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Zusammenfassung
In dieser Dissertation wird der neuartige hybride Algorithmus DisCOptER für
global optimale Flugplanung vorgestellt.

DisCOptER (Discrete-Continuous Optimization for Enhanced Resolution)
verbindet diskrete und kontinuierliche Optimierung in einem zweistufigen Ansatz
um optimale Trajektorien unter strengen Genauigkeitsanforderungen in endlicher
Zeit zu finden. Im ersten Schritt wird ein gerichteter Graph erzeugt und damit
implizit eine Menge potentieller Pfade definiert, die den relevanten Teil des
Trajektorienraumes gleichmäßig abdeckt. Vielversprechende Kandidaten werden
mithilfe von Yen’s Algorithmus identifiziert. Diese dienen als Startpunkte für
die zweite Stufe, in welcher lokal konvergente Methoden der Optimalsteuerung
eingesetzt werden um kontinuierliche Lösungen zu generieren.

Die Korrektheit, Genauigkeit und Komplexität der DisCOptER Methode sind
untrennbar verknüpft mit der Wahl des Umschaltpunktes, definiert durch die
Dichte des Graphen. Nur auf einem ausreichend dichten Graphen kann ein Pfad
gefunden werden, der innerhalb des Konvergenzbereichs um ein globales Optimum
liegt. Ausgehend von einem solchen Pfad konvergiert die zweite Stufe schnell
zum Optimum. Demgegenüber birgt ein übermäßig dichter Graph das Risiko für
aufwändige und redundante Berechnungen.

Die Identifikation dieses Umschaltpunktes verlangt nach einem tiefgehenden
Verständnis des lokalen Problemverhaltens, der Approximationseigenschaften des
benutzten Graphen, sowie der Konvergenzeigenschaften der eingesetzten kontinuier-
lichen Optimierungsmethode. Diese Aspekte werden in der vorliegenden Arbeit
ausführlich untersucht.

Eine zentrale Stärke des vorgestellten diskret-kontinuierlichen Ansatzes ist,
dass die nötige Graphendichte ausschließlich von den Umgebungsbedingungen,
jedoch nicht von der geforderten Lösungsgüte, abhängt. Dies hat zur Folge, dass
asymptotisch die vorteilhaften Konvergenzeigenschaften der kontinuierlichen Op-
timierung beibehalten werden.

Die Effizienz der vorgestellten Methode wird unter realistischen Bedingungen
praktisch nachgewiesen. Es wird demonstriert, dass der DisCOptER Algorithmus
mit minimalem Aufwand konsistent hochpräzise global optimale Lösungen erzielt
und so einen doppelten Vorteil im Vergleich zu bestehenden Methoden bietet.
Einerseits wird eine gesteigerte algorithmische Effizienz erreicht. Andererseits trägt
die verbesserte Qualität der Trajektorien wesentlich dazu bei, den Luftfahrtsektor
effizienter und umweltfreundlicher zu gestalten.
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Abstract
This thesis introduces the novel hybrid algorithm DisCOptER for globally optimal
flight planning.

DisCOptER (Discrete-Continuous Optimization for Enhanced Resolution) com-
bines discrete and continuous optimization in a two-stage approach to find optimal
trajectories up to arbitrary precision in finite time. In the discrete phase, a directed
auxiliary graph is created in order to define a set of candidate paths that densely
covers the relevant part of the trajectory space. Then, Yen’s algorithm is employed
to identify a set of promising candidate paths. These are used as starting points
for the subsequent stage in which they are refined with a locally convergent
optimal control method.

The correctness, accuracy, and complexity of DisCOptER are intricately linked
to the choice of the switch-over point, defined by the discretization coarseness. Only
a sufficiently dense graph enables the algorithm to find a path within the convex
domain surrounding the global minimizer. Initialized with such a path, the second
stage rapidly converges to the optimum. Conversely, an excessively dense graph
poses the risk of overly costly and redundant computations.

The determination of the optimal switch-over point necessitates a profound
understanding of the local behavior of the problem, the approximation properties
of the graph, and the convergence characteristics of the employed optimal control
method. These topics are explored extensively in this thesis.

Crucially, the density of the auxiliary graph is solely dependent on the en-
vironmental conditions, yet independent of the desired solution accuracy. As a
consequence, the algorithm inherits the superior asymptotic convergence properties
of the optimal control stage.

The practical implications of this computational efficiency are demonstrated in
realistic environments, where the DisCOptER algorithm consistently delivers highly
accurate globally optimal trajectories with exceptional computational efficiency.
This notable improvement upon existing approaches underscores the algorithm’s
significance. Beyond its technical prowess, the DisCOptER algorithm stands as a
valuable tool contributing to the reduction of costs and the overall enhancement
of flight operations efficiency.
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1.1 Motivation

In the early stages of air travel, landmarks and radio navigational beacons played

an indispensable role in navigation. Over time, these elements evolved into an

intricate three-dimensional global network consisting of 400,000 predefined waypoints

connected by 900,000 arcs, shaping the routes that aircraft operate on today [6].

While the graph-based system has served as a reliable foundation for air traffic

management (ATM), it also has inherent limitations. Most importantly, it can only

roughly approximate efficient routes which are likely continuous curves rather than

polygonal chains. Consequently, this system inherently yields suboptimal solutions,

resulting in excessive fuel consumption, as well as emissions of carbon dioxides (CO2),

methane (CH4), nitrogen oxides (NOx), water vapor, soot, and sulfate aerosols [7, 8].

As highlighted in the European Environment Agency (EEA) report, the aviation

sector was responsible for 1.7% of global CO2 emissions in 2019 [9]. This statistic is

projected to triple by 2050 if no interventions are undertaken, as indicated by the

International Civil Aviation Organization (ICAO) [10]. If this trajectory continues,

aviation could consume as much as 25% of the global carbon budget. Furthermore,

recent research suggests that aviation is poised to contribute approximately 1.5%

of the cumulative global warming effects between 2015 and 2100 [11]. Given these

projections, there exists a compelling motivation to investigate and harness the

potential of alternative approaches.

Especially as air travel continues its expansion, these limitations manifest as

costly challenges. The demand for passenger kilometers surged by 4.9% between

2018 and 2019 alone, continuing a consistent trend resulting in a striking 75% growth

between 2010 and 2019, as reported by the ICAO Annual Report [12]. Despite

a temporary halt caused by the COVID-19 pandemic, this upward trajectory is

anticipated to endure, inevitably resulting in increased airspace congestion [13–15].

Harnessing the capabilities of modern navigation and communication technology,

such as e.g., a network of low earth orbit satellites [16, 17], the aviation industry is

addressing these challenges through the implementation of Free Flight Airspaces
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[18, 19]. Integral to comprehensive overhauls of air traffic management systems,

such as Europe’s Single European Sky ATM Research (SESAR [20]), the U.S.’s Next

Generation Air Transportation System (NextGen [21]), or Japan’s Collaborative

Actions for Renovation of Air Traffic Systems (CARATS [22]) is the replacement

of the highly structured ATM system with a more trajectory-centric framework.

Airlines shall be granted significantly larger freedom in route planning.

Expectations for these changes are substantial [19]. The European Organisation

for the Safety of Air Navigation (EUROCONTROL) anticipates savings of 1

billion nautical miles, 6 million tonnes of fuel, 20 million tonnes of CO2 emissions,

and €5 billion in fuel costs [23]. Research indicated potential savings of up to

16.4% in extreme cases [24, 25]. These projected benefits underscore the potential

transformative impact of embracing Free Flight Airspaces.

This chapter is organized as follows: we begin in Section 1.2 by discussing

various aspects of Free Flight currently under investigation in both research and

industry communities. Concurrently, we define the precise setting discussed in

this thesis, which is formally stated in Section 1.3. In Section 1.4 we provide

an overview of existing solution approaches, before we introduce our algorithm

DisCOptER in Section 1.5. Furthermore, we outline the articles comprising this

work and emphasize their individual contributions.
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1.2 Free Flight Model

The implementation of true Free Flight necessitates significant transformations

across numerous institutions and processes within the ATM framework [26, 27]. As

a result, transitional solutions arise between the conventional graph-based routing

and the ultimate realization of Free Flight.

In this section, we delve into specific facets of Free Flight currently being

explored within the research community, simultaneously outlining the assumptions

underpinning this study. These chosen simplifications are strategically designed to

facilitate theoretical analysis, straightforward expansion to more intricate scenarios,

and early integration within the existing ATM framework.

1.2.1 Spatial Restrictions

The most apparent dimension of Free Flight revolves around the degree of spatial

constraints. In the traditional system, aircraft are compelled to conform to a three-

dimensional directed graph comprised of 400,000 nodes (called waypoints) on 43

flight levels and 900,000 arcs (called airway segments) [28, 29].

A first step towards Free Flight is conducted by introducing so called Free Route

Airspaces (FRAs). Within these designated airspaces, users are granted the freedom

to chart a route between predetermined entry and exit points, with the added

option of including intermediate waypoints in their trajectory [23].

The subsequent progression involves merging several FRAs and thus eliminating

spatial limitations along the horizontal plane, while still necessitating aircraft to

adhere to specific (discrete) flight levels. The switching of flight levels follows

a defined procedure.

It has been shown that the two problems of optimizing the horizontal and the

vertical flight profile are only weakly coupled. While the former is mainly dependent

of the horizontal wind gradients, the latter is primarily dictated by the interplay of

aircraft-performance and the fuel-burn induced weight reduction [30, 31]. Hence,

a common approach is to first obtain the vertical profile and then optimize the
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horizontal path on piecewise constant flight levels. This is usually referred to as 2+2D

approach. Both sub-problems are by themselves subject to active research. While

the vertical part is studied e.g., in [32–35], this work focuses on the horizontal part.

With the background of this approach, we assume travelling at constant flight

levels and reduce the problem to a two-dimensional context. This includes that

take-off and landing are not optimized.

Approaches aimed at optimizing these flight phases, e.g., with continuous descent

operations (CDO) [22, 36], have considerably enhanced flight efficiency. However,

they often encounter significant operational restrictions and are guided by different

objectives, e.g., noise reduction [37]. As a result, these approaches are frequently

studied separately [38] or as part of multiphase strategies [39, 40].

The ultimate vision of Free Flight encompasses an aviation landscape where

aircraft possess the autonomy to navigate according to their own preferences in

the four-dimensional space (3D and time), devoid of imposed restrictions. It has

been demonstrated that continuous cruise climb following a straightforward physical

principle leads to significant increase in operating efficiency [30, 41–44]. During

a flight, aircraft loose significant amounts of weight due to fuel consumption.

Consequently, they require less lift to counterbalance the gravitational force, which

allows them to climb and reduce drag.

Moreover, greater flexibility in choosing flight altitudes can have a notable posi-

tive impact on reducing the environmental footprint of a flight. The environmental

consequences of aircraft emissions are intricately linked to their precise geographical

occurrence. For instance, the impact of NOx emissions varies considerably with

altitude, and areas where contrails are prone to form are often confined to specific

thin layers [45]. According to findings in [46], significant reductions in these effects –

up to 10% – can be achieved with a mere 1% increase in cost (attributed to fuel

consumption due to route detouring) by strategically avoiding high-impact regions.

However, this way of operating is not compliant with the current ATM concept.

Remark 1.1. — Research has demonstrated that employing a periodic pattern

of repetitive climb and descent cycles, rather than maintaining a constant altitude
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cruise, can result in improved fuel efficiency [47]. However, as this approach might

lead to passenger discomfort, it is not a preferred option for human-operated flights.

Therefore, we will exclude such operations from our consideration, reserving them

for the optimization of unmanned flights.

1.2.2 Collaboration

In a nutshell, the process of aircraft routing within the current centralized system

unfolds as follows: airlines optimize routes for each aircraft individually. These

planned routes are then submitted to the relevant air traffic control (ATC) agency

(e.g., EUROCONTROL) as a list of waypoints, altitudes, times, etc. [48]. Here, all

submissions from various airlines are checked for potential conflicts. Upon approval,

the route is granted, and airlines are required to adhere to the established plan.

Deviation from the route is only permissible in emergency situations and necessitates

approval from the respective airspace security agency.

Aligned with these current circumstances, our investigation focuses on optimiz-

ing the trajectory of a single aircraft, without considering competing interests

from other parties.

It is important to note that the potential for significantly enhancing the overall

efficiency of the aviation industry through centralized trajectory optimization for

multiple aircraft simultaneously has been recognized [49–52].

One plausible explanation for the absence of such an implementation thus far lies

in the sensitivity of aircraft performance data and operating cost functions, which are

considered valuable proprietary information that airlines prefer to retain control over.

Moreover, the complexity of the combined optimization problem tends to increase

exponentially with the number of conflicting aircraft [52, 53], making this approach

practically challenging to implement.

Looking ahead, the concept of Free Flight will advance with a more promising ap-

proach involving decentralized individual routeplanning and en-flight reoptimization

[54]. This shift entails transferring control from central agencies to cockpit crews,
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who, aided by an Airborne Separation System (ASS), will take over the responsibility

for real-time airborne route adjustments and conflict resolution [55–57].

Maintaining airspace safety presents a substantial challenge in this context

[58, 59]. However, research suggests that decentralized trajectory optimization can

handle even higher traffic densities than centralized ATC [60] and even enhance

airspace security. Hoekstra et al. aptly summarize this: "better a safe chaos, than a

dangerous order" [55, 61]. The development of efficient algorithms will be pivotal

in addressing these challenges effectively. Nonetheless, the anticipated economical

advantages of Free Flight are expected to outweigh any additional complexities [62].

Early studies indicate that such collaborative routing has the potential to reduce

fuel consumption by a significant margin [27, 54, 63, 64].

1.2.3 Open VS. Closed Loop Optimization

As previously discussed, the existing system mandates aircraft to adhere to routes

that are predefined prior to take-off, with minimal to no flexibility for in-flight alter-

ations. This way of route planning is commonly referred to as open-loop approach.

Consequently, route planning hinges heavily on highly accurate weather fore-

casts [65]. Moreover, given that route determination usually occurs at the latest

time possible before take-off (about one hour [48]), computational efficiency be-

comes paramount.

The weather forecast alongside indicators of the reliability of the forecast in

terms of so-called ensemble forecast data with different look-ahead times may be

provided by global weather data services such as the World Area Forecast System

(WAFS) [66] or the Global Forecast System (GFS) [67]. Wind data (speed and

direction) is available for each 1.25° of latitude and longitude and for several

altitudes, yielding a 3D grid of geodesic points that is updated every one to six

hours. Typically, the prediction accuracy of a one-hour forecast stands at around 3%,

in comparison to the actual weather state modeled for the subsequent six hours [68].

To address this uncertainty, probabilistic optimization has been proposed. These

methods are based on meteorological forecasts provided by so-called Ensemble
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Prediction Systems (EPS) [69–74]. However, when the forecast extends beyond one

hour, the margin of weather prediction error grows markedly, rendering it unsuitable

for reliable input data in trajectory optimization [75].

Consequently, the concept of en-route re-optimization (a closed-loop approach)

emerges as a promising remedy, embedded within the broader vision of Free Flight

[25]. A recent study reports fuel savings of 0.5% up to 7% [48] by updating the

route multiple times during the flight. On the other hand, this requires more

intricate tools to uphold airspace security.

In this study, we work within the limitations of the current system and assume

the weather conditions to be well known, disregarding introduced uncertainties.

Additionally, we consider wind as stationary (i.e., time-independent) for the majority

of our analysis. With these premises in place, we proceed with the open-loop

approach for our research.

1.2.4 Cost Factors

Our objective is to determine the most cost-efficient route, with the exact definition

of "cost-efficient" varying according to the criteria set by individual airlines. For a

comprehensive understanding of the diverse conflicting objectives and constraints

airlines encounter in their operations, we refer interested readers to [76].

This study specifically focuses on trajectory-dependent cost, which is usually a

combination of two major components: fuel cost (making up for roughly 30% of all

operating cost [77]) and time cost (incl. wages (around 20%), aircraft rentals

(around 3%), etc.).

This led to a recent investigation of multiobjective approaches in order to yield

a Pareto front regarding these individual objectives [78, 79].

Most often, however, airlines define the ratio of time and fuel cost individually,

based on their business models. This ratio is referred to as Cost-Index (CI) [65, 80]

and directly translates to the most economic air speed (ECON speed). Assuming

constant altitude, while ignoring weight reduction due to fuel burn, this results in

constant air speed and establishes a direct proportionality of fuel and time cost [24].
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With a growing awareness of aviation’s environmental impact, airlines now

also consider additional factors in their trajectory planning strategies, such as

the emission of climate-active gases like CO2, CH4 (methane), and NOx (nitrogen

oxides), which are likewise proportional to the overall fuel consumption [81]. As a

result, our primary focus is on minimizing total travel time as a singular objective,

encompassing all these contributing elements.

Furthermore, there exists a wide variety of other factors that can be taken

into consideration during the optimization of a flight trajectory. Notable examples

include overflight cost [82, 83] – fees for traversing an airspace – and penalties for

the creation of persistent contrails [84–88]. Both factors are dependent on the spatial

route arrangement and are not directly proportional to the travel time. However,

these considerations go beyond the scope of the current study.

1.2.5 Traffic Flow Restrictions (TFRs)

Especially in high-traffic regions such as Europe or North America, flight trajectories

are heavily constrained by so-called Traffic Flow Restrictions (TFRs), [6, 89]. The

most prominent sources of such restrictions in the European airspace are Notice(s)

to Airmen (NOTAMs) [90] and the Route Availability Document (RAD) [91].

NOTAMs are restrictions issued by government agencies and airport operators,

which limit the usage of certain parts of the airway network on short notice. They

regulate the availability of waypoints, segments, runways, airspaces, etc., possibly

only within given time or altitude ranges. Some common motivations for the

implementation of these restrictions are military exercises, flights by heads of state,

extreme weather phenomena or technical issues at an airport.

Remarkably, many of these constraints can be seamlessly adapted to the Free

Flight context. For instance, preliminary research suggests that no-fly zones can

be effectively represented as obstacles and readily integrated into conventional

trajectory optimization frameworks [92, 93].

The RAD is a collection of restrictions updated in 28-day cycles. These con-

straints aim to enhance airspace utilization by predefining traffic flows. As of August
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2023, the RAD document is presented as a PDF of more than six hundred pages,

embodying over ten thousand constraints [91].

One notably complex set of constraints is known as forbidden pairs [94]. In

essence, these pairs signify that the usage of one waypoint prohibits the usage of

another (not necessarily neighboring) waypoint. As these restrictions inherently

revolve around waypoints and airway segments within the airway network, their

representation within the Free Flight paradigm remains uncertain. Therefore, TFRs

will be disregarded in this study. Notably, for the comparative analysis between

graph-based routing and Free Flight, TFRs will be excluded on both fronts.

1.2.6 Aircraft Physics

Optimal control problems (not solely aircraft trajectory optimization) are often

solved with a hierarchical strategy, which involves optimizing the route on a

macroscopic scale first, followed by determining the control of actuators on a

finer scale based on the previously optimized route. This principle is extensible in

both directions and can incorporate any number of intermediate levels.

In our investigation, we focus on the macroscopic optimization of a single

aircraft trajectory. Depending on the chosen strategy, two popular aircraft and

atmospheric models are commonly utilized.

The first model is documented in the User Manual for the Base of Aircraft

Data (BADA) [95] and has found application in research on aircraft trajectory

optimization (e.g., [30, 49, 85]). It involves rather intricate aircraft dynamics,

describing the state in seven dimensions (3D-coordinates, air speed, climb angle,

course angle and mass), controlled by three variables (angle of attack, bank angle,

and thrust lever position). The atmosphere is not only described by wind speed

and direction, but also by air pressure and temperature.

Under the previous assumptions, most notably constant altitude and air speed,

the problem can be simplified significantly. Finally, an aircraft can be conceptualized

as a self-propelled point mass that maintains a constant airspeed (velocity relative

to the surrounding air) and experiences advection by the prevailing airflow. This
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permits to calculate motion in an earth-fixed coordinate system by vector addition

of airspeed and wind vectors. In this form the problem was originally presented

by Ernst Zermelo in the 1930s [96, 97] and has since been studied in numerous

publications (e.g., [51, 98–100]).

Although the real-world turn radius of an aircraft is physically constrained,

this limitation is not reflected in the model. Instantaneous changes in direction are

possible, which allows for direct comparison of continuous curves with theoretical

polygonal chains (e.g., paths on a graph). Since wind-optimal trajectories usually

have significantly broader curves, however, this model limitation is rarely violated.

Due to its simplicity, which nevertheless captures the essential aspects of the

problem, this model is well-suited for theoretical analysis. Consequently, it is

employed in the present study.
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1.3 The Free Flight Trajectory Optimization
Problem

In the preceding section, an in-depth exploration of various assumptions was

conducted, ultimately shaping the problem framework that forms the basis of this

study. Concisely recapped, our objective is to determine the minimum-time trajectory

for an aircraft within a two-dimensional plane, departing at an origin xO and arriving

at a destination xD. During this trajectory, the aircraft maintains a constant

airspeed v, while traversing through a multiple times continuously differentiable

stationary wind field w ∈ C3(R2,R2). Additionally, a simplified kinematic model

governs the aircraft’s behavior, allowing the problem to be expressed in a classical

optimal control formulation:

min
T,x,v

T (1.1a)

subject to ẋ(t) = v(t) + w(x(t)) (1.1b)

v(t)Tv(t) = v2 (1.1c)

x(0) = xO (1.1d)

x(T ) = xD, (1.1e)

where T denotes the travel time, x, ẋ : [0, T ]→ R2 represent the aircraft position

(the state variables) and its time derivative, respectively, and v : [0, T ]→ R2 stands

for the air speed (the control variable). The departure time is fixed at t = 0, which

does not impose a restriction in a time-invariant wind field. Finally, the route shall

be generated before take-off, i.e., in an open loop or offline approach.

This problem is commonly known as Zermelo’s navigation problem, named

after the scientist who initially introduced it already in the 1930s. However, it

did not receive considerable attention until after the second world war, when the

air travel industry began to evolve rapidly.

Today, the aviation sector is a fiercely competitive market characterized by

narrow profit margins and increasing urges to reduce the environmental footprint.
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As a result, airlines have high standards regarding the efficiency of planned flights,

necessitating routes that are (globally) optimal.

The overall goal of this work is to find an ϵ-globally optimal aircraft trajectory,

for which we use the following notation. Given a function f : X → R, we call x⋆⋆ a

global optimizer of the problem min
x∈X

f(x), if f(x⋆⋆) ≤ f(x) ∀x ∈ X, contrary to a

local optimizer x⋆ for which the inequality only holds in a certain neighborhood,

f(x⋆) ≤ f(x) ∀x ∈ N (x⋆) ⊆ X. Further, we call x̃ an ϵ-globally optimal solution,

if f(x̃) ≤ f(x⋆⋆) + ϵ for some small ϵ > 0.

Remark 1.2. — It is essential to recognize that there can be multiple equivalent

global optima (as illustrated, for instance, in test problem d) in Section 2.3, Fig-

ure 2.5). Hence, we refer to "a" global minimizer rather than "the" global minimizer.

As we will demonstrate later in Section 2.2, the quality of the solution with

respect to the overall objective (the travel time), denoted as ϵ, is inherently linked

to the discretization length ℓ employed by the solution technique, which might be a

characteristic arc length within a graph or the step length in a direct collocation

approach. This correlation enables us to compare the efficiency of different methods

concerning the objective of identifying an ϵ-globally optimal trajectory. Therefore,

we will use ℓ as a measure for the solution quality rather than ϵ.
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1.4 Solution Approaches

This section provides an overview of existing solution approaches to the Trajec-

tory Optimization Problem, with a particular emphasis on Free Flight but not

exclusively limited to it.

Inspiration can be drawn from related fields, such as trajectory optimization for

Autonomous Underwater Vehicles (AUVs) or ships [101–103]. Since these vehicles

operate in the presence of ambient currents, these problems closely resemble the

Free Flight Trajectory Optimization Problem discussed above.

Furthermore, the realm of designing interplanetary space missions represents

an active research area that motivates the development of various novel methods.

In this case, control are usually executed on a very short timescale compared

to the overall mission duration. Consequently, maneuvers are often modeled as

instantaneous actions rather than continuous controls [104], which introduces a

slightly different optimization challenge.

Given that the simplified aircraft model allows for any Lipschitz-continuous

route (refer to Section 1.2.6), we can approach the problem from a path planning

perspective and employ methods commonly used for robots, unmanned aerial

vehicles (UAVs), or drones [105–109]. In these applications, the vehicle’s velocity is

typically isotropic, the primary focus is on obstacle avoidance, and the objective is

to minimize path length. Nevertheless, anisotropic velocity can often be accounted

for by factoring in travel time as the cost of a path.

We categorize existing solution approaches into four main groups:

• Dynamic Programming. These methods focus on optimizing the trajectory

by considering sequences of optimal decisions. This category encompasses

techniques such as graph-based shortest path algorithms and methods for

solving the Hamilton-Jacobi-Bellman equation.

• Indirect Methods. These methods adopt the principle of "optimize then

discretize". They apply Pontryagin’s maximum principle to derive necessary
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conditions for the control variables, which leads to the formulation of a

two-point boundary value problem.

• Direct Methods. Direct methods, on the other hand, follow the principle of

"discretize then optimize". They discretize both the state and control variables,

transforming the continuous problem into a structured constrained nonlinear

optimization problem.

• Stochastic Methods. These methods incorporate randomness or probabilis-

tic elements into the optimization process.

It will become evident that these categories are not rigidly defined, and numerous

approaches, including the algorithm presented in this work, incorporate techniques

from multiple categories.

Furthermore, it is essential to acknowledge that the discussion provided here

is not exhaustive. For different perspectives, we recommend consulting survey

articles such as [110] or [111].

We will examine the strengths and limitations of each approach in detail, with

focus on the criteria computational efficiency aiming at global optimality and

extensibility to the more complex problem. Ultimately, the observation emerges that

there exists a deficiency in methods capable of providing globally optimal solutions

with a high degree of accuracy in finite time. Dynamic programming solutions, while

valuable, tend to suffer from scalability issues as the resolution increases. Conversely,

direct and indirect methods excel at providing highly accurate solutions but run the

risk of getting trapped in local minima. Both challenges can be alleviated by resorting

to stochastic approaches, albeit at the expense of potentially unbounded runtime.

This very gap underscores the significance of the discrete-continuous hybrid

algorithm introduced in this study. Our algorithm bridges the gap between the

strengths of dynamic programming and optimal control, aiming to provide efficient

and accurate solutions to the Free Flight Trajectory Optimization Problem.
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1.4.1 Dynamic Programming (DP)

Dynamic programming is a set of methods that are grounded in Bellman’s principle

of optimality, which can be concisely stated as follows: "In an optimal sequence

of decisions, every subsequence must also be optimal." [112].

We will now delve into the development of various methods applicable to the

Free Flight Trajectory Optimization Problem, commencing with classical shortest

path algorithms, such as Dijkstra’s. Subsequently, we will introduce the Hamilton-

Jacobi-Bellman equation which motivates the fast marching method, an extension

of Dijkstra’s algorithm tailored for continuous spaces. However, it is important

to note that this approach is only suitable for isotropic problems and not able

to address the complexities of the Free Flight Trajectory Optimization Problem.

Consequently, we will turn our attention to ordered upwind methods as a potential

solution to this deficiency.

1.4.1.1 Shortest Path Algorithms

Shortest path algorithms typically generate routes on the basis of a spatially fixed

graph. The classical airway network is the primal example for a deterministically

created graph. As it has been predefined with respect to multiple criteria aside of

route efficiency and is altered only slightly in response to current weather situation

or air traffic conditions, it is not surprising that it often leads to suboptimal results.

A natural approach to harvest the flexibility offered by Free Flight is to

expand the existing airway network by introducing additional nodes and arcs.

This enables the problem to be addressed within the existing framework using

well-established algorithms.

In an idealized way, this approach will serve as benchmark in this work (outlined

in Section 2.2.3). To represent it, we define an isotropic, locally densely connected

graph and calculate time-optimal paths using the A∗ algorithm (explained below).

A similar approach has been proposed by Cheung [71]. As discussed by the

author, static graphs suffer from limited angular resolution, which makes them

incapable of approximating continuous curves adequately. The issue can be reduced
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by increasing the connectivity, which, however, quickly increases the number of arcs,

leading to exploding computational times. An improvement on this approach is

offered by Jensen et al., who suggest to divide the space into cells with arcs being

defined by subdividing the borders in small steps [113].

Determining the optimal path on a weighted graph is typically accomplished using

a variant of Dijkstra’s algorithm [114], most prominently the A∗ algorithm [115].

Remark 1.3. — The term "shortest path" is commonly used to denote the minimum-

weight path on a weighted graph. Since we are not optimizing for the euclidean

distance, but for the travel time or a more complex cost function as discussed in

Section 1.2.4, the term "most cost-efficient path" would be more appropriate.

Dijkstra’s algorithm operates by systematically expanding a front of nodes

reachable within a receding time horizon. During this process, a priority queue

is employed to manage "considered" nodes that have not yet been accepted into

the optimal path. These nodes are assigned labels representing their estimated

earliest arrival times and the parent node through which they may be reached. As

soon as the destination node gets accepted, the optimal path can be traced back

to the origin by following the stored parent nodes.

The A∗ variant incorporates a lower bound on the travel time from a given node

to the destination in order to guide the exploration and increase the overall efficiency.

A detailed discussion of further variants of Dijkstra’s algorithm if offered by

Souissi et al. [116]. These general approaches can be further enhanced through

recent problem-specific advancements such as search space pruning [117–120] or the

implementation of tight lower bounds [28, 29, 121, 122]. These refinements signifi-

cantly contribute to remarkably fast computational runtimes, even for moderately

large and dense graphs [6, 118, 123–126].

Moreover, the challenge of limited angle resolution can also be addressed at

this level. A promising approach that is closely related to the algorithm proposed

in the present work, is to employ a distinct post-processing step [127] which can

be realized via nonlinear optimization methods [128, 129].
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Alternatively, smoothing can be directly interleaved with the A∗-search using

any-angle pathfinding algorithms [130], like Field D∗ [131] or Theta∗ [132]. Another

approach is to allow for non-straight arcs which are created by solving nonlinear

optimization problems [129].

These strategies may improve the paths beyond the approximation capabilities

of the underlying graph. However, attaining convergence to a global minimizer

is not guaranteed.

The level of detail considered in the aircraft model introduces a significant

challenge for label-setting algorithms such as Dijkstra’s. The shortest path problem

on graphs is known to be solvable in polynomial time provided that the First-In-

First-Out (FIFO) property is satisfied [133]. Put simply, this dictates that when an

aircraft departs from a node, it cannot be overtaken by another aircraft departing

from the same node at a later time. However, it is entirely possible that an aircraft

arrives at a node later and at a lighter weight, allowing it to fly faster and overtake

another aircraft that arrived earlier, but was heavier and slower. This leads to a

violation of the FIFO property, resulting in a NP-hard problem, as a total ordering

of labels is no longer possible [134]. Nevertheless, research has shown that even if

this issue is disregarded, satisfactory results can still be achieved [32].

A more critical challenge concerning the overarching objective of this study is that

graph search algorithms face scalability issues when dealing with high resolutions.

Global optimization is usually not explicitly addressed in this context, since

Dijkstra’s algorithm inherently yields the globally optimal solution in the subset

of the trajectory space that is implicitly defined by the graph. It is evident that

a continuous solution can be approximated to an arbitrary degree of accuracy by

increasing the graph-density. Consequently, an ϵ-global optimal solution can be

achieved for any given ϵ by employing a sufficiently fine graph.

However, it is important to note that shortest path algorithms often inherit

the computational complexity of Dijkstra’s algorithm. With efficient heap data

structures, this complexity scales as O(|A|+ |V | log(|V |)), where A and V denote

the sets of segments (arcs) and waypoints (vertices), respectively.
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What may seem intuitive will be analytically confirmed in this study. It will

be shown that the computational complexity of the purely graph-based approach

is in O(ℓ−6), where ℓ indicates the connectivity length of a locally densely con-

nected digraph, rendering this approach inefficient for achieving highly accurate

optimization (refer to Chapter 2).

1.4.1.2 Solving the Hamilton-Jacobi-Bellman Equation

The Hamilton-Jacobi-Bellman (HJB) equation follows as a direct consequence of

Bellman’s principle of optimality. This partial differential equation (PDE) of the

so-called value function provides a necessary condition for optimality. In our specific

context, the value function indicates the earliest possible arrival time at a given

point. The optimal trajectory finally follows the characteristics of the PDE.

In the isotropic case, i.e., if the ground speed of the aircraft was independent

of the travel direction, this leads to the Eikonal equation [135]. The most well

known approach to solve the Eikonal equation numerically is the Fast Marching

(FM) method. Obviously, the velocity of an aircraft is inherently anisotropic due

to the influence of wind. For such problems Ordered Upwind (OU) methods have

been developed as extension of the FM method.

The Fast Marching (FM) Method, introduced in [136], is an algorithm

that can be viewed as an extension of Dijkstra’s algorithm to the continuous

domain. It involves two main steps in order to find a viscosity solution to isotropic

trajectory optimization problems.

First, the HJB equation is solved in a forward manner on a defined grid. While

this initially seems to lead to a large coupled system of PDEs, it can be efficiently

decoupled. This decoupling requires an ordering of grid points in terms of increasing

value (arrival time), which is not known a priori. An efficient approach is to solve

the PDE by gradually expanding the wavefront of the value function, similar to

how Dijkstra’s algorithm operates.
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Various update schemes have been proposed for the purpose of estimating

the value function and its gradient at a grid point x by solving the PDE locally,

considering simplices (x, x1, x2) that include two already accepted grid points x1, x2.

Finally, the optimal trajectory is extracted in a backward manner by tracing

the estimated characteristic from the destination to the origin. In the isotropic case,

the characteristics of the PDE coincide with the gradients of the viscosity solution.

As such, FM closely resembles Dijkstra’s algorithm but differs in two crucial

aspects: Dijkstra’s algorithm assigns labels to nodes to indicate the earliest arrival

time. In contrast, the FM labels include gradient information.

Moreover, Dijkstra’s algorithm provides a sequence of nodes on a predefined

graph as the solution. Angular resolution may only be enhanced by increasing

the graph’s connectivity, which in turn leads to larger computational effort, since

the complexity scales with O(|A|+ |V | log |V |), where A and V indicate the sets

of arcs and vortices (nodes), respectively.

On the other hand, during the wavefront expansion in the FM method, only the

spatially closest neighbors of the grid are considered. This results in a complexity

similar to Dijkstra’s on a graph with limited node-degree, O(|V | log |V |). However,

the FM solution is not bound to the underlying graph and provides a better

approximation of the actual continuous optimum.

Similar to Dijkstra’s algorithm, the FM method can incorporate a heuristic

lower bound on the cost to reach the destination from a given point, guiding

the search space exploration towards the destination. This approach is known as

FM∗, drawing an analogy to A∗ [137].

It is important to emphasize that FM is applicable solely to isotropic problems,

e.g., situations where the aircraft’s ground speed remains independent of the travel

direction. However, when confronted with significant wind conditions, complications

arise: under such circumstances, the characteristics of the PDE may no longer align

with the gradient of the viscosity solution. Consequently, the gradient becomes an

inadequate indicator for determining the characteristic. This can even result in

situations where the value function for a given node is smaller than the value function
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for its accepted neighbors on the grid, a scenario that violates the fundamental

principle of causality.

Ordered Upwind (OU) Methods have been developed by Vladimirsky and

the inventor of the FM method, Sethian, as an extension designed to tackle

general anisotropic problems while maintaining a similar computational com-

plexity [138–140].

These methods operate on the basis of an upper bound on the difference between

the characteristics of the PDE and the gradient of the value function, which is

dependent on the maximum wind speed in our case. In contrast to FM, not only

the directly neighboring nodes on the grid are considered when estimating the

value function at a specific query point. Instead, the upper bound is employed

to select all nodes from the accepted front that could potentially be part of the

simplex containing the gradient of the value function.

Remark 1.4. — The term "upwind" can be somewhat deceptive in this context. It

does not refer to the wind conditions, but describes that the finite difference approxi-

mation of the gradient of the value function at a given point is determined based

on data points that have already been accepted considering the flow of information

(referred to as "upwind").

As the number of nodes considered in each update is bounded, the asymptotic

complexity is inherited from the FM method. Nevertheless, the practical computa-

tional cost does increase by a constant factor related to the degree of anisotropy

(the absolute wind speed in our specific case).

These methods have been rigorously proven to converge to the viscosity solution

when the underlying grid is refined [138]. Furthermore, it is expected that the

rate of convergence follows a first-order behavior concerning the mesh-width ℓ.

This translates to an overall complexity of approximately O (ℓ−2 log (ℓ−2)), as

established in [138].
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In [51, 100], Girardet et al. demonstrated that Ordered Upwind methods are a

viable approach to solve the Free Flight Trajectory Optimization Problem, capable

of handling additional difficulties, such as obstacles and spherical coordinates.

1.4.1.3 Conclusion

In 1975, Bryson and Ho expressed skepticism about the practicality of dynamic

programming, referring to what they called the "curse of dimensionality." They

noted that even solving moderately complex problems using DP required a vast

amount of storage and found it impractical to compute a field of extremals when

only one optimal path was needed [141].

However, in recent years, there has been a resurgence of interest in dynamic

programming, largely due to the substantial increase in affordable computational

capacity. As demonstrated in this section, DP remains a powerful global optimization

approach, capable of finding good solutions for various problems.

1.4.2 Indirect Methods

Indirect methods involve transforming the continuous trajectory optimization

problem into a two-point boundary value problem by considering the necessary

conditions for optimality, known as the Euler-Lagrange equations. Solutions to this

problem are referred to as extremals, and it is evident that an optimal trajectory

qualifies as an extremal.

Historically, these methods were developed prior to the existence of computers

capable of numerically solving problems as complex as the Free Flight Trajectory

Optimization Problem. For instance, Zermelo derived the necessary conditions for

aircraft control in a two-dimensional planar case in his original work [96]. This work

was later extended to the spherical case [142], and further adaptations were made

for more intricate aircraft models [30, 85, 87]. However, attempting to encompass

all the aspects discussed in Section 1.2 appears to be a daunting task.

Numerically, extremals are often determined using a shooting approach, which

transforms the boundary value problem into an initial value problem [30, 85, 87,
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143, 144]. This involves forward integration ("shooting") from the initial boundary

conditions trying to meet the final boundary conditions (or vice versa, which

has been observed to improve practical performance [145]). In the present case

(continuously differentiable wind conditions) this leads to a nonlinear optimization

problem over the initial control variables (the initial heading angle in our case) [144].

Approaching this problem with a general-purpose solver is prone to yielding

suboptimal results. Therefore, more specialized methods have been developed.

Built on the assumptions of relatively minor wind gradients and the close

proximity of the optimal trajectory to the great circle, an approach named Neigh-

boring Optimal Wind Routing was developed by Jardin and Bryson [99, 146, 147].

Applying the principles of Neighboring Optimal Control, the problem is simplified

by linearization of the kinematic equations (1.1b) and the differential equation

that describes the optimal heading angle based on a nominal route (usually the

great circle segment from origin to destination).

In principle, this technique also allows for the variation of both the origin and

destination, enabling the derivation of routes for numerous origin-destination pairs

with marginal additional effort. Nonetheless, its effectiveness is bound to delivering

"near-optimal" outcomes and is seldom capable of identifying a global optimum.

A later study by the same authors even demonstrated a scenario in which the

method produced significantly suboptimal results [145].

Generally, the quality of the solution strongly diminishes with increasing nonlin-

earity of the wind conditions, which led to the development of another approach

designed to achieve global optimality [148]. The authors advocate for simultaneously

tracing multiple trajectories, each initiated with varying initial heading angles. The

intention is to encompass all local minima by ensuring that adjacent trajectories

do not divergence too much. If the distance exceeds a threshold, an additional

trajectory is introduced.

This way, a network is built up containing points that can be reached along

minimal-time tracks (the resemblance to the dynamic programming approaches

discussed earlier is readily apparent). The final trajectory from origin to destination
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is obtained by selecting the one extremal which ends closest to the destination.

Given that derived trajectories might intersect, a spatially fixed grid is employed

to monitor which trajectory arrived first at a given point.

This approach may be beneficial if the objective is to calculate routes from

the same origin to multiple destinations (or from multiple origins to the same

destination). Another advantage is that extremals can be pre-computed offline

and used for a quick airborne re-optimization of the route after a deviation from

the originally planned path.

For adequate spatial coverage, roughly O(ℓ−1) trajectories are necessary, with ℓ

denoting the discretization length of the solution. Simultaneously, the computational

effort per trajectory is inO(ℓ−1). Consequently, the overall computational complexity

in relation to solution accuracy scales as O(ℓ−2).

1.4.3 Direct Methods

In contrast to indirect methods, direct methods adopt the strategy of "discretize

then optimize". In other words, they transform the original infinite-dimensional

problem into a finite-dimensional constrained nonlinear problem (NLP) [149, 150].

1.4.3.1 Transcription

In order to transform the optimal control problem into a NLP, the time interval is

broken down into smaller steps. From this point, there are two popular strategies

that are commonly followed:

Direct (Single) Shooting treats only the control variable at the discretization

points as independent variables. The state variables are subsequently determined

by integrating the dynamics equations (1.1b).

Direct Collocation, on the other hand, treats both the state and control vari-

ables as independent variables, while the dynamics equations are incorporated as

constraints. This results in a larger yet highly structured nonlinear programming

problem. Direct collocation is often considered the state-of-the-art approach and

is employed in numerous research articles [39–41, 49, 151–156].
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Additionally, there is an approach known as Direct Multiple Shooting, which

applies elements of both methods. It involves applying the single shooting approach

individually to several subintervals. The states at the endpoints of these subintervals

are treated as independent variables subject to continuity constraints [155, 157–159].

Direct methods, in comparison to indirect methods, often involve higher com-

putational demands. Nevertheless, their applicability extends to a broader range

of problems, making them better suited for real-world flight planning scenarios.

Notably, these methods can even accommodate discrete variables, such as discrete

flight levels, with relative ease [39, 40].

1.4.3.2 Solving the Nonlinear Problem

While the process of transcription is well understood [160], the intricacy of these

approaches primarily lies in solving the resultant constrained nonlinear problem,

which is the focal point of our attention. While it is technically viable to address

the problem using general-purpose local solvers, numerous numerical challenges

are likely to arise [160, 161]. Most importantly, such solvers heavily rely on a

well-informed initial guess.

In essence, most common approaches follow a multi-start approach, incorporating

not only one but multiple starting points, and share a two-step structure. In the

first step, the global exploration phase, potential solutions are generated, which

serve as starting points for a locally convergent nonlinear programming solver in

a subsequent local exploitation phase.

The algorithm proposed in this work is no exception. As we will elaborate later,

candidates are derived as shortest paths on a suitable graph, which is designed

to guarantee the existence of a viable candidate.

For the purpose of analysis, we use the arguably most straightforward approach

to solve the NLP and apply the ordinary Newton’s method to the necessary

conditions for optimality known as the Karush-Kuhn-Tucker (KKT) conditions. This

approach is referred to as Newton-KKT or also Sequential Quadratic Programming
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(SQP). While it excels in terms of convergence speed, it is very sensitive to the

initial conditions.

Alternative state-of-the-art solvers, such as Trust-Region methods, offer increased

robustness in expense for computational speed.

Moreover, while the standard Newton-KKT method is limited to handling

equality constraints, the inclusion of inequality constraints can be managed through

Interior-Point, Penalty, or Augmented Lagrangian methods. For an excellent in-

troduction in this domain, we recommend consulting the textbook by Nocedal

and Wright [162].

The mentioned methods operate in a deterministic manner. However, it is

essential to recognize the existence of stochastic techniques designed to prevent

solvers from becoming trapped in local minima. One such technique is Monotonic

Basin Hopping (MBH), which introduces random perturbations to potential solutions

followed by another local optimization step. If this results in an improved trajectory,

it is accepted and replaces the original one [163–165].

Another technique is Simulated Annealing (SA), which is very similar to MBH,

but allows for the acceptance of non-improving solutions with a certain (decreasing)

probability [166]. This can further be enhanced by adjusting the perturbation

radius based on the acceptance rate of the series of minimizers. This method is

referred to as Simulated Annealing with Adaptive Neighborhood (SA-AN). For a

comprehensive discussion we refer to [167].

1.4.3.3 Generating Starting Points

We will now turn our focus onto the initial step, which involves the candidate gener-

ation. Naively sampling the search space in a uniform way (grid search) is a rigorous

approach, but inefficient when applied to high-dimensional problems. Practically

relevant methods can be characterized as either deterministic or stochastic.
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Deterministic Methods are often based on the principle of Branch & Bound

(B&B). This technique involves iteratively subdividing the search space into smaller

subproblems called branches. Solving the actual problem locally with a suitable

candidate yields an upper bound for each branch. Lower bounds are obtained by

solving a convex relaxation of the problem. During the process a non-decreasing

sequence of lower bounds and a non-increasing sequence of upper bounds on

the global optimum is generated. The process continues until no more feasible

solutions remain or all branches are pruned. The best known solution is guaranteed

to be optimal.

An example of this approach is the αBB method [168], which constructs a

quadratic lower bound using the second order sensitivities of the state variables

with respect to the control. In combination with multiple shooting, this method

has shown reasonable success in solving optimal control problems [157–159].

B&B methods provide a rigorous sampling of the search space. However, they

encounter limitations due to the curse of dimensionality, since the computational

effort scales exponentially with the number of decision variables, which in turn

scales linearly with the solution quality ℓ−1.

Stochastic Methods have been developed over the past years with the goal

of sampling the search space more efficiently. They have proven to perform well

for many practically relevant tasks.

Methods like Probabilistic Roadmaps (PRMs) and Rapidly Exploring Random

Trees (RRTs), which will be discussed in the next section, have proven to be

effective tools for path planning when used on their own, but can also be used

in a hybridization with local NLP solvers.

In Section 1.4.1 we have introduced the concept of combining coarser methods

with a subsequent smoothing operation, aimed at improving angular resolution and

overall solution quality. Karatas and Bullo proposed a related method that initially

generates a candidate solution using a RRT, which is then utilized as a starting

point for a nonlinear optimization stage addressing the optimal control problem
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through a direct method [128]. A similar approach was proposed by Bouffard and

Waslander using a PRM to generate an initial guess [169].

Due to the local convergence of the NLP solver, this hybridization inherits the

probabilistic optimality of RRT∗ or PRM∗, respectively.

1.4.4 Stochastic Methods

Stochastic optimization methods have experienced significant attention in recent

years due to their effectiveness in tackling challenging optimization problems

characterized by high-dimensionality, ill-behavior, noise, non-convexity, or limited

prior knowledge about the objective function. Unlike traditional deterministic

optimization methods that rely on gradients or derivatives to navigate the search

space, stochastic methods introduce an element of randomness into the opti-

mization process.

This field of research is vast and continually evolving, and a comprehensive

survey is beyond the scope of this work. For those seeking further references and a

more extensive overview, we recommend consulting works such as [104, 170–172]. In

the following, we will explore two categories of stochastic optimization methods and

delve into specific approaches to highlight their respective strengths and weaknesses,

which often generalize to related methods.

Population-based approaches center around a set of candidate solutions that

collectively traverse the search space in search of the optimal solution.

Sampling-based methods, on the other hand, primarily focus on the creation

of a roadmap or tree-like structure within the configuration space. This structure

enables an efficient exploration of feasible paths or solutions.

1.4.4.1 Population-Based Algorithms

The following methods share the characteristic, that multiple candidate solutions

are considered simultaneously. During the optimization process, they evolve with

a combination of individualistic behavior, aimed at exploring unknown areas of
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the search space, and social behavior, aimed at exploiting promising areas of

the search space.

This category encompasses a wide range of techniques, including Genetic

Algorithms, Differential Evolution, Simulated Annealing, and Monotonic Basin

Hopping, among others. Many of these methods draw inspiration from natural

processes and are classified as nature-inspired metaheuristics.

Their effectiveness in the context of flight planning has been demonstrated [31,

173–177]. Moreover, they have proven to be valuable tools for related applications,

such as interplanetary space mission design [104, 165, 178, 179].

We will delve into two specific approaches in greater detail: Particle Swarm

Optimization (PSO) and Ant Colony Optimization (ACO). PSO is a nonlinear

programming (NLP) solver that operates across the entire search space, employing

direct communication between candidate solutions. On the other hand, ACO has

originally been designed for solving combinatorial problems and can be utilized

for path planning by operating on a discretized version of the search space. This

method relies on indirect communication among candidate solutions.

Particle Swarm Optimization (PSO), developed by Eberhart and Kennedy

in 1995 [180–182], is a versatile method for solving nonlinear finite-dimensional

optimization problems. It operates based on a finite-dimensional representation

of trajectories, which can take various forms.

In its most straightforward application, PSO deals with trajectories represented

by waypoints that create piecewise linear routes [183]. Alternatively, trajectories

can be represented using sequences of circular arcs [183], cubic splines [184], or

what so-called "Motion Primitives".

Motion primitives are fundamental, predefined motion segments or building

blocks that can be combined to achieve more complex and varied movements.

One prominent application is the design of interplanetary space missions using

(multiple) gravity assist maneuvers. In this case, the trajectory from one planet
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to the next can be precomputed based on the initial and final state by solving

Lambert’s problem [185].

The PSO algorithm works as follows: a set of candidates, referred to as particles,

forms a swarm. Each particle maintains a state and a velocity, both of which are

initialized randomly. Until a termination criterion is met or until the computational

budget is exhausted, particles move according to their velocities in discrete time steps.

These velocities are updated in each step through a combination of individualistic

and social behaviors. The velocity update is influenced by the particle’s current

velocity (inertia), its individually best-encountered state, and the overall best-

encountered state among all particles in the swarm.

Constraints can be handled in PSO either by simply discarding infeasible

solutions [186] or by imposing a penalty for constraint-violation [187]. These

approaches usually work well for inequality constraints, but severely impact the

practical performance if multiple equality constraints are involved [188].

In a related approach, called Multi-Swarm PSO, the particle set is divided

into several smaller swarms [189]. Each swarm concentrates on exploring a specific

area of the solution space, allowing for more focused exploitation. Particles can be

periodically regrouped between swarms to further enhance exploration.

The PSO algorithm involves several crucial parameters that significantly affect its

performance. These parameters include the population size, initial velocities, initial

states, and the weights used for velocity updates, which are commonly known as

cognitive and social scaling parameters. Additionally, there is an optional parameter

that defines the neighborhood influence of particles, a concept introduced to prevent

the swarm from becoming trapped in a single local optimum [190].

It is important to note that these parameters have a direct impact on the

practical performance of the PSO algorithm [191, 192] and that it is not trivial

to provide an "off-the-shelf" version of the algorithm [193, 194]. Moreover, these

parameters need not remain static. Adaptive versions of the algorithm, known

as Adaptive Particle Swarm Optimization (APSO), have demonstrated improved

exploration efficiency and convergence [195, 196].
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Numerous extensions and variations of PSO have been developed to address

different problem domains and challenges. For a comprehensive overview of these

extensions, we recommend referring to the survey conducted by Bonyadi and

Michalewicz [197].

In its original form, PSO cannot guarantee optimality, neither locally nor globally.

Moreover, it does not even satisfy the criteria for stability, meaning there is no

guarantee that particles will converge to the same point.

An improvement called Guaranteed Convergence PSO (GCPSO) was introduced

in [198] to overcome this limitation. GCPSO achieves local convergence by modifying

the update mechanism for the particle with the best-known state. Instead of being

influenced by the swarm, this particle focuses on the local exploration of the vicinity

around the best-known state. Its velocity is updated based on this best-known

state combined with a random perturbation.

Furthermore, GCPSO has two straightforward extensions: Randomized PSO

(RPSO) and Multi-Start PSO (MPSO), both aimed at ensuring probabilistic

optimality [198]. In other words, they will find the global optimum given an

infinite number of iterations.

RPSO introduces random state resets for particles after a certain number of

iterations, in order to maintaining a minimum level of exploration. On the other

hand, MPSO employs a simple multi-start approach, running GCPSO with different

initial states to enhance the probability of reaching the global optimum.

PSO has been successfully used for closely related Flight Planning problems

in [183] and [199]. Moreover, its frequent use in various related applications

demonstrates that it holds potential as an efficient tool for numerous practical

problems, particularly when limited insight is available [188, 200–202].

One of its notable strengths lies in its ability to tackle problems without relying

on gradient information. However, in scenarios where this information is available,

as we assume in this work, it is expected that the previously discussed methods

may outperform PSO.
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Ant Colony Optimization (ACO), introduced by Dorigo in 1992 [203], draws

inspiration from the foraging behavior of ants in search of food [204–206].

In nature, ants engage in a decentralized exploration strategy. When an ant

locates a food source, it returns to the colony while depositing a trail of pheromones

along its path. The strength of this pheromone trail influences the behavior of other

ants. A stronger trail attracts more ants, who follow the same path and contribute

to the pheromone deposition, ultimately reinforcing the trail. Importantly, these

trails are not binding; ants continue to explore alternative paths. Over time, the

most efficient path accumulates the highest pheromone concentration.

The ACO algorithm has originally been proposed for combinatorial optimization

problems, such as the Travelling Salesman Problem (TSP). In order to use it for

trajectory optimization problems, the search space is discretized into a weighted

digraph with the pheromone levels on all arcs initialized to zero. The algorithm

proceeds in iterations simulating a batches of "ants" exploring the graph. After the

exploration phase, the pheromone trails are updated. This process repeats until a

termination criterion is met or the computational resources are exhausted.

During exploration, ants construct paths through the graph starting from the

given origin. At each step, an ant selects its next node from available successor

nodes based on a probability distribution, which considers both the attractiveness of

the arc (determined by the pheromone level) and the cost associated with that arc.

Inspired by the classic A∗ algorithm, arc-costs may optionally include a heuristic

lower bound on the cost to reach the target [207]. Ants continue to build paths

until they reach their destination.

The path quality is evaluated concerning the overall objective, and the pheromone

levels on the arcs are updated accordingly. This update involves two key processes:

"evaporation", where pheromone levels naturally decrease over time, and "pheromone

deposition", where new pheromones are added to arcs based on the quality of

the path in which they were used. Arcs that were part of more efficient paths

receive more pheromones.
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In essence, ACO harnesses the individual curiosity of simulated ants to explore

the space and the collective intelligence to exploit paths, gradually converging

toward optimal solutions through pheromone reinforcement and evaporation.

ACO has seen various extensions, such as the (strong) elitist strategy, which

allows only the best generated solution to update pheromone trails. This can be

the best solution within the current iteration or the globally best solution [204].

The Max-Min Ant System (MMAS) additionally introduces upper and lower

bounds on pheromone trail values and initializes pheromone trails to their up-

per limit, accompanied by periodic reinitialization, aiming at enhanced explo-

ration [208, 209].

On the other hand, Ant Colony System (ACS) amplifies the importance of

exploiting information collected by previous ants over exploration by altering

the probability distribution for choosing the next arcs in favor of the currently

best path [210].

The ACO algorithm involves several parameters, such as weights to balance the

effects of pheromone levels on arcs and their costs, the rate of pheromone evaporation,

the number of ants in each batch, and more. Further extensions introduce additional

parameters, all of which significantly impact both the theoretical and practical

convergence speed of the algorithm. Research has shown that adjusting parameters

dynamically over time can lead to better convergence [211, 212].

It has been shown that several versions of the ACO algorithm converge proba-

bilistically to an optimal solution [211–214]. The convergence rate, however, is again

difficult to assess [215]. Also, defining a termination criterion can be challenging.

However, in many cases, including the Free Flight Trajectory Optimization Problem

discussed here, a first feasible solution is rapidly reached and continuously improved

upon. This flexibility allows for a direct trade-off between the computational budget

allocated and the quality of the solution obtained.

Another notable advantage of ACO algorithms is their adaptability to dynamic

environments and evolving problem landscapes, such as changing weather conditions,

as they can continuously update pheromone levels to reflect changes [216, 217].
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In contrast, classical shortest path algorithms like Dijkstra’s would require

rerunning on a modified graph in order to adapt to such changes (refer to Sec-

tion 1.4.1). However, it is essential to note that on well-defined, deterministic,

and static graphs classical algorithms shine as highly efficient solutions and are

often the superior choice to ACO [218].

Due to the approximation error of the underlying graph, ACO, similar to its

deterministic counterparts, is subject to the curse of dimensionality. Nonetheless,

ACO has proven its effectiveness not only in addressing the TSP but also in solving

flight planning [219] and related problems [220, 221].

1.4.4.2 Sampling-Based Methods

Sampling-based methods for path planning are a class of algorithms that approach

the problem by incrementally constructing a graph structure through random

sampling of points within the state space [109, 222]. The most prominent methods

are Probabilistic Roadmaps (PRMs) [223] and Rapidly Exploring Random Trees

(RRTs) [224, 225]. These techniques have been developed especially for scenarios

involving high-dimensional state spaces, where constructing a conventional isotropic

graph becomes impractical due to its sheer size.

Although closely related, these two approaches differ in two key aspects. For

a PRM, random samples are drawn from the state space, and efforts are made to

establish feasible connections among them. This process generates clusters that

eventually merge into a connected graph. On the other hand, a RRT expands a

graph from its origin by randomly sampling states from the search space and linking

them to the growing graph. This characteristic allows for determination of paths to

each node on the fly. A path on a PRM, in turn, must be derived in a secondary

step using standard shortest path algorithms (refer to Section 1.4.1).

This quality is particularly advantageous when calculating routes for multiple

origin-destination pairs, as query times on a constructed roadmap are typically

very low. For single-query tasks, which this work focuses on, usually RRTs are

used. Therefore, we focus more on this method.
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Both PRMs and RRTs are probabilistically complete, implying they will even-

tually identify a feasible solution if one exists. More precisely, the probability of

failing to yield a solution decays exponentially to zero. Extensions of these methods,

specifically PRM∗ and RRT∗, have even been proven to be even asymptotically

optimal, meaning they will eventually find an optimal solution [226]. However,

achieving this requires an additional step where the graph is rewired after adding a

new node. This process increases the computational complexity only by a constant

factor, which, however, can be significant in practice.

The balance between exploration and exploitation in these methods depends

mostly on how new random samples are generated. In the original version points are

sampled uniformly from the state space, but by altering the probability distribution,

the balance can be biased in one direction or the other.

For enhancing exploration, the probability distribution can be biased explicitly

towards unexplored areas [227].

To boost exploitation, the graph creation can be guided towards the destination,

either by incorporating a lower bound on the cost to reach the destination, similar

to the A∗ algorithm (known as informed RRT∗ [228, 229]), or by using a coarse

initial guess of the optimal route [230].

Another way to enhance computational efficiency are approaches like Bidi-

rectional RRT or RRT-Connect, which involve growing a second tree from the

destination allowing for more efficient exploration of the search space [231]. However,

this comes with a certain overhead to correctly connect these trees and is not

probabilistically optimal. This deficiency was addressed later in [232]. A more

comprehensive overview of extensions of the RRT can be found in [233] or [234].

PRMs and RRTs have found successful applications in flight planning [235–237],

as well as various related tasks [226, 238, 239], and may serve as valuable tools for

addressing the Free Flight Trajectory Optimization Problem from the perspective

of a path planning problem. However, it is worth noting that incorporating more

complex non-holonomic physics, as discussed in Section 1.2.6, presents a significant

challenge [233].
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Further advantages and disadvantages overlap with those of PSO and ACO.

Therefore, we discuss them in a final concluding remark.

1.4.4.3 Conclusion

Stochastic methods have found success in several trajectory optimization and path

planning problems. The discussed approaches exemplify their notable strengths.

One of the key advantages of these methods is their ability to operate without the

need for in-depth problem understanding or strict adherence to problem regularity

conditions. They do not rely on gradient information and can handle problems

that may lack smoothness or have complex characteristics. This adaptability makes

them versatile tools suitable for a wide range of problem domains.

Moreover, these methods are known for their simplicity of implementation

and user-friendliness, although optimizing the various parameters involved can

significantly enhance their practical efficiency. This ease of use contributes to their

applicability across a broad spectrum of problems.

However, it is crucial to acknowledge that these methods do not provide a formal

certificate of optimality, which can be a limitation in specific situations, particularly

for safety-critical operations. In the best-case scenario, they converge to an optimal

solution in a probabilistic sense. Conversely, some methods or extensions prioritize

practical efficiency but do not offer any guarantee of optimality whatsoever.

Furthermore, considering our assumption of having detailed problem insight, it

would be inefficient not to harness gradient information, as emphasized by Betts

[111]. This realization has motivated the development of hybrid methods, which

combine stochastic algorithms with local optimization, such as direct methods

(refer to Section 1.4.3).
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1.5 Contributions of this Work

In this work, we present an algorithm designed to deterministically find an ϵ-globally

optimal solution to the Free Flight Trajectory Optimization Problem in finite time.

As discussed in Sections 1.2 and 1.3, this setting introduces several simplifications.

Most importantly, we focus on the trajectory of a single aircraft, which is restricted

to travel at constant air speed and altitude. Additionally, we assume the wind

field to be stationary and defined by a multiple times continuously differentiable

function. Despite these simplifications, our exploration of various sophisticated

approaches, that have been developed to address the additional complexities of the

real-world scenario, leads us to anticipate that our findings will be transferrable

to practical applications.

The preceding section underscores the wide and deep landscape of methods

devised to solve the Free Flight Trajectory Optimization Problem and related

tasks, each with its unique strengths and weaknesses. Especially satisfying the

criteria for global optimality and bounded computation time at the same time

and in an efficient way remains a challenge.

Our approach combines the strengths of discrete and continuous optimization

while mitigating their individual limitations. To rigorously prove the claimed

convergence properties, we conduct a thorough analysis of various aspects of

the problem. This includes investigating the approximation properties of graphs,

understanding the local behavior of the optimization problem, and analyzing the

convergence properties of Newton’s method.

1.5.1 Published Articles

This thesis comprises five peer-reviewed and published research articles: [1–5], listed

in Table 1.1 below. These articles are presented as individual chapters within

this thesis, organized in the order of their preparation, which may not perfectly

align with their publication sequence.
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In order to enhance the readability and cohesiveness of this thesis, cross-references

between these articles have been adjusted for clarity. Each article is accompanied

by a distinct statement that outlines the authors’ individual contributions.

Additionally, this thesis includes an appendix containing supplementary the-

oretical findings and a numerical study.

[1] R. Borndörfer, F. Danecker, and M. Weiser, “A Discrete-Continuous Algo-
rithm for Free Flight Planning,” Algorithms, vol. 14, no. 1, p. 4, 2021. doi:
10.3390/a14010004.

[2] R. Borndörfer, F. Danecker, and M. Weiser, “A Discrete-Continuous Al-
gorithm for Globally Optimal Free Flight Trajectory Optimization,” in
22nd Symposium on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS 2022), vol. 106, Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022, pp. 1–13. doi: 10.4230/OASIcs.
ATMOS.2022.2.

[3] R. Borndörfer, F. Danecker, and M. Weiser, “Error Bounds for Discrete-
Continuous Free Flight Trajectory Optimization,” Journal of Optimization
Theory and Applications, vol. 198, no. 2, pp. 830–856, 2023. doi: 10.1007/
s10957-023-02264-7.

[4] R. Borndörfer, F. Danecker, and M. Weiser, “Newton’s Method for Global
Free Flight Trajectory Optimization,” Operations Research Forum, vol. 4,
no. 3, p. 63, 2023. doi: 10.1007/s43069-023-00238-z.

[5] R. Borndörfer, F. Danecker, and M. Weiser, “Convergence Properties of
Newton’s Method for Globally Optimal Free Flight Trajectory Optimization,”
in 23rd Symposium on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS 2023), vol. 115, Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023, 3:1–3:6. doi: 10.4230/OASIcs.ATMOS.
2023.3.

Table 1.1: Articles of this work.

We will now guide through this thesis by introducing the developed algorithm

and highlighting the individual contribution of each chapter.

1.5.2 The DisCOptER Algorithm

Akin to most global optimization algorithms, the proposed algorithm comprises

two fundamental components: global exploration and local exploitation.
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In order to explore the search space globally, we create a graph that adequately

covers the region relevant for the given problem instance. This graph implicitly

defines a finite sample of feasible paths from the origin to the destination. The

minimum-cost path can efficiently be identified using shortest path algorithms, such

as A∗. In this process we employ a lower bound on the travel time from any node to

the destination by considering an a priori known upper bound on the wind speed.

This path is exploited in a second step, in which we use classical optimal

control methods to generate a (locally) optimal continuous solution and overcome

the limited resolution of the graph. This step can be realized either with direct

or with indirect methods, both of which were discussed in Section 1.4. In this

work, we use a direct collocation approach and solve the resulting constrained

nonlinear optimization problem using the Newton-KKT method (also known as

Sequential Quadratic Programming, SQP). This entails applying the ordinary

Newton’s method to the first order necessary conditions for optimality, known as

the Karush-Kuhn-Tucker (KKT) conditions.

This algorithm was proposed in [1] (Chapter 2) under the name DisCOptER

(Discrete-Continuous Optimization for Enhanced Resolution). Theoretical anal-

ysis and practical demonstrations have shown that this hybrid approach clearly

outperforms purely graph-based routing for high-precision requirements.

Routing on a graph is realized with a special class of (h, ℓ)-dense graphs,

characterized by the node spacing h and the local connectivity radius ℓ, which

simultaneously serves as a measure for the resolution of the solution. By varying

these parameters, the graph is isotropically refined. It was shown that this way

of routing carries a time complexity of O(ℓ−6).

The enhancement of the DisCOptER algorithm is achieved by effectively de-

coupling the complexity of the problem instance from the requested accuracy of

the solution. The rougher the wind conditions, the denser the graph needs to be

in order to contain a path that is sufficiently close to the continuous optimum.

Of course, this incurs higher computational costs for graph construction and
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shortest path determination. Importantly, however, this cost is independent of

the desired solution accuracy.

This requested accuracy, in turn, exclusively impacts the computational effort

required for the local optimization stage. Consequently, the algorithm inherits

the asymptotical convergence rate of the incorporated method (in this case direct

collocation combined with Newton-KKT). It was shown that this computational

effort scales with O(ℓ−1), with ℓ denoting the collocation discretization length, hence

serving as a comparable indicator of the solution quality.

In this first publication, it has been shown that the novel algorithm is based

on a promising theoretical foundation and works efficiently in practical application.

Several aspects, however, remain to be defined precisely. These evolve around

the key question where is the right switch-over point from discrete to continuous

optimization? Or what is the right graph density? The right balance must be struck:

the graph should be as sparse as possible to avoid excessive computation yet as

dense as necessary to approximate the continuous global optimum sufficiently well.

This involves considering two facets: the approximation error of the incorporated

graph (mainly covered in [3], Chapter 3) and the size of the convergence region for

the employed local optimization method (primarily discussed in [4], Chapter 5).

However, it is crucial to recognize that having a graph fine enough to encompass

a path within the convergence region does not guarantee that it is the best path

available on the graph (as illustrated in Figure 4.2). As a result, multiple paths on

the graph need to be considered as potential candidates (discussed in [2], Chapter 4).

1.5.3 Approximation Properties of Graphs

In [3] (Chapter 3), we establish an upper bound for the suboptimality in terms of

overall travel time when routing on (h, ℓ)-dense graphs. This analysis comprises

three key steps:

Firstly, we introduce an alternative problem formulation that facilitates the

comparison of different trajectories, and therefore serves as an important tool

throughout this work. This involves mapping trajectories from the time interval
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[0, T ] to the unit interval [0, 1] while incorporating the dynamics equation and the

constraint for constant ground speed into the objective. While this formulation

removes most formal constraints, it introduces a new degree of freedom, which

we eliminate by restricting the problem to trajectories of constant ground speed

within the transformed time. In [3] (Chapter 3), we accomplished this through

the definition of the admissible set, while in subsequent works we incorporate a

separate constraint for the same purpose.

Secondly, in order to evaluate the approximation error of an (h, ℓ)-dense graph

within the trajectory space, we introduce a rounding procedure to map a continuous

trajectory onto a given graph, quantifying the overall error in terms of distance and

angular error. Notably, higher-order derivatives like curvature error are not consid-

ered since they do not influence the overall travel time in the current model. This

analysis also allows us to optimize the combination of the two parameters h and ℓ.

Lastly, to understand the impact of distance within the trajectory space on

the overall travel time, we explore the local behavior of the objective near a

minimizer. Due to the smoothness of the wind field, and the fact that the gradient

vanishes at a minimizer, we can bound the objective function by considering its

Hessian. Additionally, we demonstrate that incorporating local wind information

can significantly enhance the derived bounds, motivating future work toward

adaptive approaches.

1.5.4 Towards Global Optimality

In [2] (Chapter 4) we introduce an extension of the DisCOptER algorithm, which is

small but crucial in order to guarantee global optimality of the provided solution.

This extension also necessitates a minor adjustment in notation. While we previously

used the subscript "C" to denote a (continuous) local solution, we now distinguish

between local and global solutions using superscripts "⋆" and "⋆⋆", respectively.

Crucially, we formalize a qualitative understanding that has been previously

recognized, specifically, how to select the appropriate graph density. This process

involves three key steps:
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Firstly, we address the restricted admissible set, mentioned above, by introducing

an explicit constraint and articulate the necessary and sufficient conditions for

optimality. In the following, we operate under the assumption that these conditions

hold at a global minimizer and that the characteristics are known quantitatively. This

assumption will later be resolved (refer to Section 7.1). Leveraging the smoothness

of the problem, we establish a lower bound on the size of the convex region around

the minimizer. This lays the groundwork for the subsequent chapter, in which a

rigorous proof of convergence will be conducted.

Secondly, we formally derive the minimum graph density that guarantees the

presence of a path within this defined convex region, based on the approximation

error bounds from [3] (Chapter 3).

Lastly, we consider the possibility that the path contained in this region might

not be the best path on the graph. To address this, we propose an iterative approach

using Yen’s algorithm to evaluate paths in order of ascending travel time. This

iteration process involves applying the same shortest path algorithm as before

on slightly modified graphs, encouraging the creation of alternative routes. A

termination condition is established by bounding the travel time within the convex

region, again building upon the results from [3] (Chapter 3).

1.5.5 Proof of Convergence

In [4] (Chapter 5) our primary focus centers on the local optimization through the

ordinary Newton-KKT method. We prove the existence of a quantifiable region

surrounding a global minimizer from within which the Newton-KKT method does

converge. Specifically, two essential criteria must be met within this region:

First, the KKT-operator must be invertible. To establish this result, we scruti-

nize the LBB (Ladyzhenskaya-Babuška-Brezzi) condition, comprising two pivotal

components. Firstly, the inf-sup condition must be satisfied. Secondly, the second

partial derivative of the Lagrangian with respect to the state variables should

be positive definite on the kernel of the constraints. Furthermore, this derivative

needs to be bounded from above.
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Secondly, the KKT-operator needs to be sufficiently smooth within the neigh-

borhood. This is accomplished by providing a suitable Lipschitz condition.

In the final theorem of this chapter, we continue to make certain assumptions

about the characteristics of the global minimizer. Specifically, we rely on the

availability of a lower bound for the Hessian of the objective function. This lower

bound plays a crucial role in determining the size of the convergence domain, which,

in turn, influences the necessary graph density.

In practice, obtaining such a lower bound is often a non-trivial task. However, in

Section 7.1, we demonstrate that under moderate wind conditions, we can provide

this lower bound. We achieve this based on the usual global wind characteristics,

making it a valuable addition to our theoretical framework.

It is important to note that all the bounds we derive are based on a few mild a

priori assumptions regarding the wind field, merely requiring that the wind speed

and its spatial derivatives remain globally bounded.

1.5.6 Practical Convergence Properties

It is no surprise that a priori bounds based on global characteristics of the wind

situation are rather conservative. In [5] (Chapter 6) we empirically validate our

previous theoretical findings in a numerical investigation and subject the Newton-

KKT method to a challenging scenario, demonstrating that the convergence region

is notably larger than theoretically anticipated. Simultaneously, we confirm the

validity and importance of the distance measure introduced in [3] (Chapter 3),

which encompassed both distance and angular error.

To execute this empirical examination, we construct a two-dimensional subspace

within the infinite-dimensional trajectory space by introducing two types of devia-

tions onto the optimal trajectory. With a low frequency deviation we induce primarily

distance error and minimum angular error. With a high frequency deviation, we

conversely induce primarily angular and minimum distance error.

While it is intuitive that the domain of convergence is bounded in terms of

distance error due to the potential presence of nearby local optima, the same does
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not hold true for angular deviations. This motivates the utilization of an overlapping

domain decomposition method to significantly enhance convergence.

Our approach capitalizes on two key properties of the problem. Firstly, in

line with Bellman’s principle of optimality, sub-paths of an optimal trajectory

remain optimal. Secondly, for short-haul flights, the trajectory stays relatively

close to the straight path (or the great circle on the sphere), with "short" being

relative to the wind phenomena.

In essence, our approach operates as follows: the initial trajectory, which may

exhibit oscillations or zigzag patterns, is segmented into equally sized "short"

segments. The endpoints of these segments remain fixed, and routes between adjacent

points are optimized individually. This process is then repeated with shifted segments.

The resultant smoothed route serves as the initial guess for an overall optimization.

Our research conclusively demonstrates that this smoothing approach signif-

icantly enlarges the overall domain of convergence. Consequently, less angular

resolution is required from the graph utilized in the first stage of the DisCOptER

method. This, in turn, allows for a reduction in the connectivity radius, making this

stage less computationally expensive and rendering the entire algorithm more

practically efficient.

1.5.7 Harvesting the Benefits of Free Flight

In addition to the theoretical findings discussed in Section 7.1, the appendix presents

a comprehensive numerical study conducted under realistic conditions. This study,

presented in Section 7.2, carries a twofold significance.

Firstly, we investigate a graph-based routing approach aimed at emulating the

current state-of-the-art in Free Route Airspaces. In this scenario, we assume a

predefined set of waypoints and allow valid paths to consist of any combination of

these waypoints. Under these conditions, we introduce a method for constructing a

graph that prioritizes angular resolution. Our findings reveal that this approach

offers significantly improved scalability when compared to the conventional method

of constructing a locally dense graph.
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Secondly, this study serves as compelling evidence of the exceptional performance

of the DisCOptER algorithm. Remarkably, the algorithm consistently identifies

the global optimum in the first iteration for every instance, even when using a

very sparse graph. This outcome underscores that the strategy of iterating through

multiple paths, which is necessary for guaranteeing global optimality, is, in practice,

more of a precautionary measure than a fundamental requirement. Furthermore,

the provided routes significantly reduced flight costs. These findings highlight the

practical efficiency of the developed algorithm as a highly effective tool for Free

Flight Trajectory Optimization.
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Abstract We propose a hybrid discrete-continuous algorithm for flight
planning in free flight airspaces. In a first step, our DisCOptER method
(discrete-continuous optimization for enhanced resolution) computes a globally
optimal approximate flight path on a discretization of the problem using the
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2.1 Introduction

Flight planning is concerned with the computation of time and fuel efficient flight

paths with respect to the weather, see [1] for a comprehensive survey. In particular,

wind conditions make a big difference: flying with a headwind of 60 kts increases flight

time and fuel consumption of an Airbus A321 by as much as 20% over a tailwind of

60 kts [2]. To exploit this potential, and to mitigate airspace congestion, free flight

aircraft routing has been suggested since 1995 [3], and projects to complement,

enhance, and finally replace the airway network that is currently used to organize

all air traffic are now under way all over the world. Europe is introducing so-

called free route airspaces (FRAs), in which one can fly on arbitrary straight lines

between defined entry and exit points, and between more and more intermediate

points, moving ever closer towards free flight. According to EUROCONTROL, FRA

projects are now in place in three quarters of all European airspaces, and, once

fully implemented, will save total fuel burn, CO2, and H2O emissions by 1.6–2.3%,

which amounts to 3,000 tonnes of fuel/day, 10,000 tonnes of CO2/day, 3e million

in fuel costs/day, and 500,000 nautical miles/day [4].

The flight planning problem can be seen as a special type of time-dependent

shortest path problem. A large number of algorithms has been developed in this

general context, including contraction hierarchies, hub labeling, and arc flags for

route planing in road networks, see [5, 6] for surveys, RAPTOR, transfer patterns,

and connection scan for journey planning in public transport networks [6], the

isochrones method and dynamic programming for ship weather routing [7], and

sampling-based algorithms like rapidly exploring random graphs and trees (RRT),

probabilistic road maps (PRM), artificial potential fields as well as graph-based

algorithms such as A∗, D∗, theta∗, etc. for robot path planning [8]. The variety of

these methods reflects the different characteristics of the respective problems.

The best flight planning methods are currently super-fast A∗/Dijkstra algorithms

that employ efficient problem specific speed-up techniques such as cost projection

[9], super-optimal wind [10], and active constraint propagation [11]. They can find
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globally optimal solutions of basic problem variants on the world wide airway

network with its 100,000 nodes and 600,000–700,000 edges within milliseconds.

A∗ methods can in principle be extended to deal with FRAs or free flight by

excessive graph augmentation, but only up to a certain point, when the graphs

become too large and dense.

On the other hand, numerical methods of optimal control are able to compute

optimal free flight trajectories to high precision with great efficiency, either with indi-

rect methods based on Pontryagin’s maximum principle [12–14], or by direct methods

using a collocation discretization to reformulate the problem as a nonlinear program

(NLP) [15, 16]. These methods compute a smooth trajectory independently of any

a priori network discretization, i.e., the desired free flight path. The computational

complexity of solving the optimality systems by Newton’s method is asymptotically

much smaller than for graph discretizations. If measured in terms of accuracy, higher

order discretizations of the underlying ordinary differential equations exhibit even

larger asymptotic gains. The drawback is that continuous optimal control methods

converge only locally, and towards any local optimum, without providing any

guarantee of global optimality. Approaches to compute globally optimal solutions to

optimal control problems include global optimal control [17], mixed-integer optimal

control [18], and various heuristics [19]. Applications to flight planning exist, but

consider only very small networks [20] or vertical profiles [21].

We propose in this paper the novel hybrid algorithm DisCOptER (discrete-

continuous optimization for enhanced resolution) that combines the strengths of

discrete and continuous approaches to flight planning, and provide a numerical study

of its efficiency and accuracy. The discrete component of our method provides global

optimality, the continuous component high accuracy and asymptotic efficiency. The

idea of the method is to do a discrete search for a global optimum on a coarse,

approximate, artificial network, and to use the resulting approximate solution

to initialize a Newton’s method for the solution of a continuous optimal control

problem. The correctness and effectiveness of this strategy depends on the choice of

the crossover point between the discrete and the continuous part of the algorithm.
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The network for the discrete part must be coarse enough to be searched efficiently,

and fine enough to guarantee sufficient proximity to the continuous optimum,

such that a subsequent Newton iteration will converge to the latter. Clearly, the

convergence radius of the continuous method strongly depends on the gradients

of the wind field and affects, together with the approximation error associated

with the graph, the computational complexity of both methods. We shall show

that this idea is ideally suited for free flight settings.

Our aim in this paper is to demonstrate the potential of combining discrete and

continuous optimization methods for the solution of problems that involve space or

time discretizations. The goal is to achieve global optimality and rapid convergence at

the same time. The model that we consider is simple, and the special characteristics

of flight planning have left their imprint. The basic idea, however, should, with

suitable modifications, be applicable to various problems of similar nature. In this

vein, our paper intends to give a first indication of the usefulness of such approaches.

The paper is structured as follows. Sections 2.2.1–2.2.3 describe the free flight

problem that we consider. The DisCOptER algorithm is introduced in Section 2.2.4

including error and complexity estimates. Finally, Section 2.3 provides a compu-

tational study and analyzes the choice of the switch over point.

2.2 Materials & Methods

2.2.1 Free Flight Planning

We consider in this paper an idealized version of the flight planning problem in 2D

Euclidean space subject to a stationary wind field. We want to compute a flight path

x : [0, T ] → R2, τ 7→ x(τ) that connects an origin and a destination xO, xD ∈ R2;

the path parameter τ measures the flight time. The path is influenced by a smooth

field of stationary wind w : R2 → R2 of bounded magnitude ∥w∥ ≤ w. Flying at an

airspeed v : [0, T ]→ R2, τ 7→ v(τ) of constant magnitude ∥v∥ = v > w, the aircraft

arrives at time T ∈ R≥0, which we seek to minimize. Our setting is chosen for ease of
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exposition, but our method carries over to more complex 3D and/or time dependent

versions, or other objectives, in particular, minimization of fuel consumption.

2.2.2 Continuous Approach: Optimal Control

In free flight, the flight path is not restricted to a predefined airway network of

waypoints and segments. Instead, any Lipschitz-continuous path x : [0, T ] → R2,

with ∥xt − w∥ = v almost everywhere, connecting origin xO and destination xD,

is a valid trajectory. Among those, we shall find one of minimal flight duration T .

This classic of optimal control is known as Zermelo’s navigation problem [22].

In order to formulate the problem over a fixed interval [0, 1] independent of the

actual flight duration, we scale time by T −1 as usual in free end time problems

and arrive at the following optimal control problem for the flight duration T ∈ R,

the flight path x ∈ H1([0, 1])2, and the airspeed v ∈ L2([0, 1])2:

min
T,x,v

T s.t. c(T, x, v) =


x(0)− xO

x(1)− xD

ẋ(τ)− T (v(τ) + w(x(τ)))
v(τ)Tv(τ)− v2

 = 0 . (2.1)

Here, the constraint c : Z → Λ maps from the primal domain Z := R×H1([0, 1])2×

L2([0, 1])2 to the image space Λ := R2 × R2 × L2([0, 1])2 × L2([0, 1]).

2.2.2.1 Optimality Conditions

Let us briefly recall the necessary and sufficient optimality conditions for the optimal

control problem (2.1). With z = (T, x, v) ∈ Z and λ ∈ Λ, the Lagrangian is defined as

L(z, λ) = T − ⟨λ, c(z)⟩Λ,Λ. (2.2)

If z is a (local) minimizer, the necessary first order or Karush-Kuhn-Tucker

(KKT) condition

L′(z, λ) = 0 (2.3)

and the necessary second order condition

⟨Lzzζ, ζ⟩Z∗,Z ≥ 0 ∀ζ ∈ ker c′(z)
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hold [23], since c′(z) is surjective due to ∥w∥L∞([0,1]) < v. Moreover, if the KKT

conditions (2.3) are satisfied at z for some λ and the sufficient second order

condition (SSC)

⟨Lzzζ, ζ⟩Z∗,Z ≥ α∥z∥2
Z ∀ζ ∈ ker c′(z) (2.4)

holds for some α > 0, then z is a locally unique solution of (2.1) and stable under

perturbations of the problem, e.g., due to sufficiently fine discretization. Let us

point out that for wind fields with non-vanishing second derivative, in general there

is no closed form solution of the necessary conditions (2.3), such that solutions

must be approximated numerically.

Approaches to computing solutions of (2.1) generally fall into two classes:

indirect methods relying on Pontryagin’s maximum principle [12, 24] and direct

methods based on discretization of the minimization problem (2.1) [25, 26]. Indirect

methods lead to a boundary value problem for state x and adjoint state λ together

with a pointwise optimality condition for the control v, which can be solved by

shooting type methods, collocation, or spectral discretization approaches [27, 28].

The discretization of direct methods, usually by collocation or spectral methods,

translates the optimal control problem in a finite dimensional nonlinear program

to be solved by corresponding optimization problems [15, 16, 29]. While indirect

methods using multiple shooting lead to smaller problem sizes than direct methods

based on collocation in particular for high accuracy requirements, the latter are

widely seen as being easier to implement and use, in particular in the presence

of state constraints.

In both approaches, Newton-type methods for solving either discretized boundary

value problems or nonlinear programming problems converge in general only locally

towards a close-by minimizer. Thus, sufficiently good initial iterates need to be

provided. The domain of convergence can be extended using line search methods or

trust region methods, but without guarantee of global optimality. Special care has

to be taken in case of non-convex problems, since the Newton direction need not

be a descent direction if far away from a minimizer satisfying the sufficient second
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order conditions. Convexification, truncation of iterative solvers [30–32], or solvers

for non-convex quadratic programs can be used to address this.

2.2.2.2 Collocation Discretization

Exemplarily, we consider a discretize-then-optimize approach based on direct

collocation with the midpoint rule. Let 0 = τ0 < · · · < τn = 1 be a time grid,

Xh = {x ∈ H1([0, 1]) | x|[τi,τi+1] ∈ P1, i = 0, . . . , n− 1} and (2.5)

Vh = {v ∈ L2([0, 1]) | v|]τi,τi+1[ ∈ P0, i = 0, . . . , n− 1} (2.6)

the piecewise linear and piecewise constant ansatz spaces for positions and velocities,

respectively. We discretize (2.1) by looking for solutions xh ∈ X2
h and vh ∈ V 2

h

and require the state equation ẋ(τ)− T (v(τ) + w(x(τ))) = 0 to be satisfied only

at the interval midpoints τi+1/2 := (τi + τi+1)/2 for i = 0, . . . , n−1. Representing

xh by its nodal values xi = xh(τi) and vh by its midpoint values vi = vh(τi+1/2),

we obtain the large nonlinear program

min
T,xh,vh

T

s.t. ch(T, xh, vh) =



x0 − xO

xn − xD

x1 − x0 − (τ1 − τ0)T (v0 + w((x0 + x1)/2))
...

xn − xn−1 − (τn − τn−1)T (vn−1 + w((xn−1 + xn)/2))
vT

0 v0 − v2

...
vT

n−1vn−1 − v2


= 0.

(2.7)

2.2.2.3 Discretization Error

The discretization error introduced by the midpoint rule is well-known to be

of second order. For given w ∈ C1([0, 1])2 and T > 0 there is some constant

C(T, ∥wx∥L∞(R2)) independent of v such that

∥xh − x∥L∞([0,1]) ≤ Cδτ 2, (2.8)
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where δτ = maxi=0,...,n−1 τi+1 − τi is the mesh width, see, e.g., [33]. This translates

into a corresponding error in the objective, i.e., the flight time T . Different goal-

oriented error concepts have been investigated [34, 35] for equality constrained

optimal control problems. The excess in actual flight time when the computed path

is implemented depends quadratically on the path deviation ∥xh−x∥L∞([0,1]), and is

therefore of order O(δτ 4). In any case, the error depends directly on the mesh width

δτ , which we therefore use as a coarse but simple qualitative measure of accuracy.

2.2.2.4 Newton-KKT Solver

Analogous to the continuous Lagrangian (2.2), we may formulate its discretized coun-

terpart

Lh(zh, λh) = T − λT
h ch(zh)

and the corresponding necessary first order optimality condition

L′
h(zh, λh) = 0 . (2.9)

Writing χ = [zh, λh]T, this can be solved using Newton’s method by computing

L′′
h(χk)δχk = −L′

h(χk), χk+1 = χk + δχk. (2.10)

For smooth wind fields, there is some ω <∞ related to an affine invariant Lipschitz

constant of L′′
h, such that

∥χk+1 − χ⋆∥ ≤ ω∥χk − χ⋆∥2 (2.11)

holds [36]. Thus, Newton’s method converges quadratically if started sufficiently

close to a locally unique solution point χ⋆, i.e., if ∥χ0−χ⋆∥ < ω−1. This convergence

radius is in general mesh-independent [36, 37], and does not depend on the final

accuracy in terms of mesh width δτ , but only on problem parameters such as

derivatives of the wind w.
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2.2.2.5 Time Complexity

The run time of the Newton-KKT solver is determined by the number of steps and

the cost of each step. The computational effort of a Newton step is dominated by

the cost of solving the linear equation (2.10). Due to the ODE structure, L′′
h(χ) is an

arrow-shaped matrix with band width independent of δτ . Assuming quasi-uniform

meshes, i.e., there is a generic constant C > 0 such that τi+1 − τi ≥ Cδτ , this

structure allows for an efficient solution in O(δτ−1) time using direct band solvers.

Starting sufficiently close to the solution, say ω∥χ0 − χ⋆∥ < 1, allows to bound

the truncation error by linear convergence as

∥χk − χ⋆∥ ≤ (ω∥χ0 − χ⋆∥)k∥χ0 − χ⋆∥,

which is of course rather pessimistic. A tolerance of ∥χk−χ⋆∥ ≤ O(δτ 2) to match the

discretization error is therefore reached after at most O (log δτ/ log(ω∥χ0 − χ⋆∥))

iterations. Thus, the overall complexity in terms of mesh width δτ is

RC = O
(

δτ−1 log δτ

log(ω∥χ0 − χ⋆∥)

)
. (2.12)

Remark 2.1. — If an inexact Newton method based on a geometrically refined

sequence of meshes with mesh width δτk = βkl for some ℓ ≫ δτ and β < 1

is used, the number of iterations is determined by the linear convergence of the

collocation discretization, while the truncation error is quickly diminished by the

quadratic convergence of Newton’s method [36]. Since the effort per Newton step

grows geometrically to its final value, the complexity reduces to

RC = O(δτ−1) (2.13)

provided the initial error is sufficiently small, i.e. ω∥χ0 − χ⋆∥ ≤ β2.

2.2.3 Discrete Approach:
Shortest Paths in Airway Networks

If flight paths are restricted to a predefined airway network of waypoints and

segments, flight planning becomes a special kind of shortest path problem on
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a digraph. Let V ⊂ R2 be a finite set of waypoints including xO and xD, and

A ⊂ V ×V a set of arcs such that G = (V, A) is a strongly connected directed graph.

A discrete flight path is a finite sequence (xi)0≤i≤n of waypoints with (xi, xi+1) ∈ A

for i = 0, . . . , n−1, connecting x0 = xO with xn = xD. We denote the set of all

flight paths by P . The total flight duration T (p) for a path p = (x0, . . . , xn) ∈ P

is given in terms of the flight duration T (ei) for an arc ei = (xi, xi+1) by

T (p) =
n−1∑
i=0

T (ei).

The travel time on the arc ei can be computed from the local ground speed

s = v + w = ∥s∥ xi+1 − xi

∥xi+1 − xi∥
=: ∥s∥ēi,

at x = (1 − τ)xi + τxi+1 and the constant airspeed ∥v∥ = v by solving the

quadratic equation

(∥s∥ēi − w)T(∥s∥ēi − w) = v2.

This yields

∥s∥ = ēT
i w +

√
(ēT

i w)2 + v2 − ∥w∥2

and thus

T (ei) = ∥ei∥
∫ 1

τ=0
∥s∥−1 δτ. (2.14)

The discrete optimization problem to be solved is now

min
p∈P

T (p).

2.2.3.1 Graph Construction.

Discrete approaches to (flight) path planning fall into two classes. The first class

are sampling-based algorithms. They construct the search graph by some kind of

sampling during the execution of the shortest path algorithm, which is usually an

A∗-method. This class includes rapidly exploring random trees (RRT) and graph

(RRG) algorithms, that are often used in robot path planning [8]. There are versions
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that guarantee convergence to a global optimum with probability one [38], however,

although undoubtedly often extremely efficient in practice, these methods do not

provide a priori error bounds or complexity estimates.

The second class are graph-based algorithms, that take the search graph as

an input. Impressive super-fast performance in practice, and also theoretically

for special classes of graphs, has been achieved by making use of preprocessing

as well as sophisticated data structures. However, “proving better running time

bounds than those of Dijkstra’s algorithm is unlikely for general graphs” [6]. In

many applications, including traditional flight plannning on airway networks, the

search graph is canonical. In applications involving space and time discretization,

like in free flight, graph construction is a degree of freedom. Using an appropriate

discretization, a priori bounds on the runtime and the accuracy of the solutions

can be derived. This is the approach that we take.

We cover free flight zones with “locally densely” connected digraphs, i.e., digraphs

with a certain density of vertices and arcs.

Definition 2.1. — A digraph G = (V, A) is said to be (h, ℓ)-dense in a convex set

Ω ⊂ R2 for some h, ℓ > 0, if it satisfies the following conditions:

1. containment: V ⊂ Ω

2. vertex density: ∀x ∈ Ω : ∃v ∈ V : ∥x− v∥ ≤ h

3. arc density: ∀x, y ∈ V, ∥x− y∥ ≤ 2h + ℓ : (x, y) ∈ A.

We call h the vertex density and 2h + ℓ the connectivity radius of an (h, ℓ)-dense

graph.

With this definition, |V | ∈ O(h−2) and |E| ∈ O((2h+ℓ)2h−4) hold. Furthermore,

it is easy to see that this graph structure implies that G is strongly connected and

therefore P is nonempty, i.e. a path from xO to xD exists.
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2.2.3.2 Discretization Error

Similar to the collocation error (2.8), the error due to graph discretization depends

on the vertex density h and the connectivity radius 2h+ℓ. We restrict our exposition

in this paper to a plausible argument for the error order in terms of h and ℓ and

refer the reader to [39] (Chapter 3) for rigorous error bounds of the same orders.

Spatial deviation due to vertex spacing is bounded by ϵ1 = O(h), while the

linear interpolation error depending on the curvature of the continuous optimal

path is bounded by ϵ2 = O((2h + ℓ)2), as illustrated in Figure 2.1a. Together,

the deviation measured as pointwise normal distance is bounded by O(ℓ2 + h).

As mentioned in Section 2.2.2 above, this translates quadratically into a flight

time error of order O(ℓ4 + h2).

Assuming that the path actually contains arcs of length around ℓ+2h, this order

of error is not only an upper bound, but also the expected error. The existence of

arcs of length 2h + ℓ in the optimal discrete path is likely, as the following argument

based on Figure 2.1b shows. With quasi-uniform vertex spacing, the number of

adjacent vertices within a distance 2h + ℓ̂ ≤ 2h + ℓ is of order O((2h + ℓ̂)2/h2), such

that the average angle between arcs of length up to 2h + ℓ̂, and thus the expected

angular deviation α between the discrete path and the optimal continuous path

is of order O((2 + l̂/h)−2). The geometric length difference between the discrete

path and the continuous path is of order O(1− cos α) = O(α2) = O((2 + ℓ̂/h)−4).

The expected length and therefore travel time error induced by angular deviation is

smallest if ℓ̂ is largest, i.e., arcs of maximum length 2h + ℓ are to be preferred.

This analysis also implies that the total flight time error is of order O(ℓ4 + h2 +

(h/ℓ)4) and that h = o(ℓ2) ensures convergence for ℓ → 0.

2.2.3.3 A∗ Shortest Path Algorithm

The state-of-the-art for finding shortest paths in airway networks is the A∗ algo-

rithm [10], which extends Dijkstra’s algorithm by a (heuristic) lower bound for the

distance of some vertex xi to the destination xD in order to prioritize the search.

Depending on the tightness of the heuristic bound, A∗ can discard a substantial
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Figure 2.1: Geometrical error bounds. Blue line: continuous optimal solution. Black line:
discrete optimal solution. Gray dots: graph nodes.

part of the graph and reduce the run time considerably. As a particularly fast

and simple heuristic we employ the travel time along a straight line between xi

and xD, assuming maximum tail wind, i.e.,

d(xi, xD) = ∥xi − xD∥
v + w

.

Tighter and more complex heuristics exploiting local bounds on the wind have been

proposed for flight planning, also for time-dependent wind fields [10].

The travel time for each arc is again calculated via numerical integration of (2.14)

using the same method as for the collocation with a fixed discretization. In order to

draw up a fair comparison, we process arcs on the fly and thus eliminate any major

preprocessing. This also makes the approach extendable to the time dependent case.

2.2.3.4 Time Complexity

Using a Fibonacci heap for the priority queue, A∗ can be implemented to run in time

RD ∈ O(|A|+ |V | log |V |), (2.15)

where |A| and |V | are the numbers of arcs and vertices, respectively. As outlined

above, we may assume ℓ ≫ h. If we – conservatively – assume ℓ2 ≥ h2 log h−1,

the total complexity becomes

RD = O(ℓ2h−4).
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2.2.3.5 Graph Structure

Given the above considerations, we now address the question of which graph

structure in terms of h and ℓ is the most efficient, i.e., which structure achieves a

minimal error for a given computational budget b or, equivalently, a desired accuracy

with minimal effort. Models for computational work and accuracy are

W (h, ℓ) = ℓ2h−4 and ϵ(h, ℓ) = ℓ4 + h2 + h4ℓ−4.

We are hence interested in solving the optimization problem

min ϵ(h, ℓ) s.t. W (h, ℓ) = b.

The constraint W (h, ℓ) = b yields ℓ2 = h4b, which, when inserted into the objective,

leads to the unconstrained problem

min
h

b2h8 + h2 + b−2h−4 ⇔ min
H

BH4 + H + B−1H−2.

The necessary optimality condition 4BH3 + 1 − 2B−1H−3 = 0 is a quadratic

equation in H3 with solution

h6 = −1 +
√

33
8b2 ⇔ b =

√
−1 +

√
33

8h6 .

Inserting this into the constraint yields ℓ2 = h
√

−1+
√

33
8 . We conclude that graphs

of optimal efficiency should follow the law

h = O(ℓ2), (2.16)

such that the computational complexity of the discrete optimization can be

expressed as

RD ∈ O(h−3) ⇔ RD ∈ O(ℓ−6) (2.17)

with an associated error of O(l4) in flight time and of O(l2) in path approximation.
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2.2.4 DisCOptER Algorithm

Due to their superior angular resolution, arcs of length ℓ will occur in the optimal

discrete path, while the length of flight path segments in the collocation solution is

around δτTv. Hence, we expect the accuracy of continuous and discrete optimization

approaches to be comparable if ℓ = δτTv. Obviously, for increasing accuracy

ℓ→ 0, the collocation effort of order O(δτ−1 log δτ/ log(ω∥χ0 − χ⋆∥)) grows much

slower than the A∗ effort of complexity O(ℓ−6). On the other hand, the collocation

approach converges only locally.

We therefore propose a hybrid algorithm that combines the strengths of discrete

optimization and optimal control, see Algorithm 1. First, a discrete shortest path

of low accuracy is calculated using the A∗ algorithm as described in Section 2.2.3.

This is used as initial iterate for solving the KKT system (2.7) to the desired

final accuracy using the ordinary Newton’s method. Employing line search or trust

region globalization would enlarge the convergence domain of Newton’s method

and allow for coarser graphs to be used, but at the cost of less robust and efficient

convergence. In favor of robustness and simplicity, we restrict the attention to

the ordinary Newton’s method.

Algorithms that combine methods from discrete and continuous optimization

have been proposed before. A reverse deterministic combination going from con-

tinuous to discrete has been proposed in [40] based on dynamic programming

principles. Other combinations involve a stochastic discrete stage, like rapidly-

exploring random trees (RRT, RRT∗) (see, e.g., [41]) or Probabilistic Roadmaps

(PRM) [42] in combination with a second NLP stage. Another approach was taken

in [43], where the authors use a combination of A∗ and RRT∗ to find an optimal

trajectory. These algorithms reveal remarkable performance when it comes to

obstacle avoidance. Since our goal is, however, to develop an algorithm with a

priori error estimates and bounded runtime, we do not make use of any stochastic

approaches in the DisCOptER algorithm.
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Algorithm 1: DisCOptER Algorithm
Input : xO, xD ∈ R2, w ∈ C2(R2)2, v > 0, TOL > 0
Output : approximate solution (T, x, v) ∈ R× C0([0, 1])2 × L2([0, 1])2

of (2.1) with error of order TOL2, TOL, TOL, respectively
1 Choose δτ = O(

√
TOL)

2 Define (h, ℓ)-dense graph G with ℓ > δτ∥xD − xO∥, but sufficiently small,
and h = O(ℓ2)

3 Calculate shortest path on G using the A∗ algorithm (see Section 2.2.3)
4 Interpolate path onto collocation discretization (see Section 2.2.4.1)
5 Calculate a continuous solution by solving the nonlinear problem (2.7), via

direct collocation and Newton’s method (see Section 2.2.2)

2.2.4.1 Initialization

Let (x0, . . . , xn) ∈ P be a shortest path from xO to xD in the graph G. Let ti

denote the time at which waypoint xi is passed, and define the relative passage

time τi = ti/T (p) ∈ [0, 1]. We define a mapping Ξ : P → C0,1([0, 1])2 of discrete

flight paths (x0, . . . , xn) ∈ P to continuous paths x ∈ C0,1([0, 1])2 by piecewise

linear interpolation:

x(τ) = xi + T (p)τ − ti

ti+1 − ti

(xi+1 − xi) if ti ≤ T (p)τ ≤ ti+1. (2.18)

The initial collocation iterate is then obtained by evaluating x(τi) on the collocation

grid 0=τ0, . . . , τn=1 and defining the airspeeds

vi = x(τi+1)− x(τi)
T (p)(τi+1 − τi)

− w((x(τi+1) + x(τi))/2)

at the interval midpoints τi+1/2.

2.2.4.2 Complexity

The runtime of this hybrid algorithm is comprised of the runtime of the A∗ algo-

rithm (2.15) and the runtime (2.12) of the KKT-Newton solver for the collocation

system. Provided that the initial iterate based on the discrete solution p is suffi-

ciently close to the continuous optimum, i.e., ω∥χ0 − χ⋆∥ < 1, Newton’s method

converges locally as described by (2.12). For the path approximation error, we
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expect ∥χ0 − χ⋆∥ ≈ Cℓ2, which leads to an overall complexity of

RH = RD + RC ∈ O
(

ℓ−6 + δτ−1 log δτ

log(ωCℓ2)

)
, (2.19)

or RH = O(ℓ−6 + δτ−1) subject to ωCℓ2 < 1 if an inexact Newton method is

used. Both complexity bounds essentially suggest to choose a graph as sparse as

possible (ℓ → ∞), only restricted from above by the accuracy necessary for the

Newton-KKT solver to converge locally, i.e. ωCℓ2 < 1, which is independent

of the final accuracy δτ .

2.3 Results

We validate in this section the effectiveness and the efficiency of our algorithm on a

test set of four problems of increasing difficulty. Our aim is to demonstrate that

our hybrid approach is asymptotically superior to a purely graph-based alternative.

We discuss the convergence properties of the method in relation to the choice of

the crossover point and its dependence on the minimum required graph density.

Based on these results, we evaluate the DisCOptER algorithm for varying graph

densities, using the theoretically optimal graph structure of h = ℓ2, cf. (2.16).

We will see that – as expected – the best performance is achieved on very sparse

graphs. The chapter concludes with a computational comparison of the hybrid

algorithm with a purely discrete approach.

2.3.1 Test Problems

We test our algorithm on a set of simple, but representative examples that are

well suited to demonstrate our method, and not far from real world situations or

arguably even more difficult. The instances live in a square [0, 1]2 or [0, 1]× [−1, 1],

and the origin and the destination are xO = [0, 0]T and xD = [1, 0]T, respectively.

All values are chosen dimensionless. The wind fields are constructed in a such a way

that the straight line from the origin to the destination is particularly unfavorable.

The wind speed is limited to w = 1
2v, which is rather strong, but not unrealistic.

Even though not formally required, the graph nodes are positioned on a uniform



2. A Discrete-Continuous Algorithm for Free Flight Planning 103

Cartesian grid, such that the diagonal distance of two adjacent nodes is 2h. For the

sake of simplicity the graph structure will be described based on the node spacing

in x-direction hx =
√

2h. This directly defines ℓ =
√

h by (2.16).

In the first test problem a), the wind field is a laminar flow of opposing

parallel currents, namely,

w(x) =
[
w min(max(2x2

H
−1,−1), 1)

0

]
,

with H = 0.5, see Figure 2.2; a similar problem is discussed in [44]. Due to

its simplicity, this problem has only one distinct minimum, a property that we

make use of in the next section.
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Figure 2.2: Test problem a) with H = 0.5, xO = (0, 0), xD = (1, 0), w = 1
2v. Blue

dots: network-graph with h = ℓ2 and 1/hx = 1 and 6, respectively, Red: discrete optimal
trajectory, Green: continuous optimal trajectory.

In problems b)-d), the wind w is the sum of an increasing number of vortices

wi, each of which is described by

wi(x) =
[
−sw̃(r) sin(α)
sw̃(r) cos(α)

]
,

where s is the spin of the vortex (s=+1: counter-clockwise, s=−1: clockwise),

r = ∥x− z∥2 is the distance from the vortex center zi, α is the angle with respect

to the center and the x-axis with tan(α) = (x−zi)2
(x−zi)1

and the absolute vortex wind

speed w̃ is a function of r and the vortex radius R:

w̃(r) =
[

w exp
(

r2

r2−R2

)
if r ≤ R

0 otherwise

]
. (2.20)

Problem b) involves one large vortex with R = 1/2 at z = [0.5,−0.1]T, see

Figure 2.3. This causes Newton’s method to converge to a suboptimal trajectory
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(above the vortex) if initialized with the straight trajectory. That is the case if

the DisCOptER algorithm is used with a minimally sparse graph with hx = 1

(see second subfigure). We observed, that the discrete shortest path passes below

the vortex for any hx > 1. From there the globally optimal solution shown in the

third subfigure was found for hx = 1/6.
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Figure 2.3: Test problem b) with counterclockwise spinning vortex centered at z =
[0.5,−0.1]T, R = 0.5. xO = [0, 0]T, xD = [1, 0]T, w = 1

2v. Blue dots: network graph
with h = ℓ2 and 1/hx = 1 and 6, respectively, Red: discrete optimal trajectory, Green:
continuous optimal trajectory.

Problem c) involves 15 vortices with R=1/8. One is centered at z=[1/2,−R/2]T,

the others are regularly aligned as seen in Figure 2.4. Vortices with positive spin

(clockwise) are colored green, vortices with negative spin (anti-clockwise) are colored

red. Due to the turbulence of this wind field, a plain application of Newton’s

method is not guaranteed to converge. As an example, Subfigure b) shows again

the result with the trivial initialization. Further, there are several local minima,

Subfigures c)-d) show two of them. A relatively high graph density (hx ≤ 1/17) is

required to find the globally optimal trajectory (see Subfigure e)).

Problem d) involves 50 regularly aligned vortices of radius R = 1/16 (Figure 2.5).

This is clearly an exaggeration, and no commercial plane would ever try to traverse

a wind field like this. We use the instance to show that the proposed algorithm

outperforms existing methods even under the most adverse conditions. In fact, the

high level of non-convexity exacerbates the situation regarding the convergence

of Newton’s method. Note that, the magnitude of derivatives of (2.20) is coupled

directly to the vortex radius. With R = 1/16 the vortices here are half as large as
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Figure 2.4: Test problem c) with 15 vortices, R = 1/8. One is centered at z = [0.5,−R/2],
the others are regularly positioned as seen above. xO = [0, 0]T, xD = [1, 0]T, w = 1

2v. Blue
dots: graph with h = l2 and 1/hx = 1, 5, 6, and 16, respectively, Red: discrete optimal
trajectory, Green: continuous optimal trajectory. Note that the straight trajectory is
particularly unfavorable.

in the previous example. In turn, the first and second order derivatives are 2 and

4 times larger, respectively. Consequently, a quite dense graph with hx ≤ 1/60 is

required to make Newton’s method converge reliably. Note that this wind field is

point-symmetric with respect to [0.5, 0]T, which allows for two equivalent global

optima (see Subfigures b) and c)). It is a priori not obvious which one will be

found. This depends on the discrete optimum.
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Figure 2.5: Test problem d) with 50 vortices (10 columns of 5 vortices each), R = 1/16,
regularly positioned. xO = [0, 0]T, xD = [1, 0]T, w = 0.5v. Blue dots: graph with h = ℓ2

and 1/hx = 33 and 34, respectively, Red: discrete optimal trajectory, Green: continuous
optimal trajectory. Note that, again, the straight trajectory is particularly unfavorable.
This problem is point-symmetric w.r.t. [0.5, 0]T. The two shown solutions are equivalent.
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2.3.2 Computational Complexity

Before discussing the DisCOptER algorithm, we validate that the optimal control

methods are asymptotically more efficient than a purely graph-based approach.

This can be investigated only for the first test problem. Due to the simplicity of

this wind field, Newton’s method will converge from a trivial initialization, i.e., the

straight line from xO to xD. On the other hand, discrete flight paths were calculated

with varying accuracy, that is, with varying ℓ, which is, according to Section 2.2.3.2,

a measure for the accuracy of the calculated path. For the sake of consistency, we

indicate the accuracy of the continuous solution by lC := δτL, where L is the path

length. Figure 2.6 clearly confirms the estimated time complexities of O(l−6) for the

discrete approach (see (2.15)) and O(δτ−1) for the continuous approach (see (2.12)).
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Figure 2.6: Test case a). Orange: Discrete-only approach, polynomial trend line of order
6. Purple: Newton-KKT initialized with straight line, ℓ=̂ℓC = δτL, linear trend line.

2.3.3 Minimum Graph Requirements

Figure 2.7 shows the runtime of the DisCOptER algorithm for various graph

parameters (h, ℓ). Some key observations can be made for all four test problems.

Towards the top right of each figure the graph density increases, which comes

with an increased runtime dictated by the graph searching part of the algorithm.

The black dashed line represents the theoretically optimal graph structure h = ℓ2,
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cf. (2.16); it is shown for orientation as the results in the following sections are

computed with this setting.

From left to right the wind fields become increasingly more non-convex. As

these plots reveal, this comes with generally higher runtimes, but more importantly

with a region of low graph densities where the algorithm converges either to a local

minimum or not at all (gray areas). As discussed before, this is not an issue in case

a) since this problem is convex and Newton’s method converges even from a trivial

initialization. Even in case b) we found that a graph with hx < 1 is good enough

such that we find the optimal flight path (only one additional column of nodes

between start and destination is required). This outcome is not visible here due to

the limited resolution of the plot. The convergence problem becomes all the more

apparent with instances c) and d). In both cases, a good number of local minima

exists, each of which has a rather small radius of convergence such that Newton’s

method fails if not initialized with sufficient accuracy. Especially in case d) we see a

patchwork of runs that converge presumably by chance in an unpredictable way.

Some of this might be compensated by globalization techniques and an explicit

treatment of non-convexity, which, however, would affect the efficiency of Newton’s

method. In order to provide reliable results, we need to use a graph density of at

least ℓ < 0.15 and 0.11 for case c) and d), respectively.

Interestingly, the node distance h appears to have a much stronger effect on the

convergence than the connectivity width ℓ. This might be explained to some extent

in terms of the distance and angular error (cf. Section 2.2.3.2). Low ℓ decreases

the angular resolution and thus induces an increased angular error. The discrete

flight path then tends to zig-zag along the optimum. This can easily be smoothed

by Newton’s method. However, if the discrete flight path is parallely offset from

the optimum (distance error due to large node distance h), it might quickly leave

the convergence radius of Newton’s method.
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Figure 2.7: Runtime of the DisCOptER algorithm in seconds. Top right corner: dense
graph. Bottom left corner: sparse graph. Gray areas: not converged or converged to local
minimum. Black dashed line: h = ℓ2.

2.3.4 Optimal Crossover Point

In Section 2.2.3.2 we derived h = ℓ2 as the optimal graph structure, cf. (2.16).

Using this setting and sampling over various graph densities for the test problems

leads to the results presented in Figure 2.8. Obviously, an increased graph density

comes with a computationally more expensive graph searching task (pink, top,

cf. (2.17)). In turn the NLP part of the algorithm (green, bottom) becomes cheaper

following (2.12), since the initial guess gets closer to the optimum.

From test problem a) it can be seen that the best performance is achieved –

independently of the overall accuracy δτ – with a relatively low graph density of

1/ℓ ≈ 5, where the graph search is still negligibly cheap but the graph is already

dense enough for Newton’s method to converge with only one iteration. The exact

numbers depend strongly on implementation details. We do not claim to have an

optimal realization of either part of the algorithm. The trend towards low graph

densities, however, is confirmed by the following examples.
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As it turns out, the lower bound on the required graph density imposed by

the non-convexity of the wind field is the more important criterion. Looking at

examples c) and d), where we excluded the area that we identified as not trustworthy

in the previous section, we conclude that we want the graph to be as sparse as

possible and only as dense as necessary.
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Figure 2.8: Runtimes of the DisCOptER algorithm in seconds, split into the discrete
part (pink, top) and the continuous part (green, bottom), sampled with h = ℓ2. Constant
accuracy δτ = 1/300.

2.3.5 Computational Complexity

We finally show that globally optimal shortest paths can be calculated more efficiently

using the proposed DisCOptER algorithm than with a purely graph based approach,

see Figure 2.9. In the previous section we showed that the algorithm performs best

if the graph is chosen rather sparse while respecting the problem-specific minimum

density. Consequently, the calculation of the discrete solution is relatively cheap

and we can benefit from the computational efficiency of Newton’s algorithm. We

can also confirm that the time complexity of the DisCOptER Algorithm is O(δτ−1),

see (2.19), and that the time complexity of the purely graph-based approach

is O(ℓ−6), see (2.15).
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Figure 2.9: Minimum runtime in seconds taken experiments similar to Figure 2.8.
Blue: DisCOptER Algorithm with ℓc := δτL, linear trend line. Orange: Purely discrete,
polynomial trend line of order 6.

2.4 Conclusion

In this paper we presented the novel DisCOptER algorithm to calculate flight

paths in free flight airspaces utilizing a combination of discrete and continuous

optimization. We demonstrated that the achieved efficiency is asymptotically much

better than the conventional purely discrete alternative. Even though the algorithm

was described for the static two-dimensional case it is strongly promising also for

more complex cases, to which it can directly be transferred.

Our study also reveals a need for more theoretical analysis of the problem.

In order to design a one-shot algorithm with theoretical efficiency guarantees, a

priori error estimates allowing the determination of a minimum required crossover

graph density is needed. This will of course depend mainly on the characteristics of

the wind field including first and second order derivatives. On the other hand, a

posteriori error estimates and adaptive coarse-to-fine graph refinement strategies

will be necessary for robustness and efficiency in practice. We investigate some
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of these questions in [39] (Chapter 3).
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Abstract Two-stage methods addressing continuous shortest path problems
start local minimization from discrete shortest paths in a spatial graph. The
convergence of such hybrid methods to global minimizers hinges on the
discretization error induced by restricting the discrete global optimization
to the graph, with corresponding implications on choosing an appropriate
graph density.
A prime example is flight planning, i.e., the computation of optimal routes
in view of flight time and fuel consumption under given weather conditions.
Highly efficient discrete shortest path algorithms exist and can be used directly
for computing starting points for locally convergent optimal control methods.
We derive a priori and localized error bounds for the flight time of discrete
paths relative to the optimal continuous trajectory, in terms of the graph
density and the given wind field. These bounds allow designing graphs with
an optimal local connectivity structure.
The properties of the bounds are illustrated on a set of benchmark problems.
It turns out that localization improves the error bound by four orders of
magnitude, but still leaves ample opportunities for tighter error bounds by a
posteriori estimators.
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3.1 Introduction

There are applications of numerical optimization that call for the computation of

global instead of just local optima. One example is free flight planning, an instance

of airborne navigation, where travel time is optimized subject to a given wind field

(the travel time T between origin and destination is almost proportional to fuel

consumption, CO2 emission, and cost [1]). Going left or right around obstacles or

adverse wind situations gives rise to locally optimal trajectories with considerably

different costs [2], and airlines are naturally interested in the best of those.

Various approaches to global optimization have been proposed: stochastic ones

like multistart or simulated annealing [3], biologically inspired metaheuristics like

genetic algorithms or particle swarms [4], and rigorous ones based on objective

bounds and branching [5, 6]. The former approaches converge to a global minimizer

only almost surely at increasing computational costs, but provide no guarantees

for finiteness. The latter ones usually require in-depth structural knowledge of the

objective, or the use of interval arithmetics, and quickly suffer from the curse of

dimensionality for practically relevant problems.

In this paper we consider a two-stage multistart approach along the following

lines. It (i) defines a sufficiently large set of possible starting points, (ii) selects

few promising candidates, and (iii) performs local optimization starting from those

candidates. For this to be computationally feasible, the representation and selection

of starting points needs to be highly efficient even for large and high-dimensional

design spaces. This is, of course, problem-dependent. Some problems allow a

discretization in terms of discrete network optimization problems such as minimum

cost flow and, in particular, shortest path problems, which can be solved efficiently

to global optimality in theory and practice [7]. If such discrete problems are close

to their continuous counterpart, their solutions might provide promising starting

points for local optimization to converge to a nearby global optimizer.

Obviously, flight planning and discrete shortest path search are related in this

way and can hence serve as examples to substantiate the general idea. The starting
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points covering the design space of trajectories between origin and destination can

be implicitly described as paths in a graph covering the spatial domain. In this

discrete approximation of the problem, the selection of promising candidate points

can be efficiently performed using Dijkstra’s algorithm or its A∗ variants. This leads

to a hybrid discrete-continuous algorithm combining discrete global optimization

methods with continuous local optimal control methods.

A first successful step in this direction has been taken with the development

of the hybrid algorithm DisCOptER (Chapter 2, [8]) that has been proposed

by the authors of this paper for free flight planning. Even though the potential

applications are manifold, no other similar method has been proposed so far. Note

that the discrete stage alone is traditionally used as a standalone optimizer for

practical flight planning on given airway networks [9, 10], but gets quickly inefficient

when the airway networks need to be refined significantly to exploit the potential

benefits of free flight [1]. Similarly, for robot path planning, rapidly exploring

random graphs and trees (RRT) are used for sampling the trajectory design space

at many discrete points [11].

Guaranteed convergence of a hybrid two-stage algorithm to a global minimizer

hinges on the one hand on a sufficiently dense sampling of possible starting points

in the design space, and on the other hand on the ability of the local optimizer

to converge reliably to a nearby local optimum when started from one of these

candidate points. The present paper investigates the first aspect, i.e., we derive

bounds on the required resolution of the discretization. To this purpose, we introduce

a continuous problem formulation that allows a direct comparison of continuous

and discrete 2D flight paths (Section 3.2), and derive bounds for the flight duration

deviation T (ξ)−T (ξC) between different paths ξ and ξC in terms of spatial distance

∥ξ − ξC∥, angular distance ∥(ξ − ξC)τ∥, and bounds on the stationary wind and

its derivatives. Based on the (h, ℓ) graph density property from [8] (Chapter 2),

we obtain corresponding flight duration bounds for discrete optimal trajectories

(Section 3.3), which also yield a theoretically optimal ratio h = O(ℓ2) of vertex

distance and characteristic edge length. We derive two types of error bounds: an
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a priori bound T (ξG) ≤ T (ξC) + κℓ2 depending only on problem quantities but

not on a particular solution, and a local bound based on bounds for the wind

in a neighborhood of the optimal trajectory. Taking more detailed information

into account, the latter one improves on the former one by several orders of

magnitude. The theoretical predictions are confirmed by numerical examples for

a set of benchmark problems with varying wind complexity (Section 3.4), which

reveal that there is still ample room for improvement by using a posteriori error

estimators. The flight planning application leaves its imprint on the nature and

derivation of these bounds, but the general idea should work for similar applications

that have a discrete-continuous nature.

3.2 Shortest Flight Planning:
Continuous & Discrete

For simplicity of presentation, we consider flight planning in the Euclidean plane. We

aim at minimizing the travel time T between an origin xO and a destination xD, with

a fixed departure at t = 0 and a constant airspeed v > 0, thus neglecting start and

landing phase. Moreover, we assume a spatially heterogeneous, twice continuously

differentiable wind field w to be given, with a bounded magnitude ∥w∥L∞(R2) < v.

Focusing on free flight areas, we also neglect any traffic flight restrictions.

3.2.1 Continuous: Optimal Control

In free flight areas, the flight trajectory is not restricted to a predefined set of

airways. Instead, we consider any Lipschitz-continuous path x : [0, T ] → R2 in

the Sobolev space H1([0, T ]), connecting origin xO and destination xD, as a valid

trajectory if it satisfies the following ODE almost everywhere,

xt(t) = v(t) + w(x(t), t), (3.1)

where xt denotes the derivative of x with respect to t and is obtained by adding the

vectors of airspeed and wind. The airspeed v ∈ L2([0, T ]) : [0, T ] 7→ R2 lives in the

Lebesgue space of square integrable functions. Among those trajectories, we need
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to find one with minimal flight duration T , since that is essentially proportional

to fuel consumption [1]. This classic of optimal control is known as Zermelo’s

navigation problem [12].

The optimal control problem of finding a trajectory (x, v) that minimizes travel

time T ∈ R while obeying the dynamics described in (3.1) and travelling at

constant airspeed v now reads

min
T,x,v

T s.t. c(T, x, v) =


x(0)− xO

x(T )− xD

xt(t)− (v(t) + w(x(t), t))
v(t)Tv(t)− v2

 = 0 (3.2)

with c : R × H1([0, T ])2 × L2([0, T ])2 → R2 × R2 × L2([0, T ])2 × L2([0, T ]). Note

that due to vTv = v2, the airspeed v (and therefore also the ground speed v + w)

is bounded almost everywhere, such that any feasible trajectory x is Lipschitz-

continuous, i.e., x ∈ C0,1([0, T ]) [13, Thm. 1.36]. Moreover, it is immediately clear

that there is an ellipse Ω ⊂ R2 with focal points xO and xD, in which any trajectory

with minimal flight duration is contained.

Problem (3.2) can be numerically solved efficiently with either direct methods

using a discretization of the variables to formulate a finite-dimensional nonlinear

programming problem [14], or with indirect methods relying on Pontryagin’s

maximum principle, leading to a boundary value problem for ordinary differential

equations [12, 15–19]. These approaches have also been considered explicitly for

free flight planning [20, 21].

While the optimal control formulation (3.2) is convenient for numerically

solving the optimization problem, we will consider a different formulation defining

trajectories on the unit interval that is better suited for direct comparison with

graph-based approaches here. Assume the flight trajectory x : [0, T ] → Ω is

given by a strictly monotonuously increasing parametrization t(τ) on (0, 1) as

x(t(τ)) = ξ(τ), and ξ ∈ H1(0, 1) : (0, 1) → Ω being a Lipschitz-continuous path

with ξ(0) = xO, ξ(1) = xD. Due to Rademacher’s theorem, its derivative ξτ exists

almost everywhere, and we assume it not to vanish. Then, t(τ) is defined by the
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state equation xt
(3.1)= v + w ̸= 0 and the airspeed constraint ∥v∥ = v, since

v = ∥xt − w∥ and xttτ = ξτ ̸= 0

imply

(t−1
τ ξτ − w)T(t−1

τ ξτ − w) = v2

⇔ t−2
τ ξT

τ ξτ − 2t−1
τ ξT

τ w + wTw − v2 = 0

⇔ (v2 − wTw)t2
τ + 2ξT

τ wtτ − ξT
τ ξτ = 0

due to tτ > 0. Solving the quadratic equation yields

tτ =
−ξT

τ w +
√

(ξT
τ w)2 + (v2 − wTw)(ξT

τ ξτ )
v2 − wTw

=: f(t, ξ, ξτ ). (3.3)

The flight duration T is then given by integrating the ODE (3.3) from 0 to 1 as

T = t(1). For the ease of presentation let us assume that the wind w is stationary,

i.e., independent of t, and thus f(t, ξ, ξτ ) = f(ξ, ξτ ). Doing so, we avoid the more

complicated work with an ODE. Instead, we obtain

T (ξ) =
∫ 1

0
f
(
ξ(τ), ξτ (τ)

)
dτ. (3.4)

We, however, strongly expect our results to directly carry over to the more complex

case. Since the flight duration T as defined in (3.4) is based on a reparametrization

x(t) = ξ(τ(t)) of the path such that ∥xt(t)−w(x(t))∥ = v, the actual parametrization

of ξ is irrelevant for the value of T . Calling two paths ξ, ξ̂ equivalent if there exists

a Lipschitz-continuous bijection r : (0, 1)→ (0, 1) such that ξ̂(r(τ)) = ξ(τ), we can

restrict the optimization to equivalence classes [ξ]. Thus, the admissible set is

X = {[ξ] | ξ ∈ C0,1((0, 1), Ω), ξ(0) = xO, ξ(1) = xD}. (3.5)

Example 3.1. — This is illustrated in Figure 3.1. Consider the case that the

wind gets stronger the farther the airplane proceeds to the right with w(ξ(τ), τ) =[
w 0
0 0

]
ξ(τ). Obviously, the optimal route is the straight line. This route can be

represented differently, depending on the choice of the time parametrization τ(t).

E.g., with τ(t) = t/T constant air speed is maintained. Consequently, the distance
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0.0 0.2 0.4 0.6 0.8 1.0

(a) Parametrization such that air speed is
constant. Traveled distance per time step
increases.

0.0 0.2 0.4 0.6 0.8 1.0

(b) Parametrization such that ground speed
is constant. Traveled distance per time step
is constant.

Figure 3.1: Illustration of the effect of the time parametrization τ(t). Blue dots represent
position at equidistant time steps in the normalized time τ ∈ (0, 1). Wind is blowing to
the right with increasing speed.

traveled in a certain time step increases over the course of the flight, due to the

increasing wind speed (Figure 3.1 (a)). Alternatively, one may choose τ(t) such that

the ground speed is constant (Figure 3.1 (b)).

Since every equivalence class contains a representative with constant ground

speed ∥ξτ (τ)∥, we will subsequently often assume ∥ξτ (τ)∥ = const without loss of

generality, such that ∥ξτ∥ is just the length of the flight trajectory. For convenience,

let us define the set of representatives with constant ground speed as

X̂ = {ξ | [ξ] ∈ X, ∥ξτ∥ = const f.a.a. τ ∈ (0, 1)}. (3.6)

The reduced minimization problem, equivalent to (3.2), now reads

min
[ξ]∈X

T (ξ), or, equivalently, min
ξ∈X̂

T (ξ). (3.7)

Remark 3.1. — Let us interpret this representation of flight duration. In the

absence of wind, i.e., ∥w∥ = 0, (3.3) yields tτ = ξτ /v. Integrating over (0, 1) yields

just the total path length divided by the velocity (airspeed and ground speed coincide).

For low wind, i.e., ∥w∥ ≪ v, we obtain tτ ≈ (ξτ − ξT
τ w)/v from (3.3), and hence a

reduction of flight duration due to the tail wind component ξT
τ w (or an increase in

the case ξT
τ w < 0 of head wind). For ∥w∥ → v, we obtain tτ → ξτ /(2∥ξτ∥−1|ξT

τ w|)

from (3.3) in case of a tailwind component ξT
τ w > 0 and tτ →∞ otherwise. In any

case, flight duration scales linearly with the length of the path.
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In contrast to the optimal control formulation (3.2), the reduced formulation (3.7)

allows a direct comparison of continuous and discrete flight trajectories, and is

therefore the ideal tool for deriving error bounds in Section 3.3. We point out,

however, that it is less suited for actually computing an optimal solution.

3.2.2 Discrete: Airway Networks

If flight trajectories are restricted to certain airways connecting predefined waypoints,

flight planning is a special kind of shortest path problem on a graph. Let V ⊂ R2

be a finite set of waypoints including xO and xD, and E ⊂ V × V a set of airways

such that G = (V, E) is a connected directed graph. A discrete flight path is

a finite sequence (xi)0≤i≤n of waypoints with (xi−1, xi) ∈ E for i = 1, . . . , n,

connecting x0 = xO with xn = xD.

We define a mapping Ξ : (xi)0≤i≤n 7→ [ξ] ∈ X of discrete flight paths to

continuous paths by piecewise linear interpolation

ξ(τ) = x⌊nτ⌋ + (nτ − ⌊nτ⌋)(x⌈nτ⌉ − x⌊nτ⌋) (3.8)

resulting in polygonal chains, which are Lipschitz-continuous with piecewise constant

derivative. We denote its image im Ξ ⊂ X, i.e., the set of flight trajectories in the

Euclidean plane that can be realized by adhering to the airway network, by XG.

The discrete flight planning problem then reads

min
[ξ]∈XG

T (ξ), (3.9)

and differs from its continuous counterpart (3.7) only by the admissible set, effectively

acting as a particular discretization.

Shortest path problems on static graphs with non-negative weights are usually

solved with the A∗ variant of Dijkstra’s algorithm [22].

3.3 Approximation Error Bounds

Having established a setting in which discrete and continuous flight trajectories can

be directly compared, we are interested in bounding the suboptimality, i.e., the
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increase of flight duration T relative to the continuous optimum, due to restricting the

flight path to predefined airways. In particular, we aim at relating this approximation

error to the airway network density.

3.3.1 A Posteriori Error

For estimating the flight time deviation, we start with a Taylor-based bound in terms

of the actual path deviation δξ from a minimizer. This bound will serve as the basis

for computable bounds in Section 3.3.3 and, in addition, provide a quantitative idea

of the efficiency of a posteriori error estimators using computable estimates of ∥δξ∥.

At this point we want to point out that ξ, ξτ , δξ, and δξτ are in general functions

of τ . In favor of a more compact notation we will usually omit the argument τ

in the remainder of the paper.

Lemma 3.1. — For any p ∈ Ω let c0(p) = ∥w(p)∥, c1(p) = ∥wx(p)∥, and c2(p) =

∥wxx(p)∥, and assume c0 ≤ v/
√

5. Moreover, let ξ ∈ X̂, L := ∥ξτ∥ > 0 and

v2(p) := v2 − c2
0(p). Then the second total directional derivative of f as defined

in (3.3) is bounded by

|f ′′(ξ, ξτ )[δξ, δξτ ]2| ≤ α0(ξ)∥δξ∥2 + α1(ξ)∥δξ∥ ∥δξτ∥+ α2(ξ)∥δξτ∥2 (3.10)

for almost all τ ∈ (0, 1), with αi : Ω→ R+, i = 0, . . . , 2, given as

α0(p) = L

v3(p)
(
12c2

1(p) + 4v(p)c2(p)
)

,

α1(p) = 8c1(p)
v2(p) ,

α2(p) = 2
Lv(p) .

The proof of this lemma is, though not difficult, rather technical and lengthy

calculus and is provided in the appendix.

Remark 3.2. — The assumption of c0 ≤ v/
√

5 covers the usually experienced

wind velocities, but not the possible extremes.
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Theorem 3.2. — Let ξC ∈ X̂ be a minimizer of (3.7) and δξ := ξ − ξC. Then

there is a constant r > 0 depending on ξC and w, such that the a posteriori bound

T (ξ) ≤ T (ξC) +
∫ 1

0

(
α0(ξC)∥δξ∥2 + α1(ξC)∥δξ∥∥δξτ∥+ α2(ξC)∥δξτ∥2

)
dτ (3.11)

holds for all paths ξ ∈ X̂ with ∥ξ − ξC∥C0,1(0,1) ≤ r and αi as defined in Lemma 3.1.

Proof. We note that T : C0,1(0, 1)2 → R as defined in (3.4) is twice continuously

Fréchet-differentiable at ξC ∈ X̂ due to ∥(ξC)τ∥ =
(3.6)

L > 0 for almost all τ . By

Lemma 3.1, there are functions α0, α1, α2 depending on the local wind w and its

derivatives as well as the overall trajectory length L, such that

f ′′(ξC , (ξC)τ )[(δξ, δξτ ), (δξ, δξτ )]

≤ α0(ξC)∥δξ∥2 + α1(ξC)∥δξ∥∥δξτ∥+ α2(ξC)∥δξτ∥2

holds for almost all δξ, δξτ ∈ R2 and τ ∈ (0, 1). Integrating over τ yields the bound

T ′′(ξC)[δξ, δξ] ≤
∫ 1

0
α0(ξC)∥δξ∥2 + α1(ξC)∥δξ∥∥δξτ∥+ α2(ξC)∥δξτ∥2 dτ

for second directional derivatives of the flight duration T in direction δξ ∈ C0,1(0, 1)2

with δξ(0) = δξ(1) = 0. Due to continuity of T ′′, there exists a neighborhood Br(ξC)

of radius r > 0, such that T ′′(ξ̃)[δξ, δξ] ≤ 2
∫ 1

0 α0∥δξ∥2 + α1∥δξ∥∥δξτ∥+ α2∥δξτ∥2dτ

for all ξ̃ ∈ Br(ξC). Consequently, by Taylor’s theorem and using δξ = ξ − ξC , we

can bound

T (ξ) = T (ξC) + T ′(ξC)[δξ]︸ ︷︷ ︸
=0

+
∫ 1

0
(1− ν)T ′′(ξC + νδξ)[δξ, δξ] dν

≤ T (ξC) +
∫ 1

0

(
α0(ξC)∥δξ∥2 + α1(ξC)∥δξ∥∥δξτ∥+ α2(ξC)∥δξτ∥2

)
dτ

due to ξC being a minimizer.
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3.3.2 Trajectory Approximation in Locally Dense Graphs

The approximation error of the optimal discrete flight path ξG according to (3.9)

relative to the continuous optimum ξC of (3.7) due to the smaller admissible set

XG ⊂ X depends on the density of the airway network. The discussion will be

limited to a certain class of locally dense digraphs as defined in [8] (Chapter 2).

Definition 3.1. — A digraph G = (V, E) is said to be (h, ℓ)-dense in a convex set

Ω ⊂ R2 for h, ℓ ≥ 0, if it satisfies the following conditions:

1. containment: V ⊂ Ω

2. vertex density: ∀p ∈ Ω : ∃v ∈ V : ∥p− v∥ ≤ h

3. local connectivity: ∀v, w ∈ V, ∥v − w∥ ≤ ℓ + 2h : (v, w) ∈ E

An example for such an airway digraph is shown in Figure 3.2. Note that, even

for ℓ→ 0, the minimum local connectivity length of 2h guarantees that a vertex

is connected to its neighbors. It is easy to show that any (h, ℓ)-dense digraph is

connected, such that a path from origin to destination exists.

Let ξC ∈ X be a global minimizer of the continuous problem formulation (3.7),

and ξG ∈ XG be a shortest discrete path in the (h, ℓ)-dense airway digraph G

satisfying (3.9). For establishing a bound for the excess flight duration in terms

of the airway density, we first construct a particular discrete path ξR(ξC) ∈ XG

using a rounding procedure, and derive a bound for T (ξR) − T (ξC) ≤ e(h, ℓ),

from which the actual error bound T (ξG) − T (ξC) ≤ e(h, ℓ) immediately follows

from optimality of ξG.

For defining ξR(ξ) ∈ XG, with an (h, ℓ)-dense digraph G with ℓ > 0, for a given

continuous path ξ ∈ X̂ with ξτ = const, we first choose an equidistant grid τi = i/n,

n = ⌈ξτ /ℓ⌉, for i = 0, . . . , n. By construction, the distance of the corresponding

trajectory points is bounded by ∥ξ(τi)−ξ(τi+1)∥ ≤ ℓ. For each i, there is some vi ∈ V

with ∥vi − ξ(τi)∥ ≤ h, such that ∥vi − vi+1∥ ≤ ℓ + 2h. Consequently, (vi, vi+1) ∈ E,

and (vi)0≤i≤n is a valid discrete path, for which we define [ξR] = Ξ(vi)i.
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h

2h
ℓ

Figure 3.2: A locally densely connected digraph with cartesian structure. The center
node (dark blue) is connected to all nodes in a circular neighborhood of radius 2h + ℓ
(light blue) with edges in both directions.

It is intuitively clear – and rigorously confirmed below – that the excess flight

duration T (ξR)− T (ξC) is affected by both, the spatial distance between ξR and ξC ,

e.g., taking a longer detour or flying through an area with adverse wind conditions,

and the angular deviation, e.g., a zigzag path tends to take longer than a straight

trajectory. In order to capture these effects, we will first bound the spatial distance

∥ξR− ξC∥L∞(0,1) and the angular deviation ∥(ξR− ξC)τ∥L∞(0,1), and equip the space

of Lipschitz-continuous functions with the norm

∥f∥C0,1(0,1) := ∥f∥L∞(0,1) + ∥fτ∥L∞(0,1).

Theorem 3.3. — Assume ξ ∈ X̂ ∩C1,1((0, 1), Ω) has bounded curvature, i.e., there

is some σ with ∥ξτ (a) − ξτ (b)∥ ≤ σ|a − b| for a, b ∈ (0, 1), and denote the length

of the trajectory by L = ∥ξτ∥. Then, the following bounds hold for the discrete

approximation ξR(ξ) in an (h, ℓ)-dense digraph:

(distance error) ∥ξR(ξ)− ξ∥L∞(0,1) ≤
σℓ2

8L2 + h , (3.12)

(angular error) ∥(ξR(ξ)− ξ)τ∥L∞(0,1) ≤
√

2σℓ

L
+ 2h

(
L

ℓ
+ 1

)
. (3.13)
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If ℓ ≤ L, we obtain the total error bound

∥ξR(ξ)− ξ∥C0,1(0,1) ≤
(1

8 +
√

2
)

σ
ℓ

L
+ 2h

L

ℓ
+ 3h

≤ 2σ
ℓ

L
+ 2h

L

ℓ
+ 3h. (3.14)

Proof. Let ξ̂(τ) = ξ(τ⌊nτ⌋) + (nτ − ⌊nτ⌋)(ξ(τ⌈nτ⌉) − ξ(τ⌊nτ⌋)) be the linear inter-

polant of the continuous trajectory ξ on n = ⌈L/ℓ⌉ equisized intervals. Standard

interpolation error estimates yield

∥(ξ̂ − ξ)(τ)∥ ≤ σ/(8n2) ≤ σℓ2

8L2

for all τ [23, Ch. 3.1, p. 93 ff.]. Moreover, with α = (nτ − ⌊nτ⌋) ∈ [0, 1],

ξ̂(τ)− ξR(τ) = ξ(τ⌊nτ⌋)− ξR,⌊nτ⌋ + α
(

ξ(τ⌈nτ⌉)− ξR,⌈nτ⌉ − ξ(τ⌊nτ⌋) + ξR,⌊nτ⌋

)
= (1− α)

(
ξ(τ⌊nτ⌋)− ξR,⌊nτ⌋

)
+ α

(
ξ(τ⌈nτ⌉)− ξR,⌈nτ⌉

)
(3.15)

implies ∥(ξ̂ − ξR)(τ)∥ ≤ h, which yields the distance error bound (3.12) by triangle

inequality.

Let ϕ = (ξ̂ − ξ)k, k ∈ {1, 2}, be one of the two components of the difference

between continuous trajectory and linear interpolant. By the mean value theorem,

there is a point τ̂ ∈ ]τi, τi+1[ with ϕτ (τ̂) = 0. Thus,

|ϕτ (τ)| = |ϕτ (τ)− ϕτ (τ̂)| ≤ σ

n
∀τ ∈ [τi, τi+1]

holds for all i = 0, . . . , n − 1 and implies ∥(ξ̂ − ξ)τ (τ)∥ ≤
√

2σ/n ≤
√

2σℓ/L for

all τ . Moreover, (3.15) implies

(ξ̂ − ξR)τ (τ) = −n
(
ξ(τ⌊nτ⌋)− ξR,⌊nτ⌋

)
+ n

(
ξ(τ⌈nτ⌉)− ξR,⌈nτ⌉

)
and therefore ∥(ξ̂ − ξR)τ∥ ≤ 2nh ≤ 2h(L/ℓ + 1) and yields the angular error

bound (3.13) by triangle inequality.

Of course, if ℓ < ℓ̂, then the (h, ℓ)-dense digraph G is a subgraph of the (h, ℓ̂)-

dense digraph Ĝ, provided their vertex sets coincide. Thus, the discretization error

of a shortest path in Ĝ is less or equal to one in G – a fact that is not reflected by
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-1

0

1

0 1

2ℓ

Figure 3.3: Illustration of Example 3.2. Green: continuous trajectory ξ, gray: rounded
path ξR.

Theorem 3.3. The reason is the explicit rounding procedure, which tends to select

arcs of length ℓ̂ in Ĝ even if shorter arcs of length ℓ would be better. This effect can be

essentially avoided if the connectivity length ℓ is chosen sufficiently small compared

to the path length. It should not be chosen too small compared to h, however, because

then the angular error can dominate, as the following pathological example shows.

Example 3.2. — Consider ξ(τ) = [τ, 0]T and

V = {[l(2i + j), 2j − 1]T | i, j ∈ Z} ∪ {[0, 0]T, [1, 0]T}

with ℓ ≪ 1 and h =
√

1 + ℓ2/4 ≈ 1. Rounding to the nearest vertex yields a

discrete zigzag path with length at least 2h/ℓ, as illustrated in Figure 3.3. Thus, the

bounds (3.13) and (3.14) are asymptotically sharp for ℓ→ 0.

Hence, we select a theoretically optimal ℓ by minimizing the error bound (3.14).

Theorem 3.4. — Under the assumptions of Theorem 3.3, including ℓ ≤ L, the

choice

ℓ = L

√
h

σ
⇔ h = σ

ℓ2

L2
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is optimal with respect to the error bound (3.14) and yields the bounds

∥ξR(ξ)− ξ∥L∞(0,1) ≤
9σℓ2

8L2 , (3.16)

∥(ξR(ξ)− ξ)τ∥L∞(0,1) ≤
11σℓ

2L
, (3.17)

∥ξR(ξ)− ξ∥C0,1(0,1) ≤ 7σ
ℓ

L
. (3.18)

Proof. Straightforward minimization of (3.14) yields the given optimal choice of ℓ.

Inserting this into (3.12), (3.13), and the bound (3.14) and using ℓ ≤ L yields the

claims.

The pathological Example 3.2 reveals a further limitation of the derivation of

bounds by employing an explicit rounding procedure: the length of the rounded

path ξR can be much larger than the length of the discretely optimal path ξG. In the

example this isO(2/ℓ)→∞ compared toO(1), with ξG connecting the vertices along

the horizontal line [0, 1]×{1}. We point out that this susceptibility of the bound to

pathological worst cases is structurally similar to common a priori error estimates for

finite element methods [24]. Nevertheless, even if the angular error responsible for the

pathological behavior is ignored, the same optimal order of h = O(ℓ2) is obtained.

3.3.3 Computable Error Bounds

Theorem 3.5. — Assume that ξC ∈ X̂ ∩ C1,1(0, 1)2 is a minimizer of (3.7) with

bounded curvature, i.e., there is σ <∞ such that ∥ξτ (a)− ξτ (b)∥ ≤ σ|a− b| for all

a, b ∈ (0, 1). Let L = ∥(ξC)τ∥ denote the length of the optimal flight trajectory and

αi := maxτ∈(0,1) αi(ξC(τ)) with αi defined in Lemma 3.1. Then, there is a constant

r > 0, such that the local bound

T (ξG)− T (ξC) ≤ 4σ2ℓ2

3L2

(
ℓ2

L2 α0 + 5 ℓ

L
α1 + 23α2

)
≤ 92σ2α2

3L2 ℓ2 +O(ℓ3) (3.19)

holds for all (h, ℓ)-dense digraphs with ℓ ≤ min
{

r
7σ

, 1
}
L and h ≤ σℓ2

L2 .
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Proof. Inserting the bounds (3.16) and (3.17) from Theorem 3.4 into the claim (3.11),

we obtain

T (ξR)− T (ξC) ≤
∫ 1

0

(
α0

81σ2ℓ4

64L4 + α1
9σℓ2

8L2
11σℓ

2L
+ α2

121σ2ℓ2

4L2

)
dτ

<
4σ2ℓ2

3L2

∫ 1

0

(
α0

ℓ2

L2 + 5α1
ℓ

L
+ 23α2

)
dτ,

since ℓ ≤ min
{

r
7σ

, 1
}
L, where r is the neighborhood radius from Theorem 3.2

and αi provided by Lemma 3.1. Inserting the upper bounds αi for αi yields the

claim.

Note that the bound holds in a certain neighborhood of a continuous minimizer

ξC and therefore bounds the asymptotic error behavior for h, ℓ → 0, rather than

providing a globally reliable error bound.

We can go one step further and eliminate the dependence on the actual optimal

path ξC by choosing appropriate global bounds on the constants and route properties.

For that, we define the global bounds

c0 := ∥w∥L∞(Ω), c1 := ∥wx∥L∞(Ω), and c2 := ∥wxx∥L∞(Ω)

for the wind and its derivatives.

Lemma 3.6. — Let ξC ∈ X̂ be a minimizer of (3.7). Further, let ∥w(p)∥ ≤ c0 and

∥wx(p)∥ ≤ c1 ∀p ∈ Ω. Then, it is twice continuously differentiable and its second

derivative is bounded by

∥(ξC)ττ∥ ≤ σ := 2vc1L
2

(v − c0)3

(
(1 +

√
2)v + c0

)
. (3.20)

For c0 ≤ v/
√

5 this simplifies to σ ≤ 17 c1L2

v
.

Again, the proof of this Lemma is rather long and can be found in the appendix.

Lemma 3.7. — Assume that ξC is a global minimizer of (3.7) with path length L

and that c0 ≤ v/
√

5. Then

∥xD − xO∥ ≤ L ≤ v + c0

v − c0
∥xD − xO∥ <

8
3∥xD − xO∥. (3.21)
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Proof. The lower bound is clear, since the trajectory can not be shorter than the

straight connection. The flight time Ts on the straight line is at most ∥xD−xO∥
v−c0

. Since

ξG is optimal, we obtain

Ts ≥ T (ξC) ≥ L

v + c0
,

which yields the upper bound for L.

We can now completely eliminate the need for a posteriori information about

ξC and derive an a priori error bound.

Theorem 3.8. — Let ξC ∈ X̂ ∩ C1,1(0, 1)2 be a global continuous minimizer and

ξG be a shortest path in the (h, ℓ)-dense graph G. Moreover, let L̃ := ∥xD − xO∥

and assume c0 ≤ v/
√

5. Then, with σ from Lemma 3.6, the following a priori error

bound holds for sufficiently dense graphs:

T (ξG)− T (ξC) ≤ 4σ2

3L̃3v

(
14ℓ2

(7
2c2

1 + vc2

)
+ 51c1ℓ

v
+ 52

)
ℓ2 (3.22)

≤ 1.5 · 105 c2
1L̃

v3 ℓ2 +O(ℓ3). (3.23)

Proof. For v(p) =
√

v2 − c2
0(p) we obtain 8v/9 < v ≤ v. Lemma 3.7 together with

αi from Lemma 3.1 now yields the global bounds

α0(p) ≤ 8L̃

3v(p)3 (12c2
1 + 4v(p)c2) ≤

14L̃

v

(7
2c2

1 + c2v
)

=: α̃0,

α1(p) ≤ 8c1

v(p)2 ≤
81c1

8v2 =: α̃1, and

α2(p) ≤ 2
L̃v(p)

≤ 9
4L̃v

=: α̃2.

Inserting them into (3.19) provides the bound

T (ξG)− T (ξC) ≤ T (ξR)− T (ξC)

≤ 4σ2ℓ2

3L̃2

(
ℓ2

L̃2
α̃0 + 5 ℓ

L̃
α̃1 + 23α̃2

)

≤ 4σ2ℓ2

3L̃2

(
14ℓ2

L̃v

(7
2c2

1 + c2v
)

+ 405c1ℓ

8v2L̃
+ 207

4L̃v

)

≤ 4σ2ℓ2

3L̃3v

(
14ℓ2

(7
2c2

1 + c2v
)

+ 51c1ℓ

v
+ 52

)
,

which completes the proof.
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3.4 Numerical Examples

In Section 3.3 we derived three error bounds: i) the a priori bound (3.22), ii) the

local bound (3.19), and iii) the computationally in general unavailable a posteriori

bound (3.11). Now we validate these bounds with the four test problems from [8]

(Chapter 2). For this comparison and for evaluating the a posteriori bound we

compute the optimal continuous trajectory ξC numerically using a direct collocation

approach to high accuracy.

3.4.1 Test Instances

The goal in all four test instances is to find a time-optimal trajectory from

xO = [0, 0]T to xD = [1, 0]T through wind fields of varying spatial frequency,

see Figure 3.4. The wind speed is always bounded by ∥w∥ ≤ w = 0.5v. All

values are chosen dimensionless, i.e., v = 1. For the first test problem a) we

define the laminar shear flow

w(p) =
[
w min(max(2p2

H
−1,−1), 1)

0

]
,

with H = 0.5, and p2 denoting the y-component of p, see Figure 3.4 a). In problems

b)–d), the wind w is the sum of an increasing number of non-overlapping vortices

wi, each of which is described by

wi(p) = siw̃i(ri)
[
− sin(αi)
cos(αi)

]
,

where si is the spin of the vortex (si=+1: counter-clockwise, si=−1: clockwise),

ri = ∥p − zi∥2 is the distance from the vortex center zi, αi is the angle between

p, zi, and the positive x-axis with tan(αi) = (p−zi)2
(p−zi)1

and the absolute vortex wind

speed w̃i is a function of r and the vortex radius Ri:

w̃i(r) =
[

w exp
(

(r/Ri)2

(r/Ri)2−1

)
if r < Ri

0 otherwise

]
.

More precisely, problems b)–d) involve 1, 15, and 50 regularly aligned vortices

with R=1/2, 1/8, and 1/16, respectively, see Figure 3.4 b)–d). Vortices with
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positive spin (counter-clockwise) are colored green, vortices with negative spin

(clockwise) are colored red.

Note that at least problem d) is clearly an exaggeration, as no commercial plane

would ever try to traverse a wind field like this. We use this instance to provide

evidence that our claims hold even under the most adverse conditions.
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Figure 3.4: Test problems a)-d), xO = [0, 0]T, xD = [1, 0]T, w = 1
2v. Blue dots: (h, ℓ)-

dense rectangular network-graph of some exemplary density and connectivity, satisfying
h = σℓ2/L2, red: shortest path on the graph, green: continuous optimal trajectory. Note
that in every case the straight trajectory is particularly unfavorable.

3.4.2 Results

The three error bounds (i) a priori, ii) local, and iii) a posteriori) involve a increasing

amount of information about the optimal trajectory ξC . Hence it is not surprising

that the first is far from being sharp and overestimates the actual error by several

orders of magnitude. This is mainly due to the worst case estimates that must

be considered in several steps finding globally valid constants. Most importantly,
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the wind speed and its derivatives need to be bounded globally, even though the

conditions experienced along the actually flown path are usually much easier, as can

be seen in Figure 3.4. On the other hand, the a posteriori requires information about

the optimal trajectory, that is not available at the time of calculation. However,

it helps us evaluate the more interesting question: how much can be gained by

incorporating a posteriori information?

In order to answer this, we evaluate the error between a graph-based shortest

path and the continuous optimum for various graph densities, respecting the optimal

combination of node density and connectivity h = σℓ2/L2 as stated in Theorem 3.4.

The results are shown in the double-logarithmic plots of Figure 3.5 as blue dots

together with a linear regression.

The three bounds are illustrated in i) red, ii) purple and iii) gray. In the

last case, the a posteriori bound (3.11), we depict the three individual parts of

the integral by colored areas, from bottom to top:
∫

α0∥δξ∥2dτ ,
∫

α1∥δξ∥∥δξτ∥dτ ,∫
α2∥δξτ∥2dτ . The linearly scaled depiction in Figure 3.6 makes it easier to see that

the relative distribution of these parts is more or less stable over a wide range

of graph densities. Each part is relevant and none is vanishing even for dense

graphs. This suggests that the theoretically optimal choice of (h, ℓ) balances the

error terms against each other evenly.

It needs to be mentioned, that, because we have only ∥w∥/v ≤ 0.5 here (not

≤ 1/
√

5), we cannot use αi as stated in Lemma 3.1, but must revert to the results

from Theorem 3.9 in the appendix. Since the purpose of that Lemma is solely to

provide a more compact notation, however, this should not be of any concern. For

the same reason, the coefficients in (3.22) also need to be adjusted accordingly.

We show linear trend lines for the a posteriori bound iii) and the experimental

results, excluding the data of the 10% sparsest graphs (rightmost data points).

Results in that region are dominated by effects of local minima (e.g., the continuous

optimum goes left, while the discrete path goes right, which results in a large

distance error) which vanish quickly and do not contribute to the asymptotical error

behavior. As our error bounds were developed to hold in a certain neighborhood
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Figure 3.5: Evaluation of the derived error bounds i) a priori (top, red), ii) local (middle,
purple), and iii) a posteriori (bottom, gray), comprising three terms visualized by the
colored areas. From top to bottom:

∫
α0∥δξ∥2dτ ,

∫
α1∥δξ∥∥δξτ∥dτ ,

∫
α2∥δξτ∥2dτ . The

blue dots represent results from numerical experiments together with a linear regression
line. The sub-figures a)-d) refer to the corresponding test instances.

Table 3.1: Exponent p for the fitted trend lines ℓp of the a posteriori bound iii) and the
numerical results for all four test instances a)-d) as depicted in Figure 3.5.

a) b) c) d)
theoretical ( i) and ii) ) 2.84 2.65 2.65 2.79
iii) a posteriori 2.84 2.65 2.65 2.79
actual 2.64 2.69 2.25 2.00
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Table 3.2: Average ratio between the bounds on T (ξG)−T (ξC) and the actual differences
for all four test cases a)-d).

a) b) c) d)
i) a priori 2.6 · 107 4.9 · 107 3.1 · 107 1.5 · 107

ii) local 1.0 · 103 1.8 · 103 1.1 · 103 2.5 · 103

iii) a posteriori 5.9 8.5 9.3 1.1 · 101
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Figure 3.6: Shares of the three parts of the a posteriori error bound; from top to
bottom:

∫
α0∥δξ∥2dτ ,

∫
α1∥δξ∥∥δξτ∥dτ ,

∫
α2∥δξτ∥2dτ . The sub-figures a)-d) refer to the

corresponding test instances. Note that on very sparse graphs (large ℓ, right) local minima
lead to a dominating distance error term

∫
α0∥δξ∥2dτ (dark, top); this is irrelevant for

asymptotic considerations.
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of ξC , we ignore these effects. It is, however, interesting to see that the bounds

hold anyway. This, together with the accumulation of data points on the left side,

leads to a noticeable visual bias in the trend lines.

Remember that the i) a priori (3.22) and ii) the local error bound (3.19)

both have the form

T (ξG)− T (ξC) ≤ cl2 +O(l3),

differing only in the constant c. As a first important result we point out that the

quadratic order of these bounds matches the numerical results satisfyingly well.

The exponents obtained from fitting a regression line to the numerical data and the

evaluated a posteriori bound iii) according to (3.11) are listed in Table 3.1.

Further, starting from the a priori bound i), we note that the bound can be

tightened significantly by incorporating a posteriori knowledge. With the local

approach, the bound can already be improved by roughly four orders of magnitude,

but taking all the a posteriori information into account clearly makes the biggest

difference. In doing so, the bound comes close to the numerical data up to a factor

of 6–11 (see Table 3.2) and can even resolve the aliasing artifacts.

Let us briefly discuss the visible oscillations in the actual errors. We consider

the case d), as the effect is most prominent here. The optimal solution is to quickly

switch to a mostly horizontal trajectory in the middle between the first and second

row of vortices and to switch back very late, using the spin of both the very first

and the very last vortex. Since the horizontal part of the trajectory amounts to the

majority of the travel time, it is crucial to hit the right level between the two rows.

Graph-based shortest paths, which, unsurprisingly, tend to mimic this strategy,

are, however, restricted to certain discrete levels. Consequently, the error is sensitive

to the exact node positions. If the optimal level is matched by a row of nodes, the

error will attain a minimum. On the other hand, if the nodes are positioned such that

the optimal trajectory lies exactly between two rows of nodes, we see a maximum

error. Obviously, these are nothing more than local deviations from a clear trend.
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Finally, it is interesting to notice that in all four test cases the angular error

term of the a posteriori bound
∫

α2∥δξτ∥2dτ (light blue in Figure 3.5) would have

been enough to bound the numerical data (blue dots) alone, which lets us conclude

that, even though the bound is sharp in the worst case, in particular the average

angular error is not perfectly captured.

3.5 Conclusion

Discretizing Zermelo’s navigation problem with a graph-based approach for com-

puting global optima inevitably leads to approximation errors depending on the

graph as well as the continuous optimal path. For a certain class of locally densely

connected graphs we have derived three bounds on the excess flight duration in

terms of graph and wind properties.

While the local bound improves on the a priori bound by four orders of

magnitude, stressing the importance of using localized quantities if possible, it

still is far from sharp in numerical examples. The – computationally in general

unavailable – a posteriori bound, in contrast, is quite sharp, and thus indicates

that the use of a posteriori error estimators providing rough approximations of the

actual path error δξ can be expected to improve the bounds further. The observed

convergence rates, however, agree well with the computational bounds in both cases.

The error bounds derived here can on the one hand guide the choice of optimal

graph structures – the dependence of vertex density h to connectivity length ℓ as

presented here is one example –, and on the other hand help identifying switchover

points in hybrid discrete-continuous optimization algorithms [8] (Chapter 2).
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3.A Appendix

Recall from (3.3) the derivative

f(ξ, ξτ ) =
−ξT

τ w(ξ) +
√

(ξT
τ w(ξ))2 + (v2 − ∥w(ξ)∥2)ξ2

τ

v2 − ∥w(ξ)∥2

of the time parametrization t(τ). Here, we will compute and bound its second

derivative with respect to ξ and ξτ in terms of the wind w and its derivatives.

Theorem 3.9. — Let c0(ξ) = ∥w(ξ)∥ < v, c1(ξ) = ∥wx(ξ)∥, and c2(ξ) = ∥wxx(ξ)∥.

Moreover, let L = ξτ > 0. Then, the second total directional derivative of f is

bounded by

f(ξ, ξτ )′′[δξ, δξτ ]2 ≤ α0(ξ)∥δξ∥2 + α1(ξ)∥δξ∥∥δξτ∥+ α2(ξ)∥δξτ∥2

with

v2 = v2 − c2
0,

α0 = L

 c2
1

v3

1 + 6c0

v
+ 2

√
v2 + c2

0

v
+ 6 c2

0
v2 + 8 c3

0
v3 + 8

c2
0

√
v2 + c2

0

v3


+ c2

v2

1 + 2c0

v
+ 2 c2

0
v2 + 2

c0

√
v2 + c2

0

v2

,

α1 = c1

v2

[
2 + 8c0

v
+ 4 c2

0
v2 + 8 c3

0
v3

]
,

α2 = 1
vL

[
1 + 3 c2

0
v2

]
.
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Proof. The derivative f = tτ of parametrized time consists of two terms, the tailwind

term

f1 = −ξT
τ w

g
, g = v2 − wTw,

and the length term

f2 = g−1
(
(ξT

τ w)2 + g(ξT
τ ξτ )

)1/2
.

At each time τ , we obtain

v2 := v2 − c2
0 ≤ g ≤ v2.

The directional derivatives of g in direction (δξ, δξτ ) read

g′δξ = −2wTwxδξ ⇒ ∥g′∥ ≤ 2c0c1

and, as we are only interested in second order directional derivatives,

δξTg′′δξ = −2δξT(wT
x wx + wTwxx)δξ ⇒ ∥g′′∥ ≤ 2(c2

1 + c0c2).

For the tailwind term, we consider

f ′
1δξ = −g−2

(
(δξT

τ w + ξT
τ wxδξ)g − ξT

τ wg′δξ
)

.

Again, we are only interested in second directional derivatives and thus consider

f ′′
1 [δξ, δξ] = −

[
− 2g−3g′δξ

(
(δξT

τ w + ξT
τ wxδξ)g − ξT

τ wg′δξ
)

+ g−2
(

(δξT
τ wxδξ + δξT(ξT

τ wxx)δξ + δξT
τ wxδξ)g

+ (δξT
τ w + ξT

τ wxδξ)g′δξ − δξT
τ wg′δξ

− ξT
τ wxδξTg′δξ − ξT

τ wδξTg′′δξ
)]

= δξT
[
2g−2wT

x ξτ g′ − 2g−3g′TξT
τ wg′ − g−1(ξT

τ wxx)

− g−2wT
x ξτ g′ + g−2wT

x ξτ g′ + g−2ξT
τ wg′′

]
δξ

+ δξT
τ

[
2g−2wg′ − 2g−1wx − g−2wg′ + g−2wg′

]
δξ

= δξT
[
2g−2wT

x ξτ g′ − 2g−3g′TξT
τ wg′ − g−1(ξT

τ wxx) + g−2ξT
τ wg′′

]
δξ

+ δξT
τ

[
2g−2wg′ − 2g−1wx

]
δξ.
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Now we turn to f2, first considering the term F := (ξT
τ w)2 + g(ξT

τ ξτ ) with

v2L2 ≤ F ≤ L2(v2 + c2
0).

Then,

F ′δξ = 2ξT
τ w(δξT

τ w + ξT
τ wxδξ) + g′δξξT

τ ξτ + 2gξT
τ δξτ

and

F ′′[δξ, δξ] = 2(δξT
τ w + ξT

τ wxδξ)2

+ 2ξT
τ w(δξT

τ wxδξ + δξT
τ wxδξ + δξT(ξT

τ wxx)δξ)

+ δξTg′′δξξT
τ ξτ + 2g′δξξT

τ δξτ + 2g′δξξT
τ δξτ + 2gδξT

τ δξτ

= δξT
[
2wT

x ξτ ξT
τ wx + 2ξT

τ w(ξT
τ wxx) + ξT

τ ξτ g′′
]
δξ

+ δξT
τ

[
4wξT

τ wx + 4ξT
τ wwx + 4ξτ g′

]
δξ

+ δξT
τ

[
2wwT + 2g

]
δξτ .

For f2 = g−1
√

F , we thus obtain

f ′
2δξ = −g−2g′δξF 1/2 + 1

2g−1F −1/2F ′δξ.

The second directional derivative is

f ′′
2 [δξ, δξ] = 2g−3(g′δξ)2F 1/2 − g−2δξTg′′δξF 1/2 − g−2g′δξ

1
2F −1/2F ′δξ

− 1
2g−2g′δξF −1/2F ′δξ − 1

4g−1F −3/2(F ′δξ)2

+ 1
2g−1F −1/2δξTF ′′δξ

= 2g−3(g′δξ)2F 1/2 − g−2δξTg′′δξF 1/2 − g−2g′δξF −1/2F ′δξ

− 1
4g−1F −3/2(F ′δξ)2 + 1

2g−1F −1/2δξTF ′′δξ.
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Adding f ′′
1 and f ′′

2 , we finally obtain

f ′′(ξ, ξτ )[δξ, δξτ ]2 = (f ′′
1 + f ′′

2 )[δξ, δξτ ]2

= −2g−3(g′δξ)2(ξT
τ w) + g−2(δξTg′′δξ)(ξT

τ w)

+ 2g−2(g′δξ)(ξT
τ wxδξ) − g−1wxx[ξτ , δξ, δξ]

+ 2g−2(g′δξ)(δξT
τ w) − 2g−1(δξT

τ wxδξ),

+ 2g−3(g′δξ)2F 1/2 − g−2(δξTg′′δξ)F 1/2

− g−2(g′δξ)F −1/2F ′[δξ, δξτ ] + 1
2g−1F −1/2F ′′[δξ, δξτ ]2

− 1
4g−1F −3/2(F ′[δξ, δξτ ])2,

which is bounded by

|f ′′(ξ, ξτ )[δξ, δξτ ]2| ≤ L

 c2
1

v3

1 + 6c0

v
+ 2

√
v2 + c2

0

v
+ 6 c2

0
v2 + 8 c3

0
v3 + 8

c2
0

√
v2 + c2

0

v3


+ c2

v2

1 + 2c0

v
+ 2 c2

0
v2 + 2

c0

√
v2 + c2

0

v2

∥δξ∥2

+ c1

v2

[
2 + 8c0

v
+ 4 c2

0
v2 + 8 c3

0
v3

]
∥δξ∥∥δξτ∥

+ 1
vL

[
1 + 3 c2

0
v2

]
∥δξτ∥2.

Since the claim of Theorem 3.9 is rather unwieldy, we simplify it, finally

proving Lemma 3.1.

Lemma 3.1. — For any p ∈ Ω let c0(p) = ∥w(p)∥, c1(p) = ∥wx(p)∥, and c2(p) =

∥wxx(p)∥, and assume c0 ≤ v/
√

5. Moreover, let ξ ∈ X̂, L := ξτ > 0 and v2(p) :=

v2 − c2
0(p). Then

α0(p) ≤ L

v3(p)
(
12c2

1(p) + 4c2(p)v(p)
)

,

α1(p) ≤ 8c1(p)
v2(p) ,

α2(p) ≤ 2
Lv(p)

hold in Theorem 3.9.
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Proof. Let s := c0/v be the relative wind speed. Then

c0

v
= sv√

v2 − s2v2 = s√
1− s2

≤ 1
2 ,

1 ≤

√
c2

0 + v2

v
≤
√

3
2 ,

and
v

v
= v√

v2 − s2v2 = 1√
1− s2

≤
√

5
2 ,

which allows to bound

α0 := L

 c2
1

v3

1 + 6c0

v
+ 2

√
v2 + c2

0

v
+ 6 c2

0
v2 + 8 c3

0
v3 + 8

c2
0

√
v2 + c2

0

v3


+ c2

v2

1 + 2c0

v
+ 2 c2

0
v2 + 2

c0

√
v2 + c2

0

v2


≤

 c2
1

v3

13
2 + 4

√
3
2

+ c2

v2

5
2 +

√
3
2


≤ L

(
12 c2

1
v3 + 4 c2

v2

)
,

as well as

α1 := c1

v2

[
2 + 8c0

v
+ 4 c2

0
v2 + 8 c3

0
v3

]
≤ 8c1

v2 ,

and

α2 := 1
vL

[
1 + 3 c2

0
v2

]
≤ 7

4vL
≤ 2

Lv
.

Lemma 3.6. — Let ξC ∈ X̂ be a minimizer of (3.7). Further, let ∥w(p)∥ ≤ c0 and

∥wx(p)∥ ≤ c1 ∀p ∈ Ω. Then, it is twice continuously differentiable and its second

derivative is bounded by

∥(ξC)ττ∥ ≤ σ := 2vc1L
2

(v − c0)3

(
(1 +

√
2)v + c0

)
. (3.24)

For c0 ≤ v/
√

5 this simplifies to σ ≤ 17 c1L2

v
.
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Proof. The optimal control problem (3.2) has originally been formulated by Zer-

melo [12] in terms of the heading angle φ in unscaled time t instead of the airspeed

v in scaled time τ , which are related by

v(t) = v

[
cos φ(t)
sin φ(t)

]
. (3.25)

The Hamiltonian formalism yields an expression for the heading angle rate of an

optimal trajectory,

φt = wx : B, B :=
[
cos φ sin φ − cos2 φ

sin2 φ − cos φ sin φ

]
,

with “:” denoting tensor contraction, and confirms the regularity of ξ. Note that

∥B∥F =
√

2, where ∥ · ∥F denotes the Frobenius norm. By the chain rule, (3.25)

yields

vt = v

[
− sin φ
cos φ

]
φt

and the bound

∥vt∥ = v|φt| ≤ v∥wx∥F∥B∥F ≤
√

2 v c1. (3.26)

For the ground speed xt(t) =
(3.1)

v(t) + w(x(t)) we thus obtain

v − c0 ≤ ∥xt∥ ≤ v + c0 (3.27)

and

∥xtt∥ ≤ ∥vt + wxxt∥ ≤
(3.26)
(3.27)

c1
(
(1 +

√
2)v + c0

)
. (3.28)

The flight path ξC (omitting the subscript C in the following) with constant

ground speed ∥ξτ∥ = L is related to the actual flight path x by ξ(τ) = x(t(τ)) with

t : [0, T ]→ [0, 1] being a monotone bijection. Therefore,

ξτ = xt(t)tτ (3.29)

yields

L = ∥ξτ∥ = ∥xt∥ tτ ≥
(3.27)

(v − c0)tτ ⇒ tτ ≤
L

v − c0
. (3.30)
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For the second derivative, we note that

0 = (L2)τ = (ξT
τ ξτ )τ = 2ξT

ττ ξτ ,

which means that the curvature vector ξττ is orthogonal to the path and the ground

velocity ξτ (and xt). Consequently, we obtain

0 = (ξT
τ ξτ )τ =

(3.29)
(ξT

τ xttτ )τ = ξT
ττ xτ︸ ︷︷ ︸
=0

tτ + ξT
τ xττ t2

τ + ξT
τ xτ tττ =

(3.29)
ξT

τ xττ t2
τ + L2

tτ

tττ

and therefore

|tττ | ≤
tτ

L2∥ξτ∥ ∥xττ∥ t2
τ ≤

(3.28)

c1t
3
τ

L

(
(1 +

√
2)v + c0

)
. (3.31)

Now we can bound

∥ξττ∥ =
(3.29)

∥xttt
2
τ + xttττ∥

≤ ∥xtt∥ t2
τ + ∥xt∥ |tττ |

≤
(3.27)
(3.28)
(3.31)

c1
(
(1 +

√
2)v + c0

)
t2
τ + (v + c0)

c1t
3
τ

L

(
(1 +

√
2)v + c0

)

= c1t
2
τ

(
(1 +

√
2)v + c0

) (
1 + (v + c0)

tτ

L

)
≤

(3.30)

c1L
2

(v − c0)2

(
(1 +

√
2)v + c0

)(
1 + v + c0

v − c0

)

= 2vc1L
2

(v − c0)3

(
(1 +

√
2)v + c0

)
,

which completes the proof.
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A Discrete-Continuous Algorithm

for Globally Optimal
Free Flight Trajectory Optimization

Borndörfer, R., Danecker, F., and Weiser, M.
22nd Symposium on Algorithmic Approaches for Transportation Modelling,
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This article is licensed under a Creative Commons Attribution 4.0
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Abstract We present an efficient algorithm that finds a globally optimal
solution to the 2D Free Flight Trajectory Optimization Problem (aka Zer-
melo’s navigation problem) up to arbitrary precision in finite time. The
algorithm combines a discrete and a continuous optimization phase. In the
discrete phase, a set of candidate paths that densely covers the trajectory
space is created on a directed auxiliary graph. Then Yen’s algorithm provides
a promising set of discrete candidate paths which subsequently undergo a
locally convergent refinement stage. Provided that the auxiliary graph is
sufficiently dense, the method finds a path that lies within the convex domain
around the global minimizer. From this starting point, the second stage will
converge rapidly to the optimum. The density of the auxiliary graph depends
solely on the wind field, and not on the accuracy of the solution, such that
the method inherits the superior asymptotic convergence properties of the
optimal control stage.
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4.1 Introduction

Flight planning deals with finding the shortest flight path between two airports for

an aircraft subject to a number of constraints, in particular, to wind conditions. The

problem can be addressed from a discrete and from a continuous point of view and

both approaches have received significant attention in the literature. Today’s flight

planning system follow the discrete approach, which treats the problem as a time-

dependent shortest path problem in a world-wide 3D Airway Network, see [1] for a

comprehensive survey, and a number of algorithms have been developed that address

different aspects of the problem. For the most basic version, [2] and [3] suggested

dynamic programming methods, [4] discusses graph preprocessing, and [5] and [6]

present A∗-type algorithms. [7] integrates overflight costs and [8] traffic restrictions.

[9] investigates the free route case, in which the Airway Network can be enriched

by additional, artificial waypoints and segments. This setting blends into the Free

Flight Trajectory Optimization Problem, aka Zermelo’s navigation problem, to find

the (globally) time-optimal route from A to B with respect to wind conditions. This

classic of continuous optimization is usually solved using direct or indirect methods

from Optimal Control [10] (Chapter 2). These are highly efficient, but suffer from one

key drawback, namely, they only converge locally. Such methods therefore depend

on a sufficiently good starting point, which makes them, used as a standalone tool,

incapable of meeting airlines’ high expectations regarding the global optimality of

routes. In other words, what is called an “optimal solution” in Control theory is

only locally optimal, and not globally optimal in the sense of Discrete optimization.

As far as we know, Global Optimization has received little attention in this

context so far, but inspiration can be drawn from related fields such as interstellar

space mission design [11], robot motion planning [12–14], or even molecular structure

optimization [15]. In all these cases, the central challenge is always to find the right

balance between sufficient exploration of the search space on the one hand and

accurate exploitation of promising regions on the other hand [16]. Two main types

of approaches have been used to provide this balance, namely, stochastic and
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deterministic algorithms. In both cases, finding solutions takes at least exponential

time, the runtime increasing with the required accuracy.

Stochastic methods scan the search space with some sort of Multistart approach,

i.e., a set of starting points is chosen from the search space more or less at random,

and these are explored. The exploration may be enhanced by allowing the candidates

(then called agents) to wander around with a certain (decreasing) probability (e.g.,

Simulated Annealing [11, 17]). The deeper investigation of promising areas can be

implemented as a local optimization step (e.g., Monotonic Basin Hopping [18]) or via

interaction of the candidates attracting each other to the best known solution (e.g.,

Particle Swarm Optimization [19]). Even though these methods have received a lot of

attention over the last decades and show promising results in a variety of applications,

they are generally not able to guarantee global optimality in finite time. At best,

they will asymptotically converge to a global optimizer (e.g., PRM∗ or RRT∗ [12]).

Deterministic approaches are usually based on the principle of Branch and Bound

and converge to the global optimizer up to arbitrary precision in finite time [20–23].

The complexity is generally exponential in the number of problem dimensions and

the actual performance depends strongly on the quality of the lower bound.

We propose in this paper a efficient deterministic algorithm that finds the global

optimizer of the Free Flight Trajectory Optimization Problem in finite time. It is not

based on the Branch-and-Bound paradigm. Instead, a two-stage approach combines

discrete and continuous optimization methods in a refinement of the concept of the

hybrid algorithm DisCOptER [10] (Chapter 2). In the first stage, the search space

is sampled by calculating discrete paths on a sufficiently dense artificial digraph.

In the second stage, the candidate solutions are refined using efficient techniques

from optimal control. Under mild assumptions, namely, the existence of an isolated

global minimizer and bounded wind speeds and wind derivatives, the problem is

convex in a certain neighborhood of the minimizer. A sufficiently dense graph then

contains a path within this neighborhood. This path can be determined by means of

Yen’s algorithm, and standard nonlinear programming methods will then efficiently

produce the global optimizer up to any requested accuracy. In this way, our approach
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focuses on the exploration of the relevant parts of the search space. Moreover, the

density of the auxiliary graph depends solely on the convexity properties of the

problem, i.e., on the wind field, and not on the required accuracy. Hence, the method

inherits, on the one hand, the superior asymptotic convergence properties of the

second stage, which, in turn, is the key to its efficiency. Typically, only a handful of

paths have to be enumerated and investigated. On the other hand, the method also

benefits from all advancements in the area of Discrete Flight Planning, e.g., [4, 5].

4.2 The Free Flight Trajectory Optimization
Problem

As the Free Flight Trajectory Optimization Problem is ultimately looking for a

smooth trajectory, we start our discussion from the Optimal Control point of view.

4.2.1 Continuous Point of View: Optimal Control

The Free Flight Trajectory Optimization Problem can be formally described as

follows. Let a spatially heterogeneous, twice continuously differentiable wind field

w : R2 → R2 with a bounded magnitude ∥w∥L∞(R2) < v be given. A valid trajectory

is any Lipschitz-continuous path x : [0, T ] → R2 with ∥xt − w∥ = v almost

everywhere, connecting the origin xO and the destination xD. Among those, we

want to find one of minimal flight duration T ∈ R (flight duration is essentially

proportional to fuel consumption [24]). This classic of optimal control is also known

as Zermelo’s navigation problem [25].

It can easily be shown that in case of bounded wind speed, the optimal

trajectory cannot be arbitrarily longer than the straight connection of origin

and destination. Hence every global minimizer is contained in an ellipse Ω ⊂ R2

with focal points xO and xD.

Assume the flight trajectory x ∈ H1(0, 1) : [0, T ] → R2 is given by a strictly

monotonuously increasing parametrization t(τ) on (0, 1) as x(t(τ)) = ξ(τ), such

that ξ : (0, 1)→ R2 is a Lipschitz continuous path. Due to Rademacher’s theorem,

its derivative with respect to the time ξτ exists almost everywhere, and we assume
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it not to vanish. Then, t(τ) is defined by the state equation xt = v + w ̸= 0 and the

airspeed constraint ∥v∥ = v, with v ∈ L2(0, 1) being the airspeed vector. Indeed,

v = ∥xt − w∥ and xttτ = ξτ ̸= 0

imply

(t−1
τ ξτ − w)T(t−1

τ ξτ − w) = v2

⇔ t−2
τ ξT

τ ξτ − 2t−1
τ ξT

τ w + wTw − v2 = 0

⇔ (v2 − wTw)t2
τ + 2ξT

τ wtτ − ξT
τ ξτ = 0

⇔ tτ =
−ξT

τ w +
√

(ξT
τ w)2 + (v2 − wTw)(ξT

τ ξτ )
v2 − wTw

=: f(t, ξ, ξτ ) (4.1)

due to tτ > 0. The flight duration T is then given by integrating the ODE (4.1)

from 0 to 1 as T = t(1). Let us assume for ease of presentation that the wind

w is stationary, i.e., independent of t, and thus f(t, ξ, ξτ ) = f(ξ, ξτ ). Doing so,

we obtain the simple integral

T (ξ) =
∫ 1

0
f
(
ξ(τ), ξτ (τ)

)
dτ. (4.2)

Since the flight duration T as defined in (4.2) is based on a reparametrization

x(t) = ξ(τ(t)) of the path such that ∥xt(t)−w(x(t))∥ = v, the actual parametrization

of ξ is irrelevant for the value of T . Calling two paths ξ, ξ̃ equivalent if there exists

a Lipschitz-continuous bijection r : (0, 1)→ (0, 1) such that ξ(r(τ)) = ξ̃(τ), we can

restrict the optimization to equivalence classes. Every equivalence class contains

a representative with constant ground speed ∥ξτ (τ)∥ = L, that can be obtained

from any ξ̃ with ∥ξ̃τ (τ)∥ ≠ 0∀τ via

ξ(τ) := L
∫ τ

0

ξ̃τ (t)
∥ξ̃τ (t)∥

dt, (4.3)

where L :=
∫ 1

0 ∥ξ̃τ (τ)∥dτ . Hence we will subsequently consider the following

equivalent constrained minimization problem:

min
ξ∈X, L∈R

T (ξ), s.t. ∥ξτ (τ)∥2 = L2 ∀τ ∈ (0, 1); (4.4)
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here, the admissible set is the affine space

X = {ξ ∈ H1((0, 1),R2) | ξ(0) = xO, ξ(1) = xD}. (4.5)

Note that L also represents the path length of a solution, since∫ 1

0
∥ξτ∥dτ = L. (4.6)

We finally express the constant ground speed requirement by means of a

constraint h(z) = 0, where z := (L, ξ) ∈ Z := R × X and

h : Z → Λ := L2(0, 1), z 7→ ξT
τ ξτ − L2 (4.7)

for L ≤ Lmax, with an arbitrary continuation for L > Lmax that is linear in ∥ξτ∥.

In order to take the boundary constraints ξ(0) = xO, ξ(1) = xD into account, we

restrict deviations δξ from the trajectory ξ to the space

δX := {H1((0, 1),R2) | δξ(0) = δξ(1) = 0}. (4.8)

The goal of the present paper is to find a isolated globally optimal solution ξ⋆⋆ to (4.4)

that satisfies T (ξ⋆⋆) < T (ξ) ∀ξ ∈ X, contrary to a local optimizer ξ⋆ that is only

superior to trajectories in a certain neighborhood, T (ξ⋆) ≤ T (ξ) ∀ξ ∈ N (ξ⋆) ⊆ X.

A isolated global minimizer satisfies the necessary Karush-Kuhn-Tucker (KKT) opti-

mality conditions [26] given that it is a regular point, which is always the case since

h′(z) : δZ 7→ Λ ∀z ∈ Z, δz 7→ ξT
τ δξτ − LδL. (4.9)

The KKT-conditions result from the variation of the Lagrangian

L(z, λ) := T (ξ) + ⟨λ, h(z)⟩ (4.10)

with respect to z and λ:

0 = T ′(ξ⋆⋆)[δξ, δξτ ] +
∫ 1

0
λ⋆⋆(δξT

τ ξ⋆⋆
τ )dτ − L⋆⋆δL

∫ 1

0
λ⋆⋆dτ ∀ δz ∈ δZ, (4.11a)

0 =
∫ 1

0
δλ
(
(ξ⋆⋆

τ )Tξ⋆⋆
τ − (L⋆⋆)2

)
dτ ∀ δλ ∈ Λ, (4.11b)

where δz := (δL, δξ) and δZ := R × δX. Consider the unconstrained problem

minξ∈X T (ξ) and a global minimizer ξ̃⋆⋆. As discussed before, there is an equivalent

route ξ⋆⋆ that satisfies the constraint and hence – together with L from (4.6) – is

a global minimizer of the constrained problem.
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Lemma 4.1. — Let (z⋆⋆, L⋆⋆) be a global minimizer of (4.4). Then, this solution

together with

λ⋆⋆ = 0 (4.12)

satisfies the necessary conditions (4.11).

Proof. Since ξ⋆⋆ is also a global minimizer of the unconstrained problem, the

necessary condition states that T ′(ξ⋆⋆)[δξ, δξτ ] = 0. The terms
∫ 1

0 λ⋆⋆(δξT
τ ξ⋆⋆

τ ) dτ

and
∫ 1

0 λ⋆⋆ dτ of (4.11a) both vanish for λ⋆⋆ = 0. (4.11b) is satisfied because

∥ξ⋆⋆
τ ∥ = L⋆⋆ ∀τ ∈ (0, 1).

Now we turn to the second order sufficient conditions for optimality. In gen-

eral, a stationary point (z⋆, λ⋆) is a minimizer, iff the well known Ladyzhen-

skaya–Babuška–Brezzi (LBB) condition (e.g., [27]) is satisfied, which comprises

a) the so called inf-sup condition

inf
δλ∈Λ
δλ ̸=0

sup
δz∈δZ
δz ̸=0

⟨δλ, h′(z)[δz]⟩
∥δz∥H1 |δλ|Λ

≥ C > 0 (4.13)

and b) the requirement that the Lagrangian’s Hessian regarding z, Lzz, need

be positive definite on the kernel of h′. Formally speaking, there must be a

B > 0 such that

Lzz(z⋆)[δz]2 ≥ B ∥δz∥2
L2

for any δz ∈ δZ that satisfies

⟨δλ, h′(z⋆)[δz]⟩ = 0 ∀ δλ ∈ Λ.

In our case, the second order sufficient condition is

T ′′(ξ⋆)[δξ, δξτ ]2 + 2
∫ 1

0
λ⋆(δξT

τ δξτ − δL2)dτ ≥ B(δL2 + ∥δξ∥2
L2 + ∥δξτ∥2

L2)

for any (δL, δξ) ∈ R × δX such that
∫ 1

0
δλ(δξT

τ ξ⋆
τ − L⋆δL)dτ = 0 ∀ δλ ∈ L2(0, 1).
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In case of a global minimizer z⋆⋆, this can be simplified using ⟨λ⋆⋆, h′′⟩ = 0

from Lemma 4.1. Moreover, the constraint is equivalent to requiring that

δξT
τ ξ⋆⋆

τ = L⋆⋆δL ∀ τ ∈ (0, 1). With this, we conclude that for any isolated global

minimizer (z⋆⋆, L⋆) of (4.4) there exists a B > 0 such that

T ′′(ξ⋆⋆)[δξ, δξτ ]2 ≥ B
(
δL2 + ∥δξ∥2

L2 + ∥δξτ∥2
L2

)
(4.14)

for any δz ∈ δZ such that δξT
τ ξ⋆⋆

τ = L⋆⋆δL ∀ τ ∈ (0, 1).

4.2.2 Discrete Point of View: Shortest Paths

If flight trajectories are restricted to airway segments connecting given waypoints,

flight planning is a special kind of shortest path problem on a graph. It can be

described as follows. Let V ⊂ R2 be a finite set of waypoints including xO and

xD, and A ⊂ V × V a set of segments such that G = (V, A) is a connected

directed graph. A discrete flight path is a finite sequence (xi)0≤i≤n of waypoints

with (xi−1, xi) ∈ E for i = 1, . . . , n, connecting x0 = xO with xn = xD. Shortest

path problems on static graphs with non-negative weights are usually solved with

the A∗ variant of Dijkstra’s algorithm [28].

Define a mapping Ξ : (xi)0≤i≤n 7→ ξ ∈ X of discrete flight paths to continuous

paths by piecewise linear interpolation

ξ(τ) = x⌊nτ⌋ + (nτ − ⌊nτ⌋)(x⌈nτ⌉ − x⌊nτ⌋), (4.15)

resulting in polygonal chains, which are Lipschitz-continuous with piecewise constant

derivative. Denote the image by XG := im Ξ ⊂ X, i.e., XG is the set of flight

trajectories with constant ground speed in the Euclidean plane that can be realized

by adhering to the airway network. The discrete flight planning problem then reads

min
ξ∈XG

T (ξ). (4.16)

With any ξ ∈ XG satisfying the constraint for constant ground speed, this differs

from its continuous counterpart (4.4) essentially by the admissible set, which

effectively acts as a particular discretization. The class of (h, ℓ)-dense graphs used

in this work was introduced in [10] (Chapter 2) and is defined as follows.
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Definition 4.1. — A digraph G = (V, A) is said to be (h, ℓ)-dense in a convex set

Ω ⊂ R2 for h, ℓ ≥ 0, if it satisfies the following conditions:

1. containment: V ⊂ Ω,

2. vertex density: ∀p ∈ Ω : ∃v ∈ V : ∥p− v∥ ≤ h,

3. local connectivity: ∀u, v ∈ V, ∥u− v∥ ≤ ℓ + 2h : (u, v) ∈ E.

Definition 4.2. — We call an (h, ℓ)-dense digraph rectangular, if the vertex

positions can be described by,

xij = x0 +
√

2h[i, j]T for i ∈M ⊆ Z, j ∈ N ⊆ Z (4.17)

with xij ∈ Ω and M, N being connected subsets of the integers.

An example for such a rectangular (h, ℓ)-dense airway digraph is shown in

Figure 4.1 a). Note that, even for ℓ→ 0, the minimum local connectivity length of

2h guarantees that a vertex is connected to all its direct neighbors. It is easy to

show that any (h, ℓ)-dense digraph is connected, such that a path from origin

to destination exists.

4.2.3 Discrete-Continuous Point of View:
Hybrid Algorithm DisCOptER

In [10] (Chapter 2), a hybrid algorithm was proposed that combines the strengths of

the discrete and the continuous approach to flight planning. In a nutshell, it works

as follows: First, an artificial locally connected digraph of defined density is created,

as in Definition 4.1 (blue dots in Figure 4.1 b), arcs omitted). The shortest path

on this graph (red) serves as an initial guess for a subsequent refinement stage in

which a suitable nonlinear programming formulation of the same problem is solved,

leading to a continuous locally optimal solution (green). As follows from this paper,

this solution is also globally optimal, provided that the graph is sufficiently dense.

In numerical experiments, we observed that even for scenarios that are far

more challenging than any real world situation, a very sparse graph is already
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Figure 4.1: a) A rectangular (h, ℓ)-dense digraph. The center vertex (dark blue) is
connected to all vertices in a circular neighborhood of radius 2h + ℓ (light blue) with
edges in both directions. b) Illustration of the classical hybrid algorithm DisCOptER. The
planar wind field consists of 15 regularly aligned vortices indicated by the green and red
discs. Blue dots: locally connected vertices of the (h, ℓ)-dense graph, see a). Red: Shortest
path on the graph, Green: Continuous solution obtained via refinement.

sufficient to find the globally optimal solution, rendering the hybrid approach highly

efficient. In case of the example illustrated in Figure 4.1 b), the global optimum

was found using any graph with node spacing h ≤ 1
15

√
2 , which corresponds to

16 or more nodes between origin and destination. Note that in similar scenarios

with n vortices one can expect O(2n) local minima.

We quickly recap the complexity analysis from [10] (Chapter 2). The novel

algorithm DisCOptER was compared against the traditional, purely graph-based

approach in terms of accuracy of the provided solution compared to the continuous

optimum. Trajectories of the desired accuracy can in principle be obtained by

solving the shortest path problem on a sufficiently dense, locally complete digraph,

that can be characterized by its vertex density h and local connectivity radius ℓ, see

Definition 4.1. An optimized combination of these properties is h = σℓ2/L2, where σ

is an upper bound for the curvature of the optimal trajectory and L denotes its path

length Theorem 3.4. Hence, ℓ−1 may serve as a suitable measure for the solution

accuracy. The number of vertices |V | in such a digraph is in O(ℓ−4) and the number

of arcs |A| is in O(ℓ−6). The complexity of solving the shortest path problem with
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Dijkstra’s algorithm is O(|A|+ |V | log |V |) and so the overall time complexity is in

O(ℓ−6). (4.18)

Since the required graph density is dictated exclusively by the wind conditions,

the complexity of the hybrid algorithm approach is asymptotically inherited from the

Optimal Control stage. Using a direct collocation method, the problem is discretized

over the time domain with quasi equidistant steps δτ . A comparable accuracy

measure is then defined as ℓ := Lδτ . Solving the first order necessary conditions –

well known as Karush-Kuhn-Tucker (KKT) conditions – for the discretized problem

via Newton’s method rapidly yields a solution, provided that the starting point

was already sufficiently close. Due to the problem structure each iteration step

essentially involves a linear system of equations with an arrow-shaped matrix, which

can be solved efficiently by specialized band-solvers. The overall time complexity of

the hybrid algorithm is determined by the number of iterations and the cost

of each step, which is in

O(ℓ−1). (4.19)

4.3 Towards Global Optimality

In terms of runtime the hybrid algorithm DisCOptER appears to be clearly superior

to the traditional graph-based approach. One key question, however, remains: What

is the right graph density? This sections answers this question and presents a

variant of the algorithm which is guaranteed to find a global minimizer in finite

time by calculating not only one but multiple shortest paths. We exploit the fact

that, by continuity, there is a sufficiently large neighborhood around the minimizer

over which the objective function is convex, see Theorem 4.2. If started within

this neighborhood, optimal control methods will quickly converge up to arbitrary

precision. Using a sufficiently dense graph, as described in Lemma 4.3, we guarantee

that there is a path that lies in this neighborhood of the global minimizer.

This path can be found by computing paths by Yen’s algorithm [29], which computes



4. A Discr.-Cont. Alg. for Glob. Optimal FF. Traj. Optimization 163

0.0 0.2 0.5 0.8 1.0-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.0 0.2 0.5 0.8 1.0-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.0 0.2 0.5 0.8 1.0-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

a) b) c)

Figure 4.2: Illustration of the hybrid algorithm DisCOptER. The planar wind field
consists of 15 regularly aligned vortices indicated by the green and red discs. Blue dots:
locally connected vertices of the (h, ℓ)-dense graph, see Figure 4.1 a). Red: kth shortest
path on the graph, Green: Continuous solution obtained via refinement. a) Starting from
the very shortest path the refinement stage does not converge. b) The 5th shortest path
on the graph leads to a local optimum. c) The 14th shortest path on the graph finally
leads to the global optimum.

shortest simple paths in the order of increasing travel time. A suitable stopping

criterion is technically not necessary, but anyway provided in Theorem 4.4. The

required graph density is dictated by the wind conditions. Adverse scenarios will

require dense graphs leading to a large number of feasible paths that is, e.g.,

exponential in the number of vortices, cf. again the example in Fig. 4.2. The

number will, however, always be finite and – most importantly – independent

of the desired solution accuracy.

Theorem 4.2. — Let ∥w(p)∥ ≤ c0 < v/
√

5, ∥wx(p)∥ ≤ c1, ∥wxx(p)∥ ≤ c2,

and ∥wxxx(p)∥ ≤ c3 for every p ∈ Ω. Moreover, let z⋆⋆ := (ξ⋆⋆, L⋆⋆) ∈ Z be

a global minimizer of problem (4.4), that satisfies the necessary and sufficient

conditions (4.11), (4.13), and (4.14) with C > 0 and B > 0. Then the problem (4.4)

is convex in a neighborhood of z⋆⋆, i.e., there is a RC > 0 exclusively depending on

the wind conditions such that the LBB condition are satisfied for any z ∈ Z with

∥∆z∥H1(0,1) := ∥z − z⋆⋆∥H1(0,1) ≤ RC . (4.20)

Proof. According to (4.13), there is a C > 0 such that

inf
δλ∈Λ
δλ̸=0

sup
δz∈δZ
δz ̸=0

⟨δλ, h′(z⋆⋆)[δz]⟩
∥δz∥H1 |δλ|Λ

≥ C
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with h as defined in (4.7). Moreover, it holds that

T ′′(ξ⋆⋆)[δξ, δξτ ]2 ≥ B
(
δL2 + ∥δξ∥2

L2 + ∥δξτ∥2
L2

)
for any δz ∈ δZ such that δξT

τ ξ⋆⋆
τ = L⋆⋆δL ∀τ ∈ (0, 1), see (4.14). Due to the

continuity of the bilinear form, the inf-sup condition is satisfied for any z with

∥∆z∥ ≤ RC1, such that

inf
δλ∈Λ
δλ̸=0

sup
δz∈δZ
δz ̸=0

⟨δλ, h′(z)[δz]⟩
∥δz∥H1|δλ|Λ

≥ C

2 > 0.

Similarly, the continuity of T as given in (4.2), guarantees that there is a RC2 > 0

such that

T ′′(ξ)[δξ, δξτ ]2 ≥ B2
(
δL2 + ∥δξ∥2

L2 + ∥δξτ∥2
L2

)
for any z ∈ Z such that ∥z − z⋆⋆∥H1(0,1) ≤ RC2 and any δz ∈ δZ such that

ξT
τ δξτ = LδL ∀τ ∈ (0, 1). Consequently, the sufficient conditions are satisfied for

any z with ∥∆z∥ ≤ RC := min(RC1, RC2).

Providing a sufficiently (h, ℓ)-dense graph, we can guarantee that there is a

discrete path within the convex neighborhood of the global minimizer BRC
(ξ⋆⋆).

The following Lemma involves a result from Lemma 3.6 stating that the curvature

of a global minimizer of (4.4) is bounded by

∥ξ⋆⋆
ττ∥ ≤ σ := c1(L⋆⋆)2

v − c0

(√
2v + v + c0

v − c0

(
(1 +

√
2)v + c0

))
. (4.21)

Lemma 4.3. — Let (L⋆⋆, ξ⋆⋆) be a minimizer of (4.4). For any RC > 0 there is a

h small enough such that the corresponding (h, ℓ)-dense digraph contains a valid

path ξR with ∥ξ⋆⋆ − ξR∥H1(0,1) ≤ RC. The connectivity length l shall here be given

as ℓ = L⋆⋆
√

h/σ, which is an optimized choice as derived in Theorem 3.4.

Proof. In Theorem 3.3, it was proved that for every ξ ∈ X with ∥ξτ∥ = L, there is

a trajectory ξR(ξ) on an (h, ℓ)-dense digraph with

∥ξR(ξ)− ξ∥H1(0,1) ≤ 2σ
ℓ

L
+ 2h

L

ℓ
+ 3h.
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Since ∥ξ⋆⋆
τ ∥ = L⋆⋆, this bound holds for a global optimizer (L⋆⋆, ξ⋆⋆) of (4.4).

Together with ℓ = L⋆⋆
√

h/σ this reads

∥ξR(ξ)− ξ⋆⋆∥H1(0,1) ≤ 4
√

σh + 3h,

which directly proves that ∥ξR(ξ)− ξ⋆⋆∥H1(0,1) ≤ RC for sufficiently small h.

Having defined a spatially bounded (h, ℓ)-dense digraph, we use Yen’s algo-

rithm [29] to enumerate paths in order of increasing travel time. Each generated

discrete path ξG,i undergoes a locally convergent refinement stage. If ξG,i is the path

on the graph that is closest to the minimizer ξ⋆⋆, then Theorem 4.2 and lemma 4.3

guarantee that it lies in the convex domain. For this reason we do not require the

solver to incorporate any globalization strategies. Instead, the KKT system (4.11)

can be solved via Newton’s method, which either converges quadratically or is

terminated in case of non-convexity.

Since any other local minimizer may be found as well, the preliminary solution shall

be denoted as ξ⋆(ξG,i) in Algorithm 2 and may replace the current best solution ξC

if T (ξ⋆(ξG,i)) < T (ξC).

A suitable stopping criterion builds on the following local error bound.

Theorem 4.4. — Let (L⋆⋆, ξ⋆⋆) be a global minimizer of (4.4) and define

∆ξ := ξ − ξ⋆⋆. Then there are constants B > 0 and RE > 0 exclusively depending

on the wind conditions, such that for any ξ ∈ X with ∥∆ξ∥H1 ≤ RE, the error in

the objective function T as defined in (4.2) is bounded by

T (ξ)− T (ξ⋆⋆) ≤ 1
2B∥∆ξ∥2

H1(0,1). (4.22)

Proof. As shown in the proof of Theorem 3.2, the second directional derivative of T

is bounded from above at a global minimizer. Let this bound be compactly given as

|T ′′(ξ)[δξ, δξτ ]2| ≤ 2B∥δξτ∥2
H1(0,1)

with some B > 0 that only depends on the wind conditions. Due to the continuity

of T there is a RE > 0 such that for any ξ ∈ X with ∥∆ξ∥H1 ≤ RE, the second
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directional derivative of T is bounded by

|T ′′(ξ)[δξ, δξτ ]2| ≤ B∥δξτ∥2
H1(0,1).

We use this bound, the optimality of ξ⋆⋆, and Taylor’s Theorem to validate that

T (ξ) = T (ξ⋆⋆) + T ′(ξ⋆⋆)[∆ξ, ∆ξτ ]︸ ︷︷ ︸
=0

+
∫ 1

0
(1− ν)T ′′(ξ⋆⋆ + ν∆ξ)[∆ξ, ∆ξτ ]2dν

≤ T (ξ⋆⋆) + 1
2B∥∆ξ∥2

H1(0,1).

Since we are only interested in discrete paths within the convex domain of

the global minimizer BR(ξ⋆⋆), the generation of new paths is terminated if the

extra cost of the next discrete path cannot be compensated by convergence to

a nearby local minimizer anymore, i.e., if

T (ξG,i)− T (ξC) ≥ 1
2BR2 =: ϵ, (4.23)

where ξG,i denotes the ith shortest path, ξC the current best guess and

R := min(RC , RE).

Remark 4.1. — We finally want to point out that the required graph density

is exclusively dictated by the wind conditions and independent of the requested

solution accuracy. Therefore, even though the enumeration of multiple discrete paths

is certainly more expensive than finding the single shortest path as in the original

DisCOpter concept, this difference vanishes asymptotically such that the proposed

algorithm for global optimality inherits the superior convergence properties of the

optimal control method given in Equation (4.19).
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Algorithm 2: This algorithm provides a globally optimal solution to the
Free Flight trajectory optimization problem (4.4) in finite time.

Data: xO, xD, Ω, v, w, c0, c1, c2, c3, C,B,B, RE, RC , TOL
Result: (LC , ξC) with T (ξC)− T (ξ⋆⋆) ≤ TOL and ∥ξ⋆⋆

τ ∥ − LC ≤ TOL
1 (LC , ξC) ← None; TC ←∞; i← 0; R← min(RC , RE) ;
2 ϵ← Calculate the error bound for ∥δξ∥H1 ≤ R from Theorem 4.4;
3 (h, ℓ)← Calculate h(R) and ℓ(h) as in Lemma 4.3;
4 Define a rectangular, spatially bounded (h, ℓ)-dense digraph covering Ω;
5 do
6 Calculate the ith shortest path ξG,i;
7 if T (ξG,i)− TC ≥ ϵ then
8 return (LC , ξC);
9 end

/* Optimal Control stage */
10 (converged, L⋆, ξ⋆)← (Try to) Calculate a local minimizer starting from
11 (L(ξG,i), ξG,i) up to tolerance TOL;

/* Update */
12 if converged and T (ξ⋆) < TC then
13 (LC , ξC)← (L⋆, ξ⋆);
14 TC ← T (ξ⋆);
15 end
16 i← i + 1;
17 while true;

4.4 Conclusion

We presented a novel discrete-continuous algorithm that computes globally optimal

solutions of the Free Flight Trajectory Optimization Problem in finite time to any

desired accuracy. The main advantage of the method, and the key to its efficiency, is

that the density of the discretization in the first graph-search stage of the algorithm

depends only the problem data, and not on the desired accuracy. In this way, the

algorithm inherits the superior asymptotic convergence properties of the second

optimal control stage. A next step is a demonstration of computational efficiency.

This requires improvements in the discrete part, in particular, an adaptive graph

construction and the use of k-shortest path or k-dissimilar path algorithms that are,

at least in practice, faster than Yen’s algorithm, such as [30, 31] or [32], respectively.
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5.1 Introduction

Around the world countries are implementing Free Flight airspaces that allow

aircraft to choose their own route, as opposed to being restricted to a predetermined

three-dimensional network. The primary factors that influence costs are time and

fuel consumption, which are closely interrelated [1]. Based on the relative weights

of these factors (cf. cost index) the optimal airspeed can be determined, which

typically remains largely constant [2–4]. Additionally, the vertical flight path can

usually be predetermined using aircraft performance data [5]. Consequently, the

problem can be well approximated in a way proposed by Zermelo in 1931 [6], which

involves finding the most efficient trajectory from point A to B for an aircraft flying

at a constant airspeed in a given two-dimensional wind field.

The Free Flight Trajectory Optimization Problem is usually solved using direct

or indirect methods from Optimal Control [5, 7–11]. These are highly efficient,

but suffer from one key drawback: They only converge locally and are thus

dependent on a sufficiently good starting point. This makes such methods, used

as a standalone, incapable of meeting airlines’ high expectations regarding the

global optimality of routes.

In [12–14] (Chapters 2, 3 and 4) a deterministic two-stage algorithm was

proposed that combines discrete and continuous optimization in order to find

a globally optimal solution to the free flight trajectory optimization problem.

With this approach the exponential complexity of other branch and bound based

algorithms is circumvented.

The primary objective of the first stage is to obtain a finite sample in a systematic

manner that adequately covers the search space. This deterministic approach

eliminates the potential for infinite runtime, which may occur when using stochastic

global optimization algorithms, such as Particle Swarm Optimization, Simulated

Annealing, or Monotonic Basin Hopping [15–18].

One approach is to create a locally dense directed graph with a specific density

determined by the node spacing h and connectivity length ℓ, thereby implicitly
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defining the sample. The instances can then be selected in order of quality by

applying Yen’s algorithm [19] to calculate the kth shortest paths.

Promising paths serve as initial guesses for a subsequent refinement stage in which

a continuous solution to the problem is calculated up to the desired accuracy.

Analytical evidence and numerical experiments have demonstrated that the

new hybrid algorithm has a time complexity of O(ℓ−1), making it superior to the

conventional purely discrete approach, which has a time complexity of O(ℓ−6) [12]

(Chapter 2). In this context, ℓ refers to the maximum arc length in a graph and

the discretization length in a continuous optimization scenario. Thus, ℓ−1 serves

as a comparable metric for the precision of the solution.

The present paper is concerned with the second stage. One way to generate

a continuous solution is to apply Newton’s method to the first order necessary

conditions (the KKT-conditions) – an approach commonly referred to as Newton-

KKT or Sequential Quadratic Programming (SQP) (see e.g., [20]). It is now shown

that there is a quantifiable domain around a global optimum such that Newton-

KKT converges if initialized accordingly.

Since the computational effort of the first graph-searching stage depends exclu-

sively on the problem instance, i.e., the wind conditions, the algorithm asymptotically

inherits the super fast convergence rates of the Newton-KKT method.

The paper is structured as follows. After defining the problem and introducing

a formulation that is convenient for the analytical discussion in Section 5.2, we

formally state the necessary and sufficient conditions as well as the Newton-KKT

approach in Section 5.3. The proof of convergence is provided in Section 5.4 followed

by a conclusion emphasizing the impact on previous and future work.
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5.2 The Free Flight Trajectory Optimization
Problem

5.2.1 Notation

Throughout this article lower case subscripts like e.g., xt or ξτ , denote partial

derivatives, while total derivatives are indicated by primes, e.g., T ′ or f ′. Locally

and globally optimal quantities are indicated by single and double superscript

stars, respectively, e.g., ξ⋆ or ξ⋆⋆. If not stated otherwise, we assume ∥ · ∥ to

denote the l2-norm. Accordingly, we use the following quantitative definition of

the L∞-norm in terms of the l2-norm.

Definition 5.1. — Let f : Ω 7→ Rn. Then we define

∥f∥L∞(Ω) := inf{C ≥ 0 : ∥f(x)∥2 ≤ C for a.a. x ∈ Ω}. (5.1)

5.2.2 Problem Statement

Neglecting any traffic flow restrictions, we consider Lipschitz-continuous flight

paths ξ ∈ C0,1((0, 1),R2) connecting origin ξ(0) = xO and destination ξ(1) = xD.

By Rademacher’s theorem, such paths are almost everywhere differentiable, and

moreover contained in the Sobolev space W 1,∞((0, 1),R2).

A short calculation reveals that an aircraft traveling along such a path ξ with

constant airspeed v through a three times continuously differentiable wind field

w ∈ C3(R2,R2) with bounded magnitude ∥w(x)∥ < v reaches the destination

after a flight duration

T (ξ) =
∫ 1

0
f
(
ξ(τ), ξτ (τ)

)
dτ (5.2)

with ξτ denoting the time derivative of ξ and

f(ξ, ξτ ) := tτ =
−ξT

τ w +
√

(ξT
τ w)2 + (v2 − wTw)(ξT

τ ξτ )
v2 − wTw

, (5.3)

see [12–14] (Chapters 2, 3 and 4).

Among these paths ξ, we need to find one with minimal flight duration T (ξ),

since that is essentially proportional to fuel consumption [1]. This classic of optimal
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control is known as Zermelo’s navigation problem [6]. It can easily be shown that in

case of bounded wind speed, the optimal trajectory cannot be arbitrarily longer than

the straight connection of origin and destination. Hence, every global minimizer

is contained in an ellipse Ω ⊂ R2 with focal points xO and xD.

The flight duration T as defined in (5.2) is based on a time reparametrization

from actual flight time t ∈ [0, T ] to pseudo-time τ ∈ [0, 1] according to the actual

flight trajectory x(t) = ξ(τ(t)) such that ∥xt(t)−w(x(t))∥ = v, where xt denotes the

so called ground speed, i.e., the derivative of position x with respect to the unscaled

time t. As a consequence, the actual parametrization of ξ in terms of pseudo-time τ

is irrelevant for the value of T . Calling two paths ξ, ξ̃ equivalent if there exists a

Lipschitz-continuous bijection r : (0, 1)→ (0, 1) such that ξ(r(τ)) = ξ̃(τ), we can

restrict the optimization to equivalence classes. Moreover, every equivalence class

contains a representative with constant ground speed ∥ξτ (τ)∥ = L for almost all

τ , that can be obtained from any ξ̃ with ∥ξ̃τ (τ)∥ ̸= 0 ∀τ via

ξ(τ) := L
∫ τ

0

ξ̃τ (t)
∥ξ̃τ (t)∥

dt, L :=
∫ 1

0
∥ξ̃τ (τ)∥dτ. (5.4)

Hence, we introduce z := (L, ξ) ∈ Z := R × X and the affine space of

valid trajectories

X := {ξ ∈ W 1,∞((0, 1),R2) | ξ(0) = xO, ξ(1) = xD}. (5.5)

and subsequently consider the equivalent constrained minimization problem

min
z∈Z

T (ξ), s.t. h(z) = 0 for a.a. τ ∈ (0, 1) (5.6)

with

h : Z → Λ := L∞((0, 1),R), z 7→ ξT
τ ξτ − L2. (5.7)

If the constraint is satisfied, L also represents the path length, since
∫ 1

0
∥ξτ∥dτ = L. (5.8)
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Note that T : X → R is Fréchet differentiable with respect to the correspond-

ing linear space

δX := W 1,∞
0 ((0, 1),R2) (5.9)

of directions δξ with zero boundary values, that consequently do not change origin

and destination, equipped with the norm

∥δξ∥X∞ = ∥δξ∥L∞(0,1) + ∥δξτ∥L∞(0,1). (5.10)

Further, we define the linear space

δZ := R× δX (5.11)

and equip the spaces Z and δZ with the norms

∥z∥Z∞ = |L|+ ∥ξ∥L∞(0,1) + ∥ξτ∥L∞(0,1), and (5.12a)

∥z∥Z2 = |L|+ ∥ξ∥L2(0,1) + ∥ξτ∥L2(0,1). (5.12b)

5.3 Continuous Optimization: Newton-KKT

In order to find a continuous solution to the free flight optimization problem (5.6) we

apply Newton’s method to the first order necessary conditions (the KKT-conditions),

which is also known as sequential quadratic programming (SQP). Before we formally

introduce Newton’s method, we discuss the necessary and sufficient conditions for

optimality, which also defines the goal of the presented algorithm.

5.3.1 Optimality Conditions
5.3.1.1 Necessary Conditions

The goal of the present paper is to find an isolated globally optimal solution

ξ⋆⋆ to (5.6) that satisfies

T (ξ⋆⋆) ≤ T (ξ) ∀ξ ∈ X, (5.13)
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contrary to a local optimizer ξ⋆ that is only superior to trajectories in a cer-

tain neighborhood,

T (ξ⋆) ≤ T (ξ) ∀ξ ∈ N (ξ⋆) ⊆ X. (5.14)

An isolated global minimizer satisfies the necessary Karush-Kuhn-Tucker (KKT)

optimality conditions [21] given that it is a regular point, which is always the

case, as confirmed by the following Theorem.

Theorem 5.1. — Let z = (L, ξ) ∈ Z with L > 0 and assume there is a direction

u ∈ R2 and c > 0 such that ξT
τ u ≥ c almost everywhere. Then, h′(z) : δZ → L∞(0, 1)

is surjective, i.e., z is regular.

Proof. Let f ∈ L∞(0, 1) be given and b := ξT
τ u ≥ c. We set

δL = −
∫ 1

0 b−1f/2 dτ

L
∫ 1

0 b−1 dτ

and

g = b−1 (f/2 + LδL) , δξτ = gu.

Due to b ≥ c almost everywhere, b−1 is bounded and hence g, ξτ ∈ L∞(0, 1). By

construction,
∫ 1

0 δξτ dτ = 0 holds, such that δz = (δL, δξ) ∈ δZ. Now we obtain

h′(z)[δz] = 2ξT
τ δξτ − 2LδL

= 2bg − 2LδL

= 2(f/2 + LδL)− 2LδL

= f,

and thus the claim.

For λ ∈ Λ∗, the Lagrangian is defined as

L(z, λ) := T (ξ) + ⟨λ, h(z)⟩. (5.15)
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The KKT-conditions guarantee for a regular minimizer z⋆⋆ the existence of a

Lagrange multiplier λ⋆⋆ ∈ Λ∗, such that

0 = Lz(z⋆⋆, λ⋆⋆)[δz] ∀ δz ∈ δZ,

0 = ⟨δλ, h(z⋆⋆)⟩ ∀ δλ ∈ Λ∗

hold, where δz := (δL, δξ) ∈ δZ. In our case, these necessary conditions read

0 = T ′(ξ⋆⋆)[δξ]︸ ︷︷ ︸
=0 (5.18)

+2
∫ 1

0
λ⋆⋆

(
δξT

τ ξ⋆⋆
τ − δL L⋆⋆

)
dτ ∀ δz ∈ δZ, (5.16a)

0 =
∫ 1

0
δλ
(
(ξ⋆⋆

τ )Tξ⋆⋆
τ − (L⋆⋆)2

)
dτ ∀ δλ ∈ Λ∗. (5.16b)

Let us for a moment consider the unconstrained problem analogous to (5.6),

min
ξ∈X

T. (5.17)

Any global minimizer ξ̃⋆⋆ of (5.17) is clearly non-isolated due to possible repara-

metrizations of the time. Let ξ⋆⋆ denote the equivalent trajectory with constant

ground speed, i.e., ∥ξ⋆⋆
τ (τ)∥ = L⋆⋆ for almost all τ . Both solutions ξ̃⋆⋆, ξ⋆⋆ satisfy

the first order necessary condition

0 = T ′(ξ⋆⋆)[δξ] ∀δξ ∈ δX. (5.18)

Moreover, ξ⋆⋆ – together with L⋆⋆ from (5.8) – is a global minimizer of the constrained

problem, which indicates that the ground-speed-constraint (5.7) is only weakly active.

We confirm this by showing that the corresponding Lagrange multipliers λ⋆⋆ vanish.

Lemma 5.2. — Let z⋆⋆ = (ξ⋆⋆, L⋆⋆) be a global minimizer of (5.6). Then, this

solution together with

λ⋆⋆ = 0 (5.19)

satisfies the necessary conditions (5.16).

Proof. Since ξ⋆⋆ is also a global minimizer of the unconstrained problem, the neces-

sary condition (5.18) states that T ′(ξ⋆⋆)δξ = 0. The term
∫ 1

0 λ⋆⋆
(
δξT

τ ξ⋆⋆
τ − δL L⋆⋆

)
dτ

of (5.16a) vanishes for λ⋆⋆ = 0. (5.16b) is satisfied because ∥ξ⋆⋆
τ ∥ = L⋆⋆ for almost

all τ ∈ (0, 1).
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5.3.1.2 Sufficient Conditions

Now we turn to the second order sufficient conditions for optimality. In general,

a stationary point (z⋆, λ⋆) is a strict minimizer, if, in addition to the necessary

conditions above, the well known Ladyzhenskaya–Babuška–Brezzi (LBB) condition

(e.g., [22]) is satisfied, which comprise a) the so called inf-sup condition and b)

the requirement that the Lagrangian’s Hessian regarding z, Lzz, need be positive

definite on the kernel of h′.

The inf-sup condition states that for the minimizer z⋆ there is a κ > 0 such that

inf
δλ̸=0∈L2(0,1)

sup
δz∈δZ2

⟨δλ, h′(z⋆)[δz]⟩
∥δλ∥L2(0,1)∥δz∥Z2

≥ κ. (5.20)

Formally, the second part of the LBB condition requires that there is a B >

0 such that

Lzz(z⋆)[δz]2 ≥ B ∥δz∥2
Z2

for any δz ∈ δZ that satisfies

⟨δλ, h′(z⋆)[δz]⟩ = 0 ∀ δλ ∈ L2(0, 1).

In the present case, this reads

T ′′(ξ⋆)[δξ]2 + 2
∫ 1

0
λ⋆(δξT

τ δξτ − δL2)dτ ≥ B∥δz∥2
Z2 (5.21)

for any δz ∈ δZ such that∫ 1

0
δλ
(
δξT

τ ξ⋆
τ − δL L⋆

)
dτ = 0 ∀ δλ ∈ L2(0, 1).

In case of a global minimizer z⋆⋆ = (ξ⋆⋆, L⋆⋆), this can be reduced using λ⋆⋆ = 0 from

Lemma 5.2. Moreover, the constraint is equivalent to requiring that δξT
τ ξ⋆⋆

τ = δL L⋆⋆

almost everywhere. With this, we conclude that for any isolated global minimizer

z⋆⋆ of (5.6) that satisfies the inf-sup condition, there exists a B > 0 such that

T ′′(ξ⋆⋆)[δξ, δξτ ]2 ≥ B∥δz∥2
Z2 (5.22)

for any δz ∈ δZ such that δξT
τ ξ⋆⋆

τ = δL L⋆⋆ almost everywhere.

It is important to note that the second order sufficient conditions are formulated

in a L2-setting, while differentiability only holds in L∞. This is known as two-

norm-discrepancy [23].
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5.3.2 Newton’s Method

In order to provide a more compact notation, we use χ = (z, λ) ∈ Z × Λ∗ =: Y in

this context and define F as the total derivative of the Lagrangian,

F : Z × Λ∗ 7→ δZ∗ × Λ, F (χ) := L′(z, λ). (5.23)

On Y we define the following norms,

∥χ∥Y ∞ = ∥z∥Z∞ + ∥λ∥L∞(0,1) and (5.24a)

∥χ∥Y 2 = ∥z∥Z2 + ∥λ∥L2(0,1). (5.24b)

The problem is now to find a χ⋆⋆ such that the first order necessary conditions for

optimality as stated in (5.16) are satisfied, which translates to

F (χ⋆⋆) = 0. (5.25)

Applying Newton’s method, we iteratively solve

F ′(χk)[∆χk] = −F (χk) (5.26)

for ∆χk and proceed with χk+1 ← χk + ∆χk, starting with some initial value χ0.

In other words, in every iteration we need to find (∆zk, ∆λk) such that

T ′′(ξk)[δξ][∆ξk] + ⟨λk, h′′(zk)[δz][∆zk]⟩+ ⟨∆λk, h′(zk)[δz]⟩

= −T ′(ξk)[δξ]− ⟨λk, h′(zk)[δz]⟩ ∀δz ∈ δZ, (5.27a)

⟨δλ, h′(zk)[∆zk]⟩ = −⟨δλ, h(zk)⟩ ∀δλ ∈ Λ∗. (5.27b)

5.4 Proof of Convergence

On the way to prove the existence of a non-empty domain N (χ⋆⋆, R) such that

Newton’s method as defined in Section 5.3.2 converges to the corresponding global

minimizer χ⋆⋆, if initialized with a starting point within this neighborhood, we first

prove that the KKT-operator F ′ is invertible and that the Newton step ∆χk is

always well defined. Essentially, this is the case if the LBB condition as given in

(5.20) and (5.22) is satisfied. Hence, we will show that there is a R > 0 such that
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the inf-sup condition is satisfied and that the Lagrangian is positive definite on the

kernel of the constraints for any χ ∈ N (χ⋆⋆, R). Further, we show that an affine

covariant Lipschitz condition holds, which finally helps to complete the proof.

Before we get there, we recall Lemma 3.7 which provides a bound for the

path length of a global minimizer.

Lemma 5.3. — Let z⋆⋆=(L⋆⋆, ξ⋆⋆) be a global minimizer of (5.6), let ∥w∥L∞(Ω) ≤ c0,

and define L̃ = ∥xD − xO∥. Then it holds that

L̃ ≤ L⋆⋆ ≤ v + c0

v − c0
L̃. (5.28)

As most of the subsequent results hold in a L∞-neighborhood of a minimizer,

we introduce the following notation.

Definition 5.2. — We call the L∞-neighborhood of a point z ∈ Z or x ∈ Y ,

N (z, R) := {z̃ ∈ Z : ∥z̃ − z∥Z∞ ≤ R} or (5.29a)

N (χ, R) := {χ̃ ∈ Y : ∥χ̃− χ∥Y ∞ ≤ R}, (5.29b)

respectively.

Moreover, we provide three simple yet useful bounds that hold in such a L∞-

neighborhood of a minimizer.

Lemma 5.4. — Let χ⋆⋆ = (z⋆⋆, λ⋆⋆) be a global minimizer of (5.6) and the

corresponding Lagrange multipliers. Then for every χ ∈ N (χ⋆⋆, R) it holds that

L⋆⋆ −R ≤ L ≤ L⋆⋆ + R, (5.30a)

L⋆⋆ −R ≤ ∥ξτ∥L∞(0,1) ≤ L⋆⋆ + R, (5.30b)

0 ≤ ∥λ∥L∞(0,1) ≤ R. (5.30c)

Proof. The first two inequalities follow immediately, since a global minimizer satisfies

the constraint from (5.6). The latter two are a direct consequence of Lemma 5.2.
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5.4.1 Inf-Sup Condition

We now show that the inf-sup condition, introduced in (5.20), holds in a certain

neighborhood around a global minimizer. First, however, we point out that deviations

δξ and δξτ from a trajectory are inherently related and that the former is always

bounded by the latter.

Theorem 5.5 (Wirtinger’s inequality). — Let δξ ∈ H1
0 (0, 1). Then

∥δξ∥2
L2(0,1) ≤

1
π
∥δξτ∥2

L2(0,1) (5.31)

holds.

Theorem 5.6. — Let z⋆⋆ be a global minimizer of (5.6). Further, let there be a

constant c > 0 and some direction u ∈ R2 with ∥u∥ = 1 such that uTξ⋆⋆
τ ≥ c for

almost all τ ∈ (0, 1). Then for any z = (L, ξ) ∈ N (z⋆⋆, R) with R < c there is some

κ > 0 such that

inf
λ ̸=0∈L2(0,1)

sup
δz∈δZ

⟨λ, h′(z)[δz]⟩
∥λ∥L2(0,1)∥δz∥Z2

≥ κ

with

κ(R) = (c−R)
[

3
8 + 2

(
v + c0

v − c0
+ R

L̃

)2]−1/2

.

Proof. For f ∈ L2(0, 1) we define

f :=
∫ 1

0
f dτ ∈ R and f̃ = f − f,

respectively, such that (f, f̃)L2(0,1) = 0 and

∥f∥2
L2(0,1) = ∥f̃ + f∥2

L2(0,1) = ∥f̃∥2
L2(0,1) + f

2
.

With

v + c0

v − c0
L̃ + R ≥

(5.28)
L⋆⋆ + R ≥ b := ξT

τ u ≥ c−R (5.32)
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we choose δξτ = 1
2 λ̃u and δL = 1

2L

(
bλ̃− (c−R)λ

)
. Note that δξ ∈ δX holds. For

this choice, we obtain for δz = (δL, δξ)

⟨λ, h′(z)[δz]⟩ =
∫ 1

0
(2ξT

τ δξτ λ− 2LδLλ) dτ

=
∫ 1

0
bλ̃λ dτ − 2LδLλ

=
∫ 1

0
(bλ̃2 + bλ̃λ) dτ − 2LδLλ

≥
(5.32)

(c−R)∥λ̃∥2
L2(0,1) +

(∫ 1

0
bλ̃ dτ − 2LδL

)
λ

= (c−R)∥λ̃∥2
L2(0,1) +

(∫ 1

0
bλ̃ dτ − bλ̃ + (c−R)λ

)
λ

= (c−R)
(
∥λ̃∥2

L2(0,1) + λ
2)

= (c−R)∥λ∥2
L2(0,1).

Moreover, we have

∥δξτ∥L2(0,1) ≤
1
2∥λ̃∥L2(0,1)

and, since clearly c ≤ L⋆⋆,

|δL| ≤ 1
2L

(
∥b∥L2(0,1)∥λ̃∥L2(0,1) + (c−R)|λ|

)
≤

(5.32)

1
L̃

(
(L⋆⋆ + R)∥λ̃∥L2(0,1) + (c−R)|λ|

)
≤
(

v + c0

v − c0
+ R

L̃

) (
∥λ̃∥L2(0,1) + |λ|

)
,

which implies

∥δz∥2
Z2 =

(5.12b)
∥δξ∥2

L2(0,1) + ∥δξτ∥2
L2(0,1) + δL2

≤
(5.31)

3
2∥δξτ∥2

L2(0,1) + δL2

≤ 3
8∥λ̃∥

2
L2(0,1) +

(
v + c0

v − c0
+ R

L̃

)2 (
∥λ̃∥L2(0,1) + λ

)2

≤ 3
8∥λ̃∥

2
L2(0,1) + 2

(
v + c0

v − c0
+ R

L̃

)2
∥λ̃∥2

L2(0,1) + 2
(

v + c0

v − c0
+ R

L̃

)2
λ

2

≤
[

3
8 + 2

(
v + c0

v − c0
+ R

L̃

)2] (
∥λ̃∥2

L2(0,1) + λ
2)

=
[

3
8 + 2

(
v + c0

v − c0
+ R

L̃

)2]
∥λ∥2

L2(0,1).
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Consequently,

⟨λ, h′(z)[δz]⟩ ≥ (c−R)
[

3
8 + 2

(
v + c0

v − c0
+ R

L̃

)2]−1/2

∥λ∥L2(0,1) ∥δz∥Z2

yields the claim.

5.4.2 Positive Definiteness of the Lagrangian

The next step in order prove invertibility of the KKT-operator F ′(χ), (5.26), is

to show that the second partial derivative of the Lagrangian L(χ), (5.15), with

respect to the state z is positive definite on the kernel of the linearized constraints.

On the way we derive a similar result for the objective T (ξ), (5.2) for which we

first derive an upper bound for its third derivative.

Lemma 5.7. — Let ∥w∥L∞(Ω) ≤ c0 ≤ v/
√

5, ∥wx∥L∞(Ω) ≤ c1, ∥wxx∥L∞(Ω) ≤ c2,

and ∥wxxx∥L∞(Ω) ≤ c3 and define v2 := v2 − c2
0. Then, for any ξ ∈ X, the third

directional derivative of f as given in (5.3) is bounded by

|f ′′′(ξ, ξτ )[δξ, δξτ ]2[∆ξ, ∆ξτ ]|

≤
(

γ0∥ξτ∥∥δξ∥2 + γ2∥δξ∥∥δξτ∥+ γ4
∥ξτ∥
∥δξτ∥2

)
∥∆ξ∥

+
(

γ1∥δξ∥2 + γ3
∥ξτ∥
∥δξ∥∥δξτ∥+ γ5

∥ξτ∥2∥δξτ∥2
)
∥∆ξτ∥ (5.33)

with γi ≥ 0, i ∈ 0, . . . , 5, given as

γ0 = 2
v4

(
37c3

1 + 21c1c2v + 2c3v
2
)

, γ3 = 40 c1

v2 ,

γ1 = 1
v3

(
29c2

1 + 7vc2
)

, γ4 = 20 c1

v2 ,

γ2 = 1
v3 (57c2

1 + 13vc2), γ5 = 181
v

. (5.34)

The proof can again be found in the appendix. With this result we can derive

a bound for the third directional derivative of T .

Theorem 5.8. — Let (L⋆⋆, ξ⋆⋆) be a global minimizer of (5.6) and define

L̃ := ∥xD − xO∥ and ∆ξ := ξ − ξ⋆⋆. Moreover, let ∥w(p)∥ ≤ c0 ≤ v/
√

5,
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∥wx(p)∥ ≤ c1, ∥wxx(p)∥ ≤ c2, and ∥wxxx(p)∥ ≤ c3 for every p ∈ Ω. Then,

for any ξ ∈ X with ∥∆ξ∥X∞ ≤ R < L̃, it holds that

|T ′′′(ξ)[δξ]2[∆ξ]| ≤ Γ
(
∥δξ∥2

L2(0,1) + ∥δξτ∥2
L2(0,1)

)
∥∆ξ∥C0,1(0,1) . (5.35)

with ∥∆ξ∥C0,1(0,1) = ∥∆ξ∥L∞(0,1) + ∥∆ξτ∥L∞(0,1) and

Γ := max
{(

v + c0

v − c0
L̃ + R

)
γ0 + γ2

2 ,
γ4

L̃−R
+ γ2

2 ,

γ1 + γ3

2(L̃−R)
,

γ3

2(L̃−R)
+ γ5

(L̃−R)2

}
(5.36)

and γ0, . . . , γ5 as given in Lemma 5.7 above.

Proof. From the definition of T in (5.2), we know that

T ′′′(ξ)[δξ]2[∆ξ] =
∫ 1

0
f ′′′(ξ, ξτ )[δξ, δξτ ]2[∆ξ, ∆ξτ ]dτ.

Inserting the bound from Lemmas 5.4 and 5.7 above and using Young’s inequality

yields

|T ′′′(ξ)[δξ]2[∆ξ]|

≤
∫ 1

0

(
γ0∥ξτ∥∥δξ∥2 + γ2∥δξ∥∥δξτ∥+ γ4

∥ξτ∥
∥δξτ∥2

)
∥∆ξ∥

+
(

γ1∥δξ∥2 + γ3
∥ξτ∥
∥δξ∥∥δξτ∥+ γ5

∥ξτ∥2∥δξτ∥2
)
∥∆ξτ∥ dτ.

≤ ∥∆ξ∥L∞

∫ 1

0
γ0∥ξτ∥∥δξ∥2 + γ2∥δξ∥∥δξτ∥+ γ4

∥ξτ∥
∥δξτ∥2dτ

+ ∥∆ξτ∥L∞

∫ 1

0
γ1∥δξ∥2 + γ3

∥ξτ∥
∥δξ∥∥δξτ∥+ γ5

∥ξτ∥2∥δξτ∥2dτ

≤
(5.30)

∥∆ξ∥L∞

∫ 1

0

(
v + c0

v − c0
L̃ + R

)
γ0∥δξ∥2 + γ2∥δξ∥∥δξτ∥+ γ4

L̃−R
∥δξτ∥2dτ

+ ∥∆ξτ∥L∞

∫ 1

0
γ1∥δξ∥2 + γ3

L̃−R
∥δξ∥∥δξτ∥+ γ5

(L̃−R)2
∥δξτ∥2dτ

≤
(Y)
∥∆ξ∥L∞

[((
v + c0

v − c0
L̃ + R

)
γ0 + γ2

2

)
∥δξ∥2

L2 +
(

γ4

L̃−R
+ γ2

2

)
∥δξτ∥2

L2

]

+ ∥∆ξτ∥L∞

[(
γ1 + γ3

2(L̃−R)

)
∥δξ∥2

L2 +
(

γ3

2(L̃−R)
+ γ5

(L̃−R)2

)
∥δξτ∥2

L2

]
≤

(5.36)
Γ
(
∥δξ∥2

L2(0,1) + ∥δξτ∥2
L2(0,1)

)
∥∆ξ∥C0,1(0,1).
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Having bounded the third derivative of T , we can estimate the potential decay

of T ′′ and thus derive a lower bound for the size of this neighborhood. Similarly,

we can bound h′′ and hence Lzz.

Theorem 5.9. — Let ∥w∥L∞(Ω) ≤ c0 < v/
√

5, ∥wx∥L∞(Ω) ≤ c1, ∥wxx∥L∞(Ω) ≤ c2,

and ∥wxxx∥L∞(Ω) ≤ c3 and define L̃ := ∥xD − xO∥. Moreover, let χ⋆⋆ := (z⋆⋆, λ⋆⋆)

be a globally optimal solution to problem (5.6), that satisfies the necessary and

sufficient conditions (5.16), (5.20), and (5.22) with B > 0.

Then there is a 0 < R < min
{

B
2Γ , B

40 , L̃
2

}
with Γ from Theorem 5.8 such that

Lzz(χ)[δz]2 ≥ B4 ∥δz∥2
Z2 (5.37)

holds for any χ ∈ N (χ⋆⋆, R) and any δz ∈ δZ such that ξT
τ δξτ = LδL holds almost

everywhere.

Proof. Let ∆ξ := ξ− ξ⋆⋆ and note that ∥∆ξ∥L∞(0,1) ≤ ∥∆z∥Z∞ ≤ R < B
2Γ . Then we

obtain

T ′′(ξ)[δξ, δξτ ]2 = T ′′(ξ⋆⋆)[δξ, δξτ ]2 +
∫ 1

0
T ′′′(ξ + ν∆ξ)[δξ, δξτ ]2[∆ξ, ∆ξτ ] dν

≥
(5.22)

B∥δz∥2
Z2 +

∫ 1

0
T ′′′(ξ + ν∆ξ)[δξ, δξτ ]2[∆ξ, ∆ξτ ] dν

≥
(5.35)

B∥δz∥2
Z2 − Γ(∥δξ∥2

L2(0,1) + ∥δξτ∥2
L2(0,1)) ∥∆z∥Z∞

≥
(5.12b)

B∥δz∥2
Z2 − Γ∥δz∥2

Z2 ∥∆z∥Z∞ ,

≥ B
2 ∥δz∥2

Z2 .

Further, we point out that

R ≤ L̃

2 ≤
L⋆⋆

2 , (5.38)
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which together with the bounds from Lemma 5.4 yields

⟨h′′(z)[δz]2⟩ =
∫ 1

0
λ
(
δξT

τ δξτ − δL2
)

dτ

=
∫ 1

0
λ

∥δξτ∥2 −
(

ξT
τ δξτ

L

)2
 dτ

≥ − ∥λ∥L∞(0,1)

(
∥δξτ∥2

L2(0,1) +
∫ 1

0

∥ξτ∥2∥δξτ∥2

L2 dτ

)

≥ − ∥λ∥L∞(0,1)

(
∥δξτ∥2

L2(0,1) +
∥ξτ∥2

L∞(0,1)

L2

∫ 1

0
∥δξτ∥2 dτ

)

≥
(5.30)

−R

(
∥δξτ∥2

L2(0,1) + (L⋆⋆ + R)2

(L⋆⋆ −R)2∥δξτ∥2
L2(0,1)

)

≥ −R

(
1 + (L⋆⋆ + R)2

(L⋆⋆ −R)2

)
∥δξτ∥2

L2(0,1)

≥
(5.38)

− 10R∥δξτ∥2
L2(0,1)

≥ − B4 ∥δξτ∥2
L2(0,1)

≥
(5.12b)

− B4 ∥δz∥2
Z2 .

Together, these bounds yield the claim with

Lzz(χ)[δz]2 =T ′′(ξ)[δξ]2 + ⟨h′′(z)[δz]2⟩

≥B2 ∥δz∥2
Z2 −

B
4 ∥δz∥2

Z2

≥B4 ∥δz∥2
Z2 .

5.4.3 Upper Bound for the Lagrangian

As a counterpart to the previous Lemma, we also derive an upper bound for Lzz

close to a minimizer. Again we start with the underlying function f in order to

bound the error in the objective function T .

Lemma 5.10. — Let ∥w∥L∞(Ω) ≤ c0 ≤ v√
5 , ∥wx∥L∞(Ω) ≤ c1, and ∥wxx∥L∞(Ω) ≤ c2.

Moreover, let v2 := v2 − c2
0. Then, for any ξ ∈ X, the second directional derivative
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of f as given in (5.3) is bounded by

|f ′′(ξ, ξτ )[δξ, δξτ ][δ̃ξ, δ̃ξτ ]| ≤ β0∥ξτ∥∥δξ∥∥δ̃ξ∥

+β1

(
∥δξ∥∥δ̃ξτ∥+ ∥δξτ∥∥δ̃ξ∥

)
+β2∥ξτ∥−1∥δξτ∥∥δ̃ξτ∥ (5.39)

with

β0 = 14 c2
1

v3 + 4 c2

v2 , β1 = 7 c1

v2 , and β2 = 4
v

. (5.40)

The proof can be found in the appendix.

Theorem 5.11. — Let z⋆⋆:=(L⋆⋆, ξ⋆⋆) be a global minimizer of (5.6) and

∆z:=z − z⋆⋆. Moreover, let ∥w∥L∞(Ω) ≤ c0 ≤ v/
√

5, ∥wx∥L∞(Ω) ≤ c1, and

∥wxx∥L∞(Ω) ≤ c2. Also define v2 := v2 − c2
0 and L̃ := ∥xD − xO∥. Then, for

any z ∈ N (z⋆⋆, R), the second directional derivative of T as defined in (5.2) is

bounded by

|T ′′(ξ)[∆ξ]2| ≤ B∥∆z∥2
Z2 (5.41)

with B := β1+max
{(

v+c0
v−c0

L̃ + R
)

β0,
β2

L̃+R

}
and β0, β1, β2 as defined in Lemma 5.10.

Proof. From the definition of T in (5.2) we know that

T ′′(ξ)[∆ξ, ∆ξτ ]2 =
∫ 1

0
f ′′[∆ξ, ∆ξτ ]2dτ,

which, together with the bounds from Lemmas 5.4 and 5.10 as well as Young’s
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inequality, then leads to

|T ′′(ξ)[∆ξ, ∆ξτ ]2| ≤
∫ 1

0

(
β0∥ξτ∥∥∆ξ∥2 + 2β1∥∆ξ∥∥∆ξτ∥+ β2

∥ξτ∥
∥∆ξτ∥2

)
dτ

≤
(5.30)

β0(L⋆⋆ + R)
∫ 1

0
∥∆ξ∥2dτ

+ 2β1

∫ 1

0
∥∆ξ∥∥∆ξτ∥dτ

+ β2
L⋆⋆ + R

∫ 1

0
∥∆ξτ∥2dτ

≤
(Y)

(
(L⋆⋆ + R)β0 + β1

)
∥∆ξ∥2

L2(0,1)

+
(

β1 + β2
L⋆⋆ + R

)
∥∆ξτ∥2

L2(0,1)

≤
(5.28)

((
v + c0

v − c0
L̃ + R

)
β0 + β1

)
∥∆ξ∥2

L2(0,1)

+
(

β1 + β2

L̃ + R

)
∥∆ξτ∥2

L2(0,1)

≤ B
(
∥∆ξ∥2

L2(0,1) + ∥∆ξτ∥2
L2(0,1)

)
≤

(5.12b)
B∥∆z∥2

Z2 .

Theorem 5.12. — Let χ⋆⋆ = (z⋆⋆, λ⋆⋆) be a global minimizer of (5.6) and the

corresponding Lagrange multipliers. Then for every χ ∈ N (χ⋆⋆, R) and every

δz ∈ δZ it holds that

|Lzz(χ)[δz]2| ≤
(
B + R

)
∥δz∥2

Z2 (5.42)

with B(R) from Theorem 5.11.

Proof. Using the bound from Theorem 5.11 and Young’s inequality, we get

|Lzz(χ)[δz]2| = |T ′′(ξ)[δξ]2 + ⟨h′′(z)[δz]2⟩|

≤
(5.41)

B∥dz∥2
Z2 +

∫ 1

0
|λ
(
δξT

τ δξτ − δL2
)
| dτ

≤ B∥dz∥2
Z2 + ∥λ∥L∞(0,1)

(
∥δξτ∥2

L2(0,1) + δL2
)

≤
(5.30)

B∥dz∥2
Z2 + R

(
∥δξτ∥2

L2(0,1) + δL2
)

≤
(5.12b)

(
B + R

)
∥dz∥2

Z2 .
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5.4.4 Invertibility of the KKT-Operator

Using the previous three results, which together state the existence of a neighborhood

around a minimizer such that the LBB condition is satisfied, we are now ready

to prove that the KKT-operator F ′ is invertible.

Lemma 5.13. — Let χ⋆⋆ = (z⋆⋆, λ⋆⋆) be a global minimizer of (5.6), that satisfies

the first and second order conditions for optimality with some B > 0, and the

corresponding Lagrange multipliers. Further, let there be a u with ∥u∥ = 1 such that

uTξ⋆⋆
τ ≥ c > 0 for almost all τ ∈ (0, 1). Then for F as given in (5.23) it holds that

∥F ′(χ)−1∥Y 2 ≤ ω1 (5.43)

for every χ = (z, λ) ∈ N (χ⋆⋆, R) and

ω1 =
√

2 max
{

4
B

,
1
κ

(
1 + 4(B + R)

B

)
,
B + R

κ2

}
(5.44)

and B(R) and κ(R) as given in Theorem 5.11 and Theorem 5.6, respectively.

Proof. The proof builds on some prerequisites that have been established above

and are briefly summarized.

i) In Theorem 5.6 it was proved that the inf-sup condition is satisfied:

inf
δλ∈L2(0,1)

sup
δz∈δZ

⟨δλ, h′(z)[δz]⟩
∥δz∥Z2∥δλ∥L2(0,1)

≥ κ > 0.

ii) In Theorem 5.9 it was proved that Lzz is positive definite on the kernel of the

constraints, i.e.,

Lzz(χ)[δz]2 = T ′′(ξ)[δξ]2 + ⟨h′′(z)[δz]2⟩ ≥ B4 ∥δz∥2
Z2

for all δz ∈ δZ such that h′(z)[δz] = 0.

iii) In Theorem 5.12 it was proved that Lzz is bounded from above as

|Lzz(χ)[δz]2| = |T ′′(ξ)[δξ]2 + ⟨h′′(z)[δz]2⟩| ≤ (B + R)∥δz∥2
Z2 .
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Under these conditions, it follows from Brezzi’s Splitting Theorem [22, Thm. 4.3]

that F ′(x) is isomorphic. Further, it can be shown that for every right hand side

F (x) of the saddle point problem (5.26) there is exactly one solution (∆z, ∆λ) with

∥∆z∥Z2 ≤ 4
B
∥T ′(ξ) + ⟨λ, h′(z)⟩∥Z2

+ 1
κ

(
1 + 4(B + R)

B

)
∥h(z)∥L2(0,1),

∥∆λ∥L2(0,1) ≤
1
κ

(
1 + 4(B + R)

B

)
∥T ′(ξ) + ⟨λ, h′(z)⟩∥Z2

+ B + R

κ2

(
1 + 4(B + R)

B

)
∥h(z)∥L2(0,1).

With ∥F (χ)∥ = ∥T ′(ξ) + ⟨λ, h′(z)⟩∥2
Z2 + ∥h(z)∥2

L2(0,1) follows that

∥∆z∥Z2 ≤
√

2 max
{

4
B

,
1
κ

(
1 + 4(B + R)

B

)}
∥F (χ)∥,

∥∆λ∥L2(0,1) ≤
√

2 max
{

1
κ

(
1 + 4(B + R)

B

)
,
B + R

κ2

}
∥F (χ)∥,

which directly yields

∥∆χ∥2
Y 2 =

(5.24b)
∥∆z∥2

Z2 + ∥∆λ∥2
L2(0,1) ≤ ω2

1∥F (χ)∥

with ω1 =
√

2 max
{

4
B , 1

κ

(
1 + 4(B+R)

B

)
, B+R

κ2

}
. This completes the proof, since

∥F ′(χ)−1∥Y 2 = sup
∥F (χ)∥Y 2

∥∆χ∥Y 2

∥F (χ)∥Y 2
≤ ω1.

5.4.5 Lipschitz Constant

We are on the verge of presenting a Lipschitz constant for the free flight problem.

To accomplish this, we introduce an additional bound in the form of a Lemma. This

bound incorporates the constant B̂, which is derived in the appendix (Lemma 5.16).

It serves to define an upper limit on the second derivative of f as defined in Equa-

tion (5.3). Its value is contingent upon the overall characteristics of the wind field.
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Lemma 5.14. — Let χ⋆⋆ = (z⋆⋆, λ⋆⋆) be a global minimizer of (5.6) and the

corresponding Lagrange multipliers. For any χi∈{1,2} ∈ N (χ⋆⋆, R) there is a B̂ such

that

∥(F ′(χ2)− F ′(χ1))[χ2 − χ1]∥Y 2 ≤ ω2∥χ2 − χ1∥Y 2 (5.45)

with

ω2 = (8 + B̂)R. (5.46)

Proof. From Lemma 5.4 it directly follows that

|L2 − L1| ≤ 2R, (5.47a)

∥ξτ,2 − ξτ,1∥L∞(0,1) ≤ 2R, (5.47b)

∥λ2 − λ1∥L∞(0,1) ≤ R. (5.47c)

Using these bounds as well as the Cauchy-Schwarz inequality and Young’s inequality,
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we show that for any δχ ∈ δZ × L2(0, 1) with ∥δχ∥L2(0,1) ≤ 1 it holds that

|⟨λ2, h′′(z2)[z2 − z1, δz]⟩ − ⟨λ1, h′′(z1)[z2 − z1, δz]⟩|

= |
∫ 1

0
λ2(δξT

τ (ξτ,2 − ξτ,1)− δL(L2 − L1))

− λ1(δξT
τ (ξτ,2 − ξτ,1)− δL(L2 − L1))dτ |

= |
∫ 1

0
(λ2 − λ1)(δξT

τ (ξτ,2 − ξτ,1)− δL(L2 − L1))dτ |

≤
∫ 1

0
|λ2 − λ1|∥δξτ∥∥ξτ,2 − ξτ,1∥dτ

+ |δL||L2 − L1|
∫ 1

0
|δλ|dτ

≤
(CS)

[∫ 1

0
∥δξτ∥2dτ

]1/2 [∫ 1

0
(λ2 − λ1)2∥ξτ,2 − ξτ,1∥2dτ

]1/2

+ |δL| |L2 − L1|∥λ2 − λ1∥L1

≤
(5.47)
∥δξτ∥L2

[
2R2

∫ 1

0
|λ2 − λ1|∥ξτ,2 − ξτ,1∥dτ

]1/2

+ R |δL| |L2 − L1|

≤
(CS)

√
2R∥δξτ∥L2∥λ2 − λ1∥1/2

L2 ∥ξτ,2 − ξτ,1∥1/2
L2

+ R |δL| |L2 − L1|

≤
(Y)

√
2

2 R∥δξτ∥L2 [∥λ2 − λ1∥L2 + ∥ξτ,2 − ξτ,1∥L2 ]

+ R |δL| |L2 − L1|

≤
√

2
2 R [∥λ2 − λ1∥L2 + ∥ξτ,2 − ξτ,1∥L2 ]

+ R |L2 − L1|

≤ R

[
∥λ2 − λ1∥L2 + ∥ξτ,2 − ξτ,1∥L2 + ∥ξ2 − ξ1∥L2 + |L2 − L1|

]

≤ 2R

[
∥λ2 − λ1∥2

L2 + ∥ξτ,2 − ξτ,1∥2
L2 + ∥ξ2 − ξ1∥2

L2 + |L2 − L1|2
]1/2

=
(5.24b)

2R∥χ2 − χ1∥Y 2
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as well as

|⟨λ2 − λ1, (h′(z2)− h′(z1))[δz]⟩|

= |
∫ 1

0
(λ2 − λ1)

(
(ξτ,2 − ξτ,1)Tδξτ − (L2 − L1)δL

)
dτ |

≤
∫ 1

0
|λ2 − λ1|∥ξτ,2 − ξτ,1∥∥δξτ∥dτ

+ |L2 − L1||δL|
∫ 1

0
|λ2 − λ1|dτ

≤
(CS)

[∫ 1

0
∥δξτ∥2dτ

]1/2 [∫ 1

0
(λ2 − λ1)2∥ξτ,2 − ξτ,1∥2dτ

]1/2

+ |L2 − L1||δL|∥λ2 − λ1∥L1

≤
(5.47)
∥δξτ∥L2

[
2R2

∫ 1

0
|λ2 − λ1| ∥ξτ,2 − ξτ,1∥dτ

]1/2

+ R|L2 − L1||δL|

≤
√

2R
[∫ 1

0
(λ2 − λ1)∥ξτ,2 − ξτ,1∥dτ

]1/2

+ R|L2 − L1|

≤
(CS)

√
2R∥λ2 − λ1∥1/2

L2 ∥ξτ,2 − ξτ,1∥1/2
L2

+ R|L2 − L1|

≤
(Y)

√
2

2 R [∥λ2 − λ1∥L2 + ∥ξτ,2 − ξτ,1∥L2 ]

+ R|L2 − L1|

≤ R

[
∥λ2 − λ1∥L2 + ∥ξτ,2 − ξτ,1∥L2 + ∥ξ2 − ξ1∥L2 + |L2 − L1|

]

≤ 2R

[
∥λ2 − λ1∥2

L2 + ∥ξτ,2 − ξτ,1∥2
L2 + ∥ξ2 − ξ1∥2

L2 + |L2 − L1|2
]1/2

=
(5.24b)

2R∥χ2 − χ1∥Y 2
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and

|⟨δλ, (h′(z2)− h′(z1))[z2 − z1]⟩|

= |
∫ 1

0
δλ((ξτ,2 − ξτ,1)T(ξτ,2 − ξτ,1)− (L2 − L1)2)dτ |

≤
∫ 1

0
|δλ|∥ξτ,2 − ξτ,1∥2dτ + (L2 − L1)2

∫ 1

0
|δλ|dτ

≤
(5.47)

2R
∫ 1

0
|δλ|∥ξτ,2 − ξτ,1∥dτ + 2R|L2 − L1|∥δλ∥L1

≤
(CS)

2R
[∫ 1

0
δλ2dτ

]1/2 [∫ 1

0
∥ξτ,2 − ξτ,1∥2dτ

]1/2

+ 2R|L2 − L1| ∥δλ∥L1

≤ 2R∥δλ∥L2∥ξτ,2 − ξτ,1∥L2

+ 2R|L2 − L1| ∥δλ∥L1

≤ 2R∥ξτ,2 − ξτ,1∥L2 + 2R|L2 − L1|

≤ 2R

[
∥λ2 − λ1∥L2 + ∥ξτ,2 − ξτ,1∥L2 + ∥ξ2 − ξ1∥L2 + |L2 − L1|

]

≤ 4R

[
∥λ2 − λ1∥2

L2 + ∥ξτ,2 − ξτ,1∥2
L2 + ∥ξ2 − ξ1∥2

L2 + |L2 − L1|2
]1/2

=
(5.24b)

4R∥χ2 − χ1∥Y 2 .

As shown in Lemma 5.16 in the appendix, there is a B̂ <∞ such that

| (f ′′(ξ2)− f ′′(ξ1)) [ξ2 − ξ1, δξ]| ≤ B̂
√
∥ξ2 − ξ1∥2 + ∥ξτ,2 − ξτ,1∥2

√
∥δξ∥2 + ∥δξτ∥2,

which provides the following bound, as

| (T ′′(ξ2)− T ′′(ξ1)) [ξ2 − ξ1, δξ]|

= |
∫ 1

0
(f ′′(ξ2, ξτ,2)− f ′′(ξ1, ξτ,1)) [ξ2 − ξ1, ξτ,2 − ξτ,1][δξ, δξτ ]dτ |

≤ B̂R
∫ 1

0

[
∥ξ2 − ξ1∥2 + ∥ξτ,2 − ξτ,1∥2

]1/2 [
∥δξ∥2 + ∥δξτ∥2

]1/2
dτ

≤
(CS)
B̂R

[∫ 1

0
∥ξ2 − ξ1∥2 + ∥ξτ,2 − ξτ,1∥2dτ

]1/2 [∫ 1

0
∥δξ∥2 + ∥δξτ∥2dτ

]1/2

≤ B̂R
[
∥ξ2 − ξ1∥2

L2 + ∥ξτ,2 − ξτ,1∥2
L2

]1/2 [
∥δξ∥2

L2 + ∥δξτ∥2
L2

]1/2

≤
(5.24b)

B̂R∥χ2 − χ1∥Y 2∥δχ∥Y 2

≤ B̂R∥χ2 − χ1∥Y 2 .
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Finally, we use the bounds derived above to show that for any δx with ∥δx∥Y 2 ≤ 1

it holds that

|(F ′(χ2)− F ′(χ1))[χ2 − χ1, δχ]| = | (T ′′(ξ2)− T ′′(ξ1)) [δξ, ξ2 − ξ1]

+ ⟨λ2, h′′(z2)[δz, z2 − z1]⟩

− ⟨λ1, h′′(z1)[δz, z2 − z1]⟩

+ ⟨λ2 − λ1, (h′(z2)− h′(z1))[δz]⟩

+ ⟨δλ, (h′(z2)− h′(z1))[z2 − z1]⟩|

≤ B̂R∥χ2 − χ1∥Y 2

+ 2R∥χ2 − χ1∥Y 2

+ 2R∥χ2 − χ1∥Y 2

+ 4R∥χ2 − χ1∥Y 2

≤ ω2∥χ2 − χ1∥Y 2

with

ω2(R) = (8 + B̂)R.

This directly yields the claim, as

∥(F ′(χ2)− F ′(χ))[χ2 − χ1]∥Y 2 = sup
∥δχ∥Y 2 =1

|(F ′(χ2)− F ′(χ1))[χ2 − χ1, δχ]|

≤ ω2∥χ2 − χ1∥Y 2 . (5.48)

5.4.6 Convergence of Newton’s Method

We are now ready to connect the results outlined above to prove that the Newton-

KKT method applied to the free flight optimization problem (5.6) converges to a

global minimizer as characterized in Section 5.3.1 provided that there is a u ∈ R2

with ∥u∥ = 1 such that uTξ⋆⋆
τ ≥ c. Roughly speaking, the optimal route needs

to head towards the destination, dominating any route that involves flying the

opposite direction. It is intuitively clear that this holds even for relatively strong

wind conditions.
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Theorem 5.15. — Let χ⋆⋆ = (z⋆⋆, λ⋆⋆) be a global solution of (5.6) that satisfies

the first and second order conditions for optimality with B > 0. Moreover, let there

be a c > 0 and a u ∈ R2 with ∥u∥ = 1 such that uTξ⋆⋆
τ ≥ c for almost all τ ∈ (0, 1).

Finally, let ω := ω1ω2, as given in Lemmas 5.13 and 5.14.

Then there is a RC > 0, such that the ordinary Newton iterates defined in Sec-

tion 5.3.2 converge to χ⋆⋆ at an estimated rate

∥χk+1 − χ⋆⋆∥Y 2 ≤ ω

2 ∥χ
k − χ⋆⋆∥Y 2 , (5.49)

if initialized with χ0 ∈ N (χ⋆⋆, RC) and provided that the iterates χk remain in

N (χ⋆⋆, RC). Moreover, χ⋆⋆ is unique in N (χ⋆⋆, RC).

Proof. In Theorems 5.6, 5.9 and 5.12 we showed that the inf-sup condition is

satisfied, that, Lzz(χ) is positive definite on the kernel of the constraint for all

x ∈ N (χ⋆⋆, RC), and that it is bounded from above. Consequently, F ′(χ) is invertible

with

∥F ′(χ)−1∥ ≤ ω1 ∀ χ ∈ N (χ⋆⋆, RC),

as confirmed in Lemma 5.13. Further, it follows from Lemmas 5.13 and 5.14 that

∥F ′(χ1)−1(F ′(χ2)− F ′(χ1))[χ2 − χ1]∥Y 2

≤ ∥F ′(χ1)−1∥Y 2∥(F ′(χ2)− F ′(χ1))[χ2 − χ1]∥Y 2

≤ ω1ω2∥χ2 − χ1∥Y 2

≤ ω∥χ2 − χ1∥Y 2

for χ1, χ2 ∈ N (χ⋆⋆, RC). It is clear that since ω1 is bounded and ω2 = (8 + B̂)R,

there is a RC > 0 such that ω := ω1ω2 < 2. We now define ek := χk − χ⋆⋆ and
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proceed for µ ∈ (0, 1) as follows:

∥χk + µ∆χk − χ⋆⋆∥Y 2

= ∥ek − µF ′(χk)−1F (χk)∥Y 2

= ∥ek − µF ′(χk)−1(F (χk)− F (χ⋆⋆)︸ ︷︷ ︸
=0

)∥Y 2

= ∥(1− µ)ek − µF ′(χk)−1
∫ 1

s=0

(
F ′(χk − sek)− F ′(χk)

)
ek ds ∥Y 2

≤ (1− µ) ∥ek∥Y 2 + µ

2 ω ∥ek∥Y 2 ,

which yields the claim with µ = 1 as

∥ek+1∥Y 2 ≤ ω

2 ∥ek∥Y 2 .

In order to prove uniqueness in N (χ⋆⋆, RC), assume there is a second solution

χ⋆ ̸= χ⋆⋆ with F (χ⋆) = 0 and χ⋆ ∈ N (χ⋆⋆, RC). Initialized with χ0 := χ⋆ it certainly

holds that χ1 = χ⋆. However, from (5.49) we obtain

∥χ1 − χ⋆⋆∥Y 2 ≤ ω

2 ∥χ
0 − χ⋆⋆∥Y 2 < ∥χ0 − χ⋆⋆∥Y 2 ,

due to ω < 2, which yields a contradiction.

5.5 Conclusion

It has been demonstrated that the Newton-KKT method can be used to solve the free

flight trajectory optimization problem under certain conditions. These conditions

are i) the requirement for the iterates to remain within a L∞-neighborhood of the

solution, and ii) a starting point that is sufficiently close to the solution. Such a

suitable starting point can be found efficiently by calculating shortest paths on a

specific graph [13] (Chapter 4). Hence an important tool for efficient deterministic

global optimization of the free flight problem has been established.
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5.A Appendix

5.A.1 Global Bounds

The derivative f = tτ of parametrized time as defined in (5.3) consists of two

terms, the tailwind term

f1 = −ξT
τ w

g
, (5.50)

g = v2 − wTw, (5.51)

and the length term

f2 = g−1
(
(ξT

τ w)2 + g(ξT
τ ξτ )

)1/2
. (5.52)

At each time τ , we obtain

v2 := v2 − c2
0 ≤ g ≤ v2. (5.53)
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The directional derivatives of g in direction δξ and ∆ξ ∈ δX read

g′δξ = −2wTwxδξ (5.54)

⇒ ∥g′∥ ≤ 2c0c1 (5.55)

δξTg′′δξ = −2δξTwT
x wxδξ − 2wxx[w, δξ, δξ] (5.56)

⇒ ∥g′′∥ ≤ 2(c2
1 + c0c2). (5.57)

g′′′[δξ, δξ, ∆ξ] = −6wxx[wxδξ, δξ, ∆ξ]− 2wxxx[w, δξ, δξ, ∆ξ]) (5.58)

⇒ ∥g′′′∥ ≤ 2(3c1c2 + c0c3). (5.59)

For the tailwind term, we consider

f ′
1(ξ, ξτ )[δξ, δξτ ] = g−2(ξT

τ w)(g′δξ)− g−1ξT
τ wxδξ − g−1wTδξτ , (5.60)

which is bounded by

|f ′
1(ξ, ξτ )[δξ, δξτ ]| ≤

(
2c2

0c1

v4 + c1

v2

)
∥ξτ∥∥δξ∥+ c0

v2∥δξτ∥. (5.61)

The second directional derivatives is

f ′′
1 (ξ, ξτ )[δξ, δξτ ][δ̃ξ, δ̃ξτ ] = −2g−3(g′δ̃ξ)(ξT

τ w)(g′δξ) + g−2(δ̃ξ
T
τ w)(g′δξ)

+ g−2(ξT
τ wxδ̃ξ)(g′δξ) + g−2(ξT

τ w)(δξTg′′δ̃ξ)

+ g−2(g′δ̃ξ)(ξT
τ wxδξ) − g−1(δ̃ξτ wxδξ)

− g−1wxx[ξτ , δξ, δ̃ξ] + g−2(g′δ̃ξ)(wTδξτ )

− g−1(δξT
τ wxδ̃ξ) (5.62)

and in particular

f ′′
1 (ξ, ξτ )[δξ, δξτ ]2 = −2g−3(g′δξ)2(ξT

τ w) + 2g−2(g′δξ)(ξT
τ wxδξ)

+ g−2(δξTg′′δξ)(ξT
τ w) − g−1wxx[ξτ , δξ, δξ]

− 2g−1(δξT
τ wxδξ) + 2g−2(δξT

τ w)(g′δξ), (5.63)
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which yields

|f ′′
1 (ξ, ξτ )[δξ, δξτ ][δ̃ξ, δ̃ξτ ]| ≤

[
8c3

0c
2
1

v6 + 6c0c
2
1

v4 + 2c2
0c2

v4 + c2

v2

]
∥ξτ∥∥δξ∥∥δ̃ξ∥

+
[
2c2

0c1

v4 + c1

v2

]
∥δξτ∥∥δ̃ξ∥

+
[
2c2

0c1

v4 + c1

v2

]
∥δξ∥∥δ̃ξτ∥ (5.64)

and

|f ′′
1 (ξ, ξτ )[δξ, δξτ ]2| ≤

[
8c3

0c
2
1

v6 + 6c0c
2
1

v4 + 2c2
0c2

v4 + c2

v2

]
∥ξτ∥∥δξ∥2

+
[
4c2

0c1

v4 + 2 c1

v2

]
∥δξ∥∥δξτ∥, (5.65)

respectively. Finally, the third directional derivative is

f ′′′
1 (ξ, ξτ )[δξ, δξτ ]2[∆ξ, ∆ξτ ]

= 6g−4(g′∆ξ)(g′δξ)2(ξT
τ w) − 4g−3(g′δξ)(∆ξTg′′δξ)(ξT

τ w)

− 2g−3(g′∆ξ)(δξTg′′δξ)(ξT
τ w) + g−2g′′′[δξ, δξ, ∆ξ](ξT

τ w)

− 2g−3(g′δξ)2(ξT
τ wx∆ξ) + g−2(δξTg′′δξ)(ξT

τ wx∆ξ)

− 4g−3(g′∆ξ)(g′δξ)(ξT
τ wxδξ) + 2g−2(∆ξTg′′δξ)(ξT

τ wxδξ)

+ 2g−2(g′δξ)wxx[ξτ , δξ, ∆ξ] + g−2(g′∆ξ)wxx[ξτ , δξ, δξ]

− g−1wxxx[ξτ , δξ, δξ, ∆ξ]

− 2g−3(g′δξ)2(∆ξT
τ w) + g−2(δξTg′′δξ)(∆ξT

τ w)

+ 2g−2(g′δξ)(∆ξT
τ wxδξ) − g−1wxx[∆ξτ , δξ, δξ]

− 4g−3(g′∆ξ)(g′δξ)(δξT
τ w) + 2g−2(∆ξTg′′δξ)(δξT

τ w)

+ 2g−2(g′δξ)(δξT
τ wx∆ξ) + 2g−2(g′∆ξ)(δξT

τ wxδξ)

− 2g−1wxx[δξτ , δξ, ∆ξ], (5.66)
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which is bounded by

|f ′′′
1 (ξ, ξτ )[δξ, δξτ ]2[∆ξ, ∆ξτ ]|

≤ ∥ξτ∥
v

[
c3

1
v3

(
48 c4

0
v4 + 48 c2

0
v2 + 6

)

+ c1c2

v2

(
24 c3

0
v3 + 18c0

v

)

+ c3

v

(
2 c2

0
v2 + 1

)]
∥δξ∥2∥∆ξ∥

+
[

c2
1

v3

(
8 c3

0
v3 + 6c0

v

)
+ c2

v2

(
2 c2

0
v2 + 1

)]
∥δξ∥2∥∆ξτ∥

+
[

c2
1

v3

(
16 c3

0
v3 + 12c0

v

)
+ c2

v2

(
4 c2

0
v2 + 2

)]
∥δξ∥∥δξτ∥∥∆ξ∥. (5.67)

Before we turn to the length term f2, we first consider the term

F := (ξT
τ w)2 + g(ξT

τ ξτ ) (5.68)

with

v2∥ξτ∥2 ≤ F ≤ ∥ξτ∥2v2.

We also note that

g

F
≤ 1
∥ξτ∥2 .

Then

F ′(ξ, ξτ )[δξ, δξτ ] =2(ξT
τ w)((δξT

τ w) + (ξT
τ wxδξ))

+ (g′δξ)(ξT
τ ξτ ) + 2g(ξT

τ δξτ ), (5.69)

which is bounded by

|F ′(ξ, ξτ )[δξ, δξτ ]| ≤ 2v2∥ξτ∥∥δξτ∥+ 4c0c1∥ξτ∥2∥δξ∥, (5.70)
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The second derivative is

F ′′(ξ, ξτ )[δξ, δξτ ][δ̃ξ, δ̃ξτ ] = 2(ξT
τ w)(δξT

τ wxδ̃ξ) + 2(ξT
τ wxδ̃ξ)(δξT

τ w)

+ 2(δ̃ξ
T
τ w)(δξT

τ w) + 2(ξT
τ wxδ̃ξ)(ξT

τ wxδξ)

+ 2(ξT
τ w)wxx[ξτ , δξ, δ̃ξ] + 2(δ̃ξ

T
τ w)(ξT

τ wxδξ)

+ 2(ξT
τ w)(δ̃ξ

T
τ wxδξ) + (δ̃ξ

T
g′′δξ)(ξT

τ ξτ )

+ 2(g′δξ)(δ̃ξ
T
τ ξτ ) + 2(g′δ̃ξ)(ξT

τ δξτ )

+ 2g(δ̃ξ
T
τ δξτ ) (5.71)

and in particular

F ′′(ξ, ξτ )[δξ, δξτ ]2 = 4(ξT
τ w)(δξT

τ wxδξ) + 4(δξT
τ w)(ξT

τ wxδξ)

+ 2(δξT
τ w)2 + 2(ξT

τ wxδξ)2

+ 2(ξT
τ w)wxx[ξτ , δξ, δξ] + (δξTg′′δξ)(ξT

τ ξτ )

+ 4(g′δξ)(δξT
τ ξτ ) + 2g(δξT

τ δξτ ), (5.72)

which yields

|F ′′(ξ, ξτ )[δξ, δξτ ][δ̃ξ, δ̃ξτ ]| ≤
(
4c2

1 + 4c0c2
)
∥ξτ∥2∥δξ∥∥δ̃ξ∥

+ 8c0c1∥ξτ∥∥δξ∥∥δ̃ξτ∥

+ 8c0c1∥ξτ∥∥δξτ∥∥δ̃ξ∥

+ 2v2∥δξτ∥∥δ̃ξτ∥ (5.73)

and

|F ′′(ξ, ξτ )[δξ, δξτ ]2| ≤
(
4c2

1 + 4c0c2
)
∥ξτ∥2∥δξ∥2

+ 16c0c1∥ξτ∥∥δξ∥∥δξτ∥

+ 2v2∥δξτ∥2, (5.74)
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respectively. The third derivative is

F ′′′(ξ, ξτ )[δξ, δξτ ]2[δ̃ξ, δ̃ξτ ]

= 4(δ̃ξ
T
τ w)(δξT

τ wxδξ) + 4(ξT
τ wxδ̃ξ)(δξT

τ wxδξ)

+ 4(ξT
τ w)wxx[δξτ , δξ, δ̃ξ] + 4(δξT

τ wxδ̃ξ)(ξT
τ wxδξ)

+ 4(δξT
τ w)(δ̃ξ

T
τ wxδξ) + 4(δξT

τ w)wxx[ξτ , δξ, δ̃ξ]

+ 4(δξT
τ w)(δξT

τ wxδ̃ξ) + 4(ξT
τ wxδξ)(δ̃ξ

T
τ wxδξ)

+ 4(ξT
τ wxδξ)wxx[ξτ , δξ, δ̃ξ] + 2(δ̃ξ

T
τ w)wxx[ξτ , δξ, δξ]

+ 2(ξT
τ wxδ̃ξ)wxx[ξτ , δξ, δξ] + 2(ξT

τ w)wxxx[ξτ , δξ, δξ, δ̃ξ]

+ 2(ξT
τ w)wxx[δ̃ξτ , δξ, δξ] + g′′′[δξ, δξ, δ̃ξ](ξT

τ ξτ )

+ 2(δξTg′′δξ)(δ̃ξ
T
τ ξτ ) + 4(δ̃ξ

T
g′′δξ)(δξT

τ ξτ )

+ 4(g′δξ)(δξT
τ δ̃ξτ ) + 2(g′δ̃ξ)(δξT

τ δξτ ), (5.75)

which is bounded by

|F ′′′(ξ, ξτ )[δξ, δξτ ]2[δ̃ξ, δ̃ξτ ]| ≤ 4∥ξτ∥2(c0c3 + 3c1c2)∥δξ∥2∥δ̃ξ∥

+ 8∥ξτ∥(c2
1 + c0c2)∥δξ∥2∥δ̃ξτ∥

+ 16∥ξτ∥(c2
1 + c0c2)∥δξ∥∥δξτ∥∥δ̃ξ∥

+ 16c0c1∥δξ∥∥δξτ∥∥δ̃ξτ∥

+ 8c0c1∥δξτ∥2∥δ̃ξ∥. (5.76)

For the length term f2 = g−1
√

F , we thus obtain

f ′
2(ξ, ξτ )[δξ, δξτ ] = −g−2(g′δξ)F 1/2 + 1

2g−1F −1/2F ′[δξ, δξτ ], (5.77)

which is bounded by

|f ′
2(ξ, ξτ )[δξ, δξτ ]| ≤

(
2c0c1v

v4 + 4c0c1

v3

)
∥ξτ∥∥δξ∥+ 2v−3v2∥δξτ∥. (5.78)
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The second derivative is

f ′′
2 (ξ, ξτ )[δξ, δξτ ][δ̃ξ, δ̃ξτ ] = 2g−3(g′δ̃ξ)(g′δξ)F 1/2

− g−2(δξTg′′δ̃ξ)F 1/2

− 1
2g−2(g′δξ)F −1/2F ′[δ̃ξ, δ̃ξτ ]

− 1
2g−2(g′δ̃ξ)F −1/2F ′[δξ, δξτ ]

+ 1
2g−1F −1/2F ′′[δξ, δξτ ][δ̃ξ, δ̃ξτ ]

− 1
4g−1F −3/2F ′[δξ, δξτ ]F ′[δ̃ξ, δ̃ξτ ] (5.79)

and in particular

f ′′
2 (ξ, ξτ )[δξ, δξτ ]2 = 2g−3(g′δξ)2F 1/2

− g−2(δξTg′′δξ)F 1/2

− g−2(g′δξ)F −1/2F ′[δξ, δξτ ]

+ 1
2g−1F −1/2F ′′[δξ, δξτ ]2

− 1
4g−1F −3/2(F ′[δξ, δξτ ])2, (5.80)

which yields

|f ′′
2 (ξ, ξτ )[δξ, δξτ ][δ̃ξ, δ̃ξτ ]|

≤
[
8c2

0c
2
1v

v6 + 12c2
0c

2
1

v5 + 2(c2
1 + c0c2)v

v4 + 2c2
1 + c0c2

v3

]
∥ξτ∥∥δξ∥∥δ̃ξ∥

+
[
4c0c1v

2

v5 + 4c0c1

v3

]
∥δξ∥∥δ̃ξτ∥

+
[
4c0c1v

2

v5 + 4c0c1

v3

]
∥δξτ∥∥δ̃ξ∥

+
[

v
4

v5 + v
2

v3

]
∥ξτ∥−1∥δξτ∥∥δ̃ξτ∥ (5.81)
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and

|f ′′
2 (ξ, ξτ )[δξ, δξτ ]2|

≤
[
8c2

0c
2
1v

v6 + 12c2
0c

2
1

v5 + 2(c2
1 + c0c2)v

v4 + 2c2
1 + c0c2

v3

]
∥ξτ∥∥δξ∥2

+
[
8c0c1v

2

v5 + 8c0c1

v3

]
∥δξ∥∥δξτ∥

+
[

v4

v5 + v2

v3

]
∥ξτ∥−1∥δξτ∥2 (5.82)
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The third derivative is

f ′′′
2 (ξ, ξτ )[δξ, δξτ ]2[δ̃ξ, δ̃ξτ ] =− 6g−4(g′δ̃ξ)(g′δξ)2F 1/2

+ 4g−3(g′δξ)(δ̃ξ
T
g′′δξ)F 1/2

+ g−3(g′δξ)2F −1/2F ′[δ̃ξ, δ̃ξτ ]

+ 2g−3(g′δ̃ξ)(δξTg′′δξ)F 1/2

− g−2g′′′[δξ, δξ, δ̃ξ]F 1/2

− 1
2g−2(δξTg′′δξ)F −1/2F ′[δ̃ξ, δ̃ξτ ]

+ g−3(g′δ̃ξ)(g′δξ)F −1/2F ′[δξ, δξτ ]

− 1
2g−2(δ̃ξ

T
g′′δξ)F −1/2F ′[δξ, δξτ ]

+ 1
4g−2(g′δξ)F −3/2F ′[δξ, δξτ ]F ′[δ̃ξ, δ̃ξτ ]

− 1
2g−2(g′δξ)F −1/2F ′′[δξ, δξτ ][δ̃ξ, δ̃ξτ ]

+ g−3(g′δ̃ξ)(g′δξ)F −1/2F ′[δξ, δξτ ]

− 1
2g−2(δ̃ξg′′δξ)F −1/2F ′[δξ, δξτ ]

+ 1
4g−2(g′δξ)F −3/2F ′[δξ, δξτ ]F ′[δ̃ξ, δ̃ξτ ]

− 1
2g−2(g′δξ)F −1/2F ′′[δξ, δξτ ][δ̃ξ, δ̃ξτ ]

+ 1
4g−2(g′δ̃ξ)F −3/2(F ′[δξ, δξτ ])2

+ 3
8g−1F −5/2(F ′[δξ, δξτ ])2F ′[δ̃ξ, δ̃ξτ ]

− 1
2g−1F −3/2F ′[δξ, δξτ ]F ′′[δξ, δξτ ][δ̃ξ, δ̃ξτ ]

− 1
2g−2(g′δ̃ξ)F −1/2F ′′[δξ, δξτ ]2

− 1
4g−1F −3/2F ′′[δξ, δξτ ]2F ′[δ̃ξ, δ̃ξτ ]

+ 1
2g−1F −1/2F ′′′[δξ, δξτ ]2[δ̃ξ, δ̃ξτ ], (5.83)
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which is bounded by

|f ′′′
2 (ξ, ξτ )[δξ, δξτ ]2[δ̃ξ, δ̃ξτ ]|

≤ 2∥ξτ∥
v

[
c3

v

(
c0

v
+ vc0

v2

)

+ 3c1c2

v2

(
1 + v

v
+ 6 c2

0
v2 + 4vc2

0
v3

)

+ 6c3
1

v3

(
3c0

v
+ 2vc0

v2 + 8 c3
0

v3 + 4vc3
0

v4

)]
∥δξ∥2∥δ̃ξ∥

+ 4
v

[
c2

1
v2

(
1 + v2

v2 + 9 c2
0

v2 + 7c2
0v

2

v4

)

+ c2

v

(
c0

v
+ v2c0

v3 + c3
0

v3

)]
∥δξ∥2∥δ̃ξτ∥

+ 8
v

[
c2

1
v2

(
1 + v2

v2 + 9 c2
0

v2 + 7c2
0v

2

v4

)

+ c2

v

(
c0

v
+ v2c0

v3 + c3
0

v3

)]
∥δξ∥∥δξτ∥∥δ̃ξ∥

+ 8c0c1

∥ξτ∥v3

(
1 + 3v2

v2 + 2v4

v4

)
∥δξ∥∥δξτ∥∥δ̃ξτ∥

+ 4c0c1

∥ξτ∥v3

(
1 + 3v

2

v2 + 2v
4

v4

)
∥δξτ∥2∥δ̃ξ∥

+ 3v
4

∥ξτ∥2v5

(
1 + v

2

v2

)
∥δξτ∥2∥δ̃ξτ∥. (5.84)

Lemma 5.7. — Let ∥w∥L∞(Ω) ≤ c0 ≤ v/
√

5, ∥wx∥L∞(Ω) ≤ c1, ∥wxx∥L∞(Ω) ≤ c2,

and ∥wxxx∥L∞(Ω) ≤ c3 and define v2 := v2 − c2
0. Then, for any ξ ∈ X, the third

directional derivative of f as given in (5.3) is bounded by

|f ′′′(ξ, ξτ )[δξ, δξτ ]2[∆ξ, ∆ξτ ]|

≤
(

γ0∥ξτ∥∥δξ∥2 + γ2∥δξ∥∥δξτ∥+ γ4
∥ξτ∥
∥δξτ∥2

)
∥∆ξ∥

+
(

γ1∥δξ∥2 + γ3
∥ξτ∥
∥δξ∥∥δξτ∥+ γ5

∥ξτ∥2∥δξτ∥2
)
∥∆ξτ∥ (5.33)

with γi ≥ 0, i ∈ 0, . . . , 5, given as

γ0 = 2
v4

(
37c3

1 + 21c1c2v + 2c3v
2
)

, γ3 = 40 c1

v2 ,

γ1 = 1
v3

(
29c2

1 + 7vc2
)

, γ4 = 20 c1

v2 ,

γ2 = 1
v3 (57c2

1 + 13vc2), γ5 = 181
v

. (5.34)
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Proof. We obtain f by adding f1 and f2. The third derivative of f can thus be

bounded using (5.67), (5.84), and the triangle inequality.

|f ′′′[δξ, δξτ ]2[∆ξ, ∆ξτ ]|

≤ ∥ξτ∥
v

[
c3

v

(
1 + 2c0

v
+ 2vc0

v2 + 2 c2
0

v2

)

+ 6c1c2

v2

(
1 + 1v

v
+ 3c0

v
+ 6 c2

0
v2 + 4vc2

0
v3 + 4 c3

0
v3

)

+ 6 c3
1

v3

(
1 + 6c0

v
+ 4vc0

v2 + 8 c2
0

v2 + 16 c3
0

v3 + 8vc3
0

v4 + 8 c4
0

v4

)]
∥δξ∥2∥∆ξ∥

+ 1
v

[
2 c2

1
v2

(
2 + 3c0

v
+ 2v2

v2 + 18 c2
0

v2 + 4 c3
0

v3 + 14c2
0v

2

v4

)

+ c2

v

(
1 + 4c0

v
+ 2 c2

0
v2 + 4v2c0

v3 + 4 c3
0

v3

)]
∥δξ∥2∥∆ξτ∥

+ 1
v

[
4 c2

1
v2

(
2 + 4 c3

0
v3 + 3c0

v
+ 2v2

v2 + 18 c2
0

v2 + 14c2
0v

2

v4

)

+ 2c2

v

(
1 + 4c0

v
+ 2 c2

0
v2 + 4v2c0

v3 + 4 c3
0

v3

)]
∥δξ∥∥δξτ∥∥∆ξ∥

+ 8c0c1

∥ξτ∥v3

(
1 + 3v

2

v2 + 2v
4

v4

)
∥δξ∥∥δξτ∥∥∆ξτ∥

+ 4c0c1

∥ξτ∥v3

(
1 + 3v

2

v2 + 2v
4

v4

)
∥δξτ∥2∥∆ξ∥

+ 3v4

∥ξτ∥2v5

(
1 + v2

v2

)
∥δξτ∥2∥∆ξτ∥.

With c0
v
≤ 1√

5 , we note that

c0

v
≤ 1

2 ,
v

v
≤
√

3
2 , and v

v
≤
√

5
2
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and obtain

|f ′′′[δξ, δξτ ]2[∆ξ, ∆ξτ ]| ≤ ∥ξτ∥
v

[
c3

v

5
2 +

√
3
2


+ 6c1c2

v2

9
2 + 2

√
3
2


+ 6 c3

1
v3

17
2 + 3

√
3
2

]∥δξ∥2∥∆ξ∥

+ 1
v

[
57
2

c2
1

v2 + 13
2

c2

v

]
∥δξ∥2∥∆ξτ∥

+ 1
v

[
57 c2

1
v2 + 13c2

v

]
∥δξ∥∥δξτ∥∥∆ξ∥

+ 40 c1

∥ξτ∥v2∥δξ∥∥δξτ∥∥∆ξτ∥

+ 20 c1

∥ξτ∥v2∥δξτ∥2∥∆ξ∥

+ 135
8∥ξτ∥2v

∥δξτ∥2∥∆ξτ∥,

Rounding up the values yields the bound

|f ′′′[δξ, δξτ ]2[∆ξ, ∆ξτ ]| ≤ ∥ξτ∥
v

[
4c3

v
+ 42c1c2

v2 + 74 c3
1

v3

]
∥δξ∥2∥∆ξ∥

+ 1
v

[
29 c2

1
v2 + 7c2

v

]
∥δξ∥2∥∆ξτ∥

+ 1
v

[
57 c2

1
v2 + 13c2

v

]
∥δξ∥∥δξτ∥∥∆ξ∥

+ 40 c1

∥ξτ∥v2∥δξ∥∥δξτ∥∥∆ξτ∥

+ 20 c1

∥ξτ∥v2∥δξτ∥2∥∆ξ∥

+ 18 1
∥ξτ∥2v

∥δξτ∥2∥∆ξτ∥.

Lemma 5.10. — Let ∥w∥L∞(Ω) ≤ c0 ≤ v√
5 , ∥wx∥L∞(Ω) ≤ c1, and ∥wxx∥L∞(Ω) ≤ c2.

Moreover, let v2 := v2 − c2
0. Then, for any ξ ∈ X, the second directional derivative
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of f as given in (5.3) is bounded by

|f ′′(ξ, ξτ )[δξ, δξτ ][δ̃ξ, δ̃ξτ ]| ≤ β0∥ξτ∥∥δξ∥∥δ̃ξ∥

+β1

(
∥δξ∥∥δ̃ξτ∥+ ∥δξτ∥∥δ̃ξ∥

)
+β2∥ξτ∥−1∥δξτ∥∥δ̃ξτ∥ (5.39)

with

β0 = 14 c2
1

v3 + 4 c2

v2 , β1 = 7 c1

v2 , and β2 = 4
v

. (5.40)

Proof. We obtain f by adding f1 and f2. The second derivative of f can thus be

bounded using (5.64), (5.81), and the triangle inequality.

|f ′′(ξ, ξτ )[δξ, δξτ ][δ̃ξ, δ̃ξτ ]| ≤
[
8c2

0c
2
1
c0 + v

v6 + 12c2
0c

2
1

v5

+ 2c2
1v + c0c2v + 3c0c

2
1 + c2

0c2

v4

+ 2c2
1 + c0c2

v3 + c2

v2

]
∥ξτ∥∥δξ∥∥δ̃ξ∥

+
[
4c0c1v

2

v5 + 2c2
0c1

v4 + 4c0c1

v3 + c1

v2

]
∥δξτ∥∥δ̃ξ∥

+
[
4c0c1v

2

v5 + 2c2
0c1

v4 + 4c0c1

v3 + c1

v2

]
∥δξ∥∥δ̃ξτ∥

+
[

v
4

v5 + v
2

v3

]
∥ξτ∥−1∥δξτ∥∥δ̃ξτ∥.

With c0
v
≤ 1√

5 , we note that

c0

v
≤ 1

2 ,
v

v
≤
√

3
2 , and v

v
≤
√

5
2

and obtain

|f ′′(ξ, ξτ )[δξ, δξτ ][δ̃ξ, δ̃ξτ ]| ≤
9 + 4

√
3
2

 c2
1

v3 + 4 c2

v2

 ∥ξτ∥∥δξ∥∥δ̃ξ∥

+ 13c1

2v2 ∥δξτ∥∥δ̃ξ∥

+ 13c1

2v2 ∥δξ∥∥δ̃ξτ∥

+ 15
4v
∥ξτ∥−1∥δξτ∥∥δ̃ξτ∥.
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Rounding up the values yields the bound

|f ′′(ξ, ξτ )[δξ, δξτ ][δ̃ξ, δ̃ξτ ]| ≤
[
14 c2

1
v3 + 4 c2

v2

]
∥ξτ∥∥δξ∥∥δ̃ξ∥

+ 7 c1

v2∥δξτ∥∥δ̃ξ∥

+ 7 c1

v2∥δξ∥∥δ̃ξτ∥

+ 4
v
∥ξτ∥−1∥δξτ∥∥δ̃ξτ∥.

5.A.2 Bounds in a Neighborhood of a Minimizer

Below we derive bounds that hold in a L∞-neighborhood of a global minimizer.

Let x⋆⋆ = (z⋆⋆, λ⋆⋆) be a global minimizer of (5.6) and the corresponding Lagrange

multipliers. Moreover, let x1, x2 ∈ N (x⋆⋆, R) and define ∆x := x2 − x1. Then it

holds that ∥∆x∥Y ∞ ≤ 2R and consequently

∥∆ξ∥L∞(0,1) ≤
(5.24a)

2R, (5.85)

∥∆ξτ∥L∞(0,1) ≤
(5.24a)

2R. (5.86)

Let ∥w∥L∞(Ω) ≤ c0, ∥wx∥L∞(Ω) ≤ c1, ∥wxx∥L∞(Ω) ≤ c2, and ∥wxxx∥L∞(Ω) ≤ c3,

then the following bounds hold,

|w(ξ2)− w(ξ1)| = |
∫ 1

0
wx(ξ1 + µδξ)[δξ]dµ | ≤ c1∥δξ∥ ≤ 2Rc1, (5.87)

∥wx(ξ2)− wx,(ξ1)∥ = |
∫ 1

0
wxx(ξ1 + µδξ)dµ | ≤ c2∥δξ∥ ≤ 2Rc2, (5.88)

∥wxx(ξ2)− wxx(ξ1)∥ = |
∫ 1

0
wxxx(ξ1 + µδξ)dµ | ≤ c3∥δξ∥ ≤ 2Rc3. (5.89)
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Moreover, we show that

|g(ξ2)− g(ξ1)| = |v2 − w(ξ2)Tw(ξ2)− v2 + w(ξ1)Tw(ξ1)|

= |w(ξ2)Tw(ξ2)− w(ξ1)Tw(ξ1)|

≤ 2c0c1∥δξ∥

≤ 4Rc0c1, (5.90)

|g(ξ2)2 − g(ξ1)2| = |(g(ξ2)− g(ξ1))(g(ξ2) + g(ξ1))|

≤ (2c0c1∥δξ∥)(2v2)

≤ 4c0c1v
2∥δξ∥

≤ 8Rc0c1v
2, (5.91)

|g(ξ2)3 − g(ξ1)3| = |g(ξ2)− g(ξ1)| |g(ξ1)2 + 2g(ξ1)g(ξ2) + g(ξ2)2|

≤ (2c0c1∥δξ∥)(4v4)

≤ 8c0c1v
4∥δξ∥

≤ 16Rc0c1v
4, (5.92)

|g′(ξ2)− g′(ξ1)| = |
∫ 1

0
g′′(ξ1 + µδξ)[δξ]dµ|

≤ 2(c2
1 + c0c2)∥δξ∥

≤ 4R(c2
1 + c0c2), (5.93)

∥g′′(ξ2)− g′′(ξ1)∥ = |
∫ 1

0
g′′′(ξ1 + µδξ)dµ|

≤ 2(3c1c2 + c0c3)∥δξ∥

≤ 2R(3c1c2 + c0c3). (5.94)

Furthermore, with F as given in (5.68), and (5.30) we get

v2(L⋆⋆ −R)2 ≤ v2∥ξτ∥2 ≤ F ≤ ∥ξτ∥2v2 ≤ (L⋆⋆ + R)2v2

and

|F ′(ξ, ξτ )[δξ, δξτ ]| ≤ 2v2∥ξτ∥∥δξτ∥+ 4c0c1∥ξτ∥2∥δξ∥

≤ 2v
2(L⋆⋆ + R)∥δξτ∥+ 4c0c1(L⋆⋆ + R)2∥δξ∥. (5.95)
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This yields

|F (ξ2, ξτ,2)1/2 − F (ξ1, ξτ,1)1/2|

≤ 1
2 |
∫ 1

0
F (ξ1 + µδξ)−1/2F ′(ξ1 + µδξ)dµ|

≤ v2(L⋆⋆ + R)
v(L⋆⋆ −R) ∥δξτ∥+ 2c0c1(L⋆⋆ + R)2

v(L⋆⋆ −R) ∥δξ∥, (5.96)

|F (ξ2, ξτ,2)−1/2 − F (ξ1, ξτ,1)−1/2|

≤ 1
2 |
∫ 1

0
F (ξ1 + µδξ)−3/2F ′(ξ1 + µδξ)dµ

≤ v2(L⋆⋆ + R)
v3(L⋆⋆ −R)3∥δξτ∥+ 2c0c1(L⋆⋆ + R)2

v3(L⋆⋆ −R)3 ∥δξ∥, (5.97)

|F (ξ2, ξτ,2)−3/2 − F (ξ1, ξτ,1)−3/2|

≤ 3
2 |
∫ 1

0
F (ξ1 + µδξ)−5/2F ′(ξ1 + µδξ)dµ|

≤ v2(L⋆⋆ + R)
v5(L⋆⋆ −R)5∥δξτ∥+ 2c0c1(L⋆⋆ + R)2

v5(L⋆⋆ −R)5 ∥δξ∥. (5.98)
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For f1 as defined in (5.50), we obtain

(f ′′
1 (ξ2, ξτ,2)− f ′′

1 (ξ1, ξτ,1)))[∆ξ, ∆ξτ ][δξ, δξτ ]

= g(ξ1)−3g(ξ2)−3
[
− 2g(ξ1)3(g′(ξ2)δξ)(ξT

τ,2w(ξ2))(g′(ξ2)∆ξ)

+ 2g(ξ2)3(g′(ξ1)δξ)(ξT
τ,1w(ξ1))(g′(ξ1)∆ξ)

+ g(ξ1)3g(ξ2)(δξT
τ w(ξ2))(g′(ξ2)∆ξ)

− g(ξ2)3g(ξ1)(δξT
τ w(ξ1))(g′(ξ1)∆ξ)

+ g(ξ1)3g(ξ2)(ξT
τ,2wx(ξ2)δξ)(g′(ξ2)∆ξ)

− g(ξ2)3g(ξ1)(ξT
τ,1wx(ξ1)δξ)(g′(ξ1)∆ξ)

+ g(ξ1)3g(ξ2)(ξT
τ,2w(ξ2))(∆ξTg′′(ξ2)δξ)

− g(ξ2)3g(ξ1)(ξT
τ,1w(ξ1))(∆ξTg′′(ξ1)δξ)

+ g(ξ1)3g(ξ2)(g′(ξ2)δξ)(ξT
τ,2wx(ξ2)∆ξ)

− g(ξ2)3g(ξ1)(g′(ξ1)δξ)(ξT
τ,1wx(ξ1)∆ξ)

− g(ξ1)3g(ξ2)2(δξτ wx(ξ2)∆ξ)

+ g(ξ2)3g(ξ1)2(δξτ wx(ξ1)∆ξ)

− g(ξ1)3g(ξ2)2wxx(ξ2)[ξτ,2, ∆ξ, δξ]

+ g(ξ2)3g(ξ1)2wxx(ξ1)[ξτ,1, ∆ξ, δξ]

+ g(ξ1)3g(ξ2)(g′(ξ2)δξ)(w(ξ2)T∆ξτ )

− g(ξ2)3g(ξ1)(g′(ξ1)δξ)(w(ξ1)T∆ξτ )

− g(ξ1)3g(ξ2)2(∆ξT
τ wx(ξ2)δξ)

+ g(ξ2)3g(ξ1)2(∆ξT
τ wx(ξ1)δξ)

]
.

Using the bounds from above we finally obtain

| (f ′′
1 (ξ2, ξτ,2)− f ′′

1 (ξ1, ξτ,1)) [∆ξ, ∆ξτ ][δξ, δξτ ]|

≤ β̂1R
√
∥∆ξ∥2 + ∥∆ξτ∥2

√
∥δξ∥2 + ∥δξτ∥2 (5.99)

with

β̂1 = 4
v12

(
5 + 80c0c1v

4 + 8c0c1v
2 + 12c0c1 + 16c0c2 + 4c0c3

+ 16c2
1 + 12c1c2 + 4c1 + 4c2 + 2c3

)
. (5.100)
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For f2 as defined in (5.52) we obtain

(f ′′
2 (ξ2, ξτ,2)− f ′′

2 (ξ1, ξτ,1))[∆ξ, ∆ξτ ][δξ, δξτ ]

= g(ξ1)−3g(ξ2)−3
[

2g(ξ1)3(g′(ξ2)δξ)(g′(ξ2)∆ξ)F (ξ2)1/2

− 2g(ξ2)3(g′(ξ1)δξ)(g′(ξ1)∆ξ)F (ξ1)1/2

− g(ξ2)g(ξ1)3(∆ξTg′′(ξ2)δξ)F (ξ2)1/2

+ g(ξ1)g(ξ2)3(∆ξTg′′(ξ1)δξ)F (ξ1)1/2

− 1
2g(ξ2)g(ξ1)3(g(ξ2)′∆ξ)F (ξ2)−1/2F ′(ξ2)[δξ, δξτ ]

+ 1
2g(ξ1)g(ξ2)3(g(ξ1)′∆ξ)F (ξ1)−1/2F ′(ξ1)[δξ, δξτ ]

− 1
2g(ξ2)g(ξ1)3(g′(ξ2)δξ)F (ξ2)−1/2F ′(ξ2)[∆ξ, ∆ξτ ]

+ 1
2g(ξ1)g(ξ2)3(g′(ξ1)δξ)F (ξ1)−1/2F ′(ξ1)[∆ξ, ∆ξτ ]

+ 1
2g(ξ2)2g(ξ1)3F (ξ2)−1/2F ′′(ξ2)[∆ξ, ∆ξτ ][δξ, δξτ ]

− 1
2g(ξ1)2g(ξ2)3F (ξ1)−1/2F ′′(ξ1)[∆ξ, ∆ξτ ][δξ, δξτ ]

− 1
4g(ξ2)2g(ξ1)3F (ξ2)−3/2F ′(ξ2)[∆ξ, ∆ξτ ]F ′(ξ2)[δξ, δξτ ]

+ 1
4g(ξ1)2g(ξ2)3F (ξ1)−3/2F ′(ξ1)[∆ξ, ∆ξτ ]F ′(ξ1)[δξ, δξτ ]

]

Using the bounds from above, this yields

|(f ′′
2 (ξ2, ξτ,2)− f ′′

2 (ξ1, ξτ,1))[δξ, δξτ ][δ̃ξ, δ̃ξτ ]|

≤ β̂2R
√
∥∆ξ∥2 + ∥∆ξτ∥2

√
∥δξ∥2 + ∥δξτ∥2 (5.101)

with

β̂2 = 4
v12

20 + 10c1 + 7c2 + c3 + 10c0c1 + 36c0c1v
2 + 88c0c1v

4

+ 20c0c2 + 8c0c3 + 20c2
1 + 24c1c2

+
(

3
v(L⋆⋆ −R) + 6

v3(L⋆⋆ −R)3 + 6
v5(L⋆⋆ −R)5

)
(
v2(L⋆⋆ + R) + 2c0c1(L⋆⋆ + R)2

) . (5.102)
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Lemma 5.16. — Let ξ⋆⋆, L⋆⋆ be a global minimizer of (5.6). Moreover, let ξ1, ξ2

be given such that ∥ξi − ξ⋆⋆∥C0,1(0,1) ≤ R and define ∆ξ := ξ1 − ξ2. Then there is a

B̂ <∞ such that

|(f ′′(ξ2, ξτ,2)− f ′′(ξ1, ξτ,1))[∆ξ, ∆ξτ ][δξ, δξτ ]|

≤ B̂R
√
∥∆ξ∥2 + ∥∆ξτ∥2

√
∥δξ∥2 + ∥δξτ∥2. (5.103)

Proof. With (5.99) and (5.101) we obtain

|(f ′′(ξ2, ξτ,2)− f ′′(ξ1, ξτ,1))[∆ξ, ∆ξτ ][δξ, δξτ ]|

≤ |(f ′′
1 (ξ2, ξτ,2)− f ′′

1 (ξ1, ξτ,1))[∆ξ, ∆ξτ ][δξ, δξτ ]|

+ |(f ′′
2 (ξ2, ξτ,2)− f ′′

2 (ξ1, ξτ,1))[∆ξ, ∆ξτ ][δξ, δξτ ]|

≤ B̂R
√
∥∆ξ∥2 + ∥∆ξτ∥2

√
∥δξ∥2 + ∥δξτ∥2

with B̂ = β̂1 + β̂2.
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6.1 Introduction

Today, aircraft are required to take routes in the airway network, a 3D graph over the

surface of the earth. Such routes are longer and less fuel efficient than unconstrained

routes. Air traffic associations in many places, in particular, in Europe and in the

US, are therefore investigating options to introduce Free Flight aviation regimes

that allows such routes, in an attempt to reduce congestion, travel times, and fuel

consumption. By giving pilots more freedom to choose their routes, taking into

account factors such as weather conditions, wind patterns, and individual aircraft

performance, Free Flight can improve overall efficiency and operational flexibility.

For a more comprehensive and detailed discussion of the problem and an overview

of solution approaches, we kindly direct the reader to our previous publications

[1–4] (Chapters 2, 3, 4 and 5) and the references therein.

In [1, 2] (Chapters 2 and 4), we introduced an algorithm that combines Discrete

and Continuous Optimization techniques to obtain a globally optimal trajectory

under Free Flight conditions. The approach involves constructing a discrete ap-

proximation of the problem in the form of a sufficiently dense graph, which

implicitly generates a pool of potential candidate paths. These paths (i) can be

efficiently explored using state-of-the-art shortest path algorithms, and (ii) provide

suitable initial solutions for a locally convergent continuous optimization approach.

Specifically, we proposed the application of Newton’s method to the first-order

necessary conditions, an algorithm that is known as Newton-KKT method or

Sequential Quadratic Programming (SQP) [4] (Chapter 5).

The efficiency of this hybrid method hinges on the graph density that is required

to guarantee that a discrete candidate path lies within the domain of convergence

of the continuous optimizer. The size of the domain of convergence depends on

the wind conditions, and directly impacts the computational efficiency of the

algorithm: A smaller convergence radius requires a denser graph and thus more

discrete candidate paths that need to be considered.
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In this article we provide numerical evidence that the convergence radius exceeds

the theoretical lower bound. This finding greatly enhances the robustness, the speed,

and the practical applicability of the proposed approach beyond the theoretical

guarantees that are currently known. Furthermore, our investigation confirms

that the norm that was introduced in our previous papers to quantify the size

of the domain of convergence is an appropriate choice. It effectively captures the

characteristics of the domain and provides meaningful insights into its extent. We

finally propose a nonlinear domain decomposition-inspired algorithmic modification

to increase the convergence radius and enhance optimization performance.

6.2 The Free Flight Trajectory Optimization
Problem

The vertical component of a flight trajectory is primarily governed by aircraft-

specific performance data and the corresponding reduction in weight due to fuel burn,

allowing for a relatively precise determination beforehand. In contrast, the horizontal

component is predominantly influenced by external factors, with wind conditions

being a crucial factor. As a result, a common approach involves optimizing each

component separately (e.g., [5]). In this paper, we concentrate on the optimization

of the horizontal trajectory.

Neglecting any traffic flight restrictions, we consider flight paths in the

Sobolev-Space

X = {ξ ∈ W 1,∞((0, 1),R2) | ξ(0) = xO, ξ(1) = xD}. (6.1)

connecting origin xO and destination xD. A short calculation reveals that an

aircraft travelling along such a path ξ with constant airspeed v through a three

times continuously differentiable wind field w ∈ C3(R2,R2) of bounded magnitude

∥w∥L∞ < v reaches the destination after a flight duration

T (ξ) =
∫ 1

0
f
(
ξ(τ), ξτ (τ)

)
dτ, (6.2)
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where ξτ denotes the time derivative of ξ and

f(ξ, ξτ ) := tτ =
−ξT

τ w +
√

(ξT
τ w)2 + (v2 − wTw)(ξT

τ ξτ )
v2 − wTw

, (6.3)

see [1–4] (Chapters 2, 3, 4 and 5).

Among these paths ξ, we need to find one with minimal flight duration T (ξ),

since that is essentially proportional to fuel consumption [6]. This classic of optimal

control is known as Zermelo’s navigation problem [7].

Since the flight duration T as defined in (6.2) is based on a time reparametrization

from actual flight time t ∈ [0, T ] to pseudo-time τ ∈ (0, 1) according to the

actual flight trajectory x(t) = ξ(τ(t)) such that ∥xt(t)− w(x(t))∥ = v, the actual

parametrization of ξ in terms of pseudo-time τ is irrelevant for the value of T and we

can restrict the optimization to finding the representative with constant ground speed

∥ξτ (τ)∥. Hence, we will subsequently consider the constrained minimization problem

min
ξ∈X, L∈R

T (ξ), s.t. ∥ξτ (τ)∥2 = L2 for a.a. τ ∈ (0, 1). (6.4)

If the constraint is satisfied, L can be interpreted as the path length.

6.3 Numerical Results

In the following we explore three key aspects of Free Flight Optimization numerically:

the gap between the empirical convergence radius and its theoretical lower bound, the

suitability of the norm used in previous works for assessing convergence accurately,

and an algorithmic approach for increasing the convergence radius.

These points will be studied on a benchmark example of crossing a wind field

consisting of 15 regularly aligned disjoint vortices from xO = (0, 0) to xD = (1, 0)

at an airspeed of v = 1, see Figure 6.1 a). The wind speed attains its maximum at

the center of a vortex with ∥w∥L∞ ≤ 1
2v and decreases monotonically to 0 towards

the boundary. A formal definition is given in [1] (Chapter 2).

Traversing a vortex, there are two locally optimal options; using the tailwind on

one side or avoiding the headwind with a detour on the other side (cf. [1], Chapter 2,

example b)). Hence, there may be roughly O(2n) locally optimal routes in a wind
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field with n vortices, posing a challenging problem for global optimization; moreover,

a wind field setting of this complexity will rarely if ever be encountered in practice.

a)
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Figure 6.1: a) The extremes of the sampled part of the two-dimensional subspace are
shown. Blue: globally optimal route ξ⋆⋆, green: high-frequency deviation ξ⋆⋆ + ∆ξhf , red:
low-frequency deviation ξ⋆⋆ + ∆ξlf . b) Empirical domain of convergence. White: Newton’s
method converged back to the global optimum, gray: it did not. Dashed lines: constant
combined norm ∥∆ξ∥W 1,∞ . For the purpose of illustration the sign is chosen based on
the direction of the respective deviation. c) Via an affine transformation, each of the
quadrants of b) is mapped into the space spanned by angular and distance error.
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6.3.1 Size of the Convergence Radius

It has been shown in [4] (Chapter 5) that there is a positive convergence radius RC

such that the Newton-KKT method initialized with ξ converges to a minimizer ξ⋆⋆ if

∥ξ − ξ⋆⋆∥L∞(0,1)︸ ︷︷ ︸
distance err.

+ ∥(ξ − ξ⋆⋆)τ∥L∞(0,1)︸ ︷︷ ︸
angular err.

+|L− L⋆⋆|+ ∥λ− λ⋆⋆∥L∞(0,1) ≤ RC . (6.5)

Since the constraint in (6.4) is only weakly active, the Lagrangian Multiplier can

directly be initialized with λ = λ⋆⋆ = 0 (see [4], Chapter 5). Moreover, L can

reasonably be initialized with the path length of the candidate route. Hence we

concentrate on the first two terms which we will refer to as distance and angular

error. Note that higher order derivatives (e.g., curvature) do not affect the overall

travel time (6.2). In the following we examine a two-dimensional affine subspace

of the trajectory space that allows us to separate the individual impact of these

error terms (see discussion in Section 6.3.2);

M := ξ⋆⋆ + R∆ξhf + R∆ξlf , (6.6)

which is anchored at the global optimum ξ⋆⋆ and spanned by a low- and a high-

frequent deviation, both of the form

∆ξf (τ) = n(τ) sin(kfπτ), f ∈ {hf, lf} (6.7)

with klf = 1, khf = 30 and n(τ) ∈ R2 denoting a unit vector perpendicular to the

optimal direction of flight ξ⋆⋆
τ (τ). The norm of such a deviation reads

∥∆ξf∥W 1,∞(0,1) = ∥∆ξf∥L∞(0,1) + ∥∆ξf
τ ∥L∞(0,1) = 1 + kfπ

and consequently

∥∆ξ∥W 1,∞(0,1) = ∥ahf∆ξhf + alf∆ξlf∥W 1,∞(0,1)

= |ahf |(1 + khfπ) + |alf |(1 + klfπ).

From this subspace M candidates ξ are sampled around the global optimum and

used as starting points in order to solve the optimization problem (6.4) via the
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Newton-KKT method as described in [4] (Chapter 5). Figure 6.1 a) shows the global

optimum in blue and the extremes of the sampled region in red and green, solid

and dotted, respectively. Figure 6.1 b) shows whether the procedure converged back

to the optimum (white) or not (gray) with the abscissa and ordinate indicating

the Sobolev-norm of the high- and low-frequency deviation, respectively. The total

Sobolev-distance (6.8a) is indicated by dotted contour lines. It can be shown that

even under mild wind conditions, RC ≈ 10−8 holds. Our numerical experiments,

however, reveal that the domain of convergence is consistently larger than 10−1 –

several orders of magnitude larger than the theoretical guaranty.

6.3.2 Relevance of the Error Terms

With the same norm, a low-frequent deviation introduces mostly distance error,

while a deviation with high frequency results in significant angular error. This

observation allows transforming each quadrant of Figure 6.1 b) into the space

of distance and angular error via

Distance error:

∥∆ξ∥L∞ = |alf |+ |ahf | = 1
1 + klfπ

∥∆ξlf∥W 1,∞ + 1
1 + khfπ

∥∆ξhf∥W 1,∞ ,

(6.8a)
Angular error:

∥∆ξτ∥L∞ = |alf | klfπ + |ahf | khfπ = klfπ

1 + klfπ
∥∆ξlf∥W 1,∞ + khfπ

1 + khfπ
∥∆ξhf∥W 1,∞ ,

(6.8b)

as shown in Figure 6.1 c). Note that both deviations contribute to angular and

distance errors. As a result, cones around the axes (depicted as light gray regions)

cannot be represented using deviations of the specified form.

Both error terms are significant. A viable route can have a large distance error if

it is far from the optimum (Figure 6.1 a), red paths), but it should exhibit parallel

behavior for a small angular error. On the other hand, if the candidate path zig-zags

around the optimum, it will have a substantial angular error (Figure 6.1 a), green

paths), but it cannot deviate significantly from the optimal path, leading to a

lower distance error.
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In terms of distance error, the extent of the domain of convergence is largely

determined by the wind field. At each vortex there are two locally optimal options;

passing left or right. At some point one will inevitably enter the convergence

region of the next local optimum.

6.3.3 Algorithmic Improvement

Our approach focuses on candidate routes with a high angular error, as exem-

plified by the red route in Figure 6.2. This is of importance for the discrete-

continuous algorithm, since graph-based shortest paths tend to zig-zag around

an optimizer [3] (Chapter 3).

It is intuitively clear that on a local scale, an optimal trajectory is nearly

straight. We exploit this for reducing high-frequent errors by solving local trajectories

on an overlapping decomposition of the time domain, thus realizing a nonlinear

alternating Schwarz method [8].

We select equidistant points along the initial route, such that the distance

between consecutive points is smaller than significant wind field structures. In the

example, the route was obtained by imposing a large, high-frequency deviation as

before and divided into 11 segments, deliberately not a divisor of the frequency.

This initial route lies outside the convergence region (see Figure 6.2).

Figure 6.2: The initial guess (red) is divided into segments, on which the trajectory is
locally optimized (green). This process is repeated, and the resulting trajectory (orange)
is the initial guess for the optimization of the entire route. Starting from the smoothed
guess (orange), Newton’s method converges to the global optimizer (blue), while from the
initial guess (red) it does not.
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In the first step, we calculate the optimal routes on all subintervals (depicted

in green). Next, utilizing this refined segment, we repeat the process with shifted

waypoints (depicted in orange). A significant portion of the oscillation has been

smoothed out, resulting in a notable reduction of the angular error. Using this

refined segment as a starting point for optimizing the entire route leads us to

the desired optimum (blue). Figure 6.3 reveals, that this improvement enlarges

the convergence region significantly.

4 2 0 2 4
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0.00
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lf ||
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Figure 6.3: The approach has led to a significant increase of the domain of convergence
(cf. Fig. 6.1 b)).

6.4 Conclusion

The recently proposed Discrete-Continuous Hybrid Algorithm for Free Flight

Trajectory Optimization relies on the existence of a sufficiently large domain of

convergence around a global minimizer. In our study, we have presented compelling

evidence that this condition is satisfied even under highly challenging conditions

and that the measure we have proposed for assessing it is appropriate. Furthermore,

we have introduced a domain decomposition method to expand the convergence

region, which is expected to significantly enhance the practical performance of

the hybrid approach.
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7.1 A Priori Estimates

The DisCOptER algorithm, developed in this work, relies fundamentally on the

existence of a sufficiently large region surrounding the global optimum, within which

the ordinary Newton-KKT method can converge. We reconsider Theorem 5.15,

which proved that this condition holds true if two key assumptions are met.

Theorem 5.15. — Let χ⋆⋆ = (z⋆⋆, λ⋆⋆) be a global solution of (5.6) that satisfies

the first and second order conditions for optimality with B > 0. Moreover, let there

be a c > 0 and a u ∈ R2 with ∥u∥ = 1 such that uTξ⋆⋆
τ ≥ c for almost all τ ∈ (0, 1).

Finally, let ω := ω1ω2, as given in Lemmas 5.13 and 5.14.

Then there is a RC > 0, such that the ordinary Newton iterates defined in Sec-

tion 5.3.2 converge to χ⋆⋆ at an estimated rate

∥χk+1 − χ⋆⋆∥Y 2 ≤ ω

2 ∥χ
k − χ⋆⋆∥Y 2 , (5.49)

if initialized with χ0 ∈ N (χ⋆⋆, RC) and provided that the iterates χk remain in

N (χ⋆⋆, RC). Moreover, χ⋆⋆ is unique in N (χ⋆⋆, RC).

The first assumption asserts the existence of a direction u and a constant c > 0,

in which the globally optimal trajectory consistently points, such that

uTξ⋆⋆
τ ≥ c for almost all τ ∈ (0, 1).

The second originates from the sufficient conditions for optimality and essentially

requires the second derivative of the objective’s Hessian to be strictly positive

definite on the kernel of the constraints, characterized by the constant B > 0.

In this section it will be shown, that these conditions are satisfied and that the

involved constants can be calculated from a priori known global bounds on the

wind conditions if the wind is not too rough. With this in place, the DisCOptER

algorithm converges deterministically and yields a globally optimal solution.

We will start by examining the simpler scenario of still air, demonstrating that

the requirements are met under these conditions. Subsequently, we will extend the

discussion to the more complex case of moderate wind conditions.
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7.1.1 Still Air

If there is no wind at all, the objective function of (5.6) reduces to

T (ξ) =
∫ 1

0

∥ξτ∥
v

dτ =
(5.6)

L

v

for feasible (ξ, L). It is easy to see that the optimum is the one trajectory that mini-

mizes the path length L, which of course is the straight line. With L̃ := ∥xD − xO∥

denoting the distance from origin to destination and u := xD−xO

L̃
the unit vector

in this direction, the solution can be expressed as

ξ⋆⋆(τ) = xO + τL̃u, L⋆⋆ = L̃. (7.1)

First it shall be confirmed that this solution is a stationary point, i.e., that

the necessary conditions for optimality as given in (5.16) are satisfied. With the

Lagrangian multipliers λ⋆⋆ = 0 as of (5.19) it holds that

T ′(ξ⋆⋆)[δξ] + 2
∫ 1

0
λ⋆⋆︸︷︷︸

=0 (5.19)

(
δξT

τ ξ⋆⋆
τ − δL L⋆⋆

)
dτ = 2

v

∫ 1

0
δξT

τ ξ⋆⋆
τ dτ

= 2
v

L̃uT
∫ 1

0
δξτ dτ︸ ︷︷ ︸

=0 (5.9)

= 0

for any δz ∈ δZ. Moreover, for any δλ ∈ Λ∗ it holds that

∫ 1

0
δλ
(
(ξ⋆⋆

τ )Tξ⋆⋆
τ − (L⋆⋆)2

)
dτ =

∫ 1

0
δλ

L̃2 uTu︸︷︷︸
=1

−L̃2

 dτ = 0,

which completes the necessary conditions.

Further, it can be shown that this simple instance of the free flight trajectory

optimization problem is locally convex in the sense that the LBB condition as

previously described in Section 5.3.1.2 is satisfied. It is easy to see that

ξT
τ u ≥ L̃2

2 > 0 ∀τ ∈ (0, 1) (7.2)

for every z ∈ N (z⋆⋆, L̃
2 ) . Consequently, the inf-sup condition is satisfied for any

such z, as shown in Theorem 5.6.
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It remains to show that the second directional derivative of T , now given by

T ′′(ξ)[δξ, δξτ ]2 =
∫ 1

0

∥ξτ∥2∥δξτ∥2 − (ξT
τ δξτ )2

v∥ξτ∥3 dτ,

is strictly positive for any z ∈ Z and any δz ∈ δZ that satisfies ξT
τ δξτ = LδL.

Obviously, T ′′ is in general non-negative and vanishes only if δξτ is collinear

to ξτ . These directions, however, do not maintain origin and destination and are

hence not contained in δX as described in (5.9).

In order to verify this, assume there was such a direction δξτ = a(τ)ξτ with some

a : (0, 1) 7→ R. From ξT
τ δξτ = LδL follows that δξτ = LδL

∥ξτ ∥2 ξτ , which reveals

a contradiction, since

0 !=
(5.9)

∫ 1

0
δξτ dτ = LδL

∫ 1

0

1
∥ξτ∥2 dτ ̸= 0.

Consequently, it can be concluded that in this simple case the problem is convex

for any z ∈ N (z⋆⋆, R) . I.e., the straight connection is the only minimizer in this

neighborhood. Furthermore, this implies that all the prerequisites of Theorem 5.15

are satisfied. Hence, the defined Newton-KKT approach converges locally and

consequently the discrete-continuous hybrid algorithm DisCOptER developed in

this work converges globally.

7.1.2 Moderate Wind Conditions

In contrast to the case of zero wind, realistic wind fields often exhibit a large

number of local minima which necessitates efficient and robust global optimiza-

tion algorithms.

The convergence Theorem 5.15 relies on the existence of constants u, c, and B.

These constants serve two vital purposes: qualitatively, they establish the existence

of a domain of convergence, and quantitatively, they determine its size. It will

now be shown that such constants do exist and can be calculated from a priori

assumptions regarding the wind conditions, if those are sufficiently mild in terms

of actual speed as well as spatial derivatives.

This analysis can be divided into two primary components, similar to the

case of no wind. First, it will be established that the angle between the optimal
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trajectory and the straight connection remains bounded, thereby providing values

for the constants c and u. This, in conjunction with previous findings, verifies

the satisfaction of the inf-sup condition (5.20). Secondly, it will be demonstrated

that the objective functional T is indeed positive definite on the kernel of the

constraints, as described in equation (5.22).

Lemma 7.1. — Let z⋆⋆ = (ξ⋆⋆, L⋆⋆) be a globally optimal solution of (5.6) and

u := xD−xO

L̃
denote the unit vector from origin to destination. Moreover, let the

wind speed be bounded by

∥w∥L∞(Ω) ≤ c0 <
π − 2
π + 2v. (7.3)

Then there is a c > 0 such that

uTξ⋆⋆
τ (τ) ≥ c ∀τ ∈ (0, 1). (7.4)

Proof. W.l.o.g. assume that the problem is posed such that u = [1, 0]T. With α(τ)

denoting the angle between u and the ground speed vector ξ⋆⋆
τ (τ), the latter can be

written as

ξ⋆⋆
τ (τ) = L⋆⋆

[
cos(α(τ))
sin(α(τ))

]
,

due to ∥ξ⋆⋆
τ ∥ =

(5.6)
L⋆⋆. As stated in Lemma 5.3 the path length L⋆⋆ of a global

minimizer is bounded by

L⋆⋆ ≤ v + c0

v − c0
L̃ <

π

2 L̃.

According to Bellman’s principle of optimality, any subpath taken from an optimal

trajectory is also optimal. As a consequence, the minimizer’s turning rate is bounded,

|ατ (τ)| ≤ ατ , and can be determined by creating a path with a constant maximum

curvature, which is a circular segment that stretches from the starting point to the

destination, with a length of LS = v+c0
v−c0

L̃ (see Figure 7.1). Then it holds that

LS

L̃
= ατ /2

sin(ατ /2) ⇒ |ατ (τ)| ≤ ατ < π.
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In order to construct a case in which the optimum trajectory maximizes the angle

α between ξ⋆⋆
τ and u, assume that the maximum is attained right at the start, i.e.,

α(0) = α and that the angle is decreased at maximum rate throughout, i.e.,

ξτ (τ) = L

[
cos(α− τατ )
sin(α− τατ )

]
. (7.5)

This describes exactly the circular segment depicted in Figure 7.1. Let v := [0, 1]T

be a unit vector perpendicular to u, then any trajectory connecting origin and

destination satisfies

L̃ =
∫ 1

0
uTξτ dτ and 0 =

∫ 1

0
vTξτ dτ.

Insertion of (7.5) into the second equation yields

0 = L
∫ 1

0
sin(α− τατ )dτ

= L

ατ

(cos(α− ατ )− cos(α))

= 2L

ατ

sin(ατ /2) sin(α− ατ /2).

As |ατ | < π, the only solution is

α = ατ

2 −
π

2 <
π

2 ,

which completes the proof, since

uTξτ = L⋆⋆ cos α ≥ L⋆⋆ cos α > 0.

With Theorem 5.6, it follows directly that the inf-sup condition is satisfied

for z⋆⋆ and any z ∈ N (z⋆⋆, R) .

In order to proceed with the second part of the LBB condition, another

supporting Lemma is required. Starting at a feasible point (L, ξ), we are only

interested in the subspace tangential to the constraints, i.e., in directions δz ∈ δZ

that satisfy δξT
τ ξτ = δL L. As discussed in Section 7.1.1, directions δξτ parallel to

ξτ are not contained in δXτ . It will now be show that the angle between δξτ and

ξτ , measured in the L2-norm, cannot get arbitrarily small.
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α(0)
α(3/4)

L̃

LS
ξS

τ (0)

ξS
τ (3/4)

xO xD

Figure 7.1: Illustration of the maximum angle between the straight line from xO to xD

and the ground speed vector ξτ .

Lemma 7.2. — Let ξ ∈ X be a feasible point of (5.6), i.e., ∥ξτ∥ = L f.a.a.

τ ∈ (0, 1). Moreover, define L̃ := ∥xD − xO∥. Then it holds that

∥δξT
τ ξτ∥2

L2(0,1) ≤
(L/L̃)4

(L/L̃)2 + 1
L̃2∥δξτ∥2

L2(0,1) (7.6)

for any δz ∈ δZ such that δξT
τ ξτ = δL L.

Proof. With respect to the flight direction ξτ a direction δξτ can be divided into

a tangential component δξ∥
τ = a(τ)ξτ with a(τ) : (0, 1) 7→ R and a perpendicular

component δξ⊥
τ with ξT

τ δξ⊥
τ = 0, such that δξτ = δξ⊥

τ + δξ∥
τ . From δξT

τ ξτ = δL L

immediately follows that

LδL = ξT
τ δξτ = ξT

τ (δξ⊥
τ + δξ∥

τ ) = ξT
τ δξ∥

τ = aξT
τ ξτ =

(5.6)
aL2

⇒ a(τ) = δL

L
= const.

Hence,

δξ∥
τ = δL

L
ξτ (7.7)

⇒ ∥δξ∥
τ∥2

L2(0,1) =
∫ 1

0
∥δξ∥

τ∥2dτ =
(7.7)

δL2

L2

∫ 1

0
∥ξτ∥2dτ =

(5.8)
δL2. (7.8)
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For any δξ ∈ δX it holds that 0 =
(5.9)

∫
δξτ dτ =

∫
δξ⊥

τ dτ +
∫

δξ∥
τ dτ , which yields

∫ 1

0
∥δξ⊥

τ ∥2dτ ≥
(
∥
∫ 1

0
δξ⊥

τ dτ∥
)2

=
(
∥
∫ 1

0
δξ∥

τ dτ∥
)2

=
(7.7)

δL2

L2

(
∥
∫ 1

0
ξτ dτ∥

)2

= L̃2

L2 δL2

=
(7.8)

L̃2

L2∥δξ∥
τ∥2

L2(0,1), (7.9)

since ∥δξ∥
τ∥2

L2(0,1) =
∫ 1

0 ∥δξ∥
τ∥2dτ = δL2. Due to the orthogonality of δξ∥

τ and δξ⊥
τ ,

the Pythagorean equation ∥δξτ∥2 = ∥δξ⊥
τ ∥2 + ∥δξ∥

τ∥2 holds, which leads to

∥δξ∥
τ∥2

L2(0,1) = ∥δξτ∥2
L2(0,1) − ∥δξ⊥

τ ∥2
L2(0,1)

≤
(7.9)
∥δξτ∥2

L2(0,1) −
L̃2

L2∥δξ∥
τ∥2

L2(0,1)

≤ L2

L2 + L̃2
∥δξτ∥2

L2(0,1). (7.10)

With this, everything is in place to prove the claim

∥δξT
τ ξτ∥2

L2(0,1) =
∫ 1

0
(δξT

τ ξτ )2dτ

=
∫ 1

0

(
ξT

τ δξ∥
τ

)2
dτ

=
(5.6)

L2
∫ 1

0
∥δξ∥

τ∥2dτ

≤
(7.10)

L4

L2 + L̃2
∥δξτ∥2

L2(0,1).

As a first step on the way to a lower bound for T ′′ a general lower bound for

the second directional derivative of f is provided in the following Lemma.

Lemma 7.3. — Let ∥w∥L∞(Ω) ≤ c0, ∥wx∥L∞(Ω) ≤ c1, and ∥wxx∥L∞(Ω) ≤ c2 and

define v2 := v2 − c2
0 as well as v

2 := v2 + c2
0. Then, for any z ∈ Z, the second
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directional derivative of f as defined in (5.3) is bounded from below by

f(ξ, ξτ )′′[δξ, δξτ ]2 ≥ −β0
∥ξτ∥

v

∥δξ∥2

L̃2
− β1

∥δξ∥
L̃

∥δξτ∥
v

+ β2
∥δξτ∥2

v∥ξτ∥

− β3
∥δξτ∥

v

|ξT
τ δξτ |
∥ξτ∥2 − β4

(ξT
τ δξτ )2

v∥ξτ∥3 , (7.11)

where βi ∈ R+, i ∈ 0 . . . 4, with

β0 = L̃2v

 c2
1

v3

(
8 c3

0
v3 + 12 c2

0
v2 + 6c0

v
+ 1

)

+ c2

v2

(
2 c2

0
v2 + 2vc0

v2 + 2c0

v
+ 1

), (7.12a)

β1 = L̃vc1

v2

(
8 c3

0
v3 + 4 c2

0
v2 + 8c0

v
+ 2

)
, (7.12b)

β2 = v

v

(
v

v
− c4

0
v4

)
, (7.12c)

β3 = 2vc2
0

v3 , (7.12d)

β4 = v

v
. (7.12e)

Proof. As outlined in the Appendix of Chapter 5, f , as defined in (5.3), consists of

two terms, the tailwind term

f1 = −ξT
τ w

g
, with (7.13)

g = v2 − wTw, (7.14)

and the length term

f2 = g−1
(
(ξT

τ w)2 + g(ξT
τ ξτ )

)1/2
. (7.15)
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Consequently, we obtain f ′′ by adding f ′′
1 and f ′′

2 from (5.63) and (5.80) as

f ′′(ξ, ξτ )[δξ, δξτ ]2 = (f ′′
1 + f ′′

2 )[δξ, δξτ ]2

= −2g−3(g′δξ)2(ξT
τ w) + g−2(δξTg′′δξ)(ξT

τ w)

+ 2g−2(g′δξ)(ξT
τ wxδξ) − g−1wxx[ξτ , δξ, δξ]

+ 2g−2(g′δξ)(δξT
τ w) − 2g−1(δξT

τ wxδξ),

+ 2g−3(g′δξ)2F 1/2 − g−2(δξTg′′δξ)F 1/2

− g−2(g′δξ)F −1/2F ′[δξ, δξτ ] + 1
2g−1F −1/2F ′′[δξ, δξτ ]2

− 1
4g−1F −3/2(F ′[δξ, δξτ ])2.

Using the previously derived bounds for g and F , as well as their derivatives, yields

the claimed lower bound

f(ξ, ξτ )′′[δξ, δξτ ]2 ≥ −
[

c2
1

v3

(
8 c3

0
v3 + 12 c2

0
v2 + 6c0

v
+ 1

)

+ c2

v2

(
2 c2

0
v2 + 2vc0

v2 + 2c0

v
+ 1

)]
∥ξτ∥∥δξ∥2

− c1

v2

(
8 c3

0
v3 + 4 c2

0
v2 + 8c0

v
+ 2

)
∥δξ∥∥δξτ∥

+ 1
∥ξτ∥

(
1
v
− c4

0
v5

)
∥δξτ∥2

− 2 c2
0

v3∥ξτ∥2∥δξτ∥|ξT
τ δξτ |

− 1
v∥ξτ∥3 (ξT

τ δξτ )2.

This directly leads to the following theorem.

Theorem 7.4. — Let (L⋆⋆, ξ⋆⋆) be a global minimizer of (5.6). Moreover, let the

wind speed be bounded as usual with sufficiently small c0, c1, c2. Then there is a

B > 0 such that

T ′′(ξ⋆⋆)[δξ, δξτ ]2 ≥ B∥δz∥2
Z2 (7.16)

for any δz ∈ δZ such that δξT
τ ξ⋆⋆

τ = δL L⋆⋆.
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Proof. It was shown in Lemma 5.3, that an optimal trajectory cannot be arbitrarily

longer than the straight connection. More precisely,

L̃ ≤ L⋆⋆ ≤ v + c0

v − c0
L̃ (7.17)

with L̃ := ∥xD−xO∥. Further, the proof involves a few bounds regarding components

of δz. Wirtinger’s inequality is one of them (refer to Theorem 5.5);

∥δξ∥2
L2(0,1) ≤

1
π
∥δξτ∥2

L2(0,1). (7.18)

Since δξT
τ ξ⋆⋆

τ = δL L⋆⋆, it holds that

|δL| ≤
∫ 1

0

∥δξτ∥L⋆⋆

L⋆⋆
dτ ≤ ∥δξτ∥L2(0,1). (7.19)

Using the two bounds above, it follows that the magnitudes of the components of

δz are inherently linked and can be represented by one of them;

∥δz∥2
Z2 =

(5.12b)
∥δξ∥2

L2(0,1) + ∥δξτ∥2
L2(0,1) + δL2 ≤

(5.31)
(7.19)

2π + 1
π
∥δξτ∥2

L2(0,1). (7.20)

Finally, the proof is completed combining the definition of T from (5.2), the bounds
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from Lemmas 7.2 and 7.3, and Young’s inequality;

T ′′(ξ⋆⋆)[δξ, δξτ ]2 =
(5.2)

∫ 1

0
f ′′(ξ⋆⋆, ξ⋆⋆

τ )[δξ, δξτ ]2dτ

=
(7.11)
(5.6)

∫ 1

0
−β0

L⋆⋆

v

∥δξ∥2

L̃2
− β1

∥δξ∥
L̃

∥δξτ∥
v

+ β2
∥δξτ∥2

vL⋆⋆

− β3
∥δξτ∥

v

|δξT
τ ξ⋆⋆

τ |
(L⋆⋆)2 − β4

(δξT
τ ξ⋆⋆

τ )2

v(L⋆⋆)3 dτ

≥
(Y )

∫ 1

0

(
−β0

L⋆⋆

v
−

β1
2

)
∥δξ∥2

L̃2
+
(
−

β1
2 + β2

v

L⋆⋆
−

β3
2

)
∥δξτ∥2

v2

−
(

β3
v

2L⋆⋆
+ β4

) (δξT
τ ξ⋆⋆

τ )2

v(L⋆⋆)3 dτ

≥
(7.6)
(5.31)

− vL⋆⋆

πL̃2
β0 −

(
v2

πL̃2
+ 1

)
β1
2 + v

L⋆⋆
β2

−
(

1 + v2/L̃2

(L⋆⋆/L̃)2 + 1

)
β3
2 −

vL⋆⋆/L̃2

(L⋆⋆/L̃)2 + 1
β4

∥δξτ∥2
L2(0,1)

v2

≥
(5.28)
(7.20)

π

2π + 1

− v + c0

v − c0

v

πL̃
β0 −

(
v2

πL̃2
+ 1

)
β1
2 + v − c0

v + c0

v

L̃
β2

−
(

1 + v2

2L̃2

)
β3
2 −

v + c0

v − c0

v

2L̃
β4

∥δz∥2
Z2

v2 .

Due to β0, . . . , β4 ≥ 0 as given in (7.12), the bracket contains only one positive

term. Further inspection reveals that every term is monotonically decreasing in

c0, c1, c2. Since for c0, c1, c2 = 0 the bracket reduces to
[
0 + 0 + v

L̃
+ 0− v

2L̃

]
= v

2L̃
> 0,

it holds that

T ′′(ξ⋆⋆)[δξ, δξτ ]2 ≥ B∥δz∥2
Z2

with B > 0 for sufficiently mild wind (small c0, c1, c2).

Thorough analysis of the lower bound at a global minimizer (L⋆⋆, ξ⋆⋆) revealed

that the second derivative of the objective functional T ′′ is indeed strictly positive

definite on the kernel of the constraints, given that the wind is sufficiently mild
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along the trajectory. Furthermore, this characteristic extends to the Hessian of the

Lagrangian because the constraint is locally bounded (refer to Theorem 5.9).

Given that the inf-sup condition is also satisfied, we can deduce that the

minimizer is isolated. Consequently, the DisCOptER algorithm developed in this

work can be effectively employed to determine this global minimizer.
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7.2 Efficiently Harvesting the Benefits of
Free Flight

In this section we present a comprehensive comparison between graph-based routing

and our DisCOptER algorithm for solving the Free Flight Trajectory Optimization

Problem under conditions closely resembling real-world scenarios. Specifically, we

explore routing between European capital airports while considering realistic wind

conditions on a spherical Earth.

Our investigation yields two significant findings. Firstly, the DisCOptER algo-

rithm demonstrates exceptional performance, successfully identifying the globally

optimal route without requiring the fallback strategy of iterating through multiple

shortest paths.

Secondly, we demonstrate that the efficiency of graph-based routing can be

substantially improved by focusing on high angular resolution during the graph

construction. Unsurprisingly, increasing the resolution of the underlying graph

leads to convergence of the corresponding discrete shortest path towards the

continuous solution provided by the DisCOptER algorithm. Importantly, however,

the proposed method improves the convergence rate compared to the naive approach

of constructing a locally complete graph.

Throughout the study, we model the Earth as a perfect sphere with a radius

of 6,371 kilometers. Geographical spherical coordinates will be represented in the

format (λ, ϕ), where λ ∈]−180◦, 180◦] denotes the longitude and ϕ ∈ [−90◦, 90◦]

represents the latitude in degrees. Additionally, all angular measures are assumed

to be in degrees, and trigonometric functions are applied accordingly.

7.2.1 Graph-Based Routing

EUROCONTROL frequently publishes the "Free Route Airspace (FRA) points list

for the European Civil Aviation Conference (ECAC) and neighbouring States" 1.

Utilizing this data for planar routing, we ignore the fact that many waypoints are
1https://www.eurocontrol.int/publication/free-route-airspace-fra-points-list-ecac-area

https://www.eurocontrol.int/publication/free-route-airspace-fra-points-list-ecac-area
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defined only for specific flight levels. Instead, we consider a waypoint if it exists

for a particular set of coordinates at any flight level, with at most one waypoint

being considered for each position. This results in a set of 6,620 waypoints, as

shown in Figure 7.2.
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Figure 7.2: FRA Waypoints (blue) and selected major airports (red, cf. Table 7.2).

Further, we assume that a path can be formed by any combination of these

waypoints. Attempting to consider the complete digraph when using Dijkstra’s

algorithm to calculate paths is computationally infeasible and impractical. Instead,

our objective is to construct a digraph that enables a direct trade-off between

computational effort and solution quality.

Introducing a fixed connectivity radius as in the DisCOptER algorithm, is also

not viable. As Figure 7.2 exhibits, certain regions, such as Turkey, northern France,

northern England or the Mediterranean Sea south of France, are only sparsely

covered with waypoints. Using a small connectivity radius results in the graph

lacking arcs that would allow for direct crossing of these areas, leading to lengthy

detours. Conversely, adopting a large radius quickly results in an unmanageably

large graph, as the number of arcs grows quadratically with the radius.



7. Appendix 251

As discussed in the introduction (refer to Section 1.4.1), the angular resolution

provided by the graph significantly influences the solution quality. This motivates

the construction of a locally dense digraph with predefined angular resolution. For

each waypoint, we divide its surroundings into na equisized sections. Within each

section, we create an arc from the given waypoint to the nearest waypoint in that

section, as illustrated in Figure 7.3. If no waypoint lies within a particular section,

no arc is created. This approach ensures that each waypoint has at most (and

most of the time, exactly) na outgoing arcs.

Figure 7.3: The considered waypoint is in the center. na = 8 successor nodes are
determined by considering the closest waypoint in each of the na sectors (red nodes).

It is well known that alternative approaches to Dijkstra’s algorithm, such as the

A∗ method, are more efficient for calculating the shortest path on a given digraph

(refer to Section 1.4.1). However, achieving consistent and comparable results with

the DisCOptER method necessitates precise computation of arc costs, which in

turn incurs significant computational overhead. In fact, the effort required for the

graph creation exceeds the query time for finding the shortest path by far, rendering

the choice of the algorithm little impactful.

Moreover, it is essential to acknowledge that the comparability between the

method outlined above and real-world routing is inherently limited for two primary

reasons. Firstly, the Free Flight Trajectory Optimization Problem, as introduced
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in Section 1.3, already incorporates several simplifications, which were discussed

in detail in Section 1.2. Secondly, the challenge lies in the scarcity of precise

and publicly available data regarding the current status of free routing airspaces.

This dearth of information makes it challenging to construct a truly realistic

representation for evaluation purposes.

7.2.2 DisCOptER

The DisCOptER method developed in this work consists of two steps. Firstly, a

coarse path is calculated as the shortest path on a specifically designed graph.

Subsequently, this path serves as initial guess for a refinement stage, in which a

continuous trajectory is generated using the ordinary Newton-KKT method with

a direct collocation approach.

For this study, we construct a "rectangular" graph with a node spacing of

h = ⌈d(xO, xD)/3◦⌉ on the great circle segment between departure and destination

airport (one node per 3° of distance or about 333 km), where d : R2×R2 7→ [0◦, 180◦]

is the great circle distance,

d(x1, x2) = 2 arccos (sin ϕ1 sin ϕ2 + cos ϕ1 cos ϕ2 cos(λ2 − λ1)) . (7.21)

Additionally, for each node position, 9 nodes are placed along the perpendicular

great circle segment, covering a range of ±4° (≈ ±444 km). Any two nodes within

a great circle distance of at most 9h/4 are connected by arcs in both directions

(roughly 2 neighboring nodes in each direction). Depending on the distance from

origin to destination, the resulting graph contains 36–117 nodes with on average

16–22 outgoing arcs per node.

In the direct collocation approach we use a discretization of 50 equidistant time

steps. An illustration of this method for two exemplary flights is presented

in Figure 7.6.
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Figure 7.4: Illustration of the wind conditions. The dots and dashed lines illustrate the
underlying radial basis functions.

7.2.3 Wind Conditions

The wind field used for this investigation is described by 24 basis functions with

a compact support, each of which is characterized by the spherical coordinates of

its center ci = [λi, ϕi]T ∈ R2, its weight vector [ηi, νi]T ∈ R2 independently defining

the longitudinal and latitudinal wind speed components, and its radius Ri ∈ R+

which is uniformly set to 7°. Center coordinates and weights are given in Table 7.1.

Figure 7.4 illustrates this wind field. Formally, the wind at a point x is obtained as

w(x) = w
∑

i

f

(
d(x, ci)

Ri

) [
ηi

νi

]
, (7.22)

where f : R+ 7→ [0, 1] is the underlying radial basis function given as

f(r) =

exp
(
− r2

1−r2

)
if r < 1,

0 otherwise.
(7.23)

With the parameters detailed below in Table 7.1, the wind speed is bounded with

∥w∥L∞ ≤ w = 0.3v, where v denotes the airspeed. Since we analyze only relative

improvements in this investigation, absolute values are not relevant, but with an

airspeed of v = 800 km/h this translates to a maximum wind speed of 240 km/h.
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7.2.4 Origin-Destination Pairs

As detailed in Table 7.2, 27 European capital airports were considered in this

analysis, excluding peripheral regions such as the Canary Islands or Iceland. These

are either not or insufficiently covered by the FRA waypoints, such that their

inclusion would certainly introduce significant bias into the results.

Considering flight connections between every pair of airports with a great circle

distance of at least 1,000 kilometers in both directions, we have compiled a list

comprising exactly nc = 500 connections. The distribution of these distances

is presented in Figure 7.5.
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Figure 7.5: Distribution of the great circle distance in the set of 500 connections.

7.2.5 Results

For each of the 500 connections, we employ two distinct methods to calculate

trajectories.

Firstly, we compute the shortest path on a locally connected directed graph

with specified angular resolution, as detailed above in Section 7.2.1.

Secondly, we utilize the DisCOptER algorithm, introduced in this work, con-

figured with parameters outlined before in Section 7.2.2.
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Two exemplary instances of this process are depicted in Figure 7.6. Blue dots

represent the FRA waypoints, and the blue path signifies the shortest path on

the constructed graph. Orange dots represent the nodes generated during the

discrete stage of the DisCOptER algorithm, and the orange path represents the

corresponding shortest path, which serves as an initial guess for the subsequent

nonlinear optimization stage. The continuous trajectory obtained through this

process is depicted in green.

Figure 7.6: Exemplary flights. Top: AMS (Amsterdam Airport Schiphol, Netherlands)
to MAD (Adolfo Suárez Madrid-Barajas Airport, Spain). Bottom: LCA (Larnaca
International Airport, Cyprus) to LIS (Humberto Delgado Airport, Portugal). Black
dashed line: great circle segment, blue route: graph-based path, orange: nodes used by the
DisCOptER algorithm and corresponding shortest path, green: refined trajectory found
with the DisCOptER algorithm (globally optimal).
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The evaluation revealed that the DisCOptER algorithm consistently identifies the

globally optimal solution across all instances without resorting to iterating through

multiple shortest paths; even though the utilized graph is very sparse. Furthermore,

this achievement is typically accomplished with a maximum of 4 Newton steps,

while 93% of all instances required not more than 2 steps.

In the graph-based approach, the quality of the solution is directly linked to

the angular resolution. Let TG,i(na) denote the travel time on the shortest path

in a graph with angular resolution defined by na for flight i. Moreover, let T ⋆⋆
i be

the globally minimal travel time for this instance. Then,

ϵG,i(na) := TG,i(na)
T ⋆⋆

i

− 1 (7.24)

denotes the relative gap for flight i between the shortest path and the global

optimum concerning the overall travel time. Figure 7.7 illustrates this gap for all

instances and various values of na.

Clearly, a low angular resolution, such as na = 9, results in significantly

suboptimal routes with a gap of up to 10%. Conversely, increasing the angular

resolution rapidly enhances the results. With na = 36, all routes are within 2%

of the global optimum, and 87% are within 0.5%.

In Section 2.2.3 and especially in Chapter 3 the efficiency of routing on locally

dense graphs was investigated. In contrast to the present case, it was assumed that

each node was connected to every other nodes within a certain connectivity radius ℓ.

It was shown that the approximation error of such graphs scales quadratically with

the inverse of the connectivity radius and impacts the travel time on the resulting

shortest path again quadratically. Hence, with TD,i(ℓ) denoting the travel time

on the shortest path on a locally densely connected digraph with connectivity

radius ℓ, it holds that

ϵD,i(ℓ) = TD,i(ℓ)
T ⋆⋆

i

− 1 ∈ O(ℓ−4). (7.25)

Moreover, it is important to note that, on a fixed set of nodes, the computational

effort of Dijkstra’s algorithm, CD, scales linearly with the number of arcs na, which,
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Figure 7.7: Relative difference of the travel time on the best graph-based route compared
to the global optimum. Top: sorted results for the set of 500 flights. Bottom: mean gap for
various angular resolution and fitted regression line, given in (7.27). Error bars indicate
the 5% and 95% percentiles, respectively.

in turn, scales quadratically with the connectivity radius ℓ. Therefore,

CD ∈ O(ϵ−1/2). (7.26)

The bottom image of Figure 7.7 demonstrates that the presented method of

creating a graph with defined angular resolution improves upon this. It can be
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clearly seen that the mean gap

ϵ̄G(na) = 1
nc

∑
i

ϵG,i(na)

scales more favorably than quadratically with the inverse angular resolution,

ϵ̄G(na) ≈ 0.37 n−1.74
a . (7.27)

Following the same argument as above, this leads to a computational effort of

CG ∈ O(ϵ−1/1.74), (7.28)

making the proposed method efficient for constructing a trajectory-oriented graph,

based on provided waypoints.

7.2.6 Supplementary Material

Below, the parameters that define the wind field can be found in Table 7.1.

Additionally, Table 7.2 provides a list of the airports considered in this study.
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Center coordinates Weights
λ / ° ϕ / ° η ν

-10.00 35.00 -0.136 0.063
-13.75 43.00 -0.204 0.133
-2.00 35.00 -0.061 0.095
-2.75 43.00 -0.150 0.129
-3.50 51.00 -0.069 0.194
-4.25 59.00 -0.179 0.076
-5.00 67.00 -0.105 0.016
6.00 35.00 -0.071 -0.160
8.25 43.00 -0.086 -0.008

10.50 51.00 -0.057 0.160
12.75 59.00 -0.123 0.210
15.00 67.00 -0.125 0.166
14.00 35.00 0.210 -0.007
19.25 43.00 0.097 0.031
24.50 51.00 0.074 0.123
29.75 59.00 -0.048 0.081
35.00 67.00 -0.006 0.068
22.00 35.00 0.187 -0.126
30.25 43.00 0.060 0.007
38.50 51.00 -0.111 0.063
46.75 59.00 -0.050 0.127
30.00 35.00 0.080 0.080
41.25 43.00 0.039 0.089
38.00 35.00 -0.112 -0.111

Table 7.1: Center coordinates and weights of the wind function defined in Section 7.2.3.



260 7.2. Efficiently Harvesting the Benefits of Free Flight

IATA Code Name λ / ° ϕ / °
AMS Amsterdam Airport Schiphol 4.74 52.33
ARN Stockholm Arlanda Airport 17.94 59.65
ATH Athens International Airport 23.95 37.94
BER Berlin-Brandenburg Airport 13.49 52.37
BFS Belfast International Airport -6.23 54.65
BUD Budapest Ferenc Liszt International Airport 19.25 47.44
CDG Paris Charles de Gaulle Airport 5.88 45.64
CPH Copenhagen Airport 12.65 55.61
CWL Cardiff Airport -3.34 51.40
DUB Dublin Airport -6.24 53.43
EDI Edinburgh Airport -3.36 55.95
FCO Leonardo da Vinci-Fiumicino Airport 12.23 41.82
HEL Helsinki Airport 24.95 60.32
LCA Larnaca International Airport 33.62 34.87
LHR Heathrow Airport -0.46 51.47
LIS Humberto Delgado Airport -9.13 38.77

LUX Luxembourg Airport 6.21 49.63
MAD Adolfo Suárez Madrid-Barajas Airport -3.57 40.50
MLA Malta International Airport 14.49 35.85
OSL Oslo Airport 11.10 60.20
RIX Riga International Airport 23.97 56.92
SOF Sofia International Airport 23.41 42.70
SPU Split Airport 16.30 43.54
VIE Vienna International Airport 16.58 48.10
VNO Vilnius International Airport 25.29 54.63
WAW Warsaw Chopin Airport 20.97 52.16
ZRH Zurich Airport 8.55 47.46

Table 7.2: List of considered European capital airports.
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7.3 Errata

I would like to express my sincere gratitude to the reviewers of my thesis for their

invaluable time and effort in carefully reviewing my work. Their insightful comments,

constructive feedback, and rigorous evaluation have undoubtedly contributed to

the refinement and improvement of this research. I will thoroughly address each

point raised in the subsequent sections.

7.3.1 Notational improvements

In Chapter 5, particularly in Lemma 5.3, we acknowledge the lack of clear dif-

ferentiation between the domain space Y 2 and its dual space (Y 2)∗, which may

have caused confusion among readers.

Furthermore, the valuable feedback provided by the reviewer has significantly

enhanced the readability of the article. One notable improvement was the refor-

mulation of the constraint in (5.7) in a slightly different manner. While these

changes were minor and did not alter the main findings, they notably improved

the overall clarity of the manuscript.

In light of these enhancements, we have decided to publish an updated version

of the article on arXiv2. We believe that these revisions will contribute to a better

understanding of the presented research and its implications.

7.3.2 Continuity of the objective function

In Theorem 4.4 it was assumed that the second derivative of the travel time function

T was continuous in the neighborhood of a minimizer in H1(0, 1).

However, it later became evident that this continuity only holds in W 1,∞(0, 1).

Despite the seemingly minor difference, this distinction carries intricate implications.

While continuity is established solely in the L∞-setting, other properties such as

the invertibility of the KKT-operator require an L2-norm. This problem, commonly

referred to as two-norm-discrepancy, has been discussed extensively in Chapter 5.
2R. Borndörfer, F. Danecker, M. Weiser; Newton’s Method for Global Free Flight Trajectory

Optimization; DOI: 10.48550/arXiv.2302.04748.

https://doi.org/10.48550/arXiv.2302.04748


262 7.3. Errata

Although the continuity of T ′′ has been assumed, it has never been explicitly stated.

This omission will be rectified below.

Lemma 7.5. — The second total derivative of the travel time function T as given

in (5.2) can be given as

T ′′(ξ)[δξ, ∆ξ] =
∫ 1

0
f ′′

1 (ξ(τ), ξτ (τ)) + f ′′
2 (ξ(τ), ξτ (τ))dτ (7.29)

with f ′′
1 , f ′′

2 as defined in (5.62) and (5.79), respectively. For any 0 < η < η, this

derivative is continuous for all ξ ∈ X such that η ≤ ∥ξτ (τ)∥ ≤ η for almost all

τ ∈ (0, 1).

Proof. Analogously to the considerations in Section 5.A it can be shown that there

are constants β̃1, β̃2 <∞, which depend on the usual global bounds on the wind

field, such that

| (f ′′
k (ξ2, ξτ,2)− f ′′

k (ξ1, ξτ,1)) [∆ξ, ∆ξτ ][δξ, δξτ ]|

≤ β̃k(∥ξ2 − ξ1∥+ ∥ξτ,2 − ξτ,1∥) (∥δξ∥+ ∥δξτ∥) (∥∆ξ∥+ ∥∆ξτ∥)

for k ∈ {1, 2}. Using these bounds, it can easily be shown that

|T ′′(ξ2)[δξ, ∆ξ]− T ′′(ξ1)[δξ, ∆ξ]|

≤ |
∫ 1

0
(f ′′

1 (ξ2(τ), ξτ,2(τ))− f ′′
1 (ξ1(τ), ξτ,1(τ)))[∆ξ, ∆ξτ ][δξ, δξτ ]dτ |

+ |
∫ 1

0
(f ′′

2 (ξ2(τ), ξτ,2(τ))− f ′′
2 (ξ1(τ), ξτ,1(τ)))[∆ξ, ∆ξτ ][δξ, δξτ ]dτ |

≤ B̃∥δξ∥C0,1(0,1)∥∆ξ∥C0,1(0,1)∥ξ2 − ξ1∥C0,1(0,1),

with B̃ = β̃1 + β̃2 which proves the claim.

It is important to note, that continuity of T ′′ is only required in a L∞ neighbor-

hood of a minimizer. Under these circumstances, the assumptions of Lemma 7.5

are satisfied as confirmed in Lemma 5.4.
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In the course of this thesis, we have introduced an innovative algorithm and

demonstrated its exceptional efficiency in the pursuit of highly accurate globally

optimal solutions for the Free Flight Trajectory Optimization Problem. Beyond

its immediate application in flight planning, this methodology possesses broad-

ranging versatility with the potential for diverse implementations in various path

planning tasks. The applicability extends to routing of autonomous underwater

vehicles (AUVs), ships, sailing boats, unmanned aerial vehicles (UAVs), drones,

or robots as well as many other domains characterized by complex trajectory

optimization challenges.

However, the significance of this work goes beyond the practical efficiency of the

developed algorithm. It encompasses a profound exploration of the problem’s duality,

viewed through the lenses of classical path planning and optimal control. In this

research, we have illuminated the intricate interplay between discrete and continuous

optimization perspectives, unveiling that neither perspective inherently supersedes

the other. Instead, their hybridization emerges as the most potent approach

for solving challenging optimization problems like the Free Flight Trajectory

Optimization Problem.

Central to this revelation lies the pivotal choice of the optimal switch-over

point, exemplified here by the question for the right graph density in our algorithm.

Through an in-depth examination of the unique attributes inherent to both discrete

and continuous optimization paradigms, we have provided conclusive answers

to this question.

Looking forward, several entry points beckon for future exploration: First and

foremost, the results presented in Chapter 3 underscore the potential for substantial

advancements by integrating local wind information into the algorithm. This insight

motivates the development of adaptive algorithms, which could significantly enhance

the algorithm’s ability to navigate through complex wind patterns.

The application of Yen’s algorithm as a fall-back strategy to provide alternative

candidate paths, while rigorous, is well known to yield redundant results. To mitigate

this, the exploration of alternative approaches like "k dissimilar path algorithms"
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holds promise, enforcing the generation of genuinely different paths. Ideally, this

would be combined with a posteriori estimators to assess the size of the convergence

region surrounding an already discovered (local) optimum.

Furthermore, the scope of future work encompasses the potential replacement of

the two fundamental optimization methods employed in the DisCOptER algorithm.

Instead of utilizing a static graph in the first stage, exploring the integration of

Rapidly-exploring Random Trees (RRT) or similar techniques could yield novel

insights and trade-offs between optimality and efficiency. Similarly, in the second

stage, the ordinary Newton’s method might be substituted with Trust Region-

based methods, offering pragmatic efficiency at the potential expense of guaranteed

global optimality. The selection of these approaches should be meticulously tailored

to individual applications, carefully weighing the trade-offs between optimality

and practicality.

The DisCOptER algorithm is a versatile tool, ready to address a broad class

of problems. Its solid theoretical foundation, as established in this thesis, ensures

its robustness and applicability across various domains. This framework can be

employed to overcome intricate optimization challenges and pave the way for further

efficient and innovative solutions in the field of trajectory planning and beyond.
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