

Note that without using dimensionality reduction we would get the right
hand side of (11) directly (see also Remark 4.2). Thus, the use of dimension-
ality reduction is asymptotically negligible, even though if requires a merge
operation in every iteration to maintain the dimensionality reduce fronts.

The bound in the last theorem is driven by the complexity of the ⪯D-
checks performed during the MDA. As explained in Section 3.5 in biobjective
scenarios these checks can be performed in Θ(1) using the dimensionality
reduction technique. Thus, we derive the following improved bound for the
MDA for BOSP instances.

Theorem 4.5 ((Sedeño-Noda & Colebrook, 2019, Theorem 3)). The MDA us-
ing dimensionality reduction for the dominance checks solves biobjective (d = 2)
MOSP instances in O (N logn+Nmaxm).

The space consumption of the MDA is easier to derive. The graph and
the arc cost vectors are stored using O (n+ dm) space. Additionally, the
algorithm only uses the priority queue Q whose size is bounded by n and
the lists P∗

sv of permanent s-v-paths for every v ∈ V . The overall size of these
lists is N. Moreover, for every arc a ∈ A, the index lastProcessedPath[a] is
stored. Hence, we immediately get the following result if we assume that
paths are stored as labels (cf. Section 3.3) that require O (d) memory each.

Theorem 4.6 (Space Complexity of the MDA). The space required by the MDA
using the same data structures as described in Theorem 4.4 is

O (dN+n+ dm) . (12)

4.5 conclusion

Why is the MDA novel? Are its running time and space complexity bounds
an improvement w.r.t. the state of the art? How does it perform in practice?
These questions need to be answered before it becomes clear why the MDA
is the main contribution in this thesis. In the next chapter, we introduce an
improved version of the classical label-setting MOSP algorithm by E. Q. V.
Martins (1984). Afterwards, in Chapter 6, we compare both algorithms.
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The classical label-setting MOSP algorithm is due to E. Q. V. Martins (1984).
Algorithms for One-to-One MOSP like the NAMOA∗ algorithm from Pulido
et al. (2015, 2014) or to approximate MOSP solutions like in (Breugem et al.,
2017) are based on Martins’s algorithm. Despite its undeniable relevance and
its extended use in publications, we could not find a high quality, modern,
and openly available implementation of the algorithm. Similarly noticeable,
to the best of our knowledge, only the work by Breugem et al. (2017) con-
tains an asymptotic running time analysis of the algorithm. However, their
derived bound is too high. This can be a consequence of the fact that the
original publication (E. Q. V. Martins, 1984) leaves some room for interpreta-
tion regarding the use of data structures and in particular w.r.t. the handling
of explored paths in the algorithm’s queue.

Martins’s algorithm heavily relies on merge operations in every iteration.
In this chapter, we present a version of the algorithm that achieves the best
possible asymptotic running time bound staying close to the original de-
scription. In other words, we stretch the interpretation of the high level
pseudocode given in (E. Q. V. Martins, 1984) to design a version of the al-
gorithm s.t. its comparison with the MDA boils down to the comparison of
the usage of the nextQueuePath and the merge subroutines. In (Maristany
de las Casas, Sedeño-Noda, & Borndörfer, 2021), the publication in which
we introduced the MDA, we compared the algorithm against a state of the
art version of Martins’s algorithm from the literature published in (Demeyer
et al., 2013). In this paper, the speedup achieved using the MDA was bigger
than the one presented in Chapter 6. However, the inefficiencies in the cho-
sen data structures to handle explored paths are obvious and not demanded
in Martins’ original publication. We thus, designed a new version of Mar-
tins’s algorithm and introduce it in this chapter (Section 5.1). We prove its
correctness (Section 5.2) and derive its asymptotic bounds (Section 5.3).

5.1 description of the algorithm

The pseudocode of our version of the label-setting One-to-All MOSP algo-
rithm by Martins (E. Q. V. Martins, 1984) is in Algorithm 6. We refer to it
using the Martins link during the remainder thesis. We assume a One-to-All
MOSP instance (G = (V ,A), s,d, c) is given throughout the chapter.

description The algorithm uses lists P∗
sv of permanent paths for every

v ∈ V . For a fixed node, the corresponding list, at the end of the algorithm,
contains a minimal complete set of efficient s-v-paths. For every node a list
Esv of explored paths is maintained. Additionally a priority queue Q sorted
w.r.t. a total order ≺Q that is compatible with the dominance order, stores

53
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at most one s-v-path for every v ∈ V . All data structures are initially empty
(Line 1). In every iteration an explored path is extracted from Q (Line 5). It
is then guaranteed to be an efficient s-v-path for its end node v ∈ V . The
remaining explored s-v-paths are stored in the list Esv. No two paths in the
list dominate each other or are cost-equivalent. Moreover, no path in the list
is dominated by or equivalent to the paths in P∗

sv. The paths in the list are
sorted in ascending order w.r.t. ≺Q and thus, when an s-v-path p is extracted
from Q, the first element in Esv if it exists, is inserted into Q as v’s new queue
path (Line 7). In the same iteration, p is expanded along the outgoing arcs
of v and new explored paths q = p ◦ (v,w) are constructed (Line 9). If q

is dominated by or equivalent to a path in P∗
sw it is immediately discarded

(Line 10). Otherwise, using merge operations, q is merged into the list Esw

(Line 12). If q is not only determined to be a relevant explored path but also
the ≺Q-smallest one, it replaces w’s queue path q ′ in Q (Line 14) and q ′, that
was previously the smallest explored s-w-path, is added at the beginning of
Esw (Line 15). If no queue path for w exists when q is built, there are no
explored s-w-paths and thus, q is directly inserted into Q (Line 17). The
algorithm ends when Q is empty at the beginning of an iteration. It returns
all sets P∗

sv.

Algorithm 6: Martins’ One-to-All MOSP algorithm
Input :d-dimensional One-to-All MOSP instance (G, s,d, c).

Output : Minimal complete set Psv∗ of minimal s-v-paths for every
v ∈ V .

1 Prio. queue Q and explored paths Esv and permanent paths P∗
sv

∀v ∈ V empty;
2 Initial dummy s-s-path pinit with c(pinit) = 0;
3 Q.insert(pinit);

4 while Q ̸= ∅ do
5 s-v-path p← Q.extractMin();
6 P∗

sv ← Append p to P∗
sv;

7 if Esv ̸= ∅ then Insert ≺Q-smallest s-w-path from Esw into Q;

8 foreach (v,w) ∈ δ+(v) do
9 New explored s-w-path q← p ◦ (v,w);
10 if c(P∗

sw) ⪯D c(q) then continue ;
11 if Q contains an s-w-path q ′ then
12 Use merge: determine if c(Esw ∪ {q ′}) ⪯D c(q), discard

paths in Esw ∪ {q ′} dominated by q, and (possibly) insert
q into Esw;

13 if q is the new ≺Q-smallest explored s-w-path then
14 Replace q ′ with q in Q;
15 if not c(q) ⪯D c(q ′) then Esw ← Prepend q to Esw ;
16 else
17 Insert q into Q;
18 return ∪v∈VP

∗
sv.
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The techniques to prove the correctness of Martins’s algorithm are similar
to the ones used in the MDA. Moreover, we assume the reader has by now a
strong intuition of how paths are handled in a label-setting MOSP algorithm
using compatible orders. Thus, the following properties are stated without
a detailed proof. In Section 5.2 we sketch the remaining correctness proof.
The original version of the algorithm does not use the lists Esw for w ∈ V ,
the detailed correctness proof can be read in (E. Q. V. Martins, 1984).

Invariant 5.1 (Martins’ Explored Paths). At the end of any iteration in Martins’s
algorithm, the following conditions hold for any node w ∈ V .

1. There is at most one s-w-path in Q. It is smaller w.r.t. ≺Q than any s-w-path
in Esw and does not dominate any s-w-path in Esw.

2. Paths in Esw are not dominated by any path in P∗
sw and no two paths in Esw

dominate each other.

3. If there is no s-w-path in Q, Esw is empty.

5.2 correctness

The following statement is trivial. The proof can be conducted inductively
using that the path from s to itself with costs 0 ∈ Rd is a subpath of every
path extracted from Q during Martins’s algorithm.

Proposition 5.1. Assume that Martins’s algorithm extracts an s-v-path p from Q

in iteration k ∈N of its main loop. Then, at the beginning of every iteration l < k

of the algorithm, there is one node u ∈ p for which the s-u-subpath ps→u of p is
explored, i.e., ps→u is in Q or in Esu.

The next lemma is a direct consequence of Proposition 5.1.

Lemma 5.1. If a path p is extracted in the kth iteration of Martins’s algorithm,
then at the end of every previous iteration there exists a node u ∈ p for which an
s-u-path is in Q.

Proof. By Invariant 5.1 if for all nodes u along p there is no s-u-path in Q, the
corresponding lists Esu are empty. In this situation, no subpath of p would
be an explored path, which contradicts Proposition 5.1.

We can now formulate a statement that is equivalent to Lemma 4.4 in the
correctness proof of the MDA.

Lemma 5.2. Consider two paths p and q in G if p is extracted from Q before q,
then c(p) ⪯Q c(q).

Proof. Assume p is extracted in the kth iteration of Martins’s algorithm. If
p and q are simultaneously in Q at the beginning of this iteration, then the
statement is trivially true because only the top element of Q is extracted and
paths therein are sorted in nondecreasing order w.r.t. ≺Q. Assume q is not in
Q when p is extracted. By Proposition 5.1 we know that for a node u ∈ q, the
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s-u-subpath qs→u of q is either in Q or in Esu. Recall that c(qsu) ⪯Q c(q)

because arc costs are nonnegative. If qs→u is in Q, we have

c(p) ⪯Q c(qs→u) ⪯Q c(q)

because otherwise p would not be extracted in the current iteration. If qs→u

is not in Q, it is in Esu. The logical negation of the third point in Invariant 5.1
guarantees that in this case, there exists an s-u-path q ′ in Q. From the first
point in Invariant 5.1, we conclude that c(q ′) ≺ c(qsu). Then, we have

c(p) ⪯Q c(q ′) ≺Q c(qs→u) ⪯Q c(q)

because, again, p would not be extracted in the current iteration otherwise.

Finally, Theorem 5.1 states that Martins’s algorithm outputs minimal com-
plete sets of efficient paths. Proving Theorem 5.1 is equivalent to proving
Theorem 4.2 for the MDA. Also this remaining proof does no longer depend
on our new lists Esv of explored paths and thus it coincides with the proof
in (E. Q. V. Martins, 1984, Assumption 2, Assumption 3, Lemma 4).

Theorem 5.1 (Correctness of Martins’s Algorithm). Let Csw ⊂ Rd be the set
of nondominated cost vectors induced by all efficient s-w-paths in G. For every
c ∈ Csw Algorithm 6 outputs one s-w-path p s.t. c(p) = c.

5.3 complexity

An asymptotic analysis of Martins’s algorithm is rarely done in the literature
and our version of the algorithm has the lowest output sensitive running
time bound that we could find in previous publications.

We prove that Martins’s algorithm is output sensitive. As always, given a
One-to-All MOSP instance I = (D, s,d, c), we denote the number of nodes
and arcs in G by n and m, respectively. Moreover, we refer to the cardinality
of the largest output set by Nmax, i.e., Nmax := maxv∈V |P∗

sv| and to the overall
number of output paths by N, i.e., N :=

∑
v∈V |P∗

sv|. Since in the lists P∗
sv of

permanent paths we only need to append paths in Line 6 we assume them
to be single linked lists or vectors. The lists of explored paths are doubly
linked lists to be able to remove and insert elements in any position during
merge operations in constant time. The priority queue Q is a Fibonacci Heap
(Fredman & Tarjan, 1987).

The running time of Martins’s algorithm is dominated by the running
time of the merge operations. In Proposition 3.1 we already derived that
this operation takes linear time w.r.t. the cardinality of the set into which the
new element is being merged. In our case, these sets are the sets/lists Esv

of explored paths. Explored paths are always generated from permanent
paths that are extracted from Q. The number of permanent paths for any
node is bounded by Nmax. In a worst case scenario a node v ∈ V can have
(n− 1) predecessor nodes, i.e., |δ−(v)| = n− 1. Thus, the cardinality of Esv

is bounded by O (nNmax).

Proposition 5.2. Every merge operation in Line 12 of Martins’s algorithm takes
O (dnNmax) in MOSP instances with d ⩾ 3 arc cost components.
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The Two-Dimensional Merge Dilemma

The running time bound of the MDA is lower for biobjective instances (cf.
Theorem 4.5). The algorithm uses merge operations to maintain the dimen-
sionality reduced fronts but in the bidimensional scenario these fronts con-
sist only of a single number and thus, merge operations run in Θ(1) time. In
the biobjective scenario, Martins’s algorithm uses merge operations on the
lists of explored paths that can store nNmax elements also in the d = 2 sce-
nario. Thus, we need to answer the question: Can we reduce the asymptotic
running time bond for Martins’s algorithm for BOSP instances?

Let p be an s-v-path for any v ∈ V and Esv the list of explored paths in
Martins’s algorithm during the solution process of a BOSP instance. If Esv

is a data structure whose elements can be accessed in constant time using
their index in Esv, we can use two binary searches to find out if Esv contains
a path that dominates p or is equivalent to p, to determine where p needs
to be inserted to keep Esv sorted, and to find out which paths in Esv are
dominated by p. This is only a pseudo-merge because it does not actually
delete the dominated paths from Esv.

Lemma 5.3. The pseudo-merge operation described in the last paragraph requires
O (log(nNmax)) comparisons in MOSP instances with d = 2 arc cost components
if Esv is sorted in lexicographically ascending order and implemented as a data
structure whose elements can be accessed in constant time using their indices.

Proof. By Invariant 5.1 no two paths in Esv dominate each other or are cost-
equivalent. Then, the c1 cost components of the paths in Esv are sorted in
ascending order and the c2 cost components are implicitly sorted in descend-
ing order. Let p be a new explored s-v-path and suppose we merge p into
Esv. A first binary search among the first cost components of the paths in
Esv finds the tentative insertion position of p. I.e., c(q) ⪯lex c(p) for every
path q that is in Esv before the found insertion position. Let q be the path im-
mediately before the found position if it exists. We then have c1(q) ⩽ c1(p)

and if c2(q) ⩽ c2(p) we discard p because it is dominated or equivalent
to q. Otherwise if c2(q) > c2(p) no path q ′ that is stored in Esv before q

dominates p because the sorting of paths in Esv implies c2(q
′) > c2(q).

Similarly, a second binary search is used to check if p dominates paths
in Esv. Such paths must come after p’s insertion position. Let q be a path
checked during the binary search. We have c1(p) < c1(q). If c2(p) < c2(q),
p dominates every path q ′ between p and q in Esv because c2(q

′) > c2(q)

and we can mark these paths to be removed from Esv and continue the binary
search on the paths stored after q in Esv. Otherwise if c2(p) > c2(q), p does
not dominate q and also not any path q ′ that comes after q in Esv because
in this case c2(q) > c2(q

′). Thus, we can continue the binary search on the
paths between p and q in Esv only.

The emphasized sentence in the proof is the dilemma that motives this
subsection’s title. The number of paths that might need to be removed is
|Esv| ⩽ nNmax. During the second binary search used in the proof, we can
mark these paths as dominated in constant time using the indices of the
elements. However, deleting or freeing the labels encoding the dominated
paths while maintaining the properties of Esv for future merge operations
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requires linear time if Esv is a vector or a list (elements not accessible in
constant time using their indices). We are not aware of a different data struc-
ture that allows the bulk deletion of elements in O (1) time and does not have
other negative consequences on the running time of merge operations. If this
data structure exists, merge operations can be done in O (log(nNmax)) when
solving BOSP instances. Otherwise, they remain O (nNmax) operations.

Asymptotic Bounds

Let T⪯D
denote the running time bound for the ⪯D-checks in Martins’s al-

gorithm. Similarly, Tmerge is the running time of the merge operations in
Line 12 of Martins’s algorithm. For d ⩾ 3, we have Tmerge ∈ O (dnNmax). For
d = 2 we face the dilemma explained in the last subsection.

Theorem 5.2 (Running Time of Martins’s algorithm). Martins’s algorithm runs
in O

(
N log(dn) +mNmax(T⪯D

+ Tmerge)
)
.

Proof. The algorithm does N iterations because every extracted path is effi-
cient and made permanent. Since the queue contains at most n elements,
the extraction of a minimal element is done in O (log(dn)). We know from
the complexity analysis of the MDA that the complexity for maintaining di-
mensionality reduced fronts if the technique is used, can be asymptotically
neglected. Thus, we obtain the first summand for the extraction and storage
of permanent paths.

The generation of a new queue path in Line 7 is a constant time operation
because we maintain the lists Esv without dominated elements and sorted
(cf. Invariant 5.1). The insertion of the new path into Q can be asymptotically
neglected.

The expansions of a permanent path along the outgoing arcs of its end
node is done as in propagate in the MDA but additionally using the merge
operation. For an arc (v,w) ∈ A, the O (Nmax) permanent paths in P∗

sv are
expanded along the arc and two tasks are performed: a ⪯D check (Line 10)
that takes O (T⪯D

) comparisons and a merge into Esw (Line 12) in O
(
Tmerge

)

time. The remaining operations can be asymptotically neglected. Summing
over all arcs, we obtain a running time bound of

O
(
m(Nmax(dNmax + Tmerge)

)

for the paths expansions. All in all, the running time bound for Martins’s
algorithm is

O
(
N log (dn) +mNmax(T⪯D

+ Tmerge)
)

. (13)

The space complexity of the Martins’s algorithm is easy to derive. The
graph and the d-dimensional arc costs are stored in O (n+ dm) space. If
paths are stored as labels, the storage of the permanent paths requires O (dN)

memory. Additionally, labels corresponding to explored paths are stored
explicitly in the Esv lists. Each of these lists contains O (nNmax) labels. Since
N ⩽ nNmax we get the following result.

Proposition 5.3. The memory consumption bound of Martins’s algorithm is

O (dnNmax +n+ dm) . (14)
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Running Time O (·) Memory O (·)

d = 2 d ⩾ 3

MDA Textr +mNmax Textr + dmN2
max dN+ dm+n

Martins Textr +mNmaxnNmax Textr + dmnN2
max dnNmax + dm+n

Table 1: Asymptotic comparison of the MDA and Martins’s algorithm. For space
reasons we use Textr = N log(dn). The blue term nNmax can be replaced
by log(nNmax) if a suitable data structure to speedup merge operations in
biobjective scenarios exists.

Note that (14) hides a N+ nNmax term for the storage of permanent and
explored paths simultaneously. In practice having to store both sets of paths
is more challenging than the direct comparison of (14) with the MDA’s space
consumption bound (12) indicates.

After the asymptotic analysis of Martins’s algorithm and using Proposi-
tion 5.2 and Lemma 5.3 to specify Tmerge in (13) we can fill Table 1 to the
asymptotic behavior of the MDA and our version of Martins’s algorithm.

5.4 conclusion

We have designed a version of Martins’s algorithm that splits the storage
of explored paths into the algorithm’s priority queue and a list of explored
s-v-paths for every node v in the input digraph. By doing so, we circum-
vent the issue of having to store all explored s-v-paths in the priority queue,
which demands some type of hashing to access a node’s explored paths fast
during merge operations and the deletion of random elements from the pri-
ority queue. The result is an improved running time bound for Martins’s
algorithm. Still, the bound is worse than the one derived for the MDA (cf.
Table 1). This concludes our theoretical analysis of label-setting MOSP algo-
rithms and we can finally benchmark them on MOSP instances commonly
used in the literature.





6 E X P E R I M E N T S : M A R T I N S ’ S
A LG O R I T H M V S . M DA

We briefly summarize why we benchmark our version of Martins’s algo-
rithm against the MDA.

Originally, the MDA was published in (Maristany de las Casas, Sedeño-
Noda, & Borndörfer, 2021) and we compared it to an improved version of
Martins’s algorithm presented in (Demeyer et al., 2013). When we imple-
mented our version of Martins’s algorithm as described in Chapter 5 we
noticed that our version is up to an order of magnitude faster. The main
reason is that the version by Demeyer et al. (2013), as described in their
pseudocode, seems to store explored paths in the priority queue all together.
This forces the use of hashes to enable faster merge operations and to delete
elements stored in random positions from the queue. Apart from having
an asymptotic running time complexity that is worse than the one derived
in Theorem 5.2, in practice this bookkeeping has a negative impact on the
algorithm’s performance. For these reasons, we decided to repeat the experi-
ments from (Maristany de las Casas, Sedeño-Noda, & Borndörfer, 2021) with
our most modern implementation of the MDA and with our implementation
of Martins’s algorithm as described in Chapter 5.

Both algorithms are implemented to share as much code as possible (cf.
Section 6.2). In Section 6.1 we explain when to expect that Martins’s algo-
rithm solves MOSP instances faster than the MDA. The arguments in this
section help interpreting the results later in this chapter. In Section 6.2 we
discuss further implementation details. In Section 6.2.1 we specify the used
instances and how they were generated. Finally, in Section 6.3 we report and
analyze the results obtained from our experiments.

6.1 strengths and weaknesses in practice

In this thesis, the main difference between the MDA and Martins’s algo-
rithm is the use of the nextQueuePath routine to re-generate explored paths
versus the use of merge operations to maintain lists of explored s-v-paths
in which no two paths dominate each other. In both algorithms, we sort
explored paths lexicographically and use the dimensionality reduction tech-
nique (Section 3.5).

A relevant subset of paths is built by those paths that are inserted into
the algorithms’ queue right after they are explored in Line 2 of propagate
during the MDA or in Line 9 of Martins’s algorithm and that are never re-
placed using a decrease key operation before being extracted from Q and
made permanent. For a node v ∈ V , an s-v-path p, and an arc (u, v) ∈ δ−(v)

let q = p ◦ (u, v) be such a path. Then, Martins’s algorithm performs the
check c(P∗

sv) ⪯D c(q) once when q becomes an explored path and also
performs the corresponding merge operation in this iteration. No more com-

61
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parisons are required before making q permanent. In the MDA the check
c(P∗

sv) ⪯D c(q) is also performed when q becomes an explored path dur-
ing a call to propagate. However, p is a permanent s-u-path and is thus
stored in P∗

su. Thus, in a later iteration of the MDA, the search for a next
queue path for v is triggered and during the involved call to nextQueuePath,
the lastProcessedPath[u, v] index will point to the entry in P∗

su containing p.
Then, q is rebuilt and c(P∗

sv) ⪯D c(q) is repeated.

As a consequence of the above paragraph, we can conclude than when-
ever the merge operations during Martins’s algorithm are fast and relatively
many paths are made permanent without the need to be replaced in Q, the
need to repeat ⪯D -checks in the MDA causes Martins’s algorithm to be
faster. Our experiments indeed show that instances with a small overall
number N of permanent paths stick to this logic.

It is to be expected that the MDA outperforms Martins’s algorithm when
the management of explored paths becomes more tedious. The asymptotic
behavior of both algorithms (cf. Table 1) seconds this claim. merge oper-
ations, also in practice, are time consuming and cannot keep up with the
straightforward iteration required to answer (repeated) ⪯D-checks.

6.2 implementation details

Both algorithms are implemented in C++ and we use the gcc compiler ver-
sion 7.5 to build the binaries setting the compiler optimization level to O3.
To describe an s-v-path p, we use a label (cf. Section 3.3) that is a tuple
(v, c(p), (u, v), pred(p)). In the label, (u, v) is the last arc of p and pred(p) is
a pointer to the label encoding the (permanent) s-u-subpath ps→u of p. The
implementations are accessible in (Maristany de las Casas, 2023a). The code
can be compiled to solve instances with any number of arc cost functions.

Remark 6.1 (Explored and permanent labels in Martins’s algorithm). Con-
sider implementations of Martins’s algorithm and of the MDA both using dimen-
sionality reduction. I.e., alongside with the lists P∗

sv the algorithms maintain the
dimensionality reduced fronts cdr(P

∗
sv) to speedup ⪯D -checks (cf. Section 3.5).

For any v ∈ V assume p is a permanent s-v-path in both Martins’s algorithm and
the MDA. In the MDA, p needs to be stored in P∗

sv using a label that includes p’s
costs. Otherwise, during calls to nextQueuePath we cannot recalculate the costs of
the explored path p ◦ (v,w) efficiently. In Martins’s algorithm if p is made perma-
nent, it is not reconsidered until it is rebuilt recursively using Algorithm 1 at the
end of the algorithm for output purposes. Since Algorithm 1 iterates over all arcs
in p to rebuild it, we can sum up the costs of the arcs to calculate p’s cost. Hence,
in Martins’s algorithm, we can use different labels for explored paths and for per-
manent paths. Namely, permanent paths can be stored using a label that does not
include the paths’ cost vector. This saves memory in practice and avoids reallocation
of large chunks of memory when the P∗

sv vectors grow. This trick was first used or at
least explained in a publication related to label-setting One-to-One BOSP problems
by Ahmadi et al. (2021).
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Data Structures

Labels in both algorithms are allocated in a memory pool, large blocks (arrays)
of memory linked to each other. This approach helps avoiding the fragmen-
tation of memory. If a label is discarded, it is freed in the pool meaning that
when the algorithm requests a new label to encode an explored path, the
discarded label is made available and its information is overwritten.

In both algorithms we use a binary heap as the priority queue Q of ex-
plored paths. It contains at most n elements, one s-v-path for every v ∈ V .
Both algorithms use a hash to access a node’s queue path quickly. The lists
P∗
sv of permanent s-v-paths/labels are implemented as vectors. We only

need to append elements to these lists in both algorithms. In our implemen-
tation of Martins’s algorithm, the lists Esv of explored s-v-paths are doubly
linked lists. During merge operations we need to be able to insert at and
delete from any position in the list. The indices lastProcessedPath for every
arc a ∈ A are needed in the MDA and we store them as an array indexed by
the ids of the arcs.

Finally, we maintain the dimensionality reduced fronts (cf. Section 3.5) in
both algorithms to speed up dominance tests. They are maintained as dou-
bly linked lists to enable fast insertion and removal from arbitrary positions.

6.2.1 Instance description

The instances from Hansen (1980) used to prove the intractability of MOSP
problems are excellent benchmark instances. Since all paths are efficient and
no two paths with the same end nodes are cost-equivalent, all dominance
checks performed by any label-setting algorithm require the same amount
of comparisons. If storage of the graph and the permanent lists coincide
like in our implementations, the differences in running times boil down to
the comparison of the desired subroutines: nextQueuePath for the MDA ver-
sus merge for Martins’s algorithm. Also, these instances do not distinguish
between a One-to-All and a One-to-One setting since all paths are efficient
and thus cannot be pruned. We refer to these instances as EXP instances in
this section and report the results in Section 6.3.1. We choose the name EXP
because of the exponential output size. Note that these graphs have bidi-
mensional arc costs originally. We add a third cost component to every arc
that is always equal to one. This does not change the fact that every path is
efficient.

Besides the instances from Hansen (1980), we choose the same instances
as in (Maristany de las Casas, Sedeño-Noda, & Borndörfer, 2021) to compare
Martins’s algorithm and the MDA on different One-to-One MOSP instances
with d = 3. Our intention is to observe the behavior of the algorithms
on large scale and practically relevant MOSP instances for which data is
available in the literature. In Chapter 9 we design a new variant of the
MDA tuned for practical performance on One-to-One MOSP instances. In
this section we stick to the MDA as described so far because it achieves the
best asymptotic memory consumption bound. Recall that t ∈ V is the target
node in One-to-One MOSP instances. The only modification to the MDA
and to Martins’s algorithm is that whenever we check c(P∗

sv) ⪯D c(p) for
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an s-v-path p, v ∈ V , we also check c(P∗
st) ⪯D c(p). If this last check is

answered positively, p can be discarded because due to the nonnegative arc
costs any expansion of p until t does not result in an efficient s-t-path. This
technique is called target pruning in the literature. We discuss it in more
detail in Section 9.4.

grid graphs We consider a directed 100× 100 grid graph. Arcs between
neighboring nodes exist in both directions. This results in a graph with
10000 nodes and 39600 arcs. Every arc (u, v) has 3-dimensional costs and
c((u, v)) = c((v,u)). The costs were generated uniformly at random for
each component separately. The values range between 1 and 10. We use 10

different 3-dimensional cost functions. These instances were already used
and described in (Pulido et al., 2014). We assign an ID to every node. The
IDs start at 0 at the lower left node of the grid and increase first vertically
(the node on the upper left corner has id 99) and then horizontally (the node
to the right of node 0 has id 100). For every pair consisting of the grid graph
and a cost function, we create 100 (s, t) pairs randomly. Since we consider
10 cost functions, we get 1000 One-to-One MOSP instances which we refer
to as Grid Instances.

netmaker instances NetMaker graphs are synthetic directed graphs
with 5000 to 30000 nodes and 29591 to 688398 arcs. These graphs have
been used in multiple publications (Maristany de las Casas, Sedeño-Noda,
& Borndörfer, 2021; Raith & Ehrgott, 2009; Skriver & Andersen, 2000; Raith
et al., 2018). In every such graph, all nodes are connected via a Hamiltonian
cycle to ensure connectivity. Then, arcs between the nodes along the cycle
are added randomly. A parameter bounds the number of nodes each of the
additional arcs can skip over. The arcs’ costs are 3-dimensional and each
cost component lies between 1 and 1000. For any arc there is a cost com-
ponent between 1 and 333, a cost component between 334 and 666, and a
cost component between 667 and 1000. Which cost component lies in which
interval and the actual value of the cost component was randomly set when
the graphs were created. We partition the NetMaker graphs into groups
called netM-n. Each group is defined by the number n103 of nodes of the
graphs in it (i.e., the netM-5 group contains graphs with 5000 nodes) and
contains 10 to 12 graphs with varying number of arcs. We use the same s-
t-pairs used in (Maristany de las Casas, Sedeño-Noda, & Borndörfer, 2021):
for each graph, 20 randomly generated s-t-pairs are considered. Thus, in
every netM-n group 200-240 instances are considered.

road networks We use the road networks available from the 9th DI-
MACS Implementation Challenge on Shortest Paths (Demetrescu et al., 2009).
The available arc cost functions are the arcs’ distance and the arcs’ travel
time. Additionally, we added a third cost component to every arc that is
always 1, i.e., we aim to minimize the number of arcs along a path as a
third cost component. For every considered graph, we selected 100 random
s-t-pairs to generate our instances. The sizes of the graphs are shown in
Table 2.
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Road Network Nodes Arcs

NY 264, 346 733, 846
BAY 321, 270 800, 172
COL 435, 666 1, 057, 066
FLA 1, 070, 376 2, 712, 798
NE 1, 524, 453 3, 897, 636
LKS 2, 758, 119 6, 885, 658
E 3, 598, 623 8, 778, 114
W 6, 262, 104 15, 248, 146
CTR 14, 081, 816 34, 292, 496

Table 2: Size of the used road networks. In every network, we consider 100 random
s-t-pairs.

For every instance type, the chosen s-t-pairs on every graph are accessible
in text files using the .inst file type and stored in directory instances in the
repository (Maristany de las Casas, 2023a).

6.3 results

The experiments were run on a computer with an Intel Xeon-Gold-6342 @
2.80GHz processor. For every instance, the available memory was 64GB and
we set the time limit to 2h. In Section 6.3.2-Section 6.3.4 we analyze the
results for every graph type separately. The reported averages are geometric
means and time is always measured in seconds. The collected statistics for
every single instance are available in the .csv files in the results directory in
(Maristany de las Casas, 2023a). The repository also contains the evaluation
scripts used to build the tables and the plots in this section from the collected
data. Speedups are calculated by dividing Martins’s algorithm running time
by the MDA’s running time. Hence, whenever the reported speedups are
above 1, the MDA is faster than Martins’s algorithm.

Remark 6.2 (Unsolved instances). We consider only instances that are solved by
at least one of the algorithms. Some instances are solved only by the MDA. We
assume that Martins’s algorithm needs 2h to solve such instances. Then, we can
report time and speedup averages in every row of the tables in this section. However,
the reported average number of iterations (N) and average number of efficient s-t-
paths (Nt) are not comparable on instance groups in which Martins’s algorithm
solves less instances than the MDA. These averages are built considering only the
instances solved by each of the algorithms.

6.3.1 Exponential Instances

In Table 3 we collect the results obtained from the EXP instances. The table
contains one row per instance. The graph EXPn represents the graph from
(Hansen, 1980) with n nodes. See also Figure 2 to recall how the graphs
are constructed. We do not include the graphs with ⩽ 19 nodes in the table
because both algorithms solve them in less than ten milliseconds. Figure 4
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time

Graph N Nt MDA Martins Speedup

EXP15 382 128 0.0002 0.0002 1.00

EXP17 766 256 0.0004 0.0005 1.25

EXP19 1534 512 0.0005 0.0014 2.80

EXP21 3070 1024 0.0013 0.0024 1.85

EXP23 6142 2048 0.0016 0.0210 13.12

EXP25 12 286 4096 0.0030 0.0505 16.83

EXP27 24 574 8192 0.0094 0.1301 13.84

EXP29 49 150 16 384 0.0120 0.4581 38.18

EXP31 98 302 32 768 0.0203 2.9610 145.86

EXP33 196 606 65 536 0.0369 14.2462 386.08

EXP35 393 214 131 072 0.0658 69.3435 1053.85

EXP37 786 430 262 144 0.1161 344.8065 2969.91

EXP39 1 572 862 524 288 0.2161 1556.8613 7204.36

EXP41 3 145 726 1 048 576 0.4172 - -
EXP43 6 291 454 2 097 152 0.8165 - -
EXP45 12 582 910 4 194 304 1.8365 - -
EXP47 25 165 822 8 388 608 3.1044 - -
EXP49 50 331 646 16 777 216 5.7862 - -
EXP51 100 663 294 33 554 432 11.2031 - -
EXP53 201 326 590 67 108 864 22.2010 - -
EXP55 402 653 182 134 217 728 43.5169 - -
EXP57 805 306 366 268 435 456 87.3454 - -
EXP59 1 610 612 734 536 870 912 174.8520 - -
EXP61 3 221 225 470 1 073 741 824 385.8030 - -

Table 3: Martins vs. MDA on the EXP instance set.

is a scatter plot representation of the running times in the table depending
on the graphs’ number of nodes. The MDA clearly outperforms Martins’s
algorithm on this set of instances. The biggest such instance that Martins’s
algorithm manages to solve is the one with 39 nodes. It does so in 1556.86s
while the MDA solves this instance in 0.22s. This results in a speedup of ap-
proximately ×7204. The speedup is proportional to the graph size increases.
The effect can be clearly seen in Figure 4. In the table and in the plot we can
also observe that the MDA manages to solve EXP instances with up to 61

nodes. This instance is solved in 385.8s, indicating that the algorithm would
possibly solve bigger instances if we would assign more memory. However,
the huge sets of minimal complete sets of efficient paths from the EXP63

onward causes the MDA runs to fail in our experimental setting.
All in all we conclude that on these artificial instances, our implementa-

tions mirror the asymptotic behavior of both algorithms. The solution time
correlates with the number N of permanent paths. Then, in Figure 4 the
logarithmic y-axis causes the scatter plots to look linear w.r.t. n and w.r.t. m
(since for every value of n there is only one value of m on this set of in-
stances). Since the propagation of new paths is a O

(
dmnN2

max
)

operation in
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Figure 4: Running times of Martins’s algorithm and the MDA on 3d EXP instances.

Martins’s algorithm and a O
(
dmN2

max
)

operation in the MDA (cf. Table 1),
it is to be expected that the data series representing the running times of
Martins’s algorithm has a steeper slope in Figure 4. The high computational
cost caused by the merge operation required in every iteration of Martins’s
algorithm unveils, particularly on the set of EXP instances, the drawback of
this algorithm.

In the following sections we will see that while the MDA is faster than
Martins’s algorithm, the speedup is considerably smaller than the speedup
reached on EXP instances. This observation is crucial at this point as it
dispels any concerns about whether the results presented in Table 3 are
solely a consequence of inefficient implementation in Martins’s algorithm.

6.3.2 Grid Instances

In Table 4 we present the summarized results for grid graphs. Every row in
the table reports the results of both algorithms depending on the number N
of permanent paths. For every instance, the number N of permanent paths at
the end of the algorithms coincides in the MDA and in Martins’s algorithm.
The ith row, i ∈ {1, . . . , 7}, of the table collects the instances for which the
algorithms made at least 10i + 1 and at most 10i+1 paths permanent.

The first row is irrelevant: both algorithms solve the instances with at
most 100 permanent paths in less than 0.1 milliseconds. Instances with at
most 104 permanent paths are solved faster by Martins’s algorithm. The
reason is that the number of explored paths stored simultaneously during
the solution process is not high and thus, the merge operations require fewer
comparisons than the repeated dominance checks in the nextQueuePath rou-
tine. See also Section 6.1.

The situation changes in favor of the MDA for instances with more than
104 permanent paths. The speedup grows steadily and reaches ×3.27 on
the 310 instances that require between 107 and 108 permanent paths to be
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time

N interval Instances N Nt mda martins Speedup

(101, 102] 2 32.56 1.41 <0.0001 <0.0001 1

(102, 103] 6 439.69 5.16 0.0002 0.0002 0.92

(103, 104] 32 3240.75 20.38 0.0018 0.0016 0.88

(104, 105] 72 37 602.31 92.44 0.0246 0.0276 1.12

(105, 106] 188 369 126.73 355.01 0.4192 0.5827 1.39

(106, 107] 390 3 594 007.97 1782.16 9.9572 26.3608 2.65

(107, 108] 310 20 341 258.55 8085.47 161.4992 528.4312 3.27

Table 4: Martins vs. MDA on Grid instances. Both algorithms solve all instances.

Figure 5: Running times of Martins’s algorithm and the MDA on 3d Grid instances
using linear axes.

solved. On these instances, a minimal complete set of efficient s-t-paths
contains 8085.47 paths on average.

Figure 5 and Figure 6 show scatter plots comparing the running times of
both algorithms depending on the number N of permanent paths. The log-
log-plot in Figure 6 is particularly interesting since it shows that the behavior
of both algorithms’ implementations mirrors the asymptotic bounds from
Table 1: for d = 3 the difference between both algorithms is a multiplicative
factor n and almost vanishes in the log-log-plot.

Finally, in Figure 7 we plot the extractions per second of both algorithms
again depending on N. It is clear that this measure for the algorithms’ ef-
ficiency decays as N grows because every ⪯D-check and every merge oper-
ation becomes harder to solve with increasing output size. The plot shows
that the efficiency of the MDA decays slower and that after a threshold (ap-
proximately 4× 107) the difference between both algorithms remains stable.
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Figure 6: Running times of Martins’s algorithm and the MDA on 3d Grid instances
using logarithmic axes.

Figure 7: Comparison of the efficiency of Martins’s algorithm and the MDA on 3d

Grid instances.
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6.3.3 NetMaker Instances

In Table 5 we summarize the results obtained on NetMaker instances. The
table’s structure is similar to Table 4. In this case, every row contains the
results obtained by both algorithms on graphs with the same number of
nodes. Both algorithms solved every instance within the time limit.

NetMaker instances are notably different to Grid instances regarding the
output sizes N and Nt w.r.t. the graphs’ size. The last line in Table 4 encodes
the biggest Grid instances regarding both the number of nodes in the graph
and the instances’ output size. Dividing N by the number of nodes in the
grid, i.e., n = 10000, we obtain an average number of 2034.13 permanent
paths per node. On NetMaker instances we can see in the last line of Table 5

that instances with n = 30000 require the greatest value N of permanent
paths to be solved and, on average, only produce 507 permanent paths per
node. The smaller input graphs with 5000 nodes produce around 1200/5 =

240 permanent paths per node. Thus, on average, six times smaller graphs
regarding the number of nodes produce half as many permanent paths per
node. This explains why the speedup achieved by the MDA is slightly bigger
on smaller graphs ×1.82 for graphs with 5000 nodes than for the biggest
graphs where it reaches ×1.5. All in all, the speedups in favor of the MDA
are lower than on grid graphs because the size of the P∗

sv lists is much smaller.
NetMaker instances are easier to solve than Grid instances.

In Figure 9 we plot the running times of both algorithms w.r.t. the number
of permanent paths on NetMaker graphs with 30000 nodes. The same plot
looks very similar for the instances encoded in the other rows of Table 5.
For this reason, we do not include them in the printed version of the thesis,
but they are all contained in the directory results/plots in the repository
(Maristany de las Casas, 2023a). The naming of the files in the directory is
self-explanatory.

Furthermore, NetMaker instances are interesting because the varying sizes
of the graphs result in different graph densities (number of arcs divided by
number of nodes). Table 6 and Figure 8 summarize the results obtained from
NetMaker instances separating and plotting them depending on the graphs’
density. To group the graphs, we rounded their density to the next integer.
We observe that increasing density of the graph impacts the algorithms’ ef-
ficiency similarly. Moreover, the red data shows that the speedup reaches
values between ×1.9 and ×2 as the densities grow up to 17. For densities
equal to 21 and 23, the speedup decays to a value of around ×1.7. This is be-
cause the numbers N and Nt for these groups of instances indicate that the
cardinality of the lists of permanent paths is smaller on these graphs than on
graphs with density 17. Thus, merge operations and ⪯D -checks can be per-
formed faster. Indeed, the speedups in favor of the MDA are proportional
to the average number of permanent paths N.

6.3.4 Road Instances

The results obtained on road instances are summarized in Table 7. These in-
stances are notably hard and by now, we cannot claim that they are a solved
instance class for 3-dimensional arc costs. Every row in the table reports the
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time

netM-n Instances N Nt mda martins Speedup

n = 5 240 1 197 681.03 695.66 6.6550 12.1276 1.82

n = 10 220 3 398 739.57 941.42 30.7094 48.0459 1.56

n = 15 240 6 639 691.63 1126.15 78.3546 122.1306 1.56

n = 20 240 9 868 444.80 1252.33 132.7924 204.8363 1.54

n = 25 200 11 313 273.81 1125.89 153.4810 227.2383 1.48

n = 30 240 15 213 764.84 1344.04 230.8244 346.3387 1.50

Table 5: Martins vs. MDA on the NetMaker instances. Both algorithms solved all
instances within the time limit. Instances are grouped depending on the
number of nodes in the input graph.

time

Density Instances N Nt mda martins Speedup

6 240 1 927 527.91 319.27 7.1516 8.7192 1.22

8 240 3 388 611.54 605.15 20.3446 28.1831 1.39

11 220 5 409 865.60 994.40 52.4636 81.0655 1.55

13 240 7 310 322.13 1311.05 95.0760 154.1649 1.62

16 100 14 126 390.82 2905.09 299.7726 591.6235 1.97

17 120 19 265 540.88 3362.51 531.3614 1026.5097 1.93

21 100 11 341 181.08 1975.62 258.5909 439.6957 1.70

23 120 11 478 804.80 2070.82 289.8834 505.3561 1.74

Table 6: Martins vs. MDA on the NetMaker instances. Both algorithms solved all
instances within the time limit. Instances are grouped depending on the
density of the input graph.

Figure 8: Comparison of the efficiency of Martins’s algorithm and the MDA on
NetMaker instances. As the efficiency metric we use the paths that are
made permanent per second. The instances are grouped depending on
the graphs’ density. The y-axis on the right hand side and the red data
series show the average speedup on these groups of instances.
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Figure 9: Running times of Martins’s algorithm and the MDA on 3d NetMaker
instances with 30000 nodes.

collected results for the instances defined on a single road network. Thus,
100 instances are encoded per row but even for the smallest NY network,
none of the algorithms solves all instances within the time limit. While the
MDA manages to solve 73 instances, Martins’s algorithm solves only 56 on
this network. Hence, for road networks we report averages as explained in
Remark 6.2.

Since the MDA always solves at least as many instances as Martins’s al-
gorithm, the reported numbers in the N and Nt columns are never smaller
for the MDA. Sticking to the NY network, we observe that the MDA man-
aged to solve instances with more than 19 million permanent paths while
the instances solved by Martins’s algorithm had slightly more than 8 million
permanent paths on average.

The average running times reported in Table 7 are surprising because they
are not close to the time limit. The reason can be seen in Figure 10-Figure 15

and in the results files in (Maristany de las Casas, 2023a) which contain
the data collected for every instance separately. In these scatter plots the
running time needed to solve the instances considered in Table 7 are plotted
w.r.t. the number of permanent paths. The yellow dots on the y = 7200s line
are easy to distinguish and they correspond to instances solved by the MDA
and not by Martins’s algorithm. We can see that many of the 100 instances
defined for every road network are solved in less than 1000s. While the
sets of permanent s-t-paths are rather small compared to the sets of s-t-
paths on Grid instances and on NetMaker instances, the size of the road
networks makes the handling of the solution sets challenging. This causes
a very fast increase of the number of permanent paths required to solve the
instances. Thus, only few instances lie in the imaginary interval between
easy to solve (< 1000s) and not solvable in 7200s. In fact, in Figure 12-Figure 15

a clustering of the instances’ running times becomes increasingly clear. In
Figure 15 we observe a cluster of instances around N = 1.0× 108 and then
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MDA Martins

solved N Nt time solved N Nt time Speedup

NY 73 19 070 244.84 466.21 71.51 56 8 032 884.33 255.22 126.22 1.77
BAY 65 20 191 649.61 579.89 83.53 60 16 091 057.25 484.84 112.60 1.35
COL 46 19 235 827.47 437.75 104.31 40 12 268 279.58 331.59 181.52 1.74
FLA 17 10 898 652.80 212.08 38.33 15 7 390 904.21 166.57 70.31 1.83
NE 13 29 552 102.94 843.67 136.61 13 29 552 102.94 843.67 202.91 1.49
LKS 8 27 515 810.26 718.88 146.85 8 27 515 810.26 718.88 249.01 1.70

Table 7: Martins vs. MDA on road instances. For every road network, we defined
100 s-t-pairs. Instances that are not solved by any of the algorithms are
ignored. There are no instances solved only by Martins’s algorithm. For
the time and speedup columns we assume Martins’s algorithm to solve the
instances solved only by the MDA in 7200s. The averages for N and Nt

only consider solved instances.

no more instances with N < 2.0× 108. As a result, the reported solution time
averages are not close to 7200s as one would expect. The choice of reporting
the geometric mean in the time-columns also lowers the reported numbers.

For now, we can point out that despite having solvability issues, the MDA
is consistently faster than Martins’s algorithm also on Road instances. On
the NY network, the one on which the MDA solves the most instances, the
speedup is ×1.77. The smallest speedup, ×1.33, is achieved on the BAY
network, where the MDA solves 65 instances and Martins’s algorithm solves
60 instances, its maximum. The biggest speedup, ×1.83 is achieved on the
FLA network. On the NE and the LKS network, the achieved speedup is in
line with the one achieved on the other road networks. Solving 13 and 8 out
of 100 instances on these graphs is arguably not a lot. Thus, we refer the
reader to Chapter 9, where versions of the MDA and of Martins’s algorithm
tailored for large scale One-to-One MOSP instances perform better.

Note that in the original publication of the MDA (Maristany de las Casas,
Sedeño-Noda, & Borndörfer, 2021), we achieved average speedups of more
than ×5 when comparing the MDA with the improved version of Martins’s
algorithm from (Demeyer et al., 2013). However, the algorithm as introduced
in Chapter 5 is faster, causing smaller speedups in this chapter of the thesis.

Remark 6.3. First Guerriero and Musmanno (2001) and later Paixão and Santos
(2013) claimed that label-correcting strategies are better suited than label-setting
strategies in the design of MOSP algorithms. The label-setting setup in both papers
uses the algorithm by (E. Q. V. Martins, 1984) storing all explored paths in a
heap, a list, or a deque data structure simultaneously. The sorting keys are either
the lexicographic order or the sum-of-costs order. For the benchmarks using the
lexicographic order, the dimensionality reduction technique (cf. Section 3.5) is not
used. They use MOSP instances with up to ten-dimensional arc costs in their
experiments. Such an extensive analysis has not been conducted using modern
label-setting MOSP algorithms. In this thesis we are interested in the suitability
of the MOSP model to capture large scale real world applications. If we use an
implementation of Martins’s algorithm that stores all explored paths simultaneously
in a priority queue, that performs merge operations on the elements in that queue,
and that does not use dimensionality reduction, the resulting running times are
orders of magnitude longer than the ones reported in this chapter. In that scenario
label-correcting methods can win the comparison. However, the speedup obtained
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Figure 10: Running times of Martins’s algorithm and the MDA on 73 NY instances.

using such algorithms in (Guerriero & Musmanno, 2001) and in (Paixão & Santos,
2013) is not comparable with the speedup obtained in our early tests that led to the
design of Martins’s algorithm as introduced here.
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Figure 11: Running times of Martins’s algorithm and the MDA on 65 BAY in-
stances.

Figure 12: Running times of Martins’s algorithm and the MDA on 46 COL in-
stances.
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Figure 13: Running times of Martins’s algorithm and the MDA on 17 FLA in-
stances.

Figure 14: Running times of Martins’s algorithm and the MDA on 13 NE instances.
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Figure 15: Running times of Martins’s algorithm and the MDA on 8 LKS instances.





7 C O N C L U S I O N

The experiments in the last chapter end this part of the thesis. The main con-
tribution is the introduction of the Multiobjective Dijkstra Algorithm (MDA), a
label-setting algorithm for the Multiobjective Shortest Path (MOSP) problem.
The key to design good MOSP algorithms is the efficient handling of explored
paths. For a label-setting MOSP algorithm a path is an explored path if it has
already been constructed but the algorithm is not able to provably discard
the path or store it as part of the output because it is efficient. The main
novelty in the MDA is that it exploits the Dynamic Programming nature of
the MOSP problem to store at most one explored path per node in the input
graph. The price for doing so is that paths need to be reconstructed from ef-
ficient subpaths and that ⪯D -checks (checks to decide whether an explored
path is dominated by or equivalent to an efficient path with coincident end
nodes) for a given explored path might need to be repeated. The crux is
that rebuilding paths is asymptotically negligible and that we can bound
the amount of times ⪯D-checks are repeated. By doing so, we can prove
that the overall asymptotic running time and space consumption bounds of
the MDA improve the known output sensitive bounds for other label-setting
MOSP algorithms.

Our journey to end up with the version of the MDA described in this
chapter guided us also through incremental speedup techniques from the
literature. The dimensionality reduction (cf. Section 3.5) in conjunction with
the lexicographic ordering of the explored paths to speedup the costly ⪯D-
checks, the usage of a memory pool in our implementations to enhance mem-
ory management, and the target pruning to discard more paths in One-to-One
scenarios are prominent examples. Including them in the MDA ensures that
besides the theoretical improvement, the new algorithm is fast in practice.

To benchmark this aspect, we added Martins’s algorithm to the mix. The
algorithm was first published in (E. Q. V. Martins, 1984) and is undeniably
the classical label-setting MOSP algorithm. We included all speedup tech-
niques mentioned in the previous paragraph in our version of the algorithm.
Moreover, we slightly tuned the handling of explored paths to avoid ineffi-
ciencies that would make the head to head comparison with the MDA unfair.
This results in a new version of the original Martins’s algorithm with better
asymptotic complexity and also better performance in practice. While Mar-
tins’s algorithm does not rebuild paths and it does not repeat ⪯D-checks for
a given explored path, it needs to perform costly merge operations in ev-
ery iteration. These subroutines act on the set of explored paths for a fixed
node and ensure that no two explored paths dominate each other or a cost-
equivalent. This requires a linear time effort w.r.t. to the number of explored
paths. If Nmax is the number of the largest set of efficient paths stored by
a label-setting MOSP algorithm for a given instance, there can be nNmax ex-
plored paths for a fixed node. On the other hand ⪯D-checks require a linear
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time effort w.r.t. Nmax only. Thus, the O (nNmax) merge operations stand
in contrast to the repeated ⪯D checks in O (Nmax) in the MDA. The main
takeaway of this part of the thesis is that asymptotically and in practice, the
avoidance of merge operations in the MDA is the way to go in the design of
label-setting MOSP algorithms that also adhere to a possibly tight memory
consumption bound.



Part III

T H E M U LT I O B J E C T I V E D I J K S T R A A LG O R I T H M I N
P R A C T I C E





8 I N T R O D U C T I O N

After publishing (Maristany de las Casas, Sedeño-Noda, & Borndörfer, 2021)
and introducing the MDA, one thing was clear, particularly looking at the
experimental results on road networks: the MDA is not the answer if the goal
is to establish the flexibility of modeling real world shortest path problems
with higher-dimensional arc costs as a go-to choice for practitioners.

In this part of the thesis, driven by our cooperation with Lufthansa Sys-
tems GmbH, we design variants of the MDA that aim to bring the techniques
described already in the thesis closer to usability in practice. In Chapter 9 we
design the Targeted Multiobjective Dijkstra Algorithm, an A∗-like One-to-One
MOSP algorithm. It stores more explored paths than the MDA simultane-
ously but it has the same asymptotic running time behavior. The content of
this chapter was published in (Maristany de las Casas, Kraus, et al., 2023).

Chapter 10 and Chapter 11 are the embedding of (Maristany de las Casas,
Borndörfer, et al., 2021) into this thesis. In Chapter 10 we discuss how to
add time dependent arc cost functions to MOSP models. The generalization
of the Time Dependent Shortest Path problem to the multiobjective scenario
follows an intuitive path but we encounter remarkable limitations and strict
conditions on the arc cost functions that restrict the types of practical prob-
lems that can be modeled using the Dynamic Multiobjective Shortest Path (Dyn-
MOSP) problem. An in depth analysis of the problem was missing in the
literature. Given the relevance of arc cost functions that are dependent on
e.g., the time point at or the weight with which the arc is traversed, our
discussion in Chapter 10 is the second contribution in this part of the thesis.

However, modeling using multiple objectives can lead to output sets that
are too large for decision makers to take advantage of the new solution
format. This opens up the search for approximation algorithms for MOSP
that return a meaningful representation of the output in the exact case. In
Chapter 11 we discuss a new FPTAS for MOSP based on the MDA. At the
end of this chapter, we also discuss our experimental results on instances
of the Horizontal Flight Planning problem made available by our industry
partner Lufthansa Systems GmbH. These instances are Dyn-MOSP instances
that, when solved with an exact Dyn-MOSP algorithm cause too many paths
to be efficient.

Remark 8.1. The storytelling in this introduction does not mirror the chronology
of the publications that led to this part of the thesis. This is why the experimental
results at the end of Chapter 9 and at the end of Chapter 11 are not directly compa-
rable. The results in Chapter 9 are obtained using our newest implementation of the
T-MDA that is publicly available and not tailored to the flight planning application.
In contrast, the results presented in Chapter 11 are obtained from an older implemen-
tation of the MDA that relies on libraries and some techniques that prepare the code
to be easily transmitted to the optimization core of Lufthansa Systems. However, the
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effects that both sets of experiments want to show are different and not necessarily
incremental which is why we keep the described exposition in the thesis.



9 O N E -TO - O N E M U LT I O B J E C T I V E
S H O R T E S T PAT H P R O B L E M

To study the One-to-One MOSP problem (cf. Definition 3.2) in more detail,
we embed the content first published in Maristany de las Casas, Kraus, et al.
(2023) in this chapter. Let I = (G = (V ,A), s, t,d, c) be a One-to-One MOSP
instance. Out of the box, the MDA and Martins’s algorithm solve I. On the
asymptotic side of the algorithm design, we do not achieve an improvement
in this chapter. Even worse, as already mentioned in Section 3.2, in (Bökler,
2018, Theorem 6.2) the author proves that the One-to-One MOSP problem is
not output sensitive unless P = NP. Thus, our effort in this chapter focuses
on the design of a variant of the MDA for One-to-One MOSP instances that
matches the MDA’s running time bound derived in Theorem 4.4 but is tuned
for performance in practice. Thereby, we discuss three improvements.

1. As it is usual in the single-criterion A∗ algorithm, we can guide the
search towards the target using node potentials. We discuss them in
Section 9.3.

2. For the experiments with One-to-One MOSP instances in Chapter 6

we already explained target pruning, additional ⪯D-checks used to dis-
card s-v-paths for v ∈ V \ {t} if they are dominated by or equivalent
to permanent s-t-paths. The effect of this technique is enhanced in
the presence of node potentials. In Section 9.4, we elaborate on this
technique and show how we combine it with the MDA.

3. The last point modifies the MDA and leads to the Targeted Multiobjective
Dijkstra Algorithm (T-MDA) (Section 9.5). It uses a novel pseudo-lazy
management of explored paths that increases the memory consumption
of the T-MDA compared to the one of the MDA but allows the T-MDA
to match the asymptotic running time bound of the MDA.

The contributions are explained in more detail in Section 9.2. Before that,
we give an overview of the One-to-One MOSP literature landscape.

9.1 literature review

The A∗ label-setting algorithm for One-to-One Shortest Path problems (Hart
et al., 1968; Goldberg et al., 2006) gets a node potential as part of its input.
These potentials, often called heuristics in the literature, underestimate the
optimal cost from a node to the target node. Then, every path is evaluated
based on the sum of its exact cost and the heuristic value associated with
the path’s end node. Hence, heuristics alter the priority with which paths
are processed, benefiting paths with good heuristic values, i.e., paths that are
expected to reach the target along a cheap extension. First Stewart and White
(1991) and later Mandow and Pérez de la Cruz (2005, 2010) generalized
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this notion to the multiobjective scenario. Even later and with Pulido, F.
J. as a new co-author they introduced the NAMOA∗ algorithm (Pulido et
al., 2014). An improved version called NAMOA∗

dr algorithm (Pulido et al.,
2015), is still the state of the art One-to-One MOSP algorithm in the literature.
Its main performance improvement w.r.t. the original NAMOA∗ algorithm
is the use of the dimensionality reduction technique that we discussed in
Section 3.5. The impact of the NAMOA∗

dr for today’s MOSP algorithms is
remarkable. Nowadays all fast MOSP algorithms include the dimensionality
reduction technique. Moreover, already in (Mandow & Pérez de la Cruz,
2010) the authors proved that their NAMOA∗ algorithm is optimal regarding
the number of expanded explored paths.

The MDA and its asymptotic running time bound derived in Theorem 4.4
prove that the management of explored paths (cf. Definition 3.8) is of ut-
most relevance to design efficient MOSP algorithms. Consider a One-to-One
MOSP instance (G, s, t,d, c) as in Definition 3.2 and assume that all algo-
rithms use a priority queue called Q to store explored paths. Then, the three
main ways to handle explored paths in the literature are the following.

1. For any node v ∈ V , the MDA stores at most one explored s-v-path p

at a time in Q. No other explored paths are stored. Explored paths
that were seen but did not match the criteria to enter the queue are
rebuilt as needed exploiting the subpath efficiency of efficient paths
(cf. Theorem 3.1). In this approach the number of explored paths that
are stored simultaneously is minimal.

2. The classical label-setting algorithm by Martins (E. Q. V. Martins, 1984)
stores more explored paths as discussed in Chapter 5. For every node
v ∈ V a list of explored s-v-paths exists. In any of these lists, no element
dominates another. Maintaining this property is achieved using merge
operations. Efficient implementations of Martins’s algorithm like our
Martins’s algorithm store only a minimal (w.r.t. ≺Q) path from every
such list in the algorithm’s priority queue.

3. Recently, Ulloa et al. (2020) and Ahmadi et al. (2021) proposed lazy
queue management for One-to-One BOSP algorithms. The name lazy in
this context is often used in the literature and is motivated by the fact
that new explored paths are added to the algorithms’ priority queue
without performing a merge operation. In other words, algorithms us-
ing a lazy queue management insert new explored paths into Q with-
out comparing them with any existing explored path. The price for
lazy queue management is twofold. First ⪯D-checks for every path
extracted from the queue need to be repeated after their extraction.
Second, the size of the priority queue can become an issue. The prac-
tical advantage is that the handling of every explored path is easy and
does not require any additional data structures besides the algorithms’
priority queue.

On a standard testbed of instances containing road networks of the United
States with bidimensional integer arc cost vectors, Ahmadi et al. (2021) show
that the theoretical drawbacks of lazy queue management are not a concern
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in practice. Ahmadi et al. (2021) overcome the problems using so called
bucket queues (Denardo & Fox, 1979). These queues work well in the biobjec-
tive scenario with integer arc costs. The buckets are indexed according to the
paths’ first cost component. The second cost component remains unsorted
within each bucket possibly causing extractions of paths in the wrong order.
In theory, this violates the ordered extraction property (Lemma 4.4 for MDA
and Lemma 5.2 for Martins’s algorithm) that is needed to prove the correct-
ness of label-setting MOSP algorithms. However, in the biobjective case the
erroneous extractions can be easily detected and the erroneous propagation
of the paths does not harm the practical performance of the algorithm. The
size of the bucket heaps and the erroneous extractions, storage, and expan-
sions make the mentioned algorithms asymptotically difficult to bound and
worse than the MDA in this regard. As noted in the introduction of the the-
sis, we failed to design a biobjective version of the T-MDA that could beat
the algorithm by Ahmadi et al. (2021) in the case of biobjective integer arc
costs. In their work, Ahmadi et al. (2021) also discuss a bidirectional version
of their algorithm.

In a general multiobjective scenario, less work has been published for One-
to-One MOSP in recent years. This motivates our choice to design a variant
of the MDA that uses a novel pseudo-lazy management of explored paths. The
running time of the new variant matches the running time of the original
MDA and works for integer and rational arc costs using binary heaps.

9.2 our contribution

Having introduced the meaning of lazy queue management already, we can
give a more detailed explanation of how we ended up designing the T-MDA.
For every node v ∈ V just one path is stored in the priority queue Q as in
the MDA. However, the T-MDA also resembles lazy algorithms: every ex-
plored s-v-path p that is not inserted into the queue directly after becoming
an explored path is not discarded and rebuilt later as in nextQueuePath. In-
stead, it is stored in a list of explored s-v-paths associated with the last arc,
say (u, v) ∈ A, of p. This list of explored paths in the T-MDA contains all
relevant explored s-v-paths whose last arc is (u, v).

The crux in the T-MDA is that using only constant time insertions (prepend
and append) of paths to the new lists of explored paths the lists remain
sorted w.r.t. the chosen total order ≺Q. As a consequence, the size of the
priority queue remains polynomially bounded in contrast to standard lazy
queue management approaches (Ulloa et al., 2020; Ahmadi et al., 2021).
Then, when an s-v-path is extracted from Q, the T-MDA finds the next queue
path for v accessing the sorted lists of explored paths associated with arcs
in δ−(v). The paths in the lists being sorted allows us to solve (8) using the
same asymptotic complexity as nextQueuePath but faster in practice because
less dominance checks are performed overall and there is no need to rebuild
paths (cf. Line 5 of nextQueuePath).

As mentioned earlier, the state of the art algorithm for One-to-One MOSP
problems in general dimensions is the NAMOA∗ algorithm introduced in
Pulido et al., 2015. It handles explored paths using merge operations as in
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Martins’s algorithm. Our second contribution in this chapter is the design of
the NAMOA∗

dr-lazy algorithm, a variant of the NAMOA∗
dr algorithm that uses

lazy queue management as described in Item 3 of the above enumeration.
To the best of our knowledge such an algorithm is novel in the literature
and generalizes the ideas from (Ulloa et al., 2020; Ahmadi et al., 2021) to
the multiobjective case. Without this lazy queue management, the already
improved NAMOA∗ from (Pulido et al., 2015) turns out not to be competitive
against the T-MDA.

9.3 multiobjective heuristics

The definitions and results in this section generalize the A∗ algorithm for
single-criterion Shortest Path problems to the multiobjective case. The orig-
inal A∗ algorithm and its modern variants are discussed for example in the
survey on the topic by Delling et al. (2009). The multiobjective generaliza-
tion is also studied in the literature (e.g., Stewart & White, 1991; Mandow &
Pérez de la Cruz, 2005).

Intuitively, we can think of heuristics as a node potential π : V → Rd
⩾0.

For a node v ∈ V , the node potential π(v) lower bounds the cost of any
v-t-path in the input graph. Then, for any s-v-path p considered during a
label-setting MOSP algorithm, explored paths can be processed w.r.t. to the
new costs c̄(p) := c(p)+π(v). The new paths’ costs guide the search towards
the target meaning that subpaths that are expected to reach the target node
t with a better final cost are extracted from Q earlier.

The redefinition of the paths’ costs mentioned in the last paragraph is only
helpful if the efficient s-t-paths w.r.t. the original costs c coincide with the
new costs c̄. As in the single-criterion case, this is guaranteed if the heuristics
fulfill the following conditions.

Definition 9.1 ((Admissible and Monotone) Heuristic. cf. Pulido et al., 2014).
A node potential π : V 7→ Rd

⩾ is an admissible and monotone heuristic for I, if

admissibility:

i. π(v) ⩽ c(p), ∀v ∈ V , p v-t-path.

monotonicity:

i. π(t) = 0, and

ii. π(u) ⩽ c(a) + π(v), ∀a = (u, v) ∈ A.

Remark 9.1. As in the single-criterion case, a monotone heuristic is admissible.

Throughout the chapter, we only consider monotone and admissible heuris-
tics. For the sake of brevity, we refer to them just as heuristics from now on.
We always assume that a heuristic π is given.

Definition 9.2 (Reduced Costs of Arcs and Paths). The reduced costs of an arc
a = (u, v) ∈ A are c̄(a) := c(a) + π(v) − π(u). For a u-v-path p between any
two nodes u, v ∈ V , the reduced costs of p are

c̄(p) := c(p) + π(v) − π(u) =
∑
a∈p

c̄(a). (15)
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Regarding the efficiency of paths, c and c̄ are equivalent.

Lemma 9.1 (Efficiency equivalence). For any node v ∈ V let P̄∗
sv be a minimum

complete set of efficient s-v-paths w.r.t. c̄. Then, P̄∗
sv is also a minimum complete

set of efficient s-v-paths w.r.t c. The opposite also holds.

Proof. The statement follows directly from (15) because the reduced cost of
every s-v-path, alters the path’s original cost w.r.t. the arc cost functions c by
the same constant π(v) − π(s).

We need to use monotone heuristics to be able to use label-setting MOSP
algorithms to compute minimal complete sets of efficient s-t-paths using c̄.
This follows from the fact that for a = (u, v) ∈ A the second monotonicity
condition can be written as 0 ⩽ c(a) + π(v) − π(u) and the right hand side
is precisely c̄(a). Thus, c̄(a) ⩾ 0 for all a ∈ A and no negative cycles in any
cost dimension open up the possibility of efficient paths being non-simple
or not well defined.

Theorem 9.1. Consider a One-to-One MOSP instance I = (G, s, t,d, c) and a
heuristic π. After defining c̄ as in Definition 9.2, consider the One-to-One MOSP
instance Ī = (G, s, t,d, c̄).

A label-setting MOSP algorithm solving I also solves Ī and the returned minimal
complete sets of efficient s-t-paths coincide up to cost-equivalent paths.

Proof. Follows directly from Lemma 9.1 and the nonnegativity of c̄.

Note that label-setting algorithms only consider paths that start at the
source node s. Thus, when prioritizing paths according to c̄, we can neglect
the −π(s) term since all paths are equally influenced by it. Thus, from now
on, we set the reduced costs of any s-v-path p, v ∈ V , as c̄(p) = c(p) + π(v).

For the used heuristics we have π(t) = 0. As a consequence, for s-t-paths
p, we have c̄(p) = c(p). For any other path q ending at a node v ∈ V \ {t},
we have c(p) + π(v) and π(v) ⩾ 0 by definition. Thus, s-t-paths are not
penalized by the reduced costs while other paths possibly are. We know
that paths in label-setting MOSP algorithms are extracted in non-decreasing
order w.r.t. ≺Q. Thus, s-t-paths are extracted in earlier iterations of the MDA
while solving Ī than while solving I.

Computing Heuristics

Finding good heuristics is an application dependent task. This is particu-
larly true for applications in which each arc cost component is not a scalar
but a function that is evaluated depending on the path used to reach the
arc’s tail node. For example, the methodology to derive them in flight plan-
ning on airway networks (Blanco et al., 2022) and electric vehicle routing
on road networks (Baum et al., 2020) varies and requires application spe-
cific techniques. There is however a generic way of computing heuristics
and dominance bounds for d-dimensional One-to-One MOSP instances in
polynomial time. This method is often used in the literature (e.g., Maris-
tany de las Casas, Sedeño-Noda, & Borndörfer, 2021; Ehrgott, 2005; Ulloa
et al., 2020; Ahmadi et al., 2021) and runs d queries of the Dijkstra’s algo-
rithm (Dijkstra, 1959). These queries are ran from the target node t to all
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other nodes (One-to-All Dijkstra) on the reversed digraph of G. Then, the
ith query, i ∈ {1, . . . ,d}, returns a shortest path tree that contains, for every
v ∈ V for which there exists a v-t-path in G, a shortest v-t-path pi,v w.r.t. the
arc costs ci(a), a ∈ A. We then set πi(v) = c(pi,v) for every i ∈ {1, . . . ,d}.
Since the original arc costs are positive, π(t) = 0, which is the first condition
for the monotony of π. For any arc a = (u, v) ∈ A, the second condition
required for the monotony of π is π(u) ⩽ c(a) + π(v). Note that in any cost
dimension i ∈ {1, . . . ,d}, ci(a) + πi(v) is the cost of a path from u to t us-
ing the arc (u, v) first and then a shortest v-t-path. On the other side of the
inequality, the cost πi(u) is, by construction, the cost of a shortest u-t-path
w.r.t. the arc costs ci. Hence, πi(u) ⩽ ci(a) + πi(v) holds.

Recall that heuristics are admissible, i.e., π(v) ⩽ c(p) for any v-t-path
p. In this sense, the heuristic π computed during the d Dijkstra queries
mentioned above is an optimal heuristic: increasing π(v) in any dimension
i ∈ {1, . . . ,d} causes a v-t-path p with minimal ci(p) cost component to
violate the admissibility of π.

In the T-MDA we assume that a heuristic is part of the input. In our com-
putational experiments, we compute π as described in the previous para-
graphs during a preprocessing phase.

9.4 pruning

The true benefit of starting to make s-t-paths permanent earlier as discussed
in the last section is that it enables us to prune irrelevant paths more effec-
tively. A pruning rule in the context of label-setting MOSP algorithms is an
additional ⪯D-check that if answered positively, allows us to provably dis-
card a (sub)path because its expansion towards the target cannot produce an
efficient s-t-path.

Lemma 9.2 (Target Pruning). For a node v ∈ V let p be an s-v-path built in
Line 2 of propagate or in Line 5 of nextQueuePath. In case c(P∗

st) ⪯D c̄(p), p can
be discarded because the concatenation of p with any v-t-path q in G results in an
s-t-path p ◦ q that is either dominated by or cost-equivalent to a path in P∗

st.

Proof. We consider only monotone heuristics. They are also admissible. This
gives us π(v) ⩽ c(p) for any v-t-path in G. Given that c̄(p) = c(p) + π(v) the
admissibility of π proves the statement.

Up to now, we have discussed how to reformulate a given One-to-One
MOSP instance to obtain a new one using a given heuristic. The two benefits
of using the MDA to solve the new instance are on one hand the improved
priority of s-t-paths and on the other hand the possibility to prune irrelevant
paths to avoid their expansion. In the next section we change how the MDA
actually works to design a new version of the algorithm that is more efficient
in practice.
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9.5 targeted multiobjective dijkstra algorithm

In this section, we introduce and analyze the Targeted Multiobjective Dijkstra
Algorithm (T-MDA). The pseudocode is shown in Algorithm 7. Making use
of the fact that the MDA is known, we outlined the changes in the T-MDA
already in Section 9.2. In this section, we discuss the details. We assume that
the total order ≺Q used to sort explored paths is the lexicographic order. We
use the order in conjunction with the dimensionality reduction technique,
which we include explicitly in the pseudocode.

input and output The input of the T-MDA is a d-dimensional One-to-
One MOSP instance (G, s, t,d, c) and a heuristic π. In the description of the
algorithm, we use the costs c̄ as described in Section 9.3. The output is a
minimal complete set of efficient s-t-paths P∗

st.

Algorithm 7: Targeted Multiobjective Dijkstra Algorithm
Input :d-dimensional One-to-One MOSP instance I = (G, s, t,d, c),

heuristic π for I.

Output : Minimal complete set P∗
st of efficient s-t-paths.

1 Priority queue of paths Q← ∅; // Sorted according to c̄.

2 ∀(u, v) ∈ A – explored s-v-paths that use (u, v) as last arc: NQPuv ← ∅;
3 ∀v ∈ V – efficient s-v-paths: P∗

sv ← ∅ ;
4 ∀v ∈ V – dimensionality reduced front c̄dr(P∗

sv)← ∅;
5 pinit ← ();
6 Q← Q.insert(pinit);

7 while Q ̸= ∅ do
8 p← Q.extractMin() ;
9 v← last node of path p. ; // If p = pinit, v← s.

10 c̄dr(P
∗
sv)←merge

(
c̄dr(P

∗
sv), c̄dr(p)

)
; // Without dominance checks in

Line 4 of merge.

11 Flag success← False;
12 if v ̸= t then
13 (Q,NQP, success)← T-propagate(p,Q,P∗,NQP)

14 if v == t or success == True then P∗
sv.append(p);

15 (pnew
v ,NQP)← T-nextQueuePath(p,P∗,NQP) ;

16 if pnew
v ̸= NULL then Q.insert(pnew

v );
17 return Pst;

permanent paths For every v ∈ V , the algorithm stores lists P∗
sv of effi-

cient s-v-paths. Note that in contrast to the description of the MDA at the
end of the algorithm the permanent s-v-paths for intermediate nodes v ̸= t

are not requested to be minimal complete sets of efficient paths. For every
v ∈ V , permanent s-v-paths are efficient paths but not every efficient s-v-
path p is made permanent: if all extensions of p along the outgoing arcs of
v are dominated subpaths, p is discarded since it is not part of any efficient
s-t-path. In this context it is important to recall that we manage paths as
labels. For an s-t-path p whose last arc is (v, t), its label contains the prede-
cessor label that encodes the subpath ps→v. Without storing labels encoding
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permanent s-u-paths to intermediate nodes u, the T-MDA would not be able
to reconstruct the s-t-paths from the set of labels returned by an algorithm’s
implementation. These labels are not needed anywhere else in the T-MDA
which is why if an s-u-path only produces dominated or cost-equivalent
extensions along (u,w) ∈ δ+(u), it can be discarded.

dominance checks Additionally, for every v ∈ V , the algorithm stores
the dimensionality reduced front c̄dr(Psv) of non-dominated cost vectors
belonging to already found efficient s-v-paths. Using Lemma 3.1, the fronts
c̄dr(Psv) are used to determine if new s-v-paths are dominated. Note that
even if an extracted s-v-path p is not made permanent, it is guaranteed to be
efficient. Thus, we update the dimensionality reduced front c̄dr(Psv) with
c̄(p) using a merge operation. By doing so, we get the tightest possible front
c̄dr(Psv) to discard explored s-v-paths in the future.

Pseudo-Lazy Management of Explored Paths

We now describe the main novelty in the T-MDA. We used the notion of
a node’s queue path already in the description of the MDA. There, for a
node v ∈ V , the queue path for v if it exists, is the ≺Q-minimal explored
s-v-path that is neither dominated by nor cost-equivalent to a permanent
s-v-path. In this chapter, we use the pruning rule described in Section 9.4
and the reduced costs derived in Section 9.3 to compare any explored path
with permanent s-t-paths. The following definition puts all conditions for
an explored path to be a queue path together.

Definition 9.3 (Queue paths). Consider the permanent s-v- and s-t-paths
stored in P∗

sv and in P∗
st at the beginning of an iteration of the T-MDA. An

explored s-v-path p is the queue path for v if

1. c̄(P∗
sv) ⪯D c̄(p) does not hold, i.e., p is not dominated by or equivalent

to any cost vector in c̄(Psv),

2. c(P∗
st) ⪯D c̄(p) does not hold, i.e., p is not dominated by or equivalent

to any cost vector in c̄(P∗
st), and

3. among all explored s-v-paths that fulfill conditions 1. and 2., p is lex.
minimal w.r.t. c̄.

Explored s-v-paths that are not the queue path for v are stored in so called
NQP (next queue path) lists. The T-MDA maintains an NQPa list for every
arc a ∈ A and any explored path that is not a queue path is stored in the
NQP list corresponding to the path’s last arc. A high level description of the
handling of explored paths in the T-MDA is as follows.

• The priority queue Q and the NQP lists are sorted in lex. non decreas-
ing order w.r.t. c̄.

• For any v ∈ V , there is at most one queue path for v in Q and if there
is no queue path for v in Q, all lists NQPa for a ∈ δ−(v) are empty.

• The NQP lists are maintained in a lazy way, i.e., they might contain
paths that dominate each other.
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• For every v ∈ V , when an s-v-path is extracted from Q, a new queue
path for v is picked among the s-v-paths in the lists NQPuv, (u, v) ∈
δ−(v). During this search, explored s-v-paths in these lists that are
dominated by or equivalent to paths in P∗

sv or P∗
st are discarded.

9.5.1 Execution

We proceed with the line-by-line description of the T-MDA. Readers that
have read Chapter 4 will find many similarities. However, the usage of the
NQP lists for the new pseudo-lazy management of explored paths requires
changes to both subroutines of the MDA.

initialization The data structures of the T-MDA are initialized in Lines
1-4. Initially, they are all empty. Before the main loop of the algorithm begins,
the trivial path pinit from s to itself is inserted into Q (Line 6). The main loop
finishes when Q is empty at the beginning of an iteration. Every iteration
begins with the extraction of a lex. minimal (w.r.t. c̄) path p from Q (Line 8).
Since the T-MDA is a label-setting algorithm, paths that are extracted from
Q are efficient.

Iterations

The algorithm performs three main tasks in every iteration in addition to
the extraction of a ≺lex-minimal path from Q. We assume the existence of
containers P∗ and NQP in which the list P∗

sv of efficient paths for v ∈ V and
the NQPa list for a ∈ A can be accessed in constant time, respectively.

merge of extracted paths (line 10). Let p be an extracted s-v-path
for v ∈ V at the beginning of an iteration. We update the dimensionality
reduced front c̄dr(P

∗
sv) (Line 10 of the T-MDA) to enhance future domi-

nance or equivalence checks performed on explored s-v-paths. Since p is
efficient, we know that its dimensionality reduced vector of costs needs to
be added to c̄dr(P

∗
sv). We thus find the correct insert position for c̄dr(p) :=

(c̄2(p), . . . , c̄d(p)) and check if existing vectors in c̄dr(P
∗
sv) are dominated by

c̄dr(p). There is no need to check whether c̄dr(p) is dominated. This leads
to a speedup in practice.

propagation of extracted paths (Line 13 of the t-mda). The ex-
tracted s-v-path p is propagated along the arcs (v,w) ∈ δ+(v) in T-propagate.
All references to lines in the following description refer to its pseudocode.
For such an arc (v,w), we call the resulting path q := p ◦ (v,w) and, as a
novelty, we only perform ⪯D-checks using q’s reduced costs if q is going to
be inserted into Q. I.e. if q does not qualify as a new queue path for w, we
postpone its ⪯D-checks. We distinguish three scenarios.

there is no s-w-path in Q . If c̄(q) is not dominated by and not equiva-
lent to any vector in c̄dr(P

∗
sw) or in c̄dr(P

∗
st), q is inserted into Q and

becomes w’s queue path (Line 7).
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there is an s-w-path q ′ ∈ Q and c̄(q) ≺lex c̄(q ′) . If there is a vector
in c̄dr(Psw) or in c̄dr(Pst) that dominates or is equivalent to c̄(q), q is
discarded. Otherwise q is inserted into Q via a decreaseKey operation,
where it replaces q ′ (Line 13). If q ′ is dominated by q, q ′ is discarded
(Line 14). Otherwise assuming that (x,w) ∈ A is q ′ last arc, q ′ is
prepended to the list NQPxw (Line 16). This means that even though
q ′ is no longer in Q, it might re-enter it later.

there is an s-w-path q ′ ∈ Q and c̄(q ′) ≺lex c̄(q) . In this case, q is
appended to NQPvw (Line 20) if it is not dominated by or equivalent to
q ′. As mentioned earlier, since q is not inserted into Q, no dominance
checks w.r.t. to the permanent fronts are made in this case. They are
postponed and done in the T-nextQueuePath procedure when needed.

The procedure T-propagate returns the possibly updated priority queue Q

and NQP lists and a success flag whose value is only set to True if one of
the considered expansions of p is stored either in Q or in an NQP list. In
this case p is added to P∗

sv, i.e., p is made permanent since it might be the
subpath of an efficient s-t-path p∗.

Algorithm 8: Targeted-Propagate (T-propagate)
Input : s-v-path p, priority queue Q, permanent paths P∗, lists of

explored paths NQP.
Output : Updated priority queue Q and NQP lists and success flag that is

true only if at least one expansion of p is stored.

1 Flag success← False;
2 for w ∈ δ+(v) do
3 q← p ◦ (v,w);
4 if Q does not contain a queue path for w then
5 if not c̄dr(P∗

st) ⪯D c̄dr(q, τ0) and not c̄dr(P∗
sw) ⪯D c̄dr(q, τ0) then

6 success← True;
7 Q.insert (q);
8 else
9 q ′ ← Queue path for w in Q; // Only one s-w-path in Q. Access in

O (1).

10 if c̄(q, τ0) ≺lex c̄(q ′, τ0) then
11 if not c̄dr(P∗

st) ⪯D c̄dr(q, τ0) and not c̄dr(P∗
sw) ⪯D c̄dr(q, τ0)

then
12 success← True;
13 Q.decreaseKey(w, q);
14 if not c̄(q) ⩽ c̄(q ′) then
15 (x,w)← last arc in path q ′;
16 Insert q ′ at the beginning of NQPxw;
17 else
18 if not c̄(q ′, τ0) ⩽ c̄(q, τ0) then
19 success← True;
20 Insert q at the end of NQPvw;
21 return (Q,NQP, success);

search for a next queue path (line 15) of the t-mda. After an s-
v-path p is extracted from Q in Line 8 of the T-MDA, there is no s-v-path in
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Q. The procedure T-nextQueuePath searches for a new queue path p∗ for v

according to Definition 9.3 among the explored s-v-paths in the lists NQPuv

for arcs (u, v) ∈ δ−(v).

Algorithm 9: Targeted-NextQueuePath (T-nextQueuePath).
Input : s-v-path p, permanent paths P∗, lists of explored paths

NQP.
Output : New queue path for v if one exists, and updated NQP lists.

1 p∗ ← NULL; // Assume c̄(p∗) = ∞.

2 for u ∈ δ−(v) do
3 for p ′ ∈ NQPuv do
4 if not c̄(p ′) ≺lex c̄(p∗) then break;
5 if c̄dr(P∗

st) ⪯D c̄dr(p
′) or c̄dr(P∗

sv) ⪯D c̄dr(p
′) then

6 NQPuv ← remove p ′ from NQPuv;
7 continue;
8 else
9 p∗ ← p ′;
10 break;
11 if p∗ ̸= NULL then
12 Delete p∗ from its NQP list; // p∗ is the front element in the list.

13 return (p∗,NQP);

Initially, p∗ is a dummy path and we assume that its cost is ∞ ∈ Rd. The
NQP lists are sorted in lex. non-decreasing order w.r.t. c̄ (see Lemma 9.4).
Thus, we look for a new value for p∗ starting with the first element of each
list. Fix an arc (u, v) and consider the list NQPuv. We iterate over NQPuv and
as soon as the iteration finds a path p ′ ∈ NQPuv with c(p∗) ⪯lex c(p ′) we
finish the iteration over NQPuv (Line 4). Otherwise, the iteration continues
until a path that is neither dominated by nor equivalent to paths in P∗

sv or in
P∗
st (Line 5) is found. Hence, the candidate path at which the iteration stops,

fulfills Condition 2. and Condition 3. in Definition 9.3. Paths analyzed until
the new candidate path in NQPuv is found, are deleted from the list (Line 6)
because, since they are either dominated by or equivalent to permanent s-v
or s-t-paths, they are not a candidate to become a queue path. All in all,
T-nextQueuePath identifies at most one candidate s-v-path p ′ with (u, v) as
its last arc. When found, p ′ is guaranteed to have a ≺lex-smaller cost vector
than p∗ and thus, p∗ is updated and set to p ′ (Line 9). Afterwards, the
iteration over NQPuv stops and the outer loop of nextQueuePath continues
trying to improve p∗ by considering explored paths stored in the NQP lists
corresponding to incoming arcs of v other than (u, v). The path p∗ returned
by the search is a lex. smallest one among these candidates (Condition 1 in
Definition 9.3). Additionally, since p∗ is going to be inserted into Q, it is
removed from its NQP list in Line 12. It is easy to see that it is the front
element in the list and thus the deletion can be done in O (1) time. Finally if
found, p∗ is inserted into Q (Line 16 of Algorithm 7).

Indeed, T-nextQueuePath solves (8) as the routine nextQueuePath does in
the MDA. The difference is that instead of building the explored s-v-paths
again, the T-MDA stores them in the NQP lists and can access them directly.
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Proposition 9.1. Consider a node v ∈ V and assume that the lists NQP− a for
a ∈ δ−(v) are sorted in lex. nondecreasing order. Then, T-nextQueuePath uses
target pruning and solves (8). I.e., if the routine returns an s-v-path p∗, the path is
a new queue path for v according to Definition 9.3.

Finally, note that if the extracted path in Line 8 of the T-MDA is an s-t-path,
it does not need to be further propagated and it is stored in P∗

st. The output
of the T-MDA is the list P∗

st. The paths can be rebuild using Algorithm 1 if
the T-MDA is implemented using labels.

9.5.2 Correctness

We sketch the correctness of the T-MDA because it is easy to see that the cor-
rectness proof is similar to the correctness proof of the MDA. The statements
in this section analyze the interplay between the NQP lists and the priority
queue Q to prove that paths are extracted in lexicographic order from Q.
They lead to Lemma 9.5 that guarantees that paths are extracted from Q

in lex. non-decreasing order. The statement is equivalent to Lemma 4.4 for
the MDA. Having proven this statement, the correctness of the T-MDA is
proven as the correctness of the MDA. For a complete self-contained correct-
ness proof of the T-MDA we point the reader to (Maristany de las Casas,
Kraus, et al., 2023).

In Proposition 9.1 we assumed that the NQP lists are sorted throughout
the T-MDA. We need to prove that the assumption is true. They clearly
are sorted as long as they only contain at most one path. Whether they
remain sorted once they start storing more than one path depends on the
extraction order of paths from Q. We first prove in Lemma 9.3 that while
the NQP lists contain at most one element, paths are extracted from Q in lex.
nondecreasing order w.r.t. c̄. With this knowledge, we then prove inductively
in Lemma 9.4 that the constant time insertion of paths at the beginning or
at the end of the NQP lists performed in T-propagate do always respect the
ordering of the lists.

Lemma 9.3. Assume the T-MDA is used to solve a One-to-One MOSP instance in
which the cardinality of every NQPa list, a ∈ A, is at most one during the whole
algorithm’s execution. Then, paths are extracted from Q in Line 8 of T-MDA in lex.
nondecreasing order.

Proof. Consider the arc a = (u, v) ∈ A. An explored s-v-path q with a

as its last arc is stored in NQPa if there is a lex. smaller queue path q ′

for v in Q when q is explored. When q ′ or another s-v-path is extracted,
T-nextQueuePath finds a new queue path p∗ for v in the lists NQPa ′ for
a ′ ∈ δ−(v). Since all NQP lists are sorted because they contain at most one
element, the final value of p∗ in T-nextQueuePath is correct.

This path is guaranteed to be lex. greater than the extracted path. The
remainder of the formal proof, while heavy on notation, is trivial.

Now, we need to generalize this observation to the case in which the NQP

lists contain more than a single element. During the solution process of
any One-to-One MOSP instance using the T-MDA we can identify the first
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iteration in which the cardinality of an NQP list becomes greater than one.
By Lemma 9.3 we know that until this iteration, paths are extracted from
Q in lex. non-decreasing order. For this to keep holding, we need to prove
that the NQP lists remain sorted correctly using the prepend and append
operations in Line 16 and in Line 20 of T-propagate. This is the crux of
our pseudo-lazy management of explored paths: by using constant time
insertions into a list of explored paths, we can keep the list sorted.

Lemma 9.4. Every insertion of paths at the beginning or at the end of an NQP list
leaves the list ordered in lex. nondecreasing order. Moreover, for any node w ∈ V the
s-w-path in Q is not lex. greater than any path in the NQPa lists for a ∈ δ−(w).

Proof. Every line referenced in this proof refers to T-propagate. Assume that
the T-MDA calls the routine T-propagate and for the first time, an NQP list
becomes a second path added to it. Using the notation from the pseudocode,
two s-w-paths are involved: the queue path q ′ for w and the new explored
s-w-path q. We know from Lemma 9.3 and its proof that q ′ is lex. smaller
than any path stored in an NQPa list for a ∈ δ−(w).

The first option is that q is lex. smaller than q ′ (Line 10) and q passes the
⪯D-checks in Line 5. Then, q replaces q ′ in Q (Line 13). If additionally q ′

is not dominated by or equivalent to q (Line 14) it is added at the beginning
of NQPxw (Line 16), where (x,w) is the last arc of q ′. Since q ′ is lex. smaller
than every path in an NQPa list for a ∈ δ−(w), adding it at the beginning of
NQPxw leaves the list sorted correctly.

The second possibility is that q ′ is lex. greater than q. Then if q ′ does not
dominate q and both paths are not equivalent (Line 18), q is inserted at the
end of NQPa (Line 20), where a = (v,w) is the last arc of q. Let q ′′ be the
path that is already in NQPa. It is stored in this list because a is its last arc.
Thus, q ′′ was explored after expanding an efficient s-v-path p ′′ during the
call to T-propagate in an earlier iteration. By Lemma 9.3 we know that so far
paths have been extracted from Q in lex. nondecreasing order. Thus, for the
s-v-path p extracted from Q in the current iteration, we have c̄(p ′′) ≺lex c̄(p)

and consequently
c̄(p ′′) + c̄(a) ≺lex c̄(p) + c̄(a).

Thus, inserting q at the end of NQPa leaves the list sorted.
We can repeat the same argument inductively to prove the statement for

any cardinality of an NQP list. Note that in both cases, the s-w-path in
Q after the call to T-propagate is a lex. smallest explored s-w-path. This
directly implies that the s-w-path in Q is a queue path for w according to
Definition 9.3.

The following lemma is the T-MDA equivalent to Lemma 4.4 in the cor-
rectness proof of the MDA.

Lemma 9.5. Let p and q be two paths extracted from Q in Line 8 of the T-MDA.
If p is extracted in an earlier iteration than q, then p ⪯lex q.

Proof. We prove the statement inductively and see Lemma 9.3 and its proof
as the induction basis. Following Lemma 9.4 the paths in Q are queue paths
according to Definition 9.3. Let p be an s-v-path extracted from Q at the be-
ginning of an iteration of the T-MDA. Given Proposition 9.1 and Lemma 9.4
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we can use Proposition 9.1 to conclude that T-nextQueuePath solves (8) cor-
rectly. I.e., the path added to Q in Line 16 of the T-MDA is a new queue path
for v. The remainder of the proof is analogous to the proof of Lemma 4.4.

Since the lexicographic order used to sort paths in Q is compatible with
the dominance order (Definition 3.5), an extracted s-v-path for any v ∈ V

at the beginning of an iteration of the T-MDA is neither dominated by nor
equivalent to paths already in P∗

sv or in P∗
st or added later to these lists. This

same statement is proven for the MDA in Lemma 4.3. The remaining two
statements leading to the correctness of the MDA, namely Lemma 4.5 and
Theorem 4.1 can be equivalently stated and proven for the T-MDA using
Lemma 9.5. Thus, we fast-forward to the correctness result for the T-MDA.

Theorem 9.2 (Correctness of the T-MDA). The T-MDA returns a minimal com-
plete set P∗

st of efficient s-t-paths.

9.6 efficiency of the t-mda

It is easy to see that the asymptotic running time bound of the T-MDA co-
incides with the bound (11) of the MDA. Even if more explored paths are
stored in the NQP lists, we only prepend or append paths to these lists and
only extract paths from the beginning the lists. Thus, this extra constant-
time effort per path can be neglected since the per-path effort in the T-MDA
is still asymptotically dominated by the ⪯D-checks. The memory consump-
tion bound of the T-MDA coincides with the bound (14) of Martins’s algo-
rithm since both paths store explored paths explicitly.

Consider a One-to-One MOSP instance that is solved with the T-MDA and
with the MDA. Assume the used heuristic is π(v) = 0 for every v ∈ V such
that c̄ = c. Moreover, let the MDA also use target pruning checks c(P∗

st) ⪯D

c(p) for explored paths p. In this situation both algorithms need the same
iterations to output P∗

st. It turns out however, that our design choices for the
T-MDA make the algorithm approximately twice as efficient as the MDA
with regard to the iterations both algorithms perform per second.

There are three main reasons for the superior efficiency of the T-MDA.

• In T-nextQueuePath the queue path candidates do not need to be
rebuilt since they are stored in their corresponding NQP lists. Let
q = p ◦ (u, v) be such a path. In the MDA, in Line 5 of nextQueuePath,
the permanent label representing the s-u-path p needs to be accessed
and expanded along a = (u, v) which entails the computation of the
sum c(p)+ c(a). If millions of paths are considered, the O (d) effort for
these repeated sums is not negligible.

• Let p be an s-v-path that is made permanent in both algorithms. As-
sume that for an arc (v,w) ∈ δ+(v), the new explored path q =

p ◦ (v,w) is inserted into Q directly after it is built in propagate and in
T-propagate. Additionally, assume that in both algorithms q remains
the queue path for w until it is extracted and made permanent. In
the T-MDA q is not stored in any NQP list and thus only one set of



9.7 NAMOA∗
dr-lazy algorithm 99

⪯D-checks (w.r.t. P∗
sv and P∗

st) is performed to assess the relevance of
q. In the MDA however, p is stored in P∗

sv and during a call to nex-
tQueuePath, the lastProcessedPath[v,w] index must pass p’s position
in P∗

sv. When this happens, p is expanded again along (v,w) and the
dominance or equivalence of q is assessed again. Hence, for every path
that is made permanent without being replaced in Q after its insertion
in propagate or in T-propagate, the MDA does two sets of ⪯D-checks
and the T-MDA only one. In practice, most permanent paths follow
this route to acquire their permanent status.

• Since explored paths that are not queue paths are stored in NQP lists
in the T-MDA, there is no need to store the labels encoding perma-
nent paths with the paths’ cost vectors. Thus, the T-MDA can take
advantage of less memory consuming permanent labels in practice as
described in Remark 6.1 for Martins’s algorithm.

9.7 NAMOA∗dr-lazy algorithm

The NAMOA∗
dr algorithm was introduced in (Pulido et al., 2015). It is an

A∗-based algorithm for One-to-One MOSP problems. It equips the origi-
nal NAMOA∗ algorithm from (Pulido et al., 2014) with the dimensionality
reduction technique discussed in Section 3.5. Similarly to the T-MDA, the
algorithm uses a priority queue Q of paths. In the NAMOA∗

dr algorithm,
the coexistence of multiple paths in Q with same end nodes is allowed
as long as they do not dominate each other. To ensure this invariant, the
NAMOA∗

dr algorithm uses merge operations (cf. Definition 3.7) after ex-
ploring new paths and checking that they are not dominated by and not
equivalent to any permanent path. The computational results in (Maristany
de las Casas, Sedeño-Noda, & Borndörfer, 2021) substantiate that in label-
setting MOSP algorithms, merge operations during the expansions of paths
should be avoided to obtain competitive running times.

Inspired by the label-setting BOSP algorithm presented in (Ahmadi et al.,
2021) that avoids merge operations, we introduce the NAMOA∗

dr-lazy algo-
rithm. The pseudocode is given in Algorithm 10 and uses the same notation
as our description of the T-MDA. Explored paths are handled in a lazy way.
As explained in this chapter’s introduction, this means that every new ex-
plored path that is not dominated by or equivalent to existing permanent
paths (Line 14) when it is analyzed for the first time is inserted into the
algorithm’s priority queue (Line 17). Hence, the queue can contain expo-
nentially many paths simultaneously and for any v ∈ V , s-v-paths in the
queue can dominate each other. As a consequence and in contrast to the
invariant regarding the efficiency of extracted paths in the T-MDA, paths
that are extracted from the queue (Line 6) are not guaranteed to be efficient.
To avoid the storage and expansion of such paths, the algorithm needs to
check if they are dominated right after their extraction. This is achieved as
a side-effect of the call to the merge procedure to update the dimensionality
reduced fronts in Line 8. Assume the s-v-path p is extracted from Q. A
merge operation possibly updates the front c̄dr(Psv) by inserting c̄dr(p) and
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deleting elements dominated by c̄dr(p). However if c̄dr(p) is not added to
the front, p is dominated (cf. Lemma 3.1).

The correctness of the NAMOA∗
dr-lazy can be proven following the correct-

ness proof of the BOSP algorithm in (2021). We benchmark NAMOA∗
dr-lazy

against the T-MDA in Section 9.8.

Algorithm 10: NAMOA∗
dr-lazy

Input : MOSP instance I = (G, s, t,d, c), heuristic π for I.

Output : Minimal complete set P∗
st of efficient s-t-paths.

1 Priority queue of paths Q← ∅; // Sorted according to c̄.

2 ∀v ∈ V – efficient s-v-paths: P∗
sv ← ∅ ;

3 pinit ← ();
4 Q← Q.insert(pinit);

5 while Q ̸= ∅ do
6 p← Q.extractMin() ;
7 v← last node of path p. ; // If p = pinit, v← s.

8 c̄dr(P
∗
sv)← merge

(
c̄dr(P

∗
sv), c̄dr(p)

)
;

9 if c̄dr(p) /∈ c̄dr(P
∗
sv) then continue;

10 Flag success← False;
11 if v ̸= t then
12 for w ∈ δ+(()v) do
13 pnew

w ← p ◦ (v,w);
14 if cdr(P∗

st) ⪯D c̄dr(p
new
w ) or c̄dr(P∗

sw) ⪯D c̄dr(p
new
w )

then
15 continue
16 else
17 Q.insert (pnew

w );
18 success← True;
19 if v == t or success == True then P∗

sv.append(p);
20 return P∗

st;

9.8 experiments

We compare the performance of the T-MDA and the NAMOA∗
dr-lazy al-

gorithm on 3-dimensional One-to-One MOSP instances. We decided not
to include the original NAMOA∗

dr algorithm from (Pulido et al., 2015) in
this chapter. In Figure 16 we show the results of the direct comparison of
the new NAMOA∗

dr-lazy algorithm and our implementation of the original
NAMOA∗

dr algorithm on the road network of New York. Already on this net-
work (the smallest considered road network) it becomes apparent that the
NAMOA∗

dr-lazy algorithm performs better consistently. The reason is that
the NAMOA∗

dr algorithm conducts merge operations after every successful
expansion of a path along one of its outgoing arcs. From the experiments
in Chapter 6 we know that merge operations should be avoided to enhance
the practical performance of MOSP algorithms in practice. On the instances
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Figure 16: Comparison of our implementation of the original NAMOA∗
dr algorithm

and the new NAMOA∗
dr-lazy algorithm on 100 3-dimensional One-to-

One MOSP instance defined on the NY network.

shown in Figure 16 the NAMOA∗
dr-lazy algorithm is ×1.96 times faster on

average. If we consider only the instances that output more than 1000 s-t-
paths, the new algorithm is already ×2.51 times faster on average.

setup We use the 3-dimensional One-to-One MOSP instances defined on
EXP graphs, on NetMaker graphs, and on road networks that we already
described in Section 6.2.1. We calculate the heuristics π as described in Sec-
tion 9.3 and pass them to both algorithms as part of their input. Thus, we
do not report preprocessing times in this section. Further data structures
coincide with the ones described in Section 6.2. Only the NQP lists for the
T-MDA are new in this section. They are implemented as singly linked lists
since we only need to insert at the beginning and at the end and we only
remove elements from the beginning of the lists. The used hardware and the
time and memory limits are identical to the ones described in Section 6.3 for
the comparison of the MDA and Martins’s algorithm. The code, the detailed
statistics collected for every instance, the scripts to generate the tables and
the plots in this section, and the plots that are not implicitly included here
are available in (Maristany de las Casas, 2023b).

9.8.1 Results

The results of the experiments are summarized in Table 8, Table 9, and Ta-
ble 11. Throughout this section we use scatter plots to visualize the results.
We plot the instances’ running time depending on the cardinality of the out-
put sets P∗

st. Again, all averages are geometric means. The handling of
instances that are solved only by the T-MDA coincides with the description
in Remark 6.2. There are no instances solved only by the NAMOA∗

dr-lazy
algorithm. Given the coincident experimental setup and evaluation scripts,
the results in this section are comparable to those in Section 6.3.

Exponential Instances

In Table 8 we present the results obtained from the EXP instances. The
instances defined on the graphs EXP3-EXP13 are left out because both algo-
rithms solve them in less than 0.1 milliseconds. Instances from the EXP63
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time

Graph N Nt T-MDA NAMOA∗
dr-lazy Speedup

EXP15 382 128 0.0002 0.0002 1.00

EXP17 766 256 0.0001 0.0002 2.00

EXP19 1534 512 0.0006 0.0003 0.50

EXP21 3070 1024 0.0008 0.0007 0.87

EXP23 6142 2048 0.0012 0.0028 2.33

EXP25 12 286 4096 0.0025 0.0036 1.44

EXP27 24 574 8192 0.0053 0.0118 2.23

EXP29 49 150 16 384 0.0101 0.0222 2.20

EXP31 98 302 32 768 0.0174 0.0238 1.37

EXP33 196 606 65 536 0.0403 0.0526 1.31

EXP35 393 214 131 072 0.0487 0.0861 1.77

EXP37 786 430 262 144 0.0959 0.1581 1.65

EXP39 1 572 862 524 288 0.1599 0.3187 1.99

EXP41 3 145 726 1 048 576 0.2849 0.7237 2.54

EXP43 6 291 454 2 097 152 0.5639 1.6826 2.98

EXP45 12 582 910 4 194 304 1.1469 3.1570 2.75

EXP47 25 165 822 8 388 608 2.1569 6.4171 2.98

EXP49 50 331 646 16 777 216 4.1345 13.2804 3.21

EXP51 100 663 294 33 554 432 7.8872 27.3165 3.46

EXP53 201 326 590 67 108 864 15.8135 57.2326 3.62

EXP55 402 653 182 134 217 728 32.5927 115.7366 3.55

EXP57 805 306 366 268 435 456 60.3624 240.8411 3.99

EXP59 1 610 612 734 536 870 912 122.2462 500.0935 4.09

EXP61 3 221 225 470 1 073 741 824 242.3084 1037.1834 4.28

EXP63 6 442 450 942 2 147 483 648 480.8830 - -

Table 8: NAMOA∗
dr-lazy vs. T-MDA on the EXP instance set.

onward are not solvable by any of the algorithms because of issues in our
implementations indexing vectors with more than 232 entries. This is be-
cause, to allow fast cache access to labels, we assume that a the maximum
size of a minimal complete set of efficient paths is at most 232. This assump-
tion is reasonable for every type of instances other than EXP instances. The
reason why the instance EXP63 can be solved by the T-MDA in this chapter
and is not solved in Chapter 6 by the MDA is the memory saving storage of
permanent paths explained in Remark 6.1.

We observe that the T-MDA outperforms the NAMOA∗
dr-lazy algorithm

consistently and the speedup increases as the graphs’ size increases. The
biggest instance solved by the T-MDA, the EXP63 instance, is not solved by
the NAMOA∗

dr-lazy algorithm. Thus, the biggest speedup, ×4.28, is reached
for the EXP61 instance.

We see the T-MDA as a tuned version of the MDA for performance in
practice. Similarly, the NAMOA∗

dr-lazy algorithm is related to Martins’s al-
gorithm. It is remarkable that in this chapter, the speedups in favor of the
T-MDA are drastically smaller than speedups on the EXP instances in favor
of the MDA in Chapter 6. In other words, while the T-MDA is consistently
faster than the MDA (×1.59 on the EXP61 instance), the running time im-
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Figure 17: Running times of the MDA, Martins’s algorithm, the T-MDA, and the
NAMOA∗

dr-lazy algorithm on 3d EXP instances.

provement achieved by the NAMOA∗
dr-lazy algorithm w.r.t. Martins’s algo-

rithm (×5022.13 on the EXP39 instance) is much higher. The reason is that
the lazy path management in the NAMOA∗

dr-lazy algorithm gets rid of the
merge operations needed in Martins’s algorithm. Figure 17 shows a com-
parison of the four algorithms and is a good indicator of what to expect
from the remaining results reported in this chapter: the T-MDA is faster
than the NAMOA∗

dr-lazy algorithm but the difference is not as pronounced
as in Chapter 6. The comparison in the remainder of this chapter thus boils
down to the comparison of the two different lazy management approaches
used in the T-MDA and in the NAMOA∗

dr-lazy algorithm. This comparison
is novel since none of these techniques was published prior to (Maristany de
las Casas, Kraus, et al., 2023) in a general multiobjective context.

General Observations for NetMaker and Road Instances

The columns Extr. avg. in Table 9 and in Table 11 report the average number
of extractions from the heap. In the T-MDA this number coincides with the
number of iterations. The NAMOA∗

dr-lazy algorithm cannot guarantee that
extracted paths are efficient and thus, the extracted paths can be discarded in
Line 8 of Algorithm 10. Thus, the difference between the values reported in
the Extr. avg. columns of both algorithms unveils the number of unneeded
insertions into the heap performed by the NAMOA∗

dr-lazy algorithm. On the
T-MDA side, the handling of the NQP lists and the calls to nextQueuePath*
stand in contrast to these unneeded insertions. On both types of instances
we observe that the NAMOA∗

dr-lazy algorithm is faster than the T-MDA on
instances with a small output. Such instances require few iterations to be
solved. Hence, even if the NAMOA∗

dr-lazy algorithm inserts more paths than
the T-MDA algorithm into the heap, the heap can be handled efficiently. In
this situation, maintaining the NQP lists in the T-MDA turns out to be less
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efficient than inserting every relevant explored path into the heap. As the
size of the output sets P∗

st increases, instances are solved faster by the T-
MDA. Here, keeping the size of the heap bounded by holding back explored
paths in the NQP lists of the T-MDA to possibly discard them without ever
entering the queue turns out to be a consistent advantage. On NetMaker
instances with an output set of more than 1000 paths, the T-MDA is ×1.29
to ×1.87 times faster than the NAMOA∗

dr-lazy algorithm. On road networks,
the T-MDA is ×1.02 to ×1.33 times faster on instances with an output set
containing more than 5000 paths. In the next two sections we discuss the
results in more detail. For every netM-n group of graphs and for every
road network, we partition the solved instances into intervals depending
on the cardinality |P∗

st| of the output sets to obtain a better insight into the
asymptotic behavior of the algorithms’ running times.

NetMaker Graphs

The NetMaker results are summarized in Table 9. All instances were solved
within the time limit. Figure 18 and Figure 19 are two plots showing the
performance of both algorithms on the netM-15 and netM-30 instances. For
all other netM-n instances’ groups the equivalent plots are contained in the
results folder in (Maristany de las Casas, 2023b).

In every netM-n group we observe that the the T-MDA performs better
when the number of computed efficient paths grows. Already on the in-
stances with 100-1000 output paths the T-MDA is consistently faster. The
speedups in every output size interval remain stable among the different
netM-n groups. This indicates that both algorithm’s effort is decoupled from
the underlying graph and focuses on the handling of explored and efficient
paths. That is precisely what we aimed to benchmark in this section. For
instances with 500-1000 output s-t-paths, the T-MDA is approximately twice
as fast as the NAMOA∗

dr-lazy algorithm. It reaches an average speedup fac-
tor of 2.18 on netM-25 instances. There is only one instance in the netM-30
group whose output contains more than 10000 s-t-paths. Interestingly, this
instance is solved very fast by both algorithms. This instance can be consid-
ered an outlier.
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Figure 18: Running times of the NAMOA∗
dr-lazy algorithm and the T-MDA on

netM-15 networks.

Figure 19: Running times of the NAMOA∗
dr-lazy algorithm and the T-MDA on

netM-30 networks.
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|P∗
st| in range Instances |P∗

st| avg. T-MDA NAMOA∗
dr lazy Speedup

Extr. avg. Time avg. Extr. avg. Time avg.

netM-5

(0, 100] 11 22.79 462.73 0.0005 802.69 0.0004 0.88

(100, 1000] 128 434.37 94610.10 0.1263 200643.00 0.1278 1.01

(1000, 5000] 95 1702.80 681439.10 2.5260 1935252.96 3.2497 1.29

(5000, 10000] 6 5918.56 1399164.78 8.5378 4476651.71 12.7678 1.50

netM-10

(0, 100] 4 39.61 975.83 0.0008 1652.07 0.0007 0.94

(100, 1000] 106 440.32 113964.42 0.1451 227397.59 0.1463 1.01

(1000, 5000] 102 2043.94 1279011.86 5.3592 3390431.52 7.5666 1.41

(5000, 10000] 8 5518.99 4706012.42 35.3466 12873353.15 63.5320 1.80

netM-15

(0, 100] 5 91.08 11395.57 0.0080 24028.05 0.0085 1.07

(100, 1000] 98 475.27 160767.82 0.2343 329351.02 0.2452 1.05

(1000, 5000] 123 2048.25 1724092.58 8.1998 4767548.66 12.0421 1.47

(5000, 10000] 14 6051.60 6889085.20 58.9873 19766597.08 115.3208 1.96

netM-20

(0, 100] 3 72.07 4433.48 0.0032 8532.91 0.0029 0.92

(100, 1000] 91 479.66 218057.42 0.3511 434363.35 0.3486 0.99

(1000, 5000] 131 2167.24 2101620.29 10.2214 5757119.51 15.0828 1.48

(5000, 10000] 15 6223.22 7639237.35 65.4018 23667406.25 131.2074 2.01

netM-25

(0, 100] 4 27.18 727.09 0.0005 1225.56 0.0005 1.09

(100, 1000] 89 503.36 233997.17 0.3815 463089.62 0.3813 1.00

(1000, 5000] 93 2231.47 3352843.49 19.0885 9451181.49 31.0526 1.63

(5000, 10000] 14 5788.98 9442038.02 87.4058 30470870.89 190.6421 2.18

netM-30

(0, 100] 2 41.57 843.65 0.0009 2486.59 0.0008 0.89

(100, 1000] 90 490.07 232932.15 0.3827 465534.24 0.3892 1.02

(1000, 5000] 125 2206.32 2810058.13 14.5021 7603577.00 22.1199 1.53

(5000, 10000] 22 6202.14 11239407.94 105.1081 33657201.87 219.3367 2.09

(10000, 11566] 1 11 566.00 1346554.00 8.0691 4173220.00 11.0535 1.37

Table 9: T-MDA vs. NAMOA∗
dr-lazy algorithm on NetMaker graphs. Instances are separated depending on the cardinality of the output sets P∗

st. All averages
are geometric means.
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Road Network MDA T-MDA

NY 73 100

BAY 65 97

COL 46 92

FLA 17 63

NE 13 69

LKS 8 25

E − 36

W − 13

CTR − 8

Table 10: Solvability of the 100 s-t-pairs defined on every road network.

Road Networks

The results collected on road networks are summarized in Table 11. Fig-
ure 20 and Figure 21 are two plots containing the results in COL and FLA,
respectively. For every other road network the corresponding plot is stored
in the results folder in (Maristany de las Casas, 2023b).

Even if the algorithms in this chapter are faster than the MDA and Mar-
tins’s algorithm in Chapter 6, not all instances are solved within the time
limit. In Table 10 we can compare how many instances are solved by the
MDA and the T-MDA in every road network. The T-MDA and the NAMOA∗

dr-
lazy algorithms solve instances defined on the W, E, and CTR road networks
for the first time. On these four large networks, we are facing instances with
more than 75000 efficient s-t-paths.

In Table 11 we observe that, as noted in Section 9.8.1, the speedups favor
the T-MDA more as the output size grows. However, the greatest speedups
of around ×1.3 are smaller than the ones achieved on NetMaker instances.
The reason, again, is the correlation of the two first arc cost dimensions. In
our encoding, the first arc cost dimension is the arc’s length and the sec-
ond one the duration needed to traverse the arc. According to Lemma 9.5
that also holds for the NAMOA∗

dr-lazy algorithm, paths are explored with
increasing overall length. The correlation of these arc costs with the duration
implies that the found lex. minimal solutions (minimal first cost dimension)
also have a very good second cost dimension, i.e., an almost minimal overall
duration. Hence, regarding these two cost dimensions, the NAMOA∗

dr-lazy
algorithm does not perform many more (erroneous) heap-insertions com-
pared to the T-MDA algorithm. As a representative example, looking at
the instances in the netM-25 group whose output contain between 5000 and
10000 paths, the division of the values in the Extr. Avg. columns of the
T-MDA by the values in the Extr. Avg. columns of the NAMOA∗

dr-lazy al-
gorithm gives a ratio of approximately 0.31. The same calculation on the
COL instances whose output contain between 5000 and 10000 paths gives a
ratio of approximately 0.88. Hence, on road instances the T-MDA is holding
back paths in the NQP before their insertion into the heap but almost every
path that is held back ends up being inserted into the heap. Despite this fact,
as shown also in Figure 20 and Figure 21, the superiority of the T-MDA on
these instances is consistent.
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Figure 20: Running times of the NAMOA∗
dr-lazy algorithm and the T-MDA on 82

COL instances.

Figure 21: Running times of the NAMOA∗
dr-lazy algorithm and the T-MDA on 64

FLA instances.



9.8
experim

ents
109

Table 11: T-MDA vs. NAMOA∗
dr-lazy algorithm on road networks. Instances are separated depending on the cardinality of the output sets P∗

st. All averages
are geometric means.

T-MDA NAMOA∗
dr lazy Speedup

|P∗
st| interval Solved Extr. Avg. |P∗

st| Avg. Time Avg. Solved Extr. Avg. |P∗
st| Avg. Time Avg.

NY

(0, 100] 15 1661 22 <0.0001 15 1881 22 <0.0001 -
(100, 1000] 31 64 442 328 0.0264 31 79 846 328 0.0222 0.84

(1000, 5000] 29 1 744 416 2699 1.6816 29 2 239 196 2699 1.8716 1.11

(5000, 10000] 9 6 939 950 7253 10.7663 9 8 934 772 7253 14.3497 1.33

(10000, 50000] 16 31 336 640 16 057 96.6909 16 39 950 499 16 057 127.4488 1.32

BAY

(0, 100] 9 2085 21 0.0007 9 2283 21 0.0005 0.70

(100, 1000] 28 109 122 324 0.0481 28 126 307 324 0.0403 0.84

(1000, 5000] 26 1 764 644 2252 1.7948 26 2 087 324 2252 1.8562 1.03

(5000, 10000] 11 10 792 037 7010 26.1110 11 12 786 645 7010 31.2632 1.20

(10000, 50000] 20 63 375 493 20 787 375.4029 20 73 988 871 20 787 464.2076 1.24

(50000, 61884.0] 3 352 444 482 56 894 4710.1434 3 405 013 140 56 894 6025.2749 1.28

COL

(0, 100] 12 2028 23 <0.0001 12 2279 23 <0.0001 -
(100, 1000] 16 162 076 467 0.0706 16 191 104 467 0.0612 0.87

(1000, 5000] 21 1 316 319 1893 1.2967 21 1 519 834 1893 1.3297 1.03

(5000, 10000] 10 8 028 917 7444 14.1767 10 9 055 786 7444 16.8215 1.19

(10000, 50000] 23 45 844 366 20 234 235.9701 23 52 309 268 20 234 298.0236 1.26

(50000, 144586.0] 10 385 066 841 85 190 3726.5321 6 350 972 008 72 173 4519.2881 1.21

FLA

(0, 100] 6 1218 21 <0.0001 6 1343 21 <0.0001 -
(100, 1000] 8 99 836 393 0.0423 8 121 278 393 0.0383 0.90

(1000, 5000] 10 6 593 880 3400 12.6243 10 7 839 828 3400 14.2287 1.13

(5000, 10000] 9 8 328 965 6406 19.6387 9 9 791 709 6406 22.6715 1.15

(10000, 50000] 24 46 566 424 20 456 273.2398 24 54 550 474 20 456 346.4100 1.27
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(50000, 157640.0] 6 327 646 620 86 174 3474.7360 5 335 678 694 76 369 4348.0721 1.25

NE

(0, 100] 1 2220 34 0.0007 1 2394 34 0.0005 0.71

(100, 1000] 7 82 474 337 0.0365 7 95 508 337 0.0296 0.81

(1000, 5000] 13 2 723 805 2936 3.2496 13 3 233 255 2936 3.3697 1.04

(5000, 10000] 9 8 340 508 6321 18.3182 9 9 814 359 6321 21.1597 1.16

(10000, 50000] 23 83 710 454 24 838 408.5482 23 100 983 553 24 838 515.9635 1.26

(50000, 158843.0] 16 358 198 823 77 360 2765.9729 13 369 298 257 77 908 3590.4924 1.30

LKS

(0, 100] 1 97 2 <0.0001 1 105 2 <0.0001 -
(100, 1000] 2 217 079 392 0.1513 2 248 085 392 0.1338 0.88

(1000, 5000] 5 919 439 2138 0.8720 5 1 090 661 2138 0.8571 0.98

(5000, 10000] 4 14 688 822 6968 52.1697 4 16 871 135 6968 65.2747 1.25

(10000, 50000] 9 84 805 293 21 354 657.5254 9 96 315 339 21 354 813.3246 1.24

(50000, 114046.0] 4 303 224 888 77 273 3311.8612 4 342 731 967 77 273 4269.5516 1.29

W

(1000, 5000] 3 1 559 883 2736 1.1861 3 1 756 673 2736 1.1658 0.98

(5000, 10000] 1 17 269 682 7207 25.2965 1 19 935 110 7207 28.9953 1.15

(10000, 50000] 5 47 526 608 19 201 302.5079 5 54 511 221 19 201 376.7731 1.25

(50000, 127115.0] 4 434 112 515 81 456 5442.6880 2 393 634 551 72 520 6681.8820 1.23

E

(100, 1000] 5 127 152 409 0.0847 5 139 832 409 0.0692 0.82

(1000, 5000] 7 2 348 846 2591 3.1192 7 2 737 457 2591 3.0405 0.97

(5000, 10000] 4 7 835 916 6859 17.8427 4 9 075 400 6859 20.5916 1.15

(10000, 50000] 14 87 772 707 28 490 548.3961 13 94 471 567 27 677 668.5759 1.22

(50000, 143480.0] 6 321 977 858 88 945 2406.2628 5 309 960 716 80 833 3039.7481 1.26

CTR

(1000, 5000] 1 14 486 282 4146 58.6911 1 15 411 167 4146 68.1618 1.16

(5000, 10000] 2 20 372 008 8373 89.8933 2 23 043 187 8373 111.4469 1.24

(10000, 50000] 3 94 480 721 24 429 548.3601 3 108 506 395 24 429 667.3145 1.22

(50000, 136768.0] 2 192 533 755 92 995 1603.8631 2 220 476 147 92 995 2044.6995 1.27
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9.9 conclusion

This chapter introduces the Targeted Multiobjective Dijkstra Algorithm (T-MDA)
a variant of the MDA that uses A∗ techniques to guide the search towards the
target. Moreover, its most notable novelty is the pseudo-lazy management
of explored paths. Explored paths that are not in the queue and cannot be
discarded are stored in so called NQP lists. There is one NQP list for every
arc in the graph and the NQP list for arc a stores the explored paths that
are not in the queue and whose last arc is a. This arc based indexing allows
the T-MDA to keep the size of its priority queue bounded and to exploit the
lexicographic sorting of paths therein to maintain the NQP lists also sorted
using only constant time prepend and append operations.

The instances and the settings used in the computational experiments in
this section mirror those conducted in Section 6.3.1. We compare the T-MDA
with an enhanced version of the NAMOA∗

dr algorithm (Pulido et al., 2015).
The new version is called NAMOA∗

dr-lazy algorithm because it maintains ex-
plored paths in the algorithm’s queue in a lazy way. This queue management
was recently shown to be very efficient in the biobjective scenario and indeed
our new NAMOA∗

dr-lazy algorithm clearly outperforms the NAMOA∗
dr.

Our results show that the NAMOA∗
dr-lazy is outperformed by the new

T-MDA algorithm consistently. The T-MDA algorithm is also able to solve
more hard instances than the NAMOA∗

dr-lazy algorithm. Its featured com-
bination of a polynomially bounded queue size while still keeping other
explored paths in lex. ordered lists turns out to work in practice.

Our settings allow direct comparison of the MDA with the T-MDA. In fact,
the modifications are worth it since on road networks, the biggest consid-
ered networks, we manage to solve more instances than before in the same
amount of time. Those instances solved already by the MDA are solved
faster by the T-MDA.

The running time improvements achieved in this chapter make the One-
to-One MOSP model a more attractive choice. Given that we are not con-
ducting any type of preprocessing other than the computation of a heuristic,
we can expect the running times to improve notably if we manage to trans-
fer speedup techniques from the One-to-One Shortest Path literature to the
multiobjective scenario.

Finally, note that the implementations in (Maristany de las Casas, 2023b)
can be compiled to solve instances with any number arc cost functions. The
folders multidimensional/4obj results and multidimensional/5obj results con-
tain results collected on NetMaker and Grid instances using the T-MDA and
the NAMOA∗

dr-lazy algorithms. The results mirror those presented in this
chapter for the three-dimensional case with slightly better speedups in favor
of the T-MDA. An in-depth study of higher-dimensional One-to-One MOSP
instances like in the publication by (Paixão & Santos, 2013) is still open.





10 DY N A M I C M U LT I O B J E C T I V E
S H O R T E S T PAT H P R O B L E M S

Once we have discussed how to tune the MDA to obtain best possible per-
formance in practice in Chapter 9, the next step in our transition from theory
to (transportation) applications is to discuss MOSP instances with dynamic
arc cost functions. The setting in this chapter generalizes the Time-Dependent
Shortest Path (TDSP) problem (see e.g., Delling & Wagner, 2009; Nannicini,
2009; Foschini et al., 2012) as follows.

In the single-criterion Shortest Path problem, and in the MOSP problem
as described so far, arc cost functions map the arcs in the input graph to a
scalar. A d-dimensional MOSP instance considers d such arc cost functions.
In the TDSP the arc cost function takes a second argument τ ∈ R⩾0 that en-
codes the state at which the arc’s tail node is reached. Then, the arc cost
function outputs the cost for traversing the given arc starting with state τ.
As the TDSP name indicates, τ is commonly regarded as the time point at
which the considered arc a is about to be traversed. Then, c(a, τ), the cost of
a, is the duration for traversing a starting at time point τ and τ+ c(a, τ) is
the time point at which the traversal ends. At the same time, τ+ c(a, τ) is the
input state for the traversal of an outgoing arc of a’s head node. In the multi-
objective generalization of the TDSP problem that we discuss in this chapter,
the Dynamic MOSP (Dyn-MOSP) problem, we deal with d state-dependent
arc cost functions which we call dynamic arc cost functions. In a transportation
application the functions may encode the time, the weight, the tank capac-
ity, the battery charge, the collected price zones, etc. of a vehicle traveling
through the input graph and that is about to traverse the considered arc in
the graph.

We model the problem for One-to-All and One-to-One scenarios and inves-
tigate for what kind of dynamic arc cost functions the MDA can be applied
to solve the corresponding Dyn-MOSP instances. The chapter ends with a
discussion in Section 10.5 of possible extensions and limitations of our con-
sidered model with regard to fully realistic transportation settings.

10.1 literature overview

In this section, we stick to the nomenclature in the literature and we present
existent results speaking about time-dependent scenarios.

We have to differentiate between two time-dependent settings. In the time-
dependent and time-optimal setting a fastest path is searched, i.e., we optimize
w.r.t. time. In the time-dependent and cost-optimal setting time evolves and
influences the time-dependent arc cost functions w.r.t. which a cost-optimal
path is determined. In other words, these two settings consider time as the
input state of arc cost function c : A×R⩾0 → R⩾0 but c(a, τ) is interpreted
as time in the time-dependent and time-optimal setting and as a cost in the time-

113
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dependent and cost-optimal setting. Usually, the TDSP problem refers to the
time-dependent and time-optimal setting (see e.g., Delling & Wagner, 2009;
Nannicini, 2009; Foschini et al., 2012).

Our generalization of the TDSP problem generalizes the time-dependent
and time-optimal scenario to the multiobjective case. The literature consid-
ering MOSP instances with time-dependent arc cost functions is scarce. We
prove that a subpath optimality principle still holds and label-setting MOSP
algorithms like the MDA can be used to solve the problem without modifi-
cations other than how arc cost functions are evaluated. A similar setting is
used by Disser et al. (2008). He mentions the necessity to tackle this kind of
problems on train networks and uses Martins’s algorithm to solve them with-
out giving any details on required assumptions, correctness, or complexity
bounds.

As in the single-criterion case, the multiobjective generalization of the
time-dependent and cost-optimal scenario leads to MOSP problems in which
label-setting algorithms do not work because subpath optimality cannot be
proven. Kostreva and Lancaster (2002) presented an algorithm for non-
monotonically increasing arc cost functions that does not reduce to Dynamic
Programming. Hamacher et al. (2006) conduct an in depth study of this
setting in the biobjective case. We discuss some ideas on this topic in Sec-
tion 10.5.

We could not find more relevant references in the literature. A simi-
lar problem considers digraphs in which nodes and arcs can be added or
deleted during the search for efficient s-t-paths (e.g., da Silva et al. (2023)).
This setting however is not considered in this chapter.

10.2 problem description

In a time-dependent setting, going along an arc (v,w) ∈ A in a digraph G =

(V ,A) describes a flow unit moving from v to w along (v,w) with constant
speed. We say that the flow traverses the arc (v,w). Accordingly, we speak
about the traversal of an s-t-path p in G between nodes s, t ∈ V and mean
that a flow unit traverses p’s arcs in their order of appearance along p. In
our setting the traversal of a path cannot be stopped. Additionally, the costs
of an arc corresponds to the evaluation of the arc cost functions at the arc’s
tail node w.r.t. the state with which the arc’s traversal starts. This setting
is known, e.g., in (Orda & Rom, 1990), as the frozen arc model with forbidden
waiting. In this chapter, we call time-dependent arc cost functions dynamic
arc cost functions. As explained already in the introduction, by doing so, we
hint that the components of the states τ ∈ Rd

⩾0 and c(a, τ) ∈ Rd
⩾0 can encode

as time points (Nannicini, 2009), weights (Blanco et al., 2016; Blanco et al.,
2022), battery charges (Baum et al., 2020), already paid tolls (Euler et al.,
2022), etc.

Definition 10.1 (Dynamic Costs (cf. Nannicini, 2009, Section 1.2)). Let G =

(V ,A) be a digraph.
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dynamic arc cost function A dynamic arc cost function is a function

c : (A×R⩾0)→ R⩾0

(a, τ) 7→ c(a, τ).
(16)

An input pair (a, τ) consists of an arc a = (u, v) and a state τ ∈ R⩾0

that represents the state of the flow unit at u. Then, c(a, τ) represents
the costs for traversing a starting at state τ.

dynamic path costs Let s, t ∈ V be two nodes, τ0 ∈ R⩾0 an initial state,
and c a dynamic arc cost function. Consider an s-t-path p with k ∈N

arcs, i.e., p = (a1, . . . ,ak). For i ∈ {1, . . . ,k}, set pi := (a1, . . . ,ai) to be
the prefix path of p until its ith arc. For every i, the dynamic path cost of
pi w.r.t. c is defined as

c(pi, τ0) :=

{
τ0 + c(a1, τ0), if i = 1,

c(pi−1, τ0) + c
(
ai, c(pi−1, τ0)

)
, otherwise.

(17)

Finally, the dynamic cost of p starting with state τ0 at s are c(p, τ0) =

c(pk, τ0).

multiobjective generalization Consider d ∈ N dynamic arc cost func-
tions ci, i ∈ {1, . . . ,d} and fix an arc a ∈ A. Let τ ∈ Rd

⩾0 be a given
vector of states. We assume that for every j ∈ {1, . . . ,d}, the jth entry of
τ is the input of the jth arc cost function. I.e., the vector

(
τ1 + c1(a, τ1), . . . , τd + cd(a, τd)

)
∈ Rd

⩾0

denotes the costs after a’s traversal if it is started with state τ. Then
if we have d dynamic arc cost functions for every arc in G and a d-
dimensional initial vector of states τ0 ∈ Rd

⩾0, it is straightforward to
generalize (17) to obtain d-dimensional dynamic path costs of p assum-
ing that its traversal starts with state τ0.

Remark 10.1. input of dynamic arc cost functions We have chosen to
define dynamic arc cost functions depending on two input values: an arc
and the state at which we assume the traversal of the input arc begins. This
choice is motivated by the fact that in the static arc costs setting in previous
chapters, we denoted arc costs by c(a) ∈ Rd. In this chapter and also in
Chapter 11 we are however interested in properties of the scalar functions
c(a, ·) : R⩾0 → R⩾0, where a state τ is mapped to c(a, τ) and a ∈ A is
fixed. We call these functions dynamic arc cost functions too.

τ0 summand in the recursive base case For i = 1 in (17) we have an
affine term τ0. The reason is that we are not interested in measuring e.g.,
the time that passes since the traversal of a path starts like in an earliest
arrival setting often considered in the literature. In our setting we consider
time, weight, tank capacity, and so on as values that describe the state of a
vehicle traveling through a network. Thus, weather prognoses, consumption
functions or similar are evaluated depending not on duration or consumption
but on absolute time or weight of the vehicle.
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Often in the literature dynamic arc cost functions are assumed to be pe-
riodic to model time-dependent arc costs capturing for example rush hours
or timetables. It implies c(a, τ+ T) = c(a, τ) for any τ ∈ [0, T ]. In other ap-
plications like Flight Planning or Electric Vehicle Routing, the dynamic arc
cost functions are limited by the tank/battery capacity. In this thesis, we as-
sume that the dynamic arc cost functions are defined on a sufficiently large
interval. This simplifies notation and proofs while still capturing all relevant
theoretical insights.

Note that if the arc cost functions are constant and if we assume τ0 = 0,
the recursive equation (17) coincides with (4) in Definition 3.1, i.e., c(p, τ0) =
c(p) for all τ0 ∈ R⩾0. The multiobjective generalization of the TDSP consid-
ers multiple dynamic arc cost functions. First, we define our notation to refer
to sets of efficient paths.

Definition 10.2 (Notation for Efficient Paths). Let G = (V ,A) be a digraph
with d ∈ N dynamic arc cost functions associated with every arc and let
τ0 ∈ Rd

⩾0 be an initial state. For two nodes s, v ∈ V and a set P of s-v-
paths, we define c(P, τ0) := {c(p, τ0) | p ∈ P} to be the set of dynamic path
costs induced by the paths in P. Moreover, we use the notation P∗(τ0) ⊆ P

to denote a minimal complete set of efficient s-v-paths in P w.r.t. the d-
dimensional dynamic path costs obtained depending on τ0. Given that we
denote the set of all s-v-paths in G by Psv, we have that P∗

sv(τ0) is a minimal
complete set of s-v-paths in G w.r.t. the initial state τ0.

Finally, we define the dynamic costs generalization of MOSP as follows.

Definition 10.3 (Dynamic MOSP problems). Consider a digraph G = (V ,A),
a source node s ∈ V , d dynamic arc cost functions ci, i ∈ {1, . . . ,d}, and a
d-dimensional vector τ0 ∈ Rd

⩾0 of initial states.

one-to-all dynamic mosp The One-To-All Dynamic MOSP problem is to
find a minimal complete set P∗

sv(τ0) of efficient s-v-paths for every
v ∈ V w.r.t. the paths’ cost vector induced by the functions ci, i ∈
{1, . . . d}. Thereby, every path starts at s with state τ0. We call a tuple
I = (D, s,d, [ci]di=1, τ0) a One-to-All Dynamic MOSP instance.

one-to-one dynamic mosp If additionally a target node t ∈ V is speci-
fied in the input, the One-to-One Dynamic MOSP problem is to find a
minimal complete set P∗

st(τ0) of s-t-paths w.r.t. ci as in the One-to-All
case. We call a tuple I = (D, s, t,d, [ci]di=1, τ0) a One-to-One Dynamic
MOSP instance.

Whenever we use a Dynamic MOSP (Dyn-MOSP) instance without speci-
fying whether we consider the One-to-All or the One-to-One case, the state-
ment is valid in both scenarios. Moreover, in the remainder of this chapter,
for an arc a and a state τ ∈ Rd, we write c(a, τ) := (c1(a, τ1), . . . , cd(a, τd)).
Hence, we assume that the ith dynamic arc cost function ci(a, ·) of a de-
pends on the ith coordinate of τ only. Accordingly, we write c(p, τ) =

(c1(p, τ), . . . cd(p, τ)) for the cost vector of a path p.

Example 10.1. Figure 22 shows an example of a biobjective Dyn-MOSP in-
stance and how the costs of two paths evolve during their traversal. We
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uτ v τ ′

w τ ′ + c
(
(v, w), τ ′

)
= c(q1, τ ′)c(p1, τ) = τ + c

(
(u,w), τ

)

x c(q, τ ′) = c(q2, τ ′) = c(q1, τ ′) + c
(
(w, x), c(q1, τ ′)

)
c(p, τ) = c(p2, τ) = c(p1, τ) + c

(
(w, x), c(p1, τ)

)

c
(
(u,w), ·

)
c
(
(v, w), ·

)

c
(
(w, x), ·

)

Figure 22: Graph corresponding to the Dyn-MOSP instance from Example 10.1.

consider the u-x-path p = ((u,w), (w, x)) with initial state τ at u and the
v-x-path q = ((v,w), (w, x)) with initial state τ ′ at v. The costs of p and q are
depicted in red and green, respectively.

10.3 label setting dyn-mosp algorithm

Label setting MOSP algorithms like the MDA can be applied for Dyn-MOSP
instances if the dynamic arc cost function fulfill the Bellman condition from
Theorem 3.1. To this aim, we impose the First-In-First-Out (FIFO) condition
on every dynamic arc cost function.

Definition 10.4 (First-In-First-Out (FIFO) Condition (e.g. Nannicini, 2009,
Section 1.2.2)). Consider a digraph G = (V ,A) and for a fixed arc a ∈ A,
a dynamic arc cost function c(a, ·) : R⩾0 → R⩾0. Then, c fulfills the first-in-
first-out condition and is called a FIFO function if for τ, τ ′ ∈ R⩾0

τ < τ ′ ⇒ τ+ c(a, τ) ⩽ τ ′ + c(a, τ ′). (18)

As noted in e.g., Nannicini (2009, Section 1.2.2), the FIFO condition can be
easily checked for differentiable arc cost functions.

Lemma 10.1. Let a ∈ A be fixed. A differentiable arc cost function c(a, ·) is a
FIFO function if the derivative c ′(a, ·) fulfills c ′i(a, ·) ⩾ −1.

Besides the easy check to determine whether a given arc cost function is a
FIFO function, the last result has desirable implications for the applicability
of Dyn-MOSP problems in practice. The fact that FIFO functions do not
need to be monotonically non-decreasing widens the range of applications.
For example if battery consumption is an optimization criterion, the battery
recharging capability of electric vehicles while breaking reduces the cost
during paths’ traversal.

The following theorem implies that with FIFO functions in its input, Dyn-
MOSP instances can be solved using the label-setting MOSP algorithms dis-
cussed so far in this thesis.

Theorem 10.1. Consider a Dyn-MOSP instance I with d FIFO functions ci. For
every node v ∈ V there exists a minimal complete set P∗

sv(τ0) of efficient s-v-paths
s.t. for every p ∈ P∗

sv(τ0) all s-u-subpaths of p, u ∈ p, are efficient s-u-paths.
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Proof. Consider a minimal complete set P∗
sv(τ0) of efficient s-v-paths for

some v ∈ V and let p ∈ P∗
sv(τ0). Assume that u ∈ p is the first node along

p for which the s-u-subpath ps→u of p is not an efficient path. Then, there
exists an s-u-path q that dominates ps→u. We have: ci(q, τ0) ⩽ ci(p

s→v, τ0)
for all i ∈ {1, . . . ,d} and cj(q, τ0) < cj(p

s→v, τ0) for at least one j ∈ {1, . . . ,d}.
Assume that a = (u,w) ∈ A is the outgoing arc of u in p. Then, the FIFO
property implies for all i ∈ {1, . . . ,d}

ci
(
q ◦ a, τ

)
= ci(q, τ) + ci

(
a, ci(q, τ)

)

⩽ ci(p
s→u, τ) + ci

(
a, ci(ps→u, τ)

)
= ci

(
ps→u ◦ a, τ

)
.

(19)

If the inequality is not strict for any coordinate, we have ci(q ◦ a, τ) =

ci(p
s→u ◦ a, τ). In this case, we can substitute p in P∗

sv(τ) by the s-v-path
q ◦ a ◦ pw→v. If q contains any subpath starting at s that is not efficient, we
repeat the arguments from this proof to find a suitable minimal complete
set P∗

su(τ) of efficient s-u-paths. If all subpaths of q are efficient, we have
proven the statement.

Otherwise if there is an index j ∈ {1, . . . ,d} for which the inequality (19) is
strict, we can continue expanding ps→w = ps→u ◦ a and q ◦ a along pw→v.
Due to the FIFO conditions, there must be an arc along pw→v after which
both paths become cost-equivalent and we repeat the argument from the last
paragraph. If that is not the case, cj(q◦pw→v, τ) < cj(p, τ) which contradicts
the assumption of p being an efficient s-v-path.

The statement implies that for a Dyn-MOSP algorithm it is sufficient to
store only efficient paths since from them, efficient paths for successor nodes
can be built. In other words, dominated subpaths can be discarded and
label-setting algorithms like the MDA can be applied. To prove the correct-
ness of the MDA in Section 4.2, we needed the statements in Lemma 4.1 to
Lemma 4.5. These facts prove that the algorithm makes paths permanent
in nondecreasing order w.r.t. the total order ≺Q and that it is label-setting.
For the proofs we only use the non-negativity of the cost vectors and the
compatibility (cf. Definition 3.5) of the used total order ≺Q and the domi-
nance or equivalence order ⪯D. Hence, these statements are also valid in a
Dyn-MOSP setting.

Theorem 4.1 and Theorem 4.2 are the statements that actually prove the
MDA’s correctness. Besides the aforementioned lemmas, the proves only re-
quire the Bellman condition for subpath efficiency from Theorem 3.1. Hence,
given Theorem 10.1 in the dynamic costs setting, the MDA or the T-MDA are
Dyn-MOSP algorithms if we modify the evaluation of the arc cost functions
according to Definition 10.1.

Theorem 10.2. Consider a One-to-All or a One-to-One Dyn-MOSP instance I

with d FIFO functions. The MDA or the T-MDA, respectively, solve I.

Remark 10.2 (Heuristics for One-to-One Dyn-MOSP). In Section 9.3 we dis-
cussed how to compute heuristics to speed up One-to-One MOSP queries. In order
to compute the paths’ reduced costs and guarantee the ordering of the paths w.r.t.
⪯D, the ith heuristic value πi(v) for a node v ∈ V needs to be an underestimation
of the costs of an v-t-path in the ith cost dimension. The discussed heuristic was
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best possible in the sense that, since we computed the shortest v-t-distance in every
dimension, no tighter underestimator exists.

The situation is different in a dynamic costs scenario. Whether an arc a =

(u, v) ∈ A is traversed with costs minτ∈Rgeq
ci(a, τ) depends on the state τ. Thus,

the heuristic built using this minimum arc cost for every arc is often bad. Another
issue is that in Section 9.3 we computed heuristics using a backward search from
t. However, in a dynamic costs scenario the state at which the backward search
needs to be started is unknown. This problem also arises in the single-criterion
time-dependent Shortest Path problem (cf. Delling & Wagner, 2009).

In general, finding good heuristics in time-dependent/dynamic costs scenarios is
thus an application dependent task as shown for example in (Blanco et al., 2022).

10.4 complexity

Computing a path’s costs recursively as in formula (17) for a path p with ℓ

arcs requires O (dℓ) time. However, label-setting algorithms like the MDA
build paths incrementally arc by arc. Thus, if (u, v) is the last arc of p, the
costs c(ps→u, τ) ∈ Rd

⩾0 is known and

c(p, τ) = c(ps→u, τ) + c((u, v), c(ps→u, τ))

requires only the evaluation of (u, v)’s d arc cost functions.
In the asymptotic running time bound of Dyn-MOSP algorithms, the eval-

uation of dynamic arc cost functions cannot be neglected in general. If a
dynamic arc cost function c is given as an analytic formula, we assume that
c(a, τ) is evaluated in O (1) time and also its storage requires O (1) space.

Most often in the literature (cf. Delling et al., 2009; Blanco et al., 2016),
c is given as a d piecewise functions, each of them represented in a lookup
table. The entries in the tables are the functions’ breakpoints and an inter-
polation rule between these breakpoints is given as an analytic formula. In
this scenario, we assume that the number of breakpoints defining c is in
O (2n). Moreover, we assume that the relevant breakpoints to evaluate c at
any point τ ∈ R⩾0 can be found using binary search. If that is the case,
c(a, τ) can be evaluated in O (d log 2n) = O (dn) for any a ∈ A. Then, for
any path s-v-path p, calculating the costs of an expansion q of p along an
outgoing arc (v,w) ∈ δ+(v) in the MDA is a O (dn) operation. Since we
store paths as labels (cf. Section 3.3)in the output sets Psw(τ0) of the MDA,
the costs of q are the only costs that we need to calculate in the dominance
check c(Psw(τ0)) ⪯D c(q, τ0) in Line 3 of propagate and in Line 7 of nex-
tQueuePath. Since dominance checks run in O(Nmax) and in general Nmax is
exponential in the input size, the O (dn) operations to calculate c(q) vanish
in the asymptotic running time bound of propagate and nextQueuePath.

All in all, we state the following assumption for the remainder of this
chapter and also for Chapter 11.

Assumption 10.1. We consider Dyn-MOSP instances with piecewise linear
and FIFO arc cost functions. Each function is assumed to have at most n

breakpoints.
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Using this assumption, the time complexity of the MDA for the One-to-
One and the One-to-All Dyn-MOSP problem remains as in Theorem 4.4.

Corollary 10.1. The MDA and the T-MDA for Dyn-MOSP instances run in

O
(
N logdn+N2

maxdm
)
, for d > 2 and

O (N logdn+Nmaxdm), for d = 2
(20)

Similarly, the space consumption can be derived as in Theorem 4.6 but we
need to consider the space for storing the are cost functions as lookup tables.
In contrast to the asymptotic running time bound in which we can neglect
the evaluation arc cost functions because we hide it in a logarithmic term, the
storage of the tables is asymptotically relevant.

Corollary 10.2. Consider a Dyn-MOSP instance I such that for i ∈ {1, . . . ,d}, the
maximum number of breakpoints in a dynamic arc cost function is Bi < n. Then,
storing all dynamic arc cost functions requires O

(
m

∑d
i=1 Bi

)
and the memory

consumption of the MDA while solving I is in

O (N+ dmn) . (21)

10.5 dyn-mosp for transportation applications

In this section we give a more general view into Dyn-MOSP variants that
are relevant for applications. As mentioned in this chapter’s introduction,
there are also time-dependent Shortest Path problems in which arc cost func-
tions are time-dependent but time is not optimized. We called this setting
time-dependent and cost-optimal. Its single-criterion version defines two time-
dependent functions on the arcs. An arc’s first function captures how time
evolves when traversing the arc. The arc’s second function depends only on
time but it returns the cost of traversing the arc starting at the given time.

Definition 10.5 (Time-Dependent and Cost-Minimal Shortest Path Problem
(Foschini et al., 2012; Hamacher et al., 2006; Orda & Rom, 1990)). Consider
a digraph G = (V ,A), a source node s ∈ V , a starting time point τ0 ∈ R⩾0,
and two functions time, cost for every arc as in Assumption 10.1. Given an
s-u-path p for some u ∈ V reaching u at time(p, τ0) (cf. Definition 10.1)
with cost cost(p, τ0) and an arc (u, v) ∈ δ+(u), the time-dependent cost of
p ◦ (u, v) is

cost
(
p ◦ (u, v), τ0

)
:= cost(p, τ0) + cost

(
(u, v), time(p, τ0)

)
.

Time evolves as in Definition 10.1 and thus:

time
(
p ◦ (u, v), τ0

)
:= time(p, τ0) + time

(
(u, v), time(p, τ0)

)
.

The One-to-All time-dependent and Cost Minimal Shortest Path (TD-CM-SP)
problem is to find a cost-optimal s-v-path for every v ∈ V .

Example 10.2 and Figure 23 contain an example of a TD-CM-SP instance
taken from (Hamacher et al., 2006). The example is used in the original
publication to show how solutions in the TD-CM-SP problem do not adhere
to a subpath optimality principle.
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s v

u

wa2

a1 a3

a4

Figure 23: Graph corresponding to the
TD-CM-SP instance used in
Example 10.2. The arc time

and cost functions are in Ta-
ble 12.

Arc time cost

a1 3 1

a2 1 5

a3 1 1

a4 1 2τ+ 2

Table 12: time and cost

functions of
the arcs in
the graph in
Figure 23. A
state (τ,γ) at
an arc’s tail
is mapped
to (τ +

time(τ),γ +

cost(τ)).

Example 10.2 (Broken subpath optimality (cf. Hamacher et al., 2006)). In
the TD-CM-SP instance shown in Figure 23 and in Table 12, all functions
are FIFO. The One-to-One time-dependent Shortest Path problem in a time-
dependent and cost-optimal setting seeks to find an s-w-path with minimal
cost starting at s at time 0 with cost 0. The path p = ((s, v), (v,w)) is the only
optimal solution in this context. We have time((s, v), 0) = 1, cost((s, v), 0) = 5,
and

time(p, 0) = time
(
ps→v ◦ (v,w), 0

)
= 1+ time

(
(v,w), 1

)
= 1+ 1 = 2

cost(p, 0) = cost
(
ps→v ◦ (v,w), 0

)
= 1+ cost

(
(v,w), 1

)
= 5+ 4 = 9.

However, for the s-v-path q = ((s,u), (u, v)) we have time(q, τ0) = 4 and
cost(q, τ0) = 2. Hence, the s-u-subpath ps→u of p is not a cost-optimal s-u-
path and the cost-optimal s-w-path p is not built out of optimal subpaths.

The problem in Example 10.2 is easy to see: even though optimality is
decided based on one criterion only, this criterion depends on the time func-
tion. In the example time and cost rather uncorrelated and thus, reaching
node v via u is worse in time and better in cost. However, the late arrival
penalizes the cost increase along the arc (v,w) causing the path p from the
example to be the only optimal one.

An immediate solution to this problem is to model the TD-CM-SP prob-
lem as a biobjective problem. Since the cost functions are time-dependent
but FIFO, there holds: τ < τ ′ ⇒ cost(a, τ) ⩽ cost(a, τ ′) for time values
τ, τ ′ ∈ R⩾0

and every a ∈ A. With this and following the arguments used in
Section 10.3, it is straightforward to conclude that the TD-CM-SP problem
can be solved using a biobjective version of the MDA for Dyn-MOSP prob-
lems. The asymptotic time and space bounds coincide with (20) and (21),
respectively. These are good and bad news.

The bad news are that the fastest path problem (i.e., time-dependent and
time-optimal) with forbidden waiting and using the frozen arc model is solv-
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able using variants of label-setting Shortest Path algorithms (cf. Delling &
Wagner, 2009) and thus, polynomially solvable. The TD-CM-SP problem
on the other hand using a biobjective version of the MDA for Dyn-MOSP
problems is solved using an output sensitive algorithm.

Despite this increased asymptotic complexity bound, the biobjective MDA

is very efficient in practice and the NP-hardness of the TD-CM-SP problem
has already been proven by Orda and Rom (1990).

A multiobjective generalization of the TD-CM-SP problem in which d cost
functions are given and all of them are time-dependent is solvable as de-
scribed above using the (d+ 1)-dimensional version of the MDA for Dyn-
MOSP instances. We only require that the arc cost function adhere to As-
sumption 10.1. As in the TD-CM-SP problem, the (d+ 1)th objective in this
scenario is time.

10.5.1 Higher-dimensional function inputs

Other variants of Dyn-MOSP problems cannot be solved using label-setting
algorithms so easily. In realistic Flight Planning, Electric Vehicle Routing,
Public Transportation, etc. cost functions are rarely dependent on time only.
E.g., the fuel or battery consumption depends on time because of weather
and traffic but it also depends on the fuel load and/or the battery charge.

The applicability of label-setting algorithms or other Dynamic Program-
ming approaches in these scenarios is not straightforward mainly because
it is unclear how to generalize the notion of FIFO functions to dynamic arc
cost functions in which the ith, i ∈ {1, . . . ,d}, cost function depends on a
subset of the input state components.

Whether a FIFO generalization works will depend, among other things,
on how correlated the considered states and functions are, how the partial
derivatives of the cost functions relate to each other, etc. Problem dependent
modeling is required. In fact, to the best of our knowledge this highly rel-
evant problem for the applicability of MOSP in transportation has not been
studied in the literature. The propagation of state of charge functions (Baum
et al., 2020) or arrival time functions involving piecewise function minimiza-
tion (Delling & Wagner, 2009) comes the closest to the mentioned setting but
considers only one optimization criterion.

10.6 experiments

We could not find openly available data for Dyn-MOSP instances. After the
next chapter about approximation algorithms for Dyn-MOSP problems, we
report our results obtained from Horizontal Flight Planning instances using an
approximation algorithm for Dyn-MOSP based on the MDA. Since we have
proven that Dyn-MOSP instances with FIFO functions can be solved using
the MDA in a straightforward way, we do not need large scale experiments
focusing on the performance of the MDA to solve Dyn-MOSP instances.



11 M U LT I O B J E C T I V E D I J K S T R A
F P TA S

This chapter is based on the publication (Maristany de las Casas, Borndörfer,
et al., 2021). Background on approximation algorithms can be read in Williamson
and Shmoys (2009). Whenever we consider a Dyn-MOSP instance in this
chapter without specifying whether it is a One-to-One or a One-to-All in-
stance, the corresponding statement holds for both types of problems. More-
over, we assume that dynamic arc cost function fulfill Assumption 10.1.

Recall that the principal intractability in Dyn-MOSP problems arises from
the possibly exponential number of efficient paths (w.r.t. the instances’ input
size). That is why it is natural to be interested in approximation algorithms
that compute a meaningful set of solutions that is good enough and has polyno-
mially bounded cardinality. An intuitive approach is to subdivide the outcome
space into a polynomial number of hyperrectangle and only allow one so-
lution per cube in the algorithms’ output. However, the sizes of the cubes
have to be carefully chosen to bound the error that arises when comparing
minimal complete sets of efficient paths and the paths output by an approx-
imation algorithm.

Example 11.1. Consider a MOSP instance with constant bidimensional arc
costs. For every node v ∈ V , we partition the outcome space c(Psv) ⊂
Rd

⩾0 into 2 × 2 squares as the dotted lines show in Figure 24. Moreover,
assume that we design a variant of a MOSP algorithm that keeps only the
lex. smallest s-v-path in every cell.

Assume a node u can be reached only via two paths p1 and p2 with costs
(2.1, 3.9) and (3.9, 2.1), respectively. Then, p1 and p2 would be stored in the
same square and our fictive algorithm keeps only p1.

The second relevant node in this example is v ∈ δ+(u). The arc a = (u, v)
has costs c(a) = (1, 1). Consider the extensions qi = pi ◦ (u, v), i ∈ {1, 2}.
Since c(q1) = (3.1, 4.9) and c(q2) = (4.9, 3.1), q1 and q2 do not share a
square in the outcome space partition of c(Psv) (see Figure 24).

Besides q1 and q2 there is one more s-v-path in the considered graph: the
s-u-path q with c(q) = (M, 3.9) for some large M ∈ R⩾0. The path q1 does
not dominate q but q2 dominates q. However, since our fictive algorithm
discards p2, q2 is not considered. Thus, when the path q is built, it is not
dominated. The error in the c1 cost dimension for discarding q1 is in O (M).

We combine an outcome space partition technique from the literature with
the MDA to design a new Fully Polynomial Time Approximation Scheme (FP-
TAS) for Dyn-MOSP problems. Note that this problem class includes MOSP
problems with constant arc cost vectors.

The generalization of the definition of an FPTAS to the multiobjective sce-
nario is straightforward and has already been discussed in the literature
(e.g., Papadimitriou & Yannakakis, 2000; Tsaggouris & Zaroliagis, 2007). To
streamline our exposition, we repeat relevant definitions in Section 11.1. The
following assumptions are also common in the literature.
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2 4 6

2

4

6

(2.1, 3.9)

(3.9, 2.1)

(3.1, 4.9)

(4.9, 3.1)

c(a, τ)

c(a, τ)

c1

c2

Figure 24: Situation described in Example 11.1. The lower left red and blue dots
correspond to the costs of p1 and p2. The upper right red and blue dots
correspond to the costs of q1 and q2. We observe that the lower left dots
share a square. After the shift of both cost vectors by the costs of the arc
a, the upper right dots are in different squares.

Assumption 11.1. In this chapter, we adhere to following conventions re-
garding the dimensionality of the considered MOSP instances and the sign
of the arc cost functions.

• The running times of the algorithms discussed in this section are expo-
nential in the number d of cost functions. We consider d as a constant.

• We consider Dyn-MOSP instances with positive arc cost functions only.

11.1 notation and general definitions

Approximate solutions are defined as follows.

Definition 11.1 (Covers (cf. Papadimitriou & Yannakakis, 2000, Section
2)). Consider a combinatorial multiobjective optimization problem with d

minimization objectives. Let X be the set of feasible solutions and for any
x ∈ X, denote its cost vector by c(x) ∈ Rd

>0. Moreover, let α ∈ R⩾1 be an
approximation ratio.

solution cover For two feasible solutions x, y ∈ X, x α-covers y if

c(x) ⩽ αc(y).

α-cover A subset Xα ⊆ X is an α-cover of X if for every solution x ∈ X

there exists a solution x̄ ∈ Xα s.t. x̄ α-covers x.

The notion of α-covers relaxes the dominance relation between solutions,
i.e., paths in our MOSP setting. If a path p dominates a path q, p α-covers q

for any feasible value of α. However if the costs of p are similar to those of q
but p does not dominate q, then p α-covers q if, after worsening q’s costs by
the (small) factor α, the resulting cost vector is dominated by the costs of p.

Note that in Definition 11.1 we have chosen a scalar approximation factor
α. This choice is only to ease the notation in the remainder of the chapter.



11.2 literature review 125

The results in this section can easily be extended to d-dimensional vectors
of approximation ratios. In practice this is actually needed to approximate
e.g., time and weight in a meaningful way. However, it makes also sense to
define the approximation ratio for the approximation algorithm at hand as
the largest allowed error.

Recall that given a Dyn-MOSP instance, we denote the set of s-v-paths
in the input digraph G by Psv. We use the notation P∗

sv(τ0) to refer to a
minimal complete set of efficient s-v-paths starting at node s with state τ0.
In this thesis, we have already used covers as explained in the next example.

Example 11.2. Consider a Dyn-MOSP instance I as in Definition 10.3, fix a
node v ∈ V and let α ∈ Rd

⩾1 be given. Any minimal complete set P∗
sv(τ0) of

efficient s-v-paths is a 1-cover of Psv. Every s-v-path p that is not efficient is
dominated by an efficient s-v-path p∗ ∈ Psv. Thus, p∗ 1-covers p. Moreover
if p∗ /∈ P∗

sv(τ0), there exists a solution q∗ ∈ P∗
sv(τ0) s.t. c(p∗, τ0) = c(q∗, τ0).

This implies that q∗ 1-covers p∗.

Definition 11.2 (FPTAS for Multiobjective Optimization Problems (cf. Pa-
padimitriou & Yannakakis, 2000, Section 2)). Let P be a d-dimensional mul-
tiobjective combinatorial optimization problem for some d ∈ N and I any
instance of P. A Fully Polynomial Time Approximation Scheme (FPTAS) for P

is a family of algorithms (Aε)ε∈Rd
>0

s.t. for every fixed and constant vector
ε ∈ R> 0

• Aε returns a (1+ ε)-cover of the feasible solutions set X of I and

• the running time and space consumption Aε are polynomially bounded
by the input size of I and by 1

ε .

In the remainder of this chapter, whenever we refer to a (1+ ε)-cover of the
set of feasible solutions at hand and there is no risk of misunderstanding, we
will just write a (1+ ε)-cover.

Assumption 11.2. As in (Breugem et al., 2017; Papadimitriou & Yannakakis,
2000; Tsaggouris & Zaroliagis, 2007), we assume that ε ⩽ 1 such that ln(1+
ε) ∈ Θ(ε).

11.2 literature review

The contents in this section are partially copied from (Maristany de las Casas,
Borndörfer, et al., 2021, Section 1.1.). For BOSP problems (d = 2) with
constant arc cost functions, Hansen (1980) introduced the first known FPTAS
for a MOSP problem variant. It runs in

O

(
(mn)2

ε
log

n2

ε

)
. (22)

It uses multiple calls to his label-setting BOSP algorithm (a biobjective ver-
sion of Martins’s algorithm (E. Q. V. Martins, 1984)) after scaling the first cost
component of the original arc costs by a factor ε

n (cf Hansen, 1980, Algorithm
4). Warburton (1986) introduced the first FPTAS for MOSP problems on Di-
rected Acyclic Graphs. FPTAS for MOSP problems on general digraphs use
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partitions of the outcome space to guarantee the polynomial running time
of the approximation algorithms.

outcome space partitions. In the more general field of approxima-
tion algorithms for multiobjective combinatorial optimization problems, Pa-
padimitriou and Yannakakis (2000) set a milestone. They proved that for a
combinatorial multiobjective optimization problem with d objectives and an
ε > 0, a (1+ ε)-cover exists. The idea is to subdivide the outcome space into
hyperrectangles whose lengths depend on ε and on the input cost vectors.
Then, at most one solution per cell is allowed and the subdivision guaran-
tees that a solution in a cell is a (1+ ε) cover of any other solution assigned
to the cell. How to choose the subdivision correctly is discussed later in
Section 11.3. Having this result, the question of whether this cover can be
computed in polynomial time w.r.t. the input size and w.r.t. ε was open. In
(Papadimitriou & Yannakakis, 2000, Theorem 2) the authors prove that the
answer is affirmative if and only if given a vector b ∈ Rd

⩾0, an algorithm can
answer that there is a solution x with c(x) ⩽ b or that there is no solution y

with c(y) ⩽ (1+ ε)b. For MOSP problems, this is the case.

the outcome space partition for mosp. The outcome space partition
approach for the design of FPTAS for MOSP was later used by Tsaggouris
and Zaroliagis (2007). Their algorithm combines the partition approach with
the classical Bellman Ford algorithm for Shortest Path problems. This pro-
duces a (1+ ε)-cover of the exact set of efficient paths. We set

C := max
i∈{1,...,d}

{
maxa∈A{ci(a)}

mina∈A{ci(a)}

}
.

As stated in (Tsaggouris & Zaroliagis, 2007, Table 1), for d = 2 their algo-
rithm runs in

O

(
n2m log (nC)

ε

)
(23)

and in the case d > 2, it runs in

O

(
nm

(
n log (nC)

ε

)d−1
)

. (24)

The idea was picked up by Breugem et al. (2017). They pair Martins’s
algorithm with the subdivision of the outcome space used in (Tsaggouris &
Zaroliagis, 2007). The result is an FPTAS for MOSP problems that is worse re-
garding the asymptotic running time, but performs better in practice. Their
asymptotic running time is (cf. Breugem et al., 2017, Theorem 3.7.)

O


n3

((
n log (nC)

ε

)d−1
)2

 . (25)

Based, among others, on these works, (Bökler & Chimani, 2020) recently
published an extensive comparison of different label ordering and selecting
strategies in approximation algorithms for MOSP.
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digression: parametrized covers. Note that Definition 11.2 does nei-
ther enforce the cardinality of the found cover to be minimal nor that it con-
tains only efficient solutions. The parametrization of approximate sets of
efficient solutions w.r.t. their cardinality, the spacing between the solutions,
and other parameters is a research field beyond the scope of this chapter. A
good overview on the topic can be read in Audet et al. (2021). The authors
were not aware of the publication Bazgan et al. (2017) which in our opinion
contains crucial theoretical results for the further development of algorithms
in the field. The authors parameterize covers using spacing, cardinality, and
coverage (i.e., how many efficient solutions are α-covered by an approximate
solution). They study the existence of covers that fulfill bounds imposed on
the three parameters mentioned in this paragraph. In the biobjective case
they exist and generic algorithms for their generation are proposed. For the
general multiobjective case, such covers might not exist but if they do, the
bound on the cardinality must be raised. While the FPTAS discussed in this
section are best possible approximations regarding quality loss w.r.t. the
computation of minimal complete sets of efficient solutions, it shall be noted
that purposefully parametrized approximations using cardinality, spacing,
and coverage seem to be more relevant in practice.

outline and contributions In Section 11.3 we discuss the outcome
space partition for MOSP used in Tsaggouris and Zaroliagis (2007). Sec-
tion 11.4 contains our main contribution in this chapter: we pair the the out-
come space partition with the MDA and get a new FPTAS for MOSP, the MD-
FPTAS. For MOSP instances with constant arc costs the new FPTAS works
immediately. For Dyn-MOSP instance, the bounded quality loss through
approximations can only be achieved stating a new assumption on the dy-
namic arc cost functions. Once the correctness is proven in Section 11.4.1, we
analyze the asymptotic running time and space bounds of the MD-FPTAS in
Section 11.4.2. In our experiments in Section 11.5 we compare the dynamic
costs version of the MDA with the MD-FPTAS with regard to speed and
cardinality of solutions.

11.3 outcome space partition

For the remainder of this chapter, we consider dynamic arc cost functions
from the class F that we define as follows.

Definition 11.3 (F-functions). Consider a continuous and piecewise linear
scalar function f : R>0 → R>0 with O (n) pieces. Let each piece of f be
described by the affine functions affi(x) = aix+ bi, i ∈ {1, . . . ,k}. Then, f is
said to be an F-function if ai ∈ R⩾−1 and bi ∈ R⩾0 for every i ∈ {1, . . . , i}.

Note that because if the abuse of notation announced in Remark 10.1 re-
garding the input of dynamic arc cost functions, these functions can be F-
functions for fixed arcs a ∈ A. In fact, constant arc cost functions and piece-
wise linear FIFO functions are F functions. The reason for the assumption
bi ∈ R⩾0 regarding the intercepts of the affine pieces is technical and not
relevant for the understanding of this section. We need this property for
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the proof of Lemma 11.5 that is then used to proof the correctness of the
MD-FPTAS. We use the following notation.

Definition 11.4. Consider a Dyn-MOSP instance I with d F-functions associ-
ated with every arc. W.l.o.g., assume that every dynamic arc cost function is
defined on an interval [0, T ] for T ∈ R>0. For every i ∈ {1, . . . ,d}, we define
the following values.

min. costs
cmin
i := min

a∈A
{ min
τ∈[0,T ]

ci(a, τ)}.

max. costs
cmax
i := max

a∈A
{ max
τ∈[0,T ]

ci(a, τ)}.

max./min. ratio
Ci :=

cmax
i

cmin
i

and C := max
i∈{1,...,d}

Ci.

The min. and max. costs in Definition 11.4 for an arc a ∈ A can be
computed in O (n) time. Moreover, by Assumption 11.1, Ci is well defined
since we consider only positive arc costs in this chapter. The next definition
and the two lemmas in this section can also be found in (Breugem et al.,
2017; Tsaggouris & Zaroliagis, 2007). The usage of Dyn-MOSP instances
instead of MOSP instances with constant arc cost vectors does not impact
the statements since they only act on the already computed costs of paths.

Definition 11.5 (Outcome Space Partition). Consider a d-dimensional Dyn-
MOSP instance I and ε ∈ (0, 1].

partition using hyperrectangles For every node v ∈ V we partition
the outcome space of s-v-paths into disjoint axes-parallel hyperrect-
angles. Each hyperrectangle is represented by a d-dimensional index
vector that refers to the d-dimensional generalization of its lower left
coordinate. In dimension i ∈ {1, . . . ,d} cells are indexed from 0 to
⌊logr(nCi)⌋ for i ∈ {1, . . . ,d}, where we set r := (1+ ε)

1
n−1 .

size of the hyperrectangles Actually, the hyperrectangles are defined
by the values of the so called pos functions. A vector x ∈ Rd

⩾0 is
uniquely assigned to a cell using the posi functions, i ∈ {1, . . . ,d},

posi : R⩾0 →N

x 7→

0, if x = 0

1+
⌊

logr
x

cmin
i

⌋
, else.

pos-values of paths For a path p in G, we define

pos(p, τ0) :=
(

posi(ci(p, τ0))
)d
i=1
∈Nd.

We refer to the ith entry of pos(p, τ0) by posi(p, τ0), a shorthand nota-
tion for the well defined value posi(ci(p, τ0)).
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Since we assume arc cost functions to be positive in this chapter (Assump-
tion 11.1) the pos-values are well defined.

Lemma 11.1. For any node v ∈ V and every efficient s-v-path p, there holds

posi(p, τ0) ∈
{
0, . . . , 1+ ⌊logr((n− 1)Ci)⌋

}
. (26)

Proof. If c(p, τ0) = 0, pos(p, τ0) = 0 by definition. Moreover, the pos-
functions are monotonically increasing. Thus, it suffices to analyze the pos-
values of an efficient path p with a possibly large cost vector. Since p is an
efficient s-v-path, it is a simple path. Thus, it contains at most (n− 1) arcs
and there holds ci(p, τ0) ⩽ (n− 1)cmax

i for every i ∈ {1, . . . ,d}. Thus,

posi(p, τ0) ⩽ 1+

⌊
logr

(n− 1)cmax
i

cmin
i

⌋
= 1+ ⌊logr((n− 1)Ci)⌋

which proves the statement.

After the last lemma, we observe that the pos function assigns paths to a
cell in our outcome space partition and that every cell can be reached.

Lemma 11.2. The number of permanent paths in a Dyn-MOSP algorithm that, for
every v ∈ V , stores at most one s-v-path in every cell as defined in Definition 11.5,
is at most

n

⌊
d∏

i=1

n− 1

ε
ln (nCi)

⌋
∈ O

(
n
(n
ε

ln (nC)
)d)

. (27)

Proof. Proving the bound is immediate using Assumption 11.2 and basic
logarithmic rules. Then, using ln(1+ ε) ∈ Θ(ε), we can write logr(nCi) as
n−1
ε ln (nCi) for every i ∈ {1, . . . ,d}.

Note that, (27) is polynomial the input size of a Dyn-MOSP instance and in
ε−1. This means that upon proving that this would cover every efficient path
with an approximation factor of at most (1+ ε), an algorithm that outputs
one path per hyperrectangle is an Dyn-MOSP FPTAS. This outcome space
partitioning approach does not guarantee that the output paths are efficient.
The Dyn-MOSP FPTAS introduced in (Tsaggouris & Zaroliagis, 2007) indeed
indexes paths according to their pos-values and returns at most one path
per hyperrectangle, possibly filling all of them. The FPTAS from Breugem
et al. (2017) follows a different approach and uses ⪯D-checks on the paths
pos-values to keep at most one path per hyperrectangle if its coordinates
are not dominated by the pos-values of other paths. Still, it could be that
a dominated path is stored in an hyperrectangle and then returned. We
discuss both approaches in the next section in conjunction with the MDA.
The approach from (Tsaggouris & Zaroliagis, 2007) does not require ⪯D-
checks and is useful to achieve state of the art asymptotic running time. In
practice, the approach from (Breugem et al., 2017) is superior since it stores
and thus expands less paths.
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Figure 25: Corresponds to Example 11.3. Three consecutive iterations of the MD-
FPTAS. The costs of the extracted label p∗ in every iteration is marked in
red, the permanent labels p ∈ P̃sv(τ0) in black, and the explored paths
generated in propagate or nextQueuePath in grey.

11.4 multiobjective dijkstra fptas

We can describe our new FPTAS for Dyn-MOSP, the MD-FPTAS, in one sen-
tence: Use the MDA, sort the paths in the priority queue Q in lex. non-
decreasing order w.r.t. their pos-values, and determine dominance in Line 3

of propagate and in Line 7 of nextQueuePath also using the paths’ pos-
values. In other words, we replace the role of the original arc cost functions
c(p, τ) for a path p and a state τ with the pos functions. Only for the ex-
pansions of an s-v-path p along an outgoing arc a ∈ δ+(v) we still use
c(p ◦ a, τ0) = c(p, τ0) + c(a, c(p, τ0)) to calculate the exact costs of the re-
sulting path. We refer to the original publication (Maristany de las Casas,
Borndörfer, et al., 2021) which contains a pseudocode of the MD-FPTAS.
Since the changes to the original MDA are as marginal as stated in this para-
graph, we do not include the pseudocode in the thesis explicitly.

Following convention in the literature, we use Psv, P∗
sv(τ0), and P̃sv(τ0) for

the set of s-v-paths in an input graph G, a minimal complete set of efficient
s-v-paths with initial state τ0, and a cover of the set of s-v-paths with initial
state τ0, respectively. P̃sv(τ0) is of course dependent on a ε > 0 that is
always clear from the context in the remainder of this chapter.

Example 11.3 (Dominance and Path Discarding in the MD-FPTAS). In this
example we deal with a MOSP instance with two constant arc cost functions
per arc. Figure 25 visualizes the situation at the end of each of three subse-
quent iterations of the MD-FPTAS. The illustrated graph is a subgraph of a
larger graph with n = 10 nodes and cmin

i = 1 for i ∈ {1, 2}. We set ε = 0.5.
Cost vectors in black next to a node in 25 symbolize the cost vector of a path
that has already been made permanent. For example, in the first depicted
iteration, the leftmost one, a path ending at node x with costs (80, 131) exists.
Similarly, cost vectors in gray symbolize existing explored paths. The red
cost vector in every iteration represents the explored path that is extracted
from the priority queue of the MD-FPTAS.

In the first and leftmost iteration, s-u path with costs (100, 100) is ex-
tracted from Q and during propagate in the MD-FPTAS the s-w-path with
costs (120, 120) at node w is inserted into Q. In the second iteration, the
s-v-path with costs (101, 100) is extracted from Q and during propagate in
the MD-FPTAS the new s-w-path with costs (140, 119) is explored. Since the
s-w-path with costs (120, 120) is lex. smaller w.r.t. the pos-values, the new
path is, for now, not stored in Q after the check in Line 5.
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In the third iteration, the s-w-path with costs (120, 120) at node w is ex-
tracted from Q. When nextQueuePath is called, the extension of the perma-
nent s-v-path with costs (100, 101) along the arc (v,w) is repeated to obtain,
again, the path with costs (140, 119). In the exact scenario this path is not
dominated by the extracted s-w-path with costs (120, 120). However, in the
MD-FPTAS, more precisely in a call to nextQueuePath, it is rejected since
107 = pos(120) < pos(140) = 110 and pos(120) = pos(119) = 107. The
iteration continues and the extracted path is expanded along the arc (w, x).
The resulting s-x-path with costs (130, 130) is also rejected despite it would
be made permanent in the exact scenario: there holds pos(80) < pos(130)
and pos(130) = pos(131) = 109.

11.4.1 Correctness of the mdFPTAS

Our exposition relies on the correctness of the MDA for Dyn-MOSP prob-
lems. Since the pos function is monotonically non-decreasing and its input
are the paths’ costs, the lexicographic ordering in Q w.r.t. the paths’ pos-
values is, up to pos-value equality, equivalent to the lexicographic ordering
of the paths w.r.t. (17). Similarly, for two paths p, q with c(p, τ0) ⪯D c(q, τ0)
we have either pos(p, τ0) = pos(q, τ0) or pos(p, τ0) ⪯D pos(q, τ0). Then,
the MD-FPTAS works analogously to the MDA but it sorts paths in the algo-
rithm’s priority queue and it performs dominance tests using the pos-values
of the considered paths. This immediately gives us the following result.

Lemma 11.3. Consider a Dyn-MOSP instance I and an ε ∈ (0, 1]. For any v ∈
V let P̃sv(τ0) be the set of paths returned by the MD-FPTAS. If an s-v-path p

is discarded, there is a permanent s-v-path q ∈ P̃sv(τ0) that dominates p or is
equivalent to p w.r.t. the paths’ pos-values.

To prove that the MD-FPTAS is indeed an FPTAS for MOSP, we need to
show that for every v ∈ V , the set P̃sv(τ0) of s-v-paths returned by the MD-
FPTAS is a (1+ ε)-cover of the set of s-v-paths in G. The following lemma
ensures that discarded paths in the MD-FPTAS are (1+ ε)-covered by a path
in the algorithm’s output.

Lemma 11.4 ((cf. Breugem et al., 2017, Lemma 3.5.)). Consider two s-v-paths
p and q for some v ∈ V and assume pos(p, τ0) ⪯D pos(q, τ0), then p r-covers q
for r = (1+ ε)

1
n−1 .

Proof. Using basic logarithmic rules and the fact that ⌊x⌋ ⩽ ⌊y⌋ ⇒ x− 1 ⩽ y

for any x, y ∈ R, we obtain, for any i ∈ {1, . . . ,d},

posi(p, τ0) ⩽ posi(q, τ0)⇒ logr(ci(p, τ0)) − 1 ⩽ logr(ci(q, τ0)).

From the r.h.s of the implication, we obtain ci(p, τ0) ⩽ rci(q, τ0) for any
i ∈ {1, . . . ,d} which proves the statement.

Note that r = (1+ ε)
1

n−1 , is greater than 1 and smaller than (1+ ε). Thus if
for every efficient s-v-path q the MD-FPTAS would return an s-v-path p with
pos(p, τ0) ⪯D pos(q, τ0), we would have an r-cover of the set of s-v-paths
and we would be done. However, our dynamic programming approach
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expands s-v-paths arc by arc and the provable bound on the approximation
factor turns out to be worse after every arc expansion.

The following technical lemma is needed to determine for what kind of
dynamic arc cost functions the MD-FPTAS finds proper covers.

Lemma 11.5. Let f ∈ F be a piecewise affine function with k ∈ N breakpoints.
Describe the affine functions that build the pieces of f by aff i(x) := aix + bi,
i ∈ {1, . . . ,k− 1}. Moreover, let α ∈ R>1 be a given constant. Then, for points
x, y ∈ R⩾0 with x ⩽ αy holds x + f(x) ⩽ α(y + f(y)) if bi ⩾ 0 for all i ∈
{1, . . . ,k− 1}.

Proof. We consider three different cases to prove the statement.
Case 1: f(x) ⩽ f(y). Since α > 1, we have f(x) ⩽ αf(y). Together with

x ⩽ αy this proves the statement.
Case 2: x < y and f(y) < f(x). In this case, the FIFO property of F functions

and α > 1 can be used to get:

x+ f(x) ⩽ y+ f(y) ⩽ αy+αf(y).

Case 3: y < x and f(y) < f(x). Let aff i be the affine function with f(y) =

aff i(y) and aff j the one with f(x) = aff j(x). There holds i ⩽ j and we define
aff l, l ∈ {i, . . . , j}, to be the affine function corresponding to the steepest piece
of f between y and x, i.e., the one with the biggest al. Since f(y) < f(x), it
must hold that al > 0. Choosing aff l as we do, we get aff l(y) ⩽ f(y) and
f(x) ⩽ aff l(x). Additionally, as for any affine function with positive intercept
we have aff l(αy) ⩽ α(aly+ bl) = α aff l(y). All in all, we can conclude

f(x) ⩽ aff l(x) ⩽ aff l(αy) ⩽ α aff l(y) ⩽ αf(y).

Together with x ⩽ αy this proves the statement.

The next theorem proves that the MD-FPTAS is indeed an FPTAS for
MOSP. The proof is similar to (cf. Breugem et al., 2017, Lemma 3.5.). How-
ever, the dynamic arc cost functions considered in this section and the MDA
as baseline algorithm make the proof interesting.

Theorem 11.1 (Error bounding). Consider a node v ∈ V and an efficient s-v-path
p∗ = (a1, . . . ,ak), k ∈ N. Then, the set P̃sv(τ0) of s-v-paths returned by the
MD-FPTAS contains an s-v-path p̃ s.t. c(p̃, τ0) ⩽ rkc(p∗, τ0).

Proof. Recall that the efficiency of p∗ implies that it is a simple path because
the arc cost functions are non-negative and thus, k ⩽ n− 1. We prove the
statement by induction over k, the number of arcs of p∗.

base case Consider an efficient single-arc path p∗ = (a1) for a1 = (s, v) ∈
δ+(s). In the first iteration of the MD-FPTAS, p∗ is added to Q dur-
ing propagate. Consider the first time in which an s-v-path p is ex-
tracted from Q. If p = p∗ we are done, since p∗ is immediately added
to P̃sv(τ0). In case p ̸= p∗, p∗ is built again during a call to nex-
tQueuePath. If its pos-value is dominated by or equivalent to the pos-
value of a path in P̃sv(τ0), it is discarded. Otherwise, it is added to
Q when it becomes the lex. smallest s-v-path candidate. Before being
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extracted from Q and added to P̃sv(τ0), p∗ might be replaced in Q by
other s-v-paths multiple times. However, every time it becomes a can-
didate to re-enter Q the dominance of its pos-value is reassessed. We
conclude that p∗ is either added to P̃sv(τ0) itself or there is an s-v-path
p in P̃sv(τ0) s.t. pos(p, τ0) ⩽ pos(p∗, τ0). In this case, Lemma 11.4
proves the statement.

induction hypothesis We assume that

c(p̃, τ0) ⩽ rk−1c(p∗, τ0), (28)

holds for any k ∈ {2, . . . n− 1} and efficient paths p∗ with k− 1 arcs.

induction step Let p∗ be an efficient (s, v)-path with k arcs and let ak =

(u, v) be its last arc. Due to subpath efficiency, the (s,u)-subpath p∗
u

of p∗ is efficient. In addition, the induction hypothesis guarantees the
existence of a path p̃u such that (28) holds for p̃u and p∗

u. When p̃u is
extracted and made permanent, the path p̃ = p̃u ◦ (u, v) is analyzed in
the MD-FPTAS version of propagate and we have

c(p̃, τ0) = c(p̃u, τ0) + c(ak, c(p̃u, τ0))
(28) and Lemma 11.5

⩽

rk−1c (p∗
u, τ0) + rk−1c(ak, c (p∗

u, τ0)) ⩽ rk−1c(p∗, τ0).
(29)

Using the same argument as the base case of this proof, we know that
p̃ is either added to P̃sv(τ0) in a later iteration or it is discarded. In
case p̃ is added, we have c(p̃, τ0) ⩽ rk−1c(p∗, τ0) ⩽ rkc(p∗, τ0) and
we are done. If p̃ is discarded, there is a path p in P̃sv(τ0) such that
pos(p, τ0) ⩽ pos(p̃, τ0). By Lemma 11.4 the latter inequality implies
c(p, τ0) ⩽ rc(p̃, τ0). Combining this with (29), we get

1

r
c(p, τ0) ⩽ c(p̃, τ0) ⩽ rk−1c(p∗, τ0)⇐⇒ c(p, τ0) ⩽ rkc(p∗, τ0),

which finishes the proof.

The last equation motivates our choice of r = (1+ ε)
1

n−1 . Knowing that
the path p∗ in the proof is efficient, we know that it has at most k = n− 1

arcs. Then, rk becomes exactly 1+ ε, giving the (1+ ε)-cover for the set Psv
of s-v-path in the input graph starting at s with state τ0.

11.4.2 Space Consumption and Running Time Bounds

To ease the notation in this chapter, we set

T :=
n

ε
ln (nC). (30)

The definition of T is motivated by Lemma 11.2. Our assumptions regarding
the number of breakpoints of the dynamic arc cost functions and regarding
the O(1) evaluation of analytic formulas (pos-functions) ensure that c(p, τ0)
and pos(p, τ0) are calculated in constant time for every v ∈ V \ {s} and every
s-v-path p when p is obtained after the expansion of its s-u-subpath along
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p’s last arc (u, v). As always, we represent paths implicitly using labels. Each
label, i.e, each path, then consumes O (1) memory. Thus, Lemma 11.2 already
proves, that the MD-FPTAS requires O

(
nTd

)
space to store the output paths.

Setting N = nTd in the space consumption bound from the MDA for Dyn-
MOSP instances derived in (21), we get a space complexity of

O
(
nTd + dnm

)
(31)

for the MD-FPTAS.

Reducing one order of magnitude

When bounding the size of the output of their FPTASes for MOSP, the au-
thors in Breugem et al. (2017) and Tsaggouris and Zaroliagis (2007) remark
that they can be exact in one dimension (w.l.o.g. the last one) and thus consider
a (d− 1)-dimensional space with

O
(
nTd−1

)
(32)

hyperrectangles. Being exact in one dimension means, in this context, that
for every (d− 1)-dimensional pos vector encoded in (32) an approximation
algorithm can keep a solution with these (d− 1) cost entries and the best
possible value in the dth dimension. Given a path’s p label, we assume
that we can access pos(p, τ0) in constant time. If there is a path p ′ in this
hyperrectangle and cd(p

′, τ0) > cd(p, τ0), we replace p ′ with p and obtain
the cover. In contrast to the other dimensions, this inequality is checked
using the exact cd cost component of the paths instead of their pos-values.

We remark that using a label-setting algorithm that processes paths in
lex. non-decreasing order like the MD-FPTAS, we can reach the same bound
(32) without differentiating between exact and approximate cost dimensions.
Given the hyperrectangle defined by the d-dimensional pos-values, the MD-
FPTAS does never output one path per cell. The reason is that we do ⪯D -
checks w.r.t. the permanent paths’ pos-values in the MD-FPTAS variants
of propagate and nextQueuePath to possibly discard explored paths. It is
then easy to see that the maximal size of a set of non-dominated points
drawn from the vertices of the cells in the d-dimensional hyperrectangle is a
(d− 1)-dimensional diagonal. The size of this diagonal is, bounded by (32).
Thus, using the definitions of Nmax = maxv∈V |P̃sv| and N =

∑
v∈V |P̃sv| as

in Section 4.4 we find
Nmax ∈ O

(
Td−1

)
(33)

and N ∈ O
(
nTd−1

)
in this section.

Bounds

The discussion in the last section allows us to improve the space bound (31)
by one order of magnitude. Combining the arguments that led us to the
equation (31) and the discussion from last section, we immediately obtain

Theorem 11.2 (Space Consumption of the MD-FPTAS). The MD-FPTAS uses

O
(
nTd−1 + dnm

)
(34)

space.
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For the asymptotic running time bound, we combine (33), N ∈ O (nNmax),
and the running time bound for the MDA derived in (20).

Theorem 11.3 (Asymptotic Running Time of the MD-FPTAS). The MD-FPTAS
runs in

O
(
Td−1(n logn+ Td−1m)

)
(35)

for d > 2 and in
O
(
Td−1(n logn+m)

)
(36)

in the biobjective (d = 2) scenario.

11.4.3 Improved running time bound without dominance checks.

The MD-FPTAS as described so far uses dominance tests w.r.t. the pos-
values of paths to determine whether explored paths can be discarded. Since
dominance checks for d > 2 are a linear time check, this causes a quadratic
dependency on Td−1 in the general case, i.e., for d > 2. However, using
once again that we consider d as a constant in this chapter and that the pos-
values are assumed to be also computed in constant time, we can get rid of
the quadratic dependency.

Assume that we can compute a path’s pos-values in O (d) time and that we
can check in linear time w.r.t. the number of nodes in a path (O (n)) whether
a path is simple. Let p be an explored path. To obtain a variant of the
MD-FPTAS with an improved running time bound, we replace the O (Nmax)

dominance or equivalence ⪯D-checks in propagate and in nextQueuePath
with the O (d+n) time check shown in Algorithm 11.

Algorithm 11: pos dominance check

Input : s-v-path p, s-v-paths P̃sv(τ0) indexed by their first (d− 1)

pos-values.
Output : Updated P̃sv(τ0).

1 if p is a simple path then
2 if P̃sv

[
(pos1(p, τ0), . . . , posd−1(p, τ0))

]
is empty then

3 Store p in P̃sv;
4 else
5 q← P̃sv

[
(pos1(p, τ0), . . . , posd−1(p, τ0))

]
;

6 if cd(p, τ0) < cd(q, τ0) then
7 Replace q with p in P̃sv;
8 return P̃sv;

Using Algorithm 11 for Dyn-MOSP instances in any dimension d > 2 the
running time of the MD-FPTAS becomes

O
(
Td−1(n logn+m)

)
.

The new O (d+n) checks on paths vanish since O (d+n) ⊂ O
(
Td−1

)
.

Note that the asymptotic space consumption remains the same. However,
using Algorithm 11 requires to store the sets P̃sv(τ0) as arrays to allow con-
stant time access to its elements by a path’s pos-values. This is not needed
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d = 2 d > 2

(Tsaggouris & Zaroliagis, 2007) O (Tnm) O
(
Td−1nm

)

(Breugem et al., 2017) O
(
T (d−1)n3

)
O
(
T2(d−1)n3

)

MD-FPTAS O (T(n logn+m)) O
(
Td−1(n logn+ Td−1m)

)

MD-FPTAS with Algorithm 11 O (T(n logn+m)) O
(
Td−1(n logn+m)

)

Table 13: Overview of asymptotic running time bounds for multiple state of the art
FPTAS for MOSP problems.

in the original version of the MD-FPTAS since in that version, the output
sets P̃sv(τ0) can grow as paths made permanent. Thus, in practice, the MD-
FPTAS paired with Algorithm 11 is required to allocate much more space
from the beginning.

11.4.4 Final theoretical observations

Table 13 contains an overview of the asymptotic running time bounds of the
state of the art FPTAS for MOSP that were introduced in this section and
mentioned in this chapter’s introduction.

We observe that the MD-FPTAS using Algorithm 11 instead of linear time
dominance checks achieves the best bounds in every dimension. As men-
tioned earlier, it consumes a prohibitive amount of memory in practice.
Thus, the originally discussed version of the MD-FPTAS that generates the
sets P̃sv(τ0) iteratively is used in Section 11.5 for our experiments.

Remark 11.1 (FPTAS for One-to-One MOSP). Note that converting to convert
the MDA into an FPTAS for MOSP we only needed to introduced the pos-values
to check dominance between paths. Thus, it is immediate to see that the T-MDA
can also be adapted to obtain an FPTAS for the One-to-One MOSP problem. The
resulting FPTAS has the same running time bound as the variants of the MD-
FPTAS discussed so far in this chapter.

11.5 experiments

The MD-FPTAS inherits the behavior of the MDA and the T-MDA when
compared with the Martins’s algorithm and the NAMOA∗

dr-lazy algorithm.
Originally in (Maristany de las Casas, Borndörfer, et al., 2021) we compared
it to the FPTAS introduced in (Breugem et al., 2017). The output of both
FPTASes coincides, so back then we were interested in comparing both al-
gorithms’ running time. This comparison is no longer relevant within the
scope of this thesis. Thus, in this section, we shorten the experimental re-
sults reported in (Maristany de las Casas, Borndörfer, et al., 2021). We focus
only on the quality of the achieved approximations.

The following two reasons justify our decision.

• Originally, we compared the Hybrid FPTAS from (Breugem et al., 2017)
with the MD-FPTAS. However, since the Hybrid FPTAS is an imple-
mentation of Martins’s algorithm performing dominance checks using
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the paths’ pos-values, the running time comparison resembles the re-
sults obtained and discussed in prior chapters of this thesis.

• Originally, we considered Grid graphs and NetMaker graphs with two
and three-dimensional constant and integer arc cost functions as in prior
sections of this thesis. However, as discussed in (Maristany de las
Casas, Borndörfer, et al., 2021) the pos functions on these instances
cluster the outcome space in too many cells. As a consequence, no
two paths share a cell and thus, the output of the FPTASes coincides
with the output of the exact algorithms. This in turn causes the pos
calculations to be a useless computational overhead and hence, the
FPTASes are slower than their exact counterpart.

A meaningful experimental setting for this chapter is to consider once again
the EXP instances from (Hansen, 1980) and instances of the Horizontal Flight
Planning Problem first defined in (Blanco et al., 2016). These instances were
originally single-criterion Time Dependent Shortest Path instances and we
expand them here to Dyn-MOSP scenario, and made available by our indus-
try partner Lufthansa Systems GmbH.

Static Biobjective Exponential Instances

We use the EXP instances by Hansen (1980) in their original form, i.e., with
bidimensional arc cost vectors. Recall that on these instances, all paths are
efficient (see Figure 2). We use the EXP instances defined on graphs with at
least0 19 nodes. Instances defined on smaller graphs are solved in less than
a millisecond and are thus not relevant. We are interested in the number of
paths that are needed to compute a ε-cover P̃st for these instances.

Dynamic Biobjective Instances – Horizontal Flight Planning

The Dyn-MOSP instances motivated by the Horizontal Flight Planning (HFP)
problem introduced in (Blanco et al., 2016; Blanco et al., 2017). The digraph
in this instance has 410387 nodes and 878902 arcs and is called Airway Net-
work. The arcs are the direct connections between predefined coordinates
(the graph’s nodes) along which commercial aircraft are allowed to fly. On
www.skyvector.com an Airway Network can be displayed. We define two
dynamic arc cost functions.

The first one encodes the flight duration. I.e., the duration of the traversal
of an arc depending on the time point at which the tail of the arc is reached.
The duration is influenced by weather conditions. A weather prognosis esti-
mates wind for 30h. The information available to us is discrete and contains
an updated wind vector for every arc every 3h. Thus, we have 10 data points
per arc between which we interpolate wind linearly (Blanco et al., 2016, cf.).

The second function models the aircraft’s fuel consumption along an arc
depending on the aircraft’s weight at the arc’s tail node. In our model we
get 171 initial weights per arc and the corresponding consumption for each
weight. The difference between two consecutive weights is 500kg. Also in
the weight functions, data points are interpolated linearly.

The single pieces of the duration function can have positive or negative
slopes depending on the wind but the FIFO property still holds as shown

www.skyvector.com
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in (Blanco et al., 2016). The consumption function yields an always positive
slope since clearly, a higher initial weight will cause a higher consumption.
It is therefore also FIFO and, more importantly, the intercepts of its affine
pieces are positive, hence fulfilling the requirements from Theorem 11.1.

In this setting, we define One-to-All Dyn-MOSP instances. For the source
nodes, we choose all 586 large passenger airports1 contained in the data
made available to us by Lufthansa Systems.

In a fully realistic setting the Flight Planning (FP) problem rather than
the Horizontal Flight Planning problem from this chapter is solved. The
FP problem is defined in more detail in (Blanco et al., 2022). The main
difference is that the FP problem considers a layered graph with around 40

layers. Every layer is essentially a copy of the graph used in the HFP problem
and represents the Airway Network at a fixed altitude called a Flight Level.
An aircraft can change its layer via so called climb and descend arcs. One
can imagine that slight variations on the aircraft weight when a climb or
a descend is started have a big impact on the aircraft’s weight at the head
node of the arc as well as on the duration needed to traverse the arc. In
our experiments with the 3D Flight Planning solver used in (Blanco et al.,
2022) and closely related to Lufthansa System’s route planning optimizer
VOLAR, we considered bidimensional states τ encoding weight and time as
optimization criteria. Out of the box, the resulting minimal complete sets
of efficient paths contain multiple solutions per second for every second
in an interval between the fastest possible arrival and approximately two
hours later on long haul flights. Such a resolution is pointless in practice
for decision makers and thus, good approximations of the output sets are
needed in Flight Planning. Additionally, covers are interesting in this setting
because in the actual Flight Planning application, expansions of labels along
arcs are the bottleneck because the arc cost functions are complicated to
evaluate. Thus, saving labels in our prototype translates to relevant running
time savings in the production code in the application’s context.

Sadly, in the One-to-One HFP instances considered in this chapter, the
minimal complete sets of efficient paths are small because climbs and de-
scends are not considered. Thus, the MD-FPTAS is not interesting for this
setting. Our HFP experiments in this section were first conducted in (Maris-
tany de las Casas, Borndörfer, et al., 2021). To get larger sets of efficient
paths we decided to test the MD-FPTAS on One-to-All HFP instances. This
model fits better into the scope of this thesis. It allows us to analyze the
savings with regard to the number of efficient paths that are achievable us-
ing the output space clustering as defined in this chapter on a Dyn-MOSP
instance with rational paths’ costs.

11.5.1 Results

We used a computer with an Intel Xeon Gold 6338 @ 2.00 GHz processor.
The available RAM was 36GB. All algorithms were implemented in C++

and compiled wit the GCC compiler v.7.5 with compiler optimization level

1 According to https://github.com/datasets/airport-codes/blob/master/data/airport-codes.
csv as accessed on September 1st 2023.

https://github.com/datasets/airport-codes/blob/master/data/airport-codes.csv
https://github.com/datasets/airport-codes/blob/master/data/airport-codes.csv
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Figure 26: Visualization of the results reported in Table 14. The EXP instances were
solved using the biobjective version of the MD-FPTAS. The plot on the
right hand side shows the number of output paths at the rightmost node
(cf. Figure 2). The plot on the left hand side shows the required time to
solve the instances.

set to −O3. For the priority queues, we used our own implementation of
a binary heap. We set a time limit of 5400s for all instances. Note that the
results in this section were obtained using an older version of the MDA than
the one used in the previous chapters of the thesis. Running times are thus
not comparable to those reported in other chapters.

EXP instances

Table 14 summarizes the results obtained from the EXP instances. The in-
stance with 19 nodes is the biggest instance in which the MDA is faster than
the MD-FPTAS for ε = 0.05 and ε = 0.5. For ε = 0.5 the MD-FPTAS out-
puts 42.2% of the efficient s-t-paths calculated by the MDA. Still, it requires
0.94ms as opposed to the 0.80ms required by the MDA. The reason is that
calculating the paths’ pos-values is a non-negligible effort.

Starting with the EXP instance with 21 nodes, the calculation of pos-values
starts to pay off for every value of ε as seen also in Figure 26. Since in
EXP instances every path is efficient, the output paths returned by the MD-
FPTAS are efficient. Note however, that this is not guaranteed. All in all, the
relatively small number of nodes in the EXP instances and the exponential
(w.r.t. the number of nodes) functions used to define the arc costs are a
beneficial setting for FPTAS to reduce the output cardinality because the
pos functions can take less values than there are efficient paths. I.e., multiple
paths coincide in one cell and only one is kept.
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Exact ε = 0.05 ε = 0.5 ε = 1.0

n |P∗
st| Time [ms] |P̃st| Time [ms] |P̃st| Time [ms] |P̃st| Time [ms]

19 1534 0.80 1490 1.69 648 0.94 475 0.40

21 3070 2.62 2581 1.40 922 1.00 659 0.81

23 6142 4.85 4111 1.97 1264 0.46 880 0.24

25 12286 9.76 6140 3.96 1689 0.85 1164 0.55

27 24574 13.64 8758 3.85 2205 0.98 1501 0.76

29 49150 19.75 12038 7.09 2820 1.33 1892 1.14

31 98302 44.71 16053 9.18 3543 4.62 2362 1.63

33 196606 87.99 20889 14.42 4390 1.79 2886 2.43

35 393214 183.92 26624 23.66 5356 3.95 3510 1.80

37 786430 408.11 33340 16.14 6463 3.10 4184 2.73

39 1572862 676.45 41105 23.31 7722 3.13 4987 1.44

41 3145726 1205.04 50004 27.63 9124 4.15 5846 1.99

43 6291454 2381.74 60120 29.83 10694 4.95 6820 2.98

45 12582910 4643.58 71533 36.53 12452 6.92 7902 4.82

47 25165822 9132.19 84321 45.55 14393 6.44 9114 4.70

49 50331646 18195.42 98559 52.03 16538 7.99 10431 4.73

51 100663294 35892.34 114351 64.02 18873 10.46 11856 6.32

Table 14: Result collected on EXP instances with more than 19 nodes and for three different values of ε. On these instances, all paths are efficient, and thus
the outputs for One-to-One and One-to-All instances are the same. The sets Pst report the cardinality of the solution sets at the rightmost node in
every EXP graph (cf. Figure 2).
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Horizontal Flight Planning Instances

As we observe in the results collected from our HFP instances and summa-
rized in Table 15, using the MD-FPTAS is indeed a good choice for these
instances. Most instances are solved by the MDA in 22 = 4 to 26 = 64 sec-
onds. On these instances, the MD-FPTAS is ×1.23 to ×1.38 times faster than
the MDA. It achieves the speedup because for the input ε = 0.5, the MDA
outputs ×1.49 to ×1.66 more permanent paths. The speedup is smaller than
the ratio of saved labels because calculating the paths’ pos-values is compu-
tationally not negligible for so many paths.

The most interesting aspect of our experiments is the a posteriori error. We
compared the exact minimal complete sets of efficient paths output by the
MDA and the 1.5-covers returned by the MD-FPTAS. The reported values
in these columns disregard every efficient path output in the MD-FPTAS
because for these paths the approximation error is equal to zero.

Thus, we only consider output paths that are dominated and we report
their deviation from efficient paths. The column % dom. paths in Table 15

reports the percentage of paths in the output of the MF-FPTAS that are dom-
inated. Note that this is indeed a percentage and thus, in every group of
instances, less than 1% of the output paths of the MD-FPTAS are dominated.
For any v ∈ V , let p̃ ∈ P̃sv(τ0) be such a dominated s-v-path, i.e., a path
s.t. c(p̃, τ0) ∈ c(P̃sv, τ0)\c(P∗

sv, τ0). We iterate over all paths in P∗
sv(τ0). The

path p∗ ∈ P∗
sv(τ0) that dominates p̃ with the smallest euclidean distance

w.r.t. the paths’ costs, is used to define p̃’s error. We sum the resulting (ab-
solute and relative) errors componentwise over all nodes v ∈ V and over all
dominated s-v-paths. This way, in Table 15, we can report flight duration
and fuel consumption errors separately. Then, we build the average divid-
ing the obtained sum by the number of dominated paths in the output of
the MD-FPTAS.

As hinted already, the a posteriori error is satisfactory. As noted in the
last paragraph of Section 11.3, output paths can be dominated. From a
practitioners point of view it is interesting to know by how much the output
dominated paths deviate from efficient ones. In our HFP experiments, not
only the percentage of dominated paths output by the MD-FPTAS is very
low. Additionally, the relative flight duration error is less than 10−6 for
instances that are solved in 1s to 27s by the MDA. On instances that take
longer to be solved exactly, the MD-FPTAS makes a relative error in the flight
duration of at most 0.84× 10−6s. The relative error for the fuel consumption,
denoted as Weight in Table 15 behaves similarly but even better. In absolute
terms, the MD-FPTAS does an average error of at most 0.84s and at most
3× 10−6kg.

All in all we observe than in contrast to the results obtained in (Maristany
de las Casas, Borndörfer, et al., 2021) for MOSP instances with constant arc
cost functions, Dyn-MOSP instances can benefit from the MD-FPTAS since
less paths are made permanent. The a posteriori error is much better than
the (1+ ε) bound chosen in our experiments. The main reason is that the
error increases with every arc in an efficient path. Thus, the outcome space
partition from Definition 11.5 is chosen s.t. the longest (w.r.t. the number
of arcs) possible simple path is still covered. Such a path hast n − 1 arcs
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but in our examples there are no paths with nearly as many arcs. Thus, the
hyperrectangles defined by the pos-values of the efficient paths in the HFP
instances are much smaller than for a path with (n− 1) arcs in the Airway
Network. As a result, storing one path per cell in this region of the outcome
space partition gives a much better approximation as the one specified by
the a priori bound.
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Time [s] Permanent paths
A posteriori error

c1=̂ Duration c2=̂Weight

Solution
time

Inst’s MDA MD-FPTAS Speedup MDA MD-FPTAS Exact
Approx. dom. paths

Abs.
[s]

Rel.
[×10−6]

Abs.
[kg]

Rel.
[×10−6]

[0, 1) 6 0.57 0.50 1.14 705151.09 472975.54 1.49 0.54 0.15 3.5 0.04 0.0
[20, 21) 27 1.33 1.06 1.25 1777373.25 1107720.18 1.60 0.64 0.15 0.0 0.07 0.0
[21, 22) 57 2.92 2.23 1.31 3673247.29 2207167.77 1.66 0.93 0.22 0.0 0.07 0.0
[22, 23) 137 5.80 4.71 1.23 7237552.34 4852894.94 1.49 0.55 0.20 0.0 0.10 0.0
[23, 24) 151 11.15 9.05 1.23 12011827.36 8162261.12 1.47 0.61 0.16 0.0 0.11 0.0
[24, 25) 112 22.30 17.47 1.28 19546100.32 13055535.00 1.50 0.65 0.23 0.0 0.10 0.0
[25, 26) 68 41.39 29.89 1.38 27680969.25 16725621.46 1.66 0.97 0.21 0.0 0.10 0.0
[26, 27) 18 91.81 62.96 1.46 23214889.22 15330571.45 1.51 0.69 0.19 0.0 0.16 0.0
[27, 28) 9 174.92 139.42 1.25 30943964.99 21951139.08 1.41 0.40 0.35 8.0 0.11 0.0
[28, 29) 1 290.97 132.18 2.20 55580871.00 18511900.00 3.00 0.48 0.84 17.0 0.23 3.0

Table 15: Results obtained from our 586 HFP instances. The instances are grouped depending on the solution time needed by the MDA to solve them. The
intervals used to group the instances are shown in the column Solution time. The Inst’s column denotes the number of instances encoded in the
corresponding row of the table. The a posteriori relative error, denoted by ε, is calculated with an accuracy of 10−6. Zeros in this columns thus
mean that the error is smaller than the used accuracy. All reported averages are geometric means.
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Figure 27: Least consumption (left) and fastest (right) routes from Berlin to Yeka-
terinburg. Source: www.skyvector.com.

Figure 27 ends this section. It contains two screenshots of routes from
Berlin to Yekaterinburg. The trajectories are meant to show that indeed
optimizing flights w.r.t. fuel consumption and w.r.t. time can lead to very
different routes. This fact is well known in the 3D Flight Planning problem
and as shown in Figure 27 also needs to be considered in HFP instances.
The choice of the s-t-pair used for the figure is a relict of the time when
we published (Maristany de las Casas, Borndörfer, et al., 2021). Back then
the student assistant Arno Kühner wrote the export of the routes computed
in the MD-FPTAS to www.skyvector.com and he confessed to always have
wanted to visit Yekaterinburg.

11.6 conclusion and outlook

Good approximations for MOSP and Dyn-MOSP instances are the key for a
successful transition of this research area from theory to practice. The need
for approximations arises from the inherent intractability of the solution sets
in Multiobjective Combinatorial Optimization problems. Of course, corre-
lated objective functions help to reduce the expected size of the solution sets.
But as we have seen in this chapter, the arguably correlated duration and
fuel consumption of a flight can still cause an unnecessary (from a practi-
tioner’s point of view) amount of efficient solution paths. Having FPTAS for
MOSP and Dyn-MOSP is great as they constitute the best possible class of
approximations if the a priori error bound is the main concern. However, as
mentioned in the introduction to this chapter, an approximation algorithm
in which a decision maker can parametrize the solution set in terms of spac-
ing, cardinality, and coverage (cf. Bazgan et al., 2017) may be better suited.
The presented MD-FPTAS has state of the art asymptotic running time and
memory consumption bounds. It also works well in practice when tested
on Dyn-MOSP instances like the HFP instances from this chapter. Having
devoted Part iii of this thesis to bring MOSP closer to practice, we see the de-
velopment of approximations and the transfer of preprocessing techniques
for single-criterion Shortest Path problems to the multiobjective scenario as
the next steps to take researchwise to make MOSP an appealing modeling
technique in practice.

www.skyvector.com
www.skyvector.com
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12 I N T R O D U C T I O N

In the third and last part of the thesis, we consider static arc cost functions.
Other than this, the next two chapter have little in common. This is why
this introduction is rather short. The subsequent chapters have standalone
introductions. Our goal was to find out how we can use the MDA to solve
other problems than the MOSP problem. In other words, we were looking for
optimization problems in which multiobjective shortest paths are computed
in a subroutine. We came up with two ideas that are unrelated with each
other and also use the MDA in very different ways.

The first idea is that Dynamic Programming algorithms for Discrete Mul-
tiobjective Optimization (DMO) problems often solve a MOSP problem im-
plicitly. On a very high level we can say that DMO problems can be solved
with Dynamic Programming algorithms if they fulfill a Bellman equation
similar to the one stated in Theorem 3.1 for MOSP problems. For i ∈ N, a
Bellman equation for a DMO states how to derive efficient solutions for a
subproblem of size i+ 1 from efficient solutions of size i.

An example is the Multiobjective Minimum Spanning Tree (MO-MST) prob-
lem. In this multiobjective variant of the Minimum Spanning Tree problem,
greedy algorithms do not perform well and spanning trees of subgraphs
of cardinality i < n can be can be expanded using cut edges that connect
the spanned subgraph with a subgraph of cardinality i+ 1. Chapter 13 is
devoted to this problem.

In Chapter 14 we consider the k-Shortest Simple Path problem. In a black
box algorithm from Roditty and Zwick (2012) we can solve their core sub-
routine, the Second Shortest Simple Path problem, using a slightly modified
version of the biobjective version of the MDA. Despite the intractability of
the Biobjective Shortest Path (BOSP) problem, the new bidimensional arc
cost function defined in our approach is such that we can guarantee a poly-
nomial output size w.r.t. the size of the input graph. Indeed, even using a
biobjective subroutine, the new algorithm achieves an asymptotic running
time bound that is on par with the state of the art.
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S PA N N I N G T R E E P R O B L E M

We consider the Multiobjective Minimum Spanning Tree (MO-MST) problem.
The problem generalizes the well known Minimum Spanning Tree (MST)
problem to the case in which each edge of the input undirected graph is
weighted by a vector of costs rather than a scalar. Then, the multidimen-
sional costs of a tree are the sum of the costs of the edges in the trees. While
in MO-MST problems the set of feasible solutions remains the same as in the
MST, the notion of optimal trees varies and different solution approaches
are required to solve the problem to optimality. Efficient spanning trees are
defined similarly to efficient paths in the previous chapters of this thesis: A
spanning tree t is efficient if no spanning tree exists in the input graph s.t.
its vector of costs is at least as good as t’s in every dimension and better than
t’s in at lest one dimension. MST instances are usually solved using greedy
algorithms like Prim’s and Kruskal’s (Kruskal, 1956; Prim, 1957). For MO-
MST instances such algorithms are not suitable. In a nutshell, the problem is
that greedy algorithms enlarge trees choosing a best possible new edge. This
notion requires a total order of the edges according to their cost. However,
in a scenario with arc cost vectors, multiple total orders exist. A detailed
discussion on this topic can be read in (Ehrgott, 2005, Section 9.2.). This
observation opens up the long lasting search for algorithmic approaches to
solve MO-MST problems.

13.0.1 Literature Review and Outline

The MO-MST problem is well studied in the literature. For a good introduc-
tion to the topic with multiple insights on different solution approaches, we
refer to (Ehrgott, 2005, Section 9.2.). The recent survey by Fernandes et al.
(2020) benchmarks different algorithms on a huge set of instances providing
good insights on what techniques work best in practice nowadays.

The search for algorithmic approaches other than greedy algorithms for
MO-MST problems leads to different answers depending on the problem’s
dimension. In the biobjective case, two phase algorithms (Hamacher & Ruhe,
1994; Ramos et al., 1998; Steiner & Radzik, 2008; Sourd & Spanjaard, 2008;
Amorosi & Puerto, 2022) have been proven to be efficient with the work by
Sourd and Spanjaard (2008) being the indisputable state of the art. These
algorithms compute the supported efficient spanning trees in the first phase
and the unsupported efficient solutions in the second. Supported solutions
are obtained solving multiple instances of the MST problem via scalarization
of the objective functions. For the computation of unsupported solutions,
different techniques are used. In their state of the art algorithm Sourd and
Spanjaard (2008) split the second phase into two subphases. First they find
unsupported solutions performing neighborhood search starting from the
already found efficient trees. Finally the missing efficient trees are found
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solving multiple MIPs that use the costs of the existing efficient trees as
bounds. The reason for the superb performance of their algorithm is that in
almost every practical instance, all efficient trees are already computed after
the neighborhood search.

For edge costs with more than two dimensions, efficient two phase ap-
proaches are not known and hard to design as discussed for example in
(Ehrgott & Gandibleux, 2000). This once again opens up the search for effi-
cient MO-MST algorithms and leads to Dynamic Programming algorithms. In
this context, two publications by Di Puglia Pugliese, Guerreiro, and Santos
stand out. They first published a Dynamic Programming algorithm for the
MO-MST problem in (Di Puglia Pugliese et al., 2014) and afterwards they
notably improved their approach in (Santos et al., 2018) designing the Built
Network (BN) algorithm. In it they include an elegant way of ensuring that
every dynamically built tree is only considered once. By doing so, they solve
an arising symmetry issue in their original algorithm. Few other algorithms
for MO-MST instances with d > 2 dimensions are known in the literature. In
the PhD thesis of Lacour (2014) a generic hybrid algorithm for Multiobjective
Combinatorial Optimization problems is applied to MO-MST. It combines a
ranking approach to generate some supported solutions with a branch and
bound approach to complete the set of efficient solutions. In a sense, La-
cour’s algorithm can be seen as a two phase approach. However, applying
his algorithm to MO-MST instances is a marginal part of his thesis without
many details. This makes re-implementing and retracing his results a chal-
lenging task. Other references already considered in (Fernandes et al., 2020)
like (Corley, 1985; Perny & Spanjaard, 2005) determine a set of solutions
that is guaranteed to contain a correct output. The algorithm presented in
(Hamacher & Ruhe, 1994) enhances the algorithm presented in (Corley, 1985)
but it still can output trees that are not efficient.

outline Section 13.1 begins with the formal definition of the MO-MST
problem. Then, in Section 13.2 we embed the MO-MST problem in a Dy-
namic Programming context. Afterwards and similar to (Santos et al., 2018,
Section 3.1, Section 3.2), we discuss how to transform a MO-MST instance
into an instance of the One-to-One Multiobjective Shortest Path (MOSP)
problem defined on a so called transition graph G. Both instances’ solu-
tion sets are equivalent. In Section 13.2.2 to Section 13.2.5 we discuss our
first main contributions: how to reduce the size of G. The resulting One-
to-One MOSP instance defined on the reduced transition graph is used in
our second main contribution: the Implicit Graph Multiobjective Dijkstra Al-
gorithm (IG-MDA) introduced in Section 13.3. It takes advantage of the
MOSP-related expertise discussed in prior chapter of this thesis. To build
a meaningful experimental setting, we also use these techniques, whenever
possible, in our implementation of the BN algorithm. The resulting vari-
ant of the original algorithm from (Santos et al., 2018) is described in 13.4.
In Section 13.5 we present the results of our computational experiments in
which we benchmark the IG-MDA against our version of the BN algorithm.
Since on bi-dimensional MO-MST instances both algorithms are clearly out-
performed by the two phase algorithm from Sourd and Spanjaard (2008), we
use three and four-dimensional instances in our experiments. We consider
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all such MO-MST instances from (Santos et al., 2018) and a big subset of the
instances used in (Fernandes et al., 2020). Thereby, we achieve the last con-
tribution in this paper: to the best of our knowledge the size of the solved
instances is bigger than so far in the literature.

13.1 multiobjective minimum spanning tree prob-
lem

We proceed wit the formal definition of the MO-MST problem. An instance
of the problem is a tuple (G, s,d, c) consisting of an undirected connected
graph G = (V ,E), a d-dimensional edge cost functions c : E → Rd

⩾0, and a
node s ∈ V that is assumed, w.l.o.g, to be the root of every spanning tree in
G. We characterize a tree t in G by its edges, i.e., t ⊆ E. Then, the costs of
t are defined as c(t) :=

∑
e∈t c(e) ∈ Rd

⩾0 and we refer to the set of nodes
spanned by t by V(t) ⊆ V . For a set T of trees, we set c(T) := {c(t) | t ∈ T }.
For a subset U ⊆ V of nodes in G, we write G(U) to refer to the subgraph
of G induced by U. Similarly, we denote the subgraph of G spanned by t as
G(t) := G(V(t)).

Definition 13.1 (Efficient Trees). Consider a MO-MST instance I = (G, s,d, c).
Let t, t ′ be trees in G. t dominates t ′ if V(t) = V(t ′), c(t) ⩽ c(t ′), and c(t) ̸=
c(t ′). Moreover, t is an efficient spanning tree of G(t) if it is not dominated by
any other spanning tree of G(t). The cost vector of an efficient spanning tree
of G is called an nondominated cost vector of I.

We are interested in computing minimal complete sets of efficient trees: a sub-
set of the efficient spanning trees of a given graph G w.r.t. an edge cost
function c s.t. for every nondominated cost vector, there is exactly one effi-
cient tree in the subset. We can now define the MO-MST problem formally.

Definition 13.2 (Multiobjective Minimum Spanning Tree Problem). Consider
an undirected graph G = (V ,E), a root node s ∈ V , and d-dimensional edge
cost functions c : E → Rd

⩾0. Let T be the set of all spanning trees of G.
The Multiobjective Minimum Spanning Tree (MO-MST) problem is to find a
minimal complete set T∗ ⊆ T of efficient trees. We refer to the pair (G, s,d, c)
as a d-dimensional MO-MST instance.

On a complete graph with n ∈ N labeled nodes there are nn−2 spanning
trees (Cayley, 2009). Hamacher and Ruhe (1994) constructed bi-dimensional
MO-MST instances on complete graphs in which every spanning tree has
a nondominated cost vector, proving the problem’s intractability. In their
paper, they also prove the NP-hardness of the MO-MST problem.

13.2 dynamic programming for mo-mst

In this chapter we refer to a d-dimensional One-to-One MOSP instance (cf.
Definition 3.2) as tuple (G, s, t,d,γ), where G = (V,A) is a directed graph,
s ∈ V the source node, t ∈ V the target node, and γ : A → Rd

⩾0 the arc
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cost function. We use different symbols than so far in the thesis because in
this chapter, we differentiate between the original MO-MST instance to be
solved and the One-to-One MOSP instance that we actually solve to obtain
a solution set that is equivalent to the one of the MO-MST instance at hand.

In Dynamic Programming, Bellman conditions are recursive expressions
that state how to derive optimal/efficient solutions for a problem at hand
from optimal/efficient solutions of its subproblems. Assume we are given
a MO-MST instance defined on a graph G = (V ,E) in which all spanning
trees are w.l.o.g. rooted at a node s ∈ V . Let W ⊂ V be a set of nodes and
G(W) be the subgraph induced by W. In this scenario, the Bellman condition
(cf. Theorem 13.1) states how to build efficient spanning trees of G(W) by
looking at the efficient spanning trees of the subgraphs of G induced by all
subsets U ⊂W with |U| = |W|− 1.

This naturally leads to the definition of a new directed graph sometimes
called the transition graph G in the Dynamic Programming literature. G is
formally defined in Definition 13.3. For now, a high level description suffices.
The nodes in G correspond to subsets of nodes in G. A One-to-One MOSP
instance is obtained setting the node encoding {s} as the source node and
the node encoding the whole node set V of G as the target node. Then,
efficient {s}-V-paths in G correspond to efficient spanning trees in G. We
remark that the arising transition graph and One-to-One MOSP instance
have been already used in the literature. In (Santos et al., 2018) the authors
call the transition graph the Built Network but they do not derive it from the
Bellman condition for MO-MST as we do. We choose to introduce the graph
using Bellman conditions to stress the Dynamic Programming nature of our
approach in this chapter. Recall that any node set U ⊆ V induces the cut

δ(U) := {[u,w] ∈ E | u ∈ U, w ∈ V\U}

and we have the following basic result from graph theory.

Lemma 13.1. Let G = (V ,E) be an undirected graph, t a tree in G, and [u,w] ∈ E

an edge. Then, t ′ = t ◦ [u,w] is a tree if and only if [u,w] ∈ δ(V(t)). If that is the
case, we have |V(t)| = |V(t ′)|− 1.

In the remainder of this chapter, we superscript a set T of trees with an ∗
to refer to a minimal complete set of efficient trees in T , i.e., T∗ ⊆ T contains
exactly one tree for every nondominated vector in c(T). Given a (sub-)graph
G ′ of G, we refer to the set of spanning trees of G ′ by TG ′ .

Theorem 13.1 (Bellman Condition for Efficient Subtrees). Let (G, s,d, c) be a
d-dimensional MO-MST instance.

base case We set tG({s}) to be the spanning tree of G({s}), a subgraph containing
just the node s and no edges, and c(tG({s})) = 0. Since this is the only tree
in TG({s}), we have TG({s}) = T∗

G({s}).

recursion Consider a subset W ⊆ V of cardinality k ∈ {2, . . . ,n}. A minimal
complete set T∗

G(W) of efficient spanning trees of G(W) is given by{
t ′ ◦ [u,w]

∣∣∣ t ′ ∈ T∗
G(U), U ⊂W, |W| = |U|+ 1, and [u,w] ∈ δ(U)

}∗
.

(37)



13.2 dynamic programming for mo-mst 153

Proof. Assume there exists an efficient spanning tree t of G(W) and a subset
U ⊂W s.t. t = t ′′ ◦ [u,w] for a dominated spanning tree t ′′ of G(U), [u,w] ∈
δ(U). Consider an efficient spanning tree t ′ of G(U) that dominates t ′′. t ′ ◦
[u,w] is also a spanning tree of G(W) (cf. Lemma 13.1) and

c(t ′) ⩽ c(t ′′)⇔ c(t ′ ◦ [u,w]) ⩽ c(t ′′ ◦ [u,w]) = c(t).

Since t ′ dominates t ′′ the first inequality is strict for at least one index caus-
ing t to also be dominated. By Lemma 13.1 every spanning tree of G(W)

can be obtained from spanning trees in the subgraphs G(U) for U ⊂W with
|U|+ 1 = |W|.

Then, the correctness of the statement follows by induction over the cardi-
nality of |W| and using TG({s}) = T∗

G({s}) as in the induction’s base case. Note
that the ∗-superscript in (37) is needed because the expansions of efficient
trees of different subsets U of W can dominate each other.

From (37) we can infer how to build the transition graph G = (V,A). Its
transition nodes V correspond to subsets of nodes in G. A transition node
U ∈ V encoding the subset U ⊂ V is a predecessor node of a transition
node W ∈ V if W corresponds to a subset W ⊂ V of nodes s.t. U ⊂ W

with |W| = |U| + 1. The arcs between both nodes are given by the edges
[u,w] ∈ δ(U). The following definition formalizes the new graph and its arc
costs. For a discrete set X, the power set of X is 2X.

Definition 13.3 (Transition Graph). Consider a MO-MST instance (G, s,d, c).
We define the transition graph of G as the directed graph G = (V,A) with node
set

V :=
{
V ′ ∪ {s}

∣∣∣ V ′ ∈ 2V\{s}
}

.

Every such node is also called a transition node. The outgoing arcs of node
U ∈ V are induced by the cut δ(U):

δ+(U) :=
{
(U,W)

∣∣∣W = U∪ {w} if ∃[u,w] ∈ δ(U)
}

. (38)

The set of arcs in G is given by A :=
⋃

U∈V δ+(U). If an arc (U,W) ∈ A

is induced by an edge [u,w] ∈ E, we call [u,w] the preimage edge of (U,W)

and write [u,w] = (U,W)−1. Moreover, we refer to (U,W) as a copy of [u,w]

in G. We define a d-dimensional arc cost function γ : A → Rd
⩾0 setting

γ(a) = c(a−1).

In Definition 13.3 and in the remainder of the paper, we incur in a slight
abuse of notation when we denote a transition node U and simultaneously
mean the transition node in V and the subset U ⊆ V of nodes in the original
graph G. Note that for an arc (U,W) as defined in (38), we have U,W ∈ V

and U∪ {w} = W for some node w ∈ V , i.e., W is an expansion of U by just
one node. Even though we defined the set A using the nodes’ outgoing arcs,
it of course also allows us to access sets δ−(U) of incoming arcs for every
transition node U. The following remark is important for the understanding
of the remainder of this section.

Remark 13.1. The transition graph G = (V,A) as defined in Definition 13.3 is a
layered acyclic multigraph.
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Figure 28: Left: 2d MO-MST instance (G, s,d, c). Right: Corresponding One-to-One
MOSP instance (G,γ, {s},V)

layered For k ∈ {1, · · · ,n} the kth layer of G consists of all nodes in V that encode
a subset of nodes in V with cardinality k.

acylic From (38) we immediately see that A only contains arcs connecting neigh-
boring layers and that the arcs always point towards the layer of greater car-
dinality.

multigraph A is a multiset: multiple arcs connect the same pairs of nodes in
G. Parallel arcs might have different costs depending on their preimage edge.
Additionally, for two parallel arcs a, b ∈ A, there always holds a−1 ̸= b−1.

Given the transition graph G and the arc costs γ, we set the source node of
the new One-to-One MOSP instance to be node in V encoding the subset of
nodes in V that contains s only, i.e., {s} ∈ V. The target node for the new One-
to-One MOSP instance is set to be the transition node encoding the whole
set V of nodes in G, i.e., V ∈ V is the target node. Figure 28 includes an
example of a MO-MST instance and its corresponding One-to-One MOSP
instance (G = (V,A), {s},V ,d,γ). As noted in this section’s introduction, this
is the same One-to-One MOSP instance considered in (Santos et al., 2018).

13.2.1 Equivalent efficiency of trees in G and paths in G (cf. Santos et al.,
2018, Section 3.1)

First we formalize when a path in G represents a tree in G.

Definition 13.4 (Path representations of a tree). Consider a MO-MST in-
stance (G, s,d, c) and the associated transition graph G. For a node U ∈ V an
{s}-U-path p in G is said to represent or be a representation of a spanning tree t

of G(U) if t = {a−1 | a ∈ p}.

The following lemma describes the mapping between trees in G and paths
in G and their equivalent costs. Thereby it is important to note that a tree
is represented by multiple paths but a path represents only one tree. The
omitted proof corresponds to the proofs in (Santos et al., 2018, Proposition
3.1., Proposition 3.2.).

Lemma 13.2. Consider a node subset U ⊆ V in G containing s. A tree t in G(U)

rooted at s is represented in G by at least one {s}-U-path. For any such path p we
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have c(t) = γ(p). Conversely, an {s}-U-path in G for some U ∈ V represents a tree
t in G(U) and γ(p) = c(t).

We can now conclude that a given MO-MST instance can be solved com-
puting the efficient paths in a One-to-One MOSP instance on the induced
transition graph. The statement is implicit in the exposition in (Santos et al.,
2018, Section 3.1.). As we did in previous chapters if P is a set of paths in G,
we write γ(P) := {γ(p) | p ∈ P} ⊂ Rd

⩾0 to refer to the set of costs induced by
the paths in P.

Theorem 13.2. Consider a subset U ⊆ V that contains s. A minimal complete
set of efficient {s}-U-paths in G w.r.t. γ corresponds to a minimal complete set of
efficient spanning trees of G(U) w.r.t. c.

Proof. Let PU the set of {s}-U-paths in G. By Lemma 13.2 every such path
represents a spanning tree of G(U) and all spanning trees of G(U) are repre-
sented by at least one of these paths. Moreover, we have γ(PU) = c(TG(U))

and as a consequence, γ(PU)∗ = c(TG(U))
∗ which finishes the proof.

13.2.2 Size of the transition graph

From this section onward we deviate from the exposition in (Santos et al.,
2018). We begin with the analysis of the size of the biggest possible transi-
tion graph. This is important for two reasons. First, it creates awareness of
the importance of applying pruning methods that reduce the size of the tran-
sition graphs by deleting arcs (cf. Section 13.2.3-Section 13.2.5). Second, the
size of the transition graph is needed to derive an asymptotic running time
bound for our new MO-MST algorithm (cf. Theorem 13.4). We consider a
d-dimensional MO-MST instance (G, s,d, c) in which G is a complete graph
with n nodes. Additionally, we again assume that all spanning trees are
rooted at a node s ∈ V and build the equivalent One-to-One MOSP instance
(G, {s},V ,d,γ) as defined in Definition 13.3.

For a subset U ⊆ V that contains s, let t be a spanning tree of G(U) with
depth one, i.e., a spanning tree in which every node other than the root node
is a leaf node. Then, there are (|U|− 1)! {s}-U-paths in G. This number of
representations of a tree in G is an upper bound because for trees with depth
greater than one, the ordering of the edges along the root-to-leaf paths in
the tree have to be respected along the {s}-U-paths in G. If the spanning tree
t is a path, then the representation of t in G by a {s}-U-path is unique.

In our setting, having fixed a node as the root node of all spanning trees,
it is easy to see that for any k ∈ {1, . . . ,n} the kth layer (cf. Remark 13.1) of
nodes in V is build out of

(
n−1
k−1

)
nodes. Thus, we obtain

|V| =

n∑
k=1

(
n− 1

k− 1

)
= 2n−1. (39)

The overall number of arcs between layer k and layer k+ 1 for any k ∈
{1, . . . ,n} is (

n− 1

k− 1

)
(n− k)k (40)
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where the first multiplier is the number of transition nodes in the kth layer,
the second multiplier is the number of missing nodes from G in any subset
of nodes of G with cardinality k, and the last multiplier accounts for the
number of parallel arcs. Thus, all in all, the number of arcs in G is

|A| =

n∑
k=1

(
n− 1

k− 1

)
(n− k)k = 2n−3(n− 1)n. (41)

Clearly, the size of the transition graph G is an issue to address in the
development of efficient Dynamic Programming algorithms for MO-MST
problems. In the following sections, we discuss different techniques to re-
duce the size of G. In Section 13.2.3, we discuss a polynomial running time
approach that acts on the input graph G directly recognizing edges that can
be deleted from the graph or edges that can be included in every efficient
spanning tree. In Section 13.2.4 and Section 13.2.5, we discuss conditions to
reduce the size of A. These conditions are cut-dependent and are applied
during the construction of the sets δ+(U) for U ∈ V. This stands in contrast
to the pruning conditions used in the state of the art Dynamic Programming
MO-MST algorithm introduced in (Santos et al., 2018). The so called Built
Network algorithm ensures that every considered path represents a different
tree. To do so, it is equipped with path-dependent pruning conditions that
do not reduce the number of arcs in A.

13.2.3 Polynomial time graph reduction during preprocessing

The manipulation of the input graph G described in this section is explained
in (Sourd & Spanjaard, 2008). We refer the reader to the original paper to
understand the details and correctness proofs. An edge e ∈ E can be irrele-
vant for the MO-MST search if e is not contained in any efficient spanning
tree of G or if for every nondominated cost vector, there exists a spanning
tree with this cost vector that contains e.

Definition 13.5 (Red and Blue Arcs. cf. (Sourd & Spanjaard, 2008), Section
3.2). Consider an instance (G, s,d, c) of the MO-MST problem and let TG be
the set of spanning trees of G.

blue edge An edge e ∈ E is blue if for every nondominated cost vector in
c(TG)∗ there is an efficient tree t ∈ TG that contains e.

red edge An edge e ∈ E is red if there exists a minimal complete set T∗
G of

efficient spanning trees of G for which e is not contained in any tree in
the set.

Red edges can be deleted from G without impacting the final set of ef-
ficient spanning trees. In case e = [u, v] is a blue edge, u and v can be
contracted to build a new node w with δ(w) = (δ(u)∪ δ(v))\{[u, v]}. Once w

is built, u and v can be deleted from G.
Interestingly, using Sourd and Spanjaard (2008, Algorithm 3) the condi-

tions to find blue and red edges can be checked in O
(
m2
)

time. From
now on, we only consider input graphs to our MO-MST instances that do
not contain blue or red edges. By doing so, we assume that the described
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preprocessing phase is conducted before starting any actual MO-MST algo-
rithm.

13.2.4 Pruning parallel transition arcs

The red and the blue conditions for edges in E, reduce the size of the input
graph G. In other words, a red or a blue edge in G has no arc copies (cf.
Definition 13.3) in G. Using the condition that we derive in this section, we
are only able to delete a subset of an edge’s arc copies. In this sense, the
condition from Lemma 13.4 is more local than the blue/red edge conditions.

The condition is motivated by an almost trivial condition that holds for
every One-to-One MOSP instance.

Lemma 13.3. Let (G, {s},V ,d,γ) be a One-to-One MOSP instance. If G contains
two parallel arcs a, a ′ s.t. γ(a) ⩽ γ(a ′) and γ(a) ̸= γ(a ′) then a ′ is not contained
in any efficient {s}-V-path.

The condition becomes more powerful if we study the condition’s mean-
ing regarding the preimage edges of the involved arcs.

Lemma 13.4. Let U be a node set in G containing s and [u,w], [u ′,w] edges in
δ(U) with u,u ′ ∈ U and w ∈ V\U. If [u,w] dominates [u ′,w], [u ′,w] is not
contained in any efficient spanning tree of G that contains an efficient spanning tree
of G(U) as a subtree.

Proof. Let tU be an efficient spanning tree of G(U) contained in an efficient
spanning tree t of G. If additionally t contains an edge e = [u,w] ∈ δ(U)

with u ∈ U and w /∈ U, e must not be dominated by any edge e ′ = [u ′,w] ∈
δ(U) because otherwise tU ◦ e would be dominated by tU ◦ e ′. Thus, we
could replace [u,w] by [u,w ′] in t and obtain a spanning tree of G that
dominates t. This would contradict the assumption on t’s efficiency.

To explain the last condition in terms of the transition graph, consider a
transition node U ∈ V. We call every transition node W ∈ V a successor
node of U if there exists a path from U to W in G. Since G is acyclic (cf.
Remark 13.1), this notion is well defined. Assume there exists a dominance
relation between parallel outgoing arcs of U, i.e., between two arcs a,a ′ ∈
δ+(U) whose head node is a transition node W = U ∪ {w} for some w ∈ G.
Then if a ′ is dominated by a, no copies of the preimage edge a ′−1 need to
be considered when building the sets δ+(W ′) for any transition node W ′

that is a successor node of U.

13.2.5 Pruning dominated outgoing arcs

Our last condition (Lemma 13.5) to remove arcs from the transition graph
is the most local one: it allows to remove single arcs a ∈ A. From this
condition, we cannot gain additional information from a’s preimage edges
to delete multiple copies of a−1 from G.

The condition is a reformulation of a known necessary condition for the
efficiency of trees already stated in e.g. (Hamacher & Ruhe, 1994; Corley,
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1985; Chen et al., 2007). We reformulate it to emphasize that the condition
holds for all efficient spanning trees of a given (sub)graph. For us, this means
that we can use the condition to delete transition arcs without the need to
check the condition for single trees.

Lemma 13.5. Consider a MO-MST instance (G, s,d, c). Let t be an efficient span-
ning tree of G. For every edge e ∈ t there is a cut δ(U) in G and a minimal complete
set δ(U)∗ of efficient cut edges s.t. e ∈ δ(U)∗.

Proof. Fix an edge e ∈ t and consider the two disjoint trees tU and tW
obtained after removing e from t. We assume that tU is the tree containing
the root node s and set U = V(tU) to be its node set. We have e ∈ δ(U)

and any other cut edge e ′ ∈ δ(U) connects tU and tW hence building a new
spanning tree t ′ of G. If a cut edge e ′ in δ(U) dominates e we get

c(t) = c(tU) + c(e) + c(tW) ⩽ c(tU) + c(e ′) + c(tW) = c(t ′).

For at least one index i ∈ {1, . . . ,d} we have ci(t) < ci(t
′) implying t’s

dominance and thus contradicting the statement’s assumption.

Thus, when building the transition graph G = (V,A) we do not need to
include arc copies in δ+(U) of edges that are dominated in the cut δ(U) of
G. Assume the edge e ∈ δ(U) is dominated but contained in an efficient
spanning tree t of G. Lemma 13.5 guarantees that there is a node set W ⊂ V

for which e is an efficient cut edge in δ(W). Then, e is contained in a set of
outgoing arcs δ+(W)∗ of the transition node W ∈ V. All in all, we obtain the
following result.

Theorem 13.3. Consider a MO-MST instance (G, s,dc) without blue or red arcs
in G. Any minimal complete set of efficient {s}-V-paths in the Pruned Transition
Graph G∗ = (V,A∗) with A∗ := ∪U∈Vδ

+(U)∗ corresponds to a minimal complete
set of efficient {s}-V-paths in G.

Remark 13.2 (Incoming Arcs). From now on, we refer to the sets of incoming arcs
of a transition node W ∈ V by δ−(W)∗ but the notation can be misleading. We
use it to emphasize that we only consider a transition graph with the set A∗ of arcs.
However, even if the sets δ+(U)∗ do not contain dominated arcs for any U ∈ V, the
set δ−(W)∗ := {(U,W) | (U,W) ∈ A∗} can contain arcs that dominate each other.

13.3 new dynamic programming algorithm

Remark 13.3. In this chapter, we introduce our IG-MDA and discuss our version
of the BN algorithm. Both are label-setting One-to-One MOSP algorithms. Thus,
our implementations use speedup techniques such as dimensionality reduction or
target pruning. Since these techniques are described in detail in Section 3.4 and in
Chapter 9, we give a higher level description of the algorithms in this chapter. This
makes the exposition less cluttered and allows us to focus on the peculiarities of the
considered One-to-One MOSP instances.

In the last section, we described the translation from a given MO-MST
instance (G, s,d, c) with all trees rooted at a node s ∈ V to the corresponding
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equivalent One-to-One MOSP instance ISP = (G∗, {s},V ,d,γ). In this section,
we explain how to use a slightly modified version of the tmda for One-
to-One MOSP instances like ISP. We call the resulting algorithm the Implicit
Graph Multiobjective Dijkstra Algorithm (IG-MDA). The main innovation in the
IG-MDA targets possible issues with the size of G∗. It does so creating the
graph implicitly as needed when paths are expanded. The downside of this
approach is that, since the graph is not known a priori, we cannot compute a
heuristic to build the reduced costs γ̄ and guide the search towards the target
node. However, it shall be noted right away that we tested the resulting
heuristic in early stages of our development of our MO-MST algorithm and
found out that building G∗ explicitly is, in most cases, a prohibitive task in
terms of running time and memory consumption.

Algorithm 12 is the pseudocode of the IG-MDA. In our pseudocode, we
assume the existence of a container T∗ that stores the lists T∗

G(U) for every
U ∈ V. We proceed with a high level description of the algorithm in the
remainder of the section. Most parts of the algorithm coincide with the ones
explained and proven in Chapter 9. Readers of this thesis interested in in-
depth discussions and proofs about the IG-MDA are referred to Chapter 9

and the tmda introduced therein. The implicit handling of G∗ in the IG-MDA
is discussed in Section 13.3.1.

Algorithm 12: Implicit Graph Multiobjective Dijkstra Algorithm
(IG-MDA)

Input :d-dimensional One-to-One MOSP instance ISP = (G∗, {s},V ,d,γ).

Output : Minimal complete set T∗
G(V) of {s}-V-paths in G w.r.t. γ.

1 Prio. queue of paths Q← ∅; // Lex. non-decreasing order w.r.t. γ.

2 Transition graph G initialized only containing the transition node {s};
3 Trivial {s}-{s}-path pinit ← ();
4 Q← Q.insert(pinit);

5 while Q ̸= ∅ do
6 p← Q.extractMin() ;
7 U← last transition node of path p ; // If p = pinit, U← {s}.

8 success← False;
9 if U ̸= V then (Q, success)← ig-propagate(p,Q, T∗,NQP) ;
10 if U == V or success == True then T∗

G(U).append(p);

11 New queue path p ′ for U← Solve (42) according to U and the existing
NQPa lists for a ∈ δ−(U)∗ ;

12 if p ′ ̸= NULL then Q.insert(p ′);
13 return T∗

G(V);

In every iteration of the IG-MDA, a lex. minimal explored path is extracted
from the queue Q (Line 6). Assume p is an extracted {s}-U-path for some
node U ∈ V. Since p is an explored path, it is not dominated by or equivalent
to any path in T∗

G(U) by definition. Since for any U ∈ V the explored path
in Q is lex. minimal compared to other existing explored {s}-U-paths, p is
guaranteed to be an efficient {s}-U-path in G w.r.t. γ (cf. Definition 3.5). Thus,
when extracted from Q, the IG-MDA builds the expansions of p along the
outgoing arcs in δ+(U)∗ and decides if p needs to be stored in T∗

G(U).
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Algorithm 13: ig-propagate.
Input : {s}-U-path p, priority queue Q, permanent paths T∗, lists of

explored paths NQP.
Output : Updated priority queue Q and a boolean flag telling if the

propagation of p was successful along at least arc in δ+(U)∗.

1 Flag success← False;
2 if δ+(U)∗ not initialized then build δ+(U)∗ as described in Section 13.3.1 ;
3 for W ∈ δ+(U)∗ do
4 q← p ◦ (U,W);
5 if γ(T∗

G(W)) ⪯D γ(q) then continue;

6 success← True;
7 if Q does not contain an {s}-W-path then
8 Q.insert (q) ;
9 else
10 q ′ ← {s}-W-path in Q;
11 if γ(q) ≺lex γ(q ′) then
12 Q.decreaseKey(W, q) ;
13 if not γ(q) ⩽ γ(q ′) then
14 (U ′,W)← last arc in path q ′;
15 Insert q ′ at the beginning of NQP(U ′,W);
16 else
17 if not γ(q ′) ⩽ γ(q) then Insert q at the end of NQP(U,W) ;
18 return (Q, success);

The decision is made in the subroutine ig-propagate called in Line 9 of
the IG-MDA. The subroutine works like the propagate subroutine from the
tmda. It uses NQP lists associated with the arcs in G∗ to store the explored
paths that are not queue paths. If the expansion of an efficient {s}-U-path p

along the arcs in δ+(U)∗ does only produce dominated or equivalent paths,
p is not stored in T∗

G(U).
Besides the propagation of p as described in the last paragraph, every

iteration of the IG-MDA needs to search for a new explored {s}-U-path p ′ to
be stored in the priority queue Q. The new path has to be a queue path for
U according to Definition 9.3. The candidate {s}-U-paths are stored in the
NQPa lists for a ∈ δ−(U)∗ and thus, p ′ solves the minimization problem

arg lex min
{
γ(p)

∣∣∣p ∈ NQPa, a ∈ δ−(U)∗, and not γ(T∗
G(U)) ⪯D γ(p)

}
.
(42)

The minimization and the addition of p ′ to Q in case such a new explored
path is found happen in Line 11 and Line 12 of Algorithm 12. The routine
nextQueuePath* in the tmda is used to solve (42).

Further details on how the original tmda proceeds, its correctness, and fur-
ther speedup techniques in the implementation are described in Chapter 9.

13.3.1 Implicit Handling of the Transition Graph

In this section we explain how the transition graph G is managed implicitly
in the IG-MDA. The addition to a node U to the initially empty set V of
transition nodes always entails the initialization of the list T∗

G(U) since we
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assume that the algorithm will store some permanent and thus efficient {s}-
U-paths. No arcs are added during this node initialization. At the beginning
of the algorithm, the IG-MDA only adds the node {s} to G (Line 2).

When an {s}-U-path p is extracted from the priority queue, expansions of p
along outgoing arcs of U are built in ig-propagate. To this aim, the set δ+(U)∗

needs to be constructed if it does not yet exist (Line 2 of ig-propagate). The
construction happens using (38) and the arc removal techniques discussed
in Lemma 13.4 and Lemma 13.5. The creation of an arc (U,W) in this set
requires

• the addition of (U,W) to the set δ+(U)∗,

• the addition of W to V as explained in the last paragraph if it does not
yet exist,

• the addition of (U,W) to δ−(W)∗,

• and the initialization of the list NQP(U,W).

In case the set δ+(U)∗ already exists when p is extracted from the queue,
we are sure that the lists NQP(U,W) that are possibly needed in ig-propagate
are already initialized. Moreover, the new explored paths q = p ◦ (U,W)

obtained from p’s expansions can be added to T∗
G(W) if needed later.

13.3.2 Running Time

Using the running time bound for the mda and the tmda derived in The-
orem 4.4, the number of nodes (39), and the number of arcs (41) in G, we
obtain the following result.

Theorem 13.4. Consider an MO-MST instance (G, s,d, c) and the corresponding
One-to-One MOSP instance ISP = (G∗, {s},V ,d,γ). Using the IG-MDA to solve
ISP, setting Nmax := maxU∈V |T∗

G(U)|, and applying Theorem 13.2, (G, s,d, c) can
be solved in

O
(
dNmax

(
|V| log |V|+ |A|Nmax

))
.

Note that the running time is not output sensitive since the the transition
graph can contain polynomially many nodes and arcs w.r.t. the size of the
input graph G.

13.4 build network algorithm

In this section, we briefly describe the Build Network (BN) algorithm from
(Santos et al., 2018), using our terminology to compare it with the IG-MDA
in what follows.

Again, we start with a given a MO-MST instance (G, s,d, c) without red
or blue edges. For the description of the algorithm we again need the One-
to-One MOSP instance ISP = (G, {s},V ,d,γ). Note that the original transition
graph G is used instead of G∗. Then, the BN algorithm looks for efficient {s}-
V-paths w.r.t. γ in G. Explored paths are stored in a priority queue Q that



162 multiobjective minimum spanning tree problem

is sorted lexicographically. merge operations are conducted in every itera-
tion to delete dominated explored paths. In our implementation of the BN
algorithm we manage explored paths as in the NAMOA∗

dr-lazy algorithm.
For every new path p extracted from the algorithm’s queue, the algorithm

analyzes the ordering in which arcs were added to p to determine the al-
lowed expansions of p. The conditions ensure that no two paths considered
by the BN algorithm encode the same tree in G. This is remarkable given that
a tree with k nodes can have up to (k− 1)! representations in G as noted in
Section 13.2.2. These unique representations of trees in G are called minimal
paths (cf. Santos et al., 2018, Definition 3.5.)).

Informally, minimal paths can be defined as follows. The definition is
recursive and assumes that nodes in G are labeled with unique ids from 1

to n. A path with only one arc is always minimal. Let p be a minimal {s}-
U-path in G for some U ∈ V and let t be the spanning tree of G(U) induced
by p. The preimage edges of the arcs in p, in their order of appearance
along p, define a permutation πp that maps the ids of the nodes in U to their
order of inclusion into t. Now, let [u,w] be the preimage edge of the last
arc in p. There are two possibilities for the expansions of p to be minimal
paths. If edges [u,w ′] ∈ δ(u) s.t. w ′ /∈ U exist, then the paths obtained after
expanding p along the copies of the arcs [u,w ′] in δ+(U) s.t. the id of w ′ is
greater than the id of w are minimal paths. In the second option, we assume
that π(u) = k. It is guaranteed that k ⩽ |U|. Then, p must be expanded along
the copy of an edge [u ′,w ′] in δ+(U) s.t. π(u ′) > k. We assume w.l.o.g that
u ′ ∈ U and w ′ /∈ U.

Example 13.1 (Minimal Paths). Consider the complete graph K4 with four
nodes. The path p with the preimage edges ([1, 3], [3, 4]) is a minimal path.
The corresponding tree spans the subgraph with nodes U = {1, 3, 4}. A span-
ning tree of the K4 is obtained by adding any of the edges [1, 2], [3, 2], [4, 2]
to the tree. I.e., p must be expanded along the copies of one of these edges
in G. However, expanding along a copy of [3, 2] does not lead to a minimal
path. The reason is that the preimage of the last arc in p is [u,w] = [3, 4]
and [3, 2] has the same node in U, namely node u with id 3 and a node in
V \U, namely node w ′ with id 2, that has a smaller id than 4. Additionally,
the expansion of p along the copy of the edge [u ′,w ′] = [1, 2] does also not
yield a minimal path because π(u) = π(3) = 2 and π(u ′) = π(1) = 1 > 2

which contradicts the second condition for minimal paths. The expansion
of p along the copy of the edge [u ′,w ′] = [4, 2] does indeed yield a minimal
path: we have π(4) = 3 > 2 = π(u) and the second condition for minimal
paths holds.

The pseudocode of our version of the BN algorithm is in Algorithm 14.
We combine the minimal path definition from (Santos et al., 2018) with a
lazy queue management approach for explored paths as in the NAMOA∗

dr-lazy
algorithm to notably enhance the running time of the BN algorithm in our
experiments. Assume the minimal {s}-W-path q in G is considered by the
algorithm. It is immediately discarded (Line 14) if it is dominated by or
equivalent to any path in T∗

G(W). Otherwise, it is inserted into the algo-
rithm’s priority queue Q without further checks (Line 15). In Algorithm 14

we repeat the dominance or equivalence check γ(T∗
G(W)) ⪯D γ(q) after q’s
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extraction from Q (Line 8). If q passes the check, it is expanded and possible
made permanent.

Algorithm 14: Built Network (BN) algorithm.
Input :d-dimensional One-to-One MOSP instance ISP = (G, {s},V ,d,γ).

Output : Minimal complete set T∗
G(V) of efficient {s}-V-paths in G w.r.t. γ.

1 Priority queue of paths Q← ∅; // Sorted lexicographically according to γ.

2 Transition graph G initialized only containing the transition node {s};
3 Trivial {s}-{s}-path pinit ← ();
4 Q← Q.insert(pinit);

5 while Q ̸= ∅ do
6 p← Q.extractMin() ;
7 U← last transition node of path p ; // If p = pinit, U← {s}.

8 if γ(T∗
G(U)) ⪯D γ(p) then continue;

9 Boolean flag success← False;
10 if δ+(U) not initialized then build δ+(U) as described in Section 13.4.1 ;
11 MINp ← Minimal paths in {p ◦ a | a ∈ δ+(U)} ;
12 for q ∈MIN(p) do
13 Assume q is spanning tree of G(W) for W ⊆ V ;
14 if not γ(T∗

G(W)) ⪯D γ(q) then
15 Q.insert(q);
16 success← True;
17 if success == True then PU.append(p);
18 return T∗

G(V);

The correctness of our version of the BN algorithm follows from the fact
that considering minimal paths in G suffices to find a minimal complete set
of efficient paths that represents a minimal complete set of efficient spanning
trees in G (Santos et al., 2018, Proposition 3.7.) and from the correctness of
the NAMOA∗

dr-lazy algorithm. All in all, we have designed a new algorithm
combining the elegant pruning rule (minimal paths) that made the original
BN algorithm state of the art with recent advances used to improve the
handling of explored paths in label-setting MOSP algorithms.

13.4.1 Implicit Handling of the Transition Graph

Handling the transition graph G implicitly is easier for the BN algorithm
than for the IG-MDA. It works as described in Section 13.3.1 with the fol-
lowing two differences. First, neither lists of incoming arcs nor NQP lists
have to be maintained. Second, the lists of δ+(U) of outgoing arcs for a
transition node U are built in Line 10 as described in (38) without any arc
removal conditions. For every {s}-U-path p extracted from Q the relevant
outgoing arcs needed to build minimal path expansions of p are chosen in
a path-dependent way in Line 11. We suppose that the authors of Santos
et al. (2018) also generate the transition graph G implicitly as described in
this section to restrict the memory consumption of G as far as possible.
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13.4.2 Comparison to the IG-MDA

Finally, before moving on to the experiments in this chapter, we briefly sum-
marize the differences between the IG-MDA and our implementation of the
BN algorithm. All in all, there are two main differences between the IG-MDA
and our new BN algorithm:

explored paths The IG-MDA restricts the size of the queue and stores
other explored paths in NQP lists. It requires to search for a new
queue path in every iteration but does not require a dominance or
equivalence check after a path’s extraction from the queue. Our new
BN algorithm stores multiple explored paths per node in the queue but
requires dominance or equivalence checks after every path’s extraction
from the queue. This difference is already present in the comparison
of the tmda and the NAMOA∗

dr-lazy algorithm in Chapter 9.

pruning conditions The IG-MDA uses the cost-dependent conditions dis-
cussed in Lemma 13.4 and Lemma 13.5 to reduce the number of arcs
in the transition graph in a path-independent way. The BN algorithm
in its original version as well as in our implementation uses path-
dependent pruning techniques (minimal paths, cf. Santos et al., 2018,
Definition 3.5.) forcing the inclusion of nodes in the represented span-
ning trees to follow fixed rules.

13.5 experiments

All codes, results, and evaluation scripts used to generate the contents in
this section are publicly available in (Maristany de las Casas, 2023c).

13.5.1 Implementation Details

As noted in the introduction, when choosing a benchmark algorithm for our
experiments in this chapter, we benefit from the extensive survey on MO-
MST algorithms by Fernandes et al. (2020). For more than two objectives,
our use case, the best results are obtained using the BN algorithm

The deletion of red and blue edges from the original input graphs as ex-
plained in Section 13.2.3 is done in a preprocessing stage and both algo-
rithms work on the resulting graphs without red or blue edges. In (Fernan-
des et al., 2020, Table 13) the authors list the number of red and blue edges
in many MO-MST instances that we use in our experiments. In our code, we
do no further manipulation of the input data.

Both algorithms use the dimensionality reduction technique discussed in
Section 3.5. Note that in (Santos et al., 2018) the authors achieved their fastest
running times using the sum of cost components as the sorting criterion for ex-
plored paths. Also in our experiments this criterion yields better running
times than lex. sorting without using dimensionality reduction. However,
adding the dimensionality reduction technique to the BN algorithm when
using lex. sorting, the overall running time is clearly better than using the
sum of cost components as sorting criteria. Therefore, we report the results
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obtained from our BN implementation using lex. sorting and the dimension-
ality reduction technique.

Further implementation details such as the representation of paths using
labels to be able to store a path using O (1) memory (cf. Section 3.3) and the
usage of a memory pool to avoid memory fragmentation can be read our
source code (Maristany de las Casas, 2023c) directly. The running time of
our implementation of the BN algorithm is dominated by the computation
of minimal paths. Thus, it is worth noting that for every explored path in
the BN algorithm, we store a vector indicating the order in which nodes of
G are added to the corresponding tree. We then use this vector in Line 11 of
Algorithm 14 to recognize relevant outgoing arcs faster in every iteration.

13.5.2 Instance Description

The authors from (Santos et al., 2018) kindly gave us access to their instances
from which we use the 3- and 4-dimensional MO-MST instances for our
experiments. The instances are called SPACYC instances. For each number
of criteria, graphs with 5 to 14 nodes are generated. For each fixed number
of n nodes, graphs with m = ni edges for i ∈ {5, 10, 15, 20} are generated.
For each arc, the costs are generated randomly using the SPACYC generator
from (Knowles & Corne, 2001). Thereby, the cost criteria are not correlated
and the costs are chosen from the interval [0, 100].

We also got access to the instances used in Fernandes et al. (2020). In
this chapter, we use their 3- and 4-dimensional MO-MST instances. For
each dimension, we consider grid graphs and complete graphs with varying
number of nodes (see (Fernandes et al., 2020; Maristany de las Casas, 2023c)
for details). Additionally, instances were generated with anticorrelated and
correlated edge costs. For a fixed problem dimension (3 or 4 cost criteria),
a fixed number of nodes, and an edge costs type there are 30 different in-
stances. Thus, for example, we consider 30 complete graphs with 12 nodes
and anticorrelated edge costs functions with 3 cost criteria. On all instances,
the edge costs are in the interval [0, 100].

13.5.3 Computational Environment

All computations were run on a machine with an Intel Xeon-Gold 6246 @
3.30GHz processor. The source code, written in C++, was compiled using
g++ v.7.5.0 using the compiler flag −O3. Both algorithms were granted 2h
of time and 30GB of memory to solve each instance.

Indexing transition nodes depending on the node set from the original
graph G that they represent is important in both algorithms. To achieve
this, we use the dynamic bitset class from the boost library (Boost, 2022)
and for every bitset of length n − 1 (the node s is fixed) we compute the
corresponding decimal representation to obtain an index. By doing so, we
restrict ourselves to graphs with at most 64 nodes in today’s 64bit systems.
However, as we will see in this section, the amount of efficient trees in every
considered graph type requires more than the available 30GB of memory
before reaching our constraint on the number of nodes. We did experiments
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Nodes 10 11 12 13 14

BN 3d in (Santos et al., 2018) 0.25 1.00 5.42 22.11 86.33
CPU scaled 0.19 0.76 4.14 16.87 65.87

BN 3d as in Algorithm 14 0.04 0.10 0.54 2.19 11.25

BN 4d in (Santos et al., 2018) 5.58 28.40 188.14 712.96 3656.91
CPU scaled 4.26 21.67 143.55 543.99 2790.22

BN 4d as in Algorithm 14 0.76 6.34 69.76 351.73 1737.88

Table 16: Comparison of BN algorithm implementations in (Santos et al., 2018)
and in (Maristany de las Casas, 2023c). Computations using 3 and 4-
dimensional SPACYC based instances.

granting as much memory as we could to both algorithms but also time
became a restrictive factor. The number of efficient spanning trees in our
MO-MST instances grows extremely fast and the results reported in this
section contain the biggest instances we could solve.

13.5.4 Efficiency of our BN implementation

We tried to determine whether our implementation of the BN algorithm
from (Santos et al., 2018) is efficient. Since we do not have access to the orig-
inal implementation from the authors, we extrapolated their computational
results to the performance on our machine. Using (PassMark-Software, 2023)
we found out that on single-threaded jobs the processor used in (Santos et
al., 2018) delivers 76.3% of the performance of our processor. We scaled
the average running times for the SPACYC based instances (defined in Sec-
tion 13.5) in (Santos et al., 2018, Table 6) accordingly to obtain the expected
running times of their code on our machine. In Table 16 we list the original
running times from (Santos et al., 2018), the CPU-scaled running times we
obtained, and the running times we obtained from our implementation of
Algorithm 14. Since the BN implementation in (Santos et al., 2018) is coded
in Java and ours is coded in C++, the running times are still not completely
comparable. However, our running times seem to be good enough (×6 faster
on the biggest 3d instances and ×1.6 faster on the biggest 4d instances) to
claim that our implementation of the BN algorithm is efficient and useful for
the comparisons that follow in this paper. The speedup decreases notably
with increasing edge costs’ dimension because the impact of ⪯D checks on
running time increases in higher dimensions. Most probably, both program-
ming languages are similarly efficient in performing these checks. Note that
the reported running time averages in Table 16 do not coincide with those
reported in Table 17. The reason is that in (Santos et al., 2018) the authors
always use arithmetic means and in this paper we use geometric means ev-
erywhere except in Table 16.

13.5.5 Results

In this section we finally report the results obtained from our comparison
between the IG-MDA and the BN algorithm implemented in (Maristany de
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|V | |T∗
G|

BN IG MDA
Speedup

|V| Iterations Time |V| Iterations Time

3d edge costs

10 398.14 477.71 17846.60 0.0318 312.88 7496.75 0.0060 5.27
11 487.21 774.66 36049.40 0.0695 526.56 14310.60 0.0122 5.70
12 815.86 1609.97 107572.10 0.3579 1179.25 41966.32 0.0421 8.50
13 1073.61 3111.80 252588.01 1.3572 1789.97 76472.73 0.0882 15.39
14 1747.29 6835.16 862549.99 8.4189 4288.41 259474.39 0.5023 16.76

4d edge costs

9 1146.20 241.41 15941.44 0.0461 197.35 10460.27 0.0163 2.83
10 3014.38 471.18 66369.32 0.5246 413.88 43938.54 0.1431 3.66
11 4532.14 996.44 195159.07 2.7925 859.96 120389.30 0.5378 5.19
12 9060.48 2002.31 705053.83 30.8805 1705.53 409772.59 3.7650 8.20
13 13471.15 3734.22 1859534.46 190.0873 3196.62 1061076.64 17.2987 10.99
14 20735.06 7470.75 5051489.41 862.0660 6237.86 2474854.74 57.3346 15.04

Table 17: SPACYC based 3d and 4d instances. For every node cardinality |V |, 20
instances were considered. Both algorithms solved every instance. Num-
bers are geometric means.

las Casas, 2023c). Note for small input graphs, the obtained running times
were below 0.01s for both algorithms. In the tables in this section, we do not
report results for any group of graphs for which both algorithms solved the
instances in less than 0.01s. However, in the results folder in (Maristany de
las Casas, 2023c), all results can be accessed and we also included the scripts
used to generate the full tables and plots from this section. Also, for every
table in the upcoming subsections, we pick a scatter plot corresponding to
the running times of both algorithms that lead to one representative line of
the table. The remaining scatter plots, one per line, are also stored in the
results folder in (Maristany de las Casas, 2023c).

Results from SPACYC based instances

In Table 17 we summarize the results obtained from the SPACYC based in-
stances. Both algorithms solve every instance. While in 3d the BN algorithm
is faster than the IG-MDA on instances with less than 8 nodes, this effect
disappears in 4d, where the IG-MDA outperforms the BN algorithm consis-
tently for all graph sizes. In both dimensions, the speedup grows with the
input graph size and reaches ×16.76 on the 3d instances and ×15.04 on the
4d instances. Thereby, the IG-MDA performs better regarding the metrics
iterations per second and iterations per efficient spanning tree. The second metric
also implies that the IG-MDA solves the instances in less iterations since the
number of efficient spanning trees depends on the instances and not on the
algorithm. Figure 29 and Figure 31 show, for graphs with 10 to 14 nodes,
the number of iterations that the IG-MDA and the BN algorithm performed
per second. The IG-MDA outperforms the BN algorithm regarding this met-
ric consistently. Particularly in Figure 31 we observe that both algorithms
seem to converge. This is because the dominance checks (⪯D) become more
complex as the number of efficient solutions in the sets T∗

G(U) for transition
nodes U increases. Since these sets are equal for both algorithms, both algo-
rithms make the same effort to decide whether explored trees are dominated.
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Figure 29: 3d SPACYC instances. Average iterations per second.

If the iterations per second of both algorithms converge but the speedup in
favor of the IG-MDA increases with the graph size, the IG-MDA must do
less iterations than the BN algorithm. Indeed, this can be already observed
in Table 17. In Figure 30 and Figure 32 we plot the iterations per efficient
spanning tree needed by both algorithms. This metric unveils that the effort
made by the IG-MDA increases much slower as the graph size increases. Us-
ing minimal paths, the BN algorithm needs to decide upon the relevance of
new explored paths using dominance checks only. Using cost-dependent arc
pruning techniques as described in Section 13.2.4 and Section 13.2.5, the IG-
MDA avoids the expansion of and ⪯D -checks for every efficient {s}-U-path
in T∗

G(U) along a pruned arc (U,W). In particular, pruning all incoming arcs
of a transition node W leads to less transition nodes in the implicit graphs
of the IG-MDA algorithm (cf. |V| columns in Table 17).

Results from Fernandes et al. instances

We summarize the results in Table 18 and Table 19.

complete graphs with anticorrelated costs We report our results
in Table 18. Both algorithms solve all instances with up to 12 nodes regard-
less of the edge costs’ dimension. Thereby, the IG-MDA is ×6.03 faster on 3d
instances and ×8.50 faster on 4d instances. Additionally, the IG-MDA solves
all 3d anticorrelated instances with 15 nodes and all but one with 17 nodes.
Regarding the 4d instances, it solves 22 instances with 15 nodes. This is an
improvement w.r.t. to the biggest instances of this type solved in (Fernandes
et al., 2020) (12 nodes in 3d and 10 nodes in 4d). Note that computations are
aborted because the memory limit of 30GB is hit. Figure 33 and Figure 34

show the average running times of both algorithms for two relevant graph
sizes. The same plots for every other considered graph size are in the result

folder from (Maristany de las Casas, 2023c).
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Figure 30: 3d SPACYC instances. Average iterations per efficient tree.

Figure 31: 4d SPACYC instances. Average iterations per second.
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Figure 32: 4d SPACYC instances. Average iterations per efficient tree.

Figure 33: Running times on Complete-3d-Anticorr instances with 15 nodes.
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Figure 34: Running times on Complete-4d-Anticorr instances with 12 nodes.

grid graphs with anticorrelated costs The results are summarized
in Table 18. We observe the same trend as before regarding the speedups
in favor of the IG-MDA. All instances with graphs with up to 18 nodes are
solved in less than 0.01s by both algorithms. On 3d instances, both algo-
rithms solve all instances with up to 24 nodes. On bigger graphs, the BN
algorithm solves a subset of the instances solved by the IG-MDA. The IG-
MDA starts failing to solve instances on input graphs with 33 nodes. There
are seven instances with 38 nodes that are solved by both algorithms (the
IG-MDA solves 11/30 such instances) and on these instances the IG-MDA is
×68.16 faster (cf. Figure 35). Note that the biggest instances from this group
solved in (Fernandes et al., 2020) were grids with 20 nodes. The reason
why the BN algorithm manages to solve some instances with 38 nodes even
though it could not solve any instance with 36 nodes and only two with 33

nodes is that the seven solved instances with 38 nodes contain multiple blue
and red edges. Thus, the actual input graphs for both algorithms are smaller
(for details, see (Maristany de las Casas, 2023c)). Regarding instances with
4d anticorrelated edge cost functions on grid graphs, both algorithms solve
all instances with up to 24 nodes. The IG-MDA still solves all 30 instances
with 27 nodes. From that size onward, the number of solved instances de-
creases because of the memory limit. The IG-MDA speedup on the instances
with 24 nodes is ×2.99 (see Figure 36). The relatively small number com-
pared to other instance sets is because grids induce smaller transition graphs
and, particularly on 4d instances, the running time is mostly determined by
⪯D-checks that are equally time consuming for both algorithms.
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Figure 35: Running times on Grid-3d-Anticorr instances with 38 nodes.

Figure 36: Running times on Grid-4d-Anticorr with 24 nodes.
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Figure 37: Running times on Complete-3d-Corr instances with 17 nodes.

Figure 38: Running times on Complete-4d-Corr instances with 17 nodes.
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Figure 39: Running times on Grid-3d-Corr instances with 40 nodes.

Figure 40: Running times on Grid-4d-Corr instances with 40 nodes.
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|V | Insts
BN IG MDA

Speedup
Sol |T∗

G| |V| Iterations Time Sol. |TG| |V| Iterations Time

COMPLETE 3d anticorr. edge costs

10 30 30 1934.17 509.62 79059.14 0.4 30 1934.17 477.88 58042.67 0.08 4.82
12 30 30 4042.89 2039.89 668348.06 7.68 30 4042.89 1868.86 434829.76 1.27 6.03
15 30 30 10507.52 16344.5 13781596.11 530.79 30 10507.6 15166.2 8203636.87 73.52 7.22
17 30 10 8995.82 65151.83 39926366.12 4545.6 29 16773.63 60128.77 50138867.03 775.91 10.22

GRID 3d anticorr. edge costs

18 30 30 327.46 1970.48 27559.31 0.0444 30 327.46 1059.14 15957.42 0.0105 4.24
20 30 30 507.80 4321.96 80646.78 0.1788 30 507.80 2081.46 41301.82 0.0354 5.05
24 30 30 1905.73 289945.96 12561838.13 119.8732 30 1905.73 108148.81 4556890.58 19.8963 6.02
27 30 25 2055.18 658592.00 32710242.90 331.8889 30 2432.92 243115.52 13189507.15 77.9690 7.27
30 30 8 1400.97 798812.92 32607409.69 336.6812 20 2119.93 238092.28 13277318.30 75.8248 31.61
33 30 2 2091.47 1353679.98 68100519.74 728.4824 16 3285.21 637610.27 44246349.41 341.4173 26.16
36 30 0 − − − − 10 2945.52 497406.55 34694216.43 263.5790 −
38 30 7 1959.45 938641.43 51235269.92 504.1519 11 2189.33 35140.31 2977740.76 10.8611 68.16
40 30 0 − − − − 2 3440.77 1310244.04 98125888.60 874.0739 −

COMPLETE 4d anticorr. edge costs

10 30 30 14261.89 511.50 275211.78 3.61 30 14261.89 499.37 242326.48 0.85 4.27
12 30 30 49937.31 2046.63 3635468.74 266.18 30 49937.32 2006.20 2951674.07 31.32 8.50
15 30 0 − − − − 22 200339.04 16224.95 77909983.48 4468.7791 −

GRID 4d anticorr. edge costs

18 30 30 1605.54 3338.71 83063.06 0.1761 30 1605.54 2548.04 65344.60 0.0742 2.37
20 30 30 2022.36 6941.00 211043.31 0.5899 30 2022.36 4681.20 144836.59 0.2144 2.75
24 30 30 17036.10 487336.31 56591949.94 1145.0088 30 17036.10 308131.18 35528444.71 382.9531 2.99
27 30 12 10091.80 830056.49 70224110.93 1539.2769 30 21918.58 606263.90 83839892.33 1092.2398 5.93
30 30 0 − − − − 8 21205.22 955448.68 133902354.68 2850.7280 −
33 30 0 − − − − 2 13126.77 1776005.39 207538764.46 3671.7716 −

Table 18: Instances from (Fernandes et al., 2020) with anticorrelated edge costs. Cardinality |TG| of solution sets, |V| of transition nodes, number of iterations,
and time report geometric means built among solved instances only. The speedups consider only instances solved by both algorithms.
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The results from the instances with correlated edge cost functions are re-
ported in Table 19. As expected, the size of the solved instances is bigger
than in the anticorrelated counterparts. However, this effect can be mis-
leading. As we can observe in the scatter plots in Figure 37 to Figure 40

the running times of both algorithms are separated into two clusters. The
reason is that with correlated costs, the preprocessing phase sometimes rec-
ognizes many blue and red arcs (cf. Section 13.2.3) s.t. the input graph for
the MO-MST algorithms is actually very small. In fact, there are even 3d grid
instances with 36 nodes that contain 35 blue arcs s.t. the remaining graph
consists only of one node. The 35 blue arcs constitute the only efficient span-
ning tree for this instance. On grid graphs with a fixed number of nodes,
the running times of both algorithms can differ by more than eight orders
of magnitude (cf. Figure 40). Therefore, the geometric means in Table 19

are almost always clearly below one second but they need to be put into
the context described in this paragraph. Only then, given the low average
running times, we can understand that not all instances are solved.

complete graphs with correlated costs On 3d instances on com-
plete graphs (Table 19), both algorithms solve all instances with up to 17

nodes. On these instances the IG-MDA is ×29.09 faster (Figure 37). The
IG-MDA also solves all instances with 22 nodes in 1.06s on average. In this
group of instances, the BN algorithm solves 19/30 instances. Even though
the edge costs are correlated, the instances on complete graphs with 4d edge
costs are difficult and the BN algorithm cannot solve all instances with 15

nodes. On these graphs, the speedup in favor of the IG-MDA is ×15; higher
than on the same graphs with 3d edge costs.

grid graphs with correlated costs The lower left clusters in Fig-
ure 39 and Figure 40 show that indeed a considerable amount of instances
in this group are almost solved during preprocessing. After deleting red
edges and contracting blue ones, the remaining instances are so small that
both MO-MST algorithms solve them in less than a millisecond. Overall, the
IG-MDA remains consistently more than an order of magnitude faster than
the BN algorithm on this type of instances (cf. Table 19). After deleting
red edges and contracting blue edges, we are left with 12 instances with 4d
edge costs and 30-31 nodes. To the best of our knowledge these instances
are the biggest considered in the literature so far and the IG-MDA solves
them in 329.9s on average (geo. mean). This data is extracted from the file
../results/multiPrim grid corr 4d.csv in (Maristany de las Casas, 2023c).
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|V | Insts
BN IG MDA

Speedup
Sol |T∗

G| |V| Iterations Time Sol. |TG| |V| Iterations Time

COMPLETE 3d corr. edge costs

15 30 30 195.18 786.77 16508.49 0.0438 30 195.18 324.67 4988.89 0.0038 11.50
17 30 30 276.97 3240.53 101568.59 0.4329 30 276.97 769.99 14026.10 0.0149 29.09
20 30 22 289.40 6793.78 186354.27 0.7750 30 626.75 4364.52 109898.99 0.2118 35.26
22 30 19 228.20 6070.89 154896.66 0.5645 30 847.30 10209.11 390923.30 1.0635 24.93

GRID 3d corr. edge costs

33 30 30 77.65 915.59 7991.91 0.0185 30 77.65 176.45 2042.85 0.0013 14.42
36 30 28 76.38 1521.15 15417.74 0.0808 30 93.14 342.61 4519.75 0.0037 18.52
38 30 30 56.21 396.92 3136.16 0.0060 30 56.21 89.00 966.31 0.0005 12.56
40 30 21 39.58 349.33 2406.14 0.3498 29 114.07 848.70 10929.89 0.0180 12.46

COMPLETE 4d corr. edge costs

12 30 30 326.82 283.94 7713.31 0.0319 30 326.82 176.10 4076.06 0.0057 5.64
15 30 26 713.27 1646.49 81809.87 0.7962 30 1177.38 994.76 48608.53 0.1733 14.99
17 30 20 294.13 1191.90 31441.59 0.1965 30 1448.65 2110.19 124335.61 0.7096 11.50
20 30 13 305.19 2523.53 56573.88 0.1986 21 1444.82 3938.87 155447.82 0.6001 25.25

GRID 4d corr. edge costs

24 30 30 89.11 690.09 5327.06 0.0135 30 89.11 221.65 2098.39 0.0020 6.79
27 30 30 167.53 1882.84 20551.53 0.0823 30 167.53 446.02 5610.28 0.0072 11.50
30 30 28 163.55 2795.94 35350.59 0.1349 30 216.40 840.08 13791.31 0.0216 13.05
33 30 23 82.51 669.94 5933.57 0.0141 29 206.47 842.73 14760.35 0.0222 9.27
36 30 20 49.51 311.78 2518.64 0.0057 27 193.85 812.96 13934.90 0.0225 11.20
38 30 26 144.41 806.94 11284.06 0.0347 30 235.57 352.92 8144.57 0.0112 11.46
40 30 18 66.30 598.21 4758.39 0.0153 20 98.46 234.39 3118.01 0.0036 12.27

Table 19: Instances from (Fernandes et al., 2020) with correlated edge costs. Cardinality |TG| of solution sets, |V| of transition nodes, number of iterations, and
time report geometric means built among solved instances only. The speedups consider only instances solved by both algorithms.
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13.6 conclusion

The Implicit Graph Multiobjective Dijkstra Algorithm (IG-MDA) is a new
Dynamic Programming algorithm for the Multiobjective Minimum Span-
ning Tree (MO-MST) problem. For its design we manipulated the transition
graph defined in Santos et al. (2018) using cost-dependent criteria to reduce
its size and thus enhance the performance of the used algorithms. Dynamic
Programming for MO-MST problems entails solving an instance of the One-
to-One Multiobjective Shortest Path problem defined on the arising transi-
tion graph. In this chapter, we analyzed the size of the transition graph to
motivate its implicit handling in the IG-MDA. Storing the graph explicitly
would otherwise lead to unreasonable memory consumption on many in-
stances. To benchmark the performance of the IG-MDA, we compared it to
a new version of the BN algorithm from (Santos et al., 2018) on a big set of
instances from the literature. The results show that the IG-MDA is more effi-
cient. To the best of our knowledge, it also solves bigger MO-MST instances
than the biggest ones solved so far in the literature.
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14.1 introduction

The k-Shortest Simple Path problem is a well known optimization problem.
With the background from other chapters in this thesis, we can define it
right away formally.

Definition 14.1 (k-Shortest Simple Path Problem). Given a directed graph
D = (V ,A), two nodes s, t ∈ V , an arc cost function c : A → R⩾0, and
an integer k ⩾ 2, let Pst be the set of simple s-t-paths in D. Assume Pst
contains at least k paths. The k-Shortest Simple Path (k-SSP) problem is to find
a sequence P = (p1,p2, . . . ,pk) of pairwise distinct s-t-paths with c(pi) ⩽
c(pi+1) for any i ∈ {1, . . . ,k− 1}, s.t. there is no path p ∈ Pst \ P with c(p) <

c(pk). We refer to the tuple I := (D, s, t, c,k) as a k-SSP instance and call P a
solution sequence.

It is worth noting that the problem is defined on weighted directed graphs,
i.e., an arc’s cost is a scalar in contrast to the vectors of costs considered so
far in this thesis. At first, skeptical readers might wonder what this scalar
optimization problem has in common with the multiobjective algorithms
described used in previous chapters. The answer is that in our new k-SSP
algorithm we can use a BOPS algorithm as a subroutine that is called O (k).
Given the scalar arc costs, we define a second arc cost component on every
arc. It is used to discard shortest subpaths (w.r.t. the original costs) found
during the search for a jth shortest path, j ∈ {1, . . . ,k}, that are not simple.
With this additional cost component, we can identify subpaths with cycles
with only one ⪯D -check. Using the dimensionality reduction technique
(cf. Section 3.5) and given that the new arc costs are bidimensional, the ⪯D-
check consists of just one comparison. Hence, in our setting we are able
to discard non-simple subpaths without the need to store any information
about their nodes.

The skeptical readers, even if convinced by the appealing possibility of
checking in O (1) whether a path is simple, might argue that in every of the
O (k) calls to our BOSP algorithm as a subroutine, a minimal complete set of
efficient paths needs to be computed and the output can have exponential
size. This concerns are justified but our new second arc cost component
guarantees that at most O (n) paths are contained in a minimal complete set
of efficient paths. This polynomial bound on the output size of our BOSP
subroutine allows us to derive an asymptotic running time bound for our
new k-SSP algorithm that matches the state of the art.

179
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k Shortest Simple Path Problem

Deviation Tree (Lawler, 1972)

Replacement Path Second Simple Shortest Paths Eppstein (1998) based

Yen Feng (2014) Roditty and Zwick (2012)

Gotthilf and Lewenstein (2009) New Sedeño-Noda (2016)

Kurz and Mutzel (2016)

Optimality structure

k Iterations

Restricted

k Iterations

Blackbox

APSP Biobjective

Figure 41: Relevant literature for this chapter. The green node represents the op-
timality structure used by all algorithms to keep track of the solution
paths and to avoid duplicates (see Section 14.2). Red nodes symbolize
solution approaches. Blue nodes refer to k-SSP algorithms. If a blue
node has solid background, the corresponding algorithm has a state of
the art asymptotic running time.

14.1.1 Literature Overview

The oldest reference on the k-SSP we could find in the literature is the work
by Clarke et al. (1963). A detailed literature survey on this topic is given by
Eppstein (2016). Figure 41 gives a visual overview of publications that are
relevant in this chapter. The figure serves also as an outline for this section.

To solve the k-SSP problem efficiently, algorithms need to keep track of
the s-t-paths found so far and be able to avoid the generation of duplicates
without the need to pairwise compare a new path with every existing path.
All relevant k-SSP algorithms do so using an optimality structure called devia-
tion tree first devised by Lawler (1972), to be discussed in Section 14.2. It is
based on the consideration of subpaths.

Definition 14.2. Given a digraph D = (V ,A) and a simple u-w-path p in D

between distinct nodes u,w ∈ V , we denote a subpath of p between nodes
v, v ′ ∈ p by pv→v ′

. Thereby if v = s we call pv→v ′
= ps→v ′

a prefix of p and
if v ′ = t we call pv→v ′

= pv→t a suffix of p.

The classical k-SSP algorithm is due to Yen (1972). It performs k iterations
and starts with a solution sequence P = (p1) containing only a shortest s-
t-path p1. In the ith iteration, i ∈ {1, . . . ,k}, an ith shortest s-t-path pi is
considered and the following set of s-t-paths is computed.

{
q
∣∣ q = ps→v

i ◦ qv→t, qv→t shortest v-t-path in D \ {δ+(v)∩ pi}, v ∈ pi

}
.

(43)
The set is a solution to the so called Replacement Path (RP) problem. The

paths from this set and from all such sets computed in previous iterations
are stored in a priority queue of s-t-paths from which, at the beginning of
the (i+ 1)th iteration, a (i+ 1)th shortest path is extracted and stored in the
solution sequence P. The simple s-t-path pi has at most n nodes and thus,
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(43) contains at most n− 1 elements, each of them requiring a shortest path
computation to obtain the suffix qv→t. Yen’s algorithm solves the RP in-
stances in a straightforward way iterating over the nodes in pi and solving
the corresponding Shortest Path instances. Using Dijkstra’s algorithm (Dijk-
stra, 1959) with a Fibonacci Heap (Fredman & Tarjan, 1987) for these queries,
we obtain a running time for the solution of the RP problem of

TRP := O (n(n logn+m)) . (44)

The deviation tree by Lawler (1972) (also called pseudo-tree in the literature
(cf. E. Q. V. Martins & Pascoal, 2003)) is used to ensure that the solution paths
for (43) computed in every iteration of Yen’s algorithm differ from each other
without the need to pairwise compare them. Then, Yen’s algorithm has an
asymptotic running time of

O (kTRP) . (45)

There is a recent alternative k-SSP algorithm running in O (kTRP) that can
also be considered the current state of the art. It is due to Kurz and Mutzel
(2016). We refer to this algorithm as the KM algorithm. Interestingly, the
authors derive this running time bound even if the KM algorithm does not
solve the RP problem as a subroutine. Instead, their algorithm can be seen as
a generalization of Eppstein’s algorithm (Eppstein, 1998) for the k-Shortest
Path problem in which the output paths are allowed to contain cycles. In-
stead of solving One-to-One Shortest Path instances as required in (43), the
KM algorithm solves One-to-All Shortest Path instances, hence obtaining a
shortest path tree from every search. These instances are defined on the re-
versed input digraph and are rooted at the target node. The main idea of
the KM algorithm, similar to the idea in (Eppstein, 1998), is that O (m) sim-
ple s-t-paths can be obtained from such a tree using non-tree arcs to create
alternative s-t-paths. By doing so, a cycle may be constructed in which case
the KM algorithm needs to compute a new shortest path tree. In addition to
its state of the art running time bound, the efficiency of the KM algorithm in
practice is immediately apparent: in well behaved networks, only few short-
est path trees are needed since the swapping of tree arcs and non-tree arcs
yields enough simple s-t-paths. Indeed, in the computational experiments
conducted in (Kurz & Mutzel, 2016), the KM algorithm clearly outperforms
the previous state of the art k-SSP algorithm by Feng (2014a). This algorithm
resembles Yen’s algorithm but partitions nodes into three classes, being able
to ignore nodes from one of the classes while solving (43). Due to the re-
duced search space/graph, the One-to-One Shortest Path computations fin-
ish faster than in Yen’s algorithm.

Better Asymptotics and Better Computational Performance

The algorithm by Gotthilf and Lewenstein (2009) (GL algorithm) improves
the best known asymptotic running time for the k-SSP problem. It uses the
All Pairs Shortest Path (APSP) algorithm from Pettie (2004) to achieve an
asymptotic running time bound of O

(
k(n2 log logn+nm)

)
. Here, the term

(n2 log logn+ nm) corresponds to the APSP running time bound derived
by Pettie and k APSP instances need to be solved. As a brief digression
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from the main focus of the chapter, we remark that a new APSP algorithm
published in Orlin and Végh (2022) achieves an asymptotic running time
bound of O (mn) for instances with nonnegative integer arc costs. Using
this new algorithm as a subroutine in the GL algorithm, the following result
is immediate.

Theorem 14.1 (k-SSP Running Time for Integer Arc Costs). The k-SSP problem
from Definition 14.1 with integer arc costs can be solved in O (kmn) time.

Despite the unbeaten asymptotic running time bound, the GL algorithm
does not perform well in practice. Solving k APSP instances requires too
much computational effort.

There are k-SSP algorithms whose asymptotic running time bound is
worse than (45) and possibly not even pseudo-polynomial but they perform
extremely well in practice. The current state of the art among these algo-
rithms is published in Sedeño-Noda (2016) and in Feng (2014b), the latter
publication being based on the MPS algorithm (E. d. Q. V. Martins et al.,
1999). Both algorithms are very different from the ones we study here and
we choose to analyze k-SSP algorithms that run in (45).

14.1.2 Contribution and Outline

Figure 41 shows that there is a third approach to the k-SSP problem. Namely,
Roditty and Zwick (2012, 2005) show that the k-SSP problem can be tackled
by solving at most 2k instances of the Second Simple Shortest Path (2-SSP)
problem. In their publications, the authors do not specify how the 2-SSP
instances arising as subproblems in their algorithm can be solved efficiently.

We design, for the first time, a computationally competitive version of
the black box algorithm by Roditty and Zwick. To do so we use a novel
algorithm for the 2-SSP problem. This algorithm is based on a One-to-
One version of the recently published Biobjective Dijkstra Algorithm (BDA)
(Sedeño-Noda & Colebrook, 2019) and incorporates the One-to-One MOSP
techniques discussed in Chapter 9.

In Section 14.2 we describe the deviation tree, the optimality structure used
throughout the chapter. In Section 14.3 we discuss our main contribution:
a new 2-SSP algorithm using a biobjective approach. In Section 14.4 we
describe the k-SSP algorithm by Roditty and Zwick (2012) that solves O (k) 2-
SSP instances. In Section 14.5 we demonstrate the efficiency of our algorithm
in practice, comparing it with the KM algorithm (Kurz & Mutzel, 2016).

14.2 optimality structure – deviation tree

Consider a k-SSP instance I := (D, s, t, c,k). A (partial) solution sequence
Pℓ = (p1, . . . ,pℓ) for ℓ ∈ {1, . . . ,k} is represented as a deviation tree TPℓ

(e.g.,
Roditty & Zwick, 2012; Lawler, 1972; E. Q. V. Martins & Pascoal, 2003). TPℓ

is a directed graph, represented as a tree in which a node from the original
graph D may appear multiple times. The root node of TPℓ

is a copy of the
node s in D and every leaf corresponds to a copy of the node t. There are
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ℓ leafs and any path from the root to a leaf is in one-to-one correspondence
with an s-t-path in D.

Definition 14.3 (Deviation Tree). The deviation tree TPℓ
is built iteratively.

Initially, TPℓ
is empty. p1 is added to TPℓ

by adding all nodes and arcs of p1

to the tree. For any j ∈ {2, . . . , ℓ}, assume that the previous paths pi, i < j

have been added to TPℓ
already. Assume the longest common prefix of pj

with a path p ∈ Pj−1 is the s-v-subpath ps→v
j for a node v ∈ pj. Then, pj is

added to TPℓ
by appending its suffix pv→t

j to the copy of v along p in TPℓ
.

parent path The path p1 has no parent path. For any path pi, i ∈ {2, . . . , ℓ},
its parent path p is the path in Pℓ with which pi shares the longest (w.r.t.
the number of arcs) common prefix ps→v

i . In case p is not uniquely
defined, p is set to be the first path in Pℓ with ps→v = ps→v

i . If p is the
parent path of pi, pi is a child path of p.

deviation arc, deviation node, source node The path p1 has no devi-
ation arc, its deviation node is s and it its source node is also s. For any
path pi, i ∈ {2, . . . , ℓ} its deviation arc is the first arc (v,w) along pi after
the common prefix of pi with its parent path. The node v is called the
deviation node of pi and the node w is called the source node of pi. For
any path p ∈ Pℓ we write dev(p) and source(p) to refer to these nodes.

Recall that we assume the paths in Pℓ to be sorted non-decreasingly ac-
cording to their costs. Then, the parent path p of any path q ∈ Pℓ is stored
before q in Pℓ and we have c(p) ⩽ c(q). Moreover, the inductive nature of
TPℓ

guarantees that, along p, the deviation node of p does not come after the
deviation node of q.

Example 14.1. The left hand side of Figure 42 shows a 4-SSP instance. We
set P = (p1, . . . ,p4) with p1 = ((s, v), (v, t)), p2 = ((s,u), (u, t)), p3 =

((s,w), (w, t)), and p4 = ((s,u), (u, v), (v, t)). The right hand side depicts
the deviation tree TP as defined in Definition 14.3. When building TP itera-
tively, p1 is added first. Then, the longest common prefix of p1 and p2 is
identified to be just the node s. Thus, p2 is appended to s in TP. The parent
path of p2 is p1, the deviation node is s, and the source node is u. Adding p3

to TP leads to the situation in which two paths, p1 and p2, share the longest
common prefix with p3: the node s only. Hence, the parent path of p3 is set
by definition to be p1: the first path in P sharing the longest common prefix
with p3. p3’s deviation node is s and its source node is w. Finally, the path
p4 is added to TP. It shares its prefix ps→u

4 of maximum length with p2 and
thus, its suffix pu→t

4 = ((u, v), (v, t)) is appended in TP to the copy of the
node u along p2 in TP. The deviation node of p4 is u; its source node is v.

14.3 second shortest simple path problem

We introduce a new 2-SSP algorithm. Assuming that a shortest path p is
known, we define a biobjective arc cost function γp : A → R2 depending
on p. Using γ we can find a second shortest simple path as the first or the
second (in lexicographic order w.r.t. γ) efficient solution of a One-to-One
BOSP instance associated with p.
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Figure 42: Left: Input graph D and arc costs for a k-SSP instance. Right: Pseudo-
Tree TP corresponding to the k-SSP instance defined on the left with
k = 4.

Definition 14.4. Consider a digraph D = (V ,A), nodes s, t ∈ V , and an arc
cost function c : A→ R⩾0. I = (D, s, t, c) is an instance of the classical One-
to-One Shortest Path problem. Let p be a shortest s-t-path in D. For every
arc a ∈ A we define bidimensional costs γp(a) ∈ R2

⩾0 setting γp,1(a) = c(a)

and γp,2(a) = 1 iff a ∈ p. Otherwise, we set γp,2(a) = 0. The One-to-One
BOSP instance I

p
BOSP := (D, s, t,γp) is the BOSP instance associated with I and

p.

The γp function defined in Definition 14.4 is such that the biggest minimal
complete set of efficient paths in I

p
BOSP contains at most (n − 1) paths (cf.

Lemma 14.1). This makes the I
p
BOSP instances tractable. Moreover, the {0,1}

second component of γp plays an essential role to circumvent the issue of
second shortest paths not adhering to the subpath-optimality principle as
explained in the following example.

Example 14.2. Consider the I
p
BOSP instance defined in Figure 43 w.r.t. the

shortest s-t-path p in that instance. The shown graph contains two s-v4-
paths:

q = ((s, v1), (v1, v4)) with c(q) = γp,1(q) = 2

r = ((s, v1), (v1, v2), (v2, v3), (v3, v4)) with c(r) = γp,1(r) = 1

A label-setting Shortest Path algorithm would discard q since c(r) < c(q).
However, the extension of r towards v2 produces a cycle, causing any ex-
pansion of r to be an invalid candidate for a second shortest simple s-t-path.
Thus, when comparing q and r both paths need to be recognized as promis-
ing candidates. Since q shares only one arc with p before it deviates, we
have γp,2(q) = 1. Additionally, we have γp,2(r) = 3. Thus, γp(q) = (2, 1)
and γp(r) = (1, 3) and both paths are efficient/optimal s-v4-paths in our
biobjective setting.

Note that v2 is already visited by r’s subpath rs→v2 with costs γp(r
s→v2) =

(0, 2). After expanding q and r along the arc (v4, v2), we have γp(q ◦
(v4, v2)) = (4, 1) and γp(r ◦ (v4, v2)) = (3, 3) and we see that r’s expansion is
dominated by rs→v2 and thus can be discarded. q’s expansion on the other
side is not dominated and thus, the bad s-v4-path w.r.t. the original cost
function c is kept to build a simple second shortest s-t-path.
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Figure 43: IpBOSP instance for the shortest path p = ((s, v1), (v1, v2), (v2, v3), (v3, t)).
The red arcs show a s-v2-path that is not simple. Its s-v4-subpath is the
shortest s-v4-path w.r.t. the original arc costs c = γ1.

The γ arc cost function not only elevates the status of paths with subopti-
mal subpaths w.r.t. c to become efficient paths in the IBOSP instances. Using
the dimensionality reduction technique in these biobjective scenarios, we can
perform ⪯D -checks in constant time (cf. Corollary 3.2). Since, as in the last
example, paths that are not simple turn out to be dominated, we manage to
detect cycles in constant time and without the need to hash a path’s nodes.

To solve the IBOSP instances and obtain a running time bound for our k-SSP
algorithm in Section 14.4 that is on par the running time bound from Yen’s
algorithm, we use the biobjective version of the MDA that was originally
called the Biobjective Dijkstra Algorithm and published in (Sedeño-Noda &
Colebrook, 2019).

14.3.1 Second Simple Shortest Paths Using the BDA

We formulate the following main result in this section.

Theorem 14.2. Consider a shortest path problem I = (D, s, t, c), let p be a shortest
s-t-path w.r.t. c and assume it has ℓ arcs. A lexicographically smallest (w.r.t. γp)
efficient s-t-path q with γp,2(q) < ℓ in the BOSP instance I

p
BOSP is a second

shortest simple s-t-path in D w.r.t. the original costs c.

Proof. We assume that IpBOSP is solved using the BDA. Every efficient path in
this instance is a simple path or cost-equivalent to a simple path since γp

is a non-negative function. Additionally, efficient paths containing a loop
are neither made permanent nor further expanded by the BDA. As a conse-
quence, every path q that is made permanent fulfills γp,2(q) ⩽ ℓ and the only
possibly extracted path with γp,2(q) = ℓ is p with costs γp(p) = (c(p), ℓ).

Since p is a shortest s-t-path, every extracted s-t-path q ̸= p fulfills γp,1(q) ⩾
γp,1(p). Thus if q is made permanent before p, it is lex-smaller than p and
we must have γp,1(q) = γp,1(p) and γp,2(q) < γp,2(p). The second inequal-
ity implies that q and p are distinct paths and we thus can stop the execution
of the BDA and return q as a second shortest simple s-t-path. In this case, p
and q are cost-equivalent w.r.t. c.

Assume p is permanent already and q is the next s-t-path extracted from
the BDA’s priority queue. We must have γp,1(p) < γp,1(q) (see last para-
graph). Recall that the BDA finds a minimal complete set of efficient paths
for I

p
BOSP. Moreover, as already noted, paths are extracted from the algo-

rithm’s priority queue in lex. nondecreasing order. Thus, since efficient
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paths are simple, we conclude that there cannot exist a simple s-t-path q ′

with γp,1(p) ⩽ γp,1(q
′) < γp,1(q) that is not found by the BDA. Since the

γp,1 costs are equivalent to the original c costs of the paths in D, we obtain
that q is a second shortest simple s-t-path.

The shortest path p is the only simple path in I
p
BOSP with γ2(p) = ℓ. Since

we want to find an efficient s-t-path q with γp,2(q) < ℓ, the BDA can stop
after at most two s-t-paths are extracted from the priority queue: the path
p that is efficient iff γp,1(p) < γp,1(q) and q itself. Using this stopping
criterion, we define the following modified version of the BDA as our new
2-SSP algorithm.

Definition 14.5 (BDA2SSP). As so far in this section, consider the 2−SSP

instance I
p
BOSP associated with k−SSP instance I and a path p. The BDA2SSP

solves I
p
BOSP. It modifies the BDA as follows.

input In addition to a BOSP instance, the input of the BDA2SSP contains a
non-negative integer ℓ.

stopping condition The BDA2SSP stops whenever an efficient s-t-path q

with γp,2(q) < ℓ is extracted from the priority queue or when the
priority queue is empty at the beginning of an iteration.

output Instead of a minimal complete set of efficient s-t-paths, the new
BDA2SSP returns the suffix qv→t of the first efficient s-t-path q with
γp,2(q) < ℓ that it finds. Here, v is the node after which p and q

deviate for the first time. If such a path q does not exist, the BDA2SSP

returns a dummy path if such a path does not exist.

It is easy to see that Theorem 14.2 proves the correctness of the BDA2SSP.
We can thus move on to the analysis of its asymptotic behavior.

14.3.2 Asymptotic Running Time and Memory Consumption

The following is a general statement that holds for any biobjective optimiza-
tion problem. We cannot find it explicitly stated in the literature but it is
certainly not our contribution. Recently it has been used implicitly in e.g.,
(Gorski et al., 2022).

Lemma 14.1. Let X be the set of feasible solutions of a biobjective optimization
problem and f : X → R⩾0 ×N the associated cost function. The cardinality
of a minimal complete set of efficient solutions is bounded by the size of the set
{f2(x) | x ∈ X}.

Proof. Assume for a value y2 ∈ {f2(x) | x ∈ X} there are two efficient solutions
x, x ′ in a minimal complete set. If f1(x) ̸= f1(x

′), then the solution with
the smaller f1 value (weakly) dominates the other. If f1(x) = f1(x

′), both
solutions are cost-equivalent and, by definition, no minimal complete set
contains both.

Our setting in this section assumes a shortest s-t-path p with ℓ arcs to be
given and we look for a second shortest s-t-path in the same graph. In the
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first paragraph of the proof of Theorem 14.2 we derived that any efficient
path q for the instance I

p
BOSP fulfills γp,2(q) ⩽ ℓ. Lemma 14.1 applied to

I
p
BOSP implies that every minimal complete set of efficient s-v-paths, v ∈ V ,

has cardinality at most ℓ.
For the set of efficient s-t-paths computed by the BDA2SSP we even now

that it contains at most two paths at the end of the algorithm. Sadly, we can-
not mirror this fact in the running time bound of the BDA2SSP. As explained
in Chapter 9, in One-to-One BOSP instance, a minimal complete set of effi-
cient s-t-paths can contain less paths than the number of efficient s-v-paths
calculated for an intermediate node v. Thus, even though it calculates at
most two s-t-paths, the BDA2SSP may compute ℓ− 1 (not ℓ because s-t-paths
are not propagated) s-v-paths for an intermediate node v. Using the running
time bound of the BDA described in Theorem 4.5, we obtain the following
result immediately.

Theorem 14.3. The BDA2SSP solves a 2-SSP instance I := (D, s, t, c, 2) in time

O (nℓ logn+ ℓm) ∈ O (n(n logn+m)) . (46)

Based on the memory consumption derived for the BDA in Theorem 4.6,
we conclude this section stating the space consumption bound of the BDA2SSP.

Theorem 14.4. The memory usage of the BDA2SSP is in

O (nℓ+n+m) ∈ O
(
n2 +m

)
. (47)

Proof. The BDA uses O (N+n+m) space where N =
∑

v∈V Nv and Nv is
the number of efficient s-v-paths calculated by the algorithm for the node
v ∈ V . We have N ⩽ nNmax with Nmax = maxv∈V Nv and in our BDA2SSP

scenario Nmax < ℓ as discussed already. The modifications defined in Defini-
tion 14.5 to the original BDA to obtain the BDA2SSP do not have any further
impact on the space consumption.

14.3.3 Second Shortest Simple Paths are Shortest Paths

In this section we prove that a second shortest simple path is a shortest
simple path in a modified digraph. This is important in the development
of the k-SSP algorithm introduced in Section 14.4. Whenever we remove a
path p from a given digraph D, we write D \p and we delete the nodes (and
consequently the arcs) of p from D.

It is easy to see as it follows directly from Definition 14.3 that in a solution
sequence P = (p1, . . . ,pk) to a k-SSP instance, p1 is the parent path of p2.
Then, we can formulate the following important lemma.

Lemma 14.2. Consider a 2-SSP instance I := (D, s, t, c, 2) and let P = (p1,p2)

be a solution sequence. Assume that (v,w) is p2’s deviation arc. The suffix path
pw→t
2 is a shortest w-t-path in the digraph D \ ps→v

2 .

Proof. We can write p2 = ps→v
1 ◦ (v,w) ◦ pw→t

2 . If a w-t-path qw→t with
c(qw→t) < c(pw→t

2 ) exists in D \ ps→v
2 we have c(p2) > c(ps→v

1 ◦ (v,w) ◦
qw→t) and p2 would not be a second shortest s-t-path in D.
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As a consequence, we formulate the following result.

Lemma 14.3. A second simple shortest path is given by

p2 := arg min
{
c(q)

∣∣∣ q = ps→v
1 ◦ (v,w) ◦ qw→t,

qw→t shortest w-t-path in D \ ps→v
1 ,

(v,w) ∈ δ+(v) \ p1, v ∈ p1

}
.

(48)

We observe that the solution p2 in (48) is contained in the solution set
(43) of a Replacement Path (RP) instance. Thus, in a worst case scenario,
the BDA2SSP needs to do as much effort as an RP algorithm to find p2 in
the set (43) of RP solutions. This intuition is formally mirrored in Williams
and Williams (2018, Theorem 1.1). The result states that while currently
having the same complexity, a truly subcubic 2-SSP algorithm implies a truly
subcubic RP algorithm. I.e., it is unlikely to design an algorithm solving 2-
SSP instances faster than RP instances in the worst case.

However, for practical purposes the fact that the solution p2 from (48)
is included in the set (43) unveils the strength of the BDA2SSP as a 2-SSP
algorithm: stopping after at most two paths reach the target node t reduces
the number of iterations in comparison to the need to solve O (n) One-to-
One Shortest Path instances to calculate (43).

14.4 k-spp algorithm by roditty and zwick using
the bda

Roditty and Zwick (2012) discuss a black box algorithm for the k-SSP prob-
lem. It is a black box algorithm because the authors do not specify how to
solve the key subroutine in their algorithm: the computation of a second-
shortest simple path. Moreover, they do not implement their algorithm in
the paper. In this section we fill the gap using the BDA2SSP.

The algorithm presented in (Roditty & Zwick, 2012) performs 2k com-
putations of a second shortest simple path to solve a k-SSP instance I :=

(D, s, t, c,k). It fills the solution sequence P iteratively. In our exposition we
assume that at any stage, the deviation tree TP associated with P exists im-
plicitly. In particular, this allows us to use the notions from Definition 14.3.
We discuss this in detail in Remark 14.2. The pseudocode for our new algo-
rithm is in Algorithm 15. We state the following remark to avoid misunder-
standings regarding the source nodes in the original k-SSP instance and in
the 2-SSP instances solved as subroutines in our algorithm.

Remark 14.1 (Source nodes in IBOSP instances). Given an ℓth shortest path pℓ

for some ℓ ∈ {1, . . . ,k}, the corresponding BOSP instance I
pℓ

BOSP is defined as in
Definition 14.4 but the source node in I

pℓ

BOSP is not always the actual source node s
of our k-SSP instance. For Ipℓ

BOSP the source node is source(pℓ). As discussed in the
previous section, the ℓth shortest path pℓ in the original graph D is not a shortest
s-t-path but its suffix p

source(pℓ)→t
ℓ is a shortest path in a modified version of D.

The data structures of the algorithm are the solution sequence P and a
priority queue C of s-t-paths sorted according to the paths’ costs. Both struc-
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Algorithm 15: New algorithm for the k-SSP problem.
Input :k-SSP instance I := (D, s, t, c,k)
Output : Solution sequence P = (p1, . . . ,pk) of distinct simple s-t-paths.

1 Priority queue of candidate s-t-paths C← ∅;
2 p1 ← shortest s-t-path in D;
3 Solution sequence P ← (p1);
4 p2 ← BDA2SSP solution for Ip1

BOSP;
5 (v,w)← Parent deviation arc of p2;
6 Add (v,w) to blocked(p1);
7 Insert p2 to C;
8 for ℓ ∈ {2, . . . ,k} do
9 pℓ ← Extract path from C with min. cost;
10 Add pℓ to the solution sequence P;
11 if ℓ == k then break;

12 qsource(pℓ)→t ← BDA2SSP solution for Ipℓ
BOSP = (D, source(pℓ), t,γpℓ

)

with D = D \ p
s→dev(pℓ)
ℓ ;

13 if qsource(pℓ)→t ̸= NULL then
14 New s-t-path q← p

s→source(pℓ)
ℓ ◦ qsource(pℓ)→t;

15 (v ′,w ′)← Parent deviation arc of q;
16 Add (v ′,w ′) to blocked(pℓ);
17 Insert q into C;

18 p← Parent path of pℓ;
19 qsource(p)→t ← BDA2SSP solution for IpBOSP = (D, source(p), t,γp) with

D = D\(ps→dev(p) ∪ blocked(p));
20 if qsource(p)→t ̸= NULL then
21 New s-t-path q← ps→source(p) ◦ qsource(p)→t;
22 (v ′,w ′)← deviation arc of q;
23 Add (v ′,w ′) to blocked(p);
24 Insert q into C;
25 return P;
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tures are initially empty. In its initialization phase, the algorithm computes
a shortest s-t-path p1 in D w.r.t c and stores it in P as the first solution in the
solution sequence (Line 2 and Line 3). Additionally, a second shortest path
p2 is computed applying the BDA2SSP to the I

p1

BOSP instance (Line 4). The
obtained path is inserted into C (Line 7). p1 is the parent path of p2.

Every path in P has a list of blocked arcs associated with it. For a path
p, the list blocked(p) contains the deviation arcs from p’s children paths
that are already computed. When looking for further deviations from p, we
delete the arcs in blocked(p) from the digraph to ensure that the deviation
arcs leading to the already computed children paths of p are not computed
again. Thus, since p2 is a child path of p1, the deviation arc of p2 is added
to blocked(p1) (Line 6).

After the initialization, the main loop of the algorithm starts. If performs
k − 1 iterations. Every iteration ℓ ∈ [2,k] starts with the extraction of a
minimal path from C (Line 9) which we call pℓ. pℓ is immediately added
to P after its extraction and it becomes part of the final solution sequence
(Line 10). Then, two instances of the 2-SSP are defined and solved.

first 2-ssp calculation Let (v,w) = (dev(pℓ), source(pℓ)) be the devi-
ation arc from pℓ as defined in Definition 14.3. Then, we build the instance
I
pℓ

BOSP = (D,w, t,γpℓ
) with D = D \ ps→v

ℓ . Recall that by Lemma 14.2, the
suffix pw→t

ℓ is a shortest w-t-path in D. Using the BDA2SSP, a second short-
est w-t-path qw→t in D w.r.t. γpℓ

is searched. The result if it exists, is a new
suffix for the prefix ps→w

ℓ . Together, both subpaths build a new candidate
s-t-path q := ps→w

ℓ ◦ qw→t.

postprocessing If q is successfully built, pℓ is its parent path (see Re-
mark 14.2). Moreover, q’s deviation arc is added to the list blocked(pℓ). Fi-
nally, q is added to C.

second 2-ssp calculation The second BDA2SSP query (Line 19) in ev-
ery iteration looks for the next-cheapest deviation from the parent path p

of the extracted path pℓ. When building the corresponding 2-SSP instance
I
p
BOSP, the deviation arcs from p’s children paths must be deleted from the

digraph D. Otherwise, the solution to I
p
BOSP would be an already computed

deviation. Apart from deleting the arcs in blocked(p) from D, we again
delete p’s prefix ps→dev(p) from p. This ensures that after the BDA2SSP com-
putation, the concatenation of ps→source(p), where w is the adjacent node to
v in p, and the result qw→t is a simple path. If q is successfully built, the
algorithm repeats the postprocessing of the first BDA2SSP computation. This
query searches for the cheapest simple path alternative for pw→t without
considering the alternatives that have already been computed.

14.4.1 Correctness and Complexity

In this subsection we sketch the correctness proof and the complexity of
Algorithm 15. The correctness of Algorithm 15 using a black box algorithm
to solve the arising 2-SSP instances is discussed in Roditty and Zwick (2012).
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In Algorithm 15 we use the parent-child relationship of paths introduced
in Definition 14.3. Formally we would need a proof to show that indeed
the computed paths and our usage of this notion in the algorithm are in
accordance with the original definition. The following remark gives a strong
intuition. The proof can then easily be concluded with an induction step.

Remark 14.2. As mentioned earlier p2’s parent path is p1. In the first iteration
of Algorithm 15, we thus build a source(p2)-t-path qsource(p2)→t in Line 12. It is
used to build an s-t-path q := p

s→source(p2)
2 ◦ qsource(p2)→t. Since by definition

source(p2) ∈ p2 and source(p2) /∈ p1, q shares a prefix of maximum length with
p2. Hence, p2 induced the BOSP instance I

p2

BOSP that led to q’s computation and
p2 is q’s parent path.

In the second BDA2SSP query in the first iteration, an s-t-path q is computed
in Line 19. q already starts at s because s = source(p1) and thus s is the
source node in I

p1

BOSP (cf. Remark 14.1). In the corresponding digraph, the arcs
in blocked(p1) are deleted. At this stage, the list only contains p2’s deviation arc
(v,w) = (dev(p2), source(p2)) that was added to the list in Line 6. Hence if
qs→dev(q) coincides with p1 until a node dev(q) that comes after dev(p2) along
p1, q shares a longest prefix with p1. Otherwise, if dev(q) does not come after
dev(p2) along p1, q shares a longest prefix with p1 and p2. By definition, the
parent path of q is then set to be the first of these paths in P, i.e., p1.

Recall that a child’s deviation node does not come before its parent’s deviation
node as remarked already in Section 14.2. Then, we repeat the arguments from the
last paragraphs for any path extracted from C in Line 9 of Algorithm 15 to prove
that the notions from Definition 14.3 are correctly used in Algorithm 15.

Algorithm 15 deletes prefixes from D to ensure that it can generate distinct
and simple paths when concatenating the suffixes built by the BDA2SSP with
the deleted prefix in the corresponding parent path (see Lemma 14.5).

Lemma 14.4. Let p be an s-t-path in the solution sequence P of Algorithm 15 with
deviation node v and deviation arc (v,w). Let qw→t be a second shortest path
computed in Line 12 or in Line 19. The s-t-path q = ps→w ◦ qw→t is simple.

Proof. For the computation of qw→t, we delete the prefix ps→v from D to
build D. Hence, both subpaths are node-disjoint. As discussed already, the
non-negativity of every γ ensures that the path output by the BDA2SSP is
simple. Hence, q does not contain a cycle.

The deletion of prefixes and blocked arcs in the graphs D in Line 12 and
in Line 19 ensures that every s-t-path found in Line 14 or in Line 21 of
Algorithm 15 is built and added to C only once. This is a property of the
deviation tree that partitions the set of s-t-paths into disjoint sets.

Lemma 14.5 (Roditty and Zwick (2012), Lemma 3.3.). Every s-t-path added to
C is only added once.

Finally, the correctness of Algorithm 15 is proven by induction and using
the correctness of the BDA2SSP, Lemma 14.4, and Lemma 14.5.

Theorem 14.5 (Roditty and Zwick (2012), Lemma 3.4.). Algorithm 15 solves
the k-SSP problem.
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We end this section analyzing the running time bound and the memory
consumption of Algorithm 15.

Theorem 14.6. Algorithm 15 solves a k-SSP instance I := (D, s, t, c,k) in time

O
(
kn
(
n logn+m

))
. (49)

Proof. The main loop of Algorithm 15 does k− 1 iterations. Except in the last
iteration where it does not compute new paths, it performs two BDA2SSP

computations per iteration. Thus, it computes (2k− 4) ∈ O (k) new paths
using the BDA2SSP. Using the running time bound for the BDA2SSP derived
in Theorem 14.3, we obtain the running time bound (49) for Algorithm 15.
Thereby we can neglect the effort for the concatenation of paths in Line 14

and in Line 21 since they are done in O(n) given that simple paths have at
most (n− 1) arcs. Moreover, the priority queue operations on C can also be
neglected since the queue contains O(k) elements and we can assume input
values of k s.t. O (k logk) ⊂ O (km).

Theorem 14.7. Algorithm 15 uses O
(
kn+n2 +m

)
memory.

Proof. By Theorem 14.4 we know that any BDA2SSP query in Line 12 or in
Line 19 requires O

(
n2 +m

)
space. Algorithm 15 does not run multiple

BDA2SSP queries simultaneously. We store the paths in the solution sequence
P, using the deviation tree TP of P (cf Definition 14.3) that allows us to use
the parent-child relationships between paths and the notion of deviation
arcs, deviation nodes, and source nodes. In TP every node v ∈ V can appear
multiple times, one per path in P. Since simple paths have at most n− 1 arcs,
this results in O (kn) space.

14.4.2 Implementation details

The performance of Algorithm 15 in practice depends on the number of
iterations required by the BDA2SSP queries. Intuitively, we hope that the
search deviates from and returns to the path input to the algorithm after
only a few iterations. On big graphs, finding k simple paths between the
input nodes s and t is most often a local search since only a relatively small
number of nodes needs to be explored. However, a BDA2SSP query that
deviates from the input path but does not return to it fast resembles a One-
to-All BOSP algorithm. Thus, it performs a rather global search that requires
a lot of time.

The behavior defined above happens mainly when the target node t is not
reachable from the source node source(p) of a BDA2SSP query defined based
on an s-t-path p. More precisely, there is always a source(p)-t-path in the
considered digraph, namely the subpath psource(p)→t but we are interested
in a second shortest source(p)-t-path. However if p’s suffix is the only path,
the BDA2SSP terminates when its priority queue is empty at the beginning
of an iteration. This behavior motivates the following pruning technique.

BDA2SSP pruning using the paths’ queue As soon as Algorithm 15

has at least k s-t-paths in P and in C, i.e., as soon as |P|+ |C| ⩾ k, we can
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possibly end BDA2SSP queries before t is reached or before the queue of
the BDA2SSP is emptied. In this scenario, we set c̄ := maxp∈C c(p). If the
BDA2SSP extracts a path q with c(q) ⩾ c̄, the lexicographic ordering of the
extracted paths during the BDA2SSP guarantees that no s-t-path p with costs
c(p) < c̄ can be build using the suffix computed in that query. Hence, the
BDA2SSP query can be aborted. Note that the condition |P|+ |C| ⩾ k is met
after the k

2
th iteration at the earliest because in every iteration Algorithm 15

generates at most 2 new s-t-paths.

pruning by min paths’ queue costs In graphs with multiple cost-
equivalent s-t-paths we may avoid some BDA2SSP queries. Suppose c∗ is
the minimum cost of paths stored in C at the beginning of an iteration, i.e.,
c∗ = minp∈C{c(p)}. We denote the set of paths in C with costs c∗ by C∗ ⊆ C.
If at the beginning of an iteration in Algorithm 15 we have |P|+ |C∗| ⩾ k, we
can terminate the algorithm after extracting the first k− |P| paths from the
priority queue and storing them in P. The avoided BDA2SSP queries would
yield s-t-paths p with c(p) ⩾ c∗ and thus would not destroy the optimality
of the output sequence P.

14.5 experiments

In this section we assess the practical performance of Algorithm 15 by com-
paring it to the current state of the art k-SSP algorithm: the KM algorithm
introduced in Kurz and Mutzel (2016).

14.5.1 Benchmark Setup

We benchmark Algorithm 15 on 100× 100 grid graphs and on road networks
from parts of the USA. Both types of graphs have already been used previous
chapters of the thesis (Section 6.2.1). Instead of considering multiple arc cost
components, we use the first one only to define the scalar arc costs c needed
in k-SSP instances.

grid graphs On the digraph D that has 10000 nodes and 39600 arcs,
we define 10 different scalar arc cost functions c. The arc costs are chosen
uniformly and at random between 0 and 10. Each of these cost functions,
paired with the grid graph, builds a pair (D, c). For each of these pairs, we
define 200 s-t-pairs, where s and t are chosen uniformly at random from
the set of nodes in D. Finally, for every tuple (D, s, t, c), we define a k-SSP
instance I := (D, s, t, c,k) using different values for k as shown in Table 22.

road networks Recall that the size of the road networks is shown in
Table 2. The arc costs c corresponds to the distance between the arcs’ end
nodes. We draw 200 s-t-pairs uniformly and at random from each graph’s
nodes’ set. The final k-SSP instances are then defined using different values
for k for every tuple (D, s, t, c) as shown in Table 23.
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Columns Unit Accuracy

Time s Hundreds
Speedup = TKM/TNA \ Hundreds
Iterations amount Integer
Trees and BDA2SSP amount Integer

Table 20: Details on the report of geometric means in our tables in this section.

benchmark algorithm We compare our implementation of Algorithm 15

that is available in (Maristany de las Casas, 2023d) with the implementation
of the KM algorithm (Kurz & Mutzel, 2016) kindly provided to us by the
authors. Both algorithms are implemented in C++ and use the same datas-
tructures to store the graph. We explained the choice of the KM algorithm
for our benchmarks already in Section 14.1.1.

environment We used a computer with an Intel(R) Xeon(R) Gold 6338

@ 2.00GHz processor and assigned 30GB of RAM and 2h=7200s for each in-
stance. Both algorithms are compiled using the g++ compiler and the -O3

compiler optimization flag. Our code repository (Maristany de las Casas,
2023d) includes the scripts used to run the KM algorithm (even though the
code itself needs to be requested from the authors). The scripts to run it
are relevant since the implementation includes some optional arguments
that highly impact its performance. Our configuration resembles the perfor-
mance of the best version of the algorithm in Kurz and Mutzel (2016).

14.5.2 Results

To mitigate the impact of outliers on the reported averages we always re-
port geometric means in this section. In Table 20 we specify the format of
the columns used in the tables in this section. We used the publicly avail-
able files results/evaluationGrids.ipynb and results/evaluationRoad.ipynb in
(Maristany de las Casas, 2023d) to generate the tables and figures. The re-

sults folder in this repository also contains the detailed output for every
solved instance. For every row in Table 22 and in Table 23 the evaluation
scripts generate scatter plots like the ones in Figure 44 - Figure 47.

Speedups are calculated as the time needed by the KM algorithm divided
by the time needed by Algorithm 15. Thus, speedups greater than 1 indicate
a faster running time for Algorithm 15. Instances that were not solved by
any of the two algorithms are not included in our reports. If an instance
was solved by one of the algorithms only, we assume a running time of
T = 2h = 7200s for the other algorithm.

14.5.3 Grid Graphs

We summarize our results on grid graphs in Table 22. Table 21 explains the
column names that are not self-explanatory. For the chosen k-SSP instances
on grids, we end up considering 2000 instances for every fixed value of k. As
shown in Table 22 the KM algorithm and Algorithm 15 solved all instances
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with values of k up to 105. For k = 5× 105 the KM algorithm fails to solve 49

instances and for k = 106 it does not solve 445 instances. The KM algorithm
fails to solve all these instances because it hits the memory limit. In contrast,
Algorithm 15 manages to solve all instances for every value of k. Regarding
the speedup, we observe that Algorithm 15 consistently outperforms the KM
algorithm. Moreover, the speedup increases as k increases. For k ⩾ 5× 104

the speedup is close to or higher than an order of magnitude.
The reason for both the unsolved instances and the slower running times

of the KM algorithm is that the algorithm is forced to compute too many
shortest path trees as shown in the column Trees in Table 22. In fact, for
k ⩾ 104 it approximately needs to compute a tree for every 5th solution path.
This is because the considered grid graph is originally an undirected graph.
After converting it to a directed graph by adding antiparallel arcs, it contains
many cycles. The KM algorithm initially computes a shortest path tree and
it can build O (m) paths from that tree by switching tree arcs and non-tree
arcs. This procedure works as long as the switch does not cause the next
s-t-path to be non-simple. Given the great amount of antiparallel arcs in the
considered grid graph, the KM algorithm cannot build many simple paths
from one shortest path tree.

The good performance of Algorithm 15 on grid graphs is due to the low
number of iterations that it requires in every BDA2SSP search. The column
BDA2SSP in Table 22 reports how many out of at most 2k BDA2SSP queries
are performed on average. We see that due to the Pruning by Min Paths’
Queue Costs described in Section 14.4.2, Algorithm 15 can skip around 20%
of the BDA2SSP queries on average. Whenever the conducted queries find a
new path, the average number of iterations in every BDA2SSP query ranges
from 20 to 28 as shown in the column Iterations ✓. This means that the com-
puted second simple shortest paths in Line 12 and in Line 19 are found fast.
Moreover, in column BDA2SSP ✗ we report the number of BDA2SSP queries
that do not find a suitable suffix to build a new s-t-path. On these searches
the BDA2SSP queries can fail either because t is not reachable or because the
BDA2SSP Pruning using the Paths’ Queue explained in Section 14.4.2 avoids the
computation of the suffix. As reported in the column Iterations ✗, the stop-
ping condition is fulfilled after 16 to 17 BDA2SSP iterations hence avoiding
the computation of unneeded and large sets of efficient paths.
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Algorithm Column Name Explanation

KM Trees Shortest path trees computed on average.

Algorithm 15

BDA2SSP BDA2SSP queries on average. At most 2k− 4.
BDA2SSP ✗ Average number of BDA2SSP queries that did not reach t.
Iterations ✓ Avg. iterations in BDA2SSP queries that reached t.
Iterations ✗ Avg. iterations in BDA2SSP queries that did not reach t.

Table 21: Explanation of columns in Table 22 and Table 23.

Table 22: Summarized results obtained from the k-SSP instances defined on grid graphs. The column BDA2SSP ✗ reports the number of BDA2SSP runs that
did not return a second shortest path. If Iterations ✗ is a small number, the non-existence of a relevant second shortest path could be proven fast (cf.
Section 14.4.2).

k
KM Algorithm 15

SPEEDUP
Solved Trees Time Solved BDA2SSP BDA2SSP ✗ Iterations ✓ Iterations ✗ Time

1000 2000 97 0.05 2000 1604 245 28 17 0.01 3.68

5000 2000 778 0.25 2000 8182 1303 25 17 0.05 4.66

10000 2000 1847 0.53 2000 16387 2656 25 16 0.10 5.17

50000 2000 11207 4.82 2000 82481 13541 23 16 0.49 9.76

100000 2000 24011 9.95 2000 167223 28760 22 16 1.03 9.70

500000 1951 130124 65.29 2000 836001 142677 21 16 6.16 10.61

1000000 1555 220368 249.81 2000 1681693 291944 20 16 12.19 20.50
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14.5.4 Road Networks

In Table 23 we summarize the results obtained on road networks. For every
road network and every value of k the table contains a row showing the
average results over the 200 possibly solved instances in that group.

solvability The first noticeable difference between both algorithm is that
even on the smallest NY network, the KM algorithm fails to solve a consid-
erable amount of instances when k ⩾ 5× 104 (see also Figure 44). Interest-
ingly, also on the much bigger networks, k = 5× 104 constitutes a threshold
beyond which the KM algorithm struggles to solve multiple instances. Fig-
ure 45 shows an example. A look at the KM Time column in Table 23 unveils
that the average running times of the KM algorithm are way below the time
limit T = 7200s. Indeed, the KM algorithm’s bottleneck regarding solvability
is, as on grid graphs, the memory limit of 30GB. On graphs smaller than
LKS, Algorithm 15 manages to solve ⩾ 90% of the instances with k < 106.
The percentage of solved instances with k ⩾ 5× 105 on the LKS and the
CTR networks decreases rapidly. Whenever Algorithm 15 fails to solve an
instance, its because it hits the memory limit. It is worth noting that in-
stances with k ⩾ 105 on road networks are novel in the k-SSP literature for
algorithms matching the running time bound derived in Theorem 14.6.

running times For every value of k ⩾ 10 and for every considered road
network, Algorithm 15 is faster than the KM algorithm on average. In Ta-
ble 23 we can observe that the speedup is proportional to the value of k. The
actual values for the speedup favor Algorithm 15 most clearly on the BAY in-
stances. On this graph, speedups of over an order of magnitude on average
are reached for k = 5000 already. The speedup correlates with the number
of shortest path trees required by the KM algorithm. The BAY network is
particularly hard in this regard.

There are multiple instances defined on the FLA and LKS networks for
which k s-t-paths with the cost of a shortest path exist. On these networks,
the KM algorithm solves instances computing less than 51 and less than 10

shortest path trees, respectively. For this reason, the speedup achieved by Al-
gorithm 15 on these graphs is smaller (cf. Figure 46). Here, the running time
of the KM algorithm is dominated by the checks to determine if computed
paths are simple. Despite the enhanced performance of the KM algorithm
on these instances, Algorithm 15 outperforms the KM algorithm for large
values of k w.r.t. solvability and speed (cf. Figure 47).

The pruning techniques discussed in Section 14.4.2 work well in prac-
tice (see Table 23). The column BDA2SSP ✗ reports the average number of
BDA2SSP queries that do not find a relevant second shortest simple path.
These searches, as explained in Section 14.4.2, could cause the BDA2SSP

queries to compute minimal complete sets of efficient paths for every reach-
able node. However, using our pruning techniques, we can see in the column
Iterations ✗ that the average number of iterations on these searches remains
low. Often the required iterations on average are even lower than the itera-
tions needed in successful BDA2SSP queries (see column Iterations ✓).
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Figure 44: Results obtained from the 200 instances (if solved) defined on NY net-
works with k = 105.

Figure 45: Results obtained from the 200 instances (if solved) defined on COL net-
works with k = 5× 105.
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Figure 46: Results obtained from the 200 instances defined on FLA networks with
k = 5000.

Figure 47: Results obtained from the 200 instances (if solved) defined on LKS net-
works with k = 106.
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Table 23: k-SSP instances on road networks. If Iterations ✗ is a small number, the non-existence of a relevant second shortest path could be proven fast (cf.
Section 14.4.2).

k
KM Algorithm 15

Speedup
Solved Trees Time Solved BDA2SSP BDA2SSP ✗ Iterations ✓ Iterations ✗ Time

NY

10 200 1 0.05 200 15 4 186 130 0.10 0.52

100 200 4 0.15 200 188 51 140 98 0.12 1.28

1000 200 20 1.13 200 1935 523 112 88 0.23 4.98

5000 200 109 4.48 200 9760 2677 100 82 0.68 6.57

10000 197 220 8.98 200 19552 5363 96 79 1.18 7.61

50000 182 987 47.34 200 97824 26736 88 76 5.20 9.11

100000 168 1643 113.67 198 196277 53170 84 69 9.73 11.68

500000 125 4405 867.08 198 980103 266634 78 66 48.72 17.80

1000000 91 4116 1975.73 196 1959033 532676 77 61 90.82 21.75

BAY

10 200 2 0.07 200 14 3 215 168 0.10 0.71

100 200 6 0.20 200 189 50 182 144 0.12 1.67

1000 200 67 2.00 200 1961 520 145 134 0.30 6.70

5000 198 439 11.17 200 9868 2650 128 123 0.96 11.63

10000 190 847 23.18 200 19758 5303 122 119 1.70 13.60

50000 151 3598 170.32 199 98883 26579 111 113 7.97 21.37

100000 127 5710 438.19 199 197836 53240 107 113 16.77 26.13

500000 61 12297 2528.40 190 991928 263977 104 81 77.39 32.67
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1000000 40 15572 4113.70 189 1983487 526322 101 79 138.60 29.68

COL

10 200 1 0.09 200 11 3 128 152 0.13 0.69

100 200 3 0.22 200 141 46 109 133 0.15 1.41

1000 200 11 1.81 200 1557 420 79 123 0.33 5.45

5000 198 38 9.61 200 8300 2506 70 120 1.10 8.76

10000 193 62 16.38 200 16930 4763 70 120 2.09 7.83

50000 156 98 138.73 198 86874 25251 73 112 11.11 12.49

100000 140 117 337.81 195 174875 48851 73 97 23.33 14.48

500000 104 115 1433.21 192 883570 234159 69 92 106.66 13.44

1000000 92 124 2396.19 188 1802480 459770 72 86 202.93 11.81

CAL

10 200 1 0.46 200 11 4 258 281 0.58 0.79

100 200 2 0.83 200 141 45 257 203 0.63 1.32

1000 200 5 4.20 200 1680 374 223 193 1.24 3.38

5000 197 16 19.48 200 9122 2374 214 186 4.43 4.39

10000 192 25 42.71 200 18463 4760 204 178 8.56 4.99

50000 166 61 317.06 197 95921 24492 185 145 47.17 6.72

100000 152 81 654.53 198 192603 49266 179 149 92.33 7.09

500000 93 208 2942.28 195 964115 246741 165 129 454.34 6.48

1000000 82 325 4287.38 178 1946894 500079 172 124 927.41 4.62

FLA

10 200 1 0.21 200 10 4 176 162 0.32 0.66
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100 200 2 0.52 200 132 41 147 194 0.37 1.41

1000 200 5 3.46 200 1468 417 105 198 0.80 4.34

5000 194 14 17.44 200 7853 2448 78 181 2.63 6.64

10000 188 22 30.58 200 15763 4858 72 179 5.17 5.91

50000 168 51 184.12 193 80003 23883 67 113 24.91 7.39

100000 147 43 505.38 192 161864 47771 72 107 42.20 11.98

500000 114 38 2190.95 187 821343 229620 85 98 220.34 9.94

1000000 92 51 3413.61 174 1699749 464313 111 88 512.08 6.67

LKS

10 200 1 0.53 200 10 3 172 242 0.82 0.64

100 200 1 0.99 200 114 45 175 176 0.87 1.14

1000 200 2 5.25 200 1242 344 139 138 1.52 3.46

5000 198 3 26.58 200 6638 2102 130 167 4.71 5.65

10000 194 4 52.56 200 13596 4470 123 176 9.25 5.68

50000 182 4 317.58 199 69638 23313 102 144 49.39 6.43

100000 172 4 653.23 199 141236 47241 97 144 96.96 6.74

500000 122 5 2883.55 171 735793 231196 95 134 657.57 4.39

1000000 95 7 4692.76 138 1595516 437025 97 131 1465.32 3.20

CTR

10 200 1 4.39 200 9 4 200 285 5.42 0.81

100 200 1 8.63 200 105 43 194 204 5.70 1.51

1000 200 1 45.66 200 1086 288 159 153 9.42 4.85

5000 199 1 213.61 199 5585 1943 142 147 32.08 6.66

10000 198 1 431.95 199 11366 4135 129 150 69.49 6.22
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50000 168 2 2135.44 199 59046 22443 107 162 433.13 4.93

100000 154 2 4034.49 198 119179 43441 109 151 916.97 4.40
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14.6 conclusion

We use the black box k-Shortest Simple Path (k-SSP) algorithm by Roditty
and Zwick (2012) as a baseline to design a new k-SSP algorithm. This algo-
rithm solves at most 2k instances of the Second Shortest Simple Path (2-SSP)
problem as a subroutine. In their original paper, Roditty and Zwick do not
specify how to solve the subroutine efficiently. Since it is a scalar optimiza-
tion problem, solving it using biobjective path search sounds counter intu-
itive. However, in this chapter we have shown that the 2-SSP problem can be
solved as a Biobjective Shortest Path problem. Given the improved running
time bound achieved by the Biobjective Dijkstra Algorithm (Theorem 4.5),
our k-SSP algorithm has the same asymptotic running time bound as state
of the art k-SSP algorithms. Moreover, the newly defined bidimensional arc
cost function allows us to avoid the nodewise comparison of paths to de-
termine if the computed (sub)paths are simple. A constant time dominance
check suffices. Given a shortest path with ℓ nodes, other k-SSP algorithms
need ℓ One-to-One Shortest Path computations to find a second shortest path.
Our biobjective approach considers these ℓ searches in one biobjective path
search and stops as soon as the required second shortest path is found. For
these reasons we are able to solve large scale k-SSP instances efficiently in
practice. Our experiments support this claim.



Part V

C O N C L U S I O N A N D B I B L I O G R A P H Y
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We introduced the Multiobjective Dijkstra Algorithm (MDA), a label-setting
Multiobjective Shortest Path (MOSP) algorithm with, to the best of our knowl-
edge, the lowest output sensitive running time bound known so far in the
literature. On a big set of instances, we could prove the algorithm to also out-
perform existing MOSP algorithms in practice. This motivated us to design
variants of the MDA for different problem variants of MOSP.

For the One-to-One MOSP problem, the Targeted Multiobjective Dijkstra Al-
gorithm (T-MDA) combines A∗ techniques with a new pseudo-lazy manage-
ment of explored paths. Lazy management of explored paths is nowadays
common practice in the implementation of efficient algorithms for the single-
criterion Shortest Path problem. When used, explored paths are all stored
in the algorithm’s priority queue to avoid decrease key operations. In the
biobjective scenario the same technique was proven to work well. However,
for higher-dimensional arc costs the size of the queue can grow too fast
causing an efficiency loss of the algorithm at hand. In our new pseudo-lazy
management, we keep the size of the priority queue bounded and index the
explored paths that are not in the queue according to their last arc. This
indexing allows us to hold back paths from the queue while keeping them
sorted in their lists of explored paths using only constant time insertions
into the lists. By doing so the T-MDA has the same asymptotic running
time bound as the MDA but is notably faster in practice. Other One-to-One
MOSP algorithms from the literature turn out to be also slower than the
T-MDA in our experiments.

Variants of the MOSP problem with arc cost functions that depend on
the paths traversed before reaching the arcs’ tail node generalize the Time-
Dependent Shortest Path problem. This generalization is not well studied
in the literature but relevant for the industry cooperation with Lufthansa
Systems GmbH that motivated this thesis. We thus studied the possibilities
and limitations of this model. In a multiobjective scenario, these so called
state-dependent arc cost functions can lead to very dense solution sets. It thus
makes sense to study approximation algorithms for MOSP problem variants.
The Multiobjective Dijkstra FPTAS is a new FPTAS for MOSP and the first one
for MOSP problems with state-dependent arc cost functions.

The third part of the thesis is devoted to the use of the MDA as a sub-
routine to solve other problems than the MOSP problem. The Implicit Graph
MDA (IG-MDA) can be used to solve discrete Multiobjective Dynamic Pro-
gramming problems like the Multiobjective Minimum Spanning Tree (MO-MST)
problem that we studied in the thesis. While doing so, we combined new
and known pruning criteria with the new algorithm to solve larger instances
than before in the literature. Also the running times on three- and four-
dimensional MO-MST instances from the literature were better when the
IG-MDA was used to solve them. Finally, we used the biobjective version of
the MDA, the BDA, to solve the Second-Shortest Simple Path problem. This
problem is the main subroutine in a novel algorithm for the k-Shortest Sim-
ple Path algorithm by Roditty and Zwick (2012). However, the authors did
not specify how to solve the subroutine. We closed this gap using a variant
of the BDA and thus obtained the first implementation of the algorithm by
Roditty and Zwick (2012). Even using Biobjective Optimization, it has a state
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of the art asymptotic running time bound and in practice it outperforms a
previous algorithm from the literature.

All in all, the content of this thesis hopefully makes the modeling of Short-
est Path problems using multiple objectives more appealing in theory and
in practice. All codes and results are publicly available.
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