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Abstract: Heart failure is the leading cause of morbidity and mortality and currently affects more than
60 million people worldwide. A key feature in the pathogenesis of almost all forms of heart failure is
cardiac fibrosis, which is characterized by excessive accumulation of extracellular matrix components
in the heart. Although cardiac fibrosis is beneficial in the short term after acute myocardial injury to
preserve the structural and functional integrity of the heart, persistent cardiac fibrosis contributes
to pathological cardiac remodeling, leading to mechanical and electrical dysfunction of the heart.
Despite its high prevalence, standard therapies specifically targeting cardiac fibrosis are not yet
available. Cell-based approaches have been extensively studied as potential treatments for cardiac
fibrosis, but several challenges have been identified during clinical translation. The observation that
extracellular vesicles (EVs) derived from stem and progenitor cells exhibit some of the therapeutic
effects of the parent cells has paved the way to overcome limitations associated with cell therapy.
However, to make EV-based products a reality, standardized methods for EV production, isolation,
characterization, and storage must be established, along with concrete evidence of their safety and
efficacy in clinical trials. This article discusses EVs as novel therapeutics for cardiac fibrosis from a
translational perspective.
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1. Introduction

The cardiovascular field is in desperate need of translational success stories. Despite
significant developments in pharmacological and device-based therapies to preserve cardiac
output and delay disease progression in heart failure patients, there remains an enormous
medical and financial burden, and innovative treatment strategies are urgently awaited [1].
Over the past twenty years, thousands of peer-reviewed articles and hundreds of pre-
clinical and clinical trials have been published in the search for curative therapy for heart
failure. However, they all have one thing in common: none of them have resulted in a
clinical-grade product approved by a major regulatory authority.

A central factor in the progression from acute myocardial infarction to chronic or
terminal heart failure is cardiac fibrosis, which is characterized by extensive remodeling
of the myocardial extracellular matrix (ECM) [2]. Although this mechanism is essential to
maintain the structural and functional integrity of the damaged heart, unrestrained cardiac
fibrosis can result in tissue stiffening and decreased ventricular filling and contraction,
ultimately contributing to the development of heart failure, arrhythmia, and sudden
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cardiac death [3,4]. Conventional therapies, such as renin–angiotensin–aldosterone system
inhibitors and β-blockers, have been shown to effectively reduce ECM protein deposition
in the injured myocardium, but they do not completely prevent the progression of cardiac
fibrosis in patients with heart failure [5]. Unfortunately, to the best of our knowledge,
there are currently no approved therapies that specifically and effectively target cardiac
fibrosis. Barriers to the development of treatments specific to cardiac fibrosis include
(i) the molecular mechanisms underlying cardiac fibrosis, which are complex and not
fully understood yet [6], (ii) the limited regenerative potential of the adult human heart
after myocardial infarction, which does not allow complete inhibition of cardiac fibrosis;
otherwise, there is a high risk of cardiac rupture [7], (iii) the volatile microenvironment
in the injured heart, which is associated with increased levels of inflammation and cell
proliferation, may compromise efficient delivery of therapeutics [8], and (iv) the scarcity of
suitable in vitro and in vivo models that robustly recapitulate cardiac fibrosis in humans.

In recent decades, cell-based approaches have been proposed as promising strategies to
alleviate excessive cardiac fibrosis and improve heart function, but their clinical translation
is complicated. Major challenges include the induction of innate or adaptive immune
responses, the potential for tumor formation, and the low survival rate of transplanted
cells at the targeted site [9,10]. Recognizing that the effect of administered stem/progenitor
cells in myocardial injury is primarily mediated by the release of extracellular vesicles
(EVs), EVs have attracted increasing attention due to their significant advantages in terms
of stability, biocompatibility, and regulatory aspects [11]. The aim of this study is to outline
the current prospects and challenges associated with cell-free EV-based products for the
treatment of cardiac fibrosis, particularly from the perspective of clinical translation.

2. How Are EVs Defined and Where Do We Stand in the Regulatory Landscape?

The term EV, as coined by the International Society of Extracellular Vesicles (ISEV), in-
cludes all extracellular membrane-enclosed vesicles [12,13]. Structurally, EVs are nanoscale
cell-derived particles with a lipid bilayer membrane that are secreted by most mammalian
cells under both physiological and pathological conditions [14]. They can contain hundreds
or thousands of bioactive molecules, including proteins, metabolites, lipids, and nucleic
acids [15]. Currently, the EV field is one of the fastest-growing scientific areas, with more
than 19,000 EV-focused articles found on PubMed, of which more than 80% have been
published in the last 5 years. In addition, Clinicaltrials.gov lists more than 150 entries with
“extracellular vesicles” as the search term. Due to their natural origin, EVs have several
desirable properties, such as low immunogenicity and toxicity, high stability, excellent
biocompatibility, inability to self-replicate, flexibility in dosing, and feasibility for pre-
and post-isolation modification [16–20]. They can also overcome many of the limitations
associated with current drug delivery systems, as they can cross biological barriers, travel
long distances in body fluids, and deliver their cargo directly into the cytosol of recipient
cells via membrane fusion and endocytosis [21]. In addition, EVs can be stored frozen for
long periods of time to be available for immediate use in patients without significant loss
of functional activity [22,23].

In order to successfully translate EV-based therapeutics to clinical practice, their quality,
safety, and efficacy must be demonstrated, as is the case for any medicinal product. From
a regulatory perspective, according to the guidelines of the European Medicines Agency
(EMA) and the United States Food and Drug Administration (FDA), the classification of
EVs depends on the specific therapeutic cargo they carry. In Europe, EVs are considered
biologics if they are purified from non-modified cells or genetically engineered cells, but
where the vesicles contain only functional transgenic protein. In contrast, when EVs are
used as a delivery system for functional transgenic RNA with an intended therapeutic
function in the patient, such a product is classified as an advanced therapy medicinal
product and is subject to additional regulatory requirements [24]. The same criteria would
apply in the United States [25]. Remarkably, while the EMA typically requires knowledge
of a drug’s mechanism of action as part of the approval process [26], the FDA does not
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mandate such an understanding, only safety and some level of efficacy, meaning that
entering direct clinical trials without this knowledge may be a potential path forward
for EVs. However, a lack of understanding of EV-based products could lead to adverse
outcomes, off-target effects, or ineffective dosing, which may explain why there is currently
no EMA/FDA-approved clinical product containing eukaryotic EVs.

3. How Can EV-Based Products Interrupt Cardiac Fibrosis?

In general, fibrotic processes in the heart can be broadly divided into two categories:
reactive and reparative fibrosis [27]. Reactive fibrosis describes the excessive accumulation
of ECM components in the interstitial or perivascular spaces, triggered by pressure or
volume overload or other pathological stimuli, and can result in impaired relaxation
and filling of the heart ventricles after contraction [28]. Reparative fibrosis is classically
associated with acute myocardial injury, in which damaged cardiomyocytes are replaced
by ECM components to prevent cardiac rupture while maintaining the contractile function
of the heart [29,30]. Consequently, EV-based products that induce complete suppression
of cardiac fibrosis in patients with acute myocardial infarction may lead to serious side
effects, such as ventricular aneurysms or fatal heart rupture. In these patients, the initial
cardiac fibrotic response in the infarct area is necessary, but avoiding cardiac fibrosis in the
infarct border zone and the surrounding or even distant myocardial tissue is a critical step
in preventing subsequent heart failure [31].

At the cellular and molecular levels, there are a number of signaling pathways and
mediators involved in cardiac fibrosis that may provide suitable therapeutic targets for
the treatment of heart failure, as reviewed elsewhere [5,32–35]. Overall, although disease
progression is complex, dynamic, and patient-specific, immune responses and immune
cell-mediated activation of cardiac fibroblasts are usually the first steps in initiating the
ECM remodeling process after myocardial infarction. In detail, in response to heart in-
jury, cardiomyocytes undergo apoptosis and release DNA and cellular proteins into the
extracellular space that serve as damage-associated molecular patterns [36]. These signals
are sensed by innate immune cells, which in turn produce and secrete a variety of pro-
fibrotic factors to trigger fibroblast activation. Activated cardiac fibroblasts, referred to as
myofibroblasts, are the central cellular effectors in cardiac fibrosis and are characterized
by excessive production of ECM components and their smooth muscle cell-like contrac-
tile properties obtained by de novo synthesis of alpha-smooth muscle actin-containing
stress fibers [37]. Intriguingly, recent studies have shown that different cardiac fibroblast
subtypes are present in diseased tissue and undergo temporal variation at the time of
injury [38–42]. For example, Ruiz-Villalba et al. identified a unique subset of cardiac fibrob-
lasts that express high levels of collagen triple helix repeat containing 1 after myocardial
infarction in mice [41], and Fu et al. have described a subpopulation of cardiac fibroblasts,
the matrifibrocytes, that support the mature scar [42]. In addition to cardiac fibroblasts, a
growing body of evidence suggests that macrophages are also key mediators of cardiac
repair, playing a critical role in orchestrating pro-inflammatory processes immediately after
injury (macrophage M1 phenotype) and participating in tissue remodeling by stimulat-
ing cardiac fibroblast activation (macrophage M2 phenotype) [43,44]. A fine regulation
between the M1 and M2 subtypes is required to achieve a proper resolution of the initial
inflammatory response and ensure effective cardiac remodeling. In the context of cardiac
fibrosis therapy, EV-based products could act either early after myocardial infarction by
stimulating pro-inflammatory M1 macrophages to differentiate into an anti-inflammatory
M2 macrophage-like phenotype to attenuate chronic inflammation or at a later time by
reducing pro-fibrotic M2 macrophages to alleviate progressive cardiac fibrosis [45,46]. In
general, to be reasonable candidates for the treatment of cardiac fibrosis in clinical practice,
we propose that EV-based products should meet at least some of the requirements listed
in Table 1. Certain aspects have already been demonstrated, for example, for EVs derived
from mesenchymal stromal cells [47–52]; however, due to our limited understanding of EV
properties, it is currently challenging to satisfy all of these aspirations.
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Table 1. Proposed features of EV-based therapy for the treatment of cardiac fibrosis.

(i) Priming of immune cell phagocytic signaling for efficient clearance of dead cells

(ii) Limiting cardiac fibrosis by reducing collagen deposition in the myocardium

(iii) Inhibiting pro-fibrotic factors and their receptors

(iv) Reduction in myofibroblast formation in the heart

(v) Direct degradation of the fibrotic ECM in the myocardium

(vi) Cardioprotection by reducing apoptosis of cardiomyocytes and other cell types

(vii) Promotion of blood flow recovery by increasing microvascular density

(viii) Improvement of cardiac function

Among the variety of molecules encapsulated in EVs that can modulate cardiac fibrosis,
regulatory microRNAs (miRs) have been of particular interest in recent years. For example,
mesenchymal stromal cell-derived EVs carrying miR-19a, miR-22, miR-29, miR-133, and
miR-210 have been shown to reduce cardiac fibrosis during heart regeneration and repair
in pre-clinical trials [53–55]. Similarly, Ibrahim et al. reported that cardiosphere-derived
EVs with enhanced levels of miR-92a attenuated cardiac fibrosis and improved survival in
a mouse model of myocardial infarction [56]. However, unlike traditional pharmacological
interventions that use single molecules with limited mechanisms of action, EVs deliver not
just one miR, but a cocktail of multiple miRs that affect specific cells and tissues in numerous
and coordinated ways. Therefore, a deeper understanding of their mechanism of action,
potential targets, and possible side effects is desirable prior to the clinical implementation
of EV-based products.

4. How Can the Therapeutic Efficacy of EV-Based Products Be Measured?

When evaluating the therapeutic efficacy of EV-based products for the treatment of
cardiac fibrosis, a major challenge in translating clinical trials into practice is the reliance
on so-called surrogate endpoints, such as a significant reduction in infarct size [57]. Other
measurable parameters used as surrogate endpoints include left ventricular function,
perfusion defects, patient functional status, and quality of life [58,59]. However, while
they may not always be reliable indicators of more definitive endpoints, such as mortality,
they can at least provide early insight into the therapeutic efficacy of EVs and streamline
their development.

The current gold standard for the diagnosis and evaluation of diffuse cardiac fibrosis
is endomyocardial biopsy [60]. However, the invasive nature of the procedure, which
is uncomfortable and risky for the patient, has a propensity for sampling error, and is
not able to quantify the fibrotic burden of the entire myocardium, limits its use in daily
clinical practice. Instead, cardiac fibrosis is more commonly assessed non-invasively and
indirectly by measuring cardiac function or by visualizing macroscopic changes in the heart
using echocardiography, computed tomography, and cardiac magnetic resonance (CMR)
imaging [61]. In particular, late gadolinium enhancement on CMR imaging is a powerful
technique for locating and quantifying regions of reparative fibrosis in the heart [62–65].
However, it is an expensive method that requires considerable skill in image acquisition
and analysis and often suffers from poor image quality due to heart rate fluctuations and
gadolinium washout during the relatively long acquisition time [66]. More recently, with
the advent of novel T1 mapping techniques, reliable assessment of reactive cardiac fibrosis
using CMR imaging has become possible [67]. However, the lack of standardization, leading
to difficulties in inter-center comparisons, is a major barrier to its widespread adoption [68].
Blood biomarkers, while useful in the early detection of heart failure, remain the only
indirect tools for the assessment of cardiac fibrosis [69,70]. For example, elevated serum
levels of carboxyl-terminal pro-peptide of type I collagen and amino-terminal pro-peptides
of types I and III collagen indicate increased collagen turnover, a marker of fibrotic changes
and cardiac repair [71,72]. Unfortunately, none of the routinely used techniques meets all
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the requirements to determine the degree of cardiac fibrosis and monitor changes after
treatment and, therefore, a combination of histological staining, imaging, and biomarker
studies is usually needed [73]. Furthermore, it is important to note that the above methods
reflect an increase in ECM components rather than the main drivers of cardiac fibrosis:
myofibroblasts. Among others, one of their characteristics is the expression of fibroblast
activation protein (FAP), a membrane-anchored peptidase [74]. Recently, FAP-targeting
radiotracers have been developed that reliably bind and stain FAP, making FAP-specific
positron emission tomography-computed tomography a promising non-invasive imaging
technique to measure relative FAP density [75–77].

In summary, there is still a need for safe, reliable, and most importantly, non-invasive
tools for routine use to monitor the progression of cardiac fibrosis in general and evaluate
changes after administration of EV-based products, in particular in order to assess their
therapeutic efficacy.

5. How to Deliver High-Quality EV-Based Products?

Despite the increasing attention on EV-based therapeutics and their potential for
the treatment of cardiac fibrosis, there are still some limitations that hinder their clinical
translation. One of the biggest challenges is the lack of reliable technologies for the large-
scale production of EVs under good manufacturing practice (GMP) conditions that allow
for high batch-to-batch consistency, purity, and performance. International groups such as
the ISEV have established guidelines and protocols for standardized practices, but to date,
there is no uniform approach [78–83].

The first step in the EV manufacturing process is to select the origin of EVs, as they can
be derived from either cellular or non-cellular (e.g., body fluids) sources [84,85]. Numerous
studies, including clinical trials, have focused on EVs derived from native, unmodified
cells, and mesenchymal stromal cell-derived EVs have been at the forefront of these stud-
ies [86,87]. Aspects of cell culture that may affect cell status include the type of culture
system, the media and supplements used, and the culture condition parameters. Alterations
can result in changes in cell state and growth, thus potentially affecting the composition
and therapeutic efficacy of the derived EVs. Therefore, culture conditions as well as the
metabolic activity and cell number should be monitored regularly, for example by cell
viability and proliferation assays [88,89].

The second step is EV secretion by the cultured cells into the surrounding cell culture
medium, which can be either spontaneous or induced [90]. Spontaneous EV production is
chosen to preserve the basal characteristics of the cells. In this case, the entire cell culture
medium is replaced by an EV-depleted medium to obtain only the EVs secreted by the
target cells under physiological conditions. In contrast, for induced EV production, cell
culture under serum starvation conditions is the simplest strategy to increase EV yield, but
it may affect cell behavior and, consequently, EV composition and quality. Other methods
include pH value change, temperature shift, hypoxia, and additives in the culture medium,
as well as chemical induction and physical stimulation, as discussed elsewhere [90]. In any
case, all approaches to induce EV secretion from cultured cells must be proven to be safe
and GMP-compliant.

In the third step, EVs are isolated from the cell culture medium; however, there is
no consensus on the optimal isolation strategy. In fact, different research laboratories use
different protocols to isolate EVs, including, for example, differential ultracentrifugation,
size exclusion chromatography, polymer-based precipitation, and immunoaffinity sepa-
ration [91,92]. Each of these methods has its own advantages and limitations, and there
is wide variability in efficiency and purity [93]. From a regulatory perspective, purity
concerns are of paramount importance, but EV-based products cannot currently be pro-
duced in a completely pure form. The end product of standard isolation methods is only
referred to as an EV-enriched preparation that contains other components, such as protein
aggregates [94,95]. In addition, regardless of the isolation method, a layer of biomolecules
may be adsorbed on the surface of EVs, the so-called corona [96,97]. The corona cloaks the



Int. J. Mol. Sci. 2023, 24, 10480 6 of 13

surface of EVs and can cover surface receptors, subsequently affecting their interactions
with recipient cells [98]. Although research groups have shown that additional purification
of EVs significantly reduces the number of proteins and nucleic acids in EV preparations,
corona remodeling may have a major impact on downstream biological effects and thus
the efficacy of EV-based products [99].

After isolation, in-depth characterization of EV preparations is an important aspect to
ensure safe and effective clinical translation. Currently, EVs are identified using multiple
complementary methods to determine particle number, size, morphology, surface markers,
functionality, and cargo composition. It is generally recommended to perform nanoparticle
tracking analysis for particle quantification and size estimation [100]. To evaluate the
structure and distinguish EVs from non-EV particles, transmission electron microscopy
is currently the most used method [101]. In addition, it is recommended to demonstrate
the presence of commonly reported EV markers such as transmembrane proteins (CD9,
CD63, CD81), heat shock proteins (Hsp70, Hsp90), or membrane fusion proteins (Annexin,
TSG101) using standard antibody-based techniques (e.g., Western blot, enzyme-linked im-
munosorbent assay, or flow cytometry) [102,103]. In order to demonstrate EV functionality,
it is important to test its uptake into recipient cells, for example, by using fluorescently
labeled EVs [104,105]. EV cargo profiling is a key strategy for understanding the effects of
EVs. Technologies central to this effort include targeted and untargeted mass spectrom-
etry, proteomics, lipidomics, and high-throughput RNA sequencing [106–109]. Future
developments in machine learning may further advance their use.

Another important consideration in the development of EV-based products is their
preservation and storage [23,110]. Although there are no standardized storage protocols
available, studies have shown that storage of EVs at −80 ◦C in single-dose aliquots for up
to 7 months does not affect their potency and activity [83,111].

In summary, due to the complexity of EVs, commercialization of large-scale manufac-
turing of EV-based therapeutics requires a technologically superior facility, a robust quality
management system, and a GMP-compliant technology in order to deliver high-quality,
well-characterized products to patients.

6. What Safety Issues Must Be Considered for EV-Based Products?

In addition to efficacy and quality aspects, safety is of paramount importance for the
clinical implementation of EV-based products. In fact, in early clinical trials, when EVs are
first used in humans, safety is the priority. Potential risks associated with EV-based thera-
peutics include (i) undesired distribution in the body, (ii) unwanted immune reactions, such
as allergy and rejection, (iii) side effects of components other than EVs administered con-
comitantly, (iv) involvement in cancer progression and metastasis, especially when applied
multiple times over a long period of time, (v) transmission of infectious diseases through
microbial contamination of EV preparations, and (vi) variability in efficacy and quality.

Overall, there are two methods of EVs delivery: intramyocardial injection, which is
efficient but invasive, and intravenous injection, which is less invasive but results in low car-
diac retention. Previous research has shown that intravenously applied EVs have a limited
half-life in the blood and are rapidly cleared in the liver, lungs, and spleen [112,113]. In fact,
excessive retention of EVs in the liver not only affects their bioavailability but also increases
the risk of developing liver damage. A better understanding of the pharmacokinetics and
pharmacodynamics of EV-based products is key to their clinical translation but is hampered
by the limitations of our current animal models. First, the animals used are typically young,
whereas heart failure patients with cardiac fibrosis are older. Second, methods to detect EVs
in tissues and organs require a substantial accumulation of fluorescent or radiolabeled EVs,
which is a challenging task and may not correspond to physiological conditions. Third, the
biodistribution of EVs varies depending on the isolation method used; for example, intra-
venously administered EVs isolated by ultracentrifugation plus liquid chromatography
show less accumulation in the lungs than EVs isolated by ultracentrifugation alone [114].
Compared to intravenous delivery, intramyocardial administration of EVs may prolong the
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lifespan of EVs in the heart, but the procedure is more complex and carries a higher risk
of complications.

Numerous studies have shown that EVs are unlikely to induce an immune response,
but only a few research groups have thoroughly evaluated their potential for toxic or
immunogenic effects. However, this is particularly important because therapeutic EVs,
mostly derived from human cell lines, are initially tested in animal models throughout
pre-clinical development. In one of the most thorough investigations into the immune
response of human EVs in animal models, Zhu et al. showed in a mouse model that human
embryonic kidney 293 T cell-derived EVs had no toxic effects, and immune markers were
not significantly altered over a 3-week period [115].

Another safety issue with EVs is related to the lack of clarity about their cargo. A
recent study of known miR targets has revealed that miRs found in mesenchymal stromal
cell-derived EVs may also play a critical role in the tumor biology of various cancers [116].
Given that EVs have a half-life of less than 24 h [117], a single administration of EV-based
products may not be sufficient to target cardiac fibrosis, and multiple doses would be
required. However, this approach could lead to the accumulation of oncogenic miRs in
patients with early-stage cancers that were not detected prior to treatment. It would,
therefore, be important to screen patients in advance to avoid effects that could favor or
even worsen existing tumors.

In addition to the characterization of EVs, the absence of microbial contamination is
an important issue before EV-based products can be utilized in clinical settings. Due to the
relatively small volume of EV preparations, filtration sterilization could be performed at
the end of the isolation process [118], but standard measures to ensure product sterility are
still lacking. Regarding viral safety, given the similarities between EVs and viral particles
in terms of size and composition, EV-producing cells should be carefully monitored for a
viral infection at the beginning of EV production, and EV preparations should be tested at
all relevant manufacturing steps.

In conclusion, future studies should focus on conducting a thorough and long-term
safety evaluation of EVs, which could also help to determine their safe and therapeutic
doses for clinical use.

7. Conclusions

We believe that EVs represent the next frontier in cell-free therapy; however, this
research is still in its infancy, and there is a long way to go before clinical application
(Figure 1). One of the most critical challenges for EV-based therapy in heart failure patients
is the cardiac specificity and retention of EVs. Most of the currently reported therapeutic
effects of EVs on cardiac diseases are based on the direct administration of EVs into the
myocardium or pericardial cavity, which is too invasive for routine clinical application. To
achieve the therapeutic effects of EVs by intravenous administration, further research is
needed to develop efficient EV delivery methods. In addition to that, there are more hurdles
to overcome. First, standardized and quality-controlled GMP-compliant methods must be
optimized on an industrial scale for the reproducible production of homogeneous EV-based
therapeutics. Second, gold standards must be defined to characterize the composition
and purity of EV preparations. However, given the difficulties in isolating a uniform
EV population, a possible strategy would be to prioritize therapeutic efficacy over purity.
Downgrading the regulation of regenerative medicine products could accelerate their
clinical implementation, but it is imperative that their safety profile is fully evaluated.
Third, appropriate pre-clinical in vivo models must be developed to optimize EV dosing,
including the definition of appropriate timing and frequency of application. In particular,
in vivo imaging of EVs is required to quantify the number of EVs delivered to damaged
cardiac tissue. Fourth, innovative tools must be developed to monitor the progression of
cardiac fibrosis after the administration of EV-based products. Fifth, novel therapeutic
targets must be identified to selectively reduce or even reverse cardiac fibrosis without any
side effects. Timely interdisciplinary studies are needed to address all these challenges.
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Otherwise, EVs will remain on the laboratory bench, where they show great promise in
reducing cardiac fibrosis, and never make it to the bedside.
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