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Abstract

Nanoelectromechanical systems (NEMS) based on two-dimensional (2D) materials represent the ultimate – atomic-
scale – size limit for the miniaturization of mechanical devices. When employed as resonators, these devices bring a
range of remarkable features. Due to their small effective mass, they oscillate at very high frequencies (up to gigahertz).
Furthermore, it is easy to drive them in their non-linear regime. Additionally, they come with the exceptional ability to
broadly tune their resonance frequencies. In this thesis, I realize two unique systems capitalizing on these properties.

First, I conceptualize a tunable phononic crystal made from graphene. By periodically patterning a suspended
graphene membrane, I transform it into the world’s thinnest possible phononic crystal. This device features a phononic
band gap in the megahertz range, which we can broadly tune using an electrostatic gating approach. Under electrostatic
pressure up to 30 kPa, we observe a frequency upshift of the entire phononic system by 350 %. In the next step, we
demonstrate full control of the band gap size. By carefully tension engineering our suspended phononic crystal, we
are able to dynamically reduce the size of the phononic band gap – down to completely closing it. This change in
hierarchy/topology in the phononic band structure can be seen as the mechanical simulation of a metal-insulator
transition (mMIT). Upon placing an artificial irregularity in our phononic lattice, we can spatially localize a mechanical
‘defect mode’. This mode is mechanically isolated from its environment, which makes it a highly coherent mechanical
oscillator and a potential reservoir for storing quantum information. By taking advantage of our tunable system, we
can now control the frequency and the degree of localization of the defect mode, which allows us to dynamically couple
it to external excitations. Finally, we make use of the mMIT by constructing and studying a phononic transistor analog,
which is controlled by simply applying a gate voltage and has an on/off ratio of 105 (100 dB).

Second, I develop a platform for nanomechanical spectroscopy (NMS) of 2D materials. Specifically, I show that a
purely mechanical measurement can be used as an ultrasensitive spectroscopic probe for transitionmetal dichalcogenides
(TMDs) and plasmonic nanostructures. We extract the optical absorption of a 2D material from frequency shifts of a
hybrid NEMS resonator vs. the wavelength of incoming light. In combination with optical reflectivity data, we derive —
without any further assumptions — the full dielectric function of thematerial under study. Ourmeasurement is fast (𝜏rise =
135 ns), sensitive (noise-equivalent power: 𝑁𝐸𝑃 = 890 fW/

√
Hz) and we can characterize 2Dmaterials in a broad spectral

range of 1.2 – 3.1 eV. This method is a direct measurement of absorption, which has practical advantages compared
to common optical spectroscopy approaches. Furthermore, while being comparable in performance, it overcomes
limitations inherent to conventional optical methods, such as the complications associated with measurements at high
magnetic fields and low temperatures.

Summarizing, I developed a concept to add tunability to the field of phononics and an approach to spectroscopically

characterize 2D materials based on mechanical measurements. These are powerful tools to realize tunable condensed

matter physics analogs in phononic systems and to observe hitherto undetected phenomena in 2D materials.
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Kurzfassung

Nanoelektromechanische Systeme (NEMS) auf der Basis zweidimensionaler (2D)-Materialien stellen die ultimative
– atomare – Größenbegrenzung für die Miniaturisierung mechanischer Systeme dar. Wenn diese als Resonatoren
eingesetzt werden, bringen sie eine Reihe bemerkenswerter Eigenschaften mit sich. Aufgrund ihrer geringen effektiven
Masse oszillieren sie mit sehr hohen Frequenzen (bis in den Gigahertz-Bereich). Darüber hinaus lassen sie sich leicht in
ihren nichtlinearen Bereich betreiben. Zusätzlich verfügen sie über die außergewöhnliche Funktionalität, dass man ihre
Resonanzfrequenzen breit abzustimmen kann. In dieser Dissertation realisiere ich zwei einzigartige nanomechanische
Systeme, die auf diesen Eigenschaften beruhen.

Erstens konzipiere ich einen abstimmbaren phononisches Kristall aus Graphen. Durch die Implementation eines
periodischen Musters in eine freistehenden Graphenmembran verwandle ich diese in den dünnsten phononische Kristall
der Welt. Dieser weist eine phononische Bandlücke im Megahertz-Bereich auf, die wir mittels eines elektrostatischen
Gating-Ansatzes breit abstimmen können. Unter einem elektrostatischem Druck von bis zu 30 kPa beobachten wir eine
Frequenzverschiebung des gesamten phononischen Systems von 350 %. Im nächsten Schritt demonstrieren wir die
vollständige Kontrolle über die Größe der phononischen Bandlücke. Durch eine sorgfältfige Manipulation der mecha-
nischen Spannung in unserem freistehendem phononischen Kristalls sind wir in der Lage die Größe der phononischen
Bandlücke dynamisch zu reduzieren – bis sie sich vollständig schließt. Diese Änderung in der Hierarchie/Topologie
der phononischen Bandstruktur kann als mechanische Simulation eines Metall-Isolator-Übergangs (mMIT) betrachtet
werden. Durch das Platzieren einer künstlichen Unregelmäßigkeit in unserem phononischen Gitter können wir eine
mechanische "Defektmode" räumlich lokalisieren. Diese Mode ist mechanisch von der Umgebung isoliert, was sie zu
einem hochkohärenten mechanischen Oszillator und zu einem potenziellen Reservoir zur Speicherung von Quanten-
informationen macht. Durch die Nutzung unseres abstimmbaren Systems können wir nun sowohl die mechanische
Frequenz als auch den Grad der Lokalisierung der Defektmode kontrollieren. Das ermöglicht uns, sie dynamisch
an externe Anregungen zu koppeln. Schließlich nutzen wir den mMIT, indem wir einen Transistor für Phononen
konstruieren und untersuchen. Dieser Transistor kann durch das Anlegen einer Gate-Spannung gesteuert werden und
weißt ein On/Off-Verhältnis von 105 (100 dB) auf.

Zweitens entwickle ich eine Plattform für die nanomechanische Spektroskopie (NMS) von 2D-Materialien. Ins-

besondere zeige ich, dass eine rein mechanische Messung zur ultrasensitiven spektroskopischen Charakterisierung

von Übergangsmetall-Dichalkogeniden (TMDs) und plasmonische Nanostrukturen verwendet werden kann. Dafür ex-

trahieren wir die optische Absorption eines 2D-Materials aus Frequenzverschiebungen eines hybriden NEMS-Resonators

in Abhängigkeit von der Wellenlänge des einfallenden Lichts. In Kombination mit Messungen der optischen Reflektivität

leiten wir – ohne weitere Annahmen – die komplette dielektrische Funktion des untersuchten Materials her. Dabei

ist unsere Messung schnell (𝜏rise = 135 ns), empfindlich (Äquivalente Rauschleistung: 𝑁𝐸𝑃 = 890 fW/
√
Hz) und wir

können 2D-Materialien in einem breiten Spektralbereich von 1.2 – 3.1 eV charakterisieren. Unsere Methode ist eine

direkte Messung der Absorption, die praktische Vorteile gegenüber klassischen optischen Spektroskopiemethoden bietet.

Darüber hinaus überwindet sie, bei vergleichbarer Spezifizierung, Einschränkungen klassischer optischer Methoden,

wie die Komplikationen bei Messungen in hohen magnetischen Feldern und niedrigen Temperaturen.

vi



List of publications

1. Towards tunable graphene phononic crystals.
Y. Yu∗, J. N. Kirchhof∗, A. Tsarapkin, V. Deinhart, O. Yucel, B. Höfer, K. Höflich, and K. I.
Bolotin.
Under review, Preprint: arXiv:2305.09577 (2023).

2. Nanomechanical absorption spectroscopy of 2D materials with femtowatt sensitivity.
J. N. Kirchhof, Y. Yu, D. Yagodkin, N. Stetzuhn, D. B. de Araújo, K. Kanellopulos, S. Manas-
Valero, E. Coronado, H. van der Zant, S. Reich, S. Schmid, and K. I. Bolotin.
2D Materials 10(3), 035012 (2023).

3. Mechanically-tunable bandgap closing in 2D graphene phononic crystals.
J. N. Kirchhof and K. I. Bolotin.
npj 2D Materials and Applications 7, 10 (2023).

4. Strain control of hybridization between dark and localized excitons in a 2D semiconductor.
P. Hernández López∗, S. Heeg∗, C. Schattauer, S. Kovalchuk, A. Kumar, D. J. Bock, J. N.
Kirchhof, B. Höfer, K. Greben, D. Yagodkin, L. Linhart, F. Libisch, and K. I. Bolotin.
Nature Communications 13(1), 7691 (2022).

5. Generating intense electric fields in 2D materials by dual ionic gating.
B. I. Weintrub, Y. Hsieh, S. Kovalchuk, J. N. Kirchhof, K. Greben, and K. I. Bolotin.
Nature Communications 13(1), 6601 (2022).

6. Nanomechanical spectroscopy of 2D materials.
J. N. Kirchhof, Y. Yu, G. Antheaume, G. Gordeev, D. Yagodkin, P. Elliott, D. B. de Araújo, S.
Sharma, S. Reich, and K. I. Bolotin.
Nano Letters 22(20), 8037–8044 (2022).

7. Non-uniform strain engineering of 2D materials.
S. Kovalchuk∗, J. N. Kirchhof∗, K. I Bolotin, and M. G. Harats.
Israel Journal of Chemistry 62(3-4), e202100115 (2022).

8. Impact of gigahertz and terahertz transport regimes on spin propagation and conversion in the
antiferromagnet IrMn.

∗ Authors contributed equally to this work

vii



O. Gueckstock, R. L. Seeger, T. S. Seifert, S. Auffret, S. Gambarelli, J. N. Kirchhof, K. I. Bolotin,
V. Baltz, T. Kampfrath, and L. Nádvorník.
Applied Physics Letters 120(6), 062408 (2022).

9. The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofab-
rication.
V. Deinhart, L. Kern, J. N. Kirchhof, S. Juergensen, J. Sturm, E. Krauss, T. Feichtner, S. Ko-
valchuk, M. Schneider, D. Engel, B. Pfau, B. Hecht, K. I. Bolotin, S. Reich, and K. Höflich.
Beilstein Journal of Nanotechnology 12(1), 304-318 (2021).

10. Tunable graphene phononic crystal.
J. N. Kirchhof, K. Weinel, S. Heeg, V. Deinhart, S. Kovalchuk, K. Hoeflich, and K. I. Bolotin.
Nano Letters 21(5), 2174–2182 (2020).

11. In situ functionalization of graphene.
K. Greben, S. Kovalchuk, A. M. Valencia, J. N. Kirchhof, S. Heeg, P. Rietsch, S. Reich, C.
Cocchi, S. Eigler, and K. I. Bolotin.
2D Materials 8(1), 015022 (2020).

12. Neutral and charged excitons interplay in non-uniformly strain-engineered WS2.
S. Kovalchuk, M. G. Harats, G. López-Polín, J. N. Kirchhof, K. Höflich, and K. I. Bolotin.
2D Materials 7(3), 035024 (2020).

13. Dynamics and efficient conversion of excitons to trions in non-uniformly strained monolayer
WS2.
M. G. Harats, J. N. Kirchhof, M. Qiao, K. Greben, and K. I. Bolotin.
Nature Photonics 14(5), 324-329 (2020).

14. Controlled assembly of artificial 2D materials based on the transfer of oxo-functionalized
graphene.
M. Hußmann, B. Weintrub, P. Feicht, G. Germer, J. N. Kirchhof, K. I. Bolotin, and S. Eigler.
Nanoscale Advances 2(1), 176-181 (2020).

15. Selective functionalization of graphene at defect-activated sites by arylazocarboxylic tert-butyl
esters.
C. E. Halbig, R. Lasch, J. Krüll, A. S. Pirzer, Z. Wang, J. N. Kirchhof, K. I. Bolotin, M. R.
Heinrich, and S. Eigler.
Angewandte Chemie International Edition 58(11), 3599-3603 (2019).

viii



16. Influence of SiO2 or h-BN substrate on the room-temperature electronic transport in chemically
derived single layer graphene.
Z. Wang, Q. Yao, Y. Hu, C. Li, M. Hußmann, B. Weintrub, J. N. Kirchhof, K. Bolotin, T.
Taniguchi, K. Watanabe, and S. Eigler.
RSC Advances 9 (65), 38011-38016 (2019).

17. Microstructure and elastic constants of transition metal dichalcogenide monolayers from friction
and shear force microscopy.
X. Xu, T. Schultz, Z. Qin, N. Severin, B. Haas, S. Shen, J. N. Kirchhof, A. Opitz, C. T. Koch, K.
I. Bolotin, J. P Rabe, G. Eda, and N. Koch.
Advanced Materials 30 (39), 1803748 (2018).

18. Detecting ultrasound vibrations with graphene resonators.
G. J. Verbiest, J. N. Kirchhof, J. Sonntag, M. Goldsche, T. Khodkov, and C. Stampfer.
Nano Letters 18 (8), 5132-5137 (2018).

ix



Contents

Abstract v

Deutsche Kurzfassung vi

List of publications vii

1. Introduction 1
1.1. Tunable phononic crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Nanomechancial spectroscopy of 2D materials . . . . . . . . . . . . . . . . . . . . . 5
1.3. Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Nanomechanics of two-dimensional materials 9
2.1. Graphene and transition metal dichalcogenides . . . . . . . . . . . . . . . . . . . . 9
2.2. 2D materials in motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Driving and detecting 2D material-based resonators . . . . . . . . . . . . . . . . . . 15
2.4. Mechanical tuning of 2D materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5. From membranes to phononic crystals . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6. Nanomechanical resonators as spectroscopic probes . . . . . . . . . . . . . . . . . . 23

3. Papers forming this thesis 26

4. Connection of the papers 28
4.1. Tunable phononic crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2. Nanomechancial spectroscopy of 2D materials . . . . . . . . . . . . . . . . . . . . . 33

5. Summary and outlook 38
5.1. New perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Appendix 47

A. Methods 47
A.1. Interferometric motion detection in NEMS resonators . . . . . . . . . . . . . . . . . 47
A.2. FEM modeling of 2D materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B. Papers as published 52
B.1. Nano Letters 21(5), 2174–2182 (2020) and Supporting Information . . . . . . . . . . 52

x



B.2. npj 2D Materials and Applications 7, 10 (2023) and Supporting Information . . . . . 78
B.3. Nano Letters 22(20), 8037–8044 (2022) and Supporting Information . . . . . . . . . 98
B.4. 2D Materials 10(3), 035012 (2023) and Supporting Information . . . . . . . . . . . . 128

Acknowledgements 143

Selbstständigkeitserklärung 145

Bibliography 146

xi



1. Introduction

Throughout history, mankind has always strived to find stronger and at the same time lighter
materials to build tools. Another key aspect became important in the last 100 years: The ability to
minimize the spatial dimensions (miniaturization) of those ‘tools’ for fast and efficient electronic
devices. Graphene combines these apparently opposite qualities in one material. It is the strongest
material known (roughly 100 times stronger than steel) while being very lightweight [1, 2]. Further-
more, it maintains its structural integrity down to the atomic scale due to its layered structure and
is therefore ideal for miniaturization [3]. Finally, graphene is an excellent electrical conductor [4,
5]. This combination of properties is unique in nature and invites us to create and study small
and light, yet remarkably strong and flexible mechanical structures made from graphene. Because
of that, over the last two decades, graphene has been implemented into nanoelectromechanical
systems (NEMS), which enabled key experiments on non-linear dynamics [6–10], magnetic phase
transitions [11, 12], or photothermal backaction effects [13–15] and makes an extremely sensitive
probe for atomic-scale masses [16–19] and minuscule forces [19–21].
In this thesis (Fig. 1.1), I aim to contribute to that list by describing how graphene and other

2D materials can be used to (i) realize tunable phononic crystals, which allow studying phononic
analogs of condensed matter phenomena and may become useful for mechanical storage of quantum
information and (ii) develop new device concepts to perform nanomechanical spectroscopy, which
may be more sensitive, more broadly applicable, and less prone to measurement artifacts than
conventional optical approaches. Both goals rely on the control of tension (𝜎) in suspended 2D
materials. In the first case, we apply electrostatic pressure to a graphene phononic crystal to change
its tension and thereby manipulate its phononic band structure. In the second case, the absorption of
light changes the tension in a 2D material, which is detected as a shift of the mechanical resonance
frequency. The tunability of the presented phononic crystal is based on increasing tension in
graphene. In contrast, in our nanomechanical spectroscopy approach, we detect absorbed light via
the controllable release of tension in 2D materials.
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1. Introduction

Figure 1.1: Thesis overview: Controlling tension in 2Dmaterials. a, By periodic pattering we transform
a suspended 2D material membrane into a phononic crystal. This highly flexible device can be mechanically
manipulated by electrostatic gating. This allows us to increase the tension and tune the size and position
of the phononic band gap. The phononic band gap vs. applied pressure is plotted in blue. b, When a 2D
material-based resonator absorbs incoming light (𝑃inc), it heats up and tension is released. This induces a
downshift in resonance frequency, which allows us to detect absorbed light and perform nanomechanical
spectroscopy – as shown for a 4L MoS2 sample, which features clear signatures of excitons (A, B, and C).
Figure adapted from Ref. [22] and [23]. The illustration of the 2D material is taken from Ref. [24].

1.1. Tunable phononic crystals

A phononic crystal (PnC) is an artificially manufactured structure with a periodic variation of
material properties, e.g. stiffness, mass, or stress [25, 26]. This periodic perturbation creates a
meta-crystallographic order in the system leading to a vibrational band structure hosting acoustic
Bloch waves, in analogy to the electronic band structure in solids (details in Sec. 2.5). A phononic
crystal can thus control the propagation of phonons similarly to how a photonic crystal controls
the propagation of photons [25–28]. In contrast to conventional solids, the lattice parameters of
phononic crystals can be broadly varied and hence allow realizing analogs of fundamental solid-state
physics phenomena over a vast range of sizes (10 nm – 1m) and frequencies (Hz – THz) [29]. The
patterning also allows to open phononic band gaps. In the frequency range of the band gap, no
mechanical modes are allowed, and any incoming excitation is exponentially damped. A phononic
band gap is a powerful tool for guiding [30–32], focusing [33–35], or suppressing phonons [25–28,
30]. Within these phononic band gaps, it is possible to engineer mechanical modes, which are
localized on artificial irregularities (defect modes) [36–40]. These vibrational defect modes can be
compared to localized mid-gap defect states in semiconductors. Defect modes in phononic lattices

2



1. Introduction

are mechanically isolated from the environment, which reduces bending and radiation losses [36–38].
This leads to record-breaking high mechanical quality factors (𝑄s) of 106 to 108 [36–38]. These
ultra-coherent resonances form an attractive platform for quantum information technology at room
temperature, as their decoherence time exceeds the period of the oscillation [36, 38, 41].

Typically PnCs are made from silicon (Si) or silicon nitride (SiN) and feature lattice parameters in
the order of 100 µm. These materials have excellent mechanical properties [42–46], and established
complementary metal-oxide-semiconductor (CMOS) fabrication methods allow producing large
(mm-size) and robust phononic crystals made from these materials. At the same time, Si or SiN
membranes require a minimum thickness on the order of tens of nm. This makes them rigid, thus
allowing operation only at fixed frequencies and limiting tunable coupling between mechanical
entities. Furthermore, the lack of flexibility in common PnCs prevents accessing different mechanical
states (e.g. insulating and conductive) or dynamic control of phonons. We want to overcome these
limitations by combining the fields of phononics and 2D materials.
In our endeavor towards this goal, we design, fabricate, and simulate the thinnest possible

phononic crystal made from suspended monolayer graphene [22]. Our approach for a tunable
phononic crystal is based on a suspended graphene membrane, which we pattern into a PnC by
cutting a periodic array of holes (Fig. 1.1a). We choose suspended graphene for its outstanding
flexibility and mechanical tunability. The available size of suspended graphene, however, is limited
compared to Si or SiN, and we must minimize the features of our phononic crystal beyond the resolu-
tion of classical lithography and find a way to pattern sensitive suspended graphene membranes. We
overcome this by developing a suitable protocol using He-ion lithography, which makes it possible
to reproducibly pattern suspended graphene with a resolution of 10 nm [22, 47]. In our device design,
the suspended graphene PnC is electrically contacted and forms a capacitor with a closely-spaced
gate electrode. Applying a voltage (𝑉gate) to the gate electrode induces an electrostatic pressure,
which causes the entire PnC to deflect and allows us to manipulate the in-plane tension (Fig. 1.1a).
This concept for mechanical tuning of a phononic crystal made from a suspended membrane allows
us to realize the following key results:

First, we show that our system can be mechanically tuned over a broad range of frequencies. An
increase in tension upshifts the entire phononic spectrum as the velocities (and thus the frequencies)
of all phonons in a material depend on its tension (𝜎). In Fig. 1.1a, we plot the simulated tuning
of the phononic band gap (blue) vs. applied pressure for a circular sample. The phononic band
gap is highly sensitive to applied pressure and broadly tunable. For a realistic applied pressure of
30 kPa, we obtain more than 350 % tuning of the band gap position and thereby access a new regime
of tunable phononics. This adds a new experimental knob to phononic systems, which provides
dynamic control comparable to gating in electronic structures/systems.

3



1. Introduction

Second, having shown that we can broadly tune the position of the phononic band gap in our
graphene PnCs, we also demonstrate control of the band gap size. More precisely, we can controllably
close the phononic band gap and thereby induce a transition from a mechanically insulating state
to a mechanically conductive state. Such a change in hierarchy/topology in the phononic band
structure can be seen as a mechanical analog to a metal-insulator transition (mMIT). Inducing this
transition is based on engineering the tension distribution within the suspended phononic crystal
(quantified by the degree of uniaxility 𝜎xx/𝜎yy). Once this ratio reaches a critical value of 1.7, the
phononic band gap closes and the device is no longer mechanically insulating. We design a device
geometry where 𝜎xx/𝜎yy is tuned by applying a gate voltage to a rectangular PnC, and that allows
us to induce and probe the mMIT in realistic finite-size samples.

Third, we use our tunable phononic crystal to localize a mechanical mode on an artificial ‘defect’
in the center of the device. This defect mode is expected to show a strongly enhanced 𝑄 since it
is decoupled from its environment and hence may be used to store quantum information. As we
can fully control the phononic band gap in terms of position and size, we can now also control the
frequency and degree of localization of the defect mode. For a circular sample, the defect mode
stays within the band gap when pressure is applied and thus retains its localization. This will allow
tunable resonant coupling to external systems. For a rectangular device, the band gap closes as we
apply pressure. This is an effective way of controlling the coupling of the mode to its environment
(controllable dephasing) and may potentially be useful for dispersive read-out. Furthermore, by
reducing the size of the band gap, we are able to control bending and radiation losses and thereby
will gain new insights into the mechanical dissipation channels in resonators based on 2D materials.

Fourth, we propose a transistor forMHz-frequency acoustic phonons based on the above-described
mMIT. Our device shows an on/off ratio of 105 (100 dB suppression) and can be operated by simply
applying a gate voltage of reasonable size (8V). This is a valuable extension for phonon logic
applications and invites the realization of a variety of logic gates in the future.

In summary, we have realized gate-tunable phononic crystals made from suspended graphene and
thereby added a new experimental knob to phononics, which allows us to dynamically manipulate
the phononic band gap over a large range of frequencies [22]. With this additional degree of
freedom, it is possible to explore tunable phononic analogs to phenomena in condensed matter
physics (e.g. phase transitions), which we demonstrate by presenting the mechanical equivalent of
a metal-insulator transition [48].

4



1. Introduction

1.2. Nanomechancial spectroscopy of 2D materials

Spectroscopic methods have been used to uncover a vast range of new physical phenomena in
two-dimensional (2D) materials over the last decades. In particular, materials from the group of
transition metal dichalcogenides (TMDs) feature a remarkable zoo of correlated phases including
excitonic insulators [49, 50], Wigner crystals [51, 52], Bose-Einstein condensates [53, 54], and
superconductors [55]. All these phenomena can be studied by analyzing the dielectric function,
which fully describes the light-matter interaction in solids. Real and imaginary components of
the dielectric function (𝜖1 and 𝜖2) contain information regarding light absorption, propagation
velocity, excitonic and plasmonic resonances, band gaps, and many-body effects. The dielectric
function is usually experimentally determined via ellipsometry [56–59], by combining reflection
and transmission measurements [60], or from spectrally resolved reflection contrast (Δ𝑅/𝑅) using
the Kramers-Kronig relations [61–63]. Despite the broad applicability of these techniques, they are
hard or impossible to apply in many situations. For example, optical measurements under oblique
angles, as required by ellipsometry measurements, are challenging at low temperatures, ultra-high
vacuum environments, and/or high magnetic fields. Measurements of transmission require large
and thin samples on transparent substrates and may be affected by scattering. The Kramers-Kronig
analysis requires broadband measurements of reflection and depends on empirical models of the
optical constants.
For 2D materials, these problems become more severe due to their limited sample size and

sensitivity to their surrounding. To observe the above-mentioned correlated states, one requires
uniform high-quality samples. Such samples are typically encapsulated in hexagonal boron nitride
or suspended and are limited to sample sizes in the single-digit micron range. Transmission or
ellipsometry measurements of such nanostructures at ultralow temperatures or high magnetic fields
are challenging. Especially when studying plasmons or polaritons in patterned 2D materials in
the form of photonic [64, 65] or phononic crystals [22], new optical characterization methods are
needed. In addition, excitons in 2D materials are strongly screened by the dielectric environment.
This screening perturbs the dielectric function which, influences the Kramers-Kronig analysis.

On the positive side, 2D materials have remarkable mechanical properties, and their atomic
thickness allows for the fabrication of small and light NEMS resonators. These 2D material-based
resonators have a reduced effective mass, increased resonance frequencies, easily accessible non-
linear regime, and the ability to tune resonance frequencies [66, 67]. This is a major technological
boost, which allows using such resonators as probes for magnetic fields [68, 69], sound [19, 70–
72], gases [19, 73], or even to study live bacteria [74]. The question I want to answer is, how
can we use NEMS resonators to perform spectroscopy of 2D materials and thereby overcome the
above-mentioned limitations of classical optical spectroscopy methods?

5



1. Introduction

To realize such a nanomechanical spectroscopy (NMS) approach we need to design a nanome-
chanical resonator that controllably responds to the absorption of light in a 2D material of interest.
Our sample design for this consists of a 2D material on top of a SiN membrane (Fig. 1.1b). The two
components form a hybrid resonator, where they oscillate together in phase. When the resonator
absorbs incoming light (𝑃inc), its average temperature increases, which results in a reduced resonance
frequency as the in-plane tension is released due to thermal expansion. By varying the photon
energy of the incoming light and monitoring the corresponding frequency shifts, we can extract the
absorption coefficient of the 2D material (Fig. 1.1b). In combination with optical reflectivity data,
we derive – without any further assumptions – the full dielectric function of the 2D material under
study.
Although NMS has many fundamental advantages, our first approach lacks the sensitivity pro-

vided by state-of-the-art optical approaches, so in the following step, we improve the measurement
sensitivity. The key points for achieving this are stress reduction in the SiN membranes and ther-
mal decoupling of the 2D material, which leads to an enhanced response to absorbed light. This
reduces the noise equivalent power (𝑁𝐸𝑃 ) of NMS by two orders of magnitude, down to 𝑁𝐸𝑃 =
890 fW/

√
Hz. At the same time, we simplify the method by using base actuation, which allows us to

study electrically insulating materials, makes sample loading straightforward, and provides a simple,
yet robust calibration. Overall, our approach of using NEMS resonators to perform spectroscopy of
2D materials led to the following key results/advantages:

First, by restoring the full dielectric function, without any assumptions of other underlying optical
constants, we are able to capture the complete picture of light-matter interaction effects in the
studied 2D material. At the same time, our measurements are fast (𝜏rise = 135 ns) and sensitive (𝑁𝐸𝑃

= 890 fW/
√
Hz), and we can determine the dielectric function for TMD materials in the range 1.2 –

3.1 eV.
Second, in our approach, the 2D material is suspended and therefore unaffected by substrate-

related screening- or doping effects. Additionally, we are able to prevent unwanted interaction with
the probe laser, as we can measure the mechanical resonance via the SiN substrate (red beam in
Fig. 1.1b).
Third, we do not require complicated transmission measurements or measurements at oblique

angles, and therefore NMS should function at low temperatures and high magnetic fields. Also, our
approach works well for small sample sizes (∼ 1 µm).

Fourth, by using the 2D material itself to detect absorbed light, we can potentially access a broad
spectral range from THz to UV, allowing us to study a large variety of 2D materials. Furthermore,
the underlying detection mechanism of NMS is insensitive to the scattering of light and should in
principle allow discriminating between scattered and absorbed light.
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In summary, we have developed a nanomechanical platform to spectroscopically characterize 2D
materials. Our approach is fast, broadband, and sensitive, and it provides fundamental advantages.
We use NMS to study a range of (exotic) 2D structures with high resolution. This includes classic
TMDs such as MoS2, WS2, and WSe2, a layered magnetic semiconductor CrPS4, from the class of
ternary TMDs, and a plasmonic meta-structure consisting of gold nanoparticles. NMS paves the
way to study the optical properties of 2D materials, where classical methods are limited, and will
help to discover new physics in 2D materials.

1.3. Thesis outline

In a nutshell, the goals of this thesis are to conceptualize tunable phononic systems and to develop
a sensitive nanomechanical probe to perform spectroscopy of 2D materials. As both goals employ
2D materials, I will first introduce 2D materials and motivate their use for our nanomechanical
devices (Sec. 2.1). Next, I will describe their equations of motion in order to establish a common
language regarding nanoelectromechanical resonators (Sec. 2.2). Then, I will present how 2D
material-based resonators can be experimentally characterized (Sec. 2.3) and mechanically tuned
(Sec. 2.4). Following this, I will discuss how 2Dmembranes can be transformed into phononic crystals
by periodic patterning (Sec. 2.5). I will further explain the detection of light using nanomechanical
resonators (Sec. 2.6). In chapter 3, I state my contribution to the publications forming this thesis,
followed by chapter 4, which explains the connection between the papers. Finally, I summarize the
results and give an outlook towards future experiments (Ch. 5).
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2. Nanomechanics of two-dimensional materials

2.1. Graphene and transition metal dichalcogenides

I start by introducing 2D materials and discussing the reasons that prompted us to choose them to
realize our nanoelectromechanical systems. Graphene is a single layer of carbon atoms arranged in a
hexagonal lattice with a thickness given by the interlayer distance of graphite (𝑡 = 3.35Å). It was first
isolated by mechanical exfoliation in 2004 [3] and since then has been the subject of intense research
due to its unique combination of mechanical [1, 2], electrical [4, 5], and thermal properties [75].
Graphene is an excellent conductor of electricity and heat, and it is also incredibly strong and flexible.
These properties make it a promising material for a wide range of technological applications [76],
including electronics, energy storage, biomedical devices, and nanoelectromechanical systems
(NEMS) [66, 67]. At the same time, graphene is an ideal playground to explore fundamental physics
questions, e.g. tunable superconductivity [77], relativistic fermions [4], fractional quantum hall
effect [78], and ballistic charge transport at room temperature [4] (to name a few).
Every carbon atom in graphene forms a covalent 𝑠𝑝2 bond with its three nearest neighbors (as

shown in Fig. 2.1a). The covalent bond is the strongest type of atomic bond and is responsible for
graphene’s record high Young’s modulus 𝐸 = 1TPa [1]. This high in-plane stiffness combined with
an intrinsically low defect density yields graphene’s incredible breaking strength of 130GPa [1].
To put this value into relation, one would need an elephant balanced on a pencil in order to break
through a sheet of graphene with the thickness of plastic wrap (12.7 µm) as sketched in Fig. 2.1b [79].

The orbital of the fourth valence electron is oriented perpendicular to the graphene plane, where
it forms delocalized bands of electrons. These 𝜋-bands dominate graphene’s electronic and optical
properties. The unit cell contains two atoms and is defined by the lattice vectors a1 and a2, as shown
in Fig. 2.1c. The carbon atoms are separated by 𝑑C-C = 1.422Å and the lattice vectors have a length
of

√
3𝑑C-C. The corresponding first Brillouin zone of graphene is a hexagon with the Γ point at its

center and the high symmetry points M, K, and K’ along its perimeter (Fig. 2.1d). The electronic band
structure of graphene shows a linear dispersion around the K and K’ points. Therefore graphene is
a highly conductive semi-metal and can show electron mobilities up to 𝜇 = 200 000 cm2V−1s−1 [80].
The linear band structure also defines the optical absorption within graphene, which is mostly
constant (∼ 2.3 %) over a large range of photon energies [81].
Shortly after the discovery of graphene, other 2D materials were also isolated by mechanical

exfoliation [83]. This started with the class of binary transition metal dichalcogenides (TMDs)
in the form MX2, where M stands for a transition metal atom (Mo, W, etc.) and X represents a
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2. Nanomechanics of two-dimensional materials

Figure 2.1: Lattice structure of graphene. a, Sketch of graphene on the atomic scale. The lattice is made
up of carbon atoms (spheres) bound by covalent bonds and arranged in a hexagonal lattice. b, Visualization
of graphene’s mechanical strength: One would need an elephant balanced on a pencil in order to pierce
through a sheet of graphene with the thickness of plastic wrap (12.7 µm) [79]. c, Unit cell of graphene’s
hexagonal crystal structure with the lattice vectors a1 and a2. d, The corresponding first Brillouin zone with
the high-symmetry points Γ, K, and M – connected by the high symmetry lines. Figure panels (a) and (b) are
taken from Ref. [82] and Ref. [79] respectively.

chalcogen atom (S, Se or Te). TMDs form a layered two-dimensional crystal with the metal atoms
sandwiched between chalcogen atoms (Fig. 2.2a). In this lattice structure, each metal atom is bonded
to six chalcogen atoms, forming trigonal prismatic coordination. The chalcogen atoms, on the
other hand, are bonded to three metal atoms. The resulting lattice is composed of alternating
molybdenum and sulfur atoms, which form a hexagonal pattern (Fig. 2.2b). TMDs in their 2H
phase are semiconductors, and when they are thinned down to monolayer thickness they feature
a direct band gap in the visible range [84], as shown in Fig. 2.2c. TMDs can host a variety of
excitons, which are bound states of an electron and a hole that are attracted to each other by the
electrostatic Coulomb force [83–85]. Due to their confinement to two dimensions and reduced
dielectric screening, excitons in TMDs have large binding energies (∼ 500meV) and dominate the
optical properties even at room temperature. TMDs are less conductive than graphene and have
much lower charge carrier mobilities, however, they can be turned into an electrically insulating
‘off’ state and thus can be used as a channel material for transistors [24, 86, 87]. They also have
a lower breaking strength and Young’s modulus, but much more exciting optical properties and
significantly stronger light-matter interaction than graphene.

2.2. 2D materials in motion

This section aims to describe the dynamics of suspended 2D materials to provide a background for
understanding the mechanical systems studied in this thesis. To this end, I derive the equations of
motion for a suspended membrane and briefly compare them to experimental results. A commonly
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2. Nanomechanics of two-dimensional materials

Figure 2.2: Lattice structure of TMDs. a, Atomic structure of a TMD monolayer. The metal atoms are
shown in black and the chalcogen atoms are shown in yellow. b, Top view of a hexagonal TMD monolayer. c,
Electronic band structure of a MoS2 monolayer. The material features a direct band gap at the K point. The
images in (a) and (b) are taken from Ref. [88]. Figure panel (c) is adapted from Ref. [89].

used sample concept for a 2D material-based NEMS resonator is shown in Fig. 2.3a. The device
consists of a back gate (Si) separated by a layer of SiO2 from the suspended 2D material, which
is electrically contacted through a film of gold (Au). In the center of the device, the 2D material
is suspended and can move freely. Before we look at a specific device, I start by describing the
generalized motion of any mechanical resonator in the linear regime (following Ref. [90]). The
complete, three-dimensional motion is given by the vector displacement function 𝐑(𝐱, 𝑡), which can
be divided into an infinite number of independent modes. Assigning a label 𝑛 to each mode, we can
express the displacement function as:

𝐑(𝐱, 𝑡) = ∑

𝑛

𝑎n(𝑡)𝐫n(𝐱). (2.1)

Here 𝐫n(𝐱) describes the spatial mode shape of the 𝑛𝑡ℎ resonance mode, while the time dependence
of the resonator’s motion is given by the function 𝑎n(𝑡). Next, we normalize 𝐫n(𝐱) such that the
maximum value of |𝐫𝑛(𝐱)| equals unity. This normalization ensures that 𝑎n(𝑡) has units of distance
and is in direct correspondence with the resonator’s displacement at the point of measurement.
For simple geometries (e.g. circular or square membrane), the mode shape (𝐫n(𝐱)) can be calculated
analytically, while for more complex geometries finite element method (FEM) simulations are
needed.
In most cases, the motion of a mechanical resonator can be reduced to a one-dimensional

displacement function (e.g. in the out-of-plane direction for a 2D membrane, as illustrated in
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2. Nanomechanics of two-dimensional materials

Figure 2.3: Two-dimensional membrane resonators. a, Sketch of a commonly used device geometry for
2D material-based resonators. The suspended region of the 2D material can move freely, while the clamped
edges serve as boundary conditions and define the mode shape of the resonances. b, Measured amplitude
and phase vs. frequency for an exemplary membrane resonator. By fitting a driven harmonic oscillator (red
line), we can extract the resonance frequency and quality factor. c, Simulated mode shape of a rectangular
clamped membrane resonator for the first four lowest modes. d, Simulated mode shape of a circular clamped
membrane resonator for the first four lowest modes.

Fig. 2.3a). For small amplitudes in the out-of-plane direction, the in-plane motion is negligible so
that the displacement can be reduced to the following displacement function:

𝑧(𝑥, 𝑦, 𝑡) = ∑

𝑛

𝑧n(𝑥, 𝑦, 𝑡) = ∑

𝑛

𝑎n(𝑡)𝑢n(𝑥, 𝑦), (2.2)

where 𝑢n(𝑥, 𝑦) is the two-dimensional mode shape for the 𝑛𝑡ℎ mode of the resonator as a function
of position 𝑥 and 𝑦, and 𝑎n(𝑡) is unchanged from Eq. 2.1. As before, we normalize 𝑢n(𝑥, 𝑦) such
that the maximum value of |𝑢n(𝑥, 𝑦)| is unity. Next, we can determine 𝑎n(𝑡) by mapping each of the
resonator’s modes to a damped harmonic oscillator of the form:

𝑎̈n +
𝜔n

𝑄n
𝑎̇n + 𝜔

2
n𝑎n =

𝐹(𝑡)

𝑚eff,n
. (2.3)
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2. Nanomechanics of two-dimensional materials

In this equation, 𝜔n = 2𝜋𝑓n, 𝑄n and 𝑚eff,n stand respectively for (angular) frequency, quality factor,
and effective mass for the 𝑛𝑡ℎ mode of the resonator. 𝐹(𝑡) is a time-dependent driving force. We can
also define an effective spring constant for the 𝑛𝑡ℎ mode as 𝑘eff,n = 𝑚eff,n𝜔

2
n [91]. Equations 2.1 – 2.3

fully describe the motion of mechanical resonators in the linear regime. The resonance frequency,
quality factor, andmode shape (and thus𝑚eff,n) are ultimately determined by the device geometry and
employed materials. When the system is exposed to an external periodic driving force (𝐹ext sin(𝜔𝑡)),
the amplitude of the steady-state oscillation is given by:

𝑎n(𝜔) =
𝐹ext𝑄𝑛/𝑘eff,n

√

(
1 − 𝜔2

𝜔2
n)

2

+
(

𝜔

𝜔n𝑄n)

. (2.4)

In Fig. 2.3b, we can compare this equation (red line) to experimental data (blue dots) and find good
agreement. One finds a peak in amplitude when the membrane is driven at its resonance frequency
𝜔n. In the small damping limit (underdamped), the peak width of 𝑎2n(𝜔) defines the full-width-half-
maximum (FWHM) of Δ𝜔FWHM = 𝜔i/𝑄i. The linewidth is defined as Γ = Δ𝜔FWHM/(2𝜋). From the
experimental data, we can extract a 𝑄 of 8000 and a line width of 575Hz. The phase angle, by which
the mechanical motion lags behind the actuation force, is given by:

𝜙n = arctan
(

𝜔2
n − 𝜔2

𝜔𝜔n/𝑄n)
. (2.5)

The phase angle abruptly changes from 𝜋 to zero and equals 𝜋/2 when the system is driven exactly
at its resonance frequency. In Fig. 2.3b, we plot the measured phase angle for our example resonator
and find exactly this behavior.

In order to derive an expression for the effective parameters (e.g. resonance frequency, effective
mass and mode shape) of a 2D material-based resonator, let us look at the free vibration of a thin
plate (of any shape) with uniform thickness ℎ [92]:

𝐷x

ℎ

𝜕4𝑧(𝑥, 𝑦, 𝑡)

𝜕𝑥4
+
𝐷y

ℎ

𝜕4𝑧(𝑥, 𝑦, 𝑡)

𝜕𝑦4
+ 2

𝐷xy

ℎ

𝜕4𝑧(𝑥, 𝑦, 𝑡)

𝜕𝑥2𝜕𝑦2
−
𝜎xx

ℎ

𝜕2𝑧(𝑥, 𝑦, 𝑡)

𝜕𝑥2

−
𝜎yy

ℎ

𝜕2𝑧(𝑥, 𝑦, 𝑡)

𝜕𝑦2
− 2

𝜎xy

ℎ

𝜕2𝑧(𝑥, 𝑦, 𝑡)

𝜕𝑥𝜕𝑦
+ 𝜌

𝜕2𝑧(𝑥, 𝑦, 𝑡)

𝜕𝑡2
= 0,

(2.6)

where 𝜎ij are the in-plane tension components, 𝐷i are the components of the bending rigidity, and
𝜌 stands for the materials density. Suspended 2D materials typically show considerable built-in
tension, whereas their flexural rigidity is usually tiny due to their atomic thickness. This means
that elastic energy (and ultimately the resonance frequency) is dominated by the in-plane tension 𝜎

(in contrast to plates, where the bending terms are dominant). Therefore, we can neglect the first
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2. Nanomechanics of two-dimensional materials

three terms in equation 2.6. Finally, assuming an isotropic tension, with no shear component in the
tension (i.e. 𝜎xx = 𝜎yy = 𝜎 and 𝜎xy = 0), we arrive at:

𝜕2𝑧(𝑥, 𝑦, 𝑡)

𝜕𝑥2
+
𝜕2𝑧(𝑥, 𝑦, 𝑡)

𝜕𝑦2
−
ℎ𝜌

𝜎

𝜕2𝑧(𝑥, 𝑦, 𝑡)

𝜕𝑥𝜕𝑦
= 0. (2.7)

To solve this equation, we use the approach shown in Eq. 2.2 and separate the spatial and time
dependence of the solution. We find that the time dependence is described by [90]:

𝑎mn(𝑡) = 𝑐mn cos(𝜔mn𝑡) + 𝑑mn sin(𝜔mn𝑡), (2.8)

where 𝑚 and 𝑛 are the indices for the modes in the 𝑥 and 𝑦 direction respectively and 𝑐mn and 𝑑mn

allow us to adjust the solution to the initial state of motion of the resonator. By implementing the
boundary conditions of a specific geometry, we can find the complete solution to Eq. 2.7. For a
rectangular membrane clamped along its perimeter, the boundary conditions are given by:

𝑢mn(0, 𝑦) = 𝑢mn(𝑥, 0) = 𝑢mn(𝐿x, 𝑦) = 𝑢mn(𝑥, 𝐿y) = 0, (2.9)

where 𝐿x and 𝐿y are the spatial dimensions of the rectangle. The mode shape fulfilling this equation
is given by (derivation in Ref. [90]):

𝑢𝑚𝑛(𝑥, 𝑦) = sin
(

𝜋𝑚𝑥

𝐿x )
sin

(

𝜋𝑛𝑦

𝐿y )
. (2.10)

The mode shapes for the first four modes of a rectangular membrane are plotted in Fig. 2.3c. Based
on this, we can find the resonance frequency of each of the (m,n) modes:

𝑓mn =
𝜔mn

2𝜋
=

1

2

√

𝜎

𝜌 [(

𝑚

𝐿x)

2

+
(

𝑛

𝐿y)

2

]
. (2.11)

For a circular membrane, the derivation can be repeated by transforming Eq. 2.7 to cylindrical
coordinates. The solution to the spatial mode shape is then given by Bessel functions and results in
a resonance frequency of:

𝑓mn =
𝜔mn

2𝜋
=

1

2𝜋

√
𝜎

𝜌

𝛼mn

𝑎
, (2.12)

where 𝑎 is the radius and 𝛼mn is a numerical prefactor (which equals 2.4049 for the fundamental
mode). The mode shapes for the lowest modes of a circular membrane are shown in Fig. 2.3d.
To fully describe the motion of a mechanical resonator, we need to have an expression for the

effective mass 𝑚eff,n, which maps an oscillation with an arbitrary mode shape to an ideal harmonic
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motion (point-like mass on a spring). For a resonator of uniform density, oscillating in the out-of-
plane direction (𝑧), the effective mass of the n𝑡ℎ mode can be derived from the potential energy and
is given by [90]:

𝑚eff,n = 𝜌 ∫ 𝑑𝑉
|
|
|
|

𝑧(𝑥, 𝑦, 𝑧, 𝑡)

𝑧max

|
|
|
|

2

, (2.13)

where 𝑧𝑚𝑎𝑥 is the maximum displacement. The effective mass is a metric for the relative displacement
of a resonance mode. Roughly speaking, a mode with a large effective mass moves more. For a
square resonator, one obtains a mode-independent effective mass:

𝑚eff,n =
𝜌ℎ𝐿x𝐿y

4
=

𝑚phys

4
. (2.14)

For a circular clamped membrane, one needs to integrate over the Bessel functions. The fundamental
mode has an effective mass of𝑚eff,n ≈ 0.27𝑚phys, however, higher-order modes show large variations
in effective mass. For complex geometries, the effective mass is typically numerically determined
using finite element method (FEM) simulations.

2.3. Driving and detecting 2D material-based resonators

To experimentally characterize nanomechanical resonators, it is essential to understand suitable
actuation and readout methods. Therefore, in this section, I briefly discuss commonly used interfer-
ometric motion detection schemes and driving mechanisms.

Let us start by looking at ways to generate out-of-plane motion in 2D material-based resonators
via a periodic external force (compare Eq. 2.3 and 2.4). This can be achieved in various ways. The
methods used in this thesis are (i) electrostatic actuation, (ii) base actuation, and, in some cases,
(iii) optothermal actuation. For the electrostatic actuation, a periodically-varying voltage (𝑉AC)
mixed with a DC voltage (𝑉gate) is applied to a gate electrode close to the suspended membrane
(Fig. 2.4a,b). This results in a periodically modulated electrostatic force, which sets the membrane in
motion and effectively drives the resonators. For the base actuation, the sample is placed on top of
a piezoelectric element (Fig. 2.4a), which vibrates and thereby transfers the motion to the resonator
via the substrate. For optothermal actuation, a modulated laser beam focused on the sample is
used to periodically heat the resonator. This leads to thermal expansion and induces motion. For a
comprehensive overview of actuation methods used in the area of research see Ref. [66, 67].
Next, we need to understand how the induced motion can be detected. This is commonly done

using an interferometric, a capacitive, or a transductive readout approach. In this work, we employ
interferometric readout based on (i) a Michelson and (ii) a Fabry–Pérot cavity. For details on other
readout methods, refer to Ref. [66, 67].
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2. Nanomechanics of two-dimensional materials

In our Michelson interferometer [93–95], a beam of light emitted from a HeNe laser (wavelength
𝜆) is directed towards a beamsplitter, which divides the beam into two parts with equal intensity (𝐼1
and 𝐼2), as shown in Fig. 2.4a. One beam is reflected off a reference mirror and directed back towards
the beamsplitter, while the second beam passes through an objective and is reflected off the sample.
The two reflected beams recombine at the beamsplitter and interfere with each other. The resulting
intensity is given by the following term:

𝐼total = 𝐼1 + 𝐼2 + 2
√
𝐼1𝐼2 ⋅ 𝑐𝑜𝑠

(

2𝜋Δ𝑥

𝜆 )
, (2.15)

where Δ𝑥 is the difference in length between the two optical paths. This signal is highly sensitive
to small changes in path length and when the sample oscillates at a given frequency, the intensity
of the light is modulated at this frequency. We use a photodetector to convert the light intensity
into an electrical signal and record it using a lock-in amplifier. The lock-in amplifier is also used to
generate the driving signal and can simultaneously provide a small gate voltage (for 𝑉gate > 10V, we
use an external voltage source in combination with a bias-T). More experimental details on this
setup including a step-by-step manual are provided in the appendix (Sc. A.1). In our measurement
configuration, we routinely achieve a displacement sensitivity of ∼ 100 fm/

√
Hz (strain sensitivity:

3.3 × 10−15 1/
√
Hz). Given the arm length of ∼ 30 cm and small laser powers (<1 µW), this is a decent

sensitivity value and more than sufficient for our experiments. Here I would like to note that with
larger arm lengths, higher laser powers, and much more sophisticated stabilization mechanisms, it
is possible to achieve a strain sensitivity of 1 × 10−23 1/

√
Hz [96] (as it is currently done at the Laser

Interferometer Gravitational-Wave Observatory).
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Figure 2.4: Interferometric readout of 2D material-based resonators. a, Michelson interferometer.
A central beamsplitter divides the incoming laser beam into two paths. One arm of the interferometer is
formed by the sample, and the total reflected light is highly sensitive to relative displacement, which allows
us to detect mechanical motion with high resolution. b, Fabry–Pérot cavity interferometer. The sample itself
forms an interferometer, resulting in a standing wave-like light intensity 𝐼 (𝑧). When the suspend 2D material
oscillates, the reflected light is modulated, which we use to probe the mechanical resonances.

In our Fabry–Pérot cavity interferometer [97, 98], the semi-transparent, suspended 2D material
forms an optical cavity with the reflecting back gate (Fig. 2.4b). The incoming laser beam is reflected
and interferes with itself, forming a standing wave light intensity field in the 𝑧-direction (𝐼 (𝑧)),
as shown in red-shaded in Fig. 2.4b. When the membrane oscillates, it is exposed to a varying
light intensity and thus absorbs a varying amount of light. Additionally, the light reflected off the
membrane and off the substrate interfere and also modulate the light intensity at the oscillation
frequency. For graphene, this effect is relatively small because graphene has a low reflectivity. For
TMDs, this contribution is larger. Both effects result in a modulation of the intensity of the total
reflected light, which is detected using a photodetector. In this approach, the measured amplitude
depends on the membrane position relative to 𝐼 (𝑧) and is proportional to d𝐼 (𝑧)

d𝑧 . The standing wave
pattern of the light intensity in the cavity can give rise to backaction effects on the mechanical
resonator [13–15]. These effects are interesting by themselves and, for example, allow to effectively
cool resonance modes. However, they are not desirable for our nanomechanical spectroscopy (NMS)
approach, as they also induce frequency shifts. These shifts will be indistinguishable from the purely
heating-related shifts, which we use to determine the absorption of the 2D materials (details in
Sec. 2.6). To avoid this, we use our Michelson interferometer for NMS.
Both measurement approaches provide us with the frequency-dependent displacement and the

phase of the resonator (compare Fig. 2.3b), which we use to extract the resonance frequency (𝜔n),
quality factor (𝑄n) and maximum amplitude (𝑎n). By spatially varying the position of the probe
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beam, it is possible to restore the mode shape 𝑢n(𝑥, 𝑦) [99] and derive the effective mass 𝑚eff,n. 2D
material-based resonators are typically measured in vacuum because they are easily damped by
surrounding gases due to their low mass. The remaining dissipation mechanisms in resonators
made from 2D materials depend on a large range of parameters and are, as of today, not entirely
understood [66, 67].

2.4. Mechanical tuning of 2D materials

This section is devoted to discussing the mechanical tuning of suspended 2D materials, which we
will need for the realization of tunable phononic systems. Probably the most remarkable mechanical
feature of 2D materials is their flexibility. Due to its strong covalent in-plane bonds and low defect
density, graphene can be stretched by 20 % before it ruptures [1]. This allows us to add tunability
to nanomechanical resonators and provides a powerful experimental knob. By adjusting this
knob, one can manipulate mechanical resonances, which enabled key experiments such as tunable
back-action effects [13–15], non-linear dynamics [6–10], or studies of the chemical potential in
graphene [100]. According to Eq. 2.11, the resonance frequency of a suspended membrane depends
on its tension 𝜎. When a suspended membrane is statically displaced, its tension increases, and
thus the resonance frequencies of the system upshift. There are multiple approaches to controllably
displace a suspended 2D membrane. The simplest method is to apply a voltage (𝑉gate) to a gate
electrode in the vicinity of the suspended 2D material. In our case, the 2D material is conductive and
electrically connected via a thin layer of gold (see Fig. 2.5a). Together with the silicon gate electrode
(Si), the 2D material forms a capacitor. By applying 𝑉gate, electrostatic pressure is generated, which
displaces the membrane and induces tension. The resulting electrostatic pressure is defined as:

𝑝el =
𝜖0

2 (

𝑉gate

𝑑 )

2

, (2.16)

where 𝜖0 is the vacuum permittivity and 𝑑 is the initial separation between the gate and 2Dmembrane.
The effect of applying a gate voltage on the resonance frequency is shown in Fig. 2.5b. Upon
increasing the gate voltage, the fundamental resonance frequency shifts from ∼ 3MHz to almost
8MHz.
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Figure 2.5: Mechanically tuning 2D materials. a, Tension induced via electrostatic gating. When a
voltage (𝑉gate) is applied between the suspended 2D materials and the gate electrode below it, electrostatic
pressure displaces the membrane and induces tension. b, Resonance frequency vs. applied gate voltage for a
graphene resonator. With increasing gate voltage, the fundamental resonance frequency can be tuned from
3MHz to almost 8MHz. The measured amplitude of the resonance varies as the membrane is displaced. This
is due to a variation in detection efficiency, which is proportional to the derivative of the light intensity in
the cavity (d𝐼 (𝑧)d𝑧 ).

For small gate voltages (<120V), we observe an initial small downshift in frequency, which is
attributed to an effect called capacitive softening [18, 67, 70, 101, 102]. This may seem surprising
because the application of a voltage should increase tension and therefore result in a frequency
upshift. To give an intuitive understanding of this effect, we look at the potential energy 𝑈pot, which
defines the effective spring constant of the resonator: 𝑘eff = d2𝑈pot

d𝑧2 . When a voltage is applied to
the membrane, the total potential energy also contains a term accounting for the electrical energy
stored in the form of a plate capacitor: 𝑈pot = 𝑈elastic + 𝑈electric. As the membrane is pulled closer to
the gate electrode, the 𝑈electric-term has a negative sign, which leads to a lowering of 𝑘eff and thus an
initial downshift in frequency before 𝑈elastic starts to dominate at larger gate voltages (>120V).

The mechanical tunability in 2D material-based NEMS resonators is remarkable, and the relative
change in resonance frequency routinely reaches more than 100 % [18, 66, 67, 102], which makes
resonators made from 2D materials highly tunable mechanical systems. The geometry of the
suspended material determines the distribution of the induced tension [103, 104]. For a circular
device, the induced tension is biaxial and mostly uniform. By using a rectangular device, one
can control the degree of uniaxially (𝜎xx/𝜎yy) in the tension distribution. There are also other
approaches to induce tension, e.g. a sharp AFM tip can be used to indent a suspended membrane
and thereby create a highly localized tension hot spot [105]. In summary, NEMS resonators made
from 2D materials form broadband tunable mechanical systems that can be easily manipulated, e.g.
by applying a gate voltage.
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2.5. From membranes to phononic crystals

Having understood the dynamics of 2D materials and knowing how they can be mechanically tuned,
we still need to answer another question towards our goal of realizing tunable phononics: How can
we transform a 2D membrane into a phononic crystal?

Before I discuss that question, I would like to introduce the concept of a phononic crystal (PnC).
PnCs are engineered structures with a periodic variation of material properties, e.g. stiffness, mass,
or stress [25, 26]. This periodic perturbation creates a meta-crystallographic order in the system
and leads to a vibrational band structure hosting acoustic Bloch waves [25, 26]. A phononic band
structure can be seen as an analog to the electronic band structure in solids. This brings the ability to
control and manipulate mechanical excitations in the same way that traditional electronic crystals
control the flow of electrons. PnCs come in 1D, 2D, or 3D versions (Fig. 2.6a), and their lattice
parameter 𝑎 can range from tens of nanometers to meters [29]. The resulting phonon frequencies
cover a range from audible to humans (∼ 100Hz) to heat waves (∼ 10THz). Similar to phonons on
the atomic scale, phonons in PnCs can have various polarization and different velocities for the
propagation along different crystallographic axes. However, phonons on the atomic scale have a
much smaller lattice parameter (𝑎 ≈ Å) and thus oscillate at much higher frequencies (𝜔 > 10 THz).
When the lattice parameters of a PnC are chosen properly, a phononic band gap can be opened (gray
in Fig. 2.6b). These band gaps, induced by destructive wave interference effects at the high symmetry
points, occur for phonon wavelengths, which are comparable to the lattice parameter 𝑎. Mechanical
waves with frequencies within the range of phononic band gaps cannot propagate, as they are
strongly damped. This allows for controlling phonons towards many useful applications such as
sonic filters [29], isolators [29, 106], waveguides [30–32], or phonon lenses [33–35]. Furthermore,
phononic band gaps allow the creation of highly localized modes on artificial lattice irregularities.
These mechanical ‘defect’ modes are shielded from their environment and show record-breaking
quality factors as radiation and bending losses are strongly reduced [36–40].
As discussed in the previous sections, suspended 2D materials can be described as membranes

and their mechanical behavior is dominated by their in-plane tension components 𝜎ij. This raises
the question: How can we transform a 2D membrane into a phononic crystal? The simplified answer
to this question is: By cutting a periodic pattern of holes into the membrane. In the next paragraphs,
I will explain what (computational) tools we use to design and study our phononic crystals and
provide some intuitive explanations for the origin of phononic band gaps.

Before we pattern our device with a phononic lattice, we must gain some understanding of what
lattice parameters to employ for our system. To determine suitable lattice parameters, we perform
phononic band structure calculations for an infinite lattice, without having to worry about fixed
boundary conditions or finite-size effects for now. The unit cell of a phononic crystal can contain
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Figure 2.6: Phononic crystals. a, Sketch of phononic crystals with different dimensionality (1D, 2D and
3D). They are made of different elastic materials arranged in a periodic manner. Different colors indicate
materials with different elastic properties. b, An example of a phononic band structure for a 2D phononic
crystal. The non-dimensional frequencies 𝜔𝑎/2𝜋𝑐𝑇 (with 𝑐𝑇 being the transverse velocity) are plotted versus
the phonon wave vector k along the high symmetry lines Γ–X–M–Γ of the corresponding first Brillouin zone.
The range of forbidden frequencies, or phononic band gap, is shown in gray. Figure adapted from Ref. [29].

a very large number of atoms (4 × 107 carbon atoms in our case), which brings first-principles
approaches for band structure calculations to their limits. Therefore, our method of choice is
finite element method (FEM) modeling in Comsol Multiphysics. Fig. 2.7a depicts a unit cell for a
honeycomb lattice of holes (𝑎 = 1 µm, 𝑑/𝑎 = 0.5 ) with the corresponding first Brillouin zone shown
below. By applying periodic (Floquet) boundary conditions to the unit cell, we can calculate the
phononic band structure for an infinitely expanded lattice (Fig. 2.7b). For this, we parameterize the
wave vector k to cover the desired path along the first Brillouin zone and then extract the resonance
frequencies (eigenfrequencies) by numerically solving the generalized eigenvalue problem, which is
defined by the stiffness and mass matrices. By plotting the eigenfrequencies vs. k, we obtain the
phononic band structure. In this ‘infinite model’, we find a sizable band gap for out-of-plane modes
around 50MHz (more details in Ref. [22]). In this work, we focus entirely on out-of-plane modes. In
the context of phononic crystals made from 2D materials, these modes are especially relevant as
they are easy to excite and detect.

Making suspended samples from graphene comes along with limitations for a maximum device
size, which is on the order of 20 to 30 µm. To verify that we can apply the results obtained from
band structure calculations to a realistic sample of finite size, we need to identify the band gap
in such a device. To do so, we switch to our ‘finite model’, which is computationally much more
resource-hungry, but accounts for finite-size effects. Fig. 2.8a shows a sketch of a circular 2D
membrane (diameter 𝐷 = 30 µm) with a honeycomb lattice of holes patterned into it. The lattice
parameters are identical to the ones used in the infinite model, and we implement an artificial
irregularity in the center to host a defect mode. To understand the phononic properties of the ‘finite’
device, we simulate the first 1500 mechanical eigenmodes of the device. The results of this are

21



2. Nanomechanics of two-dimensional materials

Figure 2.7: Band structure calculations for an infinite graphene phononic crystal. a, Unit cell of
a honeycomb lattice of holes with redistributed tension (top) and the corresponding first Brillouin zone
(bottom). b, Phononic band structure for the unit cell shown in (a). In-plane modes are plotted as dashed lines
and out-of-plane modes as solid lines. We find a large phononic band gap for out-of-plane modes around
50MHz (blue-shaded area). Figure adapted from Ref. [48].

shown in Fig. 2.8b, where eigenfrequency vs. mode number is plotted. The density of states is much
lower in the region, which corresponds to the phononic band gap obtained from our band structure
calculations (blue-shaded). This confirms that the band gap is sustained for smaller finite-size
samples (discussed in more detail in Ref. [22]).
Having confirmed the presence of the band gap, we can look at some individual modes to

intuitively understand the transition from a membrane to a PnC. In Fig. 2.8c, the displacement along
a central line cut of some exemplary modes is plotted. The fundamental mode (I) shows one large
antinode in its center and we can assign it a wavelength of roughly half of the device’s diameter 𝐷/2.
When we look at higher-order modes (II and III), we begin to see more and more antinodes and can
assign subsequently smaller wavelengths (higher wave vectors k) to the modes. For a sufficiently
high mode number, at which the wavelength becomes comparable to 𝑎, a phononic band gap opens
due to destructive interference. In this frequency range, we no longer observe standing waving but
localized (evanescent) defect modes (IV). Above the band gap region, the modes are again extended
over the entire range of the sample (V). So, by pattering a suspended membrane we can transform it
into a phononic crystal. The holes cause mechanical excitations in the membrane to scatter and
interfere with each other. While the mode shape of low-frequency modes still resembles that of
a regularly suspended membrane, we find that towards higher frequencies the phononic pattern
determines the mode shapes. In Fig. 2.8d, the entire mode shape of the central defect mode is plotted.
The mode is highly localized around the central defect. Due to their suppressed displacement in
large areas of the resonator, localized gap modes typically have largely reduced effective masses.
The effective mass of our central defect mode is 𝑚eff = 0.002𝑚phys = 0.72 ag.
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Figure 2.8: Finite-size phononic crystals. a, Device geometry for the finite system simulations (scale bar
is 5 µm). The central ‘defect’ region is designed to host a localized vibrational mode, which is shielded from
the environment by the phononic lattice. b, The first 1500 simulated eigenfrequencies vs. mode number for
the PnC device shown in (a). The band gap region is shown in blue. c, Displacement along a line cut through
the device for some highlighted modes: (I) Fundamental mode, (II and III) below the band gap, (IV) localized
defect mode, and (V) above the band gap. d, Spatial mode shape of the defect mode localized at the central
defect. The inset shows a zoom-in on the central region. Figure adapted from Ref. [22].

2.6. Nanomechanical resonators as spectroscopic probes

In this section, I discuss the mechanics of a resonator under illumination with the goal of under-
standing the underlying mechanism of our nanomechanical spectroscopy approach. Let us start by
looking at the fundamental resonance of a membrane under uniform biaxial tension 𝜎0. In order
to have a specific example, I choose a square membrane. Other geometries show the same basic
behavior. The simulated mode shape of this square membrane resonator is shown in Fig. 2.9a and
the resonance frequency is given by:

𝑓0 =
1

𝐿

√
𝜎0

2𝜌
, (2.17)

where 𝐿 is the length and 𝜌 the density. When we add a radiative light source with power 𝑃inc, some
portion of the incoming light is absorbed (𝑃abs), which heats up the membrane material and reduces
the tension by:

Δ𝜎 = 𝛼Δ𝑇
𝐸2D

1 − 𝜈
, (2.18)

where 𝛼 is the thermal expansion coefficient, Δ𝑇 is the average temperature increase, 𝐸2D is the 2D
Young’s modulus, and 𝜈 is the Poisson’s ratio. One can calculate the 2D Young’s modulus by simply
multiplying the bulk modulus by the interlayer spacing of the 2D material. We can now express the
heating-induced change in resonance frequency as:

Δ𝑓 =
1

𝐿

√
𝜎0 − Δ𝜎

2𝜌
− 𝑓0 = 𝑓0

(

√

1 +
Δ𝜎

𝜎0

− 1
)

≈ 𝑓0
(

Δ𝜎

2𝜎0)
. (2.19)
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The increase in temperature Δ𝑇 is directly proportional to the amount of light absorbed by the
membrane:

Δ𝑇 =
𝛽

ℎ𝜅
𝑃abs, (2.20)

where 𝛽 is a prefactor determined by the temperature profile in the membrane, 𝜅 is the thermal
conductivity, and ℎ is the thickness of the membrane. A simulated temperature profile with a laser
spot focused on the center of the membrane is shown in Fig. 2.9b. The amount of incoming light is
linked to the amount of absorbed light by the material’s absorption coefficients (𝐴𝑏𝑠). Thus, we can
derive:

Δ𝑓 = 𝑓0
𝛼𝐸2D

2𝜎0(1 − 𝜈)

𝛽

ℎ𝜅
𝑃inc𝐴𝑏𝑠. (2.21)

Eq. 2.21 shows that the shift in frequency is linear in laser power. We can check this experimentally
by looking at some measurement results. Fig. 2.9c shows the response (frequency shift) of a square
SiN membrane resonator to laser illumination. The behavior is linear and thus makes an appropriate
probe for the detection of absorbed light. In order to use this probe for performing absorption
spectroscopy, we vary the photon energy (𝐸𝛾 = ℏ𝜔) of the incoming light, record the corresponding
frequency shifts, and extract the absorption coefficient (𝐴𝑏𝑠).
While the mechanics for a single material resonator of square or circular geometry can be

derived analytically, more complex devices (e.g. hybrid devices with 2D materials incorporated)
require numerical evaluation to quantitatively capture their behavior. In order to calibrate our
measurements, we use simulations (e.g. for determining 𝛽) or the known absorption of a reference
material (e.g. SiN). This allows us to extract the absorption coefficient in absolute units (% absorption)
from the measured frequency shifts. All in all, we now understand the response of a membrane
resonator to incoming light and have a platform to perform spectroscopy.

Figure 2.9: Nanomechanical detection of light. a, Simulated displacement of a nanomechanical resonator
with a 2D material implemented. b, Simulated temperature profile upon laser heating in the center of the
device. From this simulation, we can extract 𝛽. c, Measured frequency response of a TMD-SiN hybrid
resonator with the excitation laser (𝐸𝛾 = 1.9 eV) focused on the SiN area. The absorption of SiN at this photon
energy is known and the measurement serves as a calibration. Figure adapted from Ref. [23] and [107].
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3. Papers forming this thesis

1. Tunable graphene phononic crystal.
J. N. Kirchhof, K. Weinel, S. Heeg, V. Deinhart, S. Kovalchuk, K. Hoeflich, and K. I. Bolotin.
Nano Letters 21(5), 2174–2182 (2020).

I conceived the idea, performed the FEM simulations, and designed the phononic devices.
Suspended graphene samples were fabricated by K.Weinel, S. Kovalchuk, and me. The Helium-
FIB pattering procedures were developed and carried out by K. Höflich and V. Deinhart at
HZB Berlin. S. Heeg acquired and analyzed the Raman spectroscopy data. K. I. Bolotin and
I co-wrote the paper with input from all authors. K. I. Bolotin supervised the project. All
authors discussed the results.

2. Mechanically-tunable bandgap closing in 2D graphene phononic crystals.
J. N. Kirchhof and K. I. Bolotin.
npj 2D Materials and Applications 7, 10 (2023).

K. I. Bolotin and I conceived the idea and co-wrote the manuscript. I designed the devices and
performed the FEM simulations.

3. Nanomechanical spectroscopy of 2D materials.
J. N. Kirchhof, Y. Yu, G. Antheaume, G. Gordeev, D. Yagodkin, P. Elliott, D. B. de Araújo, S.
Sharma, S. Reich, and K. I. Bolotin.
Nano Letters 22(20), 8037–8044 (2022).

K. I. Bolotin and I conceived the idea. I performed the interferometric measurements with the
help of Y. Yu and G. Antheaume. Y. Yu, G. Antheaume, and D. Yagodkin fabricated suspended
TMD samples. G. Gordeev helped to analyze the data. P. Elliott and S. Sharma performed
the DFT calculations. D. B. de Araújo performed reference measurements. K. I. Bolotin and
I co-wrote the paper with input from all authors. K. I. Bolotin supervised the project. All
authors discussed the results.
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4. Nanomechanical absorption spectroscopy of 2D materials with femtowatt sensitivity.
J. N. Kirchhof, Y. Yu, D. Yagodkin, N. Stetzuhn, D. B. de Araújo, K. Kanellopulos, S. Manas-
Valero, E. Coronado, H. van der Zant, S. Reich, S. Schmid, and K. I. Bolotin.
2D Materials 10(3), 035012 (2023).

K. I. Bolotin and I conceived the idea. I performed the interferometric measurements with the
help of Y. Yu. D. Yagodkin, Y. Yu, N. Stetzuhn, and D. B. de Araújo fabricated 2D material on
silicon nitride samples. K. Kanellopulos and S. Schmid provided the silicon nitride substrates,
helped to analyze the data, and to optimize the measurement sensitivity. S. Manas-Valero grew
and provided the CrPS4. K. I. Bolotin and I co-wrote the paper with input from all authors. K.
I. Bolotin supervised the project. All authors discussed the results.
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4. Connection of the papers

This thesis consists of two main storylines: (i) Creating a tunable phononic crystal and (ii)
developing a nanomechanical approach for the spectroscopy of 2D materials. What brings both
stories together is the control of tension within suspended 2D materials. The tunability of the
presented phononic crystal relies on increasing tension in a suspended membrane, whereas the
detection mechanism in our nanomechanical spectroscopy approach is based on the release of
tension in 2D materials as they absorb light.

4.1. Tunable phononic crystals

The first main goal of this thesis is to conceptualize, fabricate, and understand a highly tunable
phononic crystal. As described in the introduction and in Sec. 2.5, phononic crystals are periodically
patterned metamaterials, which give rise to a band structure for mechanical excitations (phonons)
and thus control the flow of sound, heat, and information [25, 26]. PnC-based devices have enabled
breakthrough experiments on quantum information technology [108–112] and made acoustic
waveguides [30–32], phonon lenses [33–35], and vibration shielding possible [36, 38]. At the same
time, all modern PnCs are limited to operating at fixed frequencies.
Why do we want a tunable phononic crystal? Adding a new experimental ‘knob’ to tune

phononic systems will open the door for a range of exciting applications and fundamental exper-
iments. We expect that tunable (and ultracoherent) mechanical defect modes will allow precise
control of the resonant coupling to external systems, thereby forming an exceptional sensor or a
reservoir for storing quantum information technology. Thus, our advances may bridge the gap
between phononics and quantum optics. It will also be possible to control the localization of me-
chanical defect modes, which will give insight into the dissipation mechanisms of nanomechanical
resonators and result in increased mechanical quality factors. Furthermore, in phononic systems
with an additional degree of freedom (frequency tunability), we will be able to dynamically ma-
nipulate the propagation of phonons and thus the flow of heat, sound, and information through
matter. This can be used for a phononic transistor, which is a valuable extension for phonon logic
applications. Finally, tunable phononic systems will make it possible to simulate condensed matter
physics phenomena in mechanical systems. Specifically, we will be able to induce phase transitions
(e.g. a metal-insulator transition) in phononic crystals.

How do we obtain a tunable phononic system? To realize a tunable phononic crystal, we use
suspended graphene for its outstanding flexibility and mechanical tunability. Our design consists
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of a circular suspended graphene membrane that is electrically contacted and forms a capacitor
with a closely spaced gate electrode (Fig. 4.1a). By setting a voltage to the gate electrode, we can
apply an electrostatic pressure (𝑝el) to the membrane, which causes the membrane to deflect, and
induces biaxial and mostly uniform tension (details in Sec. 2.4). This increase in tension will directly
manipulate the phononic system. Specifically, it upshifts the entire phononic spectrum as the
velocities and thus the frequencies of all phonons in a material depend on its tension 𝜎.

To check the overall feasibility of a suspended graphene phononic crystal, we need to fabricate a
realistic prototype device that contains at least ∼10 unit cells. If we compare the typical unit cell
sizes of phononic crystals made from Si or SiN (𝑎 ≈ 100 µm) to the size limitation for fabricating
a suspended graphene membrane (20 - 30 µm), we realize that we need an alternative fabrication
approach, compared to e.g. optical lithography and reactive ion etching (RIE). We overcome this
obstacle by using He-ion beam lithography, which allows us to directly pattern holes into graphene
with a resolution of less than 10 nm while introducing very few defects into the material [22, 47]. A
prototype device with a honeycomb lattice of holes and a lattice constant of 𝑎 = 375 nm is shown in
Fig. 4.1b. The circular area is suspended and forms the phononic crystal, which can move in the
out-of-plane direction. The center part creates an artificial defect, that will host a localized defect
mode (sketched in white). The frequency of the defect mode is designed to fall into the phononic
band gap and thus is mechanically isolated from the rest of the substrate. This reduces bending and
radiation losses of the oscillation and increases the quality factor and the coherence time of the
mechanical resonance.
When we apply a gate voltage between the gate and the phononic crystal, the tension in the

phononic crystal increases and the entire phononic spectrum upshifts in frequency. In Fig. 4.1c,
we show the simulated tuning of the band gap (blue) and the defect mode (black) vs. applied
pressure. For a realistic pressure of 30 kPa, we obtain more than 350 % tuning. The defect mode
shows the same tuning behavior as the band gap and stays within the gap. Therefore the mode
also maintains its localization, and its effective mass remains constant. The results introducing the
concept of a tunable phononic crystal made from graphene, including fabrication, characterization
via Raman spectroscopy, and extensive modeling were published in the first of the papers forming
this thesis: Kirchhof et al., Nano Letters 21(5), 2174–2182 (2020). While this publication focuses on
the fabrication and the theoretical exploration of tunable phononic crystals, ongoing experimental
work with my colleague, Yuefeng Yu, shows the first signatures of a broadly tunable band gap in a
graphene phononic crystal. I will provide these preliminary results in the outlook (Ch. 5).

After showing that we can use biaxial tension to tune the position of the phononic band gap in 2D
phononic crystals made from graphene, we aim to also control the size of the band gap and thereby
obtain full control of our phononic system. This will make it possible to induce a transition from a
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Figure 4.1: Tunable graphene phononic crystal. a, Sketch of the electrostatic tuning of a graphene PnC.
When a voltage is applied to the gate below the suspended PnC, the electrostatic force causes the membrane
to deflect and increases its tension. b, Prototype device of a graphene phononic crystal with a sketch of the
defect mode localized in the center (white). The surrounding phononic pattern reduces radiation and bending
losses (sketched in orange). c, Pressure dependence of the phononic band gap (blue) and the resonance
frequency of the central defect mode (stars). The defect mode remains within the band gap even at high
pressures. Figure adapted from Ref. [22].

gapped to a non-gapped phononic system. Such a change of hierarchy/topology in the phononic
band structure can be seen as the mechanical equivalent of a metal-insulator transition (mMIT) and
will allow controlling the localization of mechanical defect modes. Furthermore, it can be used as a
phononic transistor and a reservoir for tunable quantum acoustics.
To realize a closing of the phononic band gap, we switch from the circular geometry to a

rectangular stripe while using the same honeycomb phononic lattice as before. In such a geometry,
out-of-plane phonons can be excited at one side (A, blue in Fig. 4.2a), e.g. optothermally by a
modulated heating laser (details in Sec. 2.3), and travel through the device until they are detected
interferometrically on the opposite side (B, red in Fig. 4.2a). By simulating the transmission fromA to
B, we have a direct probe for the phononic band gap. The results of such a mechanical transmission
study are shown in Fig. 4.2b (blue). In our simulations, we find a clear band gap region, where the
transmission is strongly suppressed (blue-shaded).

When electrostatic pressure is applied to the device, it induces a larger average tension along the
𝑥-direction (𝜎xx) than in the 𝑦-direction (𝜎yy). An increasing degree of uniaxililty (𝜎xx/𝜎yy > 1) in
the tension distribution affects the phononic bands, such that the band gap size gradually decreases.
At an applied pressure of 5 kPa (𝜎xx/𝜎yy = 1.7), the band gap is closed entirely and the region of
suppressed transmission, associated with the band gap, vanishes (Fig. 4.2b, red). The phononic
system undergoes a transition from mechanically insulating to mechanically conductive and allows
us to effectively control the flow of phonons. This can be seen as the mechanical simulation of a
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metal-insulator transition (mMIT). We thereby realized the equivalent of a condensed matter phase
transition in a phononic system and on a much larger scale. Controlling the size of the band gap

Figure 4.2: Band gap closing (mMIT) in a graphene phononic crystal. a, Transmission geometry for a
rectangular phononic device. At point A, mechanical motion is excited by a frequency-modulated laser (blue).
After traveling through the device, the vibrational wave is detected at point B by a second laser spot (red). b,
Simulated transmission from A to B vs. excitation frequency for the device shown in (a) without (blue) and
with (red) applied electrostatic pressure. For 𝑝el = 0 kPa a clear band gap region is visible (blue-shaded), where
transmission of mechanical motion through the device is suppressed by 105 (100 dB). When electrostatic
pressure is applied (see inset), the device deforms, and a highly uniaxial tension distribution is generated
(𝜎xx/𝜎yy = 1.7). This causes the phononic band gap to close, which we can confirm in the transmission
spectrum, where the region of suppressed transmission vanishes. Fig. adapted from Ref. [48].

also provides control of the localization of the vibrational defect modes. These defect modes can be
compared to the localization of mid-gap defect states in semiconductors. Upon reducing the size of
the phononic band gap using our tension engineering approach, we can increase the spatial spread
of the defect mode and observe a behavior similar to the localization-delocalization transition in
crystalline solids. To show this, we place an artificial defect within the phononic lattice.
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Figure 4.3: Dephasing a localized defect state using uniaxial tension. a,b, Mode shape of a localized
mode within the band gap of a rectangular (a) and circular (b) phononic device. c, Line-cut of the normalized
displacement extracted along the red line in (a) vs. applied pressure (plots are offset for better visibility).
With increasing pressure, 𝜎xx/𝜎yy increases, and the band gap gradually closes. At the same time, the mode
that initially was localized near the device center becomes delocalized over the entire device (highlighted by
gray arrows). d, Same as (c) but for the circular device shown in (b). Here the mode shape remains virtually
unchanged under pressure, as the frequency of the defect mode scales together with the phononic band gap
and maintains its localization. Figure adapted from Ref. [48].

Next, we simulate the pressure dependence of such a defective phononic lattice using a rectangular
and a circular geometry (Fig. 4.3a,b). For the first device, we expect the band gap to close under
the application of pressure. The second device is a circular reference (compare Fig. 4.1). At zero
pressure, the defect mode falls within the phononic band gap and is localized in both geometries
(blue in Fig. 4.3c,d). At the same time, we find starkly different behavior of that mode in the circular
and the rectangular devices under applied pressure (red in Fig. 4.3c,d). In the rectangular device,
the mode starts to show displacement over the entire device (highlighted by gray arrows) and thus
loses its localization as the band gap closes. In the circular device, in contrast, the band gap does
not close and the defect mode always stays within it. Correspondingly, the defect mode remains
localized over the entire range of applied pressures. We believe that the observed behavior can be
compared to a localization-delocalization transition of mid-gap defect states in semiconductors.
This further highlights the similarity between phononic and solid-state crystals, despite their very
different quasiparticles.
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The results introducing uniaxial tension engineering to close the phononic band gap and induce a
phase transition from a mechanically insulating to a mechanically conductive system are published
in the second of the papers comprising this thesis: Kirchhof et al., npj 2D Materials and Applications
7, 10 (2023). This publication furthermore investigates the effect of surface contamination and
random tension variations on the quality of the phononic band gap and thereby asses the feasibility of
realistic phononic devices made from graphene. This paves the way for the experimental observation
of tunable phononic systems.

4.2. Nanomechancial spectroscopy of 2D materials

The second main goal of this thesis is to develop a platform for the spectroscopic characterization
of 2D materials that overcomes the limitations of classical optical approaches. More precisely, we
want to obtain the optical dielectric function of suspended 2D nanostructures, thereby capturing
the entire picture of light-matter interaction within the materials.
Why do want a nanomechanical alternative for the spectroscopic characterization of

2D materials? 2D materials offer rich physics (details in the introduction) and a large range of
potential applications ranging from energy storage [113, 114] to transistors [24, 86]. Especially their
optical properties are of great interest and their potential use for light-emitting diodes [115], solar
cells [116, 117], optoelectronic modulators [118, 119], or photodetectors [120, 121] seems promising.
Both fundamental science and applications rely on spectroscopic characterization methods, which
have certain limitations when it comes to 2D materials. For example, it is not possible to differentiate
between scattered and absorbed light in classical methods. Furthermore, the characterization of
small samples and measurements at low temperatures or high magnetic fields are very challenging.
Additionally, we aim to develop a spectroscopic measurement, that does not require any assumptions
on the underlying optical constants. Finally, the dielectric surrounding can have a large effect on the
optical response of the 2D material. This motivates us to develop an approach that uses suspended
samples and works for small sample sizes.

How can we perform nanomechanical spectroscopy (NMS)? To realize a method free from
the issues highlighted above, we design a nanomechanical resonator that allows us to measure the
absorption of light in a material of interest. Our sample design consists of a 2D material deposited
onto a SiN membrane (Fig. 4.4a). These two components form a hybrid resonator, where they
oscillate together in phase. When the resonator absorbs light, its average temperature increases,
which results in a reduced resonance frequency as the built-in tension is released due to thermal
expansion. By varying the photon energy of the incoming light and recording the frequency shifts
(Fig. 4.4b), we can perform spectroscopy. Constructing the resonator primarily from SiN results in
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significantly enhanced mechanical quality factors of 𝑄 ≈ 8000, much higher than 2D material-only
resonators, that show 𝑄s around ∼ 100 [18, 20, 67, 70, 102]. This will allow us to detect small shifts
in resonance frequency and forms a sensitive spectroscopic probe. It also makes the resonator
predictable and enables optical probing of the mechanical resonance via the SiN substrate without
perturbing the 2D materials (e.g. unwanted laser heating or photodoping). The sample is driven
electrically, and its motion is detected interferometrically (red laser in Fig. 4.4a). Details on the
experimental setup can be found in Sec. 2.3 and A.1. A second, wavelength-tunable laser is focused
on the suspended TMD (blue laser in Fig. 4.4a) and allows us to heat the sample controllably.

Figure 4.4: Nanomechanical spectroscopy of 2D materials. a, Sketch of the TMD-SiN hybrid resonator.
The SiN membrane moves together with the TMD and allows us to measure the resonance frequencies via
the substrate interferometrically (red laser). The excitation laser (blue) is focused on the suspended TMD
and heats up the resonator when light is absorbed. b, Resonance frequency with (red) and without (blue)
illumination. When light is absorbed, the entire sample heats up, tension is released, and the resonance
frequency downshifts. c, Relative responsivity (Δ𝑓 /𝑃inc) vs. photon energy for 4-layer MoS2. This signal
is directly proportional to the absorption and shows clear excitonic features, which match reference PL
measurements (gray). Figure adapted from Ref. [23].

To obtain absorption spectra of the 2D material, we sweep the photon energy (𝐸𝛾 ) of the excitation
laser and record the corresponding frequency shifts. We normalize the frequency shifts by laser
power and plot them in Fig. 4.4c. Clear excitonic features are visible for this 4L MoS2 sample and
they match with reference photoluminescence measurements (gray).
Next, we combine the mechanically measured absorption with optical reflection data (Fig. 4.5a)

and restore the full dielectric function of the 2D material, as shown in Fig. 4.5b,c. We model the 2D
material as a thin membrane and use the transfer-matrix approach to relate reflected and absorbed
light [60]. Except for the thickness, no material parameters are assumed in this derivation and we
find good agreement with ab-initio GW-Bethe Salpeter equation (GW-BSE) calculations (shaded in
Fig. 4.5b,c).
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Figure 4.5: Mechanically derived dielectric function of MoS2. a, Absorption (obtained from nanome-
chanical spectroscopy, red) and reflection (obtained optically, blue) of 4-layer MoS2 vs. photon energy. Similar
excitonic features are apparent in both measurements. b,c, Real (blue) and imaginary (red) parts of the
dielectric function derived from absorption and reflection data (a). We find reasonable agreement with
ab-initio GW-BSE calculations (red, blue-shaded). Figure adapted from Ref. [23].

Upon benchmarking our method, we find that it is fast (𝜏rise = 135 ns), sensitive (noise-equivalent
power: 𝑁𝐸𝑃 = 90 pW/

√
Hz), functions for submicron sample sizes, and allows measurements over

a broad spectral range from 1.2 to 3.1 eV (extendable to THz to UV). Our approach does not require
complex transmission measurements and therefore should function at low temperatures and/or
high magnetic fields. In these measurements, the membrane functions as its own photodetector
and is only sensitive to the amount of absorbed light and not, for example, to scattering and other
losses. The proof of principle characterization of 2D materials using NMS is published by Kirchhof
et al. in Nano Letters 22(20), 8037–8044 (2022).
NMS is a direct measurement of absorption, which has practical advantages compared to tradi-

tional optical spectroscopy approaches. It also overcomes long-standing measurement limitations
and is unperturbed by scattering of light. So far, however, the implementation of the method
described above lacks the sensitivity of classical optical measurements, needs cumbersome sample
loading, and relies on simulations for calibration.

In the next step, we aim to improve the sensitivity of NMS while making it easier and more reliable
to use. This is accomplished through careful stress engineering of the SiN membranes supporting
the 2D material, thermal decoupling, and using mechanical sample actuation. We use our improved
approach to spectroscopically characterize a two-dimensional transition metal dichalcogenide (WS2),
a layered magnetic semiconductor (CrPS4) [122–124], and a plasmonic super-crystal consisting of
gold nanoparticles [125, 126].

For this second-generation NMS measurements, we optimize our nanomechanical resonators to
have an enhanced response upon absorbing light and thus an improved measurement sensitivity.
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To this end, we use low-stress SiN, which makes a much softer membrane and undergoes larger
frequency shifts when its stress changes (compare Eq. 2.21). We also drive our devices via a
piezoelectric element below the sample (base actuation), which makes the thin gold layer that
previously contacted the 2D material obsolete and allows us to drive electrically insulating samples
(Fig. 4.6a). At the same time, this reduces the thermal conductance of the sample and thus increases
its response to laser heating. In Fig. 4.6b, we compare the measured response to laser heating of
the first approach to the improved method. From linear fitting, we extract a responsivity (𝑅100% =
21 810W−1), which is two orders of magnitude larger than before (𝑅100% = 175W−1). This ultimately
also results in an improved sensitivity of 𝑁𝐸𝑃 = 890 fW/

√
Hz – two orders of magnitude lower than

in our previous approach. The sensitivity of NMS can now compete with commercially available
avalanche photodetectors (APDs) for the same spectral range (e.g. Thorlabs APD130A/M with 𝑁𝐸𝑃

= 200 fW/
√
Hz). At the same time, the method is simplified, allows us to study electrically insulating

materials, makes sample loading straightforward, and provides a fast yet robust calibration.
To test our improved measurement protocol, we characterize exotic 2D structures that are

particularly suited for our method and for which NMS is expected to produce advantages. One of
them is a layered crystal (super-crystal) made from plasmonic gold nanoparticles (shown in the
inset of Fig. 4.6c). Plasmonic structures typically scatter a large amount of light that cannot be
distinguished from absorbed light by classical optical measurement methods. Contrary, NMS is only
sensitive to absorbed light and therefore an ideal tool to study plasmonic systems. In Fig. 4.6c, we
show the mechanically determined absorption spectrum of our plasmonic super-crystal, where we
can nicely resolve plasmonic modes (𝑗 = 1, 2, 3).

The protocol describing the improved method for nanomechanical absorption spectroscopy along
with the spectroscopic characterization of exotic 2D materials is published by Kirchhof et al. in 2D
Materials 10(3), 035012 (2023) as the last paper forming the body of this thesis.
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Figure 4.6: Improved nanomechanical spectroscopy. a, Sketch of the SiN-TMD hybrid device with
an improved responsivity. The 2D material of interest is placed directly on a low-stress silicon nitride
membrane and thereby thermally decoupled from its environment. b, Responsivity (relative frequency shift
normalized to absorbed laser power) for the improved method (blue) and first approach (red). Due to thermal
decoupling and careful stress engineering, we achieve a two-orders of magnitude larger response, which
results in an improved measurement sensitivity. At the same time, the method is easier to use and allows
us to study electrically insulating samples. c, Mechanically derived absorption vs. photon energy for a
6-layer gold plasmonic super-crystal. In the low energy range up to 1.8 eV, we find pronounced absorption
peaks associated with standing wave plasmon-polaritons within the super-crystal. Above 2.5 eV, the light is
absorbed by intraband transitions in the gold particles. The inset shows a sketch of the gold nanoparticles
(yellow circles) arranged in a super-crystal, in which plasmonic modes form standing waves (𝑗 = 2 mode
shown in blue). Figure adapted from Ref. [107].
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In this thesis, I have realized a tunable graphene phononic crystal and developed a nanomechani-
cal approach for the spectroscopic characterization of 2D materials. Both of these storylines rely on
controlling the tension in suspended 2D materials and benefit from the extraordinary mechanical
properties of this class of materials.

In the case of the presented tunable phononic crystal, an increase in tension induced by elec-
trostatic gating allows us to manipulate the phononic band structure. Towards our goal of adding
tunability to phononics, we have reached the following key results:

1. Successful fabrication and spectroscopic characterization (Raman) of graphene PnCs.
With our fabrication protocol based on He-ion lithography we can reproducibly pattern
phononic lattices into suspended monolayer graphene. This transforms the membranes into
the thinnest possible PnCs, with a lattice constant 𝑎 spanning 175 nm to 2 µm.

2. Broadband tuning of the phononic band gap using our electrostatic gating approach.
For a realistically applied pressure of 30 kPa, we obtain more than 350 % tuning of the entire
phononic system.

3. Simulation of a tunable condensed matter physics phenomena in a phononic crystal.
By using uniaxial tension engineering, we can completely close the phononic band gap and
induce a transition from a mechanically insulating to a conductive state. This change in
hierarchy/topology in the phononic band structure can be seen as the mechanical analog to a
metal-insulator transition (mMIT).

4. Localization of a mechanical defect mode within our phononic lattice.
This mode is expected to have a significantly enhanced mechanical quality factor, due to the
reduction of bending and radiation losses. The unique tunability in our systems furthermore
allows controlling the frequency and degree of localization of the defect mode (controlled
dephasing). It forms an on-demand tunable mechanical entity, that can be resonantly coupled
to external signals and thereby forming an exceptional sensor or a reservoir for storing
quantum information.

5. Phononic transistor based on the mMIT.
The proposed transistor for MHz-phonons can be controlled by simply applying a gate voltage
and shows an on-off ratio of 105 (100 dB).

38



5. Summary and outlook

6. First experimental confirmation of a tunable phononic band gap.
In preliminary measurements of a sample made from trilayer graphene, we find strong indica-
tions for a phononic band gap, which can be tuned by 30 % (discussed in the next section).

Controlling tension is also key for the presented nanomechanical spectroscopy approach for 2D
materials. Here minuscule portions of absorbed light can be detected by measuring changes in
the resonance frequency of a SiN-TMD hybrid resonator. The underlying mechanism is thermal
expansion leading to the controllable release of tension. This approach overcomes longstanding
limitations and is a valuable tool for the characterization of 2D materials. Towards our goal of
performing nanomechanical spectroscopy of 2D materials, we have reached the following key
results:

1. Development of a new platform for the spectroscopic characterization of 2D materials.
In our approach, we restore the full dielectric function, without any assumptions of other
underlying optical constants. It is fast (𝜏rise = 135 ns), sensitive (𝑁𝐸𝑃 = 890 fW/

√
Hz), and

covers a large spectral range of 1.2 – 3.1 eV (extendable to UV - THz).

2. Spectroscopic characterization unaffected by substrate-related screening or doping.
As we employ suspended samples in our approach and probe the mechanical resonance via
the substrate, we can avoid substrate- or laser-related screening and doping effects.

3. Measurements at low temperatures and high magnetic fields.
Our approach does not require measurements at oblique angles or in a complex transmission
setting. This will make measurements at low temperatures and high magnetic fields much
more accessible. Also, our approach works well for small sample sizes (∼ 1 µm).

4. Insensitivity to scattering and access to a broad spectral range from THz to UV.
Using the 2D material itself for the detection of absorbed light will allow us to study a large
variety of materials and to discriminate between scattered and absorbed light.

5. Successful spectroscopic characterization of a range of 2D structures.
This includes various classic binary TMDs, CrPS4 (a layered magnetic semiconducting ternary
TMD), and a plasmonic meta-structure consisting of gold nanoparticles.

Looking at these new developments along both storylines of this thesis, I sincerely hope to
contribute to the list of exciting physics and useful applications based on 2D materials described in
the introduction.
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5.1. New perspectives

In the future, I envision more studies on both main storylines of this thesis. The clear first step is the
experimental verification of the tunable band gap in graphene phononic crystals, which will prove
the experimental feasibility and open the door for a large range of new experiments. There is an
ongoing research effort in our group towards this goal and I want to start the outlook by presenting
some preliminary experimental results.

Experimental probing of the phononic band gap. To probe signatures of a phononic band gap,
we fabricate a phononic crystal made from trilayer graphene, as shown in Fig. 5.1b. By using trilayer
graphene, rather than a monolayer, the phononic pattern is less sensitive to disorder and surface
contaminations, which comes at the cost of higher stiffness and slightly reduced tunability. We
measure the displacement of the sample (electrical drive, cavity-interferometric motion detection)
as a function of drive frequency and plot the results in Fig. 5.1a. While we find a densely populated
‘forest’ of vibrational modes at frequencies above the fundamental mode, we see a region of strong
suppression of motion between 26.4 and 31.3MHz (shaded in Fig. 5.1a). This region is exactly where
the phononic band gap is expected from our band structure calculation (Fig. 5.1c). Within the band
gap region, we find one faint peak around 30MHz. This mode shows an increased amplitude when
we probe on the edge of the device and hence is probably to be associated with a localized edge
mode.

To better understand the measured spectrum, we carry out a ‘finite’ simulation accounting for the
finite size of the PnC and considering the boundary conditions of the device (Fig. 5.1d). We can now
directly compare our experimental vibrational spectra to the outcome of the simulation. In both
graphs, we find the same region of suppressed displacement, which coincides with the frequency
range of the phononic band gap. Also, both graphs show some features within the band gap that we
attribute to modes localized at the edges of the device. The expected displacement according to our
simulations (blue in Fig. 5.1d) is suppressed to such an extent that it falls below the noise floor of
our experiment (gray in Fig. 5.1d). Finally, we see similar broad peaks on both sides of the band gap.
These peaks most likely correspond to regions with a large phononic density of states (DOS), which
are associated with flat bands at both sides of the band gap (Fig. 5.1c, right). Overall, we interpret
the measured response of our sample as a phononic band gap induced by the periodic pattern of
holes cut into the graphene membrane.
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Figure 5.1: Experimental signatures of a tunable graphene phononic crystal. a, Measured displace-
ment as a function of drive frequency of a graphene phononic crystal (sample shown in (b)). b, Phononic
crystal device made from trilayer graphene with a lattice constant of 𝑎 = 1.36 µm. c, Phononic band structure
calculations and extracted density of states (DOS) for the phononic lattice of the sample. d, Simulated
displacement of the device extracted from a finite-size model (blue). The expected displacement in the band
gap region (shaded) falls below the noise floor of our experiment (gray). e, Pressure dependence of the
phononic system. Upon applying an electrostatic pressure of 10 kPa, we can upshift the phononic band gap
by 30 %. Panel (a) - (e) are preliminary results from Ref. [127].

To tune our phononic crystal, we apply electrostatic pressure to the device via electrostatic
gating. As we vary the gate voltage, we observe a smooth evolution of the vibrational spectrum
(Fig. 5.1e). Initially, the frequencies downshift slightly with increasing 𝑉gate, due to capacitive
softening (explained in Sec. 2.4), while they upshift at higher 𝑉gate as the increase in tension starts
to dominate the frequency tuning. In total, the fundamental mode upshifts from 3.8 to 7.8MHz.
The higher-order modes show various tuning behavior, which we attribute to a combination of
photothermal backaction [13–15] and different coupling to the electrostatic field for different modes.
Focusing on the previously identified band gap region, we find an upshift of the band gap center
frequency of more than ∼9MHz (∼ 30%) for an applied pressure of 10 kPa. This corresponds to
a major manipulation of the phononic band structure and makes our device a broadly tunable
phononic crystal.

Having shown the first signatures of a tunable phononic crystal made from suspended graphene,
which are in line with our theoretical predictions, confirms the overall concept developed in this
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thesis and motivates future endeavors. This includes the realization of more tunable condensed
matter physics phenomena as well as phononic applications. I will discuss some of these ideas in
the following paragraphs.

Topological phononic states. In electronic systems, topological insulators feature surface states,
which are protected by time-reversal symmetry and are robust with respect to disorder [128–131].
Electronic transport via these states is virtually loss-free and thus they bring exciting opportunities
for information processing. Recently, it has been demonstrated that the concept of a topological
insulator also holds in phononic systems [132–135]. In these systems, topological states can be
created, for example, at the interface between two different phononic lattices. Analog to their
electronic counterparts, these states also show robustness to disorder combined with very low
dissipation and thereby form a reservoir for exploring non-classical states in phononic systems.
Applying these principles to our tunable phononic crystals opens the door for exciting experiments.
We could design a sample such that individual gate electrodes control different spatial regions of
the phononic lattice. We can then dynamically manipulate each region and hence the interface
between them. This would allow us to create on-demand topological states which we can use to
efficiently guide (quantum) information along the interface.

Phonon logic. The proposed phononic transistor (as shown in Fig. 4.2) can be used for phonon
logic in the MHz-range, and I expect the realization of various logic gates as the next step. By using
large-scale CVD graphene transferred onto pre-patterned substrates, we could realize phononic
circuits and process information using phonons. Employing electrical actuation and detection via
local gates removes the need for bulky optics and makes an on-chip phonon logic device based on
tunable graphene a very attractive option.
Understanding dissipation mechanisms. The dissipation mechanisms in 2D material-based

resonators are, as of today, not fully understood [66, 67]. There is a large number of mechanisms that
may contribute to the damping of the resonator and the total losses are a mixture of thermoelastic
damping (transfer of kinetic energy into heat), bending losses at the clamping points, radiation losses
into the substrate, viscous gas damping, losses from defects and contaminants on the membrane,
and potentially other loss channels. For SiN resonators, it has been shown, that phononic shielding
is a powerful tool to overcome radiation and bending losses, which leads to record-breaking high
𝑄s [36–38]. In our tunable phononic system, we will be able to control the degree of localization
(compare Fig 4.3). This in turn will allow us to controllably adjust the relative contribution of
bending and radiation losses and therefore makes our system an ideal platform to study dissipation
mechanisms in 2D material-based resonators and ultimately overcome the relatively low 𝑄s in these
systems.

Tunable Moiré superlattices in phononic crystals. Moiré lattices are another exciting play-
ground for 2D materials, which received a considerable amount of attention due to the richness in
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physics of correlated states rising from flat bands in the electronic band structure. This includes a
superconducting [77] and a Mott insulator state [136] for twisted bilayer graphene (TBG). Recently,
there have been some first studies on Moiré analogs in PnCs [137–140], but they all lack the tun-
ability that makes Moiré lattices based on 2D materials so exciting. So I want to pose the question:
Can we realize tunable Moiré analogs in PnCs using our approach? I believe it is feasible because
in designing our phononic lattices we have access to a large number of degrees of freedom. PnCs
are entirely artificial structures, which means they can be designed into almost any geometry and
lattice parameter size instead of relying on naturally given parameters (e.g. the lattice constant
graphene for TBG). This also means that we can directly pattern the Moiré superlattice in our
devices, rather than creating it by combining two layers of graphene. Combining this with our
electrostatic gating approach will make it possible to create tunable Moireé lattices which can
be tailored such that they give rise to ultra-flat phononic bands. Of course, phonons are neutral
quasi-particles that follow Bose-Einstein statistics and thus do not feature the electron-electron
interaction that gives rise to the superconducting and the Mott insulator state in TBG. However,
the fundamental principles regarding lattice symmetry, topology, and associated Chern number
still hold, which allows mimicking quantum-mechanical features in mechanical systems – with an
experimental knob to tune them.

For our nanomechanical spectroscopy approach, I envision the following next steps: NMS at
low temperature and magnetic fields. The next step for NMS will be measurements at low
temperatures and high magnetic fields, where I expect to observe hitherto undetected phenomena
and get rid of systematic errors associated with measurements of optical constants of 2D materials.
Especially, magnetic fields are interesting to access and manipulate the spin (valley) degree of
freedom in 2D materials. Furthermore, the exploration of 2D magnetism, which recently attracted
much attention, requires measurements at low temperatures and high magnetic fields [141–143].
These measurements are challenging for conventional optics but will be easier using NMS.

NMS with ultimate sensitivity. Additionally, I anticipate further improvement of the measure-
ment sensitivity of NMS, for example, by controlling the sample temperature and thereby the stress
in the SiN membrane. When the entire sample is cooled, the Si frame contracts at a larger rate than
the suspended SiN membrane, due to their difference in thermal expansion coefficient. This leads
to an effective reduction of stress in the suspended SiN and would allow measuring very close to
𝜎 = 0. At this point, the responsivity (𝑅100% ∝ 𝜎−1) will increase significantly, which leads to further
improvement of the measurement sensitivity.

Cavivity-free cavity optomechanics. The combination of SiN membranes with TMDs on top
of them also forms a very attractive playground for cavity optomechanics. On one side, SiN has
excellent mechanical properties, but poor light-matter interaction. On the other side, resonators
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made from TMDs show low mechanical quality factors, but large light-matter interaction and strong
mechanical non-linearity [6–10, 144, 145]. By combining the two materials, we obtain a resonator
that features the best from both worlds, namely high 𝑄 resonances as it mostly consists of SiN and
large light-matter interaction due to the TMD. These devices would also benefit from a recently
demonstrated optomechanical back-action effect, in which strain can mediate dynamic heating or
cooling effects in TMD-based resonators [15]. The mechanism behind this functions as follows:
As the resonator oscillates around its equilibrium position, dynamic strain is introduced, which
increases (decreases) the absorption of light, depending on the sample being illuminated by a red
(blue)-detuned light relative to an excitonic resonance. The increased (decreased) absorption effec-
tively reduces (increases) the restoring force and results in amplification (damping). This backaction
mechanism makes it possible to effectively cool/damp or heat/amplify a specific mechanical mode
of the resonator and thereby replaces the need for an optical cavity and all the technical difficulties
associated with it. In such a system, it is crucial to also tailor the thermal response time (𝜏). Assum-
ing 𝜔𝜏 = 1, for which the dynamic back-action effects will be strongest [146, 147], and plugging in
the 𝑄s and resonance frequencies, that I measured in comparable samples, I expect cooling down to
∼ 70 µK starting from liquid helium temperature. This is close to the temperature (20 µK), which is
needed to bring the resonator to its quantum ground state (average phonon occupation 𝑛ph = 1).
Designing the sample such that it has a higher resonance frequency or starting at dilution-fridge
temperatures, will result in significantly lower phonon occupation and make the resonator reach its
quantum ground state.

In conclusion, this discussion of follow-up research projects based on the concepts presented in
this thesis demonstrates that creating tunable graphene phononic crystals and using nanomechanical
resonators to perform spectroscopy of 2D materials is only the starting groundwork. Many steps in
various directions are to follow. The tunable phononic platform created and described will help to
explore more exciting phononic phenomena and applications. The principles of nanomechanical
spectroscopy will allow the unlocking of interesting physics in a large range of 2D materials and
form an attractive platform for studying optomechanical cooling and self-oscillation phenomena.
With these two new tools made from exceptionally strong and at the same time lightweight

materials, an exciting pathway to new experiments on the nanomechanics of 2D materials lies ahead.
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A.1. Interferometric motion detection in NEMS resonators

This section aims to describe in detail the interferometric readout used to detect motion in our
nanomechanical resonators. For this, we are employing a home-built Michelson interferometer,
which I designed and built during my time as a Ph.D. candidate. Interferometers allow for highly
sensitive measurements of relative displacements and in our setup, we achieve a displacement
sensitivity of ∼ 100 fm/

√
Hz. In this section, I will first explain the underlying detection mecha-

nism and setup, and then I’ll provide a detailed step-by-step protocol for performing sensitivity
characterizations and measurements in the optical setup.

Fig. A.1 shows the setup in the top and side view with the beam paths belonging to different light
sources drawn in different colors. Let us start with the probe beam (red) and walk along its optical
path. We use a HeNe laser with an output power of 5mW. HeNe lasers provide good stability and
coherence length and are therefore suitable for interferometric measurements. The first component
in the beam path is an optical isolator (OI), which stops any light from being reflected into the laser,
which would destabilize and potentially damage it. Next, the beam diameter is increased using a
beam expander (BE) such that it completely fills the used objective and allows us to obtain a tightly
focused laser spot. After reducing the laser power through some ND filters down to a couple of
µW, a white light source for imaging (yellow path), a heating/excitation leaser (blue path), and
modulated laser for possible optothermal drive (green path) are coupled in the main beam path via
beam splitters (BS1 and BS2). The combined beams go through the main beam splitter (BS3), which
forms the heart of the interferometer and sends half of the light to the reference arm (REF) and half
through an objective (40x, 0.6 NA) onto the sample. The reflected light from both paths recombines
and now contains the interferometric information on the difference in path length between the
two paths. When the sample oscillates at a certain frequency, the path length is modulated at that
frequency and thus the laser power after running through the interferometer. Using a piezoelectric
element, we can precisely control the position of the mirror in the reference arm and thus the path
length. This allows us to stabilize the interferometer using a PID loop (details in measurement
protocol below). After running through the interferometer, the combined light is guided through a
bandpass filter (BP), that filters out everything except the HeNe laser (with a FWHM of 1 nm). Finally,
the red path reached the avalanche photodetector (APD), where the optical signal is converted into
a voltage that is detected by the measurement electronics. When the flip mirror (FM) is up, the
beam path is directed into a CCD camera (CAM) for imaging. The heating/excitation and driving
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laser are coupled into the setup via optical fibers, and their power and beam size are adjusted using
ND filters and a reflective beam expander (BE) respectively. We can adjust the optical path of these
beams before they combine with the probe beam and thereby change their relative position on the
sample. For example, the heating/excitation laser can be positioned in the center of the sample,
while the probe detects the mechanical oscillation via the substrate. The sample is placed in an
optical cryostat, which is evacuated using a turbo molecular pump to a pressure of 1 × 10−5 mbar.
For room temperature measurements, the sample temperature is stabilized at 300 K using the heater
of the cryostat. The sample itself or a piezoelectric element below it can be electrically contacted
through a feedthrough in the cryostat. The photodetector output is connected to an oscilloscope for
alignment and focusing and to the lock-in amplifier (Zurich Instruments MFLI). Next, I will provide
a step-by-step protocol on how to use the setup for the characterization of NEMS resonators:

1. After the sample has been loaded and the system is pumped down to sufficiently low pressures
of ∼ 1 × 10−5 mbar, turn on the lasers, photodetector, and measurement electronics and let
them warm up for ∼ 30min.

2. Switch the setup to camera mode by putting up the flip mirror and blocking the reference arm.
Then use the manual stage positioned below the cryostat to move the sample to the wished
position of probing. Adjust the focus using the manual stage, which holds the objective, such
that the red laser spot is tightly focused.

3. Switch the setup to measurement mode (flip mirror down, reference arm unblocked), turn off
the white light, and use ND filters to adjust the laser power of the probe HeNe, such that the
APD gives out a voltage 30 % below its saturation value (3.7 V).

4. Use the lock-in amplifier to apply a voltage of 2V at a frequency of 941Hz to the reference
arm piezo (oscillator 2). This results in a variation in the path difference much larger than the
wavelength. The resulting interferometric signal no longer depends on the initial position of
the reference arm and we can use it to maximize the signal strength. To do so, connect the
APD to the oscilloscope and iteratively adjust the focus and reference arm mirror (marked by
orange arrows in Fig. A.1b) until the measured oscillation amplitude is maximized. Focus and
interferometer alignment are now optimized for signal strength.

5. Next, set the voltage supplied to the reference arm piezo to 10mV (oscillator 2), and sweep
the output DC offset (𝑉DC), whilst plotting the response (Demod 2 Sample R). One should
obtain a sin2(𝑉DC) behavior, as the beam path difference and thus the interference conditions
are continuously varied. The amplitude should be between 10 and 50mV, depending on the
laser power and reflectivity of the sample.
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6. To set up the PID loop, we use the integrated functionality of the lock-in amplifier to control
Demod 2 Sample R by varying 𝑉DC. As the setpoint for the loop, we choose 80 % of the maxi-
mum amplitude measured in the last step and start the loop using the following parameters:
𝑃 = −20, 𝐼 = −303 1/s, 𝐷 = 0 and a band with of 10Hz

7. We can monitor the stability of the loop using the plotter function of the lock-in amplifier.
When the loop is running properly, the relative variation of Demod 2 Sample R should be
below 10 %. The setup is now stabilized and maintains constant interference conditions for a
long time (multiple days) and we can start to measure mechanical resonances.

8. To find the resonance frequencies, sweep the actuation voltage (𝑉AC) using oscillator 1 of the
lock-in amplifier and at the same time plot the corresponding amplitude (Demod 1 Sample
R). The setup combines three different possibilities to drive the sample: 1) The actuation
voltage drives the piezo below the sample for mechanical actuation, 2) the actuation voltage
modulates a fast laser diode (green in Fig. A.1a), that periodically heats the sample and induces
motion via thermal expansion and 3) the actuation voltage is mixed with a large DC voltage
in a bias-T and drives the sample electrically.

9. To track resonance frequency for fast measurements or for stability measurements (Allan
deviation), one should use the phase-locked loop (PLL) functionality of the lock-in amplifier.
To initiate the loop, sweep the drive frequency and then manually set the frequency to the
measured resonance frequency. Open the PLL tab, and choose the following settings: PLL
bandwidth of 1 kHz, a resolution bandwidth of 5 kHz, 𝑃 = −9Hz/deg, 𝐼 = −303Hz/(deg s), 𝐷
= 0, set the currently measured phase as setpoint and start the loop. The lock-in amplifier
now adjusts the frequency of oscillator 1 in real-time, such that it maintains a constant
phase. This allows us to rapidly measure the changes in resonance frequencies when external
perturbations are introduced (e.g. wavelength-dependent laser heating).

A.2. FEM modeling of 2D materials

The goal of this section is to provide some helpful insights for the finite element method (FEM)
modeling of 2D material-based mechanical systems using Comsol Multiphysics. While FEM simula-
tions are a very powerful tool, they can have some pitfalls. Comsol is a numerical solver and it will
almost always give you a solution. It is up to you to evaluate if the solution is reasonable. Here is
some general advice that can improve your simulation routine:
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Figure A.1: Setup for interferometric motion detection. a,b, Photographs of the interferometric setup
with the optical beam path and components labeled.

1. Include the substrate into your simulations. The substrate can have a large effect on the
mechanics of nanomechanical devices (e.g. metal contacts can bend or oscillate). An example
is shown in Fig. A.2a.

2. Build your device geometry in the same order as the fabrication of the device takes place (e.g.
the gold layer before the 2D material to properly simulate a flake transferred onto a metalized
sample).

3. Use a swept mesh for thin domains. It is computationally challenging to model geometries
with large aspect ratios. Using a swept mesh helps to overcome this problem and makes the
simulations faster at the same time. A meshed device is shown in Fig. A.2b

4. Us the symmetry of your sample geometry to make the simulations faster. This should also
be reflected by the mesh (e.g. by using the copy face operator).

5. Make sure your mesh is fine enough to capture the physics you are trying to observe. For
example in order to properly capture the phononic order of a sample, the mesh spacing should
be roughly 5 to 10 times smaller than the lattice constant. When unsure, increase the density
of the mesh until the simulation results converge.
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6. Compare your results to back-of-the-envelope calculations. Sometimes the intuition for
mechanics on the nanoscale can be off (e.g. vibration amplitudes and deformations of 2D
materials are often smaller than anticipated). Simple calculations help to check the simulation
results and help to understand the problem better.

7. Use global parameters, variables, and material links. Also importing and exporting geometries
can save a lot of time.

Here are the filenames of mymost important Comsol files (all stored on the Comsol PC and backed up
on the group home server): T18_final.mph, mMit_Transmission_0+10kPa.mph, Infinite_0.01Nm.mph,
306u_defect22_1750modes_sweep_p_024810.mph.

Figure A.2: FEM simulations of 2D materials. a, Sketch of a suspended 2D material transferred onto a
SiN membrane. For accurate modeling, it is necessary to include the substrate. b, Mesh of the device shown
in (a). Using a swept mesh for thin geometrical features reduces the computation time and yields reliable
results.
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ABSTRACT: In the field of phononics, periodic patterning
controls vibrations and thereby the flow of heat and sound in
matter. Bandgaps arising in such phononic crystals (PnCs) realize
low-dissipation vibrational modes and enable applications toward
mechanical qubits, efficient waveguides, and state-of-the-art sensing.
Here, we combine phononics and two-dimensional materials and
explore tuning of PnCs via applied mechanical pressure. To this
end, we fabricate the thinnest possible PnC from monolayer
graphene and simulate its vibrational properties. We find a bandgap
in the megahertz regime within which we localize a defect mode
with a small effective mass of 0.72 ag = 0.002 mphysical. We exploit
graphene’s flexibility and simulate mechanical tuning of a finite size
PnC. Under electrostatic pressure up to 30 kPa, we observe an
upshift in frequency of the entire phononic system by ∼350%. At
the same time, the defect mode stays within the bandgap and remains localized, suggesting a high-quality, dynamically tunable
mechanical system.

KEYWORDS: Nanomechanics, phononic crystal, graphene, optomechanics, resonators, NEMS

■ INTRODUCTION

A phononic crystal (PnC) is an artificially manufactured
structure with a periodic variation of material properties, for
example, stiffness, mass, or stress.1 This periodic perturbation
creates a meta-crystallographic order in the system leading to a
vibrational band structure hosting acoustic Bloch waves in
analogy to the electronic band structure in solids.1 Designing
the lattice parameters of the meta-structure allows one to
directly manipulate phonons at various length scales.2−4 This
can be used to guide5−7 and focus phonons8,9 or to open a
vibrational bandgap.1,10−12

Phononic bandgaps in periodic structures suppress radiation
losses and allow for highly localized modes (of frequency f) on

artificial irregularities.13,14 The quality factors ( = ΔQ f
f
) of

these so-called defect modes are especially high.15,16 In
particular, resonances with Q > 8 × 108 have been observed
at room temperature in silicon nitride (SiN) PnCs.15−17 In
these devices, the quality factor exceeds the empirical Q ∼ m1/3

rule,17−19 and the vibrational periods overcome the thermal
decoherence time limit of τ = hQ/kBT.

15,17 This, in turn,
enables the study of quantum effects in resonators of
macroscopic size, all at room temperature.20,21

Frequency tunability in PnCs could add an unprecedented
knob to control a broad range of phononic application and
thereby provides access to new regimes of guiding, filtering,
and focusing phonons.22−33 It would furthermore allow one to

resonantly couple to an external optical or mechanical
excitation and thus realize sensing applications with mechan-
ical qubits and studies on quantum entanglement.34 Yet, the
mechanical resonances in PnCs are determined by material
constants and the crystal geometry.22,23,26−28 In principle, the
mode frequencies can be controlled by changing the
temperature29,30 or by an external magnetic field.31,32 This,
however, only provides limited tunability and necessitates
heating the system or inclusion of magnetic materials. While
SiN, as well as other conventional low-loss materials, is very
stiff and allows only limited mechanical tunability,24,33 strain
has been used to adjust the frequency response of elastic
polydimethylsiloxane (PDMS).25 Unfortunately, low crystal-
line quality of that material led to limited tunability and very
small Qs for mechanical modes.
Recently, PnCs made from two-dimensional (2D) materials

have been considered.35−37 Such materials feature intrinsically
low mass, high fundamental frequency, and easily accessible
displacement nonlinearity. Most importantly, their high tensile
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strength and monolayer character allows the ability to
mechanically strain them up to 10%.38 That invites
consideration of mechanically controllable 2D-material based
PnCs. Specifically, we expect the entire acoustic band structure
of such a PnC to be highly tunable by applying mechanical
pressure. Nevertheless, tunability of 2D phononic systems as
well as localized defect modes in them have not been studied
yet.
Here, we investigate mechanical tunability in a realistic

graphene PnC. We fabricate a suspended micron-sized
monolayer graphene PnC via focused helium ion beam milling
(FIB) and characterize it spectroscopically. We then use
experimentally established parameters to calculate the
phononic band structure of the resulting PnC. We find a
phononic bandgap from 48.8 to 56.5 MHz inside of which we
localize a defect mode with an effective mass of 0.72 ag. Finally,
we computationally investigate the mechanical tunability of the

PnC under pressure induced by a local electrostatic gate.39,40

The applied pressure smears out the phononic bandgap as the
out-of-plane displacement breaks the symmetry and causes
perturbations of the artificial lattice, yet the mode shape of the
defect mode remains highly localized. Overall, we can tune the
resonance frequency of the defect mode by more than 350%
and access new regimes of strain engineering.

■ RESULTS
Designing a Tunable Phononic Crystal. Our device

design of a tunable, two-dimensional PnC consists of the
following key elements. First, the PnC material must be
freestanding to allow out-of-plane displacement. Second, it is
necessary to use an electrically conductive material. In that
case, an electrostatic gate electrode can be used to apply
pressure and to induce tension as the membrane is pulled
toward the gate. Third, the material needs to be flexible to

Figure 1. Graphene phononic crystals and tension redistribution. (A,B) Helium ion micrographs of prototype monolayer graphene phononic
crystal devices with lattice constants 350 nm and 2 μm, respectively. Scale bar length is 2 μm. The phononic pattern, a honeycomb lattice of holes
with a defect in its center, allows us to localize a vibrational defect mode. The ringlike features around the holes in (B) are due to incomplete
removal of graphene most likely caused by contamination (details in Supporting Information). (C) Intensity map of the Raman-active 2D mode of
graphene for the device shown in (B). The periodic pattern is clearly visible. (D) Raman 2D-mode position along a line cut (dashed line in (C)) for
a PnC (blue) and reference membrane (red). The PnC shows a periodic variations of much larger amplitude compared to the fluctuation in the
reference sample. (E) Comparison of the relative tension extracted from Raman measurements (blue) to the simulated tension distribution
(yellow) confirming the redistribution of tension upon pattering. The simulation includes spatial broadening due to the finite size of the laser spot.
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allow large mechanical tunability with small pressures.
Monolayer graphene with its high carrier mobility >200 000
cm2/(V s)41 and large breaking strength >10%38 perfectly
fulfils these requirements. By using large area CVD graphene,
we can fabricate many devices on a single chip. Finally, the
device needs to host a large enough number of unit cells with
sufficient periodicity to form a well-defined PnC. While this
task is simple in thick SiN, it is much more challenging for
fragile freestanding monolayer graphene. To overcome this, we
choose a much smaller unit cell compared to typical SiN-PnCs
(∼100 μm size) and use helium FIB-milling to pattern the
PnC.42 This direct lithography allows one to pattern graphene
down to 10 nm features,43 while causing little damage.44,45 A
patterned prototype monolayer graphene PnC is shown in
Figure 1A. It consists of a honeycomb lattice of holes (lattice
constant a = 350 nm, hole diameter d = 105 nm) around a
central region. Within its 10 μm diameter, the two-dimensional
PnC contains more than 30 unit cells. The honeycomb lattice
inspired by Tsaturayn et al.15 exhibits a robust bandgap12,15,46

while retaining a relatively large fraction of material to ensure a
stable device. Additional PnC with various patterning sizes are
shown in Figures S1−S3.
Next, we map the tension within the produced structures

using Raman spectroscopy. We expect tension hot spots in the
thin ribbons and relaxation in the centers of the hexagons.47

Such tension redistribution should affect the vibrational
properties of our PnC. To this end, we fabricate another
prototype device (Figure 1B) with lattice constant a = 2 μm
and spatial features comparable to the size of a focused laser
spot. The intensity map of the 2D-Raman mode of graphene
for this device is shown in Figure 1C. The intensity of the 2D-
mode corresponds to the amount of material while its spectral
position depends on the tension in the material.48,49 In the
pizza-like image, one can clearly see the removed material from
the drop in intensity and identify the honeycomb lattice. In
Figure 1D, we compare the spectral position of the Raman 2D-
mode for a graphene PnC (blue) along the dashed line shown
in Figure 1C to an unpatterend graphene membrane (red).
The quasi-periodic variations in the PnC device that are absent

in the unpatterned reference correspond to the redistributed
tension. In Figure 1E, we compare the extracted relative
tension (blue) to a simulation (yellow) and find the expected
signatures of tension redistribution, that is, higher tension
between the holes and lower tension in the middle of the
hexagons (details in Supporting Information).

Phononic Crystal Simulations. Having experimentally
established the feasibility of a suspended graphene PnC, we use
our findings to simulate its phononic properties in two
independent approaches. First, we calculate the phononic band
structure for an infinitely repeated unit cell (“infinite model”).
This model is well-accepted and fast.15−17 However, due to the
size limits of suspended graphene, our devices are smaller than
typical SiN-PnCs (mm size)15−17 and contain fewer unit cells.
Furthermore, we want to apply pressure to the entire system
and investigate localized modes in the bandgap. Therefore, we
also simulate a more realistic system of finite size (“finite
model”). For both models, we use the honeycomb lattice with
feasible parameters and account for tension redistribution
upon fabrication (Figure 1D,E). We choose a lattice constant a
= 1 μm, a filling factor of d/a = 0.5 (slightly larger than in
Figure 1), and an initial tension of T0 = 0.01 N/m, which is a
realistic value for clean monolayer graphene.39,50

Infinite Model. By applying periodic boundary conditions
to the unit cell (Figure 2A), we calculate the band structure for
an infinite honeycomb lattice (Figure 2B). We find a mixture
of in-plane (dashed lines) and out-of-plane modes (solid
lines). From the slope of the out-of-plane modes in Figure 2B,

we determine the speed of sound = =ω∂
∂v

kg 83 m/s. In the

range from 48.8 to 56.5 MHz (red shaded area), we find a
bandgap for out-of-plane modes. This quasi-bandgap (in-plane
modes are still present) has a gap-to-midgap ratio of 14.6%.
The in-plane modes do not couple to out-of-plane modes51

and therefore do not hinder radiation shielding. The bandgap
originates from Bragg scattering, with each hole acting as a
scatterer for out-of-plane oscillations. Upon negative interfer-
ence conditions, directional Bragg bandgaps open at the high
symmetry points. Where these gaps overlap, radiation shielding

Figure 2. Band structure calculations of an infinite graphene phononic crystal. (A) Unit cell of the honeycomb lattice with redistributed tension
(top) and the corresponding first Brillouin zone (bottom). (B) Phononic band structure for the unit cell shown in (A). In-plane modes are shown
as dashed lines, out-of-plane modes as solid lines, and the corresponding quasi-bandgap region as the red-shaded area. (C) Top (red) and bottom
(blue) of the bandgap versus lattice constant. The blue arrows indicate the lattice constant of the devices from Figure 1.
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becomes possible, as wave propagation is isotropically
forbidden.1 The bandgap position depends reciprocally on a.
With our fabrication schema, we can tailor the bandgap center
from 350 to 26 MHz by varying a from 0.175 to 2 μm (Figure
2C, devices in Figures S2 and S3). Overall, the simulations in
the infinite model suggest the possibility of a large quasi-
bandgap, which we will next use to control phonons.
Finite Model. To study a realistic device of finite size under

electrostatic pressure and to implement a defect into the
phononic pattern, we conduct a second independent
simulation (“finite model”). In this model, we consider a
finite number of unit cells of the honeycomb lattice (same a,
d/a, and T0 as before) and employ fixed boundary conditions
along the PnC’s perimeter. We choose a circular device as such
a geometry allows uniform suspension and minimizes edge
effects. In the center of the 30.6 μm device, we create a 1.9 μm

hexagonal defect,15 as sketched in Figure 3A. Freestanding
graphene devices of that size have been fabricated52 and the
central defect area is large enough to measure resonances
interferometrically.53,54 Next, we simulate the first 1500
eigenfrequencies and the corresponding spatial mode shape.
In Figure 3B, we plot the frequencies f versus mode number N
for the PnC (blue) and compare it to an unpatterned graphene
membrane as reference (green). The graph for the PnC shows
signs of a bandgap, as we observe an initial flattening of the
curve followed by a sudden increase. This region of reduced
mode density coincides exactly with the bandgap from our
infinite model (blue area) and stands in contrast to the
unpatterned membrane for which the frequencies gradually
increase with mode number. The second indication of the
bandgap is evident when we examine the effective mass of the
modes

Figure 3. Finite size model of a graphene phononic crystal. (A) Device geometry for the finite system simulations (scale bar is 5 μm). A central
“defect” region is designed to localize one vibrational mode and decouple it from its environment. (B) The first 1500 simulated eigenfrequencies
versus mode number for a PnC device (blue) and a circular membrane without patterning (green). The bandgap region from the infinite model is
shown in blue. (C) Effective mass for each mode. The modes within the bandgap (blue) show a more than a 100-fold decrease in effective mass
compared to the fundamental mode. (D) Band structure calculated from the finite model via mode-shape analysis (blue) along with the band
structure from the infinite model (red). The low-energy acoustic branches fit well, and the bandgap regions coincide with the simulated results from
the infinite model (red). (E−H) Exemplary mode shapes in real (top) and reciprocal space (bottom) for (E) a mode below the bandgap (I), (F)
the defect mode (II), (G) another highly localized mode in the bandgap (III), and (H) a mode above the gap (IV).
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where ρ2D is the areal density of graphene and z (zmax) is the
(maximum) vibration amplitude in z-direction. For the
fundamental mode we obtain meff = 80.9 ag = 0.252 mphysical,
which roughly matches the literature value for the mode shape
of a uniform, circular membrane of meff = 0.269 mphysical.

55 We
observe a pronounced drop of meff in the bandgap region
(Figure 3C). This observation is consistent with localized
modes inside the bandgap, which typically show a small
average displacement resulting in a reduced effective mass.17

Finally, we directly extract the band structure from the
results of the finite model and compare it to that of the infinite
model. To accomplish this, we analyze the mode shape of each
resonance following ref 56. Specifically, we take the spatial FFT
of each mode shape to find its representation in reciprocal
space and to assign a wave vector k to each mode. In Figure
3E−H, we show real space (top) and reciprocal space

(bottom) plots of exemplary modes. Mode I (20.2 MHz,
Figure 3E) is below the bandgap and resembles a higher order
Bessel mode in real space, which transforms to a near-uniform
circle in momentum space. A higher frequency mode IV (60.7
MHz, Figure 3H) is situated above the bandgap. For this
mode, we observe zone folding as the mode reaches out
beyond the 1.BZ (dashed line). Analyzing all 1500 modes lets
us restore the dispersion relation beyond the 1.BZ (Figure 3D,
blue), which almost perfectly matches the band structure from
the infinite model (red). From our observations of reduced
mode density (Figure 3B), drop in effective mass (Figure 3C),
and mode shape-analysis (Figure 3D), we confirm the presence
of a bandgap for out-of-plane modes in a realistic system of
finite size.
Next, we examine the modes located within the bandgap and

identify the defect mode. In Figure 3G, we show a typical
bandgap mode in real (top) and k-space (bottom). As most
modes in the bandgap, this mode is localized at the edges of
the PnC in the real space. However, one mode at frequency

Figure 4.Mechanically tunable graphene phononic crystal. (A) Band structure for initial tension values T0 = 0.010 N/m (red) and T0 = 0.012 N/m
(orange). The entire out-of-plane branch scales strongly with tension. The position and width of the bandgap are equally tension-dependent. (B)
Speed of sound for the out-of-plane modes extracted from (A) versus tension. (C) Density of states calculated from the finite model as a function of
pressure applied to the suspended PnC (T0 = 0.010 N/m). (D) Pressure dependence of resonance frequency of the central defect mode (stars), of
the bandgap from infinite model (red shaded), and of the bandgap extracted from the density of states (blue squares). The defect mode remains
within the bandgap even at high pressures. (E) Line cut for the spatial profile of the defect mode at different pressures (vertically offset for clarity).
Even at large applied loads, the mode shape remains localized, and the effective mass (inset) stays constant.
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49.9 MHz is localized at the central defect (Figure 3F) and
surrounded by the phononic pattern. We therefore identify it
as our defect mode of special interest. The meff of the mode is
0.724 ag, which is more than a factor of 100 smaller than the
fundamental mode of the system and orders of magnitude
lower than for any reported SiN defect mode.15−17 Overall, our
model confirms the vibrational bandgap for a system of finite
size and a localized defect mode within that bandgap.
Phononic Crystal Tuning. We now show the key

advantage of our graphene PnC: dynamic and rapid frequency
tuning of the bandgap and of the defect mode. To demonstrate
this, we model our graphene PnC under pressure, which is
applied by an electrostatic gate. The pressure causes displace-
ment of the suspended membrane and increases the in-plane
tension. We initially approximate this effect in first order in our
infinite model by neglecting out-of-plane displacement and
simply increasing the in-plane tension. In Figure 4A, we plot
the band structure for T0 = 0.010 and 0.012 N/m. We observe
a frequency increase of the out-of-plane modes and thus an
upshift of the quasi-bandgap by 10%. The speed of sound vg
rises from 83 to 830 m/s in the range of tension from 0.01 to 1
N/m (Figure 4B). The system (finite and infinite) behaves like
a thin membrane under tension, and the frequencies of the

PnC scale directly with tension: ∝
ρ

f T0

2D

.55 This scaling

makes our system highly sensitive to tension and in
combination with graphene’s mechanical flexibility allows for
broad frequency tuning.
Having demonstrated the overall tunability of our system,

we now simulate the effect of electrostatic pressure on the
phononic system and the defect mode in a realistic device. To
do so, we switch to the finite model and apply pressure in
negative z-direction. In our simulations, we stick to
experimentally reported pressure values and apply a maximum
of 30 kPa.39 To investigate the influence of pressure on the
bandgap, we compute the phononic density of states, DOS =
dN/df, and plot it versus pressure (Figure 4C). In this plot, the
bandgap is distinguished by a reduced DOS. While at zero
pressure the bandgap region is obvious, for higher pressures
the drop becomes less pronounced (Figure 4C). We attribute
this smearing to a breaking of symmetry, perturbation of the
PnC as it deforms under pressure (inset Figure 4C), and rising
nonuniformity in the tension distribution (Figure S6E).
Nevertheless, we estimate the top and bottom of the bandgap,
Figure 4D (blue). A bandgap tuning by more than 300% is
evident. We verify the bandgap tuning by an independent
approach based on averaging the induced tension (red
markers, details in Supporting Information).
Next, we investigate tunability of the defect mode. Upon

applying 30 kPa pressure to a device with an initial tension of
0.01 N/m, the resonance frequency of the defect mode
upshifts from 49.9 to 217.5 MHz (black stars Figure 4D).
Because the bandgap is smeared under pressure (Figure 4C), it
is important to check the localization of the defect mode.
Hence, we inspect a line cut through the center of the device
and plot the normalized mode shape versus pressure in Figure
4E. The shape as well as the effective mass (inset Figure 4E) of
the mode remains virtually unchanged and the mode retains its
localization. Summarizing, we have shown a tunable speed of
sound and realized an upshift of the defect mode resonance
under pressure, while maintaining its localization. Such a more
than 4-fold frequency increase is unprecedented and remains
elusive in any other phononic systems.22−33

■ DISCUSSION

We now discuss experimental signatures of this system. The
spatial features of the extended modes in our device (Figure
3E,H) are too fine to be resolved via diffraction-limited optics.
At the same time, the extent of the defect mode is in the size of
microns (Figure 3F) allowing the detection of that mode via
interferometric read-out (Figure S8).53,54 This mode has a
nonzero net displacement and can be directly actuated via
electrostatic drive. It will be straightforward to distinguish the
defect mode from other modes by its localization in the center
of the device and its likely increased quality factor. Indeed, the
quality factor is defined by Q = 2πEstored/Ediss, where Ediss is the
dissipated energy per oscillation including all dissipation
mechanisms and Estored is the mode’s total energy. As the
mode shape shows zero displacement near the clamping
points, we expect strongly suppressed bending losses and thus
enhanced Q’s. Additionally, the phononic shield hinders
radiation losses into the substrate, which become especially
important at higher frequencies.16 While bending and radiation
losses may play a secondary role among the mechanisms
lowering Q in graphene resonators, our experiments never-
theless should determine the contribution of these mecha-
nisms. Finally, by applying pressure we increase the stiffness of
the resonator. This increases the energy stored in the system17

and supposedly further enhances the quality factor. The
demonstrated level of strain control in our system invites
future studies on dissipation dilution via strain engineering
following the work of Ghadimi et al.17

We also note that our results can be easily extended to the
entire family of two-dimensional materials. Currently, it is
challenging for us to experimentally achieve sufficient
uniformity in the graphene membrane in order to generate a
spatially uniform bandgap and localize the defect mode.
Monolayer graphene is rather sensitive to surface corruga-
tions39 and transferred CVD graphene is often covered by
fabrication residues, so using thin exfoliated graphene multi-
layers could be a solution for which we expect to find
experimental signatures. The increased uniformity in multilayer
graphene comes along with a decreased tunability, yet we
anticipate more than 100% relative tuning for up to ∼35 layers
(Figure S9). For our graphene PnC, we do not expect to reach
Q’s comparable to SiN. Nevertheless, we estimate meff of our
defect mode to be at least 8 orders of magnitude lower than in
other 2D-SiN-PnCs.15 This immensely increases the measure-
ment rate of quantum states Γmeas ∝ 1/meff and decreases
thermomechanical noise.15 The frequencies in our system are
controlled by simply adjusting a gate voltage, and we expect
the tuning to take place on time scales comparable to regular
graphene resonators and therefore achieve tuning bandwidths
>15 kHz.57

■ CONCLUSION

In summary, we have fabricated and simulated a tunable PnC
made from monolayer graphene. For an experimentally
informed honeycomb lattice structure, we find a robust
vibrational bandgap in the megahertz range. The bandgap
persists for a finite-size system, and we use it to localize a
defect mode and shield it from its surroundings. This defect
mode shows a very small effective mass of 0.724 ag, orders of
magnitude smaller compared to traditional PnCs. As our
central result, we demonstrate a frequency upshift of the defect
mode as well as the entire phononic system by more than
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350% by applying an experimentally feasible pressure of 30
kPa. While the bandgap smears out due to out-of-plane
displacement perturbing the lattice, the defect mode stays
within the bandgap and remains highly localized. We suggest
experimental signatures of the defect mode allowing its
differentiation from other modes in the system. Overall, our
design of a 2D-material-based PnC adds a new knob to
dynamically and rapidly tune frequencies in a broad range of
phononic applications. Our results invite future experiments as
our approach allows adjustable coupling of a PnC to external
systems and may lead to better understanding of the
dissipation mechanisms in graphene.

■ METHODS
Device Fabrication. The pattering of the CVD grown

graphene membranes was carried out in a He-ion microscope
(Orion Nanofab). Supporting Information Section I provides a
detailed process description.
Raman Spectroscopy. Raman mapping was performed on

a Horiba Xplora Raman spectrometer using a 100× (NA 0.9)
objective and 532 nm excitation. Spectra were acquired with a
laser power of 0.5 mW and an integration time of 3 s. Tension
(via strain) values were derived from the 2D-mode position
following standard procedures, see Supporting Information
Section IV.
Simulations. For the finite element modeling we use

COMSOL Multiphysics (Version 5.5) and assume the
following material parameters for monolayer graphene:
Young’s modulus E2D = 1.0 TPa,38 Poisson’s ratio of v =
0.15, thickness of h = 0.335 nm, and a density of ρ = =ρ

h
2D

2260 kg/m3. The initial tension T0 = 0.01 N/m thus

corresponds to an initial strain: ϵ = ≈ 0.003%T
E0

0

2D
. For

details see Supporting Information, Sections II and III.
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I. Sample synthesis and device pattering using He-FIB milling

Monolayer graphene was synthesized on copper by low pressure chemical vapor 

deposition (CVD). Upon reaching the growth temperature of 1035 °C a mixture of 

methane (5 sccm), hydrogen (10 sccm), and argon (5 sccm) was introduced into the CVD 

chamber. After 7 min growth time and a rapid cooldown, graphene was wet transferred 

onto a perforated SiN membrane, covered by Cr/Au (5 nm/35 nm) to electrically contact 

the graphene.

To pattern the suspended graphene, we used a beam of focused helium ions in the Orion 

Nanofab microscope. The local material removal upon ion beam impact is a complex 

interplay between physical sputtering (ions kick out surface atoms), the redeposition of the 

sputtered surface atoms in the close vicinity, chemical reactions (like polymerization of 

organic residues by the generated secondary electrons) as well as the introduction of heat 

and amorphization.1 In case of two-dimensional material only physical sputtering 

contributes. The holes were patterned with a dwell time of 1.5 ms and a pixel spacing of 1 

nm at a beam current of 4-5 pA (device settings: 2x10-6 Torr He , Uacc = 30 kV, UBIV = 

34 kV, aperture 2 µm). The holes on the outside of device were cut first, following a 

spiralling milling strategy to the centre of the suspended area (Figure S1B). Here each 

single hole is milled in an opposite spiral order – starting at the centre of the hole (Figure 

S1C). If the graphene layer is completely intact and free of contamination, the process is 

highly reproducible (see Figure S2). In Figure S3A we show fabricated phononic crystal 

devices with varying lattice constant : 0.175…2 µm. While the patterning allows for 𝑎

highly flexible variation of geometrical parameters, like lattice constant and hole diameter, 

the process of He-ion induced physical sputtering is highly sensitive to surface 

contamination. In Figure S3B this effect becomes visible by the bright regions around the 
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spot. Here, the secondary electrons induced polymerization of the organic residues and 

therefore material build-up (deposition). The amount of contamination increases the 

minimum dose to achieve a full cut and may even dominate over physical sputtering as 

shown here for the smallest spots. As the coverage of organic residues may locally vary 

also the required minimum dose for complete graphene removal can vary locally. This can 

be seen in Figure 1B of the main manuscript. Holes with sizes down to 5 nm can be 

fabricated by He ion beam milling in relatively uniform and uncontaminated monolayer 

graphene (Figure S3B).

Figure S1. Milling strategy for PnC-device patterning. (A) Device with lattice constant 
a = 700 nm. By transferring CVD graphene onto pre-pattered substrates with many 
through holes, many PnC can be milled on a single chip. (B) Corresponding design file 
including the pattering order – starting at the outside and spiralling towards centre of the 
device. (C) Patterning of a single hole – starting in the centre moving to the outside.
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Figure S2. Reproducible PnC patterning. (A) Repeated pattering of a device with lattice 
constant a = 700nm. For uniform graphene the process is highly reproducible. (B,C) 
Zoom-in on the honeycomb lattice with a = 175 nm. The milling process is less efficient 
on add-layer regions – visible on the right half in (B).

Figure S3. Scalable PnC patterning. (A) PnC devices of varying lattice constant a = 175 
nm - 2 µm. Occasional add-layer regions from CVD growth are marked. (B) Dose tests on 
uniform and clean graphene, show that pores with sizes well below 5 nm can be fabricated 
by He ion beam milling.
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II. Finite element method simulations

We use the solid mechanics module of Comsol Multiphysics (Version 5.5) to carry out the 

FEM-simulations presented in the main paper. 

The infinite model for the band structure calculations consist of two studies within one 

model. We use a large square containing many unit cells of the phononic pattern and 

implement uniform tension in the solid (Figure S4). In a stationary study with fixed 

boundary conditions at the edges, we simulate the tension redistribution, which occurs 

upon cutting holes into a system under tension.

We then add a second study (eigenfrequency domain) within in the same model to 

simulate the resonances und thus plot the band structure. To accurately depict the tension 

distribution, we crop the central unit cell of the large square from the first study and 

component-wise transfer the tension distribution to the second study (Fig S4). To obtain 

the band structure, we apply periodic boundary conditions (Floquet) to the edges of the 

unit cell and parameterize  and  (in an auxiliary sweep) along the high symmetry lines 𝑘𝑥 𝑘𝑦

in the first Brillion zone and calculate the first 6-10 eigenfrequencies for every value of . 𝑘

By plotting the frequencies f  vs. k, we get the dispersion relation for the geometry of 

interest. We use a swept mesh as we simulate a very thin system. Furthermore, we apply 

copy operators within in the unit cell when building the mesh to completely capture the 

symmetry of the system (Fig S5B). In general, the size of the bandgap depends on the 

filling factor . Choosing ~0.5 (slightly larger than for Figure 1 in the main paper) 𝑑/𝑎 𝑑/𝑎

results in a reasonably sized bandgap, whilst leaving behind enough material to 

reproducibly fabricate devices. In Figure S5, we provide a detailed study of bandgap width 

vs. . Taking into account for tension redistribution overall reduces the size of the 𝑑/𝑎

bandgap. For the second estimate of the bandgap tuning with applied pressure (main text, 
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Figure 4D) we extract the average tension in the finite model at each pressure value and 

feed the average values as input into our infinite model. 

Figure S4. Infinite model PnC simulations. (A) A large membrane is needed to correctly 
calculate the tension redistribution. A central unit cell is cropped and used for the band 
structure calculations (B) Corresponding mesh of the unit cell.

Figure S5. Phononic Bandgap vs. filling factor. Frequencies of the top and of the 
bottom of the bandgap vs. the filling factor d/a for a = 1 µm and an initial tension of T0 = 
0.01 N/m. Tension redistribution is accounted for. 
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For the calculations in the finite model we use a membrane model from the solid 

mechanics module with two study steps (Figure S6). In the first step, we again let the 

system relax after adding uniform built in tension. The resulting tension distribution is 

shown in Figure S6 C and D. We then calculate the first 1500-2500 resonances of the 

system in an eigenfrequency study step. The mode shapes and frequencies are exported for 

further analysis in a python script (see section III). Also here it is important for the mesh 

to represent the symmetry of the modelled geometry – compare Figure 6B.

Figure S6. Finite model PnC simulations. (A) Circular PnC of 30.6 µm size. The 
electrostatic pressure is applied as a body load (yellow). (B) Symmetric mesh. (C) Tension 
after the redistribution step around the central defect region and in the entire device (D). 
(E) Tension along a line cut (marked red in (D)) for different pressures. With larger 
pressures, the distribution becomes increasingly non-uniform. (F) Deformation of the 
finite system under large pressures (100 kPa) to illustrate the perturbation of the phononic 
pattern.

III. Mode shape analysis

We first export the mode shape for each mode obtained from our Comsol simulations and 

interpolate it onto a square grid with 1000 nodes. Next, we carry out a fast Fourier 

transform (FFT) on such an array to obtain the reciprocal space representation of each 
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mode. Most modes, except for the ones within the bandgap, have a well-defined 

momentum along each specific direction. To determine the momentum content of each 

mode, we take a cut of each mode in the momentum space and find a peak along each 

particular direction. To aid in this procedure and reduce noise, we average over 10 

neighboring modes. Knowing the momentum, we finally export the dispersion relation 

along the direction of interest.

IV. Raman spectroscopy analysis

In the main paper, we use initial tension  as a device parameter to avoid confusion. For 𝑇0

Raman data however it is more common characterize graphene in terms strain , which is 𝜖0

directly linked to tension value via the 2D-Youngs-modulus . In this section, 𝑇0 = 𝜖0𝐸2𝐷

we discuss in detail the signatures of strain redistribution obtained by Raman spectroscopy 

of the graphene phononic crystal presented in the main paper. Figure S7A shows a Raman 

map of the integrated 2D-mode intensity of the suspended membrane, see Figure 1D of the 

main paper. The holes forming the phononic crystal are clearly marked by a local decrease 

in 2D-mode intensity. We show a representative Raman spectrum from the centre of the 

phononic crystal in Figure 7B, marked by (#) in Figure S7A. The experimentally observed 

intensity ratio between the Raman G and D peaks, I(2D)/I(G)>1, proves that the phononic 

crystal is made from a single layer of graphene. We used SEM imaging to avoid 

measuring the devices with bilayer graphene areas (Fig. S3A). The appearance of the D, 

D’ and D+D’ mode indicate the presence of defects, which arise mainly from repeated 

electron beam imaging of the graphene membrane. 

To demonstrate the onset of strain relaxation, we focus on a horizontal line cut (along x 

within out laboratory frame) across the phononic crystal at y = 2.3 µm as indicated by the 

dashed line in Figure S7A. Figure S7C shows the corresponding integrated 2D-mode 
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intensity (squares) and position (triangles) as a function of x, where the origin (0,0) was 

set at the centre of the membrane. We observe four equidistant drops in intensity, 

indicated by arrows, which corresponds to the narrow graphene stripes between the holes 

(compare to Figure S7A). The drop in intensity occurs because at the strips, the laser spot 

overlaps with the holes in the graphene membranes such that less material is probed 

compared to regions further away from the holes. For the two narrow graphene stripes 

closest to 0, we find that the 2D-mode position drops by 3-5 cm-1 compared to the central 

region of the graphene membrane. As hydrostatic strain lowers the energy of phonons 

probed by Raman spectroscopy,2,3 our observation suggests that the narrow stripes carry a 

higher strain then neighbouring parts of the graphene phononic crystal, which is in 

qualitative agreement with the strain redistribution introduced in the main paper. A similar 

but less pronounced behaviour occurs for the two additional narrow stripes closer to the 

edge of the suspended graphene membrane at  , where the local decrease in 2D-𝑥~ ± 3𝜇𝑚

mode position (increase in strain) is overlaid with a general increase of the 2D-mode 

position (decrease in strain) towards the edge of the suspended part of the graphene 

membrane at . The overall lower position 2D-mode in the centre of the 𝑥~ ± 4𝜇𝑚

membrane could be due to laser heating. The pattering reduces the thermal conductance of 

the system and thus even at small powers (0.5 mW) heating can occur.

Next, we quantify the hydrostatic strain in our phononic crystal, which is presented in 

Figure 1E of the main paper. Hydrostatic strain  in graphene leads to a shift  of the 𝜀ℎ Δ𝜔2𝐷

2D-mode position  following the relation.2,3𝜔2𝐷

   (1)Δ𝜔2𝐷 = ― 𝜀ℎ  𝛾2𝐷 𝜔0
2𝐷

where   is the Grüneisen parameter of the 2D-mode in graphene, and  is the 𝛾2𝐷 = 2.6 𝜔0
2𝐷

intrinsic 2D-mode position without strain or doping (  for  𝜔0
2𝐷 = 2678 𝑐𝑚 ―1 532 𝑛𝑚
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excitation) 4. From the measured 2D-position  , , and equation (1) 𝜔𝑒𝑝𝑥
2𝐷 Δ𝜔2𝐷 = 𝜔0

2𝐷 ― 𝜔𝑒𝑝𝑥
2𝐷

we extract the strain values from Figure S7C and show them together with the 2D-mode 

position in Figure 1 of the main paper. 

The general trend of lower strain towards the edge of the suspended graphene phononic 

crystal suggests that strain relaxation is not complete across the entire structure. We 

attribute this behaviour to two main reasons. First, strain in suspended graphene 

membranes is never homogeneous, see reference membrane in Figure 1D of the main 

paper, and the degree of strain relaxation scales with the absolute strain values. Therefore, 

we do not expect homogenous strain relaxation across the entire phononic crystal. Second, 

strain in suspended graphene visibly varies on length scales comparable to the size of the 

holes in the suspended graphene membrane, see Figure 1D of the main paper, which 

makes strain relaxation less effective. Here we chose a PnC with rather large lattice 

constant  such that strain variation and relaxation can be probed by Raman spectroscopy 𝑎

with diffraction limited spatial resolution. For phononic crystals with holes sizes and 

periodicities that are much smaller than the variations of initial strain in suspended 

graphene structures, we expect strain relaxation to be more efficient than what is observed 

for the phononic crystal discussed here. 
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Figure S7. Raman characterization of the graphene PnC. (A) Raman map of the 
graphene 2D-Raman mode (integrated intensities. Intensity drops mark the locations of the 
holes in the hexagonal arrangement that forms the phononic crystal. (B) Representative 
Raman spectrum of the graphene membrane extracted at the location marked as (#) in (A). 
The dominant Raman modes of graphene are labelled. (C) Integrated 2D mode intensity 
(area, grey squares) and 2D-mode position (red triangles) along a line cut at y = 2.3um in 
x-direction as indicated by the dashed line in (A). Arrows in (A) and (C) mark the 
locations of narrow graphene bridges between the holes where strain relaxation is 
expected. 
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V. Experimental signatures of the defect mode

We propose detecting the defect mode by interferometric detection. In this approach a 

laser beam reflected from the device interferes with a reference beam providing an 

accurate measurement of membrane’s position.5–8 We need to confirm, however, that 

diffraction-limited laser spot is small enough to measure signatures of a realistic defect 

mode. To confirm that the defect mode in the center of the PnC presented in the main text 

is detectable, we simulate the spatial signal read out by the interferometer by 

implementing a Gaussian averaged laser spot for a realistic source reflected from our 

structure. In Figure S8 we show this for multiple laser spot sizes. For the smallest possible 

spot with a FWHM of 720 nm, even small spatial features of the mode shape are 

detectable (Figure S8A). For a realistic spot size (FWHM of 2400 nm) including the 

window of a vacuum chamber and a larger working distance objective we are still able to 

measure the mode (Figure S8B). And finally, we take a very large spot (FWHM of 7.2 

µm) and thereby probe the entire mode shape (Figure S8C). We can confirm that the mode 

will not be fully averaged out, as it has net displacement (in contrast to e.g. mirror 

symmetric modes). Overall, we confirm that we should be able to detect the motion of the 

defect mode for all realistic laser spot sizes. 
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Figure S8. Interferometric detection of the defect mode. (A-C) Mode shape of the 
defect mode with local Gaussian averaging to simulate the displacement detection via a 
focused laser spot of different width (Zoom-ins are shown below). Different panels 
correspond to different spot sizes. Even for the largest laser spot size a net displacement is 
evident. 

As mentioned in the main text spatial uniformity is necessary to fabricate a phononic 

crystal with a well-defined band structure. Monolayer graphene is sensitive so surface 

effects, wrinkling and fabrication residues. Using multilayer graphene would solve this 

problem yet will also be less responsive to the experimentally possible pressure maximum 

of roughly 30 kPa. To check if a PnC made from multilayer graphene would still show 

frequency tuning, we simulate the resonance frequency of a uniform circular membrane 

(initial tension 0.01 N/m) with and without applied load of 30 kPa. In Figure S9 we plot 

the relative frequency change under pressure vs. number of graphene layer. Even though 

the tunability drops quickly for thicker graphene, we still find more than 100% possible 

upshift for 35 layers. 
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Figure S9. Frequency tunability vs. number of layers.  Relative frequency shift of the 
fundamental mode of a circular multilayer graphene resonator upon applying 30 kPa of 
pressure vs. number of graphene layers. 



16

References

(1) Utke, I.; Hoffmann, P.; Melngailis, J. Gas-Assisted Focused Electron Beam and Ion Beam 
Processing and Fabrication. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2008, 26 
(4), 1197.

(2) Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, 
N.; Basko, D. M.; Galiotis, C.; Marzari, N.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. 
Uniaxial Strain in Graphene by Raman Spectroscopy: G Peak Splitting, Grüneisen 
Parameters, and Sample Orientation. Phys. Rev. B - Condens. Matter Mater. Phys. 2009, 79 
(20), 1–8.

(3) Mueller, N. S.; Heeg, S.; Alvarez, M. P.; Kusch, P.; Wasserroth, S.; Clark, N.; Schedin, F.; 
Parthenios, J.; Papagelis, K.; Galiotis, C.; Kalbáč, M.; Vijayaraghavan, A.; Huebner, U.; 
Gorbachev, R.; Frank, O.; Reich, S. Evaluating Arbitrary Strain Configurations and Doping 
in Graphene with Raman Spectroscopy. 2D Mater. 2018, 5 (1).

(4) Froehlicher, G.; Berciaud, S. Raman Spectroscopy of Electrochemically Gated Graphene 
Transistors: Geometrical Capacitance, Electron-Phonon, Electron-Electron, and Electron-
Defect Scattering. Phys. Rev. B - Condens. Matter Mater. Phys. 2015, 91 (20), 205413.

(5) Singh, R.; Nicholl, R. J. T.; Bolotin, K. I.; Ghosh, S. Motion Transduction with Thermo-
Mechanically Squeezed Graphene Resonator Modes. Nano Lett. 2018, 18 (11), 6719–6724.

(6) Singh, R.; Sarkar, A.; Guria, C.; Nicholl, R. J. T.; Chakraborty, S.; Bolotin, K. I.; Ghosh, S. 
Giant Tunable Mechanical Nonlinearity in Graphene-Silicon Nitride Hybrid Resonator. 
Nano Lett. 2020, 20 (6), 4659–4666.

(7) Zande, A. M. Van Der; Barton, R. A.; Alden, J. S.; Ruiz-vargas, C. S.; Whitney, W. S. 
Large Scale Arrays of Single Layer Graphene Resonators. - Supplementary Information. 
Nano Lett. 2010, 10 (12), 4869–4873.

(8) Bunch, J. S.; Van Der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; 
Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Electromechanical Resonators from 
Graphene Sheets. Science (80-. ). 2007, 315 (5811), 490–493.



B. Papers as published

B.2. npj 2D Materials and Applications 7, 10 (2023) and
Supporting Information

This publication is licensed under CC-BY 4.0 and can be found here: https://doi.org/10.1038/
s41699-023-00374-4.

78

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41699-023-00374-4
https://doi.org/10.1038/s41699-023-00374-4


ARTICLE OPEN

Mechanically-tunable bandgap closing in 2D graphene
phononic crystals
Jan N. Kirchhof 1✉ and Kirill I. Bolotin 1✉

We present a tunable phononic crystal which can be switched from a mechanically insulating to a mechanically conductive
(transmissive) state. Specifically, in our simulations for a phononic lattice under biaxial tension (σxx= σyy= 0.01 Nm−1), we find a
bandgap for out-of-plane phonons in the range of 48.8–56.4 MHz, which we can close by increasing the degree of tension
uniaxiality (σxx/σyy) to 1.7. To manipulate the tension distribution, we design a realistic device of finite size, where σxx/σyy is tuned by
applying a gate voltage to a phononic crystal made from suspended graphene. We show that the bandgap closing can be probed
via acoustic transmission measurements and that the phononic bandgap persists even after the inclusion of surface contaminants
and random tension variations present in realistic devices. The proposed system acts as a transistor for MHz-phonons with an on/off
ratio of 105 (100 dB suppression) and is thus a valuable extension for phonon logic applications. In addition, the transition from
conductive to isolating can be seen as a mechanical analogue to a metal-insulator transition and allows tunable coupling between
mechanical entities (e.g. mechanical qubits).

npj 2D Materials and Applications            (2023) 7:10 ; https://doi.org/10.1038/s41699-023-00374-4

INTRODUCTION
Phononic crystals (PnCs) are artificial structures in which the
periodic variation of material properties (e.g. stiffness, mass, or
tension) give rise to a phononic band structure—in analogy to
Bloch waves in crystalline solids on the atomic scale. In contrast to
conventional solids, the parameters of the band structure can be
broadly controlled via artificial patterning. Because of that, PnCs
allow realising analogues of fundamental solid state physics
phenomena over a very large range of sizes (10 nm–100m) and
frequencies (Hz–THz)1,2. This ranges from quantum entangle-
ment3,4 to topological states5,6 and negative refraction7. The
ability to engineer phononic spectra gave rise to applications such
as phononic shielding in ultracoherent mechanical resonators8–11,
wave guiding12,13 or thermal management14. Due to the much
lower propagation speed of phonons compared to photons or
electrons, PnCs are also promising candidates for quantum
information technology based on guiding and storing mechanical
motion, especially on length scales too small for photonic
approaches6,15–18. Most of these applications and phenomena
rely on phononic bandgaps, the range of frequencies where no
phonons are allowed and mechanical motion is heavily damped.
The velocities of all phonons in a material depend on its tension

σ. In conventional rigid PnCs, e.g. those fabricated using silicon
nitride membranes (SiNx), the built-in tension is determined
during the growth step and cannot be tuned. As a result, it
becomes challenging to couple a PnC to an external system, for
example for processing and storing of quantum information19–21.
In contrast, it has been recently demonstrated that the tension in
much more flexible two-dimensional (2D) materials can be
dynamically controlled by applying electrostatic pressure via an
external gate electrode22–25. The resulting tunable (biaxial) tension
allows broad tunability of the bandgap centre frequency23.
Nevertheless, the hierarchy of the bands in the systems explored
so far has not been affected by tension—i.e. a gapped system
remained gapped at any tension level. The precise control of the

bandgap size and thus the coupling strength between mechanical
entities remains elusive.
Here, we show that the application of uniaxial tension to a PnC

(in contrast to biaxial tension studied previously) changes the
band hierarchy. Specifically, for a 2D phononic lattice patterned
into a suspended graphene membrane under biaxial tension (σxx/
σyy= 1), we observe a bandgap for out-of-plane phonons at any
tension (e.g. 48.8–56.4 MHz at σ= 0.01 Nm−1), which disappears
completely when the degree of tension uniaxiality (σxx/σyy)
reaches 1.7. This can be seen as the observation of a mechanical
analogue to a metal-insulator transition. Of course, the analogy is
not complete. The chemical potential for the phononic system is
zero rather than falling into the gap, as is the case for electrical
insulators, which are described by the Fermi-Dirac statistics. Also,
the analogy is only applicable to out-of-plane modes. These
modes are especially relevant in phononic crystals made from 2D
materials as they are easy to excite and detect. Nevertheless, the
transition from a gapped to non-gapped phononic crystal shows
many similarities to an actual metal-insulator transition in terms of
transfer of energy and localisation of modes (see Supplementary
Note 8). To control σxx/σyy, we propose a simple experimental
geometry based on electrostatic gating and show that bandgap
closing can be reached in experimentally feasible devices, which
we probe via acoustic transmission studies. Our simulations show
that applying a small gate voltage of ~8 V to the suspended
graphene PnC is sufficient to close the phononic bandgap. For
frequencies within the bandgap region, the system functions as a
mechanical transistor with an on/off ratio of 105 (suppression of
100 dB) and can be used in phonon logic circuits. Furthermore, the
ability to dynamically control the bandgap size allows to realise
tunable coupling strength between mechanical entities e.g. two
mechanical resonators acting as qubits. Finally, we investigate the
challenges associated with the fabrication of 2D materials. We find
that the mass of contaminants on top of the device must be
smaller than ~4 times the weight of the suspended graphene and
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that the relative tension variation in the graphene must be smaller
than 40% to observe a clear bandgap and its closing.

RESULTS
PnC design
For the design of our tunable 2D phononic system we choose a
honeycomb lattice (lattice constant a) of holes (diameter d), which
provides a relatively broad and robust phononic bandgap for out-
of-plane modes, while leaving a large fraction of the material
untouched. The latter is crucial for making a PnC from fragile 2D
materials. The honeycomb lattice also features an indirect
phononic bandgap, which allows selective tuning of phononic
bands via uniaxial tension, as we will see later. We select graphene
as a suitable material for our PnC as it is the most conductive26,27

and the strongest member of the family of 2D materials28. Our
results are also applicable to other conductive 2D materials. The
phononic pattern shows the same symmetry as the atomic lattice
structure of graphene, with the difference that in our approach
the unit cell is much larger and contains ~4·107 carbon atoms. We
consider a free-standing PnC to allow mechanical tuning via out-
of-plane pressure. Fabrication of such devices has recently been
demonstrated by He-Ion beam milling23,29,30. To obtain the
phononic band structure, we start by performing finite element
method (FEM) simulations of the tension distribution within the
conventional unit cell of the honeycomb lattice (Fig. 1a, top). We
find tension hotspots in the thin ribbons and relaxed regions in
the centre of the unit cell. This redistribution of tension occurs
when holes are cut into the initially uniform membrane. In a next
step, we use the first Brillouin zone (Fig. 1a, bottom) to calculate
the phononic band structure along the high symmetry lines for an
infinite lattice, as shown in Fig. 1b for a= 1 µm, d/a= 0.5 and a
reasonable initial biaxial tension of σxx= σyy= 0.01 Nm−1 23,31,32.
For out-of-plane modes (solid lines) we find a bandgap between
48.8 and 56.4 MHz (blue shaded), in agreement with previous
work23,30. These modes are qualitatively comparable to atomic
scale flexural (ZA) phonon modes in graphene, but at much lower
frequencies and for much smaller wave vectors. The entire
phononic lattice behaves like a thin membrane with vibrational
mode frequencies f determined by the built-in tension (f � ffiffiffi

σ
p

),
that also results in a linear dispersion for the flexural modes,
instead of the quadratic behaviour expected for an unstrained 2D
material33,34. Also, in agreement with previous work, we find that
an uniform increase in tension (σxx/σyy= 1) leads to monotonic
upscaling of both the top of valence (fVB) and bottom of

conduction band (fCB) frequencies as shown in Fig. 1e (red). Here,
the centre frequency of the bandgap follows a square root
behaviour vs. tension, and the relative bandgap size ( fCB�fVB

ðfCBþfVBÞ=2)
remains constant.

Bandgap closing for highly uniaxial tension
Our next goal is to show that we can use uniaxial tension (unlike
biaxial tension) to control the relative bandgap size and even
completely close it. The phononic bandgap of our honeycomb
lattice is indirect with the conduction band minimum fCB, located
at the Γ point in momentum space and the valence band
maximum fVB, at a point along the ΓX line (Fig. 1b). Critically,
uniaxial tension, in contrast to biaxial tension, produces different
frequency scaling of the band structure at different points of the
Brillouin zone. With increasingly uniaxial tension, fVB strongly
upshifts in frequency while fCB is barely tension-dependent. As a
result, the indirect bandgap of the phononic lattice acquires a
strong tension-dependence. To quantify these changes, we
determine the average tension components (after redistribution
upon phononic pattering) σij ¼ <σij> and use the ratio σxx/σyy as a
metric for tension uniaxiality. For the honeycomb lattice with its
initial tension distribution (as introduced above), σxx/σyy= 1. For
an increased σxx/σyy= 1.35, we find increased tension in the areas
stretched in the x direction (Fig. 1c, inset). This is accompanied by
a much more pronounced upshift of fVB compared to fCB and thus
a reduced bandgap size (Fig. 1c). To give an intuitive under-
standing of this scaling behaviour, we look at the spatial shape of
modes corresponding to fVB and fCB. The mode fCB at the Γ point
(Fig. 1b, left inset) resembles a standing wave along the y
direction, and it therefore does not depend strongly on tension in
the x direction. The mode corresponding to fVB, between Γ and X
(Fig. 1b, right inset), resembles a linear combination of standing
waves in the x and y directions. The frequency of this mode
however does depend on σxx. For a higher uniaxiality of 1.7 as
shown in Fig. 1d, the tension distribution becomes even more
distorted (Fig. 1d inset) and the lower branches (fVB) overtake the
upper ones (fCB). At this point, the bandgap closes ( fCB�fVB

ðfCBþfVBÞ=2 ¼ 0).
In Supplementary Note 1, we provide extended band structure
calculations showing the full extent of the Brillouin zone under
uniaxial tension.
To summarise the results of bandgap tuning, in Fig. 1e we

compare fVB and fCB vs. the total tension σtotal for uniaxial (blue)
and uniform biaxial (red) tension. For uniaxial tension, we see a
closing of the bandgap at σtotal/σ0= 1.6 (corresponds to
σxx/σyy= 1.7). In contrast, for biaxial tension scaling, the bandgap

Fig. 1 Phononic bandgap closing induced by uniaxial tension. a Unit cell of the honeycomb lattice with redistributed tension (top) and the
corresponding first Brillouin zone (bottom). b Phononic band structure for the unit cell shown in a under uniform tension
(σxx= σyy= 0.01 Nm−1). For out-of-plane modes (solid lines) a clear phononic bandgap is visible (blue shaded region). The insets show
the mode shape (displacement) within the unit cell at the points above and below the bandgap. c, d Phononic band structure and tension
distribution in the unit cell (insets) for σxx/σyy of 1.35 and 1.7. With increasing uniaxiality in tension (σxx/σyy > 1), the phononic bands show
different frequency scaling behaviour along different high symmetry lines. At σxx/σyy= 1.7, the phononic bandgap closes. e Phononic
bandgap for biaxial (red) and uniaxial (blue) tension vs. total normalised tension. When the tension is increased biaxially (σxx= σyy), the
bandgap centre frequency rises, and the bandgap width increases. On the contrary, uniaxial upscaling (σxx > σyy) leads to a bandgap closing.
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increases in absolute size with increased tension, while the relative
bandgap size remains constant. Overall, by varying the tension
uniaxiality, we find different scaling behaviour for different
phononic bands along different directions, which allows us to
dynamically tune the size of the bandgap.
Our next goal is to develop a design for an experimentally

feasible device realising the phononic bandgap closing. To
accomplish this, three challenges need to be overcome. First,
how can we probe the phononic bandgap in a realistic finite-size
device? This is critical as the band structure calculations
considered so far always assume an infinite phononic lattice.
Second, how can we generate the highly uniaxial tension
distribution needed to close the bandgap? Third, is it feasible to
fabricate a sufficiently uniform PnC from experimentally available
2D materials? We now individually address each of these
questions in the next sections.

Bandgap probing in a finite-size device
We probe our finite-size phononic system via acoustic transmis-
sions measurements. In general, the transmission across a
phononic system is determined by the density of available states
at the relevant frequency which serves as a proxy for the phononic
band structure. We design a transistor-style PnC with realistic
dimensions of 9 µm × 28 µm (7 × 17 unit cells, unlike the infinite
system considered in simplified simulations so far), in which
instead of electrons we will determine the transmission of
mechanical motion (Fig. 2a). At point A (excitation/source)
mechanical motion is excited, which then can propagate through
the PnC until it reaches point B (detection/drain). Drive and
detection in such a device design can be experimentally realised
by using either surface acoustic waves (SAW)15, local gate
electrodes35 or two spatially separated laser beams12 (blue, red
Fig. 2a). Here, we concentrate without loss of generality on the last
case. We define the transmission from area A to B as:

TransmissionA)B fð Þ ¼ 1
T

Z T

0

RR
Az x; y; f ; tð ÞdARR
Bz x; y; f ; tð ÞdA dt (1)

where z(x, y, f, t) is the out of plane displacement of the suspended
graphene with a period T ðf ¼ 1

TÞ. The integration is over the
illumination areas in points A and B. We concentrate on out-of-
plane modes as they are controlled by the in-plane phononic
pattern, show strong capacitive coupling to perpendicular electric
fields from a gate electrode and are sensitive to interferometric
readout. In Fig. 2b, we plot the transmission vs. frequency for the
device shown in Fig. 2a. In the region below the fundamental
resonance, the stop band (<5 MHz), we find strongly supressed
transmission. Towards higher frequencies, we find multiple closely

spaced sharp peaks, which correspond to higher order resonances
of the device. As the frequency increases further, the transmission
is more and more dominated by the phononic band structure, and
we observe broad “bands” rather than individual resonance
modes. The transmission suddenly drops by an average of 5
orders magnitude in the expected bandgap region between 48.5
and 56.5 MHz (blue shaded). The non-zero transmission inside the
bandgap is related to finite-size effects captured by our model.
Above the bandgap the transmission recovers and remains close
to 1. The frequency range of the bandgap extracted from
transmission simulations matches well with the bandgap from
band structure calculations (comp. Fig. 1b). To summarise, we can
use acoustic transmission studies to probe the phononic bandgap
in finite-size devices. Furthermore, transmission of mechanical
motion across the device in the bandgap region is strongly
suppressed and, in analogy to an electronic system, the system
can be considered a mechanically insulating.

Uniaxial tension engineering
After finding the phononic bandgap closing in band structure
calculations at a tension uniaxiality of σxx/σyy= 1.7 and establish-
ing transmission studies as a suitable approach to probe the
bandgap, we now aim to produce the required tension distribu-
tion—and hence the bandgap closing—in a realistic device of
finite size. Our key idea is to apply electrostatic pressure to a
suspended rectangular device (Fig. 3a) with non-unity aspect ratio
(W/L). In this case the induced tension is larger along the direction
of the smaller spatial dimension (x in Fig. 3a)36. We model the
membrane as clamped at its perimeter. Electrostatic pressure pel is
generated by applying a gate voltage (Vgate) between the highly
conductive graphene and a gate electrode separated from it by
distance d:

pel ¼ ϵ0
2

Vgate

d

� �2

(2)

where ϵ0 is the vacuum permittivity. We assume d= 300 nm, a
typical oxide thickness for Si/SiO2 substrates used for 2D materials.
At zero gate voltage, corresponding to zero pressure, the
membrane is uniformly tensed (σxx ≈ σyy). The tension distribution
inside the centre of the phononic device is plotted in Fig. 3b. With
applied pressure the degree of tension uniaxiality σxx/σyy increases
and the distribution of tension becomes rotationally asymmetric
(Fig. 3c). For pel= 3 kPa (8 V), σxx/σyy reaches 1.7 and we thus
expect the bandgap closing to occur. The generated tension
distribution also matches the prediction for the bandgap closing
from our band structure calculations—compare dashed outline in
Fig. 3c with the inset of Fig. 1d. In Fig. 3d we summarise the results

Fig. 2 Probing the band structure via transmission studies in a finite-size phononic crystal. a Transmission geometry for a rectangular
phononic device. At point A mechanical motion is excited by a frequency modulated laser (blue). The vibrational wave travels through the
device and is detected at point B by a second laser spot (red). b Transmission from A to B vs. excitation frequency for the device shown in a. A
clear bandgap region is visible (blue shaded) where transmission of mechanical motion through the device is suppressed by ~105.
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of tension engineering for our finite-size system in a phase
diagram, where we plot σxx/σyy vs. applied pressure vs. aspect
ratio. When σxx/σyy reaches the critical value of 1.7 (dashed line),
we expect bandgap closing according to our band structure
calculations for the infinite lattice. This line can therefore be
viewed as a boundary separating a mechanically insulating from a
mechanically conductive (transmissive) state. We see that the
conductive state is reached at lowest applied pressure for an
aspect ratio of W/L= 0.32.
Next, we calculate the transmission spectra for applied

pressures of 0 and 5 kPa (Fig. 3e). While we find a clear bandgap
(and higher order harmonics) for the un-pressured state (blue), the
bandgap completely vanishes with applied pressure (red, 5 kPa),
confirming the expected bandgap closing for a finite-size
phononic crystal. The system is now transmissive and mechani-
cally conductive. Continuing the analogy between phononic and
electronic devices, our system can be viewed as a mechanical
transistor for MHz phonons with an on/off ratio of ~105 (100 dB
suppression). This corresponds to 6 dB suppression per unit cell.
In Fig. 3f, we show combined results from multiple pressures by

plotting fVB and fCB for the rectangular device (W/L= 0.32, blue)
and a circular reference device (red). In accordance with previous
simplified calculations (Fig. 1e), we see that the bandgap fCB�fVB

ðfCBþfVBÞ=2
gradually decreases in size with applied pressure for the
rectangular device. The applied pressure increases σxx/σyy and

drives the system towards the bandgap closing. In contrast, the
circular reference device for which we expect entirely biaxial
tension tuning (σxx ≈ σyy) exhibits a clear bandgap up to 30 kPa
(see Supplementary Note 3). To better relate our results to the
phononic band structure calculations, we take the average tension
values (σxx, σyy and σtotal) from the finite-size system under
pressure as input for our infinite model and plot the expected
bandgap regions in Fig. 3f (red and blue shaded). While we find
comparable behaviour, the bandgap closing however occurs at
somewhat higher pressures. This is likely due to boundary-related
disorder that is excluded in the infinite model. We extract the
average strain from our simulations and obtain ε= 0.24% for an
applied pressure of 10 kPa. This is well below the onset of phonon
instabilities37 or graphene’s breaking strain28. To summarise, we
find bandgap closing for a highly uniaxial tension distribution
generated by applying electrostatic pressure in a realistic finite-
size device with optimised geometry. This allows us to change the
state of a PnC from mechanically insulating to conductive by
simply applying a gate voltage.

Fabrication related challenges
Having demonstrated large frequency tunability as well as
phononic bandgap closing in graphene PnCs, we now want to
assess the fabrication challenges associated with 2D materials. We
therefore investigate the effect on the phononic bandgap for the

Fig. 3 Uniaxial tension engineering in a finite-size phononic system. a Sketch of a finite-size system phononic device, which is mechanically
deformed under electrostatic pressure, pel, generated by a gate electrode below the graphene. b, c Spatial tension distribution in the centre of
the device with and without applied pressure. The dashed lines indicate the unit cell of the lattice. d Mechanical phase diagram: Tension
uniaxiality (σxx/σyy) vs. pressure vs. device aspect ratio (W/L). The dotted line corresponds to σxx/σyy= 1.7, the degree in uniaxiality needed to
close the bandgap. e Transmission for a device with an aspect ratio of 0.32 for pel= 0 kPa (blue) and 5 kPa (red). The initially pronounced
bandgap vanishes with applied pressure. f Extracted valence band maximum (fVB) and conduction band minimum (fCB) vs. applied pressure
for a rectangular device (blue, shown in a) and a circular device (red) as reference for uniform scaling (σxx/σyy ≈ 1). For the rectangular device
the bandgap closing occurs at 3 kPa, whereas the circular device maintains a bandgap over the entire range of applied pressures. The error
bars depict the reading error of the simulation results, and the shaded areas correspond to the phononic bandgap extracted from band
structure calculations.
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two most common forms of disorder in 2D materials: surface
contamination and random tension variations.
Perhaps the most widespread sources of contamination are

“islands” of residues on top of the graphene. To simulate these
added pieces of mass, we choose Polydimethylsiloxane (PDMS) as
a typical polymer often used for transfer of 2D materials, and
randomly place the pieces on the graphene membrane (Fig. 4a).
At a thickness of 18 nm and a diameter of 4 µm, each piece has
the same weight as the entire clean resonator. Next, we focus on
the bandgap region and plot transmission vs. frequency for
various amounts of added mass (Fig. 4b). Even for three added
pieces (red), we still observe weak signatures of the phononic
bandgap and conclude that the combined mass density of
graphene and contamination must be on the order of
ρ2D � 4ρgraphene. Values below this threshold have been observed
in some graphene resonators in literature32,38. We also test the
effect of a uniform film of PDMS on the phononic device and still
find a clear bandgap (see Supplementary Note 4).
The second potential threat for breaking the phononic order are

random tension variations in the suspended membrane com-
monly observed in both patterned and unpatterned graphene
membranes31. To model this effect, we generate disorder based
on a superposition of randomised plane waves (details in
Supplementary Note 5). We take into account variations down
to ¼ of the lattice constant of the phononic pattern. Two
generated spatial tension distributions for small and large disorder
are shown in Fig. 4c. The disorder strength is parametrised by the
standard deviation of the distribution,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var σð Þp

=σ0 (see insets).
We now calculate the transmission through the phononic device
as a function of disorder strength. As shown in Fig. 4d, we find a

gradual smearing out of the bandgap with increasing disorder.
Above an estimated critical value of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var σð Þp

=σ0 � 0:40; the
bandgap is no longer clearly distinguishable. If we compare this
threshold to experimental values derived from Raman spectro-
scopy39–41, we find similar spreads in tension. We also investigate
the effect of variations in hole size on the phononic bandgap and
find it to be robust for the level of disorder seen in realistic devices
(see Supplementary Note 6). We conclude that it is challenging
but possible to fabricate sufficiently uniform suspended devices. If,
however more uniform samples are needed, we propose using
thin multilayers of graphene, for which we find a bandgap up to a
thickness of ~200 layers (see Supplementary Note 7). For
multilayer devices, we need larger pressures to induce the
bandgap closing, but commonly used SiO2/Si (300 nm) substrates
allow applying ~100 V gate voltage before dielectric breakdown
occurs, which translates to ~50 kPa (sufficient to induce the
bandgap closing on multilayer devices). Overall, fabricating a PnC
from suspended graphene with a pronounced bandgap is feasible.

DISCUSSION
We have demonstrated the manipulation of the phononic band
structure by using uniaxial tension engineering and found closing
of a phononic bandgap at σxx/σyy= 1.7. This transition from a
mechanically insulating to a conductive state may be regarded as
the mechanical analogue of a metal-insulator-transition. In a finite-
size device, we can generate the required uniaxial tension
distribution by applying a voltage of ~8 V to a gate electrode
and observe vanishing of the phononic bandgap in transmission
studies. This device can be considered a phononic counterpart to

Fig. 4 The effect of disorder on the phononic bandgap. a A phononic device with and without surface contamination. b Phononic bandgap vs.
added mass. With increasing degree of contamination, the bandgap smears out, yet remains visible up to areal mass density of ρ2D � 4ρgraphene.
c Graphene membrane before patterning with small and large tension disorder. The insets show the histograms used to extract the disorder
strength: left,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var σð Þp

=σ0 ¼ 0:14 and right,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var σð Þp

=σ0 ¼ 0:44. d Phononic bandgap vs. tension disorder. At a critical relative variation in tensionffiffiffiffiffiffiffiffiffiffiffiffiffi
Var σð Þp

=σ0 � 0:40 the bandgap vanishes.
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a field effect transistor, with acoustic transmission measurements
at the bandgap frequency taking the role of electrical transport.
Furthermore, we discuss the feasibility of fabricating such a device
with commonly used methods and extract a critical value for
surface contamination (ρ2D � 4ρgraphene) and tension variations
(

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var σð Þp

=σ0 � 0:40).
The proposed system acts as a phononic transistor that can be

used for phonon logic in the MHz range and invites realisation of a
variety of logic gates as a next step. By varying the lattice constant
a, the phononic system can be engineered to function in a broad
range of frequencies from ~10 MHz to ~1 GHz. In addition, the
proposed device design can serve as a switch controlling the
coupling between two remote systems, e.g. mechanical resonators
acting as qubits19–21. This in principle also allows tunable
dispersive readout of qubits via mechanical resonators.
The proposed bandgap closing also makes it possible to control
the phononic shielding of ultracoherent defect modes from the
environment and therefore allows to dynamically study dissipa-
tion mechanisms as shown in Supplementary Note 8. Finally,
following the analogy between phononic and electronic crystals
invites the consideration of analogues to other, more complex
condensed matter physics phenomena, e.g. the quantum hall
effect, Mott insulator transition, and topological phase transitions.

METHODS
FEM simulations
For the finite element modelling, we use COMSOL Multiphysics
(Version 5.5) and assume the following material parameters for
monolayer graphene: Young’s modulus E2D= 1.0 TPa28, Poisson’s
ratio of ν= 0.15, thickness of h= 0.335 nm and a density of
ρ ¼ ρ2D

h ¼ 2260kg m�3. For details, see Supplementary Notes 1–8.
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Supplementary Note 1: Band structure calculations for an infinite lattice 

The infinite model for the phononic band structure calculations is based on two studies within the same 

FEM simulation model (Comsol Multiphysics 5.5). In the first step we simulate the tension 

redistribution upon pattering (stationary study). We then use the calculated tension distribution as input 

for a second study step (eigenfrequency study). In this step, we parameterize the x and y component of 

the k vector to cover the 1.BZ, and implement them into the model as periodic boundary conditions 

(Floquet) along the outline of the unit cell. We then calculate and plot the eigenfrequencies, what gives 

us the band structure. For more details see Ref. 1. To assure that our simulations properly capture the 

phononic band gaps, we extend our calculations to more high symmetry points. For the unit cell shown 

in Supplementary Figure 1a, we plot the extended band structure for  𝜎୶୶/𝜎୷୷ = 1 and  𝜎୶୶/𝜎୷୷ = 1.7 

inside the 1.Brillouin zone, see Supplementary Figure 1b,c. We find that the valence band maximum 

between Γ and X and the conduction band minimum at X, and it is therefore sufficient to focus on the 

high symmetry points shown in the main paper. 

 

Supplementary Figure 1 | Extended band structure. a, Unit cell of the honeycomb lattice with redistributed tension (top) 

and the corresponding first Brillouin zone (bottom). b,c, Extended phononic band structure for the unit cell shown in (a) with 

entirely uniform tension (σxx/σyy =1.) and implemented uniaxial tension σxx/σyy =1.7.  
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Supplementary Note 2: Transmission studies 

To perform our transmission studies, we use a pre-stressed frequency domain study. In this study the 

phononic device is clamped along its perimeter (Supplementary Figure 2) and in a first study step we 

again calculate the tension redistribution upon patterning. In a second step, we add a time depended 

pressure in z direction at area A, which simulates an optothermal drive. For the transmission study, we 

then sweep the frequency of this time depended perturbation and calculate the response of the entire 

geometry (compare Eq. 1 main text). For this study step, we add isotropic damping ( 𝜂 = 0.01) to the 

graphene, which reproduces the quality factors (𝑄~100) typically observed for graphene resonators at 

room temperatures. To simulate the effect of electrostatic pressure to the transmission studies, we add 

a boundary load to the entire device (including A and B) in z-direction and repeat the frequency 

sweep. 

 

Supplementary Figure 2 | Transmission geometry. The phononic device is clamped at its perimeter via fixed boundary 

conditions and motion is excited at A (blue) and detected at B (red). 
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Supplementary Note 3: Transmission circular reference device 

As a comparison to the presented bandgap closing in the main text we perform transmission studies 

on a circular device under applied pressure which is excited at its centre and probed on the outside. 

The device geometry and resulting transmission spectra are shown in Supplementary Figure 3a,b, 

where we find clear bandgap features (shaded area) with (red) and without (blue) applied pressure. In 

circular devices we find band gap features up to at least 30 kPa applied pressure in agreement with 

previous work.1 

 

Supplementary Figure 3 | Transmission circular reference device. a, Transmission geometry for a rectangular phononic 

device. At point A mechanical motion is excited by a frequency modulated laser, which than travels through the device and 

is detected at point B by a second laser spot. b,c Transmission from A to B vs. excitation frequency for the device shown in 

(a) for 0, 5 and 30 kPa applied pressure. A clear bandgap region is visible for all cases. 
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Supplementary Note 4: Phononic bandgap vs. uniform residues  

In addition the added pieces of mass (Figure 4 main text), we also investigate the effect of a uniform 

layer of resist, which could be present on a device after thermal annealing. In Supplementary Figure 4 

we plot transmission for a device made from clean graphene (blue) and one contaminated with a 3 nm 

layer of PDMS (green). For both cases we find a clear bandgap, the added PDMS however causes a 

downshift in frequency as the entire device becomes heavier. Also the bandgap is slightly less 

pronounced, but still clearly noticeable. For PDMS we assume a Young’s modulus of 0.75 MPa, a 

Poisson’s ratio of 0.49 and a density of 970 kg m-³.

 

Supplementary Figure 4 | Phononic bandgap vs. uniform residues. Transmission vs. frequency for a phononic device made 

from clean graphene (blue) and with a 3 nm uniform layer of PDMS residues (green).  

Supplementary Note 5: Phononic bandgap vs. tension disorder  

To represent a random but smooth enough spatial tension distribution in our devices we use a sum of 

plane waves with randomized amplitude 𝑎(𝑚, 𝑛) (between -1 and 1) and phase  𝜙(𝑚, 𝑛) (between 0 

and π) of each mode: 

𝜎(𝑥, 𝑦) = 𝑝 ∑ ∑ 𝑎(𝑚, 𝑛)cos (2π(𝑚𝑥 + 𝑛𝑦) + 𝜙(𝑚, 𝑛))୒
୬ୀି୒

୑
୫ୀି୑      (1) 

The factor 𝑝 controls the disorder strength. 
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Supplementary Note 6: Phononic bandgap vs. hole size variations  

We also investigate the effect of disorder within the phononic pattern in terms of a) variations of the 

radius of individual holes (so that the holes are not perfectly round) or b) size variations between the 

different perfectly circular holes that make up the phononic crystal. 

Before we simulate the effect of a) and b) on the phononic bandgap, we need to get a feeling for the 

experimentally relevant disorder in patterned phononic crystals. To this end, we look at a real 

phononic crystal made from ~5 layer thick graphene (Supplementary Figure 5). We patterned this 

sample using the honeycomb lattice described in the manuscript by focused ion beam milling (FIB). 

The spatial resolution of this process is in the order of ~20 nm, which is compared to the hole 

diameter (500 nm) rather small, and we expect high precision and reproducible hole diameters. And 

indeed, we find a regular patterned phononic crystal as shown in Supplementary Figure 5.  

 

Supplementary Figure 5 | Circular prototype device made from 5 Layer graphene for experimental work. The phononic 

pattern is regular and the variations in hole size are small.  

Next, we study the effect of non-circular holes (a) in our infinite model. We start by replacing two 

holes in the unit cell by ellipses (90° rotated to each other, eccentricity: 𝑒 = ට1 − ቀ
ௗభ

ௗమ
ቁ

ଶ
= 0.574, as 

shown in Supplementary Figure 6c) and calculate the corresponding band structure (Supplementary 

Figure 6d). If we compare this to the reference band structure obtained with perfect holes 

(Supplementary Figure 6a,b), we find that some bands split into closely lying sub-bands. 

Nevertheless, the bandgap remains. No change in size or position of the bandgap is noticeable. To go 

a step further, we try to capture variations in hole radius of individual holes comparable to the sample 
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shown above (Supplementary Figure 5 right). To do so we implement exaggerated “wobbly” holes 

into the unit cell (Supplementary Figure 6e). Again, we find no major impact on the bandgap region 

(Supplementary Figure 6e) and thus the robustness of our results.   

To check the effect of variations in hole size between different holes (b), we model a structure were 

the size of randomly picked holes (“defects”) is decreased or increased by 10%. In Supplementary 

Figure 6g, we show the used structure with a defect density (
ேౚ౛౜౛ౙ౪

ே౞౥ౢ౛౩
) of 12.5%. If we zoom in on a 

device with larger defect density of  
ேౚ౛౜౛ౙ౪

ே౞౥ౢ౛౩
= 50%, the variations in hole size are clearly visible (see 

Supplementary Figure 6h). Next, we simulate the transmission for devices with defect densities from 

0 to 50% (Supplementary Figure 6i). We find that the bandgap clearly persists to a defect density of at 

least 50%. This level of disorder is clearly much higher than that in experimentally achieved devices 

(Supplementary Figure 5). We therefore conclude that we can fabricate the devices ordered enough to 

observe the phenomena we study in the main text.  
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Supplementary Figure 6 | Phononic bandgap vs. hole size variations a,b Unit cell and corresponding band structure 

calculation for ideal holes (same as in main text Supplementary Figure 1b) c,d Unit cell with two elliptical holes and 

corresponding band structure calculation. The phononic bandgap remains almost unchanged. e,f Unit cell with two 

wobbled holes and corresponding band structure calculation The phononic bandgap remains almost unchanged. g,h Finite 

model with different degree of lattice defects (hole diameter variations) implemented. The blue (yellow) marking indicates 

holes, which will be increased (decreased) in size by 10%. i Transmission simulation for varying defect density. For a defect 

density of 50% the bandgap is clearly distinguishable in the transmission plots.  
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Supplementary Note 7: Phononic band gap vs. layer number  

As a potential approach to overcome challenges associated with the fabrication of uniform and residue 

free suspended graphene devices for phononic pattering, we suggest to use thin multilayers. For this 

we have to check, if the bandgap persist also for thicker devices. We thus perform band structure 

calculations for various thickness (maintaining a constant stress in the device) and extract the band 

gap (Supplementary Figure 7). We find a bandgap up to ~350 layers of graphene.  

 

 

Supplementary Figure 7 | Phononic band gap vs. layer number. Valence band maximum (fVB) and conduction band minimum 

(fCB) vs. number of graphene layers extracted from band structure calculations.  

 

  



 
 

10 
 

Supplementary Note 8: Localization-delocalization transition  

To further highlight the usefulness of the proposed system and to strengthen the analogy to a MIT, we 

perform an additional study. In it, we examine the localization of defect vibrational modes that can be 

compared to the localization of mid-gap defect states in semiconductors. By varying the size of the 

bandgap using our tension engineering approach, we observed the behaviour similar to the 

localization-delocalization transition in solids. 

 In this study, we place an artificial lattice defect within the phononic lattice. When the defect is 

within a phononic bandgap, it hosts spatially localized vibrational modes. We then simulate the 

pressure dependence of such a defective phononic lattice using two geometries. The first device is 

similar to the one shown in the manuscript (Supplementary Figure 8a), where we expect the bandgap 

closing under the application of pressure. The second one is a circular reference device 

(Supplementary Figure 8b, as studied in previous work). As explained in the main text, the bandgap 

does not close for this geometry. At zero pressure, the defect mode is localized in both geometries 

(Supplementary Figure 8). At the same time, we find starkly different behaviour of that mode in 

circular and rectangular devices under applied pressure (Supplementary Figure 8c,d). In the 

rectangular device, the mode starts to show displacement over the entire device (highlighted by grey 

arrows) and thus loses its localization as the bandgap closes. In the circular device, in contrast, the 

bandgap does not close, and the defect mode always stays within it. Correspondingly, the defect mode 

remains localized in the entire range of pressures (Supplementary Figure 8d). This further highlights 

the similarity between phononic and solid-state crystals, despite their very different quasiparticles. We 

believe that the behaviour we observe can be compared to the localization-delocalization transition. 
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Supplementary Figure 8 | Dephasing a localized defect state using uniaxial tension. a,b Mode shape of a localized mode 

within the bandgap of a rectangular (a) and circular (b) phononic device c, Line cut of the normalized displacement 

extracted along the red line in a vs. applied pressure (plots are offset for better visibility). With increased pressure, the 

degree of uniaxiality is increased and the bandgap gradually closes. At the same time the mode that was localized near 

device centre at zero pressure becomes delocalized over the entire device. d, Same as c, but for the circular device shown 

in (b). Here the mode shape remains virtually unchanged under pressure, as the frequency of the defect mode scales 

together with the bandgap and maintains its localization. 
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ABSTRACT: We introduce a nanomechanical platform for fast
and sensitive measurements of the spectrally resolved optical
dielectric function of 2D materials. At the heart of our approach is
a suspended 2D material integrated into a high Q silicon nitride
nanomechanical resonator illuminated by a wavelength-tunable
laser source. From the heating-related frequency shift of the
resonator as well as its optical reflection measured as a function of
photon energy, we obtain the real and imaginary parts of the
dielectric function. Our measurements are unaffected by substrate-
related screening and do not require any assumptions on the
underling optical constants. This fast (τrise ∼ 135 ns), sensitive
(noise-equivalent power = ), and broadband (1.2−3.1 eV,
extendable to UV−THz) method provides an attractive alternative to spectroscopic or ellipsometric characterization techniques.
KEYWORDS: Nanomechanical resonators, NEMS, spectroscopy, 2D materials, transition metal dichalcogenides (TMDs), silicon nitride

The interaction of light with a solid is encoded in the
material’s dielectric function ϵr(ω) = ϵ1(ω) + iϵ2(ω).

Real and imaginary components, ϵ1, ϵ2, contain the
information regarding light absorption, propagation velocity,
excitonic and plasmonic resonances, bandgaps, and many-body
effects. The dielectric function is usually experimentally
determined via spectroscopic ellipsometry,1−4 a combination
of reflection and transmission measurements,5 or from
spectrally resolved reflection contrast (dR/R) using
Kramers−Kronig relations.6−8 Despite the broad applicability
of these techniques, they are hard or impossible to apply in
many situations. For example, optical measurements under
oblique angles as required by spectroscopic ellipsometry are
challenging at low temperature, ultrahigh vacuum environ-
ments, and high magnetic fields. Measurements of transmission
require large and thin samples on transparent substrates and
may be affected by scattering. The Kramers−Kronig analysis
requires broadband measurements of reflection and depends
on empirical models of optical constants.9

For 2D materials, these problems become more severe. On
one hand, 2D materials, in particular from the group of
transition metal dichalcogenides (TMDs), feature a remarkable
zoo of correlated phases including excitonic insulators,10

Wigner crystals,11,12 Bose Einstein condensates,13−15 and
superconductors.15 All these phenomena can be studied by
analyzing the dielectric function. On the other hand, their
observation requires uniform high-quality samples. Such
samples are usually encapsulated in hexagonal boron nitride
and have sizes in the micron range. Transmission or

ellipsometry measurements of such nanostructures at ultralow
temperatures or high magnetic fields are challenging.16

Especially for studying plasmons or polaritons in patterned
2D materials in the form of photonic17,18 or phononic
crystals,19 new optical characterization methods are needed.
In addition, excitations in 2D materials are strongly screened
by the underlying substrate. This screening perturbs the
dielectric function also affecting the Kramers−Kronig analysis.
Here, we use nanomechanical spectroscopy20−23 to accu-

rately and quickly determine the optical dielectric function of
2D materials. For our proof-of principle experiments, we focus
on few-layered TMDs, well-understood materials with many
pronounced features in their optical response. Our approach
employs a suspended membrane made from the 2D material of
interest. The mechanical resonance frequency of that
membrane depends on its temperature, which, in turn, depends
on the amount light absorbed by the material upon
illumination. Therefore, by measuring changes of the
resonance frequency of the membrane vs the energy of
photons ( ), we determine the absorption of the
material. The membrane functions as its own photodetector,
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only sensitive to the amount of absorbed light and not, for
example, to scattering and other losses. By combining the
mechanically measured absorption with optically recorded
reflection, we restore the full dielectric function of the 2D
material. We achieve very fast (τrise ∼ 135 ns) and sensitive
(noise-equivalent power = ) measurements of the

dielectric function for TMD materials in the range 1.2−3.1 eV.
Our approach uses suspended samples and, therefore, is
unaffected by substrate-related screening and unwanted
interactions with the probe beam. Furthermore, our approach
does not require complex transmission measurements and
therefore should function at low temperatures and high
magnetic fields. Finally, by using the 2D materials themselves
for the detection of absorbed light, we can potentially obtain
access to a broad spectral range from THz to UV, allowing the
study of a large variety of materials.
Our first goal is to design a TMD-based resonator that

controllably changes its frequency as it absorbs light. Such a
resonator should have predictable mechanical resonances (the
fundamental mode at frequency f) with a small line width
( f fwhm) and thus a high quality factor ( ), linear

mechanical response to illumination power, as well as high
motion amplitude. To accomplish these goals, we design a
hybrid resonator consisting of a TMD suspended over a
circular hole in a high quality silicon nitride (SiN) membrane
covered with a thin layer of gold. Our finite element method
(FEM) simulations show that the fundamental mode of such a
resonator involves the TMD and suspended SiN oscillating
together (Figure 1a).24,25 Absorption of light by the suspended
TMD causes thermal expansion leading to a reduced tension
σ0 in the material and hence softening the resonance frequency
of the entire system. Such a design presents several advantages:

First, the device features resonances with high quality factor
at room temperature (Q > 4000). This is due to the
mechanical quality and low losses in SiN and allows us to
resolve frequency shifts with high resolution. This is in contrast
to 2D material-only resonators that show mechanical
resonance frequencies with low quality factors (Q ∼
100).26−29 Second, our design overcomes the disturbance
typically associated with optical probing of mechanical
resonances. To probe the mechanical motion of our devices,
we focus the probing beam on the suspended SiN area thereby
avoiding heating of the material being measured. Third, in our
system, the mechanical resonances and their tuning are highly
predictable, with device-to-device variations of ∼5% or less.
This allows us to simulate our systems with high confidence.
The uniformity is also interesting from a technological point of
view, as it can potentially allow coupling the oscillator to an
external system, for example, an LC-resonator for electrical
signal amplification. Again, this is in contrast to 2D material-
only resonators that are affected by wrinkling and surface
contaminations, resulting in a large spread of mechanical
resonance frequencies and unpredictable tuning.29−31 Finally,
by covering the SiN area with a thin layer of gold (also used for
electrical actuation), we increase its reflectivity and thus
enhance the signal-to-noise ratio. We note that the additional
weight of the gold layer and high stiffness of SiN reduce the
response of the hybrid mode to laser heating. We thus use
micromechanical modeling to design a system, giving a good
compromise between signal strength and sufficient responsivity
(Supporting Information, Figure 2b,c), resulting in a device
with a circular suspended TMD area of 10 μm diameter and a
20 μm square SiN window of 20 nm thickness. By using
relatively low-stress SiN (240 MPa) we ensure that the
responsivity is large and the sensitivity is improved.23

Figure 1. SiN−TMD hybrid devices and interferometric motion detection. (a) Sketch of SiN−TMD hybrid resonance mode. The suspended SiN
moves together with the TMD material and allows probing the resonances without focusing the probe laser on the TMD area. (b) Optical
micrograph of a WSe2 trilayer flake suspended on a hole in a SiN window. (c) Interferometric motion detection using a Michelson interferometer
(red laser) with an additional broadly tunable laser (blue) to heat the TMD. The sample is placed in vacuum and the motion of the suspended area
is actuated electrically. (d) Measured amplitude versus frequency for the trilayer WSe2−SiN hybrid device. The fundamental mode shows a large
amplitude and enhanced quality factor. (e) Relative motion amplitude of the fundamental mode extracted along a spatial line scan over the
suspended area (blue) in comparison to simulation results (red). The amplitude of motion increases as the probe laser spot moves toward the
center of the device and matches the simulated mode shape.
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We realize the design described above by transferring a
multilayer TMD (3 and 4 layers) onto a circular hole in a
square SiN window covered with gold, as shown in Figure 1b
(see Supporting Information, section 3). The mechanical
motion of the hybrid SiN−TMD mode is excited by applying
an AC+DC voltage between the device and a nonreflective
gate ∼40 μm below. The motion of the hybrid mode is
detected interferometrically (Figure 1c).24 Critically, the probe
beam (red beam in Figure 1c) is focused onto the SiN area and
does not significantly heat the device. A second laser source of
tunable photon energy between 1.2 and 3.1 eV (blue beam in
Figure 1c) is focused on the suspended TMD area. The
absorption of light from that beam increases the temperature
of the device and downshifts the mechanical resonance, which
we detect. All measurements are carried out in vacuum and at
room temperature but are easily extendable to low temper-
atures and fiber-based setups. Figure 1d shows the resonance
response of the WSe2 trilayer sample (device #1) without
optical excitation. We find a prominent fundamental mode at
f 0 = 4.6702 MHz with a Q ∼ 4500 and multiple higher order
modes. We visualize the shape of the fundamental mode by
scanning the probe laser across the device and plot the motion

amplitude versus position (Figure 1e, blue). The mode is well
described by our simulations (Figure 1a) that give its shape
(Figure 1e, red) and frequency ( f 0,sim = 4.770 MHz),
confirming the well-controlled nature of our devices.
Our goal is to use our nanomechanical system to obtain a

broadband absorption spectrum of the TMD. To this end, we
continuously vary the photon energy of the excitation laser and
record the resonance response of the high Q fundamental
mode. In Figure 3a we show the raw data of this measurement
for the trilayer WSe2 sample (device #1). Small laser powers (P
< 10 μW) are sufficient to cause clearly resolvable frequency
shifts Δf = f 0 − f. The resonance frequency softens upon
illumination, because the absorbed light heats the suspended
TMD and reduces the built-in tension σ0. From lower to
higher energy, we observe an increasing down shift, in line with
an overall increasing absorption toward the band gap of WSe2.
Within the spectra, there are multiple peaks and dips visible.
Some of these features (e.g., the dip at 2.96 eV and the sudden
jump at 1.91 eV) stem from the variations in power of our
excitation laser. We record the laser power at the sample
position (Supporting Information, Figure 5b) and use it to
determine the resulting responsivity (Figure 2b). As we

Figure 2. Mechanical absorption spectroscopy in WSe2 and MoS2. (a, c) Raw frequency response of the TMD−SiN hybrid device as a function of
photon energy for a WSe2 and a MoS2 samples. Multiple features are visible and toward higher energies the frequency shift increases as the
absorption by the TMD increases. (b, d) Responsivity vs photon energy for WSe2 and MoS2. This signal is directly proportional to the
absorption and shows clear excitonic features in both samples, which match reference PL measurements (gray). The MoS2 sample was measured
using higher laser power, causing larger absolute frequency shifts.
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show later, the measured responsivity is directly proportional
to the optical absorption of the material, and the distinct
features associated with band-edge excitons of the TMD
material are clearly noticeable. We identify the following
excitonic transitions: A at 1.63 eV, B at 2.08 eV, A′ at 2.28 eV,
and B′ at 2.68 eV. The positions and widths of these peaks
agree well with literature values.6,32−34 As a reference, we
perform photoluminescence measurements (PL) of the same
device (Figure 2b, gray). As expected, we find the peaks
corresponding to the A and I excitons, with the latter
corresponding to the indirect bandgap of multilayer TMD.
For the A exciton, we find an expected small red shift and
matching peak width, whereas the indirect peak is not visible in
absorption due to the indirect nature of the transition.
Clear peaks are also apparent in the mechanical responsivity

data for a second sample made from a different material from
the TMD family (4L MoS2 in Figure 2c,d). Again, the
positions and widths of these peaks match with excitonic
transitions dominating optical absorption spectra of MoS2.

35,36

We note that no assumption regarding material properties has
been made in obtaining the spectra in Figure 2b,d. In all
measurements we observe a constant mechanical line width
around the excitonic peaks (Supporting Information, Figure
4a,b) and therefore exclude any cavity or material governed
dynamic optomechanical back action effects.37,38 We note that
we can improve the measurement speed and sensitivity further
by using a phase-locked loop (PLL) to directly measure the
frequency shift vs photon energy (Supplementary Figure 5c).
We obtain the same frequency response, as shown in Figure 2a,
but now we record an entire spectrum in ∼3 s, only limited by
how fast the filter can change the output energy.
Next, we determine the optical dielectric function of the

TMDs. For this, precise knowledge of both reflection Refl(Eγ)
and absorption Abs(Eγ) in absolute units is required. To
convert the measured frequency shift into absorption, we
model our hybrid system as two springs in series (elastic
constants: kSiN and kTMD) and link the responsivity (frequency
shift Δf normalized to laser power ΔP) to the energy-
depended absorption Abs(Eγ) of the TMD via the following:

(1)

Here meff is the effective mass of the mode, β is a dimensionless
factor determined by the temperature profile in the membrane,
α is the thermal expansion coefficient, E2D is the 2D elastic
modulus, κ is the thermal conductivity and ν is the Poisson’s
ratio of the TMD (full derivation in Supporting Information,
section 6). This expression shows that the responsivity is
indeed proportional to the optical absorption. However, in our
system, meff and β can only be obtained numerically and kSiN,
kTMD depend on a range of parameters (tension, thermal
conductivity, etc.) in a complex fashion. We thus use FEM
modeling to determine the conversion factor linking to
absorption. We first measure the frequency shift vs incident
laser power for 2.92 (425 nm) and 2.07 eV (600 nm; Figure
3a,b). For both energies we observe a linear and reversible
downshift of the resonance frequency with increasing laser
power (Figure 3c). Having experimentally confirmed the linear
behavior, we use the computed conversion factor (details on
mechanical modeling in Supporting Information, section 1) to
convert to absorption. For the fitted slopes from Figure 3c
(241 ± 14 and 88 ± 11 Hz/μW for 2.92 and 2.07 eV,
respectively) we get 30.4% and 11.2% absorption by the TMD
membrane at the respective energies. This is close to
expectations.6,33 As a benchmark for our approach, we perform
classical optical transmission measurements and find good
agreement between the two methods of measuring absorption
(see Supporting Information, section 7). The simulation
results also allow us to estimate the average temperature
increase in the suspended TMD (Figure 3c, right axis). For 30
μW laser power and 30.4% absorption, we find an increase to
only a few degrees above room temperature, which is well
inside the linear regime and below the TMD damage
threshold.
Having extracted absorption, we are ready now to evaluate

the dielectric function. In Figure 4a,d, we plot the spectrally
resolved absorption (Abs) data for both samples obtained from
the frequency shifts using the conversion factor (red traces).
Next, we record reflection (Refl) off the TMD in the same

Figure 3.Mechanical response to laser heating. (a, b) Frequency shift of the fundamental mode of a suspended trilayer WSe2−SiN hybrid device vs
incident laser power for 2.92 and 2.07 eV excitation. A fraction of light absorbed by the membrane causes heating, which reduces the built-in
tension and softens the mechanical resonance. (c) Fits to the frequency change vs incident laser power, which by comparison to FEM simulations
allows to extract the absorption of the material at different energies. Right axis shows the average temperature in the suspended TMD obtained
from such simulations.
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sample configuration and same setup (blue traces in Figure
4a,d; for measurement details, see Supporting Information,
section 8). We then use the transfer-matrix approach to relate
reflected and absorbed light and obtain the complex refractive
index n and finally ϵ1 and ϵ2 by solving a system of equations at
each measured energy (see Supporting Information, section
9):

(2)

Here d is the TMD thickness and Mij is the matrix element
corresponding to the reflection and transmission from a thin
suspended film (details in SI). No material parameters, except
the thickness, are assumed in these formulas. The resulting ϵ1
and ϵ2 for 3L WSe2 and 4L MoS2 are plotted in Figure 4b,c,e,f.
Both real and imaginary parts of the dielectric function agree
well with previous measurements.1−4,6 Furthermore, we find a
close agreement with our ab initio GW-Bethe Salpeter
equation (GW-BSE) calculations (shaded in Figure 4b,c,e,f).
The difference between measurements and theory for the real
part of the dielectric function toward higher energies arises due
to the known underestimation of the dielectric function by
GW-BSE calculations in this regime. Using nanomechanical
spectroscopy, we now have obtained full spectroscopic
information on the material under test and thereby access to
a majority of physical phenomena that make TMDs so exciting.
How fast and how sensitive is our approach? The

measurement speed is ultimately limited by the temperature

equilibration time in the suspended TMD. To estimate this
parameter, in Figure 5a we plot the simulated average
temperature of the suspended TMD versus time after turning
on the illumination (for a photon energy of 2.92 eV and 30 μW
incident laser power). We extract a rise time of τrise ∼ 135 ns,
which corresponds to a bandwidth of 7.4 MHz, in line with
experimental data for TMD devices of similar size.29 To assess
the sensitivity of our system, we determine the noise-
equivalent power:

(3)

where Δf/ΔP is the responsivity (determined above), σA is the
Allan deviation obtained from time stability measurements
(Figure 5b,c), and t is the sampling period.39 For an optimal
sampling period of 4 ms, we obtain . This is only
slightly higher than, for instance, state-of-the-art bolometers
(2−100 ).40−43 Nevertheless, the bandwidth is higher by
several orders of magnitude for our 2D material-based system,
which allows us to measure much faster.
Overall, our nanomechanical measurements are a new

approach to obtain the dielectric function of 2D materials.
This method is sensitive ( ), fast (τrise = 135 ns),
and accurate. The absorption spectrum as well as the dielectric
function for WSe2 and MoS2 are close to that obtained by
others means. The approach does not require complex
dielectric modeling or assumption about the material’s optical

Figure 4. Dielectric function of WSe2 and MoS2. (a, d) Absorption (obtained from nanomechanical spectroscopty, red) and reflection (obtained
optically, blue) for WSe2 and MoS2 vs photon energy. Similar excitonic features are apparent in both measurements. (b, c, e, f) Real (blue) and
imaginary (red) part of the dielectric function of both materials derived from absorption and reflection data (a and d). We find reasonable
agreement for GW-BSE calculations (red and blue shaded).
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properties (compared to, e.g., a constrained Kramer−Kronig
analysis), optical transmission measurements (that are very
difficult, e.g., at low temperatures or high magnetic fields),16

and works for samples the sizes of a diffraction-limited laser
spot (unlike, e.g., ellipsometry approaches). Moreover, our
approach directly records optical absorption and is insensitive
to scattering that is often hard to discriminate in all-optical
techniques. By directly working with suspended samples, our
approach is independent of tabulated optical constants of
external materials and avoids perturbation of the excitonic
features in 2D materials due to screening. Another advantage
of using suspended samples is that the incoming light is only
absorbed by the materials under test. Finally, as the material
serves as its own detector, it is relatively straightforward to
extend the approach to different spectral ranges.
The sensitivity of our approach can be increased much

further. First, the quality factor of optimized SiN membranes
can reach Q > 108,44 compared to around 103 used here. This
should likely result in a correspondingly higher measurement
sensitivity. Second, eq 1 shows that the responsivity of our
measurement is inversely proportional to the thermal
conductivity of the 2D material. This quantity can be reduced
by, for example, patterning the membrane into a trampoline

shape43 or, for example, via defect-engineering.45,46 Third, at
low temperatures the mechanical quality factor increases while
the ratio of thermal conductivity and thermal expansion
entering eq 1 stays roughly constant. Therefore, we expect the
low temperature sensitivity of our approach to increase. As
most 2D materials show comparable mechanical and thermal
properties, we expect our approach to universally work well.
Graphene and hBN, however, will show frequency shifts in the
opposite direction, as they have a negative thermal expansion
coefficient. For them we also expect slightly reduced sensitivity
due to their higher thermal conductivity. The combination of
2D materials with low loss SiN results in enhanced Qs and
therefore provides an attractive platform for studying
optomechanical cooling and self-oscillation phenomena,
especially at low temperatures. Finally, we hope to implement
our measurement scheme completely on a chip using electrical
readout to create a compact, robust, and highly sensitive
nanomechanical platform for spectroscopic characterization of
2D materials.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c01289.

Details of the FEM-simulations, AFM force indentation
measurements, overview of measured samples, details on
interferometric motion detection, discussion on dynam-
ical back-action effects, springs in parallel model
(derivation of eq 1), optical transmission measurements,
details on reflection measurements, obtaining the
dielectric function for thin films, RPA and BSE
calculations, measuring the Allan deviation, calculating
the sensitivity, and details on the photoluminescence
measurements (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
Jan N. Kirchhof − Department of Physics, Freie Universität

Berlin, 14195 Berlin, Germany; orcid.org/0000-0001-
8576-4787; Email: jan.kirchhof@fu-berlin.de

Kirill I. Bolotin − Department of Physics, Freie Universität
Berlin, 14195 Berlin, Germany; Email: kirill.bolotin@fu-
berlin.de

Authors
Yuefeng Yu − Department of Physics, Freie Universität Berlin,

14195 Berlin, Germany
Gabriel Antheaume − Department of Physics, Freie

Universität Berlin, 14195 Berlin, Germany
Georgy Gordeev − Department of Physics, Freie Universität

Berlin, 14195 Berlin, Germany; Department of Physics and
Materials Science, University of Luxembourg, 4422 Belvaux,
Luxembourg; orcid.org/0000-0002-3273-2105

Denis Yagodkin − Department of Physics, Freie Universität
Berlin, 14195 Berlin, Germany; orcid.org/0000-0002-
9135-8918

Peter Elliott − Max-Born Institute for Nonlinear Optics and
Short Pulse Spectroscopy, 12489 Berlin, Germany;
orcid.org/0000-0002-1572-3872
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σA vs integration time in log−log scale derived from (b).
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1. Finite element method (FEM) simulations

For the FEM modelling we use the structural mechanics module of COMSOL Multiphysics Version 

5.5. We build a model around the suspended area partially including the silicon support (Fig. S1a) and 

use a swept mesh for the thin layers with high density around for TMD flake and SiN window (Fig. 

S1b). To determine the resonance frequency and mode shape (Fig. S1c) we conduct a prestressed 

eigenfrequency study. To include the effect of laser heating, we add a study step to implement a 

Gaussian heat source (Fig. S1d, 30.4% absorption and 30 µW laser power – comp. Fig. 3a main paper) 

and calculate the heat profile upon laser heating of the center of the suspended TMD (Fig. S1e). This 

allows us to determine the conversion factor, which captures the tuning of the fundamental mode with 

laser power, following Eq. 1 from the main paper. The conversion factor slightly depends on wavelength 

of the heating laser because the laser spot size varies with wavelength, what results in a slightly different 

heat profile in the suspended TMD. To account for this, we measure the spot size of heating laser at 

different wavelengths and use this as input for our simulations. In Fig. S1f we plot the conversion factor 

for device #1 (3L WSe2). For device #2 (4L MoS2), we obtain a conversion factor in the range of 461 

to 476 Hz/µW showing comparable scaling with wavelength as device #1. The difference between 

devices here is due to different thermal conductivities, hole sizes and layer thickness between devices.
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Figure S1 FEM simulations of SiN-TMD hybrid devices a) Model geometry with a thin layer of TMD (blue) placed on the SiN 
window b) Corresponding mesh, all thin layers are meshed as swept layers with high density c) Simulated fundamental mode 
of the hybrid system d) Heat input in the shape of a gaussian beam to simulate the effect of laser heating e) Resulting heat 
profile upon 30 µW incident laser power and 30.4 % absorption (corresponds to a photon energy of 2.92 eV for the 3L WSe2 
sample) f) Obtained conversion factor for Device #1 (3L WSe2). 

In order to optimize the dimensions of the SiN window, we simulate the driven mechanical resonances 

in the frequency domain. We start by simulating a circular TMD-only drum resonator (diameter 10 µm) 

as reference and adjust the isotropic damping to match the experimental Q for such resonators (~100). 

We then simulate the entire hybrid device (including SiN and gold). In Fig. S2a we plot the simulated 

displacement vs. frequency for the hybrid device probed on the SiN area, 2 µm away from the suspended 

TMD area. Again, we adjust the isotropic damping in SiN and gold to match experimental values. We 

now vary the SiN window size and extract the amplitude of motion at constant drive (signal strength, 

plotted in Fig. S2b). As expected, larger devices oscillate at large amplitudes providing more signal. 

Nevertheless, while oscillating at a higher amplitude, larger devices are less responsive to heating. 

Indeed, in Fig. S2c we plot the relative responsivity (change of resonance frequency for a constant laser 

heating) vs. window size. Combining the insights from Fig. S2b,c we choose a window size of 20 µm 

as a reasonable compromise between high vibrational amplitude and high responsivity.
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Figure S2 Finding ideal device parameters a) Simulated mechanical motion of the hydride with Q matching experimental 
results b) Simulated amplitude (signal strength) vs. SiN window size b) Relative responsivity to laser heating vs. SiN window 
size. We choose a window size of 20 µm (orange spot) as a compromise between high responsivity and sufficient amplitude 
amplification 

All material properties used in our simulations are summarized in table 1. For quantities that show a 

large spread in the literature values (values for the TMD materials in particular) we used average values. 

In general, we preferably choose experimental references for suspended samples of the suitable layer 

thickness. 

Material Quantity Value Reference

MoS2 Young’s modulus 𝐸 330 GPa 1 In agreement with AFM 

force-indentation 

measurements (see below)

Poisson’s ratio 𝜈 0.125 1

Density𝜌 5060 kg/m³ 2

Thermal conductivity 𝜅 60.3 W/(m·K) 3–6

Thermal expansion coefficient 𝛼 7.6 · 10-6 1/K 7

8

Heat capacity at constant pressure 𝑐𝑝 397 J/(kg·K)) 9,10

Built-in stress (tension) 𝜎0 44.7 MPa 

(  = 0.11 N/m)𝜎2𝐷

Force-indetantion AFM 

Layer thickness d 0.615 nm 11



5

WSe2 Young’s modulus 𝐸 167.3 GPa 12 In agreement with AFM 

force-indentation 

measurements (see below)

Poisson’s ratio 𝜈 0.19 13

Density𝜌 9320 kg/m³ 14

Thermal conductivity 𝜅 26.5 W/(m·K) 15

Thermal expansion coefficient 𝛼 7 · 10-6  1/K 7

Heat capacity at constant pressure 𝑐𝑝 188 J/(kg·K) 9

Built-in stress (tension) 𝜎0 46.2 MPa 

(  = 0.09 N/m)𝜎2𝐷

AFM force indentation

Layer thickness d 0.651 nm 11

Au Young’s modulus 𝐸 78.5 GPa 16

Poisson’s ratio 𝜈 0.42 16

Density 𝜌 19300 kg/m³ 16

Thermal conductivity 𝜅 312 W/(m·K) 16

Thermal expansion coefficient 𝛼 14· 10-6 1/K 16

Heat capacity at constant pressure 𝑐𝑝 130 J/(kg·K) 16

Built-in stress 160 MPa 17

SiN Young’s modulus 𝐸 232 GPa 18

Poisson’s ratio 𝜈 0.23 18

Density𝜌 2810 kg/m³ 19

Thermal conductivity 𝜅 31 W/(m·K) 18

Thermal expansion coefficient 𝛼 2.55· 10-6 1/K 18

Heat capacity at constant pressure 𝑐𝑝 887 J/(kg·K) 18

Built-in stress 240 MPa Norcada (manufacturer)
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Si Young’s modulus 𝐸 160 GPa 20

Poisson’s ratio 𝜈 0.27 20

Density 𝜌 2330 kg/m³ 20

Thermal conductivity 𝜅 160 W/(m·K) 20

Thermal expansion coefficient 𝛼 3 · 10-6 1/K 20

Heat capacity at constant pressure 𝑐𝑝 692 J/(kg·K) 20

Pretension 0 Irrelevant for simulations

2. AFM force indentation

One crucial parameter, which is known to vary from device to device is the built-in tension and 2D 

elastic modulus. To eliminate this uncertainty in our simulations, we perform force indentation 

measurements in the centre of the membrane (following Ref. 21) and extract the built-in tension and 

2D elastic modulus for each sample. We use cantilevers of intermediate stiffness (k~3 N/m) and only 

apply small loads (150 nN) to avoid damaging the sample. In Fig. S3a we show a force-displacement-

curve for device #1. We account for cantilever bending and deformation of the SiN membrane. We fit 

a curve following:

 (S1)𝐹 = 𝜋𝜎2𝐷𝑑 + 𝑞³
𝐸2𝐷

𝑎² 𝑑3

Here a is the radius of the drum, and   is a dimensional factor dependent on the 𝑞 =
1

1.05 – 0.15𝜈 ― 0.16𝜈2

Poisson’s ratio  (  for WSe2 and for MoS2). For a range of samples, we find a 𝜈 𝑞 = 0.98 q = 0.97 

linear dependence on tension with layer thickness (Fig. S3b). We attribute the observed homogeneity 

to the cleanliness and uniformity in our samples after annealing (comp. Fig. S4).
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Figure S3 AFM force indentation to determine pre-tension. a) Force vs. displacement as well as a fit to Eq. S1. We extract a 
pretension of roughly 0.1 N/m for most our devices b) Statistics on pre-tension vs. thickness. We find a linear relation 
between pre-tension and layer thickness in our devices. 

3. Sample fabrication and overview

To fabricate our hybrid devices, we transfer TMDs onto a circular hole using the all-dry PDMS 

method.22 The SiN chip is beforehand covered with a thin layer of gold (30 nm) to electrically contact 

the TMD and to increase its reflectivity. After transfer we perform an annealing step (3 h, 200 °C) in 

vacuum to remove residues and assure good adhesion to the substrate. We fabricate and measure 

multiple samples. Microscope images and AFM topography scans for device #1-3 are shown in Fig. 

S4a,b,d,e,g,h. For all samples (Fig. S4c,f,i), we find a high Q fundamental mode of almost constant 

(except device #3, which has a thicker gold layer). There are some variations in frequency, because the 

hole size and gold thickness are different for the devices. Our simulations (grey dashed lines) describe 

the measured frequencies well (Fig. S4c,f,i).
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Figure S4 Sample overview. Microscope images (a,d,g) and AFM topography (b,e,h) of device #1-3. The samples are uniform 
and well attached to the substrate c,f,i) Displacement (amplitude) vs. frequency for device #1-3. We find a dominant high-Q 
fundamental mode for all samples. The resonance frequencies match with simulated values (grey dashed lines). 

4. Details on interferometric motion detection

The sample is placed upside down in a vacuum chamber of < 10-5 mbar. By applying a DC+AC voltage 

relative to the non-reflective gate electrode, we mechanically actuate the suspended area of the chip. 

The motion of the TMD is detected by a Michelson interferometer. We focus a 632.8 nm HeNe laser 

(<1 µW, ~1.5 µm spot size) on the SiN area of the sample and the reflected light is superimposed with 

the light coming from the reference arm and guided into an avalanche photodetector. The resulting 

interference signal is highly sensitive to relative displacements and allows us to detect the motion of 

suspended samples. We actively stabilize the relative position of the reference arm via a mirror on a 

piezo and thereby ensure constant interference conditions and good signal strength over a large period 

of time. In addition to the probe laser, we implement an excitation laser of tunable colour (1.2 – 3.1 eV, 

blue in Fig. 1c). We use a band pass filter (BP) to block the excitation laser from reaching the detector 

and overloading it. The large separation (40 µm) of the non-reflective gate and sample negates all 
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cavity-related optomechanical backaction effects and allows us to measure purely static heating effects 

in our sample over a very large range of photon energies.

The interferometric setup is shown in detail in Fig. S5a. Along the beam path of the probe laser, we 

first implement an optical isolator to avoid back reflected light into the laser, which can cause 

instabilities and power fluctuations. The beam is then expanded to completely fill the objective (40x 

0.6NA). In a first beam splitter we add light from the excitation laser and in a second beam splitter, 

we guide half the light towards the reference arm and half through the objective onto the sample in a 

vacuum chamber. The relative position of the reference arm to the sample determines the amplitude of 

the interferometric signal. We use a piezo electric element to control this distance and stabilize the 

system using a PID-loop locked to a small reference signal at 941 Hz sourced by Lock-In amplifier 

(Zurich Instruments MLFI). The sample in the vacuum chamber is clamped upside down onto our 

sample holder and with a spacing of roughly 40 µm, we place our grounded gate electrode. Electrical 

driving is realized by mixing a DC voltage (210 V, supplied by a Keithley source meter) with an AC 

component (typically -5 dBm) from our vector network analyzer (VNA, Agilent E5071C) in a high 

voltage Bias T (Particulars BT-01) and applying it to the gold layer of the sample, which contacts the 

TMD flake. For smaller frequency ranges and phase-locked-loop (PLL) measurement, we use a lock-

in amplifier (Zurich Instruments MFLI). In Fig. S5b we show the power spectra of our excitation laser 

source (measured at the sample position) with different neutral density filters (ND) implemented, 

which are used to calculate the relative frequency shifts . We perform a small linear correction 
Δ𝑓
Δ𝑃

(order of Hz) to account for temperature changes in the room during measurements of the maps (Fig. 

2 a,c). In the PLL-configuration (25 kHz bandwidth) we can measure the heating induced frequency 

shifts  quickly and with high sensitivity even at low laser powers (raw data for ND 1.5 in Fig. S5c). Δ𝑓
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Figure S5 Setup details and PLL-data a) Detailed sketch of setup and b) Measured output of the tunable excitation laser at 
the sample position vs. wavelength. This data is used to normalize the frequency shift. c) PLL measurements of device #1, 
using the laser power plotted in b).

5. Consideration of dynamical back-action effects

In nanomechanical resonators also dynamic optomechanical back-action (in contrast to static heating) 

effects can alter the resonance frequency and its FWHM (  especially at large laser (𝑓) 𝑓𝐹𝑊𝐻𝑀)

powers.23–25 This occurs e.g. in cavity interferometers, where the laser power, which the oscillating 

membrane is exposed to, varies significantly over a short spatial distance.23,24 For this a reflective 

surface close to the moving membrane is needed.23,24 The effects furthermore only occur when the 

spatial symmetry is broken due to deforming the membrane out of plane.23,24 In our system the gate is 

non-reflective and far away from the membrane (~ 40 µm). Additionally, the applied electrostatic 

pressure by the gate voltage is relatively small and SiN-TMD hybrid system rather stiff, so there is no 

breaking of symmetry in out of plane direction. Considering all the points above, we can exclude 

cavity related back-action effects in our system.

Also, strain-induced shifts in absorption in the material itself can cause dynamic back-action effects.25 

Here again a breaking of symmetry, large laser powers and soft systems (small spring constant) are 

needed. We therefore also exclude material related back-action effects.
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To verify this experimentally we extract , whilst illuminating the sample at different 𝑓𝐹𝑊𝐻𝑀

wavelengths (Fig. S6a,b). If there were any dynamic back-action effects influencing the system, the 

 should show significant variations.23–25 We do not observe such variations and thereby 𝑓𝐹𝑊𝐻𝑀

experimentally confirm the absence of dynamic back-action effects. 

Figure S6 Reference measurements check for dynamic back-action effects. a,b) FWHM vs. wavelength for device #1 (WSe2) 
and #2 (MoS2) and photoluminescence measurements as reference for the excitonic resonances. We observe a constant 
FWHM over the entire wavelength range and thereby experimentally exclude dynamic optomechanical back action effects.

6. Springs in parallel model (derivation of Eq.1)

The goal of equation 1 from the main text is to intuitively relate the heating-induced change of the 

overall resonance frequency of our resonator to tension/frequency changes of its components, i.e. the 

TMD alone and the SiN alone. That expression is important for developing a qualitative 

understanding of our system, whilst we use FEM simulations to capture the complex device geometry 

for all quantitative evaluations and results shown in the main text. We express frequencies (f) and 

frequency changes  of each resonator upon illumination/heating via effective spring constants (Δ𝑓)

defined as , where is the numerically determined effective mass4 (see Fig. S7). 𝑘 = 4𝜋²𝑓²𝑚𝑒𝑓𝑓 𝑚𝑒𝑓𝑓 

So, the question we would like to answer: is there a simple expression relating effective spring 

constants of the SiN (kSiN), the TMD (kSiN), and the compound system (ktotal)?
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As a first step towards obtaining a simple model, we numerically obtain the frequency and frequency 

changes upon illumination (power 30 µW; 30.4 % absorption) of our 3 resonators using detailed 

FEM-simulations of the experimental geometry (see Fig. S7 a-c). From the resonance frequencies and 

effective masses, we find: N/m,  50.43 N/m and 65.48 N/m. For the 𝑘𝑇𝑀𝐷 ≈  0.52 𝑘𝑆𝑖𝑁 ≈   𝑘𝑡𝑜𝑡𝑎𝑙 =

heating-induced frequency changes upon laser illumination with 30 µW laser power and 30.4% 

absorption (corresponds to the measurement in Fig. 3a @ 2.92 eV), we find:  , Δ𝑘𝑇𝑀𝐷 ≈ ―0.16
𝑁
𝑚 Δ

. These simulations match experiments: from the 𝑘𝑆𝑖𝑁 ≈ ―0.01
𝑁
𝑚  and Δ𝑘𝑡𝑜𝑡𝑎𝑙 ≈ ―0.20

𝑁
𝑚

experimentally measured heating-induced frequency shift, we extract:

 Δ𝑘Exp
total = ― 𝑘Exp

total(1 ―
(𝑓 ― Δ𝑓)2

𝑓2
0

) = ―64.45
N
m(1 ― 0.9970) ≈  ― 0.19 N/m

 Moreover, linearly depends on  We see that (with 𝑓0 =  4.67 MHz;  Δ𝑓 = 7.2 kHz) . Δ𝑘𝑡𝑜𝑡𝑎𝑙 Δ𝑘𝑇𝑀𝐷 .

our numerical results can be described with reasonable precision by a simple formula, ktotal=kTMD+kSiN. 

This formula corresponds to effective springs of the TMD and the SiN connected “in parallel”. In fact, 

this expression can be derived analytically in a 1D toy model of the combined TMD/SiN resonator 

(see Fig. S7d). We start by assuming that the hole in the SiN does not affect the effective elastic 

constants of SiN (good approximation when the hole is small) and simplify the membrane profile for 

ease of estimates (Fig. S7d). In this geometry we can approximate the extension of the central point of 

the membrane as:

(S2)δx ≈
x2

2L
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Approximating that both TMD and SiN have the same strain ( ), we can now define the potential and ϵ

kinetic energy as following:

  (S3)𝐸𝑝𝑜𝑡 = 2σ𝛿𝑥 = 2𝜖(ℎ1𝐸𝑆𝑖𝑁 
2𝐷 + ℎ2𝐸𝑇𝑀𝐷 

2𝐷 )𝛿𝑥 =
𝜖
𝐿(ℎ1𝐸

𝑆𝑖𝑁 

2𝐷
+ ℎ2𝐸𝑇𝑀𝐷 

2𝐷 )𝑥2

     (S4)𝐸𝑘𝑖𝑛 =
𝑚(δx)2

2 ≈
𝑚(x)2

2

From the conservation of energy, we obtain the angular frequency of the harmonic motion of the 

combined system:

 (S7)𝜔2 =
2𝜖(

𝜖
𝐿(ℎ1𝐸

𝑆𝑖𝑁 

2𝐷
+ ℎ2𝐸𝑇𝑀𝐷 

2𝐷 )

𝐿𝑚𝑒𝑓𝑓

Defining an effective spring constants for the resonator, with  , we see 𝑘𝑆𝑖𝑁/𝑇𝑀𝐷 =  
2𝜖
𝐿 (ℎ1/2𝐸

𝑆𝑖𝑁/𝑇𝑀𝐷 

2𝐷
)

that the resonance frequency of the combined system can be expressed as: 

 (S8)𝑓0 =
1

2𝜋 𝑚𝑒𝑓𝑓
𝑘𝑆𝑖𝑁 + 𝑘𝑇𝑀𝐷

This is exactly the resonance frequency of the resonator with TMD and SiN springs “in parallel”. 

Next, we will look at changes in frequency ( ) caused by laser heating. With the Δ𝑓 = 𝑓(𝑇) ― 𝑓0

heating laser turned on, light is absorbed, and the TMD resonator heats up and overall softens. The 

SiN is well heat sunk via the gold layer. Our simulations show that its temperature and stress remain 

almost constant (  , for 30.4% absorption and 30 µW incident laser power). Δ𝑇 ≈ 0.03 K,
Δσ
σ0

≈ 0.02%

Therefore, we assume that  is temperature-independent and express the resonances frequency with kSiN 

laser heating as:

(S9)Δ𝑓 =
1

2𝜋 𝑚𝑒𝑓𝑓
𝑘𝑆𝑖𝑁 + 𝑘𝑇𝑀𝐷 ― Δ𝑘𝑇𝑀𝐷 ― 𝑓0

We now expand the term to first order for  and obtain
Δ𝑘𝑇𝑀𝐷

𝑘𝑇𝑀𝐷 + 𝑘𝑆𝑖𝑁
≪ 1



14

(S10)Δ𝑓 = 𝑓0( 1 ―
Δ𝑘𝑇𝑀𝐷

𝑘𝑇𝑀𝐷 + 𝑘𝑆𝑖𝑁
― 1) ≈ 𝑓0

Δ𝑘𝑇𝑀𝐷

2(𝑘𝑇𝑀𝐷 + 𝑘𝑆𝑖𝑁)

For the “TMD-spring”, we can relate the change in spring constant to a change in built-in tension:

     (S11)
Δ𝑘𝑇𝑀𝐷

𝑘𝑇𝑀𝐷
=

Δ𝜎
𝜎0

The change in tension due to thermal expansion is given by:

,     (S12)Δ𝜎 =
𝛼𝐸2𝐷

1 ― 𝜈Δ𝑇

Where  is the thermal expansion coefficient,  is the 2D elastic modulus and  is the Poisson’s 𝛼 𝐸2𝐷 𝜈

ratio of the TMD. The change in temperature  is proportional to the amount of absorbed laser Δ𝑇

power:

, (S13)Δ𝑇 =
𝛽𝐴𝑏𝑠(𝜆)

ℎ𝜅 Δ𝑃

where  is the thermal conductivity,  is the thickness of the membrane and  is a pre-factor 𝜅 ℎ 𝛽

determined by the temperature profile in the membrane. Combining Eq. S11-13 we obtain Eq. 1 from 

the main text:

(S14)Δ𝑓 ≈ 𝑓0
𝑘𝑇𝑀𝐷

2(𝑘𝑇𝑀𝐷 + 𝑘𝑆𝑖𝑁)𝜎𝑇𝑀𝐷

𝛼𝐸2𝐷

1 ― 𝜈
𝛽𝐴𝑏𝑠(𝜆)

ℎ𝜅 Δ𝑃
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Figure S7 Numerical evaluation of spring constants and springs in parallel model. a-c) Mode shape of the individual 
resonances of the substrate (SiN+gold), the TMD resonator and the combined system. d) Sketch for simplified model 
describing the springs in parallel. 

7. Transmission measurement as benchmark

In order to validate our nanomechanical measurement approach and backup our simulations, we 

perform optical transmission measurements with an objective below and above the sample (Fig. S8a). 

We use a broadband white light laser and measure the transmission through the sample (Fig. S8b), 

deduct the dark counts and normalize to an empty hole without any TMD material to obtain the 

transmission: 

 .  (S11)𝑇 =
𝑇𝑠𝑎𝑚𝑝𝑙𝑒 ― 𝑇𝑑𝑎𝑟𝑘

𝑇ℎ𝑜𝑙𝑒 ― 𝑇𝑑𝑎𝑟𝑘

To calculate the amount of absorbed light we also measure reflection

         (S12)𝑅 =
𝑅𝑠𝑎𝑚𝑝𝑙𝑒 ― 𝑅ℎ𝑜𝑙𝑒

𝑅𝑚𝑖𝑟𝑟𝑜𝑟 ― 𝑅𝑑𝑎𝑟𝑘
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and use  to calculate the amount of absorbed light (Fig. S8c). Overall we find very 𝐴𝑏𝑠 = 1 ― 𝑅 ― 𝑇

good agreement between this new transmission measurements (blue) and previously obtained data 

from nanomechanical spectroscopy (red).

Figure 8. Optical transmission as Benchmark. a, Schematic side view of transmission measurement. b, Device #1 from the 

main paper with a beam from a coherent white light source focused on its center. c Comparing nanomechanical 

spectroscopy to optical transmission measurements. We find very good agreement in the determined absorption of the 2D 

material. 

8. Reflection measurements

The setup presented in the main text also allows us to perform reflection measurements. We block the 

reference arm, turn off the probe laser and then and use our tunable excitation light source to sweep the 

wavelength whilst recording the reflected signal off our sample using a chopper (920Hz) and the lock-

in amplifier (Fig. S9a, green). We then subtract spectra from that from an empty hole as shown in Fig. 

S8a (Fig. S9a, blue) and normalize the data by dividing by a “100% reflection reference”, which we 

obtain measuring reflection of a silver mirror (Fig. S9a, red) with known reflection properties (Thorlabs 

PF10-03-P01). The resulting reflection data is shown in Fig. S9b.
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Figure S9 Optical reflection measurements a) Reflection of device #1 (3L WSe2), a silver mirror, corresponding to our 100% 
reflection reference and an empty hole b) Resulting reflection data for the TMD material.      

9. Obtaining the dielectric function

Reflection and transmission of electromagnetic waves was computed with the transfer matrix 

formalism. Two types of matrices are required: a propagation matrix P and a boundary matrix 

T. The propagation matrix contains elements responsible for phase change inside a material 

 (S13)𝑃(𝜆,𝑛,𝑑) = (𝑒2𝜋𝑖𝑛𝑑/𝜆 0
0 𝑒 ―2𝜋𝑖𝑛𝑑/𝜆), 

where  is complex refractive index of the material,  wavelength of light,  is the thickness 𝑛 𝜆 𝑑

of the material. Whereas the boundary matrix depends on the refractive indices on both sides 

of the boundary and :𝑛1 𝑛2

     (S14)𝑇(𝑛1,𝑛2) =
1

𝑡12( 1 𝑟12
𝑟12 1 ).

The  is a Frensel transmission coefficient for oblique incidence and the  is a 𝑡12 =
2𝑛1

𝑛1 +𝑛2
𝑟12

reflection coefficient . The overall transfer matrix  of vacuum suspended TMDC 
𝑛1 ―𝑛2

𝑛1 +𝑛2
𝑀

yields

  (S15)𝑀 = 𝑇(𝑛𝑣𝑎𝑐𝑢𝑢𝑚,𝑛𝑇𝑀𝐷𝐶).𝑃(𝜆,𝑛𝑇𝑀𝐷𝐶,𝑑).𝑇(𝑛𝑇𝑀𝐷𝐶,𝑛𝑣𝑎𝑐𝑢𝑢𝑚).
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For each wavelength, we compute the refractive index  using matrix 𝑛𝑇𝑀𝐷𝐶 = 𝑛 + 𝐼𝑘

elements. The system of two equations is solved for two variables .𝑛,𝑘

     (S16){𝑇𝑟𝑎𝑛𝑠 = 1 ― 𝐴𝑏𝑠 ― 𝑅𝑒𝑓𝑙 = 1/|𝑀11|2

𝑅𝑒𝑓𝑙 = |𝑀21|2/|𝑀11|2 ,

 are experimentally obtained absorption and reflection, respectively. The dielectric 𝐴𝑏𝑠, 𝑅𝑒𝑓𝑙

function  is obtained using relation . 𝜀 𝜀 = 𝑛2

10.  RPA and BSE calculations

To determine the theoretical response function the ground-state of the material was first calculated using 

density functional theory (DFT). Within DFT, the exchange-correlation energy was approximated by 

the local density approximation (LDA), which is well known for underestimating the bandgap of 

insulators and semiconductors. In order to estimate the experimental direct bandgap G0W0 calculations25 

were performed and the DFT band-structure was then corrected by the scissor operator to obtain the 

correct direct bandgap. 

This corrected band-structure was then used to determine the response function of the material. In order 

to account for excitonic effects the Bethe Salpeter equation (BSE) was solved26. Solving the BSE is 

computationally very demanding and hence the BSE Hamiltonian was diagonalized in a restricted active 

space of a few bands around the Fermi level. However, the consequence of this restriction is that the 

response function is only determined in a limited low energy window around the band-gap.  In order to 

obtain the response function at higher energies, where excitonic effects are negligible, we use the so-

called random-phase approximation (RPA) within linear response time-dependent density functional 

theory (TDDFT).27,28 This procedure does not account for excitonic effects, but bands up to 100 eV 

above the Fermi energy are included and is an accurate method for determination of response function 

away from the band-gap energies.

Computational parameters: Spin-orbit coupling was included for all calculations. For the DFT 

calculations the in-plane lattice parameter for WSe2 (MoS2) was 3.28 Å (3.16 Å) with an interlayer 
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spacing of 6.48 Å (6.15 Å), a distance of 3.34 Å (3.17 Å) between the chalcogens in each layer, and 

vacuum spacing between top and bottom layers of at least 12 Å for both the tri- and tetra-layer 

calculations. A k-point grid of 30x30x1 was used in all cases. The BSE hamiltonian was diagonalized 

in the restricted active space of 8 valence and 8 conduction states around the Fermi level.  In order to 

account for many-body effects we have performed a single shot, finite temperature (a temperature of 

500 K was used), all electron, spin-polarized GW calculations, where the spectral function on the real 

axis is constructed using a Pade approximation. Spin-orbit coupling was included in the GW 

calculations and a Matsubara cut-off of 12 Ha was used. All calculations were performed using state-

of-the-art, all-electron, full-potential code Elk.29

11. Determination of sensitivity via Allan deviation:

The Allan deviation is defined as:31

   (S15)𝜎2
𝐴(𝑡) =

1
2(𝑁 ― 1)𝑓0²∑

𝑁
𝑖 = 2(𝑓𝑖 ― 𝑓𝑖 ― 1)²

where  is the average frequency measured over the ith time interval of length . We perform time 𝑓𝑖  𝑡

stability measurements (Fig. 5b, main paper) of the resonance frequency with the heating laser turned 

off using a PLL with a bandwidth BW = 2.5 kHz. We extract and find  < 5 10-7 over a broad  𝜎𝐴 𝜎𝐴 ∙

range (Fig. 5c, main paper). Plugging    792 Hz/µW,  = 4.6702 MHz and an optimal 
Δ𝑓
Δ𝑃 = 𝑓0 𝜎𝐴 = 2.426 ∙

10-7 at a sampling period of t = 4 ms into equation S16, we calculate  . The measurement fulfils = 90 
𝑝𝑊

𝐻𝑧

the condition of .𝑡 ≫
1

𝐵𝑊

                                              , (S16)𝜂 =
𝜎𝑓 𝑡

𝑓0( Δ𝑓
𝑓0Δ𝑃) =

𝜎𝐴 𝑡𝑓0
Δ𝑓
Δ𝑃

References

(1) Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; Van Der Zant, H. S. J.; Agraït, N.; 
Rubio-Bollinger, G. Elastic Properties of Freely Suspended MoS2 Nanosheets. Adv. 
Mater. 2012, 24 (6), 772–775.



20

(2) GESTIS-Stoffdatenbank https://gestis.dguv.de/data?name=570192 (accessed Jan 24, 
2022).

(3) Sahoo, S.; Gaur, A. P. S.; Ahmadi, M.; Guinel, M. J. F.; Katiyar, R. S. Temperature-
Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2. J. Phys. 
Chem. C 2013, 117 (17), 9042–9047.

(4) Zhang, X.; Sun, D.; Li, Y.; Lee, G. H.; Cui, X.; Chenet, D.; You, Y.; Heinz, T. F.; 
Hone, J. C. Measurement of Lateral and Interfacial Thermal Conductivity of Single- 
and Bilayer MoS2 and MoSe2 Using Refined Optothermal Raman Technique. ACS 
Appl. Mater. Interfaces 2015, 7 (46), 25923–25929.

(5) Aiyiti, A.; Bai, X.; Wu, J.; Xu, X.; Li, B. Measuring the Thermal Conductivity and 
Interfacial Thermal Resistance of Suspended MoS2 Using Electron Beam Self-Heating 
Technique. Sci. Bull. 2018, 63 (7), 452–458.

(6) Yuan, P.; Wang, R.; Wang, T.; Wang, X.; Xie, Y. Nonmonotonic Thickness-
Dependence of in-Plane Thermal Conductivity of Few-Layered MoS2: 2.4 to 37.8 Nm. 
Phys. Chem. Chem. Phys. 2018, 20 (40), 25752–25761.

(7) ÇakIr, D.; Peeters, F. M.; Sevik, C. Mechanical and Thermal Properties of h -MX2 (M 
= Cr, Mo, W; X = O, S, Se, Te) Monolayers: A Comparative Study. Appl. Phys. Lett. 
2014, 104 (20), 203110.

(8) Zhang, L.; Lu, Z.; Song, Y.; Zhao, L.; Bhatia, B.; Bagnall, K. R.; Wang, E. N. Thermal 
Expansion Coefficient of Monolayer Molybdenum Disulfide Using Micro-Raman 
Spectroscopy. Nano Lett. 2019, 19 (7), 4745–4751.

(9) Min, K.-A.; Cha, J.; Cho, K.; -,  al; Jin Yun, S.; Hoon Jung, K.; Hyun Kim -, S.; Lee, 
J.; Huang, J.; Nakamura, K. First-Principles Simulation on Thermoelectric Propertiesof 
Transition Metal Dichalcogenide Monolayers. Japanese J. Appl. Phys. Regul. Pap. 
2018, 57, 6–10.

(10) Volovik, L. S.; Fesenko, V. V.; Bolgar, A. S.; Drozdova, S. V.; Klochkov, L. A.; 
Primachenko, V. F. Enthalpy and Heat Capacity of Molybdenum Disulfide. Sov. 
Powder Metall. Met. Ceram. 1978, 17 (9), 697–702.

(11) Xu, J.; Zhang, J.; Zhang, W.; Lee, C. S. Interlayer Nanoarchitectonics of Two-
Dimensional Transition-Metal Dichalcogenides Nanosheets for Energy Storage and 
Conversion Applications. Advanced Energy Materials. John Wiley & Sons, Ltd 
December 1, 2017, p 1700571.

(12) Zhang, R.; Koutsos, V.; Cheung, R. Elastic Properties of Suspended Multilayer WSe2. 
Appl. Phys. Lett. 2016, 108 (4).

(13) Kang, J.; Tongay, S.; Zhou, J.; Li, J.; Wu, J. Band Offsets and Heterostructures of 
Two-Dimensional Semiconductors. Appl. Phys. Lett. 2013, 102 (1), 012111.

(14) Agarwal, M. K.; Wani, P. A. Growth Conditions and Crystal Structure Parameters of 
Layer Compounds in the Series Mo1-XWxSe2. Mater. Res. Bull. 1979, 14 (6), 825–
830.

(15) Easy, E.; Gao, Y.; Wang, Y.; Yan, D.; Goushehgir, S. M.; Yang, E. H.; Xu, B.; Zhang, 
X. Experimental and Computational Investigation of Layer-Dependent Thermal 
Conductivities and Interfacial Thermal Conductance of One- To Three-Layer WSe2. 
ACS Appl. Mater. Interfaces 2021, 13 (11), 13063–13071.



21

(16) AZoM. Gold - Properties and Applications of Gold. AZO Materials. 2001, pp 1–3.

(17) Wilcock, J. D.; Campbell, D. S.; Anderson, J. C. The Internal Stress in Evaporated 
Silver and Gold Films. Thin Solid Films 1969, 3 (1), 13–34.

(18) Properties: Silicon Nitride (Si3N4) Properties and Applications 
https://www.azom.com/properties.aspx?ArticleID=53 (accessed Jan 24, 2022).

(19) Huszank, R.; Csedreki, L.; Kertész, Z.; Török, Z. Determination of the Density of 
Silicon–Nitride Thin Films by Ion-Beam Analytical Techniques (RBS, PIXE, STIM). 
J. Radioanal. Nucl. Chem. 2016, 307 (1), 341–346.

(20) Properties: Supplier Data - Silicon (Si) 
https://www.azom.com/properties.aspx?ArticleID=1851 (accessed Jan 24, 2022).

(21) Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and 
Intrinsic Strength of Monolayer Graphene. Science (80-. ). 2008, 321 (5887), 385–388.

(22) Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; Van Der 
Zant, H. S. J.; Steele, G. A. Deterministic Transfer of Two-Dimensional Materials by 
All-Dry Viscoelastic Stamping. 2D Mater. 2014, 1 (1), 011002.

(23) Barton, R. A.; Storch, I. R.; Adiga, V. P.; Sakakibara, R.; Cipriany, B. R.; Ilic, B.; 
Wang, S. P.; Ong, P.; McEuen, P. L.; Parpia, J. M.; Craighead, H. G. Photothermal 
Self-Oscillation and Laser Cooling of Graphene Optomechanical Systems. Nano Lett. 
2012, 12 (9), 4681–4686.

(24) Morell, N.; Tepsic, S.; Reserbat-Plantey, A.; Cepellotti, A.; Manca, M.; Epstein, I.; 
Isacsson, A.; Marie, X.; Mauri, F.; Bachtold, A. Optomechanical Measurement of 
Thermal Transport in Two-Dimensional MoSe 2 Lattices. Nano Lett. 2019, 19 (5), 
3143–3150.

(25) Xie, H.; Jiang, S.; Rhodes, D. A.; Hone, J. C.; Shan, J.; Mak, K. F. Tunable Exciton-
Optomechanical Coupling in Suspended Monolayer MoSe2. Nano Lett. 2021, 21 (6), 
2538–2543.

(26) Kim, H. G.; Choi, H. J. Thickness Dependence of Work Function, Ionization Energy, 
and Electron Affinity of Mo and W Dichalcogenides from DFT and GW Calculations. 
Phys. Rev. B 2021, 103 (8), 085404.

(27) Salpeter, E. E.; Bethe, H. A. A Relativistic Equation for Bound-State Problems. Phys. 
Rev. 1951, 84 (6), 1232–1242.

(28) Runge, E.; Gross, E. K. U. Density-Functional Theory for Time-Dependent Systems. 
Phys. Rev. Lett. 1984, 52 (12), 997–1000.

(29) Sharma, S.; Dewhurst, J. K.; Gross, E. Optical Response of Extended Systems Using 
Time-Dependent Density Functional Theory. Top. Curr. Chem. 2014, 347, 235–258.

(30) The Elk Code https://elk.sourceforge.io/ (accessed Jan 24, 2022).

(31) Allan, D. W. Statistics of Atomic Frequency Standards. Proc. IEEE 1966, 54 (2), 221–
230.



B. Papers as published

B.4. 2D Materials 10(3), 035012 (2023) and Supporting
Information

This publication is licensed under CC-BY 4.0 and can be found here: https://doi.org/10.1088/
2053-1583/acd0bf.

128

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/2053-1583/acd0bf
https://doi.org/10.1088/2053-1583/acd0bf


2D Mater. 10 (2023) 035012 https://doi.org/10.1088/2053-1583/acd0bf

OPEN ACCESS

RECEIVED

26 January 2023

REVISED

18 April 2023

ACCEPTED FOR PUBLICATION

27 April 2023

PUBLISHED

5 May 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Nanomechanical absorption spectroscopy of 2D materials with
femtowatt sensitivity
Jan N Kirchhof1,∗, Yuefeng Yu1, Denis Yagodkin1, Nele Stetzuhn1,2, Daniel B de Araújo1,
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Abstract
Nanomechanical spectroscopy (NMS) is a recently developed approach to determine optical
absorption spectra of nanoscale materials via mechanical measurements. It is based on measuring
changes in the resonance frequency of a membrane resonator vs. the photon energy of incoming
light. This method is a direct measurement of absorption, which has practical advantages
compared to common optical spectroscopy approaches. In the case of two-dimensional (2D)
materials, NMS overcomes limitations inherent to conventional optical methods, such as the
complications associated with measurements at high magnetic fields and low temperatures. In this
work, we develop a protocol for NMS of 2D materials that yields two orders of magnitude
improved sensitivity compared to previous approaches, while being simpler to use. To this end, we
use mechanical sample actuation, which simplifies the experiment and provides a reliable
calibration for greater accuracy. Additionally, the use of low-stress silicon nitride membranes as

our substrate reduces the noise-equivalent power to NEP= 890 fW
√
Hz

−1
, comparable to

commercial semiconductor photodetectors. We use our approach to spectroscopically characterize
a 2D transition metal dichalcogenide (WS2), a layered magnetic semiconductor (CrPS4), and a
plasmonic super-crystal consisting of gold nanoparticles.

1. Introduction

Nanomechanical resonators emerged as sensitive
probes for minuscule forces [1–3] and atomic-scale
masses [4–8]. By incorporating two-dimensional
(2D) materials into nanomechanical resonators, the
miniaturization of these devices has been pushed to
the ultimate limit of atomic thickness. Along with this
comes a massively reduced effective mass, increased
resonance frequencies, easily accessible non-linearity,
and the ability to tune resonance frequencies [9]. This
technological boost allows using such resonators as
sensors for light [10], magnetic fields [11, 12], sound

[6, 13–15], gases [6, 16] or even to study live bacteria
[17].

Recently, the use of 2Dmaterials-based resonators
as fast and broadband optical spectrometers has been
demonstrated [18]. In this nanomechanical spectro-
scopy approach (NMS), changes in the mechanical
resonance frequency of a freely suspended 2D mater-
ial are measured as a function of the illumination
photon energy Eγ . From this, both real and imaginary
components of the dielectric function can be extrac-
ted. In this measurement the material effectively
acts as its own photodetector, leading to broadband
sensitivity (UV-THz) of the approach. Furthermore,
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unlike classical optical approaches, NMS can distin-
guish between scattered and absorbed light. Finally,
NMS is suitable for nanostructures with dimensions
smaller than a micron and is applicable at low tem-
peratures and high magnetic fields. Whilst NMS
has many fundamental advantages, it currently lacks
the sensitivity provided by state-of-the-art optical
approaches.

Here, we reduce the noise equivalent power of
NMS by two orders of magnitude, down to NEP=

890 fW
√
Hz

−1
. At the same time, we simplify

the method by using mechanical actuation, which
allows us to study electrically insulating materials,
makes sample loading straightforward and provides a
simple, but robust calibration. We use this improved
method to spectroscopically characterize a range of
2D structures with high resolution. This includes
WS2, a classic binary transition metal dichalcogen-
ide (TMD), CrPS4, a layeredmagnetic semiconductor
(ternary TMD), and a plasmonicmeta-structure con-
sisting of gold nanoparticles forming a super-crystal
[19, 20].

2. Results

2.1. Sample design
At the core of our device is a nanostructure or 2D
material of interest that we place on top of a silicon
nitride (SiN) membrane, thereby forming a hybrid
resonator [18, 21, 22]. We use SiN for its excel-
lent mechanical properties and record high quality
factors (Q) [23–27]. The device is illuminated by a
light source of tunable photon energy (Eγ = 1.2–
3.1 eV). The absorption of light by the 2D mater-
ial heats up the entire hybrid device. Due to thermal
expansion, the in-plane tensile stress within themem-
brane is released and the resonance frequency down-
shifts. This downshift in frequency is proportional
to the amount of absorbed laser power (Pabs(Eγ))
and allows us to perform absorption spectroscopy. To
understand the measurement’s underlying mechan-
ics and optimize our sample design, we start by look-
ing at the fundamental resonance of a square pre-
stressed SiN membrane. The resonance frequency is

given by f0 =
1
L

√
σ0
2ρ , where L is the length, σ0 the

in-plane tensile stress and ρ the density. When the
incoming light heats thematerial, the stress is reduced
by∆σ = α∆T E

1−ν , where α is the thermal expansion
coefficient,∆T is the average temperature increase, E
is the Young’s modulus and ν is the Poisson’s ratio.
Here,∆T is directly proportional to Pabs. The result-
ing frequency shift ∆f = f0 − f can be approximated
as ∆f ≈ f0

∆σ
2σ0

[10, 23]. Thus, in order to maximize
the frequency response to laser heating (responsiv-
ity) and ultimately improve the sensitivity ofNMS,we
aim to minimize the in-plane tensile stress σ0 within

our membranes [23]. To do so, we choose SiN mem-
branes (L= 120 µm, thickness h= 50 nm) grown
by low-pressure chemical vapor deposition. By using
a silicon-rich stoichiometry, we obtain membranes
with low built-in stress. Thin layers of amorph-
ous SiN also have a reduced thermal conductivity
of κ≈ 3 W m−1 K−1 [28], which is beneficial for
our experiments as it increases the temperature rise
within our device in response to laser heating [29].
To complete the hybrid resonators, we transfer a 2D
material of interest onto the SiN-membrane using the
polydimethylsiloxane (PDMS) dry transfer technique
[30]. Here, we ensure that we place the 2D material
in the center of the membrane such that there are no
thermal links to the rest of the substrate. An optical
micrograph of a sample with a trilayer WS2 is shown
in figure 1(a) and schematically in a side view in
figure 1(b).

The membrane’s motion is actuated mechanic-
ally by a piezoelectric element below the sample and
detected interferometrically using a HeNe laser (Eγ =
1.96 eV) with a probe power of 300 nW (red in
figure 1(c)). A second wavelength-tunable excitation
laser (blue in figure 1 (c)), allows us to controllably
heat the resonator, whilst we monitor the changes in
resonance frequency. Upon sweeping the actuation
frequency we find a pronounced fundamental mode
at f0 = 425.367 kHz as shown in figure 1(d). From
fitting a driven harmonic oscillator response to the
experimental data, we estimate (the exact determ-
ination requires ring-down measurements) a qual-
ity factor of Q = 82 000, comparable to previous
results on similar samples [23]. Knowing f 0, L and
ρ= 3000 m3 kg−1 [23, 25], we calculate the stress in
our membrane to be σ0 ≈ 15.6 MPa—much lower
than commercially available SiN membranes (250–
1000MPa). All measurements are carried out at room
temperature (stabilized) and at a pressure of p≈
1× 10−5 mbar. Next, we determine the responsiv-
ity of the resonator to absorbed light R100% = ∆f

f0Pabs
.

To this end, we focus the probe and excitation beam
(set to Eγ = 1.9 eV) on the SiN area close to the
center of the sample and vary the laser power of
the excitation laser from 0 to 30 µW. We use the
known absorption (Abs= 0.5%) of SiN at that photon
energy [23] to convert the incident laser power to
absorbed laser power (Pabs = PincAbs) and plot ∆f
vs. Pabs in figure 1(e). From a linear fit (red), we
extract a responsivity ofR100% = 21810W−1. We will
use this quantity for the calibration of our meas-
urements and to calculate the sensitivity of NMS.
The measured R100% is much higher than in previ-
ous approaches (R100% = 180W−1) [18]. At the same
time, the Q of the improved system is more than an
order of magnitude higher than in previous measure-
ments (82 000 vs. 5000). Overall, we now have our
material of interest implemented into a high quality
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Figure 1. SiN-TMD hybrid devices and interferometric motion detection. (a), Optical micrograph of a trilayer WS2 transferred
on the center of a low-stress SiN membrane (b), Sketch of the SiN-TMD hybrid device. The entire SiN membrane moves
out-of-plane and due to the low thermal conductivity of SiN, the TMD flake is thermally decoupled from its environment.
(c), Motion detection using a Michelson interferometer (red laser) with an additional broadly tunable laser (blue) to heat the
resonator via the TMD. The sample is placed in a vacuum chamber (p≈ 1× 10−5 mbar) and the motion of the suspended area is
actuated mechanically via a piezoelectric element below the sample. (d), Measured amplitude vs. frequency for the device shown
in (a). The fundamental mode shows a quality factor of Q∼ 82 000. (e), Response of the fundamental mode to laser heating
(excitation focused on SiN area). We extract a responsivity of R100% = 21 810 W−1.

Figure 2. Nanomechanical absorption spectroscopy of WS2. (a), Raw frequency response (blue, left y-axis) of the trilayer WS2
device as a function of photon energy. The corresponding incident laser power is plotted in grey (right y-axis). Multiple features
are visible and towards higher energies, the frequency shift increases as the absorption by the TMD increases. (b), Relative

responsivity R= ∆f
f0Pinc

vs. photon energy. This signal is directly proportional to the absorption coefficient of the TMD and we

convert it to absolute units using R100% (obtained from figure 1(e)). The curve shows clear excitonic features at the expected
photon energies. In the inset, we sketch the corresponding transitions for few-layer WS2.

mechanical hybrid resonator, that is engineered to
strongly react to absorbed light.

2.2. Nanomechanical absorptionmeasurements
After optimizing our mechanical system as a sensor
for detecting light, we use it to perform absorption
spectroscopy on several candidates, starting with the
2D semiconductor WS2 (trilayer). To do so, we track
the frequency of the fundamental resonance, whilst
varying the photon energy of the excitation laser. In
this measurement, the excitation laser is focused on
the TMD area and the frequency is measured using
a phase-locked-loop (PLL) (details in supplementary

information). In figure 2(a), we plot the frequency
shift ∆f (blue, left y-axis) and the corresponding
incoming laser power Pinc (grey, right y-axis) vs. the
photon energy of the excitation laser. Upon divid-
ing the frequency shift by the laser power and nor-
malizing it by f 0, we obtain the relative responsivity

R(Eγ) =
∆f(Eγ)
f0Pinc(Eγ)

(figure 2(b)). This signal is directly

proportional to the absorption coefficient of the 2D
material. Finally, we use the beforehand determined
R100% to calculate the absorption coefficient of the
TDM in absolute units: Abs(Eγ) = R(Eγ)/R100% —
as plotted in figure 2(b) on the right y-axis. In this
spectrum, we find clear peaks (A–D), that correspond

3
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Figure 3. Nanomechanical absorption spectroscopy of exotic 2D materials (a), Absorption vs. photon energy for a 6-layer gold
plasmonic super-crystal (thickness of 350 nm). In the low energy range up to 1.8 eV, we find pronounced absorption peaks
associated with standing wave plasmon polaritons within the super-crystal. Above 2.5 eV the light is absorbed by intraband
transitions in the gold particles. The inset shows a sketch of the gold nanoparticles (yellow circles) arranged in a super-crystal, in
which plasmonic modes form standing waves (j= 2-mode shown in blue). When excited on resonance these modes absorb light
and are visible as peaks in our measurement. (b), Absorption vs. photon energy for a few-layer (∼5) 2D antiferromagnet CrPS4.
This material is a semiconductor with a broad absorption edge around 1.68 eV, which we observe in our measurements.

to different excitonic species at the expected energies
[31]. In the inset, we sketch the corresponding trans-
itions for few-layer WS2 (following [31]). Some frac-
tion of light will reach the SiN below the TMD and
be absorbed there, which may lead to large relat-
ive measurement errors in the spectral range, where
the TMD exhibits low absorption. To account for
this, we perform the following correction: Abs2DM =
Abstotal−AbsSiN

1−AbsSiN
. This correction may introduce a small

error in the region, where the 2D material exhibits
large absorption as we potentially underestimate the
absorption in SiN (details in supplementary informa-
tion), but significantly reduces the relative error in the
region of low absorption. SiN is an amorphous insu-
lator with very weak light–matter interaction, result-
ing in low absorption (∼0.5%) and a rather flat spec-
trum in the spectral region of interest, which justifies
this step.

2.3. Characterizing exotic 2Dmaterials
Next, we extend our method to study more exotic 2D
materials. We choose two materials that are particu-
larly suited for our method and for which it is expec-
ted to produce advantages. The first one is a layered
crystal (super-crystal) made from plasmonic nano-
particles. These gold nanoparticles (diameter 56 nm)
are embedded into a polymermatrix forming a closely
spaced fcc super-crystal [19, 20]. Such super-crystals
have been recently shown to enter the deep strong
light–matter coupling regime, in which light within
a material can no longer be seen as a perturbation to
the properties of the material [19, 20]. Instead, the
material properties are almost entirely determined by
light–matter interaction [19, 20]. We grow the super-
crystals by self-assembly on a liquid-liquid inter-
face (details inf [19, 20, 32]), carefully transfer them

onto the SiN membranes by the PDMS dry trans-
fer technique [30] and perform our nanomechanical
absorption spectroscopymeasurements.We note that
for the highest accuracy, all samples are calibrated
individually following the protocol described above
for the WS2 sample. In figure 3(a) we show the
absorption spectrum obtained for a 6-layer super-
crystal. Starting from low photon energies, we find
three peaks associated with plasmonic modes within
the super-crystal (j = 1..3 comp. inset figure 3(a)).
As we go to higher energies, the absorption increases
towards the intraband transitions of gold and plat-
eaus around 2.5 eV. Interestingly, NMS works excel-
lently despite the super-crystal being much thicker
(350 nm vs. 2 nm) and also much heavier than the
TMD studied above. Whilst the fundamental reson-
ance frequency and the absolute shifts in frequency
for this heavier sample are smaller, the quality factor,
responsivity and thus the sensitivity remain com-
parable to the lighter samples. Plasmonic structures
are known to scatter a significant amount of light
that cannot be distinguished from absorbed light by
common optical measurement methods. In contrast,
NMS is only sensitive to absorbed light and therefore
ideal to study plasmonic systems.

Our second choice is a 2D antiferromagnet CrPS4
with a Néel temperature for the bulk material of
TNeel = 36 K [33]. The study of 2D magnetism
requires measurements at low temperatures and high
magnetic fields, which is challenging for conven-
tional optics but is easier using NMS. We exfoli-
ate and transfer a few-layer (approx. 5) thick flake
of CrPS4 onto a SiN membrane and perform NMS
(see figure 3(b)). In the spectrum, we find a broad
peak around 1.68 eV. This peak belongs to the d−d
transition of the Cr3+ ions from the 4A2g to the 4T2g

state. Towards higher photon energies the absorption
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Figure 4. Sensitivity (a), Stability measurement of frequency vs. timewithout laser illumination, measured using a phase-locked
loop. (b) Allan deviation σA vs. sampling time in log–log scale derived from (a). For an optimal sampling time of 20 ms (red

arrow), we extract a noise equivalent power of NEP= 890 fW
√
Hz

−1
.

increases, as we approach higher-order transitions
(e.g. 4A2g to 4T1g). This spectrummeasured above the
antiferromagnet’s Néel temperature is expected and
in line with literature reports [33–35]. Thin CrPS4 is
rather sensitive to photodamage [33, 35], which can
be problematic for classical optical approaches. For
NMS however small laser powers (Pinc ≈ 1 µW) are
sufficient to induce sizeable frequency shifts (comp.
figure 2(a)), which can help preserve the quality of
sensitive samples. At the same time, the heating-
related temperature changes of our samples (see
supplementary information) are small, and we can
assume that the thermal constants are unaffected by
the laser beam. Overall, we have spectroscopically
characterized a range of exotic 2Dmaterials with high
resolution and believe that these measurements high-
light the broad applicability of NMS.

2.4. Sensitivity
In order to compare NMS to state-of-the-art optical
approaches, we determine its sensitivity (noise equi-
valent power NEP) and response time (τ ). In our
measurements, we use frequency shifts to probe the
amount of absorbed light. In order to quantify the
noise in our measurements, we, therefore, look at
frequency fluctuations, which we then convert into
power noise using R100% [10, 18, 36–38]. Assuming
white noise, the NEP can be derived from the frac-
tional frequency noise power spectral density (Sy(0))
and is given by [39, 40]:

NEP=

√
Sy(0)

R100%
=

σA
√
2tsampling

R100%
(1)

where σA is the Allan deviation of the frequency
measurement [41] and tsampling is the sampling time.
To obtain σA, we perform a frequency stability meas-
urement in the PLL configuration with the excita-
tion laser turned off (figure 4(a)). From this data, we
derive σA vs. sampling time (figure 4(b)). We choose
an optimal value of σA = 9.7× 10−8 for tsampling =

20 ms and using R100% = 21810 W−1, we obtain

NEP= 890 fW
√
Hz

−1
. This value is two orders

of magnitude lower than in our previous approach

(NEP= 90 pW
√
Hz

−1
) [18].

The sensitivity of NMS is now comparable
to commercially available avalanche photodetectors
(APDs) for the same spectral range with NEP=

200 fW
√
Hz

−1
(Thorlabs APD130A(/M)). APDs are

highly sensitive, but also overload quickly. Compared
to these commercial devices, NMS-based devices
show a higher dynamic range (84 dB vs. 69 dB—both
for 1 s integration time) and can easily detect hun-
dreds of µW (details in supplementary information).

To assess themeasurement speed ofNMS,we sim-
ulate time-dependent laser heating in our sample and
extract a response time for our mechanical system of
τ = 800 µs (simulations in supplementary informa-
tion), which is in line with experimental data on sim-
ilar devices [37, 39]. The fast response time, allows us
to sweep the excitation energy rapidly and we obtain
the ∆f vs. Eγ traces presented above in a matter of
seconds.

3. Discussion

We presented a simplified and improved method
of nanomechanical absorption spectroscopy. With a

sensitivity of NEP= 890 fW
√
Hz

−1
and a response

time τ = 800 µs, the method now is a promising
alternative to classical optical approaches, whilst it
overcomes long-standing limitations. At the same
time, we show that using SiN as a reference mater-
ial provides a robust and straightforward calibration.
We demonstrated the broad applicability of NMS by
spectroscopically characterizing a 2D semiconductor,
a layered plasmonic super-crystal and a novel 2D anti-
ferromagnet. The key points for the improvement
of the measurement sensitivity are stress reduction
in the SiN membranes and thermal decoupling of
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the 2D material, which leads to enhanced responsiv-
ity and improved sensitivity. The responsivity almost
entirely depends on the thermal properties of the
SiN membrane. Therefore, we expect a sensitivity
mostly independent of the thermal properties of the
2Dmaterials (details in supplementary information).
To further reduceNEP, we could use temperature reg-
ulation of the sample to controllably minimize the
tensile stress σ0. Upon cooling the sample, the silicon
frame shrinks more than the suspended SiN mem-
brane, due to their difference in thermal expansion
coefficient. This reduces the stress in the suspended
SiN and would allow measuring very close to σ0 = 0,
whichwouldmean further increased responsivity and
thus improved sensitivity. We note that in compar-
ison to our previous experiments, the 2D material
is not suspended in this work but in direct contact
with the SiN. This changes the dielectric environment
of the 2D material and can affect excitons and other
quasiparticles in 2D materials. We find that this has
a large impact on photoluminescence measurements,
where it completely suppresses the emission (see sup-
plementary information), but does not affect absorp-
tion spectra [42]. The suppressed emission suggests a
very low quantum yield (<10−6), which justifies the
assumption that all the absorbed light is converted
into heat and therefore detected by NMS.

We also aim to characterize 2D materials at low
temperatures using NMS. In the limit of T→ 0 K,
the specific heat of any material goes to zero and
along with it the thermal conductivity κ and thermal
expansion coefficient α. If α decreases faster than
κ, our method will not work anymore, because the
responsivity is proportional to α

κ [23]. To exclude
this scenario, we do preliminary measurements of
the responsivity of a bare SiN membrane as a func-
tion of temperature. For this, we use a membrane
with higher pre-stress (σ0 = 240MPa) to avoid buck-
ling upon cooldown and find that even at 4.2 K,
the membrane shows considerable responsivity (see
supplementary information). This paves the way for
future experiments at low temperatures andwill allow
the unlocking of exciting physics in a large range of
2D materials.
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1. Supplementary information

1.1. Phase locked-loop measurements

All resonance frequency measurements were performed using a lock-in amplifier MFLI from Zurich In-

struments. To set up the phase-locked-loop (PLL), we first sweep the drive frequency and then use this

frequency and phase information to lock onto the resonance using the built-in PLL functionality of the lock-

in amplifier. We choose a PLL bandwidth of 1 kHz and a resolution bandwidth of 5 kHz. To improve the

stability and speed of the PLL, we use the lock-in amplifier’s PLL advisor to optimize the feedback param-

eters. For the frequency stability measurements (Fig. 4a), we adjust the drive voltage just below the onset

of the non-linearities and try to avoid external noise sources. We use a temperature controller to stabilize

the sample temperature at T = 300K. To account for the remaining thermal drift in our measurements, we

perform a linear correction on the measured frequency traces.

1.2. Finite element method (FEM) simulations

To simulate laser heating in our samples, we use the structural mechanics and heat transfer module of

Comsol Multiphysics (version 6.0). The device geometry including the under-laying silicon frame is shown

in Supplementary Fig. 1a. Next, we implement a Gaussian heat source centrally on the TMD (Pabs=10 µW,

rlaser = 500 nm) and calculate the resulting temperature profile (Supplementary Fig. 1b). To estimate the

saturation power of our detector, we increase the amount of absorbed laser power until we reach the damage

threshold of the TMD, which we expect at an average temperature of Tmax ≈ 550K in the TMD. According

to our simulations, this value is reached at Pabs = 145µW. To calculate the dynamic range, we divide

the maximum power by the minimum detectable power (Pmin = NEP
√
BW ) for an integration time of 1 s

(BW =
√
1Hz). We calculate a ratio of 2.3× 108, which expressed in decibel yields 84 dB.

We also use our simulation model to assess the effects of the thermal conductivity of the 2D material on

the responsivity of our approach. To this end, we simulate the responsivity of our hybrid-resonator (sketch

of sample geometry Supplementary Fig. 1a) whilst varying the thermal conductivity of the 2D material

over orders of magnitude from 0.5 to 500Wm−1K−1, around the literature value of ∼ 50Wm−1K−1. The

simulations nicely reproduce the measured frequency shift (compare Fig. 1e main text). Varying the thermal

conductivity over orders of magnitude results in a variation in the responsivity of 3.3%. We believe that

this illustrates that the thermal properties of the 2D material only play a secondary role and should have a

small effect on the overall responsivity of the system.

Finally, we want to assess if the laser-induced heating in our samples has an effect on the thermal

properties of the materials employed in our samples. We can estimate the average temperature raise due

to laser illumination from simulations and from back-of-the-envelope estimates. At the photon energy

corresponding to the maximal absorption (around 2.7 eV, Fig. 2a), the resonator absorbs 170 nW (Pinc =

0.97 µW, Abs = 17.5%) of laser power. According to our simulations, this raises the average temperature

of the suspended region (SiN + TMD) by ∼140 mK. Alternatively, we can analytically estimate the change

in temperature from the experimentally measured downshift in frequency (∆f) at this amount of absorbed
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light. Using the equations from the main text yields a value agreeing with the outcome of the simulations:

∆T =
2(1− ν)∆fσ0

Eαf0
=

2(1− 0.23) · 1575Hz · 15.6MPa

250GPa · 2.2 ppmK−1 · 425.4 kHz
= 162mK (1)

This change in temperature is negligible compared to 300K, our measurement temperature, and we believe

that it is reasonable to assume the thermal conductivity to be constant. The agreement between simulations

and analytical estimates furthermore confirms the validity of the simulations.

Supplementary Figure 1. FEM Simulations. a, Sketch of the device geometry b, Temperature profile

upon laser illumination c, Resulting average temperature in the 3-layer WS2 sample. d Simulated time

response of the average temperature in the TMD as laser heating is introduced at t = 0. We extract a

response time of τ = 800 µs. To determine the thermal response time, we simulate the average temperature

of the TMD vs. time after turning on the illumination (Supplementary Fig. 1d). We extract a response

time of τ ≈ 800 µs. e, Simulated frequency shift vs. absorbed laser power analogue to Fig. 1e from the

main text. We vary the thermal conductivity of the 2D materials over orders of magnitude and find 3.3%

variation in responsivity.

1.3. Temperature depended responsivity

We aim to extend our NMS measurements to low temperatures. Upon cooling, the thermal constants of

the SiN membrane change, which will affect the responsivity (R100% ∼ α
κ ). To ensure that our measurements

will work at low temperatures we perform preliminary tests with a bare SiN membrane (Norcada NX5150A).

The membrane has higher built-in stress (σ0 =240MPa) to avoid buckling when the sample is cooled. In

Supplementary Fig. 2a,b, we show the measured responsivity and the fundamental resonance frequency as

a function of cryostat temperature. At liquid helium temperature, we find a responsivity comparable to the

room temperature value. We conclude that NMS will work over a large range of temperatures.
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Supplementary Figure 2. Responsivity vs. device temperature. a, Responsivity of a SiN membrane

(with σ0 = 240MPa) as a function of cryostat temperature. b, Simultaneously obtained resonance frequency

of the sample.

1.4. Photoluminescence measurements

To estimate the portion of light that the TMD emits, which is therefore not converted into heat, we look

at the quantum yield of comparable samples. In Ref. [1] they use photoluminescence (PL) measurements to

determine the quantum yield of MoS2 to be on the order of 10−5 - 10−6 for 2-6-layer samples and 4× 10−3

in the limit of monolayer thickness. These numbers suggest that the emitted light is much smaller than

the amount of absorbed light and thus can be neglected. Of course, the quantum yield depends on many

factors and can be significantly higher under certain conditions. However, in our samples, we do not observe

any PL from the TMD, only background signal from the SiN as shown below (Supplementary Fig. 3). The

exact mechanism behind this suppression of emission is not entirely clear to us, but we regularly observe

this effect, when TMDs are placed directly on SiN. The suppressed emission indicates a very small quantum

yield for our samples and thus we think it is safe to assume that all the absorbed light is transferred into

heat and detected by NMS.
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Supplementary Figure 3. Supressed photoluminescence on silicon nitride. Photoluminescence

spectra for the trilayer WS2 sample from the main text. We observe a broad background signal instead of

pronounced emission peaks.

1.5. Background substraction

In order to account for the absorption in the underlying SiN membrane, we implement a background

subtraction. Since the laser beam first illuminates the 2D material and then the transmitted light falls on the

SiN membrane, the total absorption coefficient is given by: Abstotal = Abs2DM+(1−Abs2DM)AbsSiN, which

is the quantity we measure in our experiments (multiple reflections do not change this result significantly).

Rearranging the equation yields:

Abs2DM =
Abstotal −AbsSiN

1−AbsSiN
, (2)

which allows us to correct for the absorption in the SiN membrane. We perform the correction assuming

a constant absorption of AbsSiN = 0.5%, which is justified for most of the optical spectrum but might

underestimate the absorption of SiN towards the UV range. In this region, the 2D material absorbs a larger

fraction of light, such that the correction overall has a smaller effect. To illustrate the effect of the correction

on the spectra, we show the plots with and without correction in linear and log-scale (Supplementary Fig. 4).

We find a noticeable change towards the low energy end of the spectra, where the absorption in the 2D

material is low.
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Supplementary Figure 4. Background subtraction. We plot the extracted absorption for the three

samples shown in the main text with (blue) and without (red) accounting for the absorption in underlaying

SiN membrane.
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