
Freie Universität Berlin

Department of Mathematics and Computer Science
Institute of Computer Science

Doctoral Dissertation

On Information-centric Resiliency and
System-level Security in Constrained, Wireless

Communication

Dissertation zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.) am

Fachbereich Mathematik und Informatik der Freien Universität Berlin

vorgelegt von

M.Eng. Peter Kietzmann
peter@kietzmann.cc

Berlin 2023

Erstgutachter
Prof. Dr. Matthias Wählisch

Technische Universität Dresden und Freie Universität Berlin

Zweitgutachter
Prof. Dr. Thomas C. Schmidt

Hamburg University of Applied Sciences

Drittgutachter
Dr. Nils Wisiol

Advanced Micro Devices (AMD)

Tag der Disputation
03.06.2024

Abstract

The Internet of Things (IoT) interconnects many heterogeneous embedded devices either lo-
cally between each other, or globally with the Internet. These things are resource-constrained,
e.g., powered by battery, and typically communicate via low-power and lossy wireless links.
Communication needs to be secured and relies on crypto-operations that are often resource-
intensive and in conflict with the device constraints. These challenging operational conditions
on the cheapest hardware possible, the unreliable wireless transmission, and the need for pro-
tection against common threats of the inter-network, impose severe challenges to IoT networks.
In this thesis, we advance the current state of the art in two dimensions.
Part I assesses Information-centric networking (ICN) for the IoT, a network paradigm that

promises enhanced reliability for data retrieval in constrained edge networks. ICN lacks a lower
layer definition, which, however, is the key to enable device sleep cycles and exclusive wireless
media access. This part of the thesis designs and evaluates an effective media access strategy
for ICN to reduce the energy consumption and wireless interference on constrained IoT nodes.
Part II examines the performance of hardware and software crypto-operations, executed on off-

the-shelf IoT platforms. A novel system design enables the accessibility and auto-configuration
of crypto-hardware through an operating system. One main focus is the generation of random
numbers in the IoT. This part of the thesis further designs and evaluates Physical Unclon-
able Functions (PUFs) to provide novel randomness sources that generate highly unpredictable
secrets, on low-cost devices that lack hardware-based security features.
This thesis takes a practical view on the constrained IoT and is accompanied by real-world

implementations and measurements. We contribute open source software, automation tools, a
simulator, and reproducible measurement results from real IoT deployments using off-the-shelf
hardware. The large-scale experiments in an open access testbed provide a direct starting point
for future research.

Zusammenfassung

Das Internet der Dinge (IoT) verbindet eine Vielzahl heterogener eingebetteter Geräte entweder
lokal untereinander, oder mit dem globalen Internet. Diese Dinge sind ressourcenbeschränkt,
beispielsweise von einer Batterie betrieben, und kommunizieren typischerweise über verlust-
behaftete Drahtlosverbindungen mit geringem Leistungsverbrauch. Kommunikation muss ab-
gesichert werden und stützt sich dabei auf Krypto-Operationen, die oft ressourcenintensiv sind
und mit den begrenzten Ressourcen der IoT-Geräte in Konflikt stehen. Diese anspruchsvollen
Betriebsbedingungen auf möglichst kostengünstiger Hardware, eine unzuverlässige Drahtlosüber-
tragung und die nötige Absicherung gegen Bedrohungen des Inter-Netzwerks stellen die IoT-
Netze vor große Herausforderungen. In dieser Arbeit wird der aktuelle Stand der Technik auf
zwei Ebenen optimiert.
Teil I dieses Manuskripts evaluiert den Einsatz von Information-centric Networking (ICN) im

IoT. Dieses Netzwerkparadigma verspricht eine verbesserte Zuverlässigkeit bei der Datenüber-
mittlung in ressourcenbeschränkten Rand-Netzwerken. Informationszentrischen Netzen fehlt
eine Standardisierung der unteren Kommunikationsschicht. Diese ist jedoch essenziell um Geräte-
Schlafzyklen und exklusiven Zugriff auf das Funkmedium zu ermöglichen. Dieser Teil der Ar-
beit entwickelt und evaluiert eine effektive Medienzugriffsstrategie für ICN im IoT, um den
Energieverbrauch der ressourcenbeschränkten Knoten sowie die Interferenz auf dem Funkkanal
zu reduzieren.
Teil II dieses Manuskripts untersucht die Leistungsfähigkeit von Hardware- und Software-

Kryptooperationen, die auf handelsüblichen IoT-Plattformen ausgeführt werden. Ein neuer Sys-
tementwurf ermöglicht die Zugänglichkeit und Autokonfiguration von Krypto-Hardware durch
ein Betriebssystem. Ein Hauptaugenmerk liegt auf der Erzeugung von Zufallszahlen im IoT. In
diesem Teil der Arbeit werden Physical Unclonable Functions (PUFs) entwickelt und evaluiert,
um neuartige Zufallsquellen bereitzustellen, die hochgradig unvorhersehbare Zahlen auf kostengün-
stigen IoT-Geräten erzeugen, denen es an hardwarebasierten Sicherheitsfunktionen fehlt.
Diese Arbeit nimmt einen praktischen Blick auf das ressourcenbeschränkte Internet der Dinge

ein und wird von realen Implementierungen und Messungen begleitet. Wir stellen quellof-
fene Software, Automatisierungswerkzeuge, einen Simulator und reproduzierbare Messergeb-
nisse aus realen IoT-Implementierungen mit handelsüblicher Hardware zur Verfügung. Die
groß angelegten Experimente in einer frei zugänglichen Testumgebung bieten einen direkten
Anknüpfpunkt für zukünftige Forschung.

Selbstständigkeitserklärung

Ich erkläre gegenüber der Freien Universität Berlin, dass ich die vorliegende Dissertation selbst-
ständig und ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt
habe. Die vorliegende Arbeit ist frei von Plagiaten. Alle Ausführungen, die wörtlich oder
inhaltlich aus anderen Schriften entnommen sind, habe ich als solche kenntlich gemacht. Diese
Dissertation wurde in gleicher oder ähnlicher Form noch in keinem früheren Promotionsverfahren
eingereicht.

Mit einer Prüfung meiner Arbeit durch ein Plagiatsprüfungsprogramm erkläre ich mich einver-
standen.

Berlin, den 14.07.2023

Peter Kietzmann

Acknowledgments

The start of my journey towards this dissertation was a matter of coincidence and curiosity.
Underway, I was lucky to meet many people that were willing to share their knowledge with me,
supported me, and motivated me. I would not have finished this journey without these people.
This endeavor would not have been possible without my supervisors Thomas Schmidt and

Matthias Wählisch. Their guidance, experience, and patience was invaluable to me. And
so was the financial support which never raised concerns in terms of travelling or purchase of
equipment. Working in their team has taught me many things beyond the pure technical matter:
The need for a detailed analysis of problems from the very root, the importance of an excellent
presentation, and the relevance of sharing and discussing results with the community, which
sometimes is a very cumbersome process. Thanks for giving me a chance back then, despite my
differing educational path, and helping me to grow professionally.
I would like to thank Nils Wisiol and his careful feedback on Physically Unclonable Functions

which has significantly helped to improve this work. Special thanks should go to Dirk Kutscher
who has shared his experience and knowledge on ICN with me. Thanks for many stimulating
discussions and our cooperation.
I am grateful for my colleagues of the iNET working group who became friends – for their

assistance, for motivating me, for their comradeship and all the fun times throughout those
years. And thank you Bobo for spreading patience in the office and companion me on many
travels! Special thanks should also go to my colleagues of the ilab working group at FU Berlin
who accompanied and assisted me in many studies.
A huge part of this work has been done in practical work on IoT and ICN. Hence, I am thankful

for all the work that has been done on RIOT by the community, and on CCN-lite which was
originally contributed by “the people from Basel”. A substantial part of my experimentation
effort would not exist without these tools.
Finally, I would like to express my deepest gratitude to the best family and friends in the world,

for being there for me the whole time, for their unconditional love, support, and encouragement.
Not only throughout my years as a PhD student, but all the years before which led me here,
and those to come!
The work in this thesis was supported in part by the German Federal Ministry for Education

and Research (BMBF) within the projects I3 – Information Centric Networking for the Indus-
trial Internet, PIVOT – Privacy-Integrated design and Validation in the constrained IoT, and
the HAW Hamburg project SmartIoT.

Bibliographical Notes

This dissertation is based on the following seven peer-reviewed research papers.

Part 1

• Chapter 3 is based on (alphabetical ordering of author surnames)

C. Gündogan, P. Kietzmann, M. Lenders, H. Petersen, T. C. Schmidt, and M. Wählisch.
NDN, CoAP, and MQTT: A Comparative Measurement Study in the IoT. In Proc. of 5th
ACM Conference on Information-Centric Networking (ICN), pages 159–171, New York,
NY, USA, September 2018. ACM. URL https://doi.org/10.1145/3267955.3267967

Conception: I designed this paper project together with the co-authors, and conducted
most of the literature review.

Execution: I led the experiment execution, focusing on the deployment and measure-
ment methodology in a large scale testbed with hundreds of constrained
nodes, for which I contributed experiment automation tools, and the data
curation. I implemented a significant part of the embedded software, which
includes the implementation of a novel network protocol suite, that was
compared to existing standard IoT-protocols.

Reporting: I was instrumental in drafting the article, proofreading it, and resolving
the issues raised by the reviewers. I was also responsible for the data
visualization of the paper.

• Chapter 4 is based on

P. Kietzmann, C. Gündogan, T. C. Schmidt, O. Hahm, and M. Wählisch. The Need for
a Name to MAC Address Mapping in NDN: Towards Quantifying the Resource Gain. In
Proc. of 4th ACM Conference on Information-Centric Networking (ICN), pages 36–42,
New York, NY, USA, September 2017. ACM. URL https://dl.acm.org/doi/10.1145/

3125719.3125737

Conception: I am responsible for the research concept. I shaped the paper project in
agreement with all co-authors, and under consideration of the literature
review that I conducted myself.

i

https://doi.org/10.1145/3267955.3267967
https://dl.acm.org/doi/10.1145/3125719.3125737
https://dl.acm.org/doi/10.1145/3125719.3125737

Execution: I was responsible for the entire embedded software implementation for the
measurement study, as well as the scripting for the experiment deployment,
experiment automation, and the data analysis.

Reporting: The paper was written, submitted, and edited by myself as the responsible
author, supervised by the co-authors.

• Chapter 5‡ is based on

© 2022 IEEE. Reprinted, with permission, from P. Kietzmann, J. Alamos, D. Kutscher,
T. C. Schmidt, and M. Wählisch. Long-Range ICN for the IoT: Exploring a LoRa System
Design. In Proc. of 21th IFIP Networking Conference, pages 1–9, Piscataway, NJ, USA,
June 2022. IEEE Press. URL https://doi.org/10.23919/IFIPNetworking55013.2022.

9829792

Conception: I derived and formulated the research concept of this paper, based on dis-
cussions and feedback provided by the co-authors. I conducted the liter-
ature review by myself, which acted as the basis for the initial research
idea.

Execution: I developed the technical concept of the simulator for the experimentation.
The implementation was carried out by the co-authors, who I guided in
the development of the software and execution of the simulations. The
data analysis was performed by myself, incorporating feedback from my
co-authors.

Reporting: I am responsible for the paper visualization and led the paper writing,
contributing a significant part of the text. I also submitted the article and
acted as the responsible author.

• Chapter 6 is based on

P. Kietzmann, J. Alamos, D. Kutscher, T. C. Schmidt, and M. Wählisch. Delay-Tolerant
ICN and Its Application to LoRa. In Proc. of 9th ACM Conference on Information-
Centric Networking (ICN), pages 125–136, New York, September 2022. ACM. URL https:

//doi.org/10.1145/3517212.3558081

Conception: I designed the significant part of the research goals and the solution space,
which is in part based on the joint research efforts of the former Chapter 5.

Execution: I designed the experimental setup which is built upon real hardware, a
novel custom gateway, and an existing network emulator. I implemented a
significant part of the software, conducted all experiments, and performed
the data analysis. Specific parts of the lower layer protocol implementations
have been carried out by the co-authors, who I supervised in order to align
with the overall architecture.

ii

https://doi.org/10.23919/IFIPNetworking55013.2022.9829792
https://doi.org/10.23919/IFIPNetworking55013.2022.9829792
https://doi.org/10.1145/3517212.3558081
https://doi.org/10.1145/3517212.3558081

Reporting: I led the reporting and visualization, submission, and editing of the paper,
as the responsible author. The text was written mostly by myself and
in part by the co-authors who also provided feedback, proofreading, and
corrections.

Part 2

• Chapter 8 is based on

P. Kietzmann, L. Boeckmann, L. Lanzieri, T. C. Schmidt, and M. Wählisch. A Per-
formance Study of Crypto-Hardware in the Low-end IoT. In Proc. of Embedded Wire-
less Systems and Networks (EWSN’21), New York, USA, February 2021. ACM. URL
https://dl.acm.org/doi/10.5555/3451271.3451279

Conception: I am responsible for the research idea, conducted the literature review, and
derived the proposed research goals together with the co-authors. Based on
our discussion, I designed a significant part of the solution space by myself.

Execution: I implemented the majority of test code and performed the experiment
execution. Parts of the embedded driver implementations for the variety
of heterogeneous test devices have been carried out by the co-authors, who
I coordinated for the software development.

Reporting: I wrote, submitted, and edited the paper, as the responsible author. The
co-authors contributed to the data analysis and provided feedback, and
proofreading, which I have incorporated for the paper submission.

• Chapter 9 is based on

P. Kietzmann, T. C. Schmidt, and M. Wählisch. A Guideline on Pseudorandom Number
Generation (PRNG) in the IoT. ACM Comput. Surv., 54(6):112:1–112:38, July 2022. URL
https://dl.acm.org/doi/10.1145/3453159

Conception: I developed the research idea together with the co-authors, and was re-
sponsible for the literature review. The experimental solution space was
mainly derived by myself.

Execution: I contributed all implementations for the experimental study and conducted
the data acquisition and data curation. The analysis of the performance
measurements was done by myself, and the interpretation of the statistical
test results was carried out together with the co-authors.

Reporting: I led the visualization of this paper, and the text was written together with
the co-authors who provided feedback, proofreading, and corrections. I
submitted the article and acted as the responsible author.

iii

https://dl.acm.org/doi/10.5555/3451271.3451279
https://dl.acm.org/doi/10.1145/3453159

• Chapter 10‡ is based on

© 2023 IEEE. Reprinted, with permission, from P. Kietzmann, T. C. Schmidt, and
M. Wählisch. PUF for the Commons: Enhancing Embedded Security on the OS Level.
IEEE Transactions on Dependable and Secure Computing, 2023. URL http://doi.org/

10.1109/TDSC.2023.3300368

Conception: I am responsible for the research concept, the literature review, the exper-
imental design, and the solution space. My co-authors provided feedback
and suggestions, which I utilized to structure the paper.

Execution: I conducted all implementations, performed the experiments in a large
scale testbed, and performed the significant part of the data analysis, in
discussion with the co-authors.

Reporting: The paper was written, submitted, and edited by myself as the responsible
author. My co-authors provided feedback, proofreading, and corrections.

‡ In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of FU Berlin’s products or services. Internal or personal use of this material is permitted. If
interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for
creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_
standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink. If
applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies
of the dissertation.

iv

http://doi.org/10.1109/TDSC.2023.3300368
http://doi.org/10.1109/TDSC.2023.3300368
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Contents

1 Introduction 1
1.1 Networking the Internet of Things . 2
1.2 Securing the Internet of Things . 4
1.3 Research Questions . 6

1.3.1 Robust and Energy-efficient Wireless Edge Communication 6
1.3.2 System-level Security on Constrained Embedded Devices 7

1.4 Methods . 9
1.5 Contributions and Document Outline . 11

I Robust and Energy-efficient Wireless Edge Communication 15

2 Motivation and Problem Statement 17
2.1 Protocols for Data Retrieval in the IoT . 17
2.2 Media Access in Wireless ICN Networks . 19
2.3 Long-range ICN and Delay-tolerance at the Edge 21

3 Potentials of ICN for Constrained IoT Networks 23
3.1 Background and Use Cases . 23

3.1.1 CoAP . 23
3.1.2 MQTT . 24
3.1.3 ICN Protocols . 24
3.1.4 Protocol Comparison . 25

3.2 Implementation and Experimental Setup . 26
3.3 Evaluation . 28

3.3.1 Analyses and Metrics . 28
3.3.2 Protocol Stack Sizes . 29
3.3.3 Security Overheads . 30
3.3.4 Single-hop with Scheduled Publishing . 31
3.3.5 Single-hop with Unscheduled Publishing 32
3.3.6 Multi-hop Topologies . 33

3.4 Related Work . 37
3.4.1 ICN and IoT . 37

v

3.4.2 Interoperation and Adoption of CoAP and MQTT in ICN 38
3.4.3 Performance evaluation of CoAP and MQTT 38

3.5 Conclusions . 38

4 MAC Address Mapping in ICN 41
4.1 Problem Statement and Related Work . 41

4.1.1 The IoT Use Case . 41
4.1.2 Current Solutions and Challenges . 42

4.2 Design Space by Instrumenting Existing Link Layer Features 43
4.2.1 Broadcast or Unicast for Interest or Data 43
4.2.2 The Case for Link Layer Assistance . 44

4.3 Evaluation . 45
4.3.1 Experimental Setup . 45
4.3.2 Single-hop Scenario . 46
4.3.3 Multi-hop Scenario . 50

4.4 Conclusions . 51

5 Decentralized MAC and Network Layer for LoRa 53
5.1 Background and Challenges . 53
5.2 Design Goals . 55
5.3 ICN over LoRa . 56

5.3.1 Mapping DSME to LoRa . 56
5.3.2 A MAC for ICN using a LoRa-Proxy . 57

5.4 Simulation Environment . 59
5.5 Evaluation . 60

5.5.1 Data from Node to Gateway . 60
5.5.2 Data from Gateway to Node . 63

5.6 LoRa-ICN Convergence Layer . 64
5.7 Related Work . 66
5.8 Conclusions . 67

6 Delay-tolerant Networking with ICN 69
6.1 Background . 69

6.1.1 LoRa and LoRaWAN . 69
6.1.2 DSME and LoRa . 70

6.2 Problem Statement . 71
6.3 System Overview . 73

6.3.1 Mapping of ICN to DSME . 73
6.3.2 Gateway Node Requirements . 74
6.3.3 Delay-tolerant ICN Protocols . 74

vi

6.4 Implementation and Deployment . 76
6.4.1 System Setup . 76
6.4.2 Protocols for Data Retrieval . 77

6.5 Evaluation . 79
6.5.1 Experimental Setup . 79
6.5.2 Completion Time and Resilience . 81
6.5.3 Communication Overhead . 83
6.5.4 System Overhead . 85

6.6 Related Work . 86
6.7 Conclusions . 87

II System-level Security on Constrained Embedded Devices 89

7 Motivation and Problem Statement 91
7.1 Heterogeneous Crypto-hardware and Software in the IoT 91
7.2 Revisiting Randomness Generation on Embedded Devices 92
7.3 Hardware-intrinsic Sources of Entropy and Uniqueness 95

8 Analysis and Integration of Cryptographic Backends 97
8.1 A Crypto-subsystem in RIOT . 97

8.1.1 Design Space . 98
8.1.2 Integration of Crypto Modules . 100

8.2 Experimental Setup . 101
8.2.1 Platform Overview . 101
8.2.2 Measured Resources . 102

8.3 The Impact of a Software Implementation . 103
8.4 Basic Crypto-hardware Acceleration . 104

8.4.1 Processing Time . 104
8.4.2 Energy Consumption . 107
8.4.3 Memory Requirements . 108

8.5 ECC Hardware Acceleration . 109
8.5.1 Processing Time . 109
8.5.2 Energy Consumption . 110
8.5.3 Memory Requirements . 111

8.6 Comparison of Speed, Energy, and Memory . 112
8.7 The Impact of Driver Implementations . 114

8.7.1 Vendor Driver and Concurrent Access . 114
8.7.2 Power Management and State Handling 115

8.8 Related Work . 116

vii

8.9 Conclusions . 118

9 Random Number Generation in the Low-end IoT 119
9.1 The Impact of Random Input on IoT Security . 119

9.1.1 Cryptographic Taxonomy . 120
9.1.2 Embedded Device Taxonomy . 121
9.1.3 System-centric Taxonomy . 121

9.2 Generating Randomness in the IoT . 122
9.2.1 General Purpose PRNGs . 123
9.2.2 Cryptographically Secure PRNGs . 123
9.2.3 A Note on Re-seeding CSPRNGs . 126
9.2.4 System Components for Generating Randomness 127

9.3 Randomness in IoT Operating Systems . 128
9.3.1 General Requirements . 128
9.3.2 General Purpose PRNGs . 128
9.3.3 Crypto-secure PRNGs . 129
9.3.4 IoT Operating Systems . 131

9.4 Statistical Test Suites for Random Numbers . 133
9.4.1 NIST Statistical Test Suite . 134
9.4.2 DIEHARDER Random Number Test Suite 134
9.4.3 Other Test Suites . 134

9.5 Hardware Generated Random Numbers . 135
9.5.1 SRAM PUF Seeder . 137
9.5.2 Statistical Analysis with NIST STS . 139
9.5.3 Performance Analysis . 141

9.6 Software Generated Pseudo-random Numbers . 143
9.6.1 Complex Generators . 144
9.6.2 Lightweight Generators . 145
9.6.3 Statistical Analysis with NIST STS . 146
9.6.4 Statistical Analysis with DIEHARDER 147
9.6.5 Statistical Analysis with TestU01 . 149
9.6.6 Performance Analysis . 150
9.6.7 Recommendations on PRNGs . 154

9.7 Random Numbers on AI Platforms . 155
9.8 Discussion: Hardware or Software for Randomness in the IoT 158
9.9 Conclusions . 160

10 Seed- and Key Generation with Physical Unclonable Functions 163
10.1 Problem Statement and Related Work . 163

viii

10.1.1 Properties of Uninitialized SRAM . 164
10.1.2 Empirical Evaluation of PUFs . 165
10.1.3 Random Seed and Key Generation . 167
10.1.4 Security Analysis of PUFs . 168

10.2 Experimental Setup . 169
10.2.1 Testbed Environment . 169
10.2.2 Hardware Platform . 169
10.2.3 Software Platform . 170

10.3 Large Field Study of Uninitialized SRAM . 170
10.3.1 Inter-device Correlation . 170
10.3.2 Analysis of Static Bias . 171
10.3.3 Analysis of Aging . 172

10.4 PUF Design for the RIOT OS . 173
10.4.1 Compile-time Configuration . 174
10.4.2 Integration into OS Startup Routine . 175
10.4.3 Detection of Soft Resets . 175
10.4.4 Random Seed Generation . 176
10.4.5 Key Generation . 177
10.4.6 Access to PUF Primitives . 178

10.5 Evaluation of OS-integrated SRAM PUFs . 178
10.5.1 Estimation of the Min. Entropy Convergence 178
10.5.2 Blockwise Evaluation of the Uniqueness 179

10.6 Analysis of Seed and Key Generation . 181
10.6.1 Analysis of Random Seeds . 181
10.6.2 Analysis of the Fuzzy Extractor for Key Generation 181
10.6.3 Resource Overhead . 183

10.7 Security Analysis . 188
10.7.1 Assets . 188
10.7.2 Adversaries . 188
10.7.3 Surfaces . 189
10.7.4 Threats & Mitigations . 189

10.8 Conclusions . 191

11 Conclusions and Outlook 193

List of Figures 197

List of Tables 201

Bibliography 203

ix

x

Chapter 1

Introduction

The Internet of Things (IoT) is evolving and an increasing number of controllers in the field
is augmented with network interfaces that connect to the global Internet. The prevalent use
case forecasted for the IoT consists of billions of constrained things that are connected via
low-power and lossy wireless links. In practice, these things are resource-constrained embedded
devices (i.e., class 0–2 [58]) with limited processing capabilities, memory, and energy – perhaps
powered intermittently. Operated from a small battery for as long as possible (years), common
deployments aim to reduce cost and manual maintenance efforts for the great number of foreseen
IoT nodes. These tiny and cheap devices are severely challenged by the current way of connecting
to the Internet and require communication technologies that bridge the scale to the global inter-
network. At the same time, low-power wireless transmissions introduce significant challenges
such as packet loss, which interferes with service dependability and challenges communication
protocols.

IoT deployments more and more distribute computational complexity to the edge of the
network in order improve the network performance (e.g., latency, bandwidth utilization) and
to simplify content sharing in machine-type communication scenarios. This demands for a
decentralized network architecture, possibly increasing the resource consumption on edge nodes.
The constraints of IoT devices, and the arising communication requirements are in conflict and
challenge practical IoT deployments.

Security is essential in the IoT, similarly to conventional machines that connect to the Internet.
Data confidentiality, integrity, availability, and authenticity [282] rely on crypto-operations that
are resource-intensive or infeasible to process on resource-constrained devices, and in conflict
with limited energy resources. Random numbers provide essential input to crypto-operations,
but likewise are complex to obtain [199]. In practice, many IoT deployments consist of cheap
embedded devices without security features [58], and readily threaten the IoT [214] as well as
the global Internet [19]. Crypto-accelerators reduce the operational overhead to enable security
on modern IoT devices, but are not available on ultra-constrained platforms that are already
deployed, and conflict with device cost. If available, however, hardware accelerated cryptogra-
phy is a promising solution to enhance the security of future IoT deployments and contributes
to nodal lifetime, but it needs to be exposed carefully, since crypto-accelerators and hardware

1

Chapter 1 Introduction

random number generators are occasionally vulnerable [365]. This demands for reliable (soft-
ware) alternatives. Features of crypto-hardware are largely vendor specific and not sufficiently
integrated into existing (software) libraries, for portability reasons. Manufacturers support their
hardware but reduce flexibility which leads to a vendor lock-in. The heterogeneity of hardware
platforms, software libraries, and crypto APIs threatens the IoT, because security is tied to
the usability of cryptography [133]. This demands for platform-agnostic interfaces that gain
hardware support for heterogeneous devices, which enables usable security for the IoT.

1.1 Networking the Internet of Things

Interoperability plays a central role in networked systems and enables data exchange between
heterogeneous devices, independent of the manufacturer. Communication protocols establish
interoperability and need to consider the constraints of IoT networks to avoid resource depletion.
The choice of a transmission technology is crucial in the IoT, where nodes operate on sparse
battery resources. Low-power radio transmissions, however, may introduce significant packet
loss. Energy consumption and packet loss can be mitigated by the medium access layer. The
higher layer protocols of the network stack enable communication across multiple hops or sites
and need to scale up to larger deployments, while taking into consideration the device constraints
as well as packet loss introduced by unreliable transmissions. This section summarizes common
transmission technologies and protocols in the IoT.

Low-power Wireless Technologies. Wireless communication enables cheap and flexible
deployments of numerous sensors and actuators in the IoT, compared to wired communica-
tion. Limited energy resources on battery driven embedded devices motivated the development
of various optimized wireless technologies, since radio transmissions are one of the most en-
ergy consuming tasks of an IoT device. These wireless technologies are characterized by a low
bandwidth, high latency, packet loss, and a below average frame size compared to common stan-
dards such as IEEE 802.11 (WiFi). Additionally, regional regulations [104] limit the utilization
of certain (Sub-GHz) frequency bands and enforce radio duty cycling.
LoRaWAN [245] is a popular low-power long-range communication system for the IoT that

is suitable for single-site deployments as well as for larger networks. It consists of LoRa, a
physical layer (PHY) that allows for radio communication between 2 and 14 km. A highly
configurable chirp spread spectrum modulation enables robust transmissions at minimal energy
consumption. This modulation introduces on-air times at the order of seconds, though, and duty
cycle regulations limit the effective throughput to a view bit per second in some configurations.
LoRaWAN defines higher-layer protocols for LoRa. A vertically integrated network architecture
organizes media access centrally and enables IoT data publishing of constrained nodes to a
server-based infrastructure.
Bluetooth Low Energy (BLE) [51] introduces networking between embedded sensors or actu-

ators and mobile devices such as smartphones, tablets, or notebooks. BLE offers two modes of

2

1.1 Networking the Internet of Things

operation: a connection-oriented point-to-point mode and a connection-less advertising mode,
both targeting single-hop personal area networks (PANs) at 1Mbps throughput. BT mesh [52]
is standardized on top of BLE, enabling multi-hop topologies, many-to-one, and many-to-many
group communication.
IEEE 802.15.4 [174] is a popular PAN standard for industrial systems and defines low-power

and low-rate physical layers as well as media access control (MAC). The MAC layer specifies dif-
ferent operation modes which can be fully contention-based using Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) for media access, or utilize time- and frequency multiplex-
ing. The IEEE 802.15.4e specification amendment introduces Time Slotted Channel Hopping
(TSCH) which is used by popular automation systems such as ZigBee [417], ISA100.11a [178], or
WirelessHART [390]. Another operation mode is the Deterministic and Synchronous Multichan-
nel Extension (DSME), providing additional features to the synchronized slotframe structure in
order to improve reliability and energy consumption.

Standard Networking Protocols for the IoT. The Internet Engineering Task Force
(IETF) has designed a suite of protocols for serving the needs of constrained IoT networks.
6LoWPAN [272] is an adaptation layer that enables IPv6 communication over constrained
IEEE 802.15.4 links, optionally with 6TiSCH [394, 380, 391] to employ time-slotted media
access. RPL [399] defines IPv6 routing for low-power and lossy networks and arranges nodes in
a multi-hop mesh topology. IPv6 over BLE [278] defines a mapping to enable IP-connectivity
on a single-hop BLE link.
The Constrained Application Protocol (CoAP) [341] offers a lightweight alternative to HTTP

while running over UDP, or DTLS [313] for session security. TCP is traditionally too complex
for constrained nodes, but migrating to the IoT as well [215, 129]. This set of solutions extends
the host-centric paradigm of the Internet to the embedded world of constrained nodes, and puts
IPv6 in place for loosely joining these things. By assigning an IP-address to each constrained
node, their resources become addressable through the Internet, on the end-to-end path. CoAP
got extended by Object Security for Constrained RESTful Environments (OSCORE) [335] which
slowly starts to break the host-centric Internet paradigm into a data-centric approach, securing
data objects rather than end-to-end communication channels like in stream oriented protocols
such as (D)TLS.
Adaptation layers for IPv6 over low-power wide area networks [107] (e.g., LoRaWAN) evolve

and compress large CoAP and IPv6 packets using Static Context Header Compression (SCHC)
[265, 266], to cater to heavily reduced frame sizes. The underlying long-range network still
inherits all its original properties, though [124].

Alternative IoT Protocols. While the IETF community standardizes IoT protocols, com-
panies deploy Message Queuing Telemetry Transport (MQTT) [36], which is adopted by many
cloud services [98]. The protocol implements a publish-subscribe paradigm through a central-
ized broker, which decouples data sinks and sources. An IoT version of that protocol, namely
MQTT-SN [352], reduces memory and bandwidth requirements to save resources on constrained

3

Chapter 1 Introduction

IoT nodes. Similar to CoAP, MQTT-SN uses a connection-less UDP transport, instead of a
notably more complex TCP connection which introduces overhead on constrained nodes.
LwM2M [350] is an application layer protocol for machine-to-machine (M2M) communica-

tion. Standardizing device management, access control, semantic data interoperability, and
software update features, it contributes to device interoperability and secured resource access.
Constrained devices act as clients and communicate with non-constrained servers. Cloud appli-
cations interact with clients via these servers, imposing a server-centric architecture. Different
transport bindings for LwM2M exist and inherit the performance capabilities of the underlying
protocols: CoAP, HTTP, or MQTT.

Information-centric Networking. Doubts in the research community arose whether host-
to-host sessions of IP are the appropriate approach in disruption-prone and lossy wireless IoT
networks, and the data-centric nature at the Internet edge called for rethinking the current IoT
architecture [331]. ICN networks [7] have been identified as promising candidates to replace
the rather complex IETF network stack. A hop-wise data transport and in-network caching
as contributed by Named Data Networking (NDN) [180, 413] bear the potential to increase
robustness of application scenarios in regimes of low reliability and reduced infrastructure.
Following initial concepts [289] and early experimental work [33], the adaptation, analysis, and
deployment of NDN for the IoT became an active research area [219] that advocated the IoT
as a candidate of NDN adoption.

1.2 Securing the Internet of Things

System security depends on data confidentiality, integrity, authenticity, and availability [282] as
well as the usability of the interfaces [133, 3, 267, 300], which is challenged by the heterogeneity
of hardware- and software implementations in the IoT. Deployments of constrained networks
more and more utilize an operating system [97, 98] to make its security benefits accessible to a
wide range of IoT devices. IoT applications built on top of an operating system (OS) benefit
from reduced implementation overhead and enhanced dependability as they reutilize existing,
well-tested code such as network stacks, drivers, or crypto-libraries. The abstraction layer of an
operating system acts as an entry point for a consistent crypto-integration on different layers, to
prevent security and performance pitfalls, while possessing a potentially high developer famil-
iarity through the interface. This section introduces hardware- and software security services of
an IoT operating system.

Implementation of Crypto-operations. The IoT network stack utilizes cryptographic op-
erations to protect data, resources, and identities. Cryptographic keys and nonces are essential
input to these operations and need to be stored in flash memory or RAM, which challenges
resource-constrained class 0 devices that barely provide enough memory to operate a network
stack without security [56]. Common cryptographic algorithms are very complex to process
on these devices and burden the CPU and battery. While researchers tweak crypto-software

4

1.2 Securing the Internet of Things

libraries or configurable hardware implementations (e.g., on FPGAs) in order to improve the per-
formance, and to resist side channel attacks, chip vendors more and more add crypto-accelerators
to their microcontrollers, which improve the performance of crypto-operations executed on
resource-constrained devices. In parallel, similarly to trusted platform modules (TPMs) [136]
for personal computers, so called ‘secure elements’ evolve in the IoT and provide external co-
processors and tamper protected key storages. Keys are produced, stored, and consequently
never leave these devices, increasing their privacy and integrity. Secure elements act as an iso-
lated crypto-processor and operate on the keys derived thereon, keeping the secret material in a
protected storage for a whole lifetime. This shifts the user access to keys towards an ID-based
paradigm. This hardware and software diversity across platforms of multiple vendors, and the
plethora of crypto-libraries poses challenges on a system integration which should (i) utilize
crypto-hardware features optimally, in order to protect delicate key material, (ii) operate fru-
gal on limited battery resources, and (iii) increase usability through a unified interface, which
contributes to systems security.

Generation of Random Numbers. Random numbers are essential in computer systems
to enfold versatility and to enable security. Almost every operating system provides ways to
generate random numbers. Unfortunately, misconceptions about randomness are common in the
design and implementation of operating systems [78]. More than a dozen open and closed source
systems exist that can operate various classes and types of devices. This work is motivated from
the heart of the resource-constrained IoT. Our insights about the creation of random sequences
in the IoT can be applied to all types of devices, though.
True random sequences are generated from random physical processes. Collecting these values

is challenging because underlying processes are slow or do not output continuously, increasing
the resource consumption on constrained nodes. Furthermore, physical device access opens a
side channel attack vector. Tampering with environmental conditions may vary the random-
ness properties of the underlying process. True random number generators (TRNGs) exist on
many IoT platforms as a hardware peripheral – raising the question of the randomness quality
of a forced sequence [365, 82]. In contrast, pseudo-random number generators (PRNGs) are
deterministic algorithms that output sequences with random properties. Cryptographically se-
cure PRNGs (CSPRNGs) provide uniformly distributed random numbers for security services
and remain unpredictable with a security strength [39] of the underlying algorithm (commonly
128, 192, 256 bits). If seeded with sufficient entropy that meets a desired security strength,
(CS)PRNGs expand the seed into long sequences of random numbers, without depending on
true random samples at all times.

Execution of Physical Unclonable Functions. The notion of a Physical Unclonable
Function (PUF) dates back to Pappu et al. [297], and Gassend et al. [121], who describe a
technique to identify integrated circuits based on individual and intrinsic device properties,
introduced by physical process variations during manufacture. PUFs are a promising class of
solutions to provide unique identities, or non-uniform keys across similar devices. At the same

5

Chapter 1 Introduction

time, these physical structures are affected by noise, contributing randomness on a single device.
A body of work has identified SRAMmemory as a suitable PUF [173, 332, 376, 326]. The startup
state of uninitialized memory forms a device unique pattern which acts as a digital fingerprint.
This enables extraction of unpredictable (but reproducible) secrets, as well as random seeds,
which links to random number generation as introduced previously.
SRAM PUFs are particularly attractive for the constrained IoT, since almost every off-the-

shelf platform embeds SRAM on the microcontroller. Low-cost platforms that lack hardware
security features (e.g., a TRNG for seeding) can thus implement PUFs in software without
increasing device cost. This enhances the security for a wide range of nodes that are already
deployed, or will be. The application of software PUFs is not limited to low-cost platforms,
though, but can also bootstrap security hardware such as trusted execution environments [255].

1.3 Research Questions

1.3.1 Robust and Energy-efficient Wireless Edge Communication

Potentials of ICN for Constrained IoT Networks and MAC Address Mapping in
ICN. Low-power and lossy transmissions in wireless IoT networks challenge data reliability.
More severely, error probabilities accumulate in multi-hop networks. Standard IoT protocols
(e.g., CoAP, MQTT-SN) address the constraints of IoT networks and apply retransmissions after
a loss. These protocols base on IP-networking and inherit the underlying end-to-end transport
properties. ICN operates fundamentally differently and contributes a hop-wise data transport.
Hop-wise retransmissions and caching potentially reduce link load as well as cross traffic. These
features are particularly attractive for low-power networks that are heavily affected by lossy
wireless links. ICN lacks the concept of a link layer, though. Interests are usually broadcasted,
contributing to path diversity. Blind broadcast forwarding, however, conflicts with limited
device resources and excludes reliability mechanisms of common low-power radios, that are
only employed on unicast (MAC) traffic. The potential benefits of a hop-wise transport in
ICN, together with the surprisingly unexplored field of an ICN MAC layer mapping lead to the
following research questions, which are further discussed in Chapter 3 and Chapter 4.

Research Questions

• Can ICN increase reliability and reduce energy demands in lossy wireless networks,
compared to standard IoT protocols?

• What is the resource overhead of using broadcast in constrained wireless ICN net-
works, instead of unicast?

Decentralized MAC and Network Layer for LoRa. The LoRa PHY provides attractive
properties for the IoT (i.e., energy-efficient long-range communication), but the challenging
wireless domain led to a network design (LoRaWAN) that is unreliable and prone to wireless in-

6

1.3 Research Questions

terference, largely uplink oriented, and highly centralized, requiring a permanent infrastructure
backhaul to a network server. The potential benefits of a wireless MAC layer that enables robust
communication for battery operated IoT devices, and the immanent hop-wise caching features
of ICN lead to the following research questions, which are further discussed in Chapter 5.

Research Questions

• How can we enable reliable and bidirectional LoRa wireless transmissions?

• How can we decentralize LoRa networks in order to simplify data sharing at the
edge, without requiring a permanent infrastructure backhaul?

• Can ICN serve the needs of decentralized LoRa networks and contribute to resource
efficiency through the caching capabilities?

Delay-tolerant Networking with ICN. Edge deployments (including LoRa networks) may
introduce untypically long, and varying round trip times that operate on a different timescale
compared to application-agnostic forwarders or routers in a fast network, i.e., the Internet. Ad-
ditionally, data generation in the IoT commonly happens sporadically, which challenges request-
driven protocols. In ICN networks, forwarding state might expire prematurely, which prevents
forwarding and effective content caching. This quickly leads to inefficient polling, and wasteful
retransmissions when round trips are untypically long, or data is not available. The benefits
of ICN for slow edge networks, possibly with intermittent connectivity, and the yet unspecified
Interest retransmission procedure in ICN lead to the following research questions, which are
further discussed in Chapter 6.

Research Questions

• How can we interconnect networks of different time domains effectively, e.g., wired
networks, and edge networks that expose much longer delays?

• Can we improve the efficiency of LoRa networks by utilizing ICN caches?

• How can we achieve reactivity to sporadic IoT data in ICN, without application-
awareness on networked nodes?

1.3.2 System-level Security on Constrained Embedded Devices

Analysis and Integration of Cryptographic Backends. Commercial off-the-shelf IoT
platforms more and more include hardware security features to reduce the energy consumption
of cryptographic operations and to improve key privacy. Platforms without crypto-acceleration
utilize one out of many available software libraries. An operating system should provide seam-
less support to crypto-functionality, but the heterogeneity of supported hardware- and software
features imposes challenges when integrated below an OS abstraction layer. Common IoT oper-

7

Chapter 1 Introduction

ating systems still lack a seamless crypto-integration with hardware support, and often rely on a
single security software library. Manufacturer SDKs possibly provide an OS for their hardware
but reduce flexibility towards a vendor lock-in. Existing performance analyses are algorithm
specific and often evaluated bare metal, without an IoT OS. The lack of a consistent and
vendor independent crypto-integration, and missing resource analyses across crypto-hardware
and software libraries lead to the following research questions that will be further addressed
in Chapter 8.

Research Questions

• How can we make crypto-hardware and the variety of crypto-software libraries
uniformly accessible in an IoT OS, without exposing the backend configuration and
the choice between numerous crypto APIs to the user?

• How significant is the resource advantage of crypto-hardware on commodity IoT
platforms, compared to crypto-software operation?

Random Number Generation in the Low-end IoT. Many daily routines of an IoT device
consume random numbers and impose differing requirements on their generation. Randomized
sensor sampling, or reinforcement learning, require fast and efficient random number generation
at little energy consumption. Cryptographic key generation must be fully unpredictable, which
involves resource-intensive crypto-operations that should be executed carefully on battery driven
nodes. Hardware random number generators are available on many platforms, but are (i) not
always the most efficient solution, and (ii) occasionally vulnerable. Pseudo-random algorithms
are a viable alternative, but they require a random seed for initialization, which relies on sampled
physical processes – a challenging and highly platform specific task. Instead of leaving random
number generation to the user, we argue that an operating system should provide a flexible
randomness subsystem. At the same time, misconceptions about randomness are still common
in the design and implementation of operating systems [78]. The following research questions
result from this problem statement and are further addressed in Chapter 9.

Research Questions

• What are the threats to random subsystems of IoT devices?

• Which random source serves IoT needs in terms of statistical properties and resource
requirements on constrained embedded devices?

• How can we integrate a random subsystem into an IoT OS, considering hardware
diversity, resource constraints, and randomness requirements?

Seed- and Key Generation with Physical Unclonable Functions. Cryptographic sys-
tems utilize CSPRNGs, seeded with input of high entropy, and tamper-resistant unpredictable
device identities. Both are hard to obtain on low-end IoT devices that lack hardware security

8

1.4 Methods

features. SRAM PUFs are a promising class of solutions to this problem, acting as a digital
device fingerprint. SRAM is available on most platforms, which makes it an attractive solution
to enhance the security of IoT devices, without adding hardware cost. Quantifying subtle statis-
tical effects of SRAM-derived numbers requires a comparative analysis between large quantities
of devices. The benefits of a zero-cost solution that enhances device security, and a yet missing
statistically significant sample size for testing the unpredictability of the SRAM PUF lead to
the following research questions, which are further discussed in Chapter 10

Research Questions

• How can we derive unpredictable numbers on low-cost devices?

• How unpredictable are the numbers derived from SRAM PUFs?

• What are the limitations of SRAM PUFs in an all-day IoT deployment?

1.4 Methods

The IoT is a challenging domain in terms of the evaluation of resource-constrained embedded
systems. The absence of human-machine interfaces, the lack of existing monitoring tools, and
the constraints of devices whose performance is directly affected by adding measurement probes
complicate the assessment of performance metrics during regular device operation. On the other
hand, the device constraints upfront motivate an evaluation on realistic IoT hardware in order to
face memory-, processing-, and energy bottlenecks, instead of emulating these platforms on less
constrained computers. The large number of networked nodes introduces a notable engineering
overhead in terms of experimental deployment efforts and data acquisition. Still, this work aims
to attain experimental data from realistic deployment scenarios.
Protocols that are designed to connect tens or hundreds of nodes in a multi-hop topology,

partially within wireless reach, demand for an equal evaluation. Bandwidth demands, wire-
less interference, as well as memory and processing load increase and challenge not only data
transmission, but also software implementations that are often hardly tested in large-scale sce-
narios [401, 42]. Wireless fluctuations and cross traffic in license free frequency bands motivate
a realistic evaluation of these systems, since they can hardly be estimated theoretically. Still,
emulators and simulators can gain initial insights prior to real world experiments, when a de-
ployment incurs high deployment cost. The remainder of this section introduces our evaluation
methods and the utilized hardware and software environments. By using open access testbeds,
open source software, and commercial off-the-shelf hardware platforms, all evaluations are fully
reproducible and facilitate seamless future research thereon.

Experiments in a Testbed. The experiments of Chapter 3, Chapter 4, and Chapter 10
were conducted on the FIT IoT-LAB testbed [5] to attain a large number of real IoT nodes.
The testbed consists of seven sites with different topologies and a total number of more than

9

Chapter 1 Introduction

1500 nodes of 25 architectures. This enables flexible deployments of single-hop and multi-hop
networks. M3 boards make up the majority of nodes and reflect properties of commercial
off-the-shelf class 2 devices. They consist of a 32-bit ARM Cortex-M3 CPU, integrated into
the STM32F103REY microcontroller (MCU), which operates at 72MHz and provides 64 kB of
embedded SRAM and 512Bytes internal flash. Additionally, these nodes are equipped with
various sensors and an 802.15.4 transceiver, enabling network connectivity. These transceivers
implement basic MAC layer functionality in hardware, namely automatic ACK handling, frame
retransmission (i.e., ARQ), and CSMA/CA. Each constrained node is attached to a control
node which provides an energy monitor (INA220) and an additional 802.15.4 radio for wireless
packet monitoring. The testbed offers additional tooling for experiment monitoring and control,
and an aggregator that collects nodes serial output, acting as a central time reference. This
enables time measurements across nodes when quantifying protocol timing performances.

Local Experiments. The experiments of Chapter 6, Chapter 8, and Chapter 9 were exe-
cuted locally, using commodity IoT devices and external SoCs (i.e., LoRa transceivers, secure
elements), to attain as heterogeneous platforms as possible, with varying hardware-features.
Local deployments allow for attaching more accurate measurement instruments, compared to
the remote testbed. For measuring time, a logic analyzer samples at 12MS/s by toggling an
I/O pin via direct register access on the test device. To measure electrical current, we connect
the test platform to a regulated voltage supply (Siglent SPD3303C) and evaluate the current
consumption of each operation using a digital sampling multimeter (Keithley DMM7510 7 1/2)
at 1MS/s. A measurement period is marked by toggling I/O pins. We connect our probes in
series with the MCU and turn off unused hardware components (by hardware switches or in
software), to bypass unrelated current flows.

Simulations and Emulations. The contributions of Chapter 5 base on a simulative assess-
ment of the proposed network architecture, to explore the feasibility and performance potentials
prior to programming and deploying real devices. We conducted the simulations in the discrete
event simulator OMNeT++ [377] for building network simulations. The INET framework [176]
is an OMNeT++ model for wired, wireless and mobile networks and includes common network
stacks and simulation utilities, e.g., traffic generators. We found existing implementations that
act as a starting point for our model, namely ccnSim [71] for ICN support, openDSME [186]
which implements the 802.15.4 DSME standard, and FLoRa [349] as wireless propagation model
to simulate LoRa networks.

Our implementation and the configurations applied in Chapter 6 base on the former sim-
ulative assessment. To emulate a fast network like the Internet in Chapter 6, Mininet [268]
creates virtual networks of varying topologies and link properties, and connects our gateway,
implemented on real IoT hardware, to the emulated network, via a virtual TAP (Test Access
Point) bridge.

Open Source Software. Protocol comparisons, the assessment of hardware- and software

10

1.5 Contributions and Document Outline

cryptography on heterogeneous devices, and the need for driver support of differing IoT tech-
nologies demand for an established and versatile code basis. We base all experiments (ex-
cept simulations) on the IoT operating system RIOT [34]. The open source operating system
supports numerous commercial off-the-shelf platforms through the hardware abstraction layer,
which facilitates code reusability across heterogeneous platforms. Instead of re-implementing
all functionally for this work, the existing code base acted as a staring point, and the solutions
developed in this work were successively integrated into the operating system.
The GNRC networking subsystem in RIOT [230] provides a complete UDP/IPv6/6LoWPAN

network stack and enables the integration of new protocols through a layered software design.
In that way, many protocols were integrated already: CoAP, MQTT-SN, LwM2M, LoRaWAN,
etc. . The inclusion of the CCN-lite [372] stack enables information-centric networking, the
staring point for Part I.
In the beginning of this work, RIOT did not provide a subsystem to access cryptographic

operations systematically, but many external software crypto-libraries that integrate via the
package system. The hardware support for varying IoT boards and different crypto-software
libraries enabled initial performance comparisons, which was the starting point for Part II.

Statistical Test Suites. Quantifying the properties of random numbers requires thorough
statistical analyses of large test sequences. Instead of re-implementing common tests that are
described in the literature [205], Chapter 9 applies three different open test suites: (i) NIST
STS [43] which, however, has been rejected for the assessment of cryptographic random numbers
in the meantime1, (ii) DIEHARDER [61], and (iii) TestU01 [225]. They analyze the output of
different random sources from various IoT platforms against the hypothesis of uniform random-
ness.

1.5 Contributions and Document Outline

Figure 1.1 outlines the organization of this thesis. Our contributions address the research
questions of Section 1.3 and are organized in two main parts, which focus on wireless information-
centric communication, and the security of constrained embedded devices in IoT networks.

Part I assesses information-centric networking for the IoT. In Chapter 3 we compare information-
centric and host-centric IoT-protocols in low-power and lossy networks. We conduct a compar-
ative evaluation at large-scale, using resource-constrained IoT nodes in a testbed. Our experi-
ments arrange nodes in single-hop topologies to attain a baseline measurement, and in multi-hop
topologies, which increase network stress, wireless interference, and loss by parallel data flows.
We assess how hop-wise data replication in ICN, compared to end-to-end principles, affects
the network performance and reliability. In Chapter 4 we utilize the same deployment option
and focus on the media access strategy in wireless ICN networks. Our systematic resource

1https://csrc.nist.gov/news/2022/decision-to-revise-nist-sp-800-22-rev-1a

11

https://csrc.nist.gov/news/2022/decision-to-revise-nist-sp-800-22-rev-1a

Chapter 1 Introduction

Host-centric

Information-centric

vs.

Chapter 3
Comparitive

Protocol Evaluation

P
ar
t
I

In
te

re
st

Da
ta

vs
.

Broadcast Unicast

Chapter 4
MAC Layer
Convergence

LoRa

kilometers

Chapter 5
New LoRa

System Design

milliseconds 10s of seconds

Chapter 6
Delay-tolerant
Networking

Crypto
Subs.

Interface

I/O

Operating System

Chapter 8
Performance of
Crypto-hardware

P
ar
t
II

RNG

Chapter 9
Guideline on Random
Number Generation

Hw. Variations

ZzzzOS

Chapter 10
Physical Unclonable

Functions

Figure 1.1: Overview of the parts and chapters included in this thesis.

analysis quantifies the impact of the name to MAC address mapping. A special focus lies on
the system level overhead on resource-constrained nodes which are challenged by broadcast for-
warding, increasing active CPU time, radio utilization of nodes in reach, and hence, their energy
consumption.

In Chapter 5 we utilize the former experiences to design a new LoRa communication system
which leverages (i) the DSME MAC to enable reliable bidirectional transmissions and device
sleep; (ii) ICN to benefit from a decentralized network architecture at the edge, without the need
for a permanent infrastructure backhaul. We contribute a simulation model in OMNeT++, and
assess transmission options for Interest/data packets using DSME primitives. A novel gateway
design serves one LoRa stub network and acts as router to connect constrained nodes to the
Internet. In Chapter 6 we argue that practical application-agnostic ICN forwarders on the
Internet are challenged by long and differing producer delays, e.g., introduced by slow LoRa
round trips. We define new gateway behavior to act as a custodial node, which includes ICN
caches that allow battery driven endnodes to maximize sleep, i.e., to save energy. To analyse
the resulting system, we deploy our implementation of DSME-LoRa with two ICN extensions

12

1.5 Contributions and Document Outline

that handle various producer delays, and conduct experiments on off-the-shelf IoT hardware,
and an emulated high-speed Internet.

Part II assesses the OS-level accessibility and performance of cryptographic building blocks,
on heterogeneous off-the-shelf platforms in the low-end IoT. In Chapter 8 we categorize the
landscape of crypto-implementations in the IoT and present an integration concept to uniformly
access heterogeneous software and hardware security implementations, i.e., accelerators and
key storages, through a user-centric interface. We contribute an implementation of the crypto-
subsystem to RIOT, utilized to undertake an OS-level analysis across various IoT devices, and
we quantify the advantage of crypto-hardware compared to software in terms of processing time,
energy consumption, and memory footprint.
In Chapter 9 we survey taxonomies and threats to randomness subsystems in the context

of the IoT. Based on statistical analyses and performance benchmarks of hardware and soft-
ware (pseudo-) random number generators, we design an OS-level randomness subsystem for
RIOT. Our integration concept considers differing randomness requirements, diverse hardware
properties, and resource constraints of common IoT devices. This allows us to deduce general
recommendations for the design of randomness systems.
In Chapter 10 we contribute an analysis of uninitialized SRAM memory on IoT nodes that

aged naturally in the deployment of a testbed. Our sample size of more than 700 devices closes
a research gap of missing statistically significant sample sizes for testing the unpredictability
of uninitialized memory pattern. These measurements lead to a design and the integration of
SRAM PUFs in RIOT, which generate two random seeds that initialize pseudo-random num-
ber generators, and a secure key per device, to bootstrap the cryptographic subsystem during
startup. Our OS-level integration enables these features for a wide range of heterogeneous IoT
devices via the hardware abstraction layer, and provides an additional mechanism to protect
operation after a soft-reset. We analyze threats, and identify the limitations of SRAM PUFs
from the perspective of an all-day IoT deployment.

13

Part I

Robust and Energy-efficient Wireless
Edge Communication

15

Chapter 2

Motivation and Problem Statement

2.1 Protocols for Data Retrieval in the IoT

Prominent IoT Protocols. CoAP [341] is the IETF standard to implement data transfer in
the Internet of Things. It replaces HTTP/TCP in the traditional IP-stack by a REST service
interface on the application layer, and UDP as lean connectionless transport layer for resource-
constrained machine-type communication. Three primitive protocol mechanisms provide flexible
machine interaction: (i) pull implements a request-response pattern, (ii) push enables event-
based communication, (iii) and observe resembles a publish-subscribe logic.
MQTT is a protocol for machine-to-machine communication. It requires an ordered loss-

less connection capability, typically provided through TCP/IP, which is inappropriate for the
constrained IoT. MQTT-SN is a lightweight alternative to MQTT for sensor networks, which
utilizes a connectionless UDP transport and reduces header sizes to fit small packet MTUs of
low-power radios. Both MQTT variants implement a publish-subscribe pattern via a central
broker. This enables loose coupling between sensors (typically publishers) and applications or
actuators (typically subscribers). An asynchronous messaging model reflects event-based IoT
data generation naturally, and the centralized broker facilitates multi-party subscriptions, pos-
sibly without increasing the communication overhead on constrained nodes. Both protocols,
CoAP and MQTT, rely on IP-based host-to-host sessions and are still challenged by the un-
derlying disruption-prone lossy regime. Doubts arose in the research community, whether the
end-to-end paradigm is the appropriate approach in lossy IoT networks [331, 155].

Information-centric Networking for the IoT. Information-centric networking is a future
Internet paradigm that supersedes the host-centric IP-based infrastructure with a data-centric
approach. ICN decouples data from its location. Hence, data is accessed only via names instead
of endpoints that store or produce it. Essentially, the decoupling of data from its origin, universal
content caching, and an inherent content replication mechanism aim to increase scalability,
reduce bandwidth demands, and facilitate content distribution in the core Internet, or edge
networks.
Different ICN-protocol variants arose, one of which is Named Data Networking (NDN) [180,

413]. If not mentioned otherwise, in the remainder of this thesis, we refer to NDN when

17

Chapter 2 Motivation and Problem Statement

request:

response:

Interest
/name

Interest
/name

Data
/name

Data
/name

lookup FIB
allocate PIT

lookup FIB
allocate PIT CS hit

CS returnconsume PIT
add to CS

consume PIT
add to CS

Figure 2.1: Forwarding of Interest/data packets in NDN, and common data structures to save
routes, forwarding state, and content.

writing ICN. Figure 2.1 visualizes the NDN protocol logic. Two message types, namely Interest
and data, implement a request-response paradigm. Interests contain the requested data name
and are forwarded to one or multiple interfaces (namely faces) according to the Forwarding
Information Base (FIB). On incoming Interest, each forwarder performs a cache lookup in its
Content Store (CS) and serves the request with data, if available. Otherwise, the forwarder
performs a lookup in the Pending Interest Table (PIT), which contains temporary forwarder
state of previously forwarded Interests. If the data name has been forwarded before (within a
defined time epoch), the request is aggregated and terminates. Otherwise, on missing CS and
PIT entry, the Interest is forwarded according to the FIB, and forwarder state in the PIT is
created which contains the requested content name as well as the incoming interface. On a
cache hit, the data packet follows the reverse path noted in the PIT entries of each forwarder.
Data consumes the PIT entry and is cached on every hop (according to caching rules) until it
reaches the original requester. Consequently, a subsequent Interest for that content item can be
served from any node that caches it. Unsatisfied Interests trigger retransmissions of the request
after a loss. Retransmissions are repeated until the consumer application receives the requested
content, or the retransmission procedure terminates. Retransmitted Interests, however, can
potentially be served by a neighbored cache.

The inherent Interest aggregation, and in-network caching provide the unique potential to
enable robust communication to nodes in disruptive edge networks, and to reduce link load. Data
replication (i.e., decentralization) creates redundancy and simplifies data sharing. Still, open
problems persist, namely naming, routing, and forwarding [387, 219]. Retransmission procedures
are yet unspecified. Producer initiated data transfer [219, 339] contradicts the consumer driven
ICN paradigm, but it appears essential in asynchronous event-triggered and slow-acting IoT use
cases.

Protocol Comparison. Chapter 3 provides a thorough comparative analysis of the three pro-

18

2.2 Media Access in Wireless ICN Networks

(a) Single-hop topology (Lille site) (b) Multi-hop topology (Grenoble site)

Figure 2.2: Node deployment in two sites of the FIT IoT-LAB testbed in France.

tocol families NDN, CoAP, and MQTT-SN covering their main variants. To compare producer
initiated data transfers in NDN, Interest Notification (I-Not) [14] provides a primitive push
mechanism by placing data in an Interest packet, and HoP and Pull (HoPP) [146] serves as a
publish-subscribe extension for constrained IoT deployments. We quantify the performance of
information-centric protocols and end-to-end approaches, and implemented characteristic IoT
use cases for ten variants of these protocols. We deployed them in single-hop (Figure 2.2a) and
multi-hop topologies (Figure 2.2b) on the large-scale FIT-IoT LAB testbed, and ran competitive
performance contests under fully equivalent conditions.

2.2 Media Access in Wireless ICN Networks

Broadcast vs Unicast. NDN has the potential to improve performance of application scenar-
ios that connect devices via lossy media such as low-power radios (cf. Section 2.1). Caching on
the network layer helps to compensate interference on the data link layer by placing contents
closer to the sink, which leads to reduced hop-counts and thus to reduce packet loss on the
application layer. In contrast to the IP-stack, however, there is no clear mapping between a
content name and the neighbor MAC address.
Broadcasting on the data link layer simplifies content sharing in NDN and adds redundancy.

Not all nodes in a constrained IoT network can provide caching services, however, because of
low-end hardware capabilities and limited memory resources [307]. Hence, broadcast does not
immanently lead to content distribution. Instead, broadcast in the IoT introduces two major
drawbacks. First, frames are not filtered by common device drivers of the network interface
card (NIC). Due to the broadcast nature of the wireless medium, all frames are processed by
the CPU, which conflicts with resource constraints on common IoT nodes, in terms of CPU,
memory, and energy. Second, common wireless technologies such as 802.11 and 802.15.4 do
not support error handling of broadcast frames (i.e., ARQ). Multicast is not even supported in
802.15.4, the prevalent wireless technology in IoT networks. This imposes significant differences
on the data link layer compared to unicast. Mapping data names to unicast links, however,
requires basic routing and route maintenance.
Current solutions address these problems only partially. They either implement an NDN-

19

Chapter 2 Motivation and Problem Statement

specific link layer to introduce error-resilience [342, 131, 132, 389] or extend current device
drivers to implement name-based filtering on the NIC [343]. A dynamic mapping of unicast
MAC addresses to NDN interfaces [361, 33] is not sufficiently explored—nor is the question on
how well broadcast can serve ICN needs [219].
This surprisingly unsatisfying state of the art motivates us to revisit the problem and solution

space. In Chapter 4 we investigate how the mapping of names to the broadcast and unicast MAC
address affects the performance of information-centric networks. In experiments, we conduct
network benchmarks on low-end IoT devices to better understand the potentials of a dynamic
address-to-face mapping.

Time Division and Frequency Multiplex. CSMA/CA media access minimizes wireless
interference of simultaneous senders in reach. Without time synchronization, nodes need to keep
on the radio at all times in order to receive packets. This is particularly important in receiver-
driven networks such as ICN: Producers (sensors) do not know when the Interest request arrives.
Keeping the radio and CPU on to be receive-able is one of the most energy consuming tasks of an
IoT device and conflicts with constrained energy resources on battery operated nodes. Common
countermeasures include duty cycling to enable intermittent sleep cycles which, however, makes
these nodes unavailable during power-off. In parallel, the unreliable and fluctuating nature of
lossy wireless links affects the transmission reliability, and an increasing number of networked
nodes demands for exploiting the frequency spectrum optimally, to avoid wireless interference.
In practice, common MAC layers apply time- and frequency multiplexing by coordinating nodes
to synchronize to a schedule, and to grant exclusive resource access. The assignment of time
slots enables intermittent sleep, while orthogonal frequency slots enable parallel transmissions
that exploit the spectrum. Additionally, channel hopping or channel blacklisting minimize the
impact of disturbed channels, or temporary fluctuations of a radio channel.The absence of a
MAC convergence layer in ICN raises the question of how to transmit Interest and data packets
through a coordinated wireless network.

DSME and LoRa. Similarly to 6LoWPAN [272] and 6TiSCH [394] for IPv6 networks, ICN
benefits from a convergence layer that utilizes the TSCH [174] mode of 802.15.4e [163, 162],
which contributes time division and frequency multiplex. We want to enable ICN not only for
802.15.4 networks, but the more challenging long-range radio technology LoRa. The long range
fosters wireless interference due to a wide overlap, and slow transmissions occupy the channel
for a long duration. To enable time- and frequency multiplex for LoRa, we argue that the
Deterministic and Synchronous Multichannel Extension (DSME) [174] MAC layer extension of
the 802.15.4e standard is better suited to cope with a long transmission range [11] compared
to TSCH. DSME is the more flexible MAC that consists of contention-access and contention-
free periods, multiplexed across 16 radio channels. Contrasting TSCH, DSME comprises built-in
features such as beacon collision resolution, a slot allocation bitmap to indicate readily allocated
or unavailable slots, support for clustered tree topologies, and indirect transmission to cater
transmissions of very energy constrained nodes. In Chapter 5 we propose and simulate our

20

2.3 Long-range ICN and Delay-tolerance at the Edge

replacement of the de facto LoRa MAC layer as specified by LoRaWAN. Our solution utilizes
DSME as a new MAC layer for LoRa and enables information-centric networking, to benefit
from built-in ICN features that assist in dealing with the challenging long-range domain.

2.3 Long-range ICN and Delay-tolerance at the Edge

Problems of LoRaWAN. LoRaWAN is a popular low-power long-range communication sys-
tem for the IoT, but the network design incurs four notable shortcomings, that prevent an
efficient integration into an ICN network [195]: (i) LoRaWAN is optimized towards retrieving
data from constrained nodes. Sending data to nodes is expensive and involves significant laten-
cies. Many networks such as the popular community The Things Network (TTN) thus deprecate
sending data to nodes above a very low message rate, making LoRaWAN unsuitable for most
control scenarios. (ii) LoRaWAN has not been designed with the objective to provide a platform
for Internet protocols. It is possible to use IP and adaptation layers on top of LoRaWAN, albeit
very inefficiently. (iii) The whole LoRaWAN system is a vertically integrated stack that leads
to inflexible system designs. For example, all communication is channeled through gateways as
well as application- and network servers that interconnect with applications. (iv) The central-
ization and lock-in to vertical protocol stacks challenge data sharing (between users) and the
creation of distributed applications (across LoRa island and the Internet).

Information-centric System Design for LoRa. We aim for a better integration of the
LoRa-based IoT into the remaining Internet and base our system design on the following four
requirements: (i) enabling LoRa networks and nodes in these networks to communicate directly
with hosts on the Internet; (ii) empowering LoRa gateways to act as routers, without the need to
employ network servers and to tunnel all traffic to or from them; (iii) enabling data sharing and
wireless node control; (iv) maintaining the important power conservation properties of current
LoRaWAN systems. To achieve these goals we replaced the MAC layer with DSME in Sec-
tion 2.2, and introduce a data-driven layer on top. ICN is well suited for use with LoRa because
its hop-wise data replication increases robustness and flexibility while reducing (re-)transmission
load. This enhances adaptivity and decreases communication overhead, whereas link capacity is
scarce with LoRa. Built-in caches in ICN facilitate more efficient LoRa networks. Requests that
are satisfied by an in-network cache reduce link utilization and wireless interference, facilitate
node sleep, and potentially reduce long round trips introduced by slow transmissions. But the
redesign incurs additional functionality on networked nodes, especially on gateways.

Delay-tolerance in ICN. Edge networks, including but not limited to DSME- and LoRa-based
networks, introduce variable round trip times (RTTs) on the order of seconds or tens of seconds,
due to the underlying power saving regime. This challenges practical ICN-forwarders on the In-
ternet, which operate on a different timescale. In particular, PIT state (cf. Section 2.1) expires
after a defined timeout value (in NDN, the default Interest lifetime value is 4 seconds) and In-

21

Chapter 2 Motivation and Problem Statement

terest retransmissions, albeit unspecified, commonly align with TCP procedures and implement
round trip time estimations. This quickly leads to inefficient polling when sensor data is not
(yet) available, and brittleness readjustment of timeout parameters as a consequence of vastly
differing RTTs. Furthermore, expired PIT state prevents data forwarding and caching. On the
other hand, simply increasing the PIT timeout value is not likely to work well in real-world
deployments. A core router might object to spend memory resources, storing many Interests
for a very long time. To overcome these challenges, we have developed a delay-tolerant ICN
communication framework that allows connecting high latency edge networks, attached via an
ICN forwarder on a gateway device, to a “regular” ICN Internet connected via fast wired links.
It supports data retrieval with arbitrary orders of delays, and without specific assumptions of
typical RTTs on other nodes on the ICN Internet. Thereby, no application awareness is required
on gateway nodes. Our framework utilizes ICN-idiomatic communication with slight modifica-
tions, to benefit from ICN principles such as accessing named data, Interest/data semantics,
caches, aggregation, and flow balance.
We have developed interactions for IoT communication use cases that leverage bespoke capa-

bilities on gateway-based forwarders, which follow two patterns. First, IoT sensor data retrieval
from an Internet-based consumer using Interest/data interactions. We leverage the concept of
RMI for ICN (RICE [211]) that provides access to static data and dynamic computation results,
supporting vastly longer data production and retrieval times. Second, asynchronously “push-
ing” data from an IoT sensor to an Internet-based consumer with publish-subscribe semantics.
We leverage the reflexive forwarding extensions for ICN [294] that have been proposed to the
Internet Research Task Force (IRTF) for standardization.

Evaluation Scenarios. Chapter 5 presents the design of ICN over LoRa, including a suitable
DSME configuration and options for mapping ICN messages to DSME. We built a complete sim-
ulation environment in OMNeT++. Based on simulation results, we derive preferred mappings
and additional node requirements for implementing ICN interaction patterns.
Chapter 6 presents the design of delay-tolerant ICN-interactions and node behavior. We

evaluate a complete implementation of the DSME MAC layer for LoRa and the ICN protocol
extensions on RIOT, serving common LoRa sensors and RIOT-based gateways. We perform
experiments of the interactions on off-the-shelf IoT platforms, connected to an emulated ICN
Internet, and provide a comparison with unchanged NDN interactions.

22

Chapter 3

Potentials of ICN for Constrained IoT
Networks

Abstract

In this chapter, we start from two observations. First, many application scenarios that benefit
from ICN involve battery driven nodes connected via shared media. Second, current link layer
technologies are completely ICN agnostic, which prevents filtering of ICN packets at the device
driver level. Consequently, any ICN packet, Interest as well as Data, is processed by the CPU.
This sacrifices local system resources and disregards link layer support functions such as wireless
retransmission. We argue for a mapping of names to MAC addresses to efficiently handle ICN
packets, and explore dynamic face-based mapping schemes. We analyze the impact of this link
layer adaptation in real-world experiments and quantitatively compare different configurations.
Our findings on resource consumption, and reliability on constrained devices indicate significant
gains in larger networks.

3.1 Background and Use Cases

3.1.1 CoAP

CoAP, the Constrained Application Protocol [341], was designed to support REST services
in machine to machine communication. Basically, it aims for replacing HTTP on constrained
nodes. In contrast to HTTP, CoAP is able to run on top of UDP and introduces a lean
transactional messaging layer to compensate for the connectionless transport. CoAP provides
a more compact header structure than HTTP.
Three communication primitives are currently supported by this extensible protocol: (i) pull,

(ii) push, and (iii) observe. Pull implements the common request response communication
pattern. However, as IoT scenarios also include the pro-active communication of unscheduled
state changes, CoAP was extended to support pushing new events to its peers. Still, this does
not allow for publish-subscribe scenarios when producer and consumer are decoupled in time
and data is not yet available at the request. The support for delayed data delivery in publish-

23

Chapter 3 Potentials of ICN for Constrained IoT Networks

subscribe was specified in CoAP observe [167]. Here, clients can signal interest in observing data,
which basically means that a CoAP server delivers data as soon as available and maintains state
until clients explicitly unsubscribe.
CoAP must be considered as the IETF standard to implement application layer data transfer

in the future Internet of Things. Currently, several implementations exist, as well as early
adoption in a few selected products and deployments.

3.1.2 MQTT

MQTT [36], the Message Queue Telemetry Transport, was designed as a publish-subscribe
messaging protocol between clients and brokers. Clients can publish content, subscribe to
content, or both. Servers (commonly called broker) distribute messages between publishing and
subscribing clients. It is worth noting that the protocol is symmetric: Clients as well as brokers
can be sender and receiver when MQTT delivers application messages.
MQTT is considered a lightweight protocol for two reasons. First, it provides a lean header

structure, which reduces packet parsing and makes it suitable for IoT devices with low energy
resources. Second, it is easy to implement. In its simplest form, MQTT offloads reliability
support completely onto TCP.
To provide flexible Quality of Service on top of the underlying transport, MQTT defines three

QoS levels, which reflect the agreement regarding message transfer between broker and consumer
– both can be sender and receiver. QoS 0 implements unacknowledged data transfer. An MQTT
receiver gets a message at most once, depending on the capabilities of the underlying network, as
there is no retransmission on the application layer. QoS 1 guarantees that a message is delivered
at least once. This requires that a message is stored at the sender side until an acknowledgement
was received. Based on timeouts, an MQTT sender will retransmit application messages when
an acknowledgement is missing. QoS 2 ensures that a message is received exactly once, to avoid
packet loss or processing of duplicates at the MQTT receiver side. This requires a two-step
acknowledgement process and more states at both sides.
To adapt MQTT to constrained networks which are based on low data rates and very small

packet lengths such as in 802.15.4, MQTT-SN [352] is specified. Header complexity is reduced
by replacing topic strings by topic IDs, to identify content. In contrast to MQTT, MQTT-SN
is able to run on top of UDP. It still supports all QoS levels but does not inherit any reliability
property from the transport layer.

3.1.3 ICN Protocols

The coreNDN protocol [180, 413] combines name-based routing from TRIAD [135] and stateful
forwarding from DONA [208] to implement a request response scheme on the network layer.
Any consumer can request data that is subsequently delivered along a trail of reverse path
forwarding states. As an important feature, data will only be delivered to those who requested

24

3.1 Background and Use Cases

Table 3.1: Comparison of CoAP, MQTT, and ICN protocols. CoAP and MQTT support relia-
bility only in confirmable mode (c) and QoS levels 1 and 2 (Q1, Q2).

Current IoT Protocols ICN Protocols

CoAP [341] MQTT [36] MQTT-SN [352] NDN [180, 413] I-Not [14] HoPP [146]
PUT GET Observe

Transport UDP UDP UDP TCP UDP n/a n/a n/a
Pub/Sub 8 8 3 3 3 8 8 3

Push 3 8 3 3 3 8 3 8

Pull 8 3 8 8 8 3 8 3

Flow Control 8 8 8 3 8 3 8 3

Reliability (c) (c) 8 (Q1, Q2) (Q1, Q2) 3 3 3

the data. This means that data must be (individually) named at the Interest request and that
yet unavailable data requires repeating Interests until the application receives the data.

The lack of push primitives in NDN triggered the idea of inverting the NDN semantic by
placing data in an Interest Notification (I-Not) which in turn gets acknowledged by the
subsequent (empty) data packet. This idea was originally proposed in [14] and was since then
criticized for its lack of (i) caching support, (ii) flow control, and (iii) DDoS resilience.

Several publish-subscribe extensions have been proposed for NDN (COPSS [69], PSync [414])
to provide further decoupling of consumers and data sources. As COPSS relies on a persistent
forwarding infrastructure and PSync on Interest broadcasting, both schemes do not satisfy the
requirements of the constrained IoT. Our lightweight IoT variantHoP and Pull (HoPP) [146]
provides a publish-subscribe system for constrained IoT deployments based on ICN/NDN princi-
ples. A constrained IoT publisher announces a name towards a content proxy to trigger content
requests and to replicate the data towards a content proxy (or broker). Forwarding nodes on
the path between publisher and content proxy hop-wise request content for this name by using
common Interest and data messages. A content subscriber in HoPP behaves almost like any
content requester in NDN and issues a regular Interest request towards the content proxy CP.
However, in contrast to NDN (i) a subscriber cannot extract content names from its FIB, since
FIBs only contain PANINI default routes [330], but uses application-specific topic tables instead;
(ii) it does not expect an immediate reply, but issues Interests with extended lifetimes. HoPP
enables rapid communication of unscheduled data events. It operates at a similar timescale as
push protocols without actually pushing data.

3.1.4 Protocol Comparison

Key properties of the three protocol families NDN, CoAP, and MQTT and its variants are
compared in Table 3.1. Specialized properties of the different approaches become apparent:
Every protocol variant features distinct capabilities. Notably in the IoT, where TCP (aka

25

Chapter 3 Potentials of ICN for Constrained IoT Networks

CoA
P G

ET
 (N

)

CoA
P G

ET
 (C

)

CoA
P P

UT (
N)

CoA
P P

UT (
C)

CoA
P O

BS (
N)

MQTT
-SN

 (Q
0)

MQTT
-SN

 (Q
1)

NDN
I-N

ot
HoP

P
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Co
nt

ro
l p

ac
ke

t o
ve

rh
ea

d
ra

tio L2 unicast
L2 broadcast

Figure 3.1: Relative protocol overhead under relaxed network conditions incl. topology control
broadcasts.

generic MQTT) is unavailable, the pull-based NDN and NDN-HoPP are the only protocols
admitting flow control and reliability as a generic service.
An additional mechanism for link recovery and retransmission has been brought to NDN with

NDNLP [342]. Facing the lossy nature of low-power wireless links in the IoT, it may be tempting
to deploy this additional protocol to enhance the overall reliability. However, common radio
links like IEEE 802.15.4 already feature ARQs (Automatic Repeat Requests), and a network
layer link would put a second acknowledgement to the air, which in turn would increase the
omnipresent risk of interference. For this reason, we did neither deploy nor further investigate
NDNLP in our further analyses.
Figure 3.1 compares the control overhead for all protocol variants under consideration as ob-

tained from experiments under relaxed network conditions at negligible interference. Aside from
topology building and maintenance that are mainly broadcasts (marked in Fig. 3.1), common
request protocols require one request per data item, whereas publish-subscribe schemes only
require subscription notification per topic. As a pull protocol, HoPP requires requests and an
additional message to advertise names.
Common IoT deployment use cases consist of stub networks as visualized in Figure 3.2 that

may be single- or multi-hop. Traffic flows from or to the IoT edge nodes in three patterns: (i)
scheduled periodic sensor readings, (ii) unscheduled and uncoordinated data updates, or (iii) on
demand notifications or alerting. It is worth noting that the different protocol properties (e.g.,
push versus pull versus pub-sub) can serve these alternating needs in a quite distinct manner.

3.2 Implementation and Experimental Setup

Software Platforms. On the IoT nodes, all of our experiments are based on RIOT version
2018.01. To analyze CoAP, MQTT-SN, and NDN we use gCoAP, Asymcute, and CCN-lite

26

3.2 Implementation and Experimental Setup

Internet

GW / Broker
IoT Node
Data Flow

Figure 3.2: Use case scenario of a multi-hop IoT topology.

respectively. All three protocol implementations are part of the common RIOT release and thus
reflect typical software components used in low-end IoT scenarios.
On the brokers or gateways, the testbed infrastructure deploys Linux systems. To support

MQTT broker and CoAP observe client as well as CoAP PUT server functionalities, we used
aiocoap version 0.3 and mosquitto.rsmb version 1.3.0.2. Both are popular open source imple-
mentations in this context.

Testbed. We conduct our experiments in the FIT IoT-LAB testbed. The hardware platform
consists of typical class 2 devices [58] and features an ARM Cortex-M3 MCU with 64 kB of
RAM and 512 kB of ROM. Each device is equipped with an Atmel AT86RF231 [29] transceiver
to operate on the IEEE 802.15.4 radio. The gateway runs on a Cortex-A8 node, which is more
powerful than the M3 edge nodes.
The testbed provides access to several sites with varying properties. We perform our experi-

ments on two sites, to analyze single-hop as well as multi-hop scenarios.

Single-hop topology The Paris site consists of approximately 70 nodes, which are within the
same radio range. We choose two arbitrary nodes and run all single-hop experiments on
them. One node is a content producer, the other node acts as consumer (gateway/broker).

Multi-hop topology The Grenoble site consists of approximately 350 nodes spread evenly
in the Inria Grenoble building. We choose 50 M3 nodes (low-end IoT device) and one
A8 node (gateway/broker) arbitrarily and run all multi-hop experiments on them. All
low-end devices operate as content producers. In our CoAP and MQTT experiments, we
use RPL to build and maintain the routing topology across all nodes. In our NDN-based
experiments, we build tree topologies analogously as HoPP does. In any case, we ensure
that all protocols use the same routing topology for comparison. Typical path length are
four to five hops.

27

Chapter 3 Potentials of ICN for Constrained IoT Networks

Scenarios and Parameters. We align all experiments with respect to the configurations of
retransmissions and timeouts to ensure comparability among protocols. All protocols employ
the same retransmission strategy: In case of failures, each node waits 2 seconds before retrans-
mitting the original application or control data. For NDN, HoPP and I-Not, retransmissions
are performed hop-by-hop, while CoAP and MQTT perform them end-to-end. At most 4 re-
transmissions will occur for each data. Interest lifetimes are configured to 10 seconds for NDN
based protocols to limit PIT memory consumption. We repeat each experiment 1,000 times.

To accommodate all 50 nodes in the routing topology, the FIB size was adjusted accordingly
on each IoT node. For CoAP and MQTT, this translates in our IPv6 scenario to a FIB size
of 50 entries with roughly 32 bytes each (sizeof(destination) + sizeof(next-hop)). In our
NDN scenarios, each node owns a unique prefix of the form /ρi with a length of 24 bytes. The
next-hop face of each FIB entry points to the 8-byte IEEE 802.15.4 link layer address. In total,
this setup yields comparable size requirements for all scenarios.

In the NDN scenarios, we use unique content names prefixed by /ρi with incremental local
packet counters. CoAP works without unique names but uses common URIs. The MQTT-SN
protocols register a common topic name, similar to CoAP, and publish under a unique topic ID
thereafter. In all scenarios, the data is of the same JSON format consisting of a unique identifier
and a sensor value attribute. These short messages can be accommodated by the link layer and
do not require fragmentation. It is noteworthy that we neither applied header compression in
the IP [57] nor in the NDN world [161].

3.3 Evaluation

3.3.1 Analyses and Metrics

The objective of this work is to quantify the efficiency and utility of the considered protocols in
real deployment scenarios. With this in mind, we want to shed light on resource consumption
and the operational properties of data dissemination from different angles and in the different
deployment use cases.

In detail, we analyze the memory consumption on nodes, the effective network utilization by
control and data traffic including protocol overhead and link stress caused by retransmissions.
The actual performance of data transmission is measured in data loss, goodput, and content
arrival time which represents the delay between issuing a transaction and data arrival at the
sink. Here, we use the term time to completion interchangeably. We also consider the data
flows and its energy consumption. These multi-sided analyses are performed on complete packet
traces which we recorded from the different experiments, and a monitoring of the system state
at participating nodes.

Security measures largely differ between the IP and the ICN world. DTLS [313] provides

28

3.3 Evaluation

NDN
HoP

P
I-N

ot

M
QTT

-S
N

CoA
P

GET

CoA
P

PU
T

CoA
P

OBS

10

20

30

40

50
[K

iB
]

ROM

NDN
HoP

P
I-N

ot

M
QTT

-S
N

CoA
P

GET

CoA
P

PU
T

CoA
P

OBS

RAM

App

Heap

HoPP

CCN-lite

CoAP

MQTT-SN

RPL

GNRC

OS

Figure 3.3: Resource consumption of ROM (left) and RAM (right) for the different software
stacks.

privacy and integrity for UDP datagrams within sessions based on pre-established private keys.
NDN authenticates data chunks between arbitrary endpoints without the need for session state.
Canonically, asymmetric signatures are attached to data chunks in NDN, but since the com-
plexity of asymmetric crypto exceeds the capabilities of constrained nodes, keyed-hash message
authentication code (HMAC) can also be applied. The use of HMAC likewise relies on pre-
established keys.
In both worlds, security extensions add message and processing overhead, but do not change

the overall behavior of the protocols. For this reason, we compare security overheads in separate
micro-benchmarks and perform the remaining experiments without applying the corresponding
security measures.
We do not consider network congestion from external cross-traffic in this work. However,

each individual transmission experiences self-induced background traffic from the experiment
that differs for varying request/publish intervals and jitter. On average, this side-traffic is
constant per experimental run.

3.3.2 Protocol Stack Sizes

Largely differing properties and complexities of the protocol variants under test lead to seven
distinct software stacks. Nodal memory consumption for these different protocol stacks are
depicted in Figure 3.3. We differentiate the protocol layers in place to disclose the details.
Main memory is the scarcest resource in the IoT. While protocols require OS support of

4,060 B (MQTT-SN) – 4,400 B (NDN) kernels, NDN admits the leanest stack of 8,700 B
consumed by CCN-lite. All IP protocol stacks are significantly larger and approximately triple
the size of CCN-lite. On the overall, about 30 KiB are needed to host IP protocols, leaving only
a few dozen KiBs for the application on typical constrained nodes. All ICN protocols provide
a Content Store (CS) of 10,240 B on the heap, which is the price of in-network caching. It

29

Chapter 3 Potentials of ICN for Constrained IoT Networks

DTLS NDN DTLS NDN0.0

0.1

0.2

0.3

0.4

0.5

0.6
Pr

oc
es

sin
g

tim
e

[m
s]

ConsumerProducer

sign data
verify data
encrypt req.
decrypt req.
encrypt resp.
decrypt resp.

0 100 200 300 400 500
Transaction [#]

0

5

10

15

20

25

30

Da
ta

 o
ve

rh
ea

d
[k

B]

DTLS
NDN, 32B KeyLocator
NDN, 16B KeyLocator

Figure 3.4: Security overheads—CPU consumption (left) and data overhead (right) per content
transaction for IP/DTLS and NDN/HMAC.

should be noted that the GNRC network stack contributes a packet buffer to both, the IP and
the ICN world that is also used for retransmissions [230]. Program sizes of NDN protocols are
much smaller and consume about 40 % less ROM. The operating system support varies with
protocol requirements on the highly modular RIOT OS platform.

3.3.3 Security Overheads

Many use cases of the IoT rely on integrity and authenticity of the collected data. Security
extensions of the communication protocols are requested to ensure those properties at costs
which we are now evaluating. For our micro-benchmarks of the IP world, we fixed the scenario
of a DTLS session established between two nodes. We quantify the messaging overhead obtained
from a single session establishment and the packet overhead as a function of data transactions—
the request/response-guided transfer of a data unit. We also recorded the CPU expenses at the
content producer and consumer per transaction.

The most comparable scenario for NDN consists of HMAC-based authentication of data using
SHA256 per chunk. For quantifying the overheads in data packets, we chose two common sizes
of the KeyLocatorTLV: 16B and 32B.

Figure 3.4 visualizes the results of our security benchmarks performed on the IoT-LAB M3
nodes. While message overheads for NDN are similar or better (for 16B KeyLocatorTLV),
DTLS data verification can be performed at two-thirds of the NDN costs. It should be noted,
though, that the different security models of DTLS and NDN make comparisons difficult. While
DTLS operates within an established session that is strictly bound to endpoints, the content
of NDN can be replicated between varying nodes. In particular, the NDN approach is robust
under mobility and network changes, whereas DTLS would require to re-establish sessions in
many cases at significant cost. Conversely, only DTLS encrypts transport payloads and thereby
contributes data privacy.

30

3.3 Evaluation

CoA
P G

ET
 (n

)

CoA
P G

ET
 (c

)

CoA
P P

UT (
n)

CoA
P P

UT (
c)

CoA
P O

BS

MQTT
-SN

 (Q
0)

MQTT
-SN

 (Q
1)

NDN
I-N

ot
HoP

P
0

20

40

60

80

100

Pa
ck

et
 L

os
s [

%
]

(a) Packet loss at 50 ms publishing
interval

5 10 15 20
Time to Completion [ms]

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Push at 50 ms publishing interval

5 10 15 20
Time to Completion [ms]

0.2

0.4

0.6

0.8

1.0

CD
F

I-Not
CoAP OBS
CoAP PUT (n)
CoAP PUT (c)
MQTT-SN (Q0)
MQTT-SN (Q1)

(c) Push at 5 s publishing interval

CoA
P G

ET
 (n

)

CoA
P G

ET
 (c

)

CoA
P P

UT (
n)

CoA
P P

UT (
c)

CoA
P O

BS

MQTT
-SN

 (Q
0)

MQTT
-SN

 (Q
1)

NDN
I-N

ot
HoP

P
0

20

40

60

80

100

Re
tra

ns
m

iss
io

ns
 [%

]

(d) L3 retransmissions at 50 ms in-
terval

5 10 15 20
Time to Completion [ms]

0.2

0.4

0.6

0.8

1.0

CD
F

(e) Pull at 50 ms publishing interval

5 10 15 20
Time to Completion [ms]

0.2

0.4

0.6

0.8

1.0

CD
F

CoAP GET (n)
CoAP GET (c)
NDN
HoPP

(f) Pull at 5 s publishing interval

Figure 3.5: Time to content arrival for scheduled publishing in a single-hop topology at different
intervals.

3.3.4 Single-hop with Scheduled Publishing

Protocol performances are first evaluated in a single-hop topology at the Paris testbed with
periodic content publishing every 50 ms and 5 s. Content is pushed or requested accordingly.
Figure 3.5 displays the results for protocol reliability and temporal performance. As an overall
trend, it is apparent that push-oriented protocols operate faster, but less reliable.

For the rather relaxed scenario of publishing every 5 s, we see the protocol families in rough
agreement. Push-based protocols require an average of 7 ms (Fig. 3.5c) for data delivery, pull-
based protocols take 11 ms (Fig. 3.5f), with the exception of HoPP which is slightly slower on
this short timescale due to its three-way handshake.

The publishing interval of 50 ms puts some protocols under stress, even though IEEE 802.15.4
practically limits transmission only below an interval of 10 ms. The performance of CoAP PUT
significantly degrades (Fig. 3.5b), leaving the unconfirmed messaging at a total data loss of 6 %
(Fig. 3.5a). The PUT of Confirmable CoAP instead initiates 26 % retransmissions (Fig. 3.5d)
which increase delays up to a factor of five. Confirmable CoAP does complete data delivery at
42 ms (Fig. 3.5b is clipped for visibility). It should be noted, though, that retransmissions on
the data link layer are present for all protocols and are reflected by the staircase patterns. We

31

Chapter 3 Potentials of ICN for Constrained IoT Networks

CoA
P G

ET
 (n

)

CoA
P G

ET
 (c

)
NDN

HoP
P

0

100

200

300

400
Po

llin
g

Ov
er

he
ad

 [%
]

(a) Control Overhead for polling unscheduled
content

0 2 4 6 8 10
Time to Completion [s]

0.2

0.4

0.6

0.8

1.0

CD
F

CoAP GET (n)
CoAP GET (c)
NDN
HoPP

12 14 16 18 20
[s/103]

(b) Time to unscheduled content arrival

Figure 3.6: Pull protocol performance at random publishing in [1s . . . 3s].

do not measure these fast repeats (≤ 10 ms) in this work, but refer to our previous study [193]
for further details.

3.3.5 Single-hop with Unscheduled Publishing

Our next experiments address the common IoT use case of publishing data at irregular intervals.
This is the typical pattern for observing third party actions (e.g., light switching), or largely
uncoordinated sensing environments. Push-based protocols naturally serve these application
needs. We quantify the behavior of the request-based protocols in practice and chose the
moderate setting of publishing content every two seconds on average. Publishing is uniformly
distributed in the interval of [1 s . . . 3 s]. The protocols CoAP and NDN request the content
periodically every second so that updates are not lost.
Figure 3.6b visualizes content delivery times for all request-oriented protocols. CoAP GET

and NDN now operate on a timescale of seconds, while HoPP continues to complete in the
unaltered range of 15 ms without additional protocol operations – the unsurprising outcome of
content triggers built into HoPP. CoAP requests content using a common name with the result
of likely duplicate content transmissions. On average, CoAP needs two requests to retrieve fresh
content with the expected average delay of ≈ 2 s and a corresponding polling overhead of 200
% (Fig. 3.6). In contrast, NDN admits lower overhead, as Interests are locally managed at the
PIT and only retransmitted after state timeout.
However, issuing Interests at a higher rate than content arrival leads to an accumulation

of open states in the PIT. As resources on the constrained nodes are tightly bound, the PIT
limits are quickly reached and can be only met by either discarding newly arriving Interests, or
by overwriting pending Interest state. Both countermeasures delay content delivery, as can be
seen from Figure 3.6b. In detail, the time to content delivery of NDN stretches over various
PIT combinations up to the final PIT timeout of 10 s. It is noteworthy that PIT overflow

32

3.3 Evaluation

in these experiments appears for available content that is ready for delivery via valid routes.
NDN protocol extensions such as NACKs would neither help nor should be triggered, since
Interest retransmissions act as counter measures to packet loss or timeouts due to wireless link
degradation. Consequently, the quantitative impairment of packet delivery tightly depends on
the scenario and can lead to significant data loss in the constrained IoT, as well.

These experiments shed again light on the trade-off between memory and network performance
in the NDN stateful forwarding regime as has been first identified in [386] and recently discussed
in the IoT context [339].

3.3.6 Multi-hop Topologies

We now consider the more delicate use case of mixed communication in multi-hop topologies:
50 nodes exchange content that is published every 5 or 30 seconds in an uncoordinated manner.
Repeated experiments were performed on the Grenoble testbed with tree topologies of routing
depths varying from four to six hops.

First, we examine the temporal distributions from content publishing to arrival in analogy
to the single-hop cases. Figure 3.7 combines the results for push and pull protocols, as well
as both publishing rates. The overall results reveal a much slower and less reliable protocol
behavior than could be expected from the single-hop values in Figure 3.5. Graphs reflect the
common experience in low power multi-hop environments that interferences and individual error
probabilities accumulate in a destructive manner.

Push and pull protocols now operate on similar time scales in the absence of considerable
disturbances, while events of strong interference and packet corruption on the air lead to large
retransmission delays and loss. Protocol retransmissions with an interval of 2 seconds are clearly
reflected by the staircase patterns in the respective CDF. Most notably, the ‘reliable’ variants
of CoAP PUT (c) and GET (c) fail to always transfer the content, but remain unsuccessful in
a range between 5 % (at 30 s publishing) and 30 % (at 5 s). Even though confirmable CoAP
operates more reliably than the unreliable versions OBS and PUT/GET (n), the failure rates
indicate a quite unsatisfactory protocol behavior. A similarly unsuccessful performance must be
observed for the NDN push variant Interest Notification. In contrast, the reliable MQTT (Q1)
successfully transfers its data in 90–95 % of all cases, thereby heavily relying on retransmissions
as we will see in the course of the further analysis.

The performance of NDN shows decent results both in promptness and reliability, even though
5 % of data chunks remain lost in the fast publishing scenario (5 s). The only protocol that
delivers reasonably fast at full reliability is the NDN variant HoPP. Below we will see that this
happens with the least retransmissions and in evenly balanced flows. In a way, this result is
not surprising as HoPP is optimized for IoT demands and the only protocol that balances data
transmissions per hop. It is the common experience in the low power wireless that link qualities
vary quickly and largely.

33

Chapter 3 Potentials of ICN for Constrained IoT Networks

0 5 10
Time to Completion [s]

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

(a) Push at 5 s publishing interval

0 5 10
Time to Completion [s]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

I-Not
MQTT-SN (Q0)
MQTT-SN (Q1)

CoAP OBS
CoAP PUT (n)
CoAP PUT (c)

(b) Push at 30 s publishing interval

0 5 10
Time to Completion [s]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(c) Pull at 5 s publishing interval

0 5 10
Time to Completion [s]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

NDN
HoPP

CoAP GET (n)
CoAP GET (c)

(d) Pull at 30 s publishing interval

Figure 3.7: Time to content arrival in multi-hop topologies of 50 nodes.

Second, we evaluate the effective data goodput and flow analysis of the different protocols
during content publishing experiments. In Figures 3.8 and 3.9, we summarize the results for the
variants of NDN, MQTT, and CoAP respectively. We display the different experimental results
of the data goodput in box plots and compare to the theoretical optimum (lines). Time series
of data goodput are further revealing the flow behavior as displayed in the lower row of these
figures.

Clearly, HoPP admits the most evenly balanced flows and shows nearly optimal goodput
values, closely followed by NDN. All other flow performances fluctuate with some tendency of
instability when approaching its full transmission speed. Some IP-based flows in MQTT and
CoAP drop to lower delivery rates which is dominantly caused by slow repeated end-to-end
retransmission. Multi-hop retransmissions in this error-prone regime tend to cause additional
interferences and accumulate transmission errors. As a consequence, protocols operate at re-
duced efficiency – in some cases protocol performance drops down to 50 % (e.g., CoAP GET (n)
and CoAP OBS in Fig. 3.9). Interest Notification which is not capable of content caching, does
not outperform the IP protocols. The overall results show that the absence of flow control as
in UDP/IP–based protocols and in the I-Not variant of NDN make protocols fragile. Hop-wise

34

3.3 Evaluation

5 10 15 20 25 300

10

20 NDN
theoretical
goodput

5 10 15 20 25 30

HoPP
theoretical
goodput

5 10 15 20 25 30

I-Not
theoretical
goodput

5 10 15 20 25 30

MQTT-SN (Q0)
theoretical
goodput

5 10 15 20 25 30

MQTT-SN (Q1)
theoretical
goodput

20 400

10

20 05s
10s
15s

20s
25s
30s

20 40

05s
10s
15s

20s
25s
30s

20 40

05s
10s
15s

20s
25s
30s

20 40

05s
10s
15s

20s
25s
30s

20 40

05s
10s
15s

20s
25s
30sGo

od
pu

t [
Ki

B
/ m

in
ut

es
]

Content Publishing Intervall [seconds]

Experiment Duration [minutes]

Figure 3.8: Goodput summary and evolution for the NDN and MQTT protocols at different
publishing intervals.

5 10 15 20 25 300

10

20 CoAP GET (n)
theoretical
goodput

5 10 15 20 25 30

CoAP GET (c)
theoretical
goodput

5 10 15 20 25 30

CoAP OBS
theoretical
goodput

5 10 15 20 25 30

CoAP PUT (n)
theoretical
goodput

5 10 15 20 25 30

CoAP PUT (c)
theoretical
goodput

20 400

10

20 05s
10s
15s

20s
25s
30s

20 40

05s
10s
15s

20s
25s
30s

20 40

05s
10s
15s

20s
25s
30s

20 40

05s
10s
15s

20s
25s
30s

20 40

05s
10s
15s

20s
25s
30sGo

od
pu

t [
Ki

B
/ m

in
ut

es
]

Content Publishing Intervall [seconds]

Experiment Duration [minutes]

Figure 3.9: Goodput summary and evolution for the CoAP protocols at different publishing
intervals.

retransmission management as applicable in NDN and HoPP re-balances flows and explicitly
demonstrates its benefits for the IoT instead.

Our next evaluation focuses on the link utilization. We measure all individual paths that
each unique data packet traveled on its destination from source to sink and contrast the results
with the corresponding shortest possible path. Results are visualized as scatterplots in Figure
3.10. Each dot represents one or several events, the dot size is drawn proportionally to event
multiplicities. Solid lines indicate the shortest paths, while events left of the line represent
failures (traversal shorter than the shortest path). Right of the solid diagonal retransmissions
are counted.

The ideal protocol performance is situated on the diagonal line with all data traversing each
link only once on the shortest path. This ideal behavior is most closely approximated by
the NDN core and the NDN HoPP protocols. A largely contrasting performance can be seen
from the reliable IP protocols MQTT (Q1) and CoAP PUT (c) which admit huge numbers of

35

Chapter 3 Potentials of ICN for Constrained IoT Networks

1
2
3
4
5
6 Loss

Retransmissions

Shortest Path

NDN I-Not HoPP MQTT-SN (Q0) MQTT-SN (Q1)

0 10 20
1
2
3
4
5
6

CoAP GET (n)
0 10 20

CoAP GET (c)
0 10 20

Data Packets per Publish [#]

CoAP OBS
0 10 20

CoAP PUT (n)
0 10 20

CoAP PUT (c)

Ho
p

Co
un

t

Figure 3.10: Link traversal vers. shortest path for a 15 s publishing interval. The scatterplots
reveal the link stress with dot sizes proportional to event multiplicity.

101

103

105
NDN

20 40

I-Not

20 40

HoPP

20 40

MQTT-SN (Q0)

20 40

MQTT-SN (Q1)

20 40
101

103

105
CoAP GET (n)

20 40

CoAP GET (c)

20 40
Experiment Duration [minutes]

CoAP OBS

20 40

CoAP PUT (n)

20 40

CoAP PUT (c)

En
er

gy
 [J

 ⋅
10

−2
]

Figure 3.11: Energy consumption over time for each node in the topology using a 15 s publishing
interval.

retransmissions. This also holds for the NDN Interest Notification protocol which cuts out the
NDN feature strength by inverting its semantic.
Unreliable IP-based protocols show very large loss multiplicities and only a few retransmissions

which are initiated by reacting to link-layer failures. This corresponds to the reduced success
rate already observed in the previous evaluations. Apparently, all protocols that follow an end-
to-end path semantic (including I-Not) are forced to struggle against the unpredictable nature
of intermediate links—either by voluminous packet retransmissions or significant packet loss.
In our final experimental comparison between the protocols, we evaluate the individual energy

consumption per node as a function of time. Since the energy demand of a protocol is largely
dominated by its radio transfer of packets, we focus our measurements on ‘bytes in the air’, i.e.,
the IEEE 802.15.4 transmission and reception of packets on each individual node. Power con-
sumption levels for transmitting, receiving and idling are obtained from the Atmel AT86RF231
data sheet, and we calculate the actual energy from measuring the radio operation time in the
respective device state.

36

3.4 Related Work

Time series of nodal energies are plotted in Figure 3.11 for each protocol during the course of
the experiment. Immediately we observe the tree topology pattern in all graphs: The root node
prominently consumes a multiple of leaf node energies, and intermediate forwarders differentiate
according to tree ranks in between. It is noteworthy that the routing topology did not rearrange
during the measurement period. A varying use of routing trees could gradually balance the
uneven energy needs.

Aside from topological effects, distinct protocol signatures become visible. While all energy
curves fluctuate due to temporal variations and local retransmissions, some protocols show
significant amplitudes from local disorder and repair. Reliable MQTT (Q1) exhibits a peak of
recovery after an initial period of loss with depleted energy level on some branch, and a high
number of pronounced peaks otherwise.

HoPP experiences a handover in energy load at about eight minutes. This follows its ability of
dynamically switching to a more reliable uplink path without rebuilding the topology. HoPP and
NDN admit rather steady and smooth energy gradients, since they mainly rely on local repairs
(or caching). In contrast, I-Not as a protocol without in-network caching support requires more
hop-wise retransmissions and must be considered energy-wise expensive.

Unreliable protocols such as MQTT (Q0) and CoAP (n) repeatedly show valleys in energy
curves, since packets lost early on the path relieve the burden of forwarding to the remainders.
Delivery failures in CoAP GET (c) as already known from Figure 3.10 lead to some drops in
energy, as well. MQTT (Q0), CoAP OBS and CoAP PUT (n) consume the least energy, which
is not surprising for these lean protocols without loss recovery.

Viewing link-stress (Fig. 3.10) and energy flow (Fig. 3.11) conjointly, a rather clarifying
view on the operational conditions of the protocols emerges. Some protocols remain lean and
undemanding while delivering only a restricted service (e.g., CoAP OBS and PUT (n)), others
are steady, predictable and run at full service (e.g., NDN and HoPP), and some protocols really
struggle in this IoT-typic environment (e.g., MQTT (Q1), CoAP PUT (c), and I-Not).

3.4 Related Work

3.4.1 ICN and IoT

The benefits of ICN/NDN in the IoT have been analyzed mainly from three angles. (i) design
aspects [33, 307, 337, 258, 27], (ii) architecture work [120, 331], and (iii) use cases [62, 15,
325, 141]. To support experimental evaluation, several implementations have become available,
including CCN-lite [372] on RIOT [32, 34] and on Contiki [8], and NDN on RIOT [338]. The
objective of this chapter is not to present an additional ICN implementation for the IoT but
to reuse common stacks. With this we contribute to more reliability of existing software as
extensive usage helps to find bugs.

The evaluation of NDN protocol properties in the wild includes the exploitation of NDN com-

37

Chapter 3 Potentials of ICN for Constrained IoT Networks

munication patterns to improve wireless channel management [162, 164] as well as data delivery
on the network layer [33]. Comparison to common IoT network stacks at the transport layer
(in particular UDP) is not available. In this chapter, we close the gap towards the application
layer and analyze common application protocols (i.e., MQTT and CoAP) compared to intrinsic
network layer characteristic provided by NDN.

3.4.2 Interoperation and Adoption of CoAP and MQTT in ICN

Implementing CoAP on top of ICN has been proposed to enable full features of CoAP [113, 358],
such as support of group communication and delay-tolerant communication [179]. These con-
cepts have been showcased in building management systems [114]. In contrast to the integration
of CoAP into ICN, an MQTT-to-CCN gateway was proposed to allow for interoperation be-
tween CCN IoT devices and the current Internet [8]. A dedicated rendezvous point to discover
resources and to bridge between IP-based MQTT subscribers and NDN sensors was introduced
in [181]. Note that our work differs from those research as we assess the performance of CoAP,
MQTT, and NDN in their original deployment scenarios, instead of focusing on interoperability
use cases. This helps to identify intrinsic protocol characteristics.

3.4.3 Performance evaluation of CoAP and MQTT

The performances of CoAP and MQTT have been studied from several perspectives over the last
years [175, 89]. Very early work analyzed the interoperability of specific CoAP implementations
[234, 381] without performance evaluation. Later, CoAP implementations have been assessed in
comparison to HTTP [246] or on different hardware architectures [212]. MQTT was evaluated
in [103]. Thangavel et al. [363] proposed a common middleware to abstract from CoAP and
MQTT. Based on this middleware, CoAP and MQTT were evaluated in a single-hop wired
setup. In emulation, MQTT and CoAP have been studied in the context of medical application
scenario [70]. A holistic analysis of MQTT and CoAP in a consistent experimental setting
including low-end IoT devices is missing. In particular, no detailed comparison to NDN is
provided.

3.5 Conclusions

This chapter presented extensive experimental analyses to answer the question which of the
common protocols MQTT, CoAP, or NDN is best suited for transferring IoT data from con-
strained devices. We found that for simple, single-hop topologies the protocol families examined
in this chapter behave similar, but lean push protocols such as MQTT-SN and CoAP Observe
operate fastest, at lowest energy consumption, and most network-friendly.
In challenged multi-hop scenarios, though, the results quickly turn tides into a differentiated

view between protocols that operate in host-to-host semantic and those acting per link traversal.

38

3.5 Conclusions

NDN and NDN-HoPP can both enfold their hop-wise transfer features in balancing flows that
reliably deliver data without the need for remarkable retransmission rates. This is in significant
contrast compared to common UDP-based IoT application layer protocols that do not benefit
from underlying flow control.
While NDN is susceptible of overflowing PIT states in unscheduled publishing scenarios,

NDN-HoPP handles such notification events without any performance flaw. In contrast, all IP-
based protocols and also the NDN Interest Notification quickly struggle in challenging regimes,
either by losing or by repeating packets at large scale.
Our overall findings clearly indicate that lean and simple protocols such as MQTT and CoAP

Observe can enfold its efficiencies in relaxed environments with low error rates. Challenged
networks, though, will quickly degrade their performance to a minimum. In disruptive environ-
ments, protocol performance improves with operations confined to the local link: Hop-by-hop
transfer with intermediate caching notably increases reliability and reduces corrective actions,
which jointly grants efficient robustness. Dependable systems in challenged regimes should take
advantage of corresponding solutions.

39

Chapter 4

MAC Address Mapping in ICN

Abstract

In this chapter, we start from two observations. First, many application scenarios that benefit
from ICN involve battery driven nodes connected via shared media. Second, current link layer
technologies are completely ICN agnostic, which prevents filtering of ICN packets at the device
driver level. Consequently, any ICN packet, Interest as well as data, is processed by the CPU.
This sacrifices local system resources and disregards link layer support functions such as wireless
retransmission. We argue for a mapping of names to MAC addresses to efficiently handle ICN
packets, and explore dynamic face-based mapping schemes. We analyze the impact of this link
layer adaptation in real-world experiments and quantitatively compare different configurations.
Our findings on resource consumption, and reliability on constrained devices indicate significant
gains in larger networks.

4.1 Problem Statement and Related Work

4.1.1 The IoT Use Case

The Internet of Things gathers a diverse set of very heterogeneous nodes. Our focus is on
low-end IoT devices, equipped with hardware resources of class 2 [58], connected via radio, and
powered by battery. These devices benefit from NDN in the following way. First, the lightweight
NDN network stack requires less memory compared to the current IoT stack standardized in
the IETF. It is worth noting that cache sizes are independent from network stack sizes. NDN
provides off the shelf name-based management and monitoring capabilities, without introducing
dedicated services on top of the network layer. Second, those devices may offload data to more
powerful nodes without the burden of additional protocols. This is implemented natively on
the network layer, and thus simplifies application programming. Third, this in-network caching
allows nodes to sleep longer, reduce data delivery latency, and increase content availability [164].
It is worth stressing that the IoT does not only gather different nodes among different oper-

ators but may also be heterogeneous within a single domain. As such, we cannot assume that
all nodes provide the same set of services, neither on the application, nor on the network layer.

41

Chapter 4 MAC Address Mapping in ICN

4.1.2 Current Solutions and Challenges

4.1.2.1 NDN-specific Link Layer

Shi et al. [342], Grassi et al. [131, 132], and Wang et al. [389] argue for a link protocol that is spe-
cific to NDN. Shi et al. [342] introduce NDNLP, which features fragmentation and reassembly as
well as acknowledgement and retransmission of packets. NDNLP is located between the network
layer (e.g., NDN) and the virtual (e.g., tunnels) or physical (e.g., Ethernet) link layer. Grassi
et al. [131, 132] present a link adaptation layer, which is tailored for vehicular networks but
follows conceptually the same idea as NDNLP. Similarly, in the context of improved reliability,
Wang et al. [389] introduce an NDN broadcast protocol, which tries to minimize collision. Both
approaches aim for an increased packet delivery ratio by measures below the application and
network layer but still require packet processing by the CPU, independent whether a specific
NDN service bound to the broadcast packet is available or not.

4.1.2.2 Name-based Filtering on NIC

Shi et al. [343] propose name-based filters on the device driver level of the network interface
card. To optimize the implementation for limited on-chip memory of the NIC, names are
maintained in a Bloom filter table. This approach exhibits good performance results but comes
with the drawback of a layer violation. The data structure to implement filtering is specific
to the ICN approach above the link layer. However, not all ICN approaches follow the same
naming scheme [7, 405]. Consequently, changing the specific ICN network stack may require
update of the device driver. This will slow down deployment of upcoming approaches. More
importantly, this approach distributes data via layer 2 broadcast frames, and thus does not
benefit from error handling on this layer.

4.1.2.3 Unicast Faces

Approaches different from the adaptation of the link layer or device driver are presented by
Teubler et al. [361] and Baccelli et al. [33]. They introduce unicast faces. Basically, unicast
faces assign (unicast) MAC addresses to NDN faces. These are created dynamically. Initial
Interests are broadcasted, containing the unicast source MAC address of the sender. Having this
information in place, the receiver makes use of the source address to assign a unicast face. NDN
packets which are transmitted via a unicast face conversely include the unicast MAC address.
This allows both native MAC-based filtering and benefiting from error handling/prevention
on the data link layer. This approach is suitable for specific adaptations to link layers like
TSCH [162], and in case not all nodes within a broadcast domain provide the same network
layer services, such as in the IoT. On the other hand, unicast traffic reduces caching capabilities
and data redundancy. A detailed analysis of link layer unicast and broadcast on the system load
of an NDN node is still not present. In this chapter, we argue that NDN should revisit the MAC

42

4.2 Design Space by Instrumenting Existing Link Layer Features

layer mapping. There are application scenarios in which a reduced system load outperforms data
redundancy. Our analysis in Section 4.3 is a first step in this direction.

4.2 Design Space by Instrumenting Existing Link Layer Features

An NDN node can send Interest as well as data packets via unicast or broadcast on the MAC
layer. In this section, we discuss pros and cons of each configuration scheme and perform a first
experimental reality check about the effect of link layer support.
For the sake of clarity, we focus on core aspects. We assume NDN nodes with a single

interface connected to the network via shared media. Extending this scenario to nodes with
multiple interfaces does not change the core insights. Furthermore, we do not explicitly discuss
multicast for two reasons. First, typical lower layer IoT protocols (e.g., 802.15.4) do not support
multicast. Second, linking a face to a multicast MAC address instead of a unicast MAC address
requires only a name to group address mapping on the data link layer.

4.2.1 Broadcast or Unicast for Interest or Data

Case 1: Interest Broadcast, Data Broadcast. Any node within the broadcast domain
will send Interests as well as data as link layer broadcast. As long as there is a matching
name prefix in the forwarding information base (FIB), these (successfully received) Interests
will create a PIT entry. Consequently, as soon as a corresponding data packet is transmitted
within the broadcast domain, all members of this domain will forward this data packet, leading
to redundant traffic. This highest level of redundancy has pros and cons. Practically, in a
densely connected network any node may fail without degrading data delivery, as all remaining
nodes cache content. However, this level of packet redundancy introduces excessive overhead for
each node (e.g., CPU processing) but also for the complete network (e.g., radio interferences).
Interferences should be considered even more seriously with broadcast traffic, as there is no
protective repair of errors on the link layer.

Case 2: Interest Broadcast, Data Unicast. Similar to case 1, all nodes of the broadcast
domain will create a PIT entry after receiving an Interest packet. However, data packets are
directed to the unicast MAC address which is associated with the corresponding outgoing face
(i.e., the MAC address of the next hop). As we assume a shared media, all other nodes within
radio reach receive the data packet as well, but drop it at the device driver level because of
an unmatching (unicast) MAC address. Those nodes can neither cache nor forward the data
on the network layer. Previously created PIT entries will thus not dissolve by receiving data
but by timeouts. These PIT entries require memory, processing time and will not help to
achieve redundancy. To cope with node failures, an additional mechanism is needed to keep the
MAC-face assignment in sync with the MAC address of an alternative next hop.

Case 3: Interest Unicast, Data Unicast. Compared to the previous scenarios, in this

43

Chapter 4 MAC Address Mapping in ICN

case, Interest as well as data packets are sent to a unicast MAC address, using unicast faces
as described in Section 4.1.2.3. Such an approach implements hop-by-hop forwarding on the
link layer and prevents redundancy completely because any overheard packet is dropped by the
network interface card. This setup requires active maintenance of MAC-to-face mapping in case
of node failures.
In contrast to Case 2, updating only the unicast data face is not sufficient. Data will be

forwarded based on PIT entries. The strong coupling of Interest and data flow requires that the
MAC address assigned to the Interest face is in line with the data face. However, usually there
is a time gap between sending Interest and forwarding corresponding data. A unicast MAC
address that is valid during Interest submission might be outdated when data is forwarded. On
the other hand, this case reduces radio transmissions and CPU processing to a minimum and
fully incorporates MAC layer retransmission handling.

Case 4: Interest Unicast, Data Broadcast. The last case provides very limited redundancy.
Data packets will be processed by the NDN stack of all nodes of the broadcast range. However,
as Interest has been delivered via MAC unicast, only one node in the broadcast domain created
a PIT entry. All other nodes will thus drop the data packet at network layer.

Discussion. Case 1 promises path and data redundancy but comes to the cost of excessive
resource consumption which may be harmful, especially in IoT networks. Case 2 optimizes data
transport via unicast but keeps forwarding redundancy and superfluity of a routing protocol.
Case 3 fully optimizes resource overhead and transmission robustness which is promising for
battery driven, constrained nodes. However, this approach requires a reliable routing mechanism
since it minimizes path redundancy as well caching capabilities. Case 4 brings little benefit to
NDN, as redundant data is not utilized.

4.2.2 The Case for Link Layer Assistance

Experimental Exploration. In this initial experiment, we want to check back on the effect
of a reliable unicast link layer by counting incomplete Interest-data handshakes. For this, we
select three nodes within radio range from the Lille site of the FIT IoT-Lab testbed (s. Section
4.3). One consumer node requests 1000 content items from one producer node at a rate of two
Interests per second (without Interest retransmissions), installing different MAC layer mappings.
The third node generates side traffic on the same radio channel, sending packets of 50 Bytes
within random intervals between 3-10 ms.

Results. Table 4.1 presents unsatisfied Interests at the consumer as an indicator of packet
loss (Interest or data). Strikingly, we see that broadcasting Interests increases the error rate by
about one order of magnitude (Case 2 versus Case 3). Broadcasting data after Interest unicasts
appear more robust, which we account to an implicit link layer coordination. In the presence
of a periodic radio interferer, Interests are retransmitted on the MAC layer until the interferer
paused and the transfer succeeded. Data in this single hop scenario follows immediately and

44

4.3 Evaluation

Table 4.1: Unsatisfied Interests with different face to MAC address mappings under presence of
link layer interference.

Interest
Data Broadcast Unicast

Broadcast 12.1 % (Case 1) 10.6 % (Case 2)
Unicast 3.3 % (Case 4) 1.9 % (Case 3)

thus takes advantage of the same pause (Case 2 versus Case 4). Broadcasting Interest and data
(Case 1) combines these two sources of errors from Case 2 and Case 4. We conclude that NDN
can substantially benefit from utilizing the support of MAC layer robustness.

4.3 Evaluation

The objective of our experiments is the measurement of basic effects through different MAC
layer mappings in a common IoT environment. Thereby, we make use of standard software
solutions and typical IoT hardware including low power radio transmission technologies. We
will focus on Case 2 and Case 3 (see Section 4.2) because CCN-lite does not support data
transmissions via broadcast in the current version.

4.3.1 Experimental Setup

All experiments are conducted in the FIT IoT-LAB testbed [5] to reflect common IoT properties.
The testbed consists of several hundreds of class 2 devices equipped with an ARM Cortex-M3
MCU, 64 kB of RAM and 512 kB of ROM, and an IEEE 802.15.4 radio (i.e., Atmel AT86RF231
[29]). The radio card provides basic MAC layer functions implemented in hardware, such as
ACK handling, retransmissions, and CSMA/CA. For power measurements, we parameterize the
consumption monitoring tool of the testbed with a conversion time of 332 µs and averaging over
64 samples. The software platform is based on RIOT [32] and the CCN-lite network stack [372],
which we include as a third party library in RIOT. The integration of CCN-lite into RIOT and
its default components are visualized in Figure 4.1.
We use default configuration parameters in RIOT and CCN-lite where possible and not men-

tioned otherwise. In detail, we deploy RIOT release 2017.01 and CCN-lite master with latest
updates from May 10, 2017. For our measurements, we configure CCN-lite with a maximum
of three Interest retransmissions and 12 seconds Interest timeout. MAC configurations of the
radio devices enable IEEE 802.15.4 ACK requests for unicast traffic with a maximum of four
retransmissions, and CSMA with a maximum number of four retries, introducing random delays
after denied channel access (see [29] for further default values).
The subsequent experiments include single-hop and multi-hop scenarios, which we describe in

45

Chapter 4 MAC Address Mapping in ICN

Figure 4.1: System environment: Integration of RIOT and CCN-lite to implement dynamic
broadcast and unicast faces in NDN.

more detail next to the analysis of our experiments. Our results represent averages over multiple
runs with the same parameter settings.

4.3.2 Single-hop Scenario

4.3.2.1 Configuration

We deploy our single-hop measurements at the Lille site of the FIT IoT-LAB testbed because
all nodes are located in the same broadcast range. We randomly select a single consumer
node and a varying number of producer nodes for different measurement runs. Each producer
is equipped with a different number of unique and static content items. In all subsequent
scenarios, the consumer requests existing content items randomly. We measure the number of
system wakeups and the CPU load of both the CCN-lite software stack and the radio device
driver.
To implement single-hop data exchange on the data link layer and the network layer, all nodes

need to be in physical reachability and consumers need to have routing entries that reach the
producers directly. To consider common scenarios, we analyze three basic configurations. (i) On
all nodes, we install a common prefix route that covers all content names, and the corresponding
face refers to the broadcast address. Note, in this case, a unicast MAC address conflicts with
reachability of arbitrary content items via a single hop as content is requested from multiple
producers. In the remaining configurations, we install dedicated FIB entries only on the selected
consumer, which refer (ii) either to unicast addresses of the producers or (iii) to the broadcast
address.
Furthermore, to analyze different network sizes and load, we vary the number of producer

nodes, or the number of content items per producer in a predefined network size.

46

4.3 Evaluation

10 20 30 40 50
Number of Nodes [#]

0k

10k

20k

30k

40k

50k
S

ys
te

m
W

ak
eu

ps
[#

] Radio Broadcast

CCNL Broadcast

(a) 10 contents items per node with prefix
routes on all nodes.

10 20 30 40 50
Number of Nodes [#]

0

200

400

600

S
ys

te
m

W
ak

eu
ps

[#
] CCNL Broadcast

Radio Broadcast

CCNL Unicast

Radio Unicast

(b) 10 contents items per node with prefix
routes only on consumer.

5 10 15 20 25
Contents/Node [#]

0k

10k

20k

30k

40k

50k

S
ys

te
m

W
ak

eu
ps

[#
] CCNL Broadcast

(c) Network of 20 nodes with prefix routes on
all nodes.

5 10 15 20 25
Contents/Node [#]

0

200

400

600
S

ys
te

m
W

ak
eu

ps
[#

] CCNL Broadcast

CCNL Unicast

(d) Network of 20 nodes with prefix routes
only on consumer.

Figure 4.2: Number of system wakeups for varying network setups.

Variable network size. The number of content items per node is fixed, but we increase the
number of producers in different parameter settings. We implement a fixed average content
request rate per producer, i.e., the number of Interests sent by the consumer increases linearly
with the number of nodes in the network.
Variable number of contents items per node. The number of nodes is set to 20 and the number

of content items per node is increased over different measurement runs. We apply a constant
content request rate at the consumer.

4.3.2.2 Results

Figure 4.2 shows the number of system wakeups per producer for the single hop scenario, with
variable network sizes and a fixed number of content items per node (see Figures 4.2a and
4.2b), as well as with a fixed network size and variable number of content items per node
(see Figures 4.2c and 4.2d). Figures 4.2a and 4.2c represent the setup where Interests are
sent to the broadcast MAC address and all nodes have routing entries for all content names.

47

Chapter 4 MAC Address Mapping in ICN

10 20 30 40 50
Number of Nodes [#]

0

10

20

30
C

P
U

ti
m

e
[u

s]
Radio Broadcast/20

CCNL Broadcast

(a) 10 contents items per node with prefix
routes on all nodes.

10 20 30 40 50
Number of Nodes [#]

0.00

0.10

0.20

0.30

C
P

U
ti

m
e

[u
s]

CCNL Broadcast

Radio Broadcast

CCNL Unicast

Radio Unicast

(b) 10 contents items per node with prefix
routes only on consumer.

5 10 15 20 25
Contents/Node [#]

0

10

20

30

C
P

U
ti

m
e

[u
s]

CCNL Broadcast

(c) Network of 20 nodes with prefix routes on
all nodes.

5 10 15 20 25
Contents/Node [#]

0.00

0.10

0.20

0.30
C

P
U

ti
m

e
[u

s]
CCNL Broadcast

CCNL Unicast

(d) Network of 20 nodes with prefix routes
only on consumer.

Figure 4.3: Absolute CPU usage for varying network setups.

Figures 4.2b and 4.2d represent the setup where only the consumer node has FIB entries, which
maps faces either to the unicast address of each content producer or to the broadcast domain.
Correspondingly, Figure 4.3 represents statistics of the CPU usage we measured.

In terms of energy and processing overhead, it is clearly visible that faces with unicast MAC
addresses outperform broadcast faces. While the number of system wakeups is constant for
varying network sizes, it only increases in direct relation to the number of provided content items
of one node with unicast mapping. Broadcast overhead increases linearly with the number of
nodes and the number of contents per node, thus it directly correlates with the total number of
requested content items in the whole (single-hop) network. This increases resource consumption.

To summarize, unicast faces can improve the lifetime of battery driven IoT devices by keeping
CPU-wakeups and processing overhead at a minimum, and increase stability by benefiting from
built-in MAC layer mechanisms for unicast traffic, such as ACK handling and retransmission.
On the other hand, it requires a maintenance mechanism for the assignment of MAC addresses

48

4.3 Evaluation

10 20 30 40 50
Number of Nodes [#]

0

5

10

15

E
ne

rg
y

E
xc

es
s

p
er

N
od

e
[J

]

CCNL w/ forwarding

CCNL w/o
forwarding

Figure 4.4: Average energy excess per producer: Broadcast with and without common prefix
routes vs. unicast.

to faces and reduces redundancy by omitting built-in content replica-mechanisms as well as
alternative data paths.

Deploying common prefix routes to broadcast faces on all nodes reduces the overall perfor-
mance of the network even more, as each node in the broadcast domain does not only wake up
during incoming Interests, but also forwards Interest packets that will not be satisfied, as well
as data packets that might be received as a consequence of the forwarding mechanism. This
leads to an excessive number of wakeups of all nodes in the domain as well as additional data
transmissions. The overhead in this broadcast scenario is several orders of magnitudes higher
than that of unicast.

To better understand the overhead introduced by broadcast Interest forwarding when all
nodes store FIB entries, Figures 4.2a and 4.2b present wakeups, which are separately shown
for the radio device and the CCN-lite (CCNL) network stack. In a setup consisting of a single
application, single network stack, and a single network interface, both measurements should be
roughly equal as the link layer forwards each broadcast packet up to the network stack and
vice versa. This holds only in case of a single forwarder (see Figure 4.2b). We detect a much
higher number of wakeups by the device driver when all nodes store routes. The impact on
CPU times is worse by a factor of 20, as depicted in Figure 4.3a. We assume radio channel
saturation causing this increased resource consumption. To further back these observations,
we also measured (on the same network scale) (i) the rate of unsatisfied Interests (0 – 50 %),
(ii) radio statistics from which we compute the rate of unsuccessfully transmitted packets due
to failing CSMA/CA channel access (0,39 – 0,56), and (iii) the average number of network
layer retransmissions (2 – 9 %). All these observables indicate a negative impact on network
utilization while broadcasting.

Figure 4.4 displays the energy per node additionally consumed when Interests are broadcasted.
We show the energy excess of Interest broadcast, data unicast with and without Interest forward-
ing over an Interest unicast, data unicast mapping for varying network sizes. By no surprise,

49

Chapter 4 MAC Address Mapping in ICN

Outlier

Median

Q1-1.5*IQR

Q3

Q3+1.5*IQR

Q1

Outlier

IQR = Q3-Q1

10k

20k

CCNL
Unicast

CCNL
Broadcast

0

200
S

ys
te

m
W

ak
eu

ps
[#

]

(b) System wakeups

20

30

CCNL
Unicast

CCNL
Broadcast

0.00

0.50

C
P

U
ti

m
e

[u
s]

(c) CPU usage

Figure 4.5: Network of 30 nodes w/ 20 producers and 10 contents items per producer.

the graphs resemble Figures 4.2a and 4.2b, and the additional consumption with forwarding
exceeds single-hop broadcast by orders of magnitudes, for increasing (single-hop) networks.

4.3.3 Multi-hop Scenario

4.3.3.1 Configuration

We conduct our multi-hop measurements in Grenoble. This site of the testbed provides place-
ment of nodes such that nodes do not form a single broadcast domain. However, fluctuating
properties of the wireless media (e.g., reflections) may lead to changing topologies from multi-
hop to single-hop. To ensure a minimal multi-hop connectivity, we introduce a monitoring phase
before our experiments start which is based on the mechanism proposed in [160]. During this
phase, we identify a set of nodes that inter-connect over multiple hops. The resulting topology
consists of 30 nodes where one node acts as consumer, 20 nodes act as producers with a distance
of three hops towards the producer, and other nodes serve as intermediate nodes on the path.

Similar to the single-hop scenario, leaf nodes of the resulting topology are equipped with
unique content items that are requested by a single consumer in randomized order. Referring to
the single-hop experiments, we compare two mapping schemes from content names to faces at
the consumer node and subsequent intermediate nodes: (i) a direct assignment of the next-hop
MAC address to the corresponding face on the path to the producer, and (ii) a common prefix
route where the corresponding face is mapped to a broadcast MAC address.

Even though the same set of nodes is used for (i) and (ii) we cannot guarantee that the same
topology appears within the broadcast scenario, as discussed earlier. We do not consider this
as a drawback but rather as an advantage, reflecting real-world properties.

50

4.4 Conclusions

4.3.3.2 Results

In Figure 4.5, we show the impact of broadcast and unicast faces in a multi-hop network in
terms system wakeups and CPU times for a fixed size network and a predefined number of
content items per producer. We find similar effects compared to the single-hop scenario, where
resource costs for the broadcast mapping (with common prefix routes applied on all nodes)
are orders of magnitudes higher than for the unicast mapping. The medians of both wakeups
and CPU times correspond to our single-hop measurements but larger errors and outliers are
visible. The reason for the outlier is rooted in intermediate nodes. These nodes only forward
Interest and data packets on the path between producer and consumer. In our measurements,
we observed that single links which were stable during the monitoring phase, exhibit asymmetric
link behavior later. That led to packet loss of approximately 10 % in the unicast setup, whereas
the broadcast approach delivered 100 % of the requested content items due redundant paths.
The resource improvement of name to unicast address mapping as well as the additional MAC
layer features such retransmission handling come at the cost of a route maintenance mechanism
that is needed to provide fresh and stable links. Analyzing this in more detail, should be part
of future work.

4.4 Conclusions

In this chapter, we discussed current solutions to implement interaction between the NDN
network layer and the underlying data link layer. In contrast to the IP network stack, which
maps IP addresses to unicast MAC addresses to prevent arbitrary broadcast, there is no such
mechanism by default in NDN. Without sacrificing the principle concepts of NDN, we argue that
link layer broadcast should be reduced in specific deployment scenarios (e.g., IoT), as it conflicts
with limited hardware resources in terms of processing, memory, and energy. We reviewed the
current solution space and contributed a first set of experiments in a real testbed. We linked
NDN faces to unicast or broadcast MAC addresses and quantified the resource overhead and
the advantage of using link layer functions (e.g., retransmission handling).
The position of this chapter is threefold. First, a name to link layer mapping is needed and still

an open research question. Second, our community should find a solution that does not affect
the core of current link layer implementations, and benefits from built-in link layer functions.
Third, one promising solution, the dynamic creation of NDN faces, has been mostly ignored
and deserves more detailed study. In this chapter, we contributed a first set of experiments in
a real testbed and related analysis.

51

Chapter 5

Decentralized MAC and Network Layer for
LoRa

Abstract

This chapter presents LoRa-ICN, a comprehensive IoT networking system based on a common
long-range communication layer (LoRa) combined with Information-centric Networking (ICN)
principles. We have replaced the LoRaWAN MAC layer with an IEEE 802.15.4 Deterministic
and Synchronous Multi-Channel Extension (DSME). This multifaceted MAC layer allows for
different mappings of ICN message semantics, which we explore to enable new LoRa scenarios.

We designed LoRa-ICN from the ground-up to improve reliability and to reduce dependency
on centralized components in LoRa IoT scenarios. We have implemented a feature-complete
prototype in a common network simulator to validate our approach. Our results show design
trade-offs of different mapping alternatives in terms of robustness and efficiency.

5.1 Background and Challenges

LoRa PHY: Long-range but very low data rates. The LoRa PHY layer defines a chirp
spread spectrum modulation which enables a long transmission range (theoretical 2–14 km)
using minimal energy. Spreading factor (SF), code rate, and bandwidth can be configured and
directly affect the time on air and data rate. As an example, a 50Bytes frame has an on-air
time of 2.3 seconds using SF12, code rate 4/5, 125 kHz bandwidth which leads to a PHY bit rate
of 250 bit/s. Varying center-frequencies in the sub-GHz ISM band constrain the duty cycle to
0.1–10% and further limit the effective throughput. As a consequence, the maximum effective
bit rate of the physical layer can be as low as 0.25 bit/s.

While the LoRa PHY provides attractive features, it clearly imposes significant constraints
with respect to worst-case latency and throughput, regardless of higher layer protocols such as
the MAC layer. It is important to note that LoRa networks are therefore not comparable to

53

Chapter 5 Decentralized MAC and Network Layer for LoRa

IEEE 802.11—instead they provide properties that incur significant challenges to higher-layer
protocol design with respect to delay tolerance.

LoRaWAN MAC Layer: Limited communication models. The LoRaWAN MAC layer
defines three operation modes: classes A–C. In class A, constrained Nodes send uplink using the
ALOHA medium access protocol and can receive downlink traffic within two subsequent slots.
This approach has three limitations: (i) ALOHA is susceptible to collisions. (ii) Downlink traffic
is fairly limited and cannot be initiated by a Gateway. (iii) It prevents broadcast traffic. Class C
works similarly to class A but leaves the radio always on, which enables Gateway initiated
(multicast) downlink traffic but comes at high energy cost on constrained Nodes. Class B
adds periodic slots which allows for “predictable” downlinks at medium energy consumption.
Gateways send beacons every 128 seconds (time-synchronized by GPS). Consequently, hardware
requirements are not compatible with current deployments that mostly serve class A. Beacons of
neighbored Gateways can collide, for the absence of beacon synchronization. The Network Server
arranges MAC schedules, however, downlink slots can overlap or be suspended. Scalability issues
of class B have been analyzed in [345]. Furthermore, uplink traffic still uses ALOHA in class B
mode, which interferes with downlink traffic, so that communication is still best effort.

LoRaWAN Network Architecture: Gateway and server centric. In the LoRaWAN
architecture, radio networks are connected by Gateways to a Network Server that provides
over-the-air activation, message deduplication, message routing, adaptive rate control at end de-
vices, and acknowledging messages. Gateways are merely relays that implement timing-relevant
aspects of the MAC protocol such as sending beacons. In the upstream direction, Gateways for-
ward (tunnel) frames to the Network Server over the Internet. In the downstream direction, the
Network Server sends LoRaWAN messages to LoRa Nodes, which includes Gateways selection.

The LoRaWAN specification does not mandate particular deployment options, and Network
Servers could in theory be co-located to Gateways. In practice, e.g., in public networks, such as
TTN [75], Network Servers are operated in the Internet, and Gateways are peripherals of the
Network Server, i.e., they cannot operate without it. While this design decision is practical with
respect to ease Gateway operation, it leads to a centralized architecture around the Network
Server and additional servers such as Application Servers that provide interfacing to business
logic, interconnecting local LoRa networks, and data sharing.

DSME: Reliable and ICN-friendly MAC layer. The 802.15.4 DSME MAC (see [174] for
further details) enables new LoRa scenarios. A coordinator starts network formation and emits
beacons in a pre-defined beacon interval (including beacon collision resolution mechanisms),
to initiate a synchronized multi-superframe structure. A superframe in the multi-superframe
consists of: Beacon period (BP), contention-access period (CAP), and contention-free period
(CFP); the latter of which provides seven guaranteed time slots (GTS), multiplexed across
16 radio channels. Data is transmitted during the CAP, a pre-allocated slot in the CFP, or
in an “overloaded” beacon. Battery-driven Nodes mostly sleep (e.g., during the CAP), which

54

5.2 Design Goals

LoRa
Device

LoRa
DSME

ICN

App

Gateway

LoRa
DSME

ICN

Ethernet

ICN

Internet

Ethernet

ICN

App

(a) Layer configuration.

Gateway

LoRa Net

Gateway

LoRa Net

Internet
App

CtrlData
App

CtrlData

(b) Network example.

Figure 5.1: LoRa-ICN stacks and networks.

makes them unavailable for the coordinator. DSME provides Indirect Transmission, in which a
coordinator indicates pending transactions with a beacon. This triggers the constrained Node
to stay awake after the BP.

5.2 Design Goals

In LoRa-ICN, we are re-imagining the system architecture of long-range IoT communications,
aiming to overcome the challenges described in the previous section. In our deployment scenar-
ios, an application consists of the control and data consumer applications in the Internet and a
set of LoRa-ICN Nodes (ICN producers and consumers), potentially distributed over multiple
individual LoRa radio networks. Each LoRa network is served by one Gateway. The control-
ling and consuming applications can access all their associated wireless Nodes directly over the
Internet, without mediation through application layer Gateways, see Figure 5.1.

Our design goals are (i) not requiring changes to the rest of the ICN network, (ii) providing a
complete set of interaction patterns such as data transmission and Node control, (iii) leveraging
the LoRa PHY capabilities optimally. To implement a fully distributed system model, LoRa-
ICN Gateways operate as layer 3 routers instead of just bridges as in LoRaWAN. Key functions
that are typically implemented by LoRaWAN Network Servers (e.g., routing) are performed by
Gateways.

In order to leverage the LoRa PHY capabilities and to support the rich ICN interaction
patterns, we replace the LoRaWAN MAC layer with the significantly more powerful IEEE
802.15.4 DSME MAC layer [174] that provides better reliability (important for ICN Interests)
and reduced latency (important for ICN consumer-publisher communication). In the following,
we discuss the most relevant operations that support our deployment scenarios.

Node Registration refers to a Node registering its prefixes with the local Gateway (acting

55

Chapter 5 Decentralized MAC and Network Layer for LoRa

as ICN forwarders), which will install FIB entries and announce the prefixes outside the LoRa
network so that Nodes do not need to participate in routing.

Data Provisioning by Nodes on LoRa Nodes includes asynchronously produced sensor data
as well as requested data transmission. ICN is a receiver-driven system, so we distinguish two
main variants: (i) ICN-idiomatic Interest/Data. (ii) Push Data from Nodes to Gateways. While
unsolicited push is not an ICN-idiomatic communication pattern, it is still a useful capability in
a resource-constrained environment because IoT Nodes may need to save energy and produce
data only occasionally.

Node Control refers to Nodes being reliably controlled by peers in the Internet, e.g., for sensor
control and configuration. We use a basic Interest-triggered interaction, and Data as ACK.

Data Retrieval by Nodes is natively enabled as LoRa-ICN Nodes are regular ICN Nodes
and may also send Interests to other ICN Nodes hosted by the same LoRa network, other LoRa
networks, or any other ICN network.

Downstream Multicast enables large-scale data distribution as needed for example in
firmware updates. ICN features multicast via Node-generated Interests and broadcast Data
messages from the Gateway.

5.3 ICN over LoRa

The LoRa PHY exhibits long on-air times (seconds) for transmit long- range (kilometers) at
minimum energy consumption (micro-joules) and underlies rigorous duty-cycle restrictions. In
order to achieve a robust system design, we proceed in two steps. First, we utilize a proven
LoRa PHY configuration to leverage the DSME MAC. Next, we derive a viable mapping of ICN
to DSME/LoRa for sending ICN Interest and Data messages from and to LoRa Nodes.

5.3.1 Mapping DSME to LoRa

We apply the PHY mapping presented by Alamos et al. [10] to utilize LoRa below DSME. This
includes a spreading factor of 7, a bandwidth of 125 kHz, and a code rate of 4/5. The beacon
interval is 125.82 s to align with LoRaWAN class B beacons (128 s). The contention-free period
(CFP) defines 16 channels with a 1% duty-cycle restriction. Beacons and CAP use a common
channel of 10% duty cycle. During CAP, Nodes perform CSMA-CA and incorporate channel
activity detection (CAD) of common LoRa devices.
The CFP channels are designed to carry data of high reliability and limited latency demands.

The time division of DSME, though, requires a packet queue and hence affects transmission
speed. Traffic load determines queue occupation. We want to estimate the average waiting time
(i.e., time in queue) for a packet that should be transmitted reliably during the CFP.
Little’s law [241] W = L/λ approximates the average waiting time W , using the average

number of items L (i.e., queued packets) at a given average arrival rate λ (packet rate). We

56

5.3 ICN over LoRa

Figure 5.2: Mapping schemes of Interest/Data and ICN extension packets to DSME frames.
Data flow is from Node to Gateway, either initiated by the Gateway ((a)-(b)) or by
the Node ((c)-(d)).

assume (i) independent, exponentially distributed inter arrival times of packets with an expec-
tation rate of λ. (ii) Nodes allocate only one transmission slot in CFP and (without loss of
generality) (iii) the MAC queue has infinite capacity.

Let L(tn) be the number of queued packets after the transmission time tn of the n-th multi-
superframe. We note that (L(tn))n is an ergodic Markov process (positive recurrent and aperi-
odic), for which the limiting distribution πi exists (with i = 0, . . . ,∞ the number queued pack-
ets). This stationary eigenvector can be calculated numerically as a fixed point of a (clipped)
high-dimensional transition matrix and yields the stationary mean occupancy L(t∞) prior to
starting the new superframe. The actual queue that an arriving packet faces holds also packets
which arrived during the current multi-superframe (of duration T), i.e.,

L = L(t∞) +
λ · T

2
(5.1)

As an example, we choose a relaxed packet arrival rate λ = 1/120 s and compose our multi-
frame structure of 4 superframes, i.e., T = 32.46ṡ. This results in an average number of
L ≈ 0.18 queued packets and an average waiting time of W ≈ 21.32 s respectively. This
scenario is compatible to the downlink in a common class B configuration, which exhibits an
average waiting time of 44 s but suffers from 26% loss [101]. In contrast, loss is very unlikely in
our CFP time division period.

5.3.2 A MAC for ICN using a LoRa-Proxy

Figure 5.2 presents options to handle Interest and Data packets between a high throughput
network (e.g., the Internet) and a DSME/LoRa network. The left part (Figure 5.2(a)-(b))
shows Gateway-initiated request-response communication, resembling native ICN primitives.

57

Chapter 5 Decentralized MAC and Network Layer for LoRa

Internet Gateway Node 1 Node 2

(a) Data unicast

Node Initiated

Interest
Interest

data
data

Interest

data

Internet Gateway Node 1 Node 2

(b) Data broadcast in beacon

Interest
Interest

data

Interest

Beacon
[data]

C
A

P/
C

FP
B

P

Figure 5.3: Mapping schemes of Interest/Data and ICN extensions packets to DSME frames.
Data flow is from Gateway to Node.

In addition, we present protocol extensions for Nodes to initiate traffic (Figure 5.2(c)-(d)) to
Gateways that act as proxies for constrained Nodes during sleep time.

LoRa→Internet. Broadcast. Beacons are regularly broadcast by Gateways and can carry
Interests without message overhead. This maximizes sleep cycles, but the limited beacon in-
tervals reduce throughput. Using beacons to transfer Interests provides two options (see Fig.
5.2(a)). (i) Beacons carry payloads up to a frame size of 127Byte minus metadata, i.e., ≈
100Bytes/frame. Using ICNLoWPAN encoding [148] this is sufficient to aggregate 4–6 Interest
packets. (ii) Gateways utilize indirect transmission (see Section 5.1) to broadcast an Inter-
est, which involves the indication of a pending transaction within the beacon, and subsequent
Interest broadcast during the CAP.

LoRa→Internet. Unicast. Interest and Data messages can be sent via unicast within the
CAP or CFP (see Fig. 5.2(b)). Sending Interests in best effort CAP frames enables requests at
higher rates than in beacons. Nevertheless, this prevents Nodes from sleeping during the CAP.
Note that individual Interests increase the number of downlink packets from the Gateway; for
growing wireless networks this conflicts with duty cycle restrictions at the Gateway. Using
the CAP for Data instead is less critical since transmissions are initiated in the low-power
Node. The CFP provides exclusive resource access but adds the overhead of a preceding cell
negotiation, and is limited within the superframe structure. Hence, a full CFP Interest-Data
exchange requires two cell allocations per Gateway-Node pair.

LoRa→Internet. Data indication. Nodes can offload the Gateway by removing the need
for polling. This is done indicating names for subsequent Interests from the Gateway (see Fig.
5.2(d)). The indication packet, however, adds wireless traffic. Since Nodes do not emit beacons,
indication packets utilize unicast traffic in the CAP or CFP. Interest and Data packets follow as
outlined in Figs. 5.2(a) or (b). Hence, an indication and the following Interest broadcast must

58

5.4 Simulation Environment

wait for the next beacon period. Instead, Interest unicast in CAP or CFP keeps the latency for
producer-initiated traffic minimal.

LoRa→Internet. Local Data push. A link-local Data push from producers to the Gateway
reduces radio access and maximizes device sleep times, similar to LoRaWAN class A deployments
(see Fig. 5.2(c)). An optional link layer ACK with retransmissions from the Node increases
reliability in the CAP; the exclusive CFP slots can omit the ACK.

Internet→LoRa. Unicast. Nodes request data from a Gateway by sending Interests within
CAP or CFP frames (Figure 5.3 (a)). Data returns in a CFP cell pre-allocated for every
consumer Node. This provides high reliability but becomes challenging in larger networks, since
the amount of downlink cells is limited by the multi-superframe.

Internet→LoRa. Broadcast. Multiple Interests for the same content item arrive at the
Gateway that responds with a Data broadcast message (see Figure 5.3(b)) using an overloaded
beacon. This can help with observing duty cycle restrictions on the Gateway; however the data
throughput is limited by the beacon interval.

5.4 Simulation Environment

We have developed a simulation environment for LoRa-ICN that is based on OMNeT++ and
the INET framework [176]. We integrated ccnSim [71] for core ICN support and openDSME
[186] for 802.15.4 DSME functionality. Our model uses FLoRa [349] and its wireless propagation
model and PHY. Figure 5.4 depicts the simulation environment and our extensions.
Data flows orchestrate ICN Interest/Data exchanges and are adjusted to match IoT use

cases as follows: We changed the built-in content popularity model from Mandelbrodt-Zipf to a
uniform distribution and initiate one transmission for every content item. We also extended the
ccnSim core implementation by two network layer primitives: (i) Indication (see Section 5.3.2)
and (ii) Push to place a data item in the neighboring content store. In all scenarios, content
rates follow a Poisson process.

ICN-to-DSME addresses three main challenges. (i) ccnSim lacks the concept of a link layer.
Instead, ICN faces directly connect to I/Os of neighboring Nodes. We include a wireless trans-
mission link. (ii) We add a face-to-MAC module that multiplexes ICN faces to a Wireless-
Interface and uses MAC addresses for transmission. This module includes all logic for the
ICN-to-DSME mapping (see Section 5.3.2). (iii) OMNeT++ messages are converted into INET
packets that map to openDSME. This step includes tagging of packets and appends control
instructions for the MAC layer.

DSME-to-LoRa integrates the LoRa PHY with the DSME MAC implementation. This
component bases on related work, and we refer the reader to Alamos et al. [10]. We further
disable dynamic slot allocation for the CFP to exclude negotiation overhead, but implement
static scheduling and MAC configurations. In bidirectional communications, each Tx slot is

59

Chapter 5 Decentralized MAC and Network Layer for LoRa

ccnSim
(Node #1)

LoRa-ICN Node

Core layer

CS & FIB strategies

Data flows

ICN-to-DSME

To
cc

nS
im

N
od

e
#2

...
n

fa
ce

s

open
DSME

DSME implementation
MAC interface

DSME-to-LoRa

FLoRa LoRa radio

Figure 5.4: Simulation environment and our extensions.

followed by an Rx slot which halves the number of transactions in one multi-superframe. Every
simulation Node is assigned zero, one, or two slots depending on the MACmapping. This pattern
repeats with a multi-superframe – with adjustable structure to simulate different network sizes.

5.5 Evaluation

We have implemented and tested different options for ICN-to-DSME mappings for the two
major use cases Data from Node to Gateway and Data from Gateway to Node.

5.5.1 Data from Node to Gateway

Motivation: Table 5.1 presents an overview of the performance for ICN/DSME/LoRa in a
network of 14 Nodes, when the Node is a producer, and data flows towards the Gateway. For
Gateway-initiated traffic, Interest broadcast reflects a special case which is heavily limited
by the beacon interval. With an aggregation of multiple Interests into one broadcast message,
the Gateway is able to send ≈ 5 Interests encoded in one broadcast packet, every ≈ 126 s (beacon
interval). Consequently, we can accommodate up to 5 Nodes responding with one Data message
each in the same multi-superframe.
For the other mappings (see Section 5.3.2) in Table 5.1, each of the 14 Nodes produces a

content item in one minute intervals (on average), and we disable Interest retransmissions to
evaluate the plain ICN performance over LoRa. Interest unicast is separated into Interest-
CAP and CFP variants (Interest-CAP prevents Nodes from sleep and is not feasible for battery
powered devices). Interest-CAP provides short completion times of 8–12 s on average, due to
frequent CAP intervals. Interest-CFP is slower by a factor of ≈ 1.5. However, sending data
in the CAP increases the probability for data loss, which is most notable when Interest and
Data messages share the CAP. The maximum latency increases up to 56 s as a consequence of

60

5.5 Evaluation

Table 5.1: Performance overview of mapping schemes.

Mapping Scheme Indication Interest Data
Avg.

Latency
[s]

Max.
Latency

[s]

Data
Loss
[%]

G
at
ew

ay
In
it
ia
te
d

Interest broadcast
Beacon CAP

(Not operable at this scale)
Beacon CFP

Interest unicast1
CAP CAP 8.32 56.56 5.16
CAP CFP 11.67 26.87 0.05

Interest unicast
CFP CAP 12.73 28.27 1.72
CFP CFP 17.01 47.24 0.00

N
od

e
In
it
ia
te
d

Data indication

CAP CFP CAP 19.25 75.17 3.13
CAP CFP CFP 14.61 71.61 1.51
CFP CFP CAP 71.62 299.22 2.6
CFP CFP CFP 46.49 241.96 0.89

Data push
CAP 7.02 29.88 1.62
CFP 10.63 66.42 0.00

1Nodes must be turned on during CAP, which prevents low-power.

CSMA retries. Conversely, sending Data messages in the CFP improves reliability at moderate
overhead for the maximum latencies, despite less frequently available GTS for sending.

For Node-initiated traffic, we compare Data indication (a dedicated indication messages
is triggering an Interest by the consumer) and Data push. In the indication case, we only
consider energy-efficient options in which the Gateway uses the CFP for Interests. Our results
clearly show an overhead for the three-way handshake with Data indications. Maximum latencies
increase to over 70 s using the CAP for indication, and to over 240 s using the CFP, even in this
unstressed scenario. Hence, we ignore Data indication for the remainder of our evaluation. In
contrast, Data push can obviously be completed in a single message transmission and reduces
the average completion time to 7–11 s, depending on the CAP/CFP mapping variant. Sending
Data in the CAP is affected by collisions and CSMA retries. Sending Data in the CFP
surprisingly reveals a maximum latency of over 60 s. We ascribe this to the randomized content
creation interval that leads to occasional synchronized medium access of several Nodes and then
consequently to MAC layer queue processing delays that last for multiple multi-superframes
(here 2) with static slot assignment.

Figure 5.5 presents completion times for Data retrieval from LoRa Nodes in a high data rate
scenario (30 s Data production intervals, 5.5a) and a more relaxed scenario (900 s Data produc-

61

Chapter 5 Decentralized MAC and Network Layer for LoRa

0

25

50

75

100

G
w

.
In

it
ia

te
d

7 Nodes 14 Nodes 28 Nodes 56 Nodes 112 Nodes
Interest-CAP
Data-CAP

Interest-CAP
Data-CFP

Interest-CFP
Data-CAP

Interest-CFP
Data-CFP

Data-CAP

Data-CFP

0 10 20 30

0

25

50

75

100

N
o
d

e
In

it
ia

te
d

0 200 400 600 0 200 400 600 0 500 1000 1500 0 900 1800 2700

C
D

F
[%

]

Time to Completion [s]

(a) Content at 30 s interval per Node

0

25

50

75

100

G
w

.
In

it
ia

te
d

7 Nodes 14 Nodes 28 Nodes 56 Nodes 112 Nodes
Interest-CAP
Data-CAP

Interest-CAP
Data-CFP

Interest-CFP
Data-CAP

Interest-CFP
Data-CFP

Data-CAP

Data-CFP

0 10 20 30

0

25

50

75

100

N
o
d

e
In

it
ia

te
d

0 20 40 60 0 20 40 60 0 50 100 150 0 90 180 270

C
D

F
[%

]

Time to Completion [s]

(b) Content at 900 s interval per Node

Figure 5.5: Time to content arrival with different mapping schemes for Interest/Data (with L3
retransmission) and Data push for varying network sizes.

tion intervals, 5.5b) including ICN retransmissions. Data losses result in infinite completion
times, hence, the end value of each graph also reflects its success ratio.

Performance at high data rates: The Gateway-initiated requests finish in less than 20 s,
in a small network of 7 Nodes. The performance degrades with increasing networks. In the 14
Nodes case, 90% of the requests are satisfied in less than 30 s except for the fully CFP-based
mapping. Missing Data triggers an Interest retransmission (step at ≈ 126 s) which reflects
our retransmission timeout that aligns with the beacon interval. The Interest-CFP/Data-CFP
mapping, however, finishes after 600 s with ≈ 50% loss, which is the effect of MAC queue
utilization that has a service rate at the order of one superframe (≈ 32 s). Network sizes ≥ 28
increase the completion time to the order of hundreds and thousands of seconds at high loss
rates, which then becomes unusable for ICN communication.
Operating in a full CAP mapping exhibits the highest ratio of transactions successful at

the first attempt, but it inhibits Nodes sleeping. Furthermore, 112 Node networks reduce

62

5.5 Evaluation

7 14 28 56 112

Nodes [#]

30
60

120
240
480
900

1800C
o
n
te

n
t

In
te

rv
a
l[

s] 100 99 47 10 3

100 100 95 20 5

100 100 100 49 8

100 100 100 99 22

100 100 100 100 63

100 100 100 100 96

100 100 100 100 100

Interest CAP

7 14 28 56

Nodes [#]

100 38 16 6

100 77 27 9

100 100 49 17

100 100 99 39

100 100 100 37

100 100 100 88

100 100 100 100

Interest CFP

(a) Data unicast (w/ L3 retransmission)

7 14 28 56 112

Nodes [#]

30
60

120
240
480
900

1800C
o
n
te

n
t

In
te

rv
a
l[

s] 95 86 57 68 66

98 93 84 69 88

99 96 95 93 93

100 100 100 100 98

100 100 100 100 100

100 100 100 100 100

100 100 100 100 100

Interest CAP

7 14 28 56 112

Nodes [#]

100 100 78 2 1

100 100 100 23 1

100 100 100 100 12

100 100 100 100 100

100 100 100 100 100

100 100 100 100 100

100 100 100 100 100

Interest CFP

(b) Data broadcast (w/o L3 retransmission)

Figure 5.6: Success rates [%] depending on network sizes and content invervals for different ICN
mappings.

the delivery rate to 25% due to collisions and denied channel access. Conversely, Interest-
CAP/Data-CFP efficiently combines the “reactive” contention-based access for Interests with
reliable contention-free media access for Data. Interest-CFP/Data-CFP with 112 Nodes is not
possible with our current CFP scheduling approach (see Section 5.4).
Node-initiated Data push reveals faster completion and higher reliability in comparison to

the request-based pattern. Networks < 28 Nodes show similar behavior for Data-CAP and -CFP
transmissions. Conversely, networks ≥ 28 show the effect of MAC over-utilization for Data-CFP.
The multi-superframe period increases with the number of Nodes, hence, the average service
rate of the MAC decreases. CAP reduction [174] can mitigate this effect and will be evaluated in
future work. In contrast to Data-CFP, Data-CAP performs comparably smooth and transmits
≈ 50% of the messages within 30 s even under these stressful conditions.

Performance at low rate: In the relaxed scenario (Figure 5.5b),Gateway-initiated requests
perform mostly reliable for all mappings and complete with 100% success after less than 126 s
in networks < 112 (note the change of the x-axis scale in comparison to Figure 5.5a). For 112
Node networks, Interest-CAP/Data-CAP clearly shows the effect of CSMA retries.
For Node-initiated traffic, Data-CFP is now on-par with Data-CAP and exhibits the best

performance due to the contention-free media access. In the 112 Node network, the unidirec-
tional push with Data-CAP faces collisions that cannot be compensated due to the absence of
Interest retransmissions (in contrast to the Gateway-initiated case). Consequently, Data-CFP
is the better option for large networks.

5.5.2 Data from Gateway to Node

Data unicast: Figure 5.6a depicts success rates for Nodes sending Interests to the Gateway
with Interest-CAP and Interest-CFP mappings. Latencies are less crucial in this case since
Nodes are aware of the constrained regime and sleep during long round trips. A retransmission
will likely be answered by the Gateway if the requested Data has arrived in the meantime. Here,

63

Chapter 5 Decentralized MAC and Network Layer for LoRa

we apply Data-CFP to enable maximum sleep times. Interests are sent in the CAP or CFP and
experience similar challenges as described in Section 5.5.1. Again, fully CFP-based mappings
are not available for 112 Node networks with the current scheduler.
Figure 5.6a clearly shows the network operation boundaries by a diagonal in the heatmap at

30 s/28Nodes–240 s/112Nodes for Interest-CAP, and 30 s/14Nodes–120 s/240Nodes for Interest-
CFP. In relaxed scenarios, both options perform similarly well. Surprisingly, Interest-CAP
outperforms the reliable CFP alternative for larger networks, despite its best-effort limitation.
Hence, Interest scheduling in a GTS is more susceptible to losses than concurrent channel access,
however, there is a crucial caveat that our measurements cannot exhibit: In a deployment with
multiple Gateways (in reach), other stub networks share the CAP which increases the collision
probability. In contrast, CFP slots follow a channel hopping scheme to avoid interfering Nodes.
Furthermore, neighboring LoRa networks can assign the same GTS on orthogonal channels,
which increases the overall throughput. We will focus on multi Gateway scenarios in future
work.

Data broadcast: Figure 5.6b depicts success rates for Interests in CAP or CFP and subse-
quent Data broadcasts with indirect transmission, triggered by the beacon sent by the Gateway.
Similarly to Interest broadcast (see Section 5.5.1), the maximum throughput of broadcast Data
packets is limited by the beacon interval. In contrast, however, Data broadcast can satisfy many
pending Interests that have been aggregated during the beacon period with a single downlink
packet. Applying the ICNLoWPAN encoding, our approach concatenates up to six data items
into one packet. This requires a fixed Interest window size for all Nodes within one beacon
interval and homogeneous content requests during this period.
Figure 5.6b depicts that the best broadcast performance can be achieved without Interest

retransmissions with request intervals at the order of 120 s or greater, which is in line with the
beacon period. The impact of the network size is less significant in comparison to Figure 5.6a,
which emphasizes the advantage of Data broadcast. Success rates for short request intervals
< 120 s exhibit the advantage of Interest-CFP over CAP. Exclusive uplink resources are less
susceptible to interference, whereas the shared media access during CAP suffers from limited
media access and collisions.
Interest retransmissions worsen the success rate for networks ≥ 56 Nodes in this scenario,

for two reasons: (i) delayed request of “old” Data occupies the limited downlink resources of
the Gateway, whereas neighbor Nodes simply have to drop duplicate Data. (ii) additional
transmissions increase media access contention during CAP and stress the MAC queue during
CFP.

5.6 LoRa-ICN Convergence Layer

Our simulation results revealed that for both upstream and downstream messages the CFP
variants generally provide the best compromise between low-latency and overall throughput

64

5.6 LoRa-ICN Convergence Layer

across the wide range of scenarios we investigated. This leads us to the following approach for
ICN Interest/Data exchanges. We include the operations described in Section 5.2.

Interests from consumers reach LoRa-ICN producers via the Gateway as per regular ICN
forwarding. The Gateway forwards each Interest that matches a registration in a CFP slot and
sets the expiration timeout to 10 × n seconds, with n set to the number of registered Nodes.
The Gateway should perform Interest aggregation, i.e., suppress duplicate Interests with the
same name. Interests with unknown prefixes are NACKed. Nodes reply to these Interests with
a Data (or a NACK) message in their assigned CFP slot. This message consumes the Interest
on the Gateway as per regular forwarding behavior. Gateways cache the content objects in their
content store. Depending on the LoRa network utilization, Interests may expire at the original
consumer or at on-path forwarders. In such cases, consumers should re-issue the Interest,
possibly increasing the Interest expiration time.

Node Registration is built on Interests that are transmitted from the Node to the Gate-
way and adopt NDN prefix registration [236]. Gateways propagate their registered prefixes to
adjacent routers, unless scenarios demand otherwise. Registration state needs to be refreshed
every 60 minutes. Similar mechanisms could be used to install per-Node filters to have more
fine-granular control over Interests that are forwarded to the Node.

Data Provisioning by Nodes uses unsolicited push (Data messages) as the primary up-
stream Data communication primitive, thereby, utilizing a CFP slot. Gateways will accept
unsolicited Data messages from Nodes that fall under the registered prefix and act as a custo-
dian, i.e., they will keep corresponding Data objects in their content store and satisfy matching
Interests from the Internet. Gateways should store these objects for several minutes.

For Interests that cannot be satisfied from the content store, the Gateway performs normal
forwarder operations, i.e., it forwards the Interest to matching Nodes following the prefixes
obtained from Node registrations.

Node Control actions are triggered by Interests from the Internet that are intended as a
Remote Method Invocation (RMI). They use the same mechanism as other Interest from Internet
consumers (see above). While this enables basic Node control, it has the usual problems of using
Interest-Data for RMI as described in [211].

Data Retrieval by Nodes is implemented by Nodes sending Interests in their CFP slot,
setting their local expiration time to 600 seconds. Gateways either consume or forward the
Interest as per regular ICN forwarding. Corresponding Data objects are cached so that potential
Interest retransmission can be satisfied by the Gateway.

Downstream Multicast can be used for synchronized downloads in a radio resource-efficient
way. We assume that this would be triggered by a control command, possibly referring Nodes to
a Manifest pointing to the actual Data objects. Possible optimization (e.g., Gateway-controlled
Data rates) will be studied in future work.

65

Chapter 5 Decentralized MAC and Network Layer for LoRa

5.7 Related Work

ICN and the IoT.Our work is based on four observations of prior work. (i) the IoT benefits
from ICN [33]. (ii) ICN should not ignore the MAC [193], to comply with constrained resources.
(iii) to allow for periodic sleeping of devices without sacrificing performance, aligning ICN prin-
ciples to lower layer frequency- and time division provides a unique opportunity. In contrast to
prior work, which presented a design for ICN and 802.15.4 TSCH mode [174], we focus on LoRa
and DSME.

Analysis of 802.15.4-based Standards. Comparing TSCH and DSME based on simulations
is common [13]. Choudhury et al. [72] deploy DSME on constrained Nodes and found that TSCH
obtains lower latency and higher throughput for small networks. DSME outperforms TSCH for
higher duty cycles and an increasing number of Nodes, though.
Tree-based routing over DSME [218] has been proposed. Our topology choice is also supported

by the IEEE 802.15 group which suggests long-range radios operating in star topologies.

Analysis of LoRa and LoRaWAN. Liando et al. [237] provide real-world measurements of
LoRa and LoRaWAN. Saelens et al. [321] add listen-before-talk techniques to overcome band-
specific duty cycle restrictions. Orfanidis et al. [296] find cross-technology interference between
LoRa and 802.15.4 sub-GHz radios and propose an advanced CCA mechanism for mitigation.
Mikhaylov et al. [264] reveal energy attack vectors in LoRaWAN, and Shiferaw et al. [345]
present scalability issues with LoRaWAN class B. All those results indicate that LoRa and
LoRaWAN suffer from scalability issues and are vulnerable to interference—which motivates
our work.

Alternative Protocols for LoRa.Multi-hop routing in LoRa systems has been analyzed [80],
including a replacement of the LoRaWAN MAC by LoRa and IPv6 to make use of RPL im-
plementations for multi-hop networks [367]. Abrardo et al. [2] demonstrate a duty-cycling
MAC layer to improve sleep time of constrained LoRa devices. Lee et al. [227] introduce LoRa
mesh-networking that follows a request-response pattern and indicates performance benefits
over producer-driven ALOHA. NDN was deployed on LoRa radios [243] which showed the need
for a MAC layer. NDN over WiFi and LoRa [204] was proposed to connect ‘isolated regions’,
however, nothing was mentioned about the LoRa MAC and how it prevents wireless interference
and energy depletion.
For contention-based MAC, experiments with CSMA and CAD in LoRa-type networks in-

dicate performance gains [305], without providing specific LoRa measurement results, though.
Logical channel LoRa PHY configurations may assist frequency- and time division multiple ac-
cess protocols [130]. Listen-before-talk in sub-GHz bands [233] performs better than ALOHA
in LoRaWAN, and unconfirmed messages perform better in dense deployments.
Adaptations for time-slotted [418] LoRa have been presented in [315, 168] but consist of only

three Nodes and limited traffic (12 packet/h). Alamos et al. [12] introduce DSME-LoRa and
deploy 15 nodes. In this chapter, we close the gap by analysing reliability in larger networks.

66

5.8 Conclusions

5.8 Conclusions

The LoRa PHY is a radio layer that caters to many long-range, low-power communication
scenarios. Unfortunately, the commonly used upper layer, LoRaWAN, is a vertically integrated
communication system that cannot provide direct Internet connectivity and direct data sharing,
but leads to centralized system architectures of limited scalability.
We introduced LoRa-ICN to overcome these limitations. We designed a new LoRa system

from the ground up, leveraging the existing LoRa PHY but employing IEEE 802.15.4 DSME as
a MAC layer and ICN as a network layer. To that end, we have defined a suitable DSME con-
figuration, specified mappings of ICN protocol messages to DSME mechanisms, and proposed
specific ICN extensions and Node requirements. Our DSME implementation provides the ben-
efits of horizontal scalability, deterministic media access, and low-power operations. We could
show in simulations for common network sizes that ICN messages gain reliability and reduce
latency when mapped to DSME-CFP messages.
To support the current most relevant use case of IoT data transmission from constrained

devices to the Internet well, we added a data custodian feature to Gateways. The result is a
new LoRa system that supports direct end-to-end communication with LoRa Nodes and that can
provide additional features such as downstream multicast natively. We claim that this highlights
the versatility of ICN as an IoT network layer: By leveraging and minimally extending standard
ICN caching, a LoRa Gateway can connect a delay-prone LoRa network to the Internet, without
requiring any application awareness or protocol translation.

67

Chapter 6

Delay-tolerant Networking with ICN

Abstract

Connecting long-range wireless networks to the Internet imposes challenges due to vastly longer
round-trip-times (RTTs). In this chapter, we present an ICN protocol framework that enables
robust and efficient delay-tolerant communication to edge networks. Our approach provides
ICN-idiomatic communication between networks with vastly different RTTs. We applied this
framework to LoRa, enabling end-to-end consumer-to-LoRa-producer interaction over an ICN-
Internet and asynchronous data production in the LoRa edge. Instead of using LoRaWAN, we
implemented an IEEE 802.15.4e DSME MAC layer on top of the LoRa PHY and ICN protocol
mechanisms in RIOT OS. Executed on off-the-shelf IoT hardware, we provide a comparative
evaluation for basic NDN-style ICN [413], RICE [211]-like pulling, and reflexive forwarding [295].
This is the first practical evaluation of ICN over LoRa using a reliable MAC. Our results show
that periodic polling in NDN works inefficiently when facing long and differing RTTs. RICE
reduces polling overhead and exploits gateway knowledge, without violating ICN principles.
Reflexive forwarding reflects sporadic data generation naturally. Combined with a local data
push, it operates efficiently and enables lifetimes of >1 year for battery powered LoRa-ICN
nodes.

6.1 Background

In this section, we describe properties of the LoRa environment and the DSME MAC layer that
our work is based on.

6.1.1 LoRa and LoRaWAN

LoRa defines a chirp spread spectrum modulation which enables a long transmission range
(kilometers), low energy consumption (millijoules) at the cost of long on-air times. Duty cycle
regulations further limit the effective throughput (bits per second). These features are still
attractive for many IoT use cases. We operate on the EU 868MHz band and configure a
spreading factor 7, 125 kHz bandwidth, code rate 4/5, which results in a symbol time of 1.024ms.

69

Chapter 6 Delay-tolerant Networking with ICN

ICN Node

data

data

data

data

data
data

data

data

data

data
data

Internet

Gateway

LoRa Device

IC
N

 N
od

e

data

Fast wired network
(~ 20ms latency)

Slow wireless network
(> 20s latency)

Figure 6.1: LoRa-ICN network and time domains.

LoRaWAN [245] is a popular system that operates on top of the LoRa PHY. It defines
a vertically integrated, and centralized network architecture to integrate LoRa nodes to the
IoT. So-called network- and application servers provide interfacing to the system. A network
server interconnects applications and LoRa nodes, via gateways that relay messages from and to
the wireless network. The network server organizes MAC schedules centrally, while end devices
operate in one of three modes: class A (intended for battery-powered devices) is purely producer-
driven, best-effort with very limited support for downlink communication; class C is not suitable
for the low-power domain; and class B as a tradeoff between both. LoRaWAN networks are
subject to collisions [110, 296] and scalability issues [111, 101]. Class B, albeit rarely deployed,
is designed to allow periodic downlink communication at low energy, and exhibits reliability
issues [263, 382, 316]. It further reveals long downlink latencies. For example, Elbsir et al. [102]
measured an average waiting time of 44 s at 26% delivery ratio in a relaxed class B configuration.
All those results motivate re-considering the LoRa MAC system design.

6.1.2 DSME and LoRa

Motivated by the LoRaWAN deficiencies, we are basing our work on the new DSME-based LoRa
MAC design that was introduced by [198]. It has the following key properties that are relevant
to this chapter:
In DSME (Figure 6.2), a coordinator emits beacons and initiates a synchronized multi-

superframe structure; beacon collisions are inherently resolved for multiple coordinators in reach.
Constrained devices (RFD: reduced function device) synchronize to that structure and join the
subnet. A superframe is separated into two periods for data transmission: contention-access

70

6.2 Problem Statement

B
ea

co
n
#A • MAC

ctrl.
• Node
registr.

CAP

Tx

CFP

Rx

superframe: 7.68 s

RFD
sleep

B
ea

co
n
#B I

D

Ch. 1

Ch. 16 B
ea

co
n
#A

multi-superframe: 30.72 s

Figure 6.2: Overview of the DSME multi-superframe structure. Perspective of a coordinator.
Exemplary schedule for Interest (I) and data (D).

period (CAP), and contention-free period (CFP). This time division facilitates battery powered
nodes to enter low-power mode periodically. CFP slots assign unique and frequency-multiplexed
transmission resources between nodes to avoid collisions, and provide a deterministic max. la-
tency. Varying slot assignments enable star-, peer-to-peer-, or clustered tree networks. We focus
on star topologies.

For the MAC we configure macSuperframeOrder: 3,
macMultisuperframeOrder: 5, and macBeaconOrder: 5. This results in a slotframe structure
of four superframes per multi-superframe, a beacon interval and multi-superframe duration of
30.72 s (applying the LoRa symbol time of 1.024ms from Section 6.1.1), and provides 28 time
slots · 16 frequency channels = 448 exclusive transmission cells. Other slotframe structures
trade off subnet size, throughput, energy, and latency; the latter can increase to over 122 s in
certain configurations [11].

6.2 Problem Statement

DSME enables an improved LoRa MAC layer design for reliable bidirectional communication,
and it can be configured to provide lower latencies compared to LoRaWAN. As such, it is a
much better basis for any packet-based higher-layer network stack, including ICN. Still, due to
the energy-conservation objectives and the properties of the underlying LoRa PHY layer, even
DSME incurs significant delays for interactive communication, based on its multi-superframe
structure. These latencies (30 seconds or more) impose significant challenges to any ICN In-
terest/Data communication, for example, fetching a sensor value from a LoRa sensor, and will
require a delay-tolerant communication system.

Superficially, it seems straight-forward to add delay tolerance to ICN, e.g., by simply adding
a face implementation for the DTN (Delay Tolerant Networking) bundle protocol [334] or by
implementing a delay-aware forwarding strategy on a forwarder. In reality, NDN [413]- and

71

Chapter 6 Delay-tolerant Networking with ICN

CCNx [274]-style ICN provides challenges for inter-connecting networks with vastly different
RTTs, which is mostly due to the dual functions that Interests provide:

1. Interests and Interest sending rates are central in the transport layer control loop of ICN
receiver-driven transport services, i.e., the Interest rate controls the throughput. Interests
are used to trigger data transmissions in the first place, and to trigger retransmissions in
case no corresponding Data messages have been received within a certain time interval.

2. Pending Interests are temporary state in forwarders that is needed to implement a sym-
metric forwarding property in ICN, i.e., to record the downstream face that corresponding
Data messages should be forwarded on. A secondary function of pending Interest state
it to enable Interest aggregation – a feature that would prevent multiple Interests for the
same Data object to be forwarded on the same path (when there is current pending Inter-
est for that Data object). Interest aggregation effectively means Interest suppression for
all but the first Interest that has been received by a forwarder in a certain epoch – the
Interest lifetime in the Pending Interest Table (PIT) of that forwarder.

For achieving a reliable and decently performing communication service, Interest state on
forwarders has to expire, otherwise Interest retransmission would always be suppressed by on-
path forwarders that have pending Interest state (and have not received the corresponding
Data object yet). There is a time relationship between the Interest lifetime on forwarders and
consumer retransmission timers. For good performance, the Interest lifetime needs to be shorter
than the retransmission timer.
To cater to delay-prone networks, one could increase both values, maintaining this prop-

erty. In a heterogeneous network environment (like the Internet), however, it is impossible
to decide on “good values”. When connecting a high-RTT edge network to a high-speed and
low-RTT Internet, both the Interest lifetime and the Interest retransmission timer would need
to be adjusted for the end-to-end path RTT. Alternatively, adaptive suppression mechanisms
in forwarders (e.g., implemented in NFD [6]) allow for Interest retransmissions in the presence
of matching PIT entries. This does, however, still not solve the problem of guessing suitable
timeout values for long and vastly different RTT and adopting these timers on every forwarder.
Future research and experiments should further investigate different options.
NDN Interests can provide an optional InterestLifetime field that allows a consumer to

request more suitable Interest lifetime durations (other than the 4 seconds default). We argue
that this is not likely to work well in actual deployments:

1. Non-edge, high-speed forwarders are not likely to honor non-standard InterestLifetime

values for individual Interests to avoid the per-packet performance penalty.

2. In DTN scenarios, RTTs and thus consumer-defined
InterestLifetime values could be significantly higher than 4 seconds, and a core router
may just object to spend memory resources for storing many Interests for a longer time.

72

6.3 System Overview

3. In DTN scenarios, the RTT may also change unpredictably, depending on caching, op-
portunistic contacts, new routing state etc. so the InterestLifetime and the consumer
Interest expiration time would have to be adapted constantly, which could introduce brit-
tleness and inefficiency.

It should be noted that ICN in-network congestion control and specific per-forwarder strategies
(for example, delay-tolerant forwarding strategies) do not fundamentally resolve these issues
because of the interaction with consumers in the non-challenged network and their different
understanding of RTTs and retransmission timers. We argue that, instead of guessing suitable
InterestLifetime values and hoping for all on-path forwarders to honor the corresponding
Interest field, it is better to deal with varying and dramatically higher RTTs (e.g., in DTN
scenarios) explicitly, with bespoke ICN protocol mechanisms, without interfering with the ICN
network layer Interest lifetime.

6.3 System Overview

Figure 6.1 illustrates our system model: we want to provide ICN delay-tolerant communication
to edge networks, such as a LoRa networks so that hosts on the “regular” ICN Internet can
communicate (e.g., request data) with hosts in the challenged LoRa edge network, without
requiring Internet hosts and forwarders to apply special InterestLifetime parameters and
retransmission timers.

Our work is based on three components: (i) a mapping of ICN to DSME, (ii) gateway node
requirements, and (iii) delay-tolerant ICN protocol mechanisms for interconnecting challenged
networks (including but not limited to ICN/DSME/LoRa networks) to non-challenged networks
– aiming for a seamless integration from an application perspective.

6.3.1 Mapping of ICN to DSME

DSME provides a contention-access period that is prone to collisions, and a contention-free
period (see Section 6.1) requiring a priori slot negotiation. We exclude node association and
dynamic slot allocation from this work, as they are orthogonal to the information-centric and
delay-tolerant networking aspects. Evolving [198], we simplify the ICN-DSME mapping and use
the CAP only for node registration (see below), and the CFP for regular network layer traffic
since it guarantees exclusive media access. For the CFP traffic, we implement static scheduling.
In bidirectional communication, each Interest slot is followed by a data slot. Consequently, pre-
suming data availability, a request is answered withing the same superframe. For unidirectional
data push, a single slot is allocated per node.

73

Chapter 6 Delay-tolerant Networking with ICN

6.3.2 Gateway Node Requirements

In our system, a LoRa gateway is an application-agnostic, caching ICN forwarder that connects
the narrowband LoRa network to the Internet and follows “regular” ICN behavior (i.e., rout-
ing) in the upstream direction. Hence, upstream congestion is uncritical since we consider a
broadband network as the default deployment. Downstream congestion on the constrained last
hop is handled by the buffering gateway. In addition to regular ICN forwarding and caching,
the gateway leverages knowledge about expected delays on the LoRa network for adjusting PIT
expiry times and InterestLifetime accordingly. This PIT state naturally prevents Interest
flooding on the wireless medium, as long as it remains active. Caching, as in other ICN scenar-
ios, offloads (re-) transmissions of Interests and Data messages from the wireless link and the
constrained nodes. Moreover, the gateway provides these two additional functions:

Node Registration. LoRa nodes register at the gateway after association, i.e., synchronizing
to and joining a network that is advertised by a coordinator. Re-joining a possibly different
gateway operates at the order of one (or few) beacon intervals. Nevertheless, it allows for
mobile nodes. An overloaded Interest packet by the node indicates its prefix, which establishes
a downlink FIB entry on the gateway (see [14]), and the face contains MAC information how
to reach that node. Nodes can only serve content under that prefix. On success, the gateway
confirms the registration with a data ACK. On a FIB face timeout, i.e., registration expiry,
DSME management routines could assist indication (future work).

Local Unsolicited Data. The gateway accepts unsolicited ICN Data messages from registered
LoRa nodes and acts as a custodian for these nodes. The corresponding content objects are
stored in its CS, and the gateway will respond to corresponding Interest messages from the In-
ternet. Caching strategies manage content placement and timeouts for cache eviction. Although
gateways are not constrained in memory, least recently used content items are overwritten in
case of overflow.

6.3.3 Delay-tolerant ICN Protocols

Delay-tolerant Data Retrieval (Fig. 6.3a). We want to provide end-to-end ICN commu-
nication from an Internet consumer to a LoRa node, i.e., to enable Internet hosts to request
arbitrary content objects or to trigger computation in a Remote Method Invocation (RMI)
scenario (future work). We leverage the concept of RMI for ICN (RICE [211]) that provides
access to static data and dynamic computation results, supporting vastly longer data produc-
tion/retrieval times. Upon receiving a RICE request initiation Interest, the gateway initiates
an Interest message to the LoRa node, as depicted by Figure 6.3a. A so-called “Thunk Re-
sponse” contains an indication for the waiting time, leveraging link-knowledge about the DSME
configuration in the LoRa network.

Reflexive Push (Fig. 6.3b). Data generation (e.g., sensor sampling) in the IoT happens
sporadically and asynchronously in many cases, which challenges the receiver-driven (“pull”)

74

6.3 System Overview

Request Initiation
InterestThunk Response
Data

Interest (Thunk)
Data Thunk

(a) Delay-tolerant Data Retrieval like RICE.

Data (Push)
Reflexive Forwarding Interest

Reflexive Interest for Data
Data

Data (ACK)

(b) Reflexive Push like phoning home.

Figure 6.3: Delay-tolerant ICN.

ICN-paradigm [63]. The high LoRa latency further motivates a producer-driven data flow in
order to avoid periodic polling. This is consistent with [198] who suggest a unidirectional
data push for LoRa-ICN. In this scenario, nodes need to register (as described above) before
being authorized to push content to the gateway, using the Local Unsolicited Data method. This
approach assumes a provisioned name as the phoning home destination that could be configured
when registering the node at the gateway.

We forward these messages to a node on the Internet by leveraging the phoning home use case
of the reflexive forwarding extension to ICN [294]: the gateway sends an Interest to a configured
node on the Internet, which triggers a reflexive Interest by that node to retrieve the content
object (Figure 6.3b).

This approach halves the number of resource-intensive wireless transmissions on the last hop,
and doubles the number of available DSME slots per multi-superframe. It should be noted
that a next-hop signaling does not introduce new security threats, since a network layer can
never prevent a malicious neighbor from transmitting unwanted messages (or jamming) on the
local link. The slot-based MAC, however, naturally assists prevention of DDoS, triggered by
publishing LoRa nodes. A malicious node can simply be muted by the coordinator (i.e., the
gateway), de-allocating its CFP slot.

Note: We focus on communication aspects of the protocol mechanisms. Security and corre-
sponding configuration are out of scope for this chapter. Hence, we have slightly simplified the
protocol operations in our implementation of these schemes (Section 6.4.2), e.g., we do not use
the RICE request parameter retrieval for Delay-tolerant Data Retrieval.

75

Chapter 6 Delay-tolerant Networking with ICN

Internet

RIOT native

Ethernet
(Tap)

Netif
CCN-lite

App

Gateway

nRF52840

LoRa
DSME-LoRa

openDSME
ICN-DSME
Netif

CCN-lite

Ethernet
(Serial)

LoRa Dev.

nRF52840

LoRa
DSME-LoRa

openDSME
ICN-DSME

Netif
CCN-lite

App

P
H

Y
M

A
C

IC
N

Figure 6.4: LoRa-ICN stacks on different devices with varying resources and network latencies.

6.4 Implementation and Deployment

We describe our system implementation in Section 6.4.1 and the protocol implementation in
Section 6.4.2.

6.4.1 System Setup

We have implemented this system on actual common off-the-shelf LoRa nodes, and we built our
LoRa-ICN gateways on the same constrained hardware, to reduce implementation overhead.
In a real-world LoRa network (cf. LoRaWAN), however, these gateways are not constrained in
energy, memory, or processing power and can serve many low-end nodes simultaneously, through
radio concentrators. LoRa devices, gateways, and Internet nodes operate the same ICN stack,
to overcome incompatibility issues. In the following, we describe the framework (Figure 6.4)
that we have created for experimentation.

RIOT [34]. We base our implementation on RIOT 2022.04. The networking subsystem
(namely GNRC) integrates CCN-lite as an ICN stack, which utilizes the generic network inter-
face layer (RIOT Netif in Figure 6.4) to send and receive packets. Currently, wired Ethernet
and 802.15.4 CSMA/CA wireless interfaces are available. RIOT supports > 230 IoT boards
and a native port to execute in a Linux process; it utilizes virtual TUN/TAP interfaces for
communication. To build CCN-lite based gateways in RIOT that provide both, a fast wired
link and a slow long-range radio, we extend the OS integration layer to utilize multiple network
interfaces of varying types, behind an ICN face.

CCN-lite [372]. Our integration bases on the latest version, checked out by RIOT 2022.04.
CCN-lite provides an ICN forwarder implementation and common data structures: PIT, FIB,
and CS. A hop-wise retransmission mechanism re-sends a pending Interest after a pre-configured
timeout. Note, received Interest retransmissions will be aggregated when hitting an active PIT
entry. PIT state expires after a pre-configured InterestLifetime value, as usual. We extend
CCN-lite by runtime configuration abilities to adjust the PIT- and retransmission timeout,

76

6.4 Implementation and Deployment

and the number of retransmissions dynamically. Furthermore, we extend the core forwarder
by protocol extensions () described in Section 6.3 and the mapping to DSME (ICN-DSME
in Figure 6.4).

openDSME [186]. The open access DSME implementation for 802.15.4 radios was ported
to RIOT by Alamos et al. [12] who also developed an adaptation layer for LoRa (DSME-
LoRa in Figure 6.4). Their code is publicly available, albeit not on RIOT upstream. We base
our work on their implementation and add interfaces to dynamically control MAC parameters
(i.e., ACK request, send period) on a per-packet basis, through the RIOT network interface.
The southbound interface utilizes the 802.15.4 radio abstraction API of RIOT.

LoRa Device. We deploy the long-range sensor application on common low-power IoT hard-
ware. The Nordic nRF52840 development kit consists of an ARM Cortex-M4 which provides
256 kB RAM, 1MB flash, and runs at 64MHz. A SX 1276 LoRa radio shield is attached via pin
headers and connects the external radio via SPI. An adjusted transceiver driver implementation
exposes the device an 802.15.4 radio, with LoRa specific timing parameters. This facilitates
its usage with openDSME. The sensor node is operated as a reduced function device and syn-
chronizes to the DSME multi-superframe, indicated by a coordinator. Afterwards, the node
registers its ICN prefix using Interest/Data (see Section 6.3.2).

Gateway. To reduce implementation overhead, we deploy our gateway on the same hardware as
the sensor application. Our gateway acts as a coordinator for LoRa nodes and creates the DSME
slotframe structure through the wireless interface. To communicate with a ‘fast’ infrastructure
ICN network in parallel (see forwarder and consumer below), we enable a second network
interface; ethos is a RIOT specific implementation for Ethernet over serial communication
lines. This is required because our experimentation platform lacks Ethernet hardware. Real-
world gateways, however, would simply use a gigabit Ethernet link. Our serial device connects
to a common Linux based workstation which bridges to a virtual TAP bridge.

Internet (Forwarder and Consumer). Nodes on the Internet are emulated by RIOT-native
instances to utilize the same ICN stack, and connect to the same virtual TAP bridge as our
gateway. We deploy two nodes in a line topology, one forwarder and one consumer. Both run
in a Mininet [268] emulation to enable short link delays of 20ms and optional link losses on the
virtual wire.

6.4.2 Protocols for Data Retrieval

We evaluated our system design, comparing its performance to that of regular ICN Interest/Data
communication. To that end, we have defined three different data retrieval classes corresponding
to Section 6.3.3:

• Vanilla ICN Request for regular Interest/Data interactions initiated from a consumer on
the Internet;

77

Chapter 6 Delay-tolerant Networking with ICN

Fast network Slow network

/p
/p

/p

/p <dat>
/p <dat>

/p <dat>

In
te
re
st

Li
fe
ti
m
e

(a) Vanilla

Fast network Slow network

/p
/p

/p
/p ∆t

/p ∆t

∆
t /p <dat>

/p
/p

/p <dat>
/p <dat>

(b) Delay-tolerant retrieval

Fast network Slow network

data/p
/p
/p

/p
/p <dat>

/p <dat>
/p ACK

/p ACK

(c) Reflexive push

Interest data control func. long delay reg. lookup do not cache PIT timeout

Figure 6.5: Sequence flows of Interest/Data and ICN extensions between nodes of different time
domains. Data flows from LoRa producer to Internet consumer, either initiated by
the consumer (6.5a-6.5b) or by the producer (6.5c).

• Delay-tolerant Data Retrieval using a simplified RICE exchange initiated from a consumer
on the Internet;

• Reflexive Push using reflexive forwarding and the phoning home use case initiated from
the producer.

Vanilla ICN Request. We assume a regular Interest request from the Internet to the LoRa
sensor (Figure 6.5a). The request faces a non-typical long round trip time at the gateway,
conflicting with PIT state on forwarders. (i) “Regular” forwarders that are not aware of the
long delay domain are likely to operate on a fast-network timescale. PIT state that expires before
data arrival prevents forwarding on the reverse path. (ii) Interest retransmissions are common in
ICN, albeit left to transport or application layer implementations. In general, regular ICN-based
data retrieval quickly leads to polling and unterminated retransmissions when facing long delays.
Two built-in ICN countermeasures are worth discussing: first, InterestLifetime dictates the
PIT entry expiration time on forwarders. Increasing InterestLifetime solves the problem of
expired PITs, however, it also requires forwarders to maintain state during the long DSME-LoRa
round trip. In addition to occupying PIT memory, this approach affects Interest retransmissions
(as a response to timeouts at consumers). Second, common ICN implementations (e.g., RICE,
NFD [6]) rely on consumer-based retransmissions (contrasting in-network retransmissions). This
requires PITs to expire fast, otherwise, a retransmission will be suppressed.

Delay-tolerant Data Retrieval. We have implemented the interaction from Section 6.3.3 by
adding server logic to the link-aware gateway that is triggered by the reception of corresponding
Interest messages from consumers in the non-challenged Internet (Figure 6.5b). The gateway
performs three major actions after an incoming Interest: (i) It first checks for a registered LoRa

78

6.5 Evaluation

node that falls under the requested prefix, in its FIB. (ii) On a missing FIB entry, it immediately
returns a data NACK. (iii) On success, it forwards the Interest as per regular forwarding using
the FIB face towards the LoRa node. On forwarding, the gateway replies with a distinct
data NACK (we call it WAIT) which contains an estimated data arrival time. A gateway
can provide accurate estimates in the future, using its knowledge of the DSME configuration
upfront, the internal scheduler state, as well as the current traffic load (queue length). This data
packet satisfies the initial Interest, corresponding in-network state, and terminates potentially
inappropriate ICN-based retransmissions. The estimated data arrival time enables the consumer
application to set an appropriate retry timer, without the need for specific producer knowledge
and varying long delays introduced by DSME-LoRa. NACK/WAIT data packets in (ii) and
(iii) must not be cached, though, to prevent serving a subsequent request of the same name
from the CS. Finally, after a repeated Interest request, the data item is likely served from the
gateway.

Reflexive Push. Our protocol flow (Figure 6.5c) implements the second interaction from Sec-
tion 6.3.3. It suggests two nested Interest/Data exchanges. After successful content placement
on the gateway, using Local Unsolicited Data, this one indicates data by sending an Interest
packet that contains the data name, to the consumer. An additional packet indicator triggers
the establishment of a temporary downlink FIB entry on forwarders for that specific name,
which points to the incoming face. The consumer can return a reflexive Interest, requesting
the announced data; it follows the previously established FIB path. Data is served from the
gateway cache as usual, satisfying PIT state on the reverse path, and additionally removes the
temporary FIB entries. An optional final data ACK terminates the initial Interest request.

6.5 Evaluation

We describe experiment configurations in Section 6.5.1, measurement results for protocol per-
formance in Section 6.5.2, results from our analysis of communication overhead in Section 6.5.3,
and system overhead of the protocol stacks in Section 6.5.4.

6.5.1 Experimental Setup

We conducted five experiments (comparing our two schemes described in Section 6.3 with three
Vanilla ICN variants):

Vanilla (1) Baseline scenario with unchanged ICN and common parameter settings.

Vanilla (2) Delay-aware consumer with extended InterestLifetime and retransmission in-
terval.

Vanilla (3) Like (2), additionally forwarders observe the long InterestLifetime and set
their PIT timer accordingly.

79

Chapter 6 Delay-tolerant Networking with ICN

Table 6.1: Scenario and parameter overview including four measured nodes. (Abbreviations:
INR=In-network retransmission, CR= Consumer retransmission, 8= not applicable).

Scenario
Cons. Fwd. Gw. Node

Vanilla (1)
INR 4 3:1 4 3:1 60 0:0 60 8

CR 4 3:1 4 8 60 0:0 60 8

Vanilla (2)
INR 60 3:15 4 3:1 60 0:0 60 8

CR 60 3:15 4 8 60 0:0 60 8

Vanilla (3)
INR 60 3:15 60 3:1 60 0:0 60 8

CR 60 3:15 60 8 60 0:0 60 8

Delay-tolerant
retrieval

INR1 4 3:1 4 3:1 60 0:0 60 8

Reflexive-push INR 4 3:1 4 3:1 4 3:1 8 0:0

PIT timeout [s] Retransmission attempts and timeout [#:s]

1Additional retry based on WAIT instruction on first request.

Delay-tolerant retrieval Gateway acts as a special proxy for long-delay producers and re-
turns a distinct re-try instruction on first request.

Reflexive push Producer initiates a transaction by pushing data to gateway CS which trig-
gers a reflexive Interest/Data interaction for retrieving content.

In our experiments, we use unique content names, prefixed with a LoRa node ID and incre-
mental local object counters. Data contains either a random integer value or an ACK, NACK,
or WAIT instruction with a time hint. This fixed size scheme leads to a frame size of 31Bytes for
Interest and 36Bytes for data, which leaves headroom to the maximum frame size of 127Bytes.
Longer packets, however, could be compressed [148] and fragmented [231] in the future. Ev-
ery content item is requested/indicated once, with an average interval of one minute (60±10 s
uniformly distributed). For a fair comparison between consumer- and node initiated traffic, we
produce sensor data on the LoRa node after an incoming Interest. Data returns during the
subsequent CFP slot within the same superframe (compare Section 6.3.1). Our measurements
include: (i) completion time, i.e., the delay between issuing a transaction and data arrival at the
consumer; (ii) resilience, i.e., the rate of successful transactions; (iii) protocol overhead, i.e., the
number of transmitted packets per content item. Thereby, we deploy an idealized scenario with
0% – and the case for 5% link loss on the Internet emulation.

80

6.5 Evaluation

1.0 1.2 1.4 1.6 1.8 2.0

0.950

0.975

1.000

1.025

1.050

CR CR (5% loss) INR INR (5% loss)

0 10 20 30 40 50

Completion Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

0 1 2 3 4
0.00

0.08

0.16

(a) Vanilla (1)

0 10 20 30 40 50

Completion Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) Vanilla (2)

0 10 20 30 40 50

Completion Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) Vanilla (3)

0 10 20 30 40 50

Completion Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(d) Delay-tolerant re-
trieval

0 10 20 30 40 50

Completion Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(e) Reflexive push

Figure 6.6: Time to content arrival with long producer delays. Vanilla ICN in varying config-
urations and our extensions employ in-network retransmissions (INR) or consumer
retransmissions (CR), and we vary the link loss.

Table 6.1 summarizes our parameter settings. All but the last scenario require the gateway
and node to lift the PIT expiration time to the long delay domain. We conservatively chose 60 s
which reflects ≈ two times the multi-superframe duration of the MAC (compare Section 6.1.2).
Retransmits on the LoRa hop are disabled since we utilize exclusive CFP resources.
For Vanilla ICN, we distinguish the case with in-network retransmissions (INR) and consumer-

based retransmissions (CR), with different PIT timeout behavior. Our Vanilla (1) configura-
tion assumes that Internet nods are unaware of the long delay domain. Hence, we set a PIT
expiration time of 4 s according to default settings of the common NFD implementation [6] and
enable three network layer retransmits, each after 1 s, which reflects the initial round-trip esti-
mation of TCP [301]. In Vanilla (2), a consumer is aware of long producer delays, hence, we
set InterestLifetime and PIT expiration time to 60 s as well, and adjust the retransmission
interval to 15 s. Forwarders do not adopt the long timeout value. In Vanilla (3) the forwarder
adopts the InterestLifetime value of the incoming packet and sets its PIT expiration time
accordingly, i.e., to 60 s. This does not change its retransmission behavior in the INR case, how-
ever. We present two alternative solutions: Delay-tolerant retrieval gets along with ‘short’
Vanilla (1) parameters and utilizes INR. Reflexive push inverts the original ICN semantic and
consists of two nested Interest/Data flows that utilize ‘short’ time parameters analogously.

6.5.2 Completion Time and Resilience

Figure 6.6 presents the cumulative distributions of completion times of successful transactions.
These values are mainly affected by the multi-superframe duration of the MAC (30.72 s) which
dictates the maximum latency of a unidirectional long-range transmission between. Data losses
result in infinite completion times, hence, the end value of each graph inherently reflects its
success ratio.

Vanilla (1) (Fig 6.6a). 10–16% of requests are successful and finish in less than the PIT

81

Chapter 6 Delay-tolerant Networking with ICN

timeout of 4 s. This is the case for Interest that happen to arrive at the gateway short before a
DSME transmission slot occurs. Link losses further drop the success rate by 2–6%, but different
retransmission pattern do not provide a significant effect.

Vanilla (2) (Fig. 6.6b). Completed transmissions in <4 s resemble properties of the Vanilla
(1) case. Steps at 15 s indicate the poll interval of the consumer, which recovers losses from long
DSME-LoRa delays. This requires, however, that forwarder PIT state expires fast (here 4 s) to
prevent Interest aggregation. Losses delay the completion and are compensated faster with INR
overall (≈ 32 s), though, CR recovers 20% more requests on the first retry. Conversely, 10% of
the requests require a third retry with CR, to complete successfully (≈ 45 s). A comparison of
CR with and without loss reveals a diverse picture. Here, the lossless case surprisingly satisfies
fewer requests after the first retry, which is an effect of randomized experimental requests.

Vanilla (3) (Fig. 6.6c). Cases without link loss require 32 s at max. (multi-superframe
duration) to retrieve all content, which directly reflects the delay distribution of the DSME-LoRa
MAC. The long PIT state on both consumer and forwarder allow data forwarding whenever it
is ready, reflecting the case for soft-state subscription by a long-lived Interest [67]. Link losses,
however, demonstrate the drawback of this approach. CR prevent effective loss recovery while
PIT sate is active on the forwarder, and drop the delivery rate to 80%. INR recover most losses
and result in 94% delivery. This approach only performs well under the assumption that (i)
every forwarder adopts the long PIT timeout, and (ii) content can be retrieved within that time.

Delay-tolerant retrieval (Fig. 6.6d). Requests finish in almost exactly 32 s in the lossless
case, which is the returned WAIT time of the gateway after the first request of a content item.
This static worst case value could be reduced with a latency estimator model on the gateway,
allowing for targeted completion times. The gateway retrieves content from the node during
WAIT, and caches it. A subsequent request of that item is answered from the gateway CS.
Additional link losses are mostly recovered by INR and perform similarly to the lossless case,
however, two effects are noteworthy: (i) ≈ 5% of the requests finish below 3 s. A loss of the
first data packet, which contains a WAIT instruction, triggers an INR which is already satisfied
by the gateway. (ii) ≈ 8% of the requests are not satisfied. Our implementation uses a short
circular list of future requests to re-issue, which avoids (larger) PIT state over long time. In
the loss case, entries stayed longer in the list and got overwritten occasionally, leading to un-
requested data. In practice, the list should be provided with timeout values and dimensioned
according to traffic load.

Reflexive push (Fig. 6.6e). Transactions finish in max. 32 s (multi-superframe duration)
with 100% success. Completion times reflect the delay distribution of DSME-LoRa, similarly
to the Vanilla (3) scenarios. Herein, the additional round trip of a nested double Interest/Data
flow has a negligible overhead when directed towards the fast network. Thereby, losses are
smoothly recovered by INR, at minimal time overhead. Contrasting Vanilla (3), this approach

82

6.5 Evaluation

Figure 6.7: Transmissions per content item (protocol overhead) separated into consumer
(Cons.), forwarder (Fwd.), gateway (Gw.), and LoRa node. Vanilla ICN in varying
configurations and our extensions employ in-network retransmissions (INR) or con-
sumer retransmissions (CR), and we vary the link loss. Lossless ICN transmission
via 3 hops is indicated by the dashed line.

works with arbitrary (producer) delays and forgoes the need to adopt long PIT timeout values
on Internet nodes.

Findings. Expired PIT state on the reverse path is the prevalent obstacle with vanilla ICN
and prevents round tips >4 s, which renders the baseline scenario unusable in this domain.
Application-aware consumers overcome long delays, however, the performance heavily depends
on the (arbitrary) choice of a poll interval and is susceptible to varying delays. Increasing the
InterestLifetime on the complete forwarding path, instead, is challenging. (i) We cannot
expect real forwarders to blindly adopt arbitrary PIT timers. (ii) Without in-network retrans-
mission in place, long-lived PIT state harms reliability. The Delay-tolerant retrieval case over-
comes requirements of long PIT state and blind polling. It thereby relieves Internet nodes and
applications from knowledge of the (variable) long time domain. Consumer implementations
become more complex, therefore. A reversed transaction flow with Reflexive push facilitates
efficient, reliable, and ‘timely’ transactions.

6.5.3 Communication Overhead

Figure 6.7 quantifies the protocol overhead for every node and scenario (cf. Section 6.5.1) and
shows the number of transmitted Interest and Data packets per requested content item as well
as the success rate, replicated from Figure 6.6. In a three hop network, an optimal ICN request-
response requires six packets, as indicated by the dashed line. Recall that all scenarios but
Reflexive push lift the PIT timeout on the gateway and disable network layer retransmissions
on the LoRa link, to preserve sparse resources. Consequently, gateways only transmit one
Interest towards nodes that respond with one data packet per request.

Vanilla (1). These scenarios reveal notable overheads by futile retransmission, regardless

83

Chapter 6 Delay-tolerant Networking with ICN

of link loss. Up to two times as many packets are transmitted, compared to the ideal case,
with little overall success. With INR, both forwarder and consumer transmit at maximum (4
Interests/content), while CR keeps forwarder overhead low (1 Interest/content). Interests are
aggregated as long PIT state persists. Standard retransmit intervals cannot cope with long
delays.

Vanilla (2). INR reveal the highest overhead among all scenarios (15 transmissions), send-
ing requests at two timescales. Every consumer Interest is forwarded and retransmitted by the
forwarder, regardless of the long delay of the producer. In contrast, CR overhead (≈ 9 transmis-
sions) is on par with Vanilla (1) CR but satisfies all requests, without blind forwarding. Hence,
PIT timeouts < consumer poll intervals that operate at the prevalent delay domain are a viable
option for the conventional ICN paradigm. Short-lived PIT state cannot prevent duplicate data
transmission by the gateway, though, when Data faces expired PIT state on a forwarder.

Vanilla (3). INR recovers link losses, while a ‘sufficiently’ long PIT expiry time prevents
consumer-based retransmissions. The CR case (without loss) thus operates with little overhead
(≈ 7.5 transmissions) but is not vital due to high sensitivity to link loss.

Delay-tolerant retrieval. Our approach generally increases the required transmissions per
content, introducing a second round trip between gateway and consumer. Hence, it performs
optimal in the lossless case by transmitting 10 packets: 2xInterest/Data on fast nodes, and
1xInterest/Data on the LoRa link. INR marginally increase the overhead. The total overhead
compares to Vanilla (2) with CR, however, it surpasses blind polling.

Reflexive push. Our second approach inverts the flow direction and introduces a second
round trip between gateway and consumer as well. In contrast to Delay-tolerant retrieval,
however, only a single LoRa transmission is required to place producer content in the gateway
cache. This producer oriented optimization results in an optimal number of 9 transmissions per
content, reflected by the lossless case. INR increases up to 10.5 transmissions (avg) on loss.
Data ACKs by the consumer are optional and terminate the initial Interest of the gateway.
Omitting these packets is principally possible to reduce transmissions, however, this conflicts
with INR.

Findings. Delay-tolerant retrieval and Reflexive push are robust, operationally efficient, and
can tolerate varying delays of the DSME-LoRa MAC. In contrast, vanilla ICN requests suffer
from long and unpredictable delays. Naive consumer polling is an inefficient but viable ICN-
idiomatic alternative, provided that Interests expire on the forwarding path and polling intervals
are set in agreement with practical delays.

84

6.5 Evaluation

Table 6.2: Energy consumption per multi-superframe and lifetime for the protocols under con-
sideration.

Protocol Energy [mJ] Lifetime [d]

Vanilla ICN request
w/o MAC 1247.46 10
w/ MAC 51.42 230

Delay-tolerant data retrieval 51.42 230
Reflexive push 30.83 384

6.5.4 System Overhead

We evaluate the resource overhead of our protocol stack and focus on the battery driven LoRa
device, since gateways and Internet nodes are not resource-constrained and remain unchallenged
by common LoRa traffic.

Energy Consumption. We present the energy consumption per multi-superframe in Table 6.2,
as well as the corresponding nodal lifetimes when operated from an off-the-shelf AA alkaline
battery (2800mAh). Our results are based on extensive measurements performed in [11], which
quantify the energy consumption for passive and active periods of the DSME-LoRa superframe
structure. Radio operations dominate consumption, i.e., wireless transmission and (idle) re-
ception. To confirm this observation, we also measure the active CPU time throughout our
experiments, which is as low as ≈ 0.25% for all protocols on the constrained node, and around
0.3% on the gateway. The latter increases with growing network sizes.

Vanilla ICN request values include the alternative operation without a MAC (ignoring wireless
interference), which strongly motivates the choice of a duty cycling MAC from the energy
perspective. Without duty cycling, the lifetime is limited to 10 days. Enabling the MAC reduces
the energy consumption by two orders of magnitude, which leads to a lifespan of 230 days in the
vanilla ICN request and delay-tolerant data retrieval case, assuming that the gateway shields
LoRa devices effectively from retransmits. Reflexive push almost halves the energy consumption
due to unidirectional transmission, which further increases the lifetime to more than a year.

Memory Requirements. Our network stack is runtime configurable to operate the three
protocols for data retrieval (Section 6.4.2). Hence, the firmware image is the same for all
configurations and requires 143 kB in ROM (text + data segment) and in 19 kB RAM (bss +
data segment), almost half of which is occupied by openDSME. The remaining RAM (256 kB
on nRF52840) is reserved for dynamic runtime memory allocation (heap). Both openDSME
and CCN-lite utilize malloc, and we track the combined heap statistics which ranges between
6–8 kB in all experiment runs. Thus, our LoRa-ICN stack can even be deployed on much smaller
IoT hardware.

85

Chapter 6 Delay-tolerant Networking with ICN

6.6 Related Work

Advancing LoRa(WAN). To overcome limitations of the centralized LoRaWAN architecture,
multi-hop extensions for LoRa [367, 130, 48, 80] have been proposed. These are orthogonal to
our work since we focus on single-hop topologies.
Contention-based [233, 290] and scheduled MAC layers [406, 418, 168, 184] for LoRa indi-

cate performance improvements compared to LoRaWAN. Alamos et al. [12, 11] re-utilize IEEE
802.15.4e DSME (Deterministic and Synchronous Multi-Channel Extension) [174] to coordinate
LoRa radios, with few modifications to the radio configuration. Fixed time-slotted DSME paired
with low data rates increases latencies even further, though. In this work, we enable LoRa to
run a robust DSME-based MAC layer with latencies that we are able to handle.
RFC 9011 [124] specifies Static Context Header Compression and Fragmentation (SCHC) for

IPv6 over LoRaWAN. We agree that compression and fragmentation are crucial, but do not
address the latency issues for transport protocols. Also, SCHC does not fix the underlying
MAC, which is prone to collisions and depends on network server scheduling.

ICN and the IoT. The IoT benefits from ICN [33, 307, 258, 339, 338, 142, 26, 410]. An
important observation in prior work is that IoT scenarios require the adaptation of the MAC
layer to prevent unnecessary broadcast and preserve energy resources [193]. Current analyses
either base on 802.15.4 CSMA/CA [142], requiring receivers to be always on, or 802.15.4e
TSCH [163], allowing for intermittent device sleep.
NDN over LoRa was introduced in [204, 243] which required permanent powering of the

nodes, depleting the battery. Unfortunately, latency analyses have not been considered. Recent
work [243] shows the need for a MAC protocol due to high collisions even when deploying only
few LoRa nodes.
A system design for ICN over DSME-LoRa is proposed in [198]. Based on simulations, the

authors find latencies at the order of tens or hundreds of seconds. In this chapter, we close the
gap and present a solution to handle these high delays and thus enable common, inter-network
IoT deployments.

Delay-tolerant ICN. Another ICN application domain that is challenged by long delays are
satellite networks. Siris et al. [348] find that hop-wise transfer and caching help to increase per-
formance in such networks. They consider an Interest as a long-lived subscription. In contrast,
Kumari et al. [217] argue that NDN is not viable in satellite scenarios, due to inefficient polling.
This is in line with our experimental results. To reduce long delays and needless retransmis-
sions during satellite handovers, the adjustment of the forwarding path is proposed [238]. This
solution requires a signal after connecting to a new satellite.
Carofiglio et al. [66] exploit link signaling to indicate some kind of loss to trigger a PIT lookup

and eventual retransmits, reducing RTTs and redundant retransmits. LoRa lacks such signaling
capabilities. We incorporate link awareness in our proposed DSME-LoRa gateway.
Kuai et al. [213] propose delay-tolerant NDN forwarding for vehicular networks. Fundamen-

86

6.7 Conclusions

tally, neighbored nodes overhear surrounding traffic and adjust their retransmission procedure
based on directional network density. In simulations, the authors assume a relatively high PIT
timeout of 50 s. To prevent large PIT tables due to unnecessary long-lasting entries, NACK
data packets can include instructions when to retransmit an Interest [270, 76]. Similarly to
delay-tolerant networking with NDN [235], the IoT requires a mechanism apart from pure
request-response.

Producer-initiated ICN. Burke et al. [63] propose push-based sensor data dissemination,
accepting names within a distinct namespace on the consumer. Gündogan et al. [146] evaluate
name indication that triggers a conventional Interest request on the consumer. Król et al. [211]
introduce a nested 4-way handshake to enable RMI use cases based on ICN principles, and
analyze drawbacks from long latencies. This approach is in line with reflexive forwarding [294].
We exploit both push and indication concepts in our evaluation.

6.7 Conclusions

Interconnecting networks with vastly different RTTs is challenging for any non-trivial communi-
cation system, including ICN. ICN, unlike other frameworks, however, has the unique potential
to enable robust communication to nodes in challenged edge networks without requiring appli-
cation layer relays. In conjunction with an OS-level implementation of ICN (and extensions),
DSME, and LoRa, our two protocol mechanisms for Internet consumer-initiated and LoRa
producer-initiated communication exhibit high reliability and targeted completion time (com-
pared to Vanilla ICN) when applied to the delay-prone regime. Despite an additional round
trip, our evaluations show low overhead of these approaches, by overcoming redundant polling.
We leveraged recently proposed gateway behavior (like RICE) and ICN protocol extensions (re-
flexive forwarding), the latter of which serves many other use cases beyond phoning home and
could be considered a useful standard ICN feature.

87

Part II

System-level Security on Constrained
Embedded Devices

89

Chapter 7

Motivation and Problem Statement

12/18/2020 ewsn20_overview.drawio

1/4

Use Mode
AES CBC
Use Mode
AES CBC

SUBMISSION 12.10.2020

Crypto API

So
ft

w
ar

e
Su

pp
or

t
Ha

rd
w

ar
e

Cl
as

se
s

Peripheral HW
crypto support

No HW
crypto support

External HW
crypto support

HAL API

Drivers

RIOT Core
Library

External Libraries

TinyCrypt uECC Cifra RELIC wolfCrypt

SoC

I2
C

MCUMCU

Figure 7.1: The software support layer of RIOT integrating crypto-peripherals, external crypto-
devices, and crypto-libraries using a common crypto API.

7.1 Heterogeneous Crypto-hardware and Software in the IoT

Cryptographic Backend Categorization. Figure 7.1 presents three common options to
enable crypto-operations in the constrained IoT, and our system integration that we utilize
for aligned performance comparisons in Chapter 8. We categorize cryptographic backends into
three groups. (i) Cryptographic software libraries (e.g., RIOT Core, TinyCrypt, uECC) that
try to cope with embedded constraints. These libraries commonly lack crypto-hardware support
for portability reasons. (ii) Microcontrollers that include a peripheral for cryptographic acceler-
ation, which enhances the crypto-performance and reduces energy requirements. Manufacturer
SDKs commonly support their own chipsets but reduce flexibility towards a vendor lock-in.
(iii) External crypto-devices (secure elements) that connect to the microcontroller using a com-

91

Chapter 7 Motivation and Problem Statement

munication bus. A separate chip acts as an isolated crypto-processor and key storage which
requires additional energy, but allows for sleep cycles of the main processor during operation.

Operating System Support. IoT nodes of class 0 are programmed with bare metal firmware
due to extremely limited hardware resources. Class 1 nodes more and more utilize operating
systems [98] instead of bare metal firmware, to keep applications portable while gaining a
thorough hardware support. A key motivation of this work is to make heterogeneous hardware
components uniformly accessible for both security protocols and applications, which enables
usable security in the low-end IoT. An operating system should provide transparent access to the
available hardware without sacrificing performance nor functionality, by contributing driver code
below the hardware abstraction layer, or software libraries as a fallback. This poses challenges
on the system integration, since crypto-hardware features are largely heterogeneous and range
from extended instruction sets that can complement software implementations, to complete
hardware-implementations of popular algorithms such as AES, ECDSA, etc. Heterogeneous
hardware features demand for a feature model in order to compile targeted firmware images
with optimal hardware support and domain compliant memory footprint. Varying levels of
crypto-hardware assistance require a layered software design at different levels, which needs to
be reflected by the feature model.

Performance Comparison. Cryptographic primitives should be optimized in the IoT and
utilize the constrained hardware most efficiently—including possible crypto-extensions. Chap-
ter 8 introduces our crypto-subsystem in the IoT operating system RIOT, which integrates
different types of crypto-backends. A comparative measurement study of five software libraries
and four hardware platforms quantifies the performance of basic symmetric and asymmetric
cryptography on commodity platforms with and without cryptographic hardware. We further
evaluate the impact of different device driver design options.

7.2 Revisiting Randomness Generation on Embedded Devices

In the literature, a “random sequence” is often referred to by the definition of D. H. Lehmer :

“A random sequence is a vague notion [. . .] in which each term is unpredictable
to the uninitiated and whose digits pass a certain number of tests, traditional with
statisticians.” Lehmer [229]

Application of Random Numbers. Random numbers are required by various IoT appli-
cations and components of an operating system, in the context of security as well as in basic
system operations. Figure 7.2 presents an overview of the typical use cases of random numbers
in an IoT system.
System services, e.g., MAC protocols, apply random delays to avoid interference. IoT appli-

cations such as environmental monitoring, automated machinery, machine-to-machine commu-
nication, and incident reporting utilize random input. The need for random numbers increases

92

7.2 Revisiting Randomness Generation on Embedded Devices

Entropy

Random Algorithms
(Learning,
Sampling,
Statistics,

...)

Random Numbers (CSPRNG, TRNG)

Key Derivation
(public, private)

Secure Communication Stack (DTLS, OSCORE, LAKE, LWM2M, ...)

IoT Application

Key Exchange
(DH, ECDH, ...)

Nonce

Encryption
(AES, ECC, RSA, ...)

Siging & Verification
(DSA, ECDSA, ...)

Salt

Radio
Communications

(CSMA)

Aplication
Level

System
Level

Random Numbers (PRNG, TRNG)

Figure 7.2: The role of random number generation in IoT applications.

even further with the advent of Artificial Intelligence (AI) in the IoT, which shows promise to
improve existing use cases as well as to create completely new application scenarios on small and
cheap devices. Machine learning at the Internet edge, for example, may be used to pre-process
data, to improve physical measurements, and reduce network load. This involves randomized
algorithms and large-scale random sampling running on constrained IoT devices.

Random Numbers for Security. Random numbers are required in almost all security prim-
itives to generate or perpetuate secrets such as encryption keys or cipher streams. Security
protocols and securing communication layers pose strong requirements on the secrecy of ran-
dom numbers for guaranteeing confidentiality, integrity, and privacy. The left part of Figure 7.2
displays the composition of security components, which are assembled in a crypto-stack. Se-
curity protocols (e.g., IPsec, DTLS, OSCORE) rely on keys and nonces to encrypt, sign, or
validate signed network packets. Naturally, they must resist prediction and the random input
must consequently be unpredictable as well. Such demands require an entropy source in the
system. Having a robust security system in place will also enable completely new security ap-
plications benefiting from IoT devices, e.g., to implement off-grid blockchain transactions or
further variants of distributed ledger technologies.

True vs Pseudo-random Number Generation. Ideally, true random number genera-
tors (TRNGs) create values with maximum entropy. True randomness is hard to enforce, and
gathering of entropy consumes system resources that are sparse on IoT devices. True random
sequences are generated from random physical processes such as thermal noise, manufacturing
inaccuracies, or crystal drift. Current personal computers extend such sources to sound or video
input, disk drives, user keystrokes, and more as proposed by the IETF [1]. These interfaces do
not necessarily exist on embedded IoT devices. There may be complementary sources of random
input such as antenna noise or sensor measurements. Still, collecting random values is difficult
and resource-intensive because underlying processes are slow or do not output continuously. Fur-

93

Chapter 7 Motivation and Problem Statement

thermore, operating additional hardware components increases the energy consumption which
challenges battery driven nodes.

Pseudo-random number generators (PRNGs) are deterministic algorithms. Given a random
seed as input, PRNGs output sequences that look random to any analysis method that runs on
the sequence without knowledge of the input value. If properly seeded, these generators expand
a comparably short seed value into a long sequence of (pseudo-)random numbers [91] while dis-
continuing to depend on (physical) random processes. Using a PRNG also reduces the attack
surface for adversaries with physical device access who try to tamper with the environmental
conditions. Cryptographically secure PRNGs (CSPRNGs) provide unpredictable random num-
bers suitable for security purposes, given that their seed values are kept secret. CSPRNGs are
based on a proof that defines hard to solve challenges which an attacker is unable to solve and
to break. In order to be fully unpredictable, though, the CSPRNG requires initial seed values
with maximized entropy. Guessing these values must be infeasible for an attacker, which means
that it terminates in time faster than 2128 steps (recommended security strength [39] at the
time of writing).

Requirements for Low-end Devices. Producing random sequences on low-end IoT nodes
faces particular challenges. As a frequently invoked system service, a random function should
be frugal in resources. Neither should it delay algorithms, procedures, or protocols, nor should
its state overhead diminish the scarcely available main memory, nor should its energy demands
affect the system. Many random algorithms deployed in regular computer systems or clouds are
too demanding and violate these constraints. Hence, it is important to identify random number
generators that comply with the IoT constraints, which is a major objective of Chapter 9.

Requirements on the secrecy of random numbers on constrained devices are similarly strict
as with server machines that are easily available to adversaries. Still, cryptographic operations
involved in CSPRNGs introduce a notable overhead in processing time and energy consumption
on constrained IoT devices that often run on small batteries. Exploiting this, an adversary who
manages to trigger random operations on the IoT device may even run energy depletion attacks.
Hence, it is of particular importance to choose algorithms and implementations of CSPRNGs
that minimize resource loads while standing up to the standards of unpredictable secrets.

Evaluation of Random Number Generation. Chapter 9 provides systematic testing and
performance evaluations of hardware and software random number generators on IoT platforms
that are operated with the RIOT operating system. First, we analyze off-the-shelf random num-
ber generating hardware using common statistical test suites that detect functional weaknesses,
and multiple of performance benchmarks to compare the resource overhead on constrained
devices. Second, we perform analogous tests and evaluations for pseudo-random number gen-
erating software. Comparing hardware and software properties and their resource consumption
leads to a conclusive discussion on how to combine and jointly deploy the different hardware
and software components from the perspective of an IoT operating system.

94

7.3 Hardware-intrinsic Sources of Entropy and Uniqueness

7.3 Hardware-intrinsic Sources of Entropy and Uniqueness

PUF

Zzzz

MCU

Figure 7.3: PUF security services provided by an operating system enable lightweight crypto-
operations on low-cost hardware in the IoT.

High entropy seeds for secure random number generation (cf. Section 7.2) and secure hardware
identities form the minimal set of primitives that bootstrap the cryptographic subsystem needed
for protecting basic services of networked nodes (see Figure 7.3). These numbers must remain
secret to prevent information leakage of past and future transactions, and require resistance
against readout or tampering. Physical unclonable functions are a promising solution to provide
(i) random variations on one device, and (ii) unpredictable secrets between devices that become
reproducible by excluding the variations from (i). They utilize intrinsic hardware variations
instead of adding hardware security modules (e.g., secure elements) which would increase device
cost.

SRAM as a PUF. A prevalent type of PUF input is SRAM. Manufacturing processes introduce
random variations in the silicon of transistors that construct a memory cell. After powering up
the SRAM, it provides a digital fingerprint based on the patterns of uninitialized memory, which
facilitates seed and key generation thereof. SRAM is available on almost every IoT platform
and can be exploited without additional hardware. This makes the technology particularly
attractive for low-cost devices. Secret values are generated only during system startup and
consumed quickly after, to lower the risk of a compromise. Consequently, SRAM secrets remain
absent during regular node operations, and vulnerable data is absent while a node sleeps, the
prevalent state of a battery-driven embedded device.

Bias and Aging. There have been long-standing concerns that the physical layout of SRAM
as well as hardware aging [248] may introduce systematic biases [251, 216]. Quantifying these
statistical effects requires a comparative analysis between large quantities of devices [397], which
we contribute in Chapter 10. Our large-scale evaluation shows a localized bias for certain bits
in the SRAM response. An attacker who tries to predict this pattern by using a large number
of measurements from similar devices could reach an advantage in guessing the bit values at

95

Chapter 7 Motivation and Problem Statement

certain positions. We quantify the remaining entropy of secrets derived by these biased pattern
and identify secret generation schemes that are able to mitigate this weakness.
We further analyse hardware aging by extensive measurements on nodes that naturally aged

in the real-world environment of an open access testbed. We find address specific wear-out
effects that link to past experiment executions. These findings shall motivate testbed operators
as well as software developers to invoke anti-aging strategies to their firmware.

OS-level Evaluation. In Chapter 10, we design and evaluate PUFs for the multi-purpose
operating system RIOT. To the best of our knowledge, a consistent PUF integration into a
commodity IoT operating system is yet missing, even though IoT deployments increasingly
rely on some (open source) operating system. We perform the first SRAM evaluation with
a statistically significant sample size of more than 700 devices in the FIT IoT-LAB testbed.
In a baseline evaluation of our OS-level solution, we quantify the uniqueness of SRAM PUF
generation. Our second analysis concentrates on the quality of random seed and key generation,
as well as its performance overhead. A subsequent security analysis reveals that the SRAM PUF
is secure under moderate attacker assumptions.

96

Chapter 8

Analysis and Integration of Cryptographic
Backends

Abstract

In this chapter, we contribute a comprehensive resource analysis for widely used cryptographic
primitives across different off-the-shelf IoT platforms, and quantify the performance impact of
crypto-hardware. This work builds on the newly designed crypto-subsystem of the IoT op-
erating system RIOT, which provides seamless crypto support across software and hardware
components. Our evaluations show that (i) hardware-based crypto outperforms software by
considerably over 100%, which is crucial for nodal lifetime. Despite, the memory consumption
typically increases moderately. (ii) Hardware diversity, driver design, and software implementa-
tions heavily impact resource efficiency. (iii) External crypto-chips operate slowly on symmetric
crypto-operations, but provide secure write-only memory for private credentials, which is un-
available on many platforms.

8.1 A Crypto-subsystem in RIOT

We now introduce the design and implementation of a crypto-subsystem that integrates hard-
ware with software components and allows for a fair comparison across multiple platforms and
libraries. We base our implementation on RIOT [34], an open-source operating system for
low-end IoT microcontrollers.
We decided for RIOT because it runs on many architectures (from 8-bit over 16-bit to 32-bit

processors), provides multi-threading with a scheduler supporting fixed priorities and preemp-
tion, power management [318], and a powerful hardware abstraction layer. Security protocols
utilize cryptographic functions, which are currently implemented as software solutions at the
system level [150].
Alternatively, the package system can be used to integrate external libraries. RIOT in-

cludes wolfCrypt [402], an embedded library for symmetric and asymmetric crypto, Cifra [73]
which implements common building blocks for symmetric crypto, TinyCrypt [177] and micro-ecc

97

Chapter 8 Analysis and Integration of Cryptographic Backends

(uECC) [189], both particularly minimizing memory, and Relic [22], which contributes a com-
prehensive list of symmetric and asymmetric cryptographic schemes with particular support for
many elliptic curves. As such, these third-party libraries are not implemented against any OS
APIs, yet. Our design concept integrates these components in a generic fashion and extends to
further hardware platforms and libraries in a straightforward manner.

8.1.1 Design Space

The operating system grants access to cryptographic hardware. A driver controls the device
and implements an agnostic OS API. In five sample use cases of this chapter, vendors provide a
library to access low-level operations. We now consider design aspects of how to integrate these
and future cryptographic components.

8.1.1.1 Vendor Driver Integration

Capabilities of vendor drivers vary widely. We argue for using these implementations, though, to
take advantage of specific vendor knowledge, testing, and to allow for sustainable maintenance.
The package subsystem in RIOT clones, builds, and links external repositories during firmware
compilation. In this way, third-party software does not require maintenance within the OS and
can easily be updated. We implement vendor libraries as RIOT packages and provide software
wrappers to integrate external code into the subsystem. It is noteworthy, that vendor libraries
do not always perform at maximum performance since they are commonly implemented in a
generic way, as we will show in Section 8.7.

8.1.1.2 Context Abstraction

Cryptographic functions operate on an internal state (context struct). It is allocated for
each driver instance and depends on the exposed state by a vendor implementation which
includes hardware specific elements internally. When facing the OS, a context struct must
abstract vendor specifics and implement common OS interfaces. Hence, every driver defines a
common context struct, containing vendor specifics and optional elements to facilitate the OS
integration. Consequently, users of the API must not dereference the context struct since it
changes with different backends. This design decision prevents parallel operation of different
backends for the same function. We argue that this is in line with common IoT deployments
for three reasons: (i) Single-core OSs are not optimized for parallel processing because real-
world IoT firmware is tailored to a single application. Consequently, excessive parallelization
of crypto-operations is not expected. (ii) Computational and memory resources are scarce on
constrained IoT devices. Our context abstraction keeps complexity low. (iii) The performance
of crypto-peripherals increases software solutions by one order of magnitude (see Section 8.4),
thus, successive hardware operations already outperform software notably.

98

8.1 A Crypto-subsystem in RIOT

8.1.1.3 State Handling

Applications of cryptographic primitives are manifold, including security protocols or pseudo-
random number generators, and may require individual maintenance of a crypto-functions state.
We enable external memory allocation and state handling in our approach. Software implemen-
tations operate on an allocated struct in RAM. Cryptographic processors may reduce opera-
tions to one at a time, provided they rely on a single hardware state. This inflicts to read, save,
and restore the hardware state between operations to achieve state independence. Especially for
external processors, this increases completion time and RAM requirements to replay and store
hardware contexts. We implement an optional read–save–restore behavior for such devices and
evaluate the overhead in Section 8.7

8.1.1.4 Concurrent Access

Cryptographic processors need protection against concurrent access. Certain vendor drivers
implement mutexes internally, while others require protection by the OS. It is noteworthy, that
hardware devices require protection and not a single crypto-function, since processors are com-
monly single resources. We lock/unlock a mutex per device before and after every hardware
access. Few microcontrollers provide hardware acceleration units with more than one crypto-
peripheral, which can operate in parallel. In that case, each device must be protected separately
against concurrency. Dual-accelerators promise throughput enhancements when crypto is heav-
ily used. We implement a management instance to the driver which is requested internally
before every crypto-operation and delivers the next free device.

8.1.1.5 Low Power Management

Low energy consumption is a core requirement in the IoT. Active peripherals prevent devices
from sleep and consume energy. It is an obvious design choice to keep active time of a crypto-
device at minimum, hence, the OS integration of a driver should enable hardware only when
used. This performs efficient on peripherals that turn on and off fast. Other devices (e.g., exter-
nal chips), however, require additional resources during initialization, which is inefficient when
requested excessively. To deal with on/off patterns, we follow two different approaches. (i)
Devices that turn on fast are powered only during operation. This aligns well with the concept
of other peripheral drivers in RIOT. (ii) Devices with long wakeup sequences are not uncon-
ditionally set to sleep after usage, since concurrent applications might require crypto access.
Instead, we implement a user counter that increments on device allocation and decrements on
release. The device is turned off when the counter decrements to zero. Vendor drivers com-
monly operate synchronously, hence, our approach only affects preempted driver calls. On the
downside, successive requests from a single context will not benefit and require a manual power
switch which we analyze in Section 8.7.

99

Chapter 8 Analysis and Integration of Cryptographic Backends

8.1.2 Integration of Crypto Modules

RIOT currently supports 208 boards and 117 different microcontrollers, all of which exhibit
varying crypto-hardware capabilities. To allow for the implementation and use of crypto-based
applications without considering the current hardware setup upfront, we design (i) a hardware-
agnostic API and (ii) the dynamic configuration of the crypto-subsystem. We use a feature
model to represent crypto-hardware capabilities to the build system. Our approach selects and
compiles hardware features where possible, and additionally provides an extended configuration
interface to the user. This generic approach is capable of handling any hardware component,
provided it is correctly modeled.

8.1.2.1 Module Design

Our layered approach to interface with different crypto-backends introduces two types of APIs
that are exposed to the user: (i) The basic cryptographic API provides direct access to low level
functions, for example, a single AES block encryption. (ii) The cryptographic mode API grants
access to operation modes of crypto primitives, for example, configuring AES in Cipher Block
Chaining (CBC), or Electronic Code Book (ECB) mode. Different backends are modeled as
modules, each of them is a translation unit that provides an implementation of one public API,
which allows specific selection by the build system.
A backend module (i.e., a driver) can support one of the three levels of crypto-acceleration

in hardware: (i) Full hardware acceleration, (ii) partial hardware acceleration, and (iii) no
hardware acceleration. The first level is given by peripheral-, or external devices that provide
full hardware support for a cryptographic mode (e.g., AES CBC). The second level occurs when
hardware support is only available for basic cryptographic operations. In that case, the operation
mode (e.g., CBC) is performed in software and needs access to basic cryptographic primitives
(e.g., AES block encryption). The software component, however, is agnostic to the specific
cipher or hash in use. The third level represents the case with missing hardware acceleration
units. Our abstraction of the cryptographic API allows to switch backend implementations
seamlessly.

8.1.2.2 Feature Model

We use Kconfig [366] to select compiled modules during the build process. Kconfig allows to
define symbols which specify dependencies and conditional default values. A user can interact
with Kconfig using existing tools (e.g., menuconfig) to configure the values of a symbol. Each
block in our crypto-stack is modeled as a Kconfig symbol. Hardware capabilities are represented
as non-visible boolean Kconfig symbols that indicate the availability of crypto-hardware. Crypto
APIs are implemented as boolean choice symbols, which allows for a transparent replacement
of crypto-backends. Consequently, Kconfig provides a list of exchangeable modules, which are
mutually exclusive. The default activation of a module is handled by Kconfig which selects the

100

8.2 Experimental Setup

Table 8.1: Overview of typical on- and off-chip IoT hardware with their crypto-acceleration
features that we analyze.

Feature

MCU/
Speed/
Board/
Library

nRF52840
(@64MHz)

Nordic nRF52840dk
CryptoCell

EFM32(PG12)
(@40MHz)

Silicon Labs Pearl Gecko
EMLIB

MKW22D
(@48MHz)

Phytec IoT Kit 2
mmCAU

ATECC608A
(I2C@400kbps)

Adafruit ATECC608
CryptoAuthLib

TRNG 3 3 3 3

SHA-256 3 3 3 3

HMAC-SHA256 3 8 8 3

AES-128
ECB, CTR, CBC,CCM(*)

CMAC/CBC-MAC
ECB, CTR, CBC,CCM(*),CFB
CBC-MAC, PCBC,GMAC,GCM

3 ECB, GCM

AES-256 3 3 8 8

ChaCha20/Poly1305 3 8 8 8

ECC
secp160k/r1, secp192k/r1,secp224r/k1,
secp256k/r1, secp384r1, secp521r1

Ed25519, Curve25519

secp192r1, secp224r1, secp256r1,
sect163k1, sect163r2, sect233k/r1,

8
secp256r1
(P-256)

ECDSA / ECDH 3 8 8 3

RSA 3 8 8 8

Secure memory 128-bit 5 x 256-bit 256-bit 16 Key Slots

module combination, given the hardware capabilities of the underlying platform. A user can
still manually overwrite the default selection.

8.2 Experimental Setup

8.2.1 Platform Overview

Table 8.1 summarizes the hardware and its features that we use in our evaluation. We omit
legacy algorithms, and deploy our experiments on state-of-the-art (nRF52840 and EFM32) as
well as older (MKW22D) microcontrollers with peripheral crypto-acceleration. nRF52840 and
EFM32 are a good representation of the current generation of devices with advanced crypto-
peripherals that were designed for flexible deployment in general use cases. Furthermore, we use
the external crypto-chip (ATECC608A), connected via an I2C bus. ATECC608A represents a
series of external security devices that are protected against side channel attacks.
All platforms provide a true random number generator (TRNG), of which all except the

MKW22D comply with NIST standards (cf., [199] for background on embedded random number
generation). The ATECC608A implements a crypto-secure pseudo-random number generator
(CSPRNG), which is seeded from a true random source in hardware. EFM32 and MKW22D
deploy software assisted HMAC SHA-256 that utilizes hardware hashing. nRF52840 and EFM32
support multiple cipher modes in hardware, contrasting MKW22D and ATECC608A, which
need software assistance. ECC is available on all platforms but MKW22D.
The nRF52840 and EFM32 offer secured key registers for performing crypto-operations, and

the MKW22D has a tamper protected register. The ATECC608A has 16 non-volatile, write-

101

Chapter 8 Analysis and Integration of Cryptographic Backends

only memory slots to store secret elements. Keys are generated and maintained on the external
device to prevent unauthorized access and erase on tamper detection.

8.2.2 Measured Resources

We measure processing time, energy consumption, and memory overhead and repeat experi-
ments 1000 times presenting averages, if not mentioned otherwise. To allow for a fair compari-
son, all software runs on RIOT version 2020.07.

Processing time. We evaluate the processing time with a logic analyzer that samples at
12MS/s by toggling an I/O pin via direct register access on the test device. Using this setup
the measurement overhead remains negligible.

Energy consumption. We connect our test platform to a regulated voltage supply (Siglent
SPD3303C) and evaluate the current consumption of each operation using a digital sampling
multimeter (Keithley DMM7510 7 1/2) at 1MS/s. A measurement period is marked by toggling
I/O pins. To bypass unrelated current flows, we connect our probes in series with the MCU
and turn off unused hardware components (by hardware switches or in software). We measure
the current of ATECC608A on the external chip, only, for better compatibility. In practice, the
nRF52840 is used to operate the device, which might sleep during crypto-operations.

Memory requirements. We evaluate the memory consumption and consider compile- and
runtime properties. Our compile time measurements show the overhead on top of a minimal
RIOT build by analyzing the ELF file. We accumulate all linked objects that are associated
with a crypto-implementation. Numbers are differentiated w.r.t. to RAM and ROM memory.
Runtime memory requirements include the size of data structures and the maximum amount of
stack memory that has been used during execution.

Table 8.2: Performance of SHA-256 on 64 Byte inputs implemented in different software on the
nRF52840.

Processing Time Memory

Impl.
Init
[µs]

Update
[µs]

Final
[µs]

Ctx
[B]

Stack
[B]

RAM
[B]

ROM
[kB]

Relic 1.00 97.25 90.25 116 1000 110 1.3
RIOT Core 1.08 112.40 119.40 104 600 74 1.3
wolfCrypt 5.13 69.25 68.87 112 600 74 1.8
TinyCrypt 13.75 97.75 97.25 112 600 74 1.2
Cifra 12.62 85.75 113.40 104 616 74 1.2

102

8.3 The Impact of a Software Implementation

Table 8.3: Performance of a single block AES-128 operation implemented in different software
on the nRF52840. RAM is 38Byte for all platforms.

Processing Time Memory

Impl.
Init
[µs]

Enc.
[µs]

Dec.
[µs]

Ctx
[B]

Stack
[B]

ROM
[kB]

Relic 3.00 57.42 88.03 577 1476 13.8
RIOT Core 3.25 38.17 71.17 20 508 4.7
wolfCrypt 0.67 51.50 86.42 284 780 11.7
TinyCrypt - 225.70 659.90 176 668 2.6
Cifra
unprotect. 49.37 60.37 77.25 180 732 1.7

protect. 1617.10 6338.12 6353.87 180 732 1.9

8.3 The Impact of a Software Implementation

Table 8.2 and 8.3 compare the impact of different SHA-256 and AES-128 software implementa-
tions provided by commonly available crypto-libraries in RIOT that we ran on the nRF52840
platform. In both cases, we applied the cryptographic function to an input vector with the size
of one internal block (i.e., 64Byte for SHA-256 and 16Byte for AES-128).

Relic, TinyCrypt, and Cifra require 190–210µs for an init-update-final sequence to process
a SHA-256 digest. Cifra is faster during update on the price of longer finalization caused by
an extra copy of the hash value. RIOT Core is 20µs slower because it involves repeated mod-
ulo operations during state update (FIPS PUB 180-4). Furthermore, RIOT includes multiple
endianness conversions to operate on 32-bit arithmetic. wolfCrypt provides a highly optimized
implementation with an unrolled mixing loop, at higher memory consumption. Disabling this
optimization increases the processing overhead of update and final to approximately 100µs each,
but it reduces ROM requirements by 500Byte. Context sizes and stack usage are similar in all
implementations, except for Relic that uses 400Byte additional stack for a global array with
initial hash state values.

The impact of different software implementations becomes more pronounced for AES-128.
Initialization is fast in RIOT, wolfCrypt, and Relic taking at most about 3µs to initiate state
and the AES key length. TinyCrypt does not expose a separate API call for initializing but
handles it internally. In contrast, Cifra contains the key schedule (FIPS PUB 197) already on
initialization which takes up to 50µs. wolfCrypt, Relic, and TinyCrypt provide a dedicated API
to trigger AES key expansion, while RIOT handles the expansion on every en-/decrypt call. In
Table 8.3 we include key expansion overhead in the en- and decrypt column, except for Cifra.

Encryption is by a factor of 1.5–3 faster than decryption for the additional key inversion during

103

Chapter 8 Analysis and Integration of Cryptographic Backends

decrypt [83]. RIOT provides the fastest implementation for a single block, followed by wolfCrypt
and Relic. Their implementations base on pre-calculated look-up tables (T-tables) which is a
speed optimization for 32-bit platforms. Cifra (w/o protection) and TinyCrypt implement the
default algorithm based on a substitution table (S-box). Surprisingly, the S-box implementation
in Cifra (w/o protection) scales similar to the T-table approach, whereas TinyCrypt operates
4–10 times slower. This is due to multiple copies between the internal and externally provided
state, as well as explicit clearing of the internal memory. Lookup table implementations are
vulnerable to side channel attacks [369, 28], especially cache attacks, why Cifra (w/ protection)
provides countermeasures by default, that increase the runtime by a factor of 100.
Context sizes vary widely. RIOT allocates only 20Byte for one context, of which 16Byte

represent the internal AES-128 state. Cifra and TinyCrypt keep the expanded key (multiple
“round keys”) in their context structure, which increases memory by up to 180Byte. In that way,
round keys do not have to be re-calculated when encrypting repeatedly on one AES context.
In contrast, working on multiple contexts heavily increases RAM consumption. wolfCrypt and
Relic follow a similar approach, though, both structs are not tailored to 128Bit keys. wolfCrypt
unconditionally allocates memory for 256Bit keys and Relic additionally stores raw keys and
initialization vectors that are used for cipher modes. The stack usage correlates to the context
sizes. Memory overhead in ROM is more distinctive. wolfCrypt and Relic store complete T-
tables (10 buffers of 1024Byte), whereas RIOT only stores half of them and generates the
remaining values on demand. TinyCrypt and Cifra attain the smallest ROM footprint based on
minimized lookup tables.

8.4 Basic Crypto-hardware Acceleration

Next we compare the performance of basic cryptographic operations between hardware and
software, using the crypto-hardware discussed in Section 8.2.1. Software results are obtained
from RIOT core on the same platforms but with crypto-hardware turned off.

8.4.1 Processing Time

Figure 8.1 shows the processing time for short (32 Byte) and long (512Byte) input data, sepa-
rated into cryptographic operations. We use a randomly chosen 128Bit AES key and a random
initialization vector for the CBC mode. The HMAC SHA-256 is initialized with a random
256Bit key. As occasionally recommended, we also conducted experiments with 512Bit keys,
but without further insights.

Short input data. Hardware accelerated operations scale similar on nRF52840 and EFM32
for short inputs (Fig. 8.1a) and require less than 70µs for AES ECB/CBC during initialization,
encryption, and decryption as well as SHA-256 hashing. HMAC SHA-256 is more complex,
for repeated internal hash computations, and takes at most 250µs on both platforms. Hash

104

8.4 Basic Crypto-hardware Acceleration

0.0

0.2

0.4

0.6

0.8

H
a
rd

w
a
re

nRF52840 EFM32 MKW22D

A
E

S
E

C
B

A
E

S
C

B
C

S
H

A
-2

5
6

H
M

A
C

S
H

A
-2

5
6

·102 ATECC608A

A
ES

EC
B

A
ES

C
B
C

SH
A
-2

56

H
M

A
C

SH
A
-2

56

0.0

0.2

0.4

0.6

0.8

S
o
ft

w
a
re

A
ES

EC
B

A
ES

C
B
C

SH
A
-2

56

H
M

A
C

SH
A
-2

56

A
ES

EC
B

A
ES

C
B
C

SH
A
-2

56

H
M

A
C

SH
A
-2

56

Init
Update
Final
Encrypt
Decrypt

P
ro

ce
ss

in
g

ti
m

e
[m

s]

Cryptographic algorithm

(a) 32Byte input data

0.0

0.2

0.4

0.6

0.8

H
a
rd

w
a
re

nRF52840 EFM32 ·101 MKW22D

A
E

S
E

C
B

A
E

S
C

B
C

S
H

A
-2

5
6

H
M

A
C

S
H

A
-2

5
6

·103 ATECC608A

A
ES

EC
B

A
ES

C
B
C

SH
A
-2

56

H
M

A
C

SH
A
-2

56

0.0

0.2

0.4

0.6

0.8

S
o
ft

w
a
re

·101

A
ES

EC
B

A
ES

C
B
C

SH
A
-2

56

H
M

A
C

SH
A
-2

56

·101

A
ES

EC
B

A
ES

C
B
C

SH
A
-2

56

H
M

A
C

SH
A
-2

56

·101

Init
Update
Final
Encrypt
Decrypt

P
ro

ce
ss

in
g

ti
m

e
[m

s]

Cryptographic algorithm

(b) 512Byte input data

Figure 8.1: Processing time of different crypto-algorithms on different platforms for short
(32Byte) and long (512Byte) input data, separated into cryptographic opera-
tions. Crypto-operations are either accelerated in hardware on off-the-shelf mi-
crocontrollers (nRF52840, EFM32, MKW22D) or on an external cryptographic chip
(ATECC608A connected via nRF52840), or purely implemented in software.

105

Chapter 8 Analysis and Integration of Cryptographic Backends

updates are small for all configurations due to the short input sequence. The update function
collects 64Byte of data (SHA-256 internal state) before starting a block operation, which is first
triggered by final in this case. The MKW22D operates at minimal overhead for all functions.
AES CBC encryption takes longer than decryption on that platform because of the software
chaining of hardware accelerated AES blocks. An additional copy of the input buffer during
encryption avoids overwriting it, which is omitted during decrypt.

When implemented in hardware, ciphers gain more—a factor 4–6—over software than hashes
(factor 2–4). A comparison of software and hardware measurements for the EFM32 shows
the particular power of that platform. It operates at minimal cost using hardware accelerated
operations, in contrast to software, for which it performs slower than nRF52840 and MKW22D,
since it operates at lowest CPU frequency. In software, AES ECB/CBC decryption is two times
slower than encryption due to the additional key inversion (see Section 8.3). This overhead
disappears on hardware.

The ATECC608A operates two orders of magnitude slower than the other platforms (see
Figure 8.1a). The reason for this overhead is twofold. First, the vendor library maintains device
power levels and wakes up the device prior to every operation. Second, control commands
and data need to traverse the I2C bus with a copy to resp. from the microcontroller. AES
initialization takes proportionally longer because the encryption and decryption key has to be
sent to the device before use. The difference between cipher and hash based algorithms is higher
on the ATECC608A in comparison to crypto-peripheral and software support, because AES-128
encryption of 32Byte involves two block operations, the transport of which adds an overhead.

Long input data. Hardware crypto performance gains over software with longer input strings.
We display results for 512Byte input in Figure 8.1b. Hardware based hash computation now
operates 5–10 times faster than software and ciphers speed up by a factor of 20 to 30. The
processing time of crypto-peripherals still operates on a similar scale compared to short inputs,
on nR52840 and EFM32. Surprisingly, accelerated operations on nRF52840 outperform EFM32
for long inputs—in contrast to short inputs.

The EFM32 requires a manual iteration over blocks, which involves a copy of intermediate
data to a temporary buffer. The nRF52840 vendor library hides this iteration under its API and
the internal operations are closed source. We expect advantages for nRF52840 here. Hardware
accelerated AES on the MKW22D increases by one order of magnitude in comparison to short
inputs, for the hybrid software-hardware chaining mode. The performance overhead for hashes
is less dominant. Processing times for ciphers in software increase by one order of magnitude
due to the complexity of block chaining and repeated key schedules. Hash computations are
more comparable in software. The effort of update becomes visible since long input buffers
update the internal state before calculating a final digest.

Most notable is a severe performance overhead on the ATECC608A, which operates three
orders of magnitude slower than peripheral accelerators, and two orders slower than software.

106

8.4 Basic Crypto-hardware Acceleration

Figure 8.2: Energy consumption of hardware accelerated cryptographic operations on different
platforms. Percentages show relative overhead compared to crypto-implementations
in software running on the same devices.

AES suffers from the length of output data, which equals the input length. In contrast, HMAC-
and SHA-256 only return a 32Byte digest which relieves the bus and device control overhead.

8.4.2 Energy Consumption

Figure 8.2 depicts the absolute energy consumed by basic crypto-operations on hardware (colors)
and displays the relative energy compared to software (percentages). AES encryption and
decryption include the initialization, and hash based operations include init-update-final. These
results roughly correlate with the processing time.

Short input data. The peripheral EFM32 and nRF52840 consume 0.25–4µJ. EFM32 requires
4mA and nRF52840 6mA. The MKW22D is the most expensive peripheral and consumes 1–
20µJ due to a high current of up to 20mA peak. The external ATECC608A consumes 45–130µJ
which is the highest energy demand despite its small average current of 1.2mA—a consequence
of the long execution time. HMAC SHA-256 is the most expensive operation on all platforms.

Long input data. The energy consumption of EFM32 and nRF52840 increase marginally
over short inputs. nRF52840 now outperforms EFM32 despite the higher current of ≈ 1mA.
The MKW22D increases the consumption by roughly 10x, which is the overhead of software
assisted acceleration. The most expensive device is still the ATECC608A whose consumption
also increases by roughly 10x due to additional device management and bus utilization. AES
based operations are the most expensive operations due to the high amount of encrypted data
transmitted.

Software versus hardware. The performance gain from hardware acceleration increases with
longer input data. The EFM32 and nRF52840 reduce the consumption on long input data down
to 1% of the software variants. The MKW22D equally profits for short and long input data.

107

Chapter 8 Analysis and Integration of Cryptographic Backends

Table 8.4: Memory consumption of different crypto-algorithms on different platforms. Crypto-
operations are hardware accelerated. The overhead shows more (↑) or less (↓) hard-
ware resources required in software (RIOT Core).

AES ECB AES CBC SHA-256 HMAC SHA-256

Platform
Ctx
[B]

Stack
[B]

RAM
[B]

ROM
[B]

Ctx
[B]

Stack
[B]

RAM
[B]

ROM
[B]

Ctx
[B]

Stack
[B]

RAM
[B]

ROM
[B]

Ctx
[B]

Stack
[B]

RAM
[B]

ROM
[B]

nRF52840 96 600 6407 7107 96 632 6455 7263 240 744 6391 5691 376 880 6455 6699
Overhead ↑76 ↑36 ↑6348 ↑2105 ↑76 ↑20 ↑6348 ↑2117 ↑136 ↑136 ↑6348 ↑4477 ↑168 ↓16 ↑6284 ↑5213

EFM32 20 524 84 4208 20 556 132 4288 104 600 64 4220 208 704 160 4492
Overhead 0 ↓40 ↑16 ↓804 0 ↓56 ↑16 ↓878 0 ↓8 ↑16 ↑2990 0 ↓192 ↓16 ↑2990

MKW22D 20 540 196 2838 20 556 244 2976 104 628 372 1692 208 924 468 1964
Overhead 0 ↓24 ↑136 ↓2152 0 ↓56 ↑136 ↓2184 0 ↑20 ↑328 ↑480 0 ↑28 ↑296 ↑464

ATECC608A 56 676 138 4175 56 740 154 4361 136 780 90 4089 136 748 154 4249
Overhead ↑36 ↑112 ↑79 ↓827 ↑36 ↑128 ↑47 ↓785 ↑32 ↑172 ↑47 ↑2875 ↓72 ↓148 ↓17 ↑2763

Energy demands of the ATECC608A extension are much higher than for software—an increase
by factors from 13 to 25 with only a slight gain in efficiency for longer input data.

8.4.3 Memory Requirements

Table 8.4 shows the memory consumption for basic crypto-operations on our reference hardware
and compares the results to an equivalent software implementation.

Context. On nRF52840, the overhead of context structures ranges from 76 to 168Byte, which
are introduced by a buffer to represent hardware state for internal use by the vendor driver.
AES CBC introduces less overhead since cipher chaining requires additional memory in software
which is absent in hardware. In contrast, the EFM32 and MKW22D platforms require the same
context sizes as our reference software as they do not mirror the hardware state.

Stack. The stack sizes allocated with the crypto-hardware are similar to the base crypto-
software. Most notably for HMAC SHA-256, several accelerators can reduce stack size, e.g., by
not requiring a second SHA-256 context.

RAM and ROM. For ciphers, ROM overheads mostly decrease for the EFM32 and MKW22D
due to the absence of static lookup tables in software (T-tables, see Section 8.3). RAM sizes
remain moderate on these platforms with increases originating from initialized variables of driver
libraries.
In contrast, on nRF52840 ROM and RAM overheads are dominant. Its crypto-library main-

tains an internal hardware abstraction layer, basic synchronization primitives, and interrupt
routines. This software representation adds 6.4 kByte to all operations and cannot be disabled,
even if features are not required for basic operations.

External device drivers. The external ATCC608A device interacts only via I2C communica-

108

8.5 ECC Hardware Acceleration

tion and operates differently via its drivers. For example, encryption keys have to be written to
a key slot and indexed for use, instead of passing a pointer to an allocated key structure. RAM
and ROM usage are fairly independent of the selected crypto-operation and merely reflects the
abstracted message transfer and invocation of the different hardware functions.

8.5 ECC Hardware Acceleration

We present analyses of elliptic curve cryptography running on hardware and software implemen-
tations. Hardware performance measurements consider peripheral crypto-acceleration of the
nRF52840 and the external crypto-chip ATECC608A. Software measurements include Relic, a
feature-rich library, and uECC, a minimal highly optimized library, on the same device. Relic
operates in default configuration, which uses a precomputation table for scalar multiplication to
improve runtime performance. uECC is deployed with optimization level two, which is the de-
fault to achieve a balanced speed-size tradeoff. We operate on the NIST P-256 elliptic curve with
256Bit sized keys that is supported by all hardware and software platforms and evaluate keypair
generation, signature generation and signature verification (ECDSA), as well as generation of
a shared secret, based on preceding key exchange between two parties (ECDH). Signatures are
computed on a 32Byte message digest and secrets are 32Byte (256Bit) in size. Keypair gen-
eration and signing rely on random numbers and hardware accelerators use a built-in TRNG.
Our software measurements use a seeded SHA-256 based CSPRNG. We also configured both
libraries to use a hardware generator, but the advantage remains negligible. As the results do
not contribute to additional insights, we excluded these experiments.

8.5.1 Processing Time

Figure 8.3 presents the average and the min/max processing time of different elliptic curve
operations. Results now scale from tens to hundreds of milliseconds.

Hardware crypto support. The nRF52840 crypto-peripheral performs best, analogously to
the results of Section 8.4. All operations require ≈ 20ms, which is one order of magnitude below
the software. The ATECC608A operates 2 to 4 times slower than the nRF52840 peripheral.
Verification as well as secret generation still outperform software by a factor of 2–3. In contrast
to basic crypto-operations (cf., Section 8.4), the external device reveals distinct performance
benefits because reduced device access contributes to lower control overhead.

Software versus hardware. Relic creates a precomputation table during initialization. This
step, which takes up to 140ms, is not required on hardware, and it is absent in uECC because
lookup tables are statically compiled. Key generation and signing benefit from the precom-
putation table when applying the COMBS method [240] optimization for multiplying a prime
elliptic curve point by an integer. This reduces processing times to less than 100ms and leads
to performance results that are on par with hardware accelerated operation on ATECC608A.

109

Chapter 8 Analysis and Integration of Cryptographic Backends

0.0

0.1

0.2

0.3 ·10−1
nRF52840 ATECC608A

In
it

K
ey

ge
n

Si
gn

Ver
ify

Se
cr

et
0.0

0.1

0.2

0.3
Relic

In
it

K
ey

ge
n

Si
gn

Ver
ify

Se
cr

et

uECC

P
ro

ce
ss

in
g

ti
m

e
[s

]

Cryptographic primitives

Figure 8.3: Processing time of different elliptic curve algorithms. Crypto-operations are either
accelerated in hardware on the microcontroller (nRF52840), on an external chip
(ATECC608A), or in software (Relic, uECC).

Verification, however, exhibits a higher processing demand of 260ms. This variable base scalar
multiplication is complex because Relic uses the window-non-adjacent form method [291]. The
same applies to the shared secret generation. The ATECC608A, in contrast, performs inversely,
which shows that a dedicated multiplication circuit is effective.

Compared to Relic, uECC operates at the same scale but benefits from selected algorithmic
choices without using a precomputation table. Secret creation in uECC is 50ms faster than in
Relic because the co-Z Montgomery Ladder [273] outperforms the window-non-adjacent form
for scalar multiplication over the elliptic curve [202]. Verification is equally fast in uECC
taking advantage of the Strauss-Shamir method [356] for double scalar multiplication. Signature
creation is 50% slower, though. Considering the sum of signing and verification uECC and Relic
are on par.

8.5.2 Energy Consumption

Figure 8.4 surveys the absolute energy consumption of hardware accelerated operations on
elliptic curves (colors) and compares the relative excess over software (percentages). The
ATECC608A consumes 700–1200µJ and the peripheral nRF52840 requires less than 400µJ
for every operation. The most expensive operation on nRF52840 is signature verification (10µJ
more than signing), which is in contrast to the ATECC608A, which requires more energy for
signature creation but is most frugal when doing verification. These results roughly correlate
with the processing time.

The performance gain of the ATECC608A over Relic surprises most. Both implementations

110

8.5 ECC Hardware Acceleration

Figure 8.4: Energy consumption of different elliptic curve algorithms on the nRF52840 platform.
Percentages show relative overhead compared to crypto-implementations in software
running on the same device.

are on par in terms of processing overhead, but the specific hardware implementation requires
only 71%-78% energy of corresponding operations implemented in pure software. Creating the
precomputation table in Relic consumes approx. 500µJ and presents pure software overhead.

8.5.3 Memory Requirements

Table 8.5 shows the memory consumption for different ECC schemes implemented in hardware
and in comparison to the two software libraries.

Peripheral crypto support. To store private and public keys the nRF52840 implements one
data structure for each key, which require 816 and 884Byte respectively. Considering private
(32Byte) and public (64Byte) key sizes of the P-256 curve, this is a significant overhead and
illustrates a design decision that favors flexibility at the expense of memory resources. Each data
structure mirrors hardware state as well as the elliptic curve domain parameters (i.e., elliptic
curve modulus, equation parameters, and co-factors of a key). The latter contributes most to the
overhead. Storing the domain parameters for each key (pairs) separately, however, allows not
only different elliptic curve configurations in parallel but also to change parameters at runtime.
In contrast to basic crypto-operations (cf., Section 8.4.3), the stack of the nRF52840 operates

ECCs at a scale of kilobytes because the crypto-driver library requires temporary buffers. A
user context to sign and verify introduces additional overhead in ECDSA. RAM (8 kByte) and
ROM (14–20 kByte) requirements of ECDSA/ECDH are large for off-the-shelf microcontrollers
but relatively low (3%) with respect to the overall memory available on the nRF52840.

Software versus peripheral crypto support. The nRF52840 crypto-hardware introduces
the key struct and with it a significant overhead (520–820Byte per key pair) compared to
uECC and Relic. uECC requires only 64Byte resp. 32Byte for public and private keys. In
Relic, the public key is represented as an elliptic curve point of 100Byte, and the private key is
contained in a multi-precision integer structure, which allocates 276Byte per instance.

111

Chapter 8 Analysis and Integration of Cryptographic Backends

Table 8.5: Memory consumption of different elliptic curve algorithms on different platforms.
Crypto-operations are hardware accelerated. The overhead shows more (↑) or less
(↓) resources required in comparison to software.

Keys ECDSA ECDH

Platform
Private

[B]

Public
[B]

Stack
[B]

RAM
[kB]

ROM
[kB]

Stack
[B]

RAM
[kB]

ROM
[kB]

nRF52840 816 884 5472 8.08 21.20 3880 8.10 15.06
Ovrh. uECC ↑784 ↑820 ↑4352 ↑7.70 ↑14.28 ↑3064 ↑7.72 ↑9.73
Ovrh. Relic ↑540 ↑784 ↓480 ↑2.53 ↓2.48 ↓1136 ↑2.55 ↓6.22

ATECC608A – 64 998 0.12 4.85 676 0.12 3.52
Ovrh. uECC ↓32 0 ↓122 ↓0.26 ↓2.06 ↓140 ↓0.26 ↓1.81
Ovrh. Relic ↓276 ↓36 ↓4954 ↓5.43 ↓18.82 ↓4340 ↓5.43 ↓17.75

The nRF52840 requires more RAM, ROM, and stack than uECC. This is not surprising
since uECC is tailored to a low memory footprint [347]. uECC is able to store key material
and CSPRNG data in 380Byte of RAM but provides only a limited set of features. Lower
performance penalties are visible when comparing the nRF52840 with Relic. Similar to the
nRF52840 crypto support, Relic is feature-rich and flexible. To implement this, Relic maintains
a global context in the library, which leads to a similar performance overhead compared to the
storage of domain parameters at the nRF52840. The nRF52840 still needs to run specific device
drivers to control crypto-acceleration.

External crypto-chip support. The ATECC608A operates most frugal compared to the
hardware crypto-peripheral and both software implementations. The low memory requirements
enable its use even with tightly constrained microcontrollers. A core design advantage of this
device is a dedicated, secure memory slot to store the private key. Only the public key data
structure allocates a minimum of 64Byte, while driver support impacts stack usage, RAM, and
ROM only slightly. On the downside, ATECC608A limits crypto-operations to the P-256 curve.

8.6 Comparison of Speed, Energy, and Memory

In this section, we compare the previously assessed performance metrics processing time, energy
consumption, and memory requirements from a high level perspective. Figure 8.5 and Figure 8.6
display relative resource requirements of different cryptographic hardware and software imple-
mentations. For a better comparability, we scale the radius axis of each polar plot logarithmi-
cally, since the results span several orders of magnitude. Figure 8.5 shows the performance of
AES CBC encryption plus decryption for 32Byte short input data, acting as a representative

112

8.6 Comparison of Speed, Energy, and Memory

Time

Energy

StackRAM

ROM

Software (RIOT) Hardware

Time

Energy

StackRAM

ROM

(a) nRF52840

Time

Energy

StackRAM

ROM

(b) MKW22D

Time

Energy

StackRAM

ROM

(c) EFM32

Time

Energy

StackRAM

ROM

(d) ATECC608A

Figure 8.5: Comparison of the processing time, energy consumption, and memory requirements
of AES CBC encryption + decryption, for 32Byte short inputs data. Crypto-
operations are either accelerated in hardware on off-the-shelf microcontrollers
(nRF52840, EFM32, MKW22D) or on an external cryptographic chip (ATECC608A
connected via nRF52840), or purely implemented in software.

Time

Energy

StackRAM

ROM

Software (Relic) Software (uECC) Hardware

Time

Energy

StackRAM

ROM

(a) nRF52840

Time

Energy

StackRAM

ROM

(b) ATECC608A

Figure 8.6: Comparison of the processing time, energy consumption, and memory requirements
of ECDSA signature generation + signature verification. Crypto-operations are ei-
ther accelerated on the microcontroller (nRF52840) or on an external cryptographic
chip (ATECC608A connected via nRF52840), or in software (Relic, uECC).

113

Chapter 8 Analysis and Integration of Cryptographic Backends

case for symmetric crypto-operation. Peripheral crypto-hardware (i.e., nRF52840, MKW22D,
EFM32) operates fast and energy-efficient when compared to software. In terms of memory
footprint, the nRF52840 presents an exception, and notably increases the RAM requirements
compared to all other hardware and software implementations, which the device is able to han-
dle, though. External crypto-hardware (i.e., ATECC608A) introduces a huge speed- and energy
overhead for symmetric operation, but only a small memory footprint, enabling crypto for very
constrained IoT devices [56] that do not provide enough resources for software operation.

Figure 8.6 shows the performance of ECDSA signature generation plus signature verification,
acting as a representative case for elliptic curve cryptography. Our performance results for
peripheral crypto-hardware on the nRF52840 reveal a similar picture compared to symmetric
crypto-operation. It outperforms software (Relic and uECC) in processing time and energy
consumption, but the nRF52840 driver again introduces RAM overhead. The external crypto-
chip ATECC608A, however, reveals a different picture compared to symmetric operation and
now outperforms software in terms of processing time, energy consumption, as well as memory
footprint.

8.7 The Impact of Driver Implementations

8.7.1 Vendor Driver and Concurrent Access

The EFM32 (V. PG12) provides two crypto-peripherals that can be operated independently.
This concurrent feature is managed to organize the peripheral access with a driver API that
must be asynchronous in a single-core system. The vendor implementation, however, blocks the
CPU during crypto-operation. Figure 8.7 (top) visualizes the progress of our test application
using the vendor driver. We start two threads of the same priority, each of which encrypts data
periodically. Thread 0 (T0) triggers encryption on peripheral CRYPTO0. The CPU is acquired
by T0 until completion of the hardware. Thereafter, T1 is scheduled and triggers encryption,
operating CRYPTO 0 again since is not busy anymore. CRYPTO 1 is never used, since the
vendor driver hinders parallelism.

We implement an asynchronous driver that exploits DMA to offload the CPU. Each crypto-
device uses two DMA channels, one for copying input data to peripheral registers, and the other
to return encrypted data. Figure 8.7 (bottom) visualizes the progress of our test application
with an optimized driver. T0 triggers encryption on CRYPTO 0 and relieves the CPU while the
peripheral operates. When T1 is scheduled, it triggers encryption on CRYPTO 1 and relieves
CPU access. Note that both peripherals operate in parallel now, while the CPU stays idle.
During that time, the OS can schedule other tasks, or switch to an energy-saving state. After
completion of the peripheral tasks, each thread is notified.

Table 8.6 presents results of a test program that encrypts data concurrently, using AES
ECB with and without optimization. Comparing the results for 32Byte input data, our driver

114

8.7 The Impact of Driver Implementations

w
/
o

D
M

A

Finish

T0 trigger enc.

CPU wait CPU wait

T1 trigger enc.
w

/
D

M
A

Finish
T0 trigger enc.

T1 trigger enc.

IDLE

Time

CRYPTO 1

CRYPTO 0

T1:Thread 1

T0:Thread 0

T
h
re

a
d
-

a
n
d

P
er

ip
h
.

A
ct

iv
it

y

Figure 8.7: Qualitative comparison of thread and crypto-peripheral activity with (bottom) and
without (top) CPU offloading using DMA.

Table 8.6: Processing time for 2000 AES-128 encryptions from two threads (1000 encryptions
each) on the EFM32 with different diver implementations.

32Byte input 512Byte input

Implementation Time [ms] Time [ms]

DMA off, blocking 37.10 205.20
DMA on, non-blocking 56.60 56.90

introduces an overhead of 20ms for the DMA synchronization. For 512Byte input data, the
advantage gets visible. The vendor driver increases the progressing time by a factor of five,
while our DMA fix remains unaffected and outperforms the vendor driver by 400%.

8.7.2 Power Management and State Handling

Crypto-peripherals and external devices consume energy, why they should be disabled when not
in use. Power-cycling a peripheral (e.g., nRF52840) is fast, whereas external devices such as
the ATECC608A have a longer, costly startup time. The ATECC608A vendor library turns off
the device after every command, which is not desired on successive requests.
We implement a manual switch in the power management to prevent redundant power cycles.

The ATECC608A requires to sleep in predefined intervals for clearing register and RAM values
intermittently. This is enforced by a hardware watchdog timer, which can be configured to
10 s at most. Wakeup is triggered by a 100µs low pulse on the I2C SDA line which can

115

Chapter 8 Analysis and Integration of Cryptographic Backends

Table 8.7: Performance of SHA-256 on the ATECC608A Platform with different driver proper-
ties.

I2C@100 kbps I2C@400 kbps

Implementation
Ctx
[B]

Rate
[kB/s]

Energy
[µJ]

Rate
[kB/s]

Energy
[µJ]

Auto on/off 136 1.73 85 3.01 48
Copy state 235 0.56 243 0.99 129

Man. on/off 136 2.70 59 6.46 30
Copy state 235 0.88 171 2.17 75

be generated by sending a 0-Byte when the bus is operated at 100 kbps. The ATECC608A,
however, is capable of 400 kbps bus speed. To exploit the maximum performance, the OS
needs reconfiguration capabilities for the I/Os to toggle the SDA pin independently of the I2C
operation. We implemented this feature on the microcontroller that drives the ATECC608A.
This implementation was used already in the previous sections.

The ATECC608A operates on a single hardware state (see Section 8.2.1) and requires an
atomic init-update-final during hashing, though, certain use-cases operate on multiple hash
states to be updated independently, before a final message digest is calculated. We implement
an alternative SHA-256 function that replays the hardware state for every operation.

Table 8.7 shows evaluations for repeated SHA-256 operations on the ATECC608A. We mea-
sure the impact of manual power management, the I2C bus speed, and the overhead of preserving
hardware state. Our evaluation presents context sizes, data rates for periodic hashing, and the
energy consumption for a single hash. Manually powering the ATECC608A almost doubles the
rate due to the reduced wakeup time. Conversely, the energy consumption reduces by a factor of
1.5. Increasing the I2C from 100 to 400 kbps increases the rate by a factor of two and decreases
the energy consumption respectively. Copying the internal state, however, costs performance.
The state needs to be stored in the context struct, which adds 99Byte. The overhead of this
mechanism reduces the rate by a factor of three and affects the energy consumption similarly.
All together energy and speed can vary by on order of magnitude.

8.8 Related Work

Crypto support in operating systems. mbed OS [23] is the ARM operating system
for the Cortex-M family. It includes the SSL library mbed TLS [24], which implements sym-
metric and asymmetric cryptographic algorithms in software. mbed OS allows replacement of
cryptographic functions by crypto-hardware implementations. An analysis of the performance

116

8.8 Related Work

advantages is missing, though. zephyr [412] does not include crypto-hardware, but support is
planned for future releases1. Software-based crypto support is inherited from mbed TLS and
TinyCrypt [177]. Similarly, mynewt [21] uses mbed TLS and TinyCrypt. A rudimentary crypto
API provides encrypt/decrypt functions that leverage hardware capabilities for basic AES.
Contiki-NG [20] provides sparse crypto support, though. With our crypto-extensions in RIOT
we aim to bring more diversity in terms of hard- and software support to evaluate and deploy
security in the IoT.

Performance of crypto-software.On very constrained devices, Gura et al. [157] compare RSA
with ECC, Zhou et al. [416] present optimized implementations of SM2 and the NIST P-256
elliptic curve. These evaluations run bare metal based on software dedicated to specific hardware
platforms which is in contrast to our study. We focus on a multi-purpose operating system and
common crypto-libraries, and find that results are on par with bare metal implementations
albeit our system favors more flexibility with respect to supported microcontroller platforms
and peripherals. In the context of an operating system, processing overhead, memory, and
energy were measured for symmetric cryptography (i.e., AES) and secure hashing (i.e., SHA
and MD5) by Passing et al. [299] on NutOS and Tsao et al. [370] on Contiki [94].

Mössinger et al. [275] present runtime, memory, and energy consumption of elliptic curve
cryptography in Contiki. Frimpong et al. [117] present an ECDH and ECDSA [9] implementa-
tions in Contiki-NG, using TinyCrypt. Kim et al. [203] ported the mbed TLS crypto-library to
RIOT and FreeRTOS, and evaluate the processing time of ECDSA signature and verification
on two platforms. Optimizations of elliptic curve cryptography are presented in [47, 244, 85].
In a comparative study of different elliptic curve libraries, Silde [347] shows that distinct opti-
mizations for elliptic curves are vulnerable to side-channel attacks. This is one reason why we
focus on common ECC.

Performance of crypto-hardware. Munoz et al. [276] present time and energy measure-
ments for AES, running an SDK for software and hardware support on two platforms. Pear-
son et al. [302] compare the performance of peripheral and external crypto support for differ-
ent symmetric and asymmetric operations, deploying Espressif and Arduino code, because a
multi-platform OS was missing. Lachner et al. [220] assess time measurements for different ci-
phers and one asymmetric signature algorithm, operating three devices with Arduino firmware.
wolfCrypt [402] includes crypto-hardware drivers and analyzed throughput of selected platforms.
The library does not abstract hardware and thus cannot benefit from crypto-hardware on the
OS level.

Gerez et al. [123] compare the power consumption of a TLS session using RSA and ECDHE
between a Raspberry Pi and an IoT device with crypto-hardware. Mades et al. [247] compare
the battery runtime of a TLS stack with and without hardware acceleration. Nofal et al. [285]
analyse the TLS handshake and record layer and present the energy consumption of three

1https://docs.zephyrproject.org/latest/security/security-overview.html

117

Chapter 8 Analysis and Integration of Cryptographic Backends

elliptic curves and two RSA configurations on two hardware platforms, with and without crypto-
acceleration. Schläpfer et al. [329] provide a brief performance comparison between new secure
elements and DTLS, using mbed TLS as a software platform. Durand et al. [95] quantify the
energy demands of OSCORE. Zhou et al. [415] argue for a reprogrammable FPGA approach to
implement optimized cryptographic algorithms. Conti et al. [77] present a novel IoT platform
architecture with AES acceleration and evaluate the benefit of hardware over software crypto.
Their findings are on par with our study, however, the specific design contrasts our approach
that focuses on off-the-shelf hardware and software implementations.

8.9 Conclusions

In this chapter, to the best of our knowledge, we presented the first comprehensive compar-
ison of multiple symmetric and asymmetric cryptographic algorithms, implemented in hard-
and software and consistently evaluated on multiple constrained common IoT devices. For a
representative set of crypto-peripherals as well as an external security device, we showed de-
tailed system benchmarks to reveal design tradeoffs when implementing secure crypto-hardware
support on a multi-purpose operating system for constrained devices. Our results include:
(i) Crypto-peripherals outperform software in runtime and energy. The benefit increases with
longer input lengths. This contributes to node lifetime. On the downside, drivers introduce mem-
ory overhead. (ii) Context sizes and stack utilization of crypto-hardware operate at a similar
scale as crypto-software. Device complexity unsurprisingly increases the overhead. (iii) Exter-
nal crypto-devices are slow on symmetric crypto-operations, but their performance advances are
notably on asymmetric crypto. A small memory footprint enables cryptographic operations on
very constrained devices. Furthermore, a collection of hardware based side-channel countermea-
sures provides additional resistance against attacks. On the downside, the I2C communication
introduces an attack surface. (iv) Special care is required with crypto-drivers. We found sev-
eral vendor implementations with large optimization potentials. Furthermore, different levels of
hardware crypto support require a configurable environment with different layers of abstraction
and software assistance. This is provided by the OS and contributes to code reusability and
portability while exploiting hardware features. We hope that our results will help to prevent
performance pitfalls in the future.

118

Chapter 9

Random Number Generation in the Low-end
IoT

Abstract

Random numbers are an essential input to many functions on the Internet of Things (IoT).
Common use cases of randomness range from low-level packet transmission to advanced algo-
rithms of artificial intelligence as well as security and trust, which heavily rely on unpredictable
random sources. In the constrained IoT, though, unpredictable random sources are a challeng-
ing desire due to limited resources, deterministic real-time operations, and frequent lack of a
user interface.
In this chapter, we revisit the generation of randomness from the perspective of an IoT oper-

ating system (OS) that needs to support general purpose or crypto-secure random numbers. We
analyse the potential attack surface, derive common requirements, and discuss the potentials
and shortcomings of current IoT OSs. A systematic evaluation of current IoT hardware compo-
nents and popular software generators based on well-established test suits and on experiments
for measuring performance give rise to a set of clear recommendations on how to build such a
random subsystem and which generators to use.

9.1 The Impact of Random Input on IoT Security

The Internet of Things extends the distributed Internet system at the edge by a new, massive
set of constrained devices. Secure communication in the IoT relies on cryptographic protocols
of consistent design and proper practical instantiation, which includes provisioning of random
numbers. Protocol security is commonly built on primitives that can be mathematically proven
to meet security requirements. Such proves often rely on the hypothetical presence of a random
oracle [45] that produces truly random input on request. More advanced, complex protocols are
then constructed by securely composing these primitives. Canetti [65] was the first to introduce
a definition of protocol security that is provably preserved under composition.
Secrets such as keys or intrinsic function values are spontaneously derived from random input.

Security degrades whenever randomness is flawed. Extending the desired level of security to the

119

Chapter 9 Random Number Generation in the Low-end IoT

constrained IoT edge is a hard problem and random number generation on embedded devices
must be seen as one of the key challenges in this context. Cryptographically secure random
numbers require statistical robustness to withstand statistical attacks. Cryptanalytic attacks,
however, encompass additional attack vectors to disclose random state.

Whenever an attacker can break in the current state of the random system, he should not be
able to calculate back previous random values. This robustness property is known as forward
secrecy and can be achieved by applying a non-invertible cryptographic function. Conversely,
the attacker in possession of the current state should neither be able to predict future random
output, which is known as backward secrecy. Establishing backward secrecy requires entropy
for refreshing the generator state. These operations can be costly on a constrained device,
and it is the objective of this work to identify feasible solutions of high quality standards.
We discuss details of qualitative requirements in Section 9.2 and evaluate the trade-offs in
Sections 9.6 and 9.8.

A variety of prominent attacks are based on vulnerabilities of random number generators in
real-world systems and the literature provides a plethora of cryptographic analyses and attack
scenarios [115, 286, 355, 187, 188, 92, 314, 159, 91, 183, 128, 346, 64, 232, 368]. In reality,
there are even more attacks anticipated, many of which target at zero day exploits. Kelsey,
Schneier et al. [187] criticize a lack of a widespread understanding of possible attacks against
random number generators among system developers. Given the shortcomings of many random
subsystems, it is worth considering the corresponding attack surface of the specific environment.

In the following, we present and contrast three common attack taxonomies [187, 115, 355] to
clarify attacks on the random subsystem of IoT devices: (i) a cryptographic perspective, (ii) an
embedded device perspective, and (iii) a systems perspective.

9.1.1 Cryptographic Taxonomy

An attack on a random number generator is an intrusive attempt of distinguishing between the
produced sequence and truly random numbers. This distinction would open doors to predict
future outputs or reproduce recent outputs that might have been used for generation of secrets
in the past. The situation becomes even worse if an adversary manages to direct future numbers
of a random sequence. Kelsey, Schneier et al. [187] enumerate three classes of analytical attacks:

Direct Cryptanalytic Attacks monitor PRNG outputs to gain knowledge about the system
in order to distinguish between pseudo-random output and truly random bits.

Input-Based Attacks require access to PRNG inputs (seeds and initializations vectors) to
inject known test sequences and perform further cryptoanalysis on random outputs.

State Compromise Extension Attacks base on previously compromised internal state of
the generator and enables prediction or backtracking within the pseudo-random sequence.

These three principle attacks target PRNG core functions and may lead to broken security

120

9.1 The Impact of Random Input on IoT Security

schemes and protocols. In the IoT, vulnerable implementations do not only affect privacy
concerns etc. but may also lead to actual physical damage because of IoT actuators.

9.1.2 Embedded Device Taxonomy

Generating random numbers on computers with a human-machine-interface has been studied
extensively in the past [64, 91, 92, 159, 183, 187, 314]. These approaches can also be applied to
interconnected embedded devices with our without user interfaces but are exposed to additional
attack vectors. Francillon et al. [115] introduce two types of attackers for the case of wireless
sensor nodes.

Remote Attackers mainly target at cryptanalytic and input-based attacks. Without accessing
the node directly, an adversary tries to compromise or manipulate the generator state, e.g., by
monitoring and disturbing communication channels. In this particular example, wireless noise
has been used to generate randomness. An adversary with access to the local wireless network
must thus be considered a potential threat to perform an external attack.

Invasive Attackers gained read access to the internals of a generator and compromised its
state at one point in time. This definition does not include write access, or code injection.
Perfect state knowledge of a deterministic pseudo-random algorithm allows the adversary to
predict future outputs and it can reproduce sequences that have been generated in the past,
i.e., for cryptographic key generation. Unless true random values are added to the generator
state periodically, the system remains fully predictable. The update interval determines the
maximum time that a generator remains vulnerable. Compromising the state by read access is
also named an internal attack.

9.1.3 System-centric Taxonomy

In the IoT, a large number of constrained embedded devices inter-connect to each others and to
the global Internet. On the one hand, broadening the networking capabilities increases the attack
interface, especially with availability from the outside of a local network. On the other hand,
simple IoT devices entail special considerations in comparison to traditional networked devices
such as servers, personal computers, or smartphones. Many IoT devices are very constrained
in hardware capabilities due to minimizing price and form factors, as well as energy resources.
These limitations do not only affect computational power, but often imply sparse hardware
protection features. As a consequence, IoT devices often lack permission management for code
execution, memory protection mechanisms, as well as secret storages.
IoT deployments can grant physical access to the hardware, which opens a potential interface

to analyse and monitor delicate key material, firmware, or even program execution on a device
if tamper detection is not in place. We argue that secure random number generation cannot be
sustained in the case that an adversary has full read or write access to the device. Shielding
attack vectors without read or write access demands for additional hardware capabilities and

121

Chapter 9 Random Number Generation in the Low-end IoT

manufacturers of low-power chips already reacted. STMicroelectronics [355] defines three groups
of attacks against microcontrollers (MCUs).

System Software Attacks focus on security and resilience affected by weak implementations,
bugs, or insecure protocols after analyzing or even manipulating program execution. Distur-
bances are possible even without device access via network interfaces, e.g., by sending malicious
packets, or by triggering the execution of non-verified or untrusted library functions that may
be already part of the device firmware. The latter often relates to “monkey testing” or to insider
knowledge.

Hardware Non-invasive Attacks require hardware access. This category includes any
kind of interface that allows interacting with the device directly, such as debug ports, or bus
interfaces (UART, SPI, I2C, ...). The most dangerous attacks for random sources that rely
on physical processes are based on fault injection. Typically, an adversary exploits the device
under environmental conditions that it is not designed for. Prevalent fault injection parameters
are temperature variations, microwave induction or voltage manipulation. Furthermore, side
channel analysis such as power profiling and timing analyses fall in this category.

Hardware Invasive Attacks cover advanced techniques that enable access to the device
silicon with access to hidden secrets, even if device protection mechanisms are in place. Such
attacks are usually very complex and require specific measurement instruments.

Recently, hardware manufacturers of low-power microcontrollers have started to provide dif-
ferent countermeasures to the physical attack surface, ranging from debug port locks, tamper
detection indicators, memory protection units, and isolated code execution environments. Also,
hardware crypto acceleration on the chip becomes more widely available. These features should
be used wherever possible. Nevertheless, many low-cost devices that are supported by IoT oper-
ating systems do not provide all (or any) of these capabilities. Implementations and algorithms
used for random number generation should be designed around the concepts of (i) a high mod-
ularity to ease partial use of hardware protection features and (ii) robustness even if hardware
protection is missing.

Random number generation cannot be protected, if the adversary has full control over the
device. Analytic attacks as well as fault injections can be shielded, though, by incorporating
cryptographic primitives and carefully gathering entropy for seeding the PRNG, as we will
discuss next.

9.2 Generating Randomness in the IoT

Every day in the life of an IoT device, random numbers are requested by a variety of use cases.
These use cases separate into two classes: either general purpose or cryptographically secure
random input. While general purpose use only requires sufficiently well represented statistical
properties, cryptographically secure random numbers must also remain unpredictable even under

122

9.2 Generating Randomness in the IoT

malicious attacks. While the first category can be achieved fairly easily, the provisioning of
secure randomness is very challenging in the constrained regime and—depending on the attacker
model and strength—may not be achievable at all.

9.2.1 General Purpose PRNGs

General purpose PRNGs are employed for tasks independent of security aspects. Typical use
cases include the jittering of network protocol timers or media access protocols (e.g., random
back-off in CSMA) to avoid collisions on a medium. Other applications of general purpose
PRNGs include randomized sampling of sensor measurements and fuzzy testing.
A uniformly distributed stream of statistically independent random numbers is the desired

output of a PRNG, which still should be approximated in higher dimensions, since concurrent
applications or algorithmic elements may call on sub-sequences of the generator (e.g., access
every k-th output). Seeds between otherwise identical devices must differ to avoid identical
random behavior across devices, and individual seeding after each device restart is desired.
Even though seed requirements for general purposes are moderate, a “plug and play” source for
gathering seed material is missing on IoT devices that do not provide a hardware based true
random number generator.
General purpose PRNGs are essential on most IoT devices and frequently called in many use

cases. Implementations should therefore be fast and efficient to preserve resources of the con-
strained devices. Available resources are better spent on generators with high security demands.

9.2.2 Cryptographically Secure PRNGs

Crypto-purpose or cryptographically secure PRNGs (CSPRNGs) are generators that are safe
to use in security applications, involving the generation of cryptographic keys, nonces, or salts.
Shamir [336] introduced the notion of a cryptographically strong PRNG which prevents com-
putation of a desired future output value within certain bounds of time and space complexity.
Blum et al. [53, 54] introduced cryptographically secure pseudo-random sequences that can be
generated in polynomial time, but are unpredictable. Given a preceding output sequence of
that generator, but not the seed, it must be computationally infeasible to predict the next bit of
output with a better chance than 50%. Cryptographic system security relies on these random
numbers as basic input. Consequently, CSPRNGs are expected to output highly unpredictable
number sequences and to be resilient against known attacks. The security of an implemen-
tation goes beyond the scope of computational efforts to predict future outputs and includes
countermeasures to protect against weak implementations as well as state compromise by an
attacker.
Building a crypto-purpose generator is more complex and consumes more system resources

than a general purpose PRNG. It involves additional building blocks of ciphers, cryptographic
hash functions, runtime tests, as well a specifically robust seeding logic. Computational over-

123

Chapter 9 Random Number Generation in the Low-end IoT

head and especially memory requirements of these building blocks are in potential conflict with
resource constraints of IoT nodes, but the availability of secure random numbers is essential
for enabling secure communication over the Internet. In order to reduce software complexity,
some microcontrollers provide hardware acceleration of cryptographic primitives, which should
be exploited when implementing the respective components.
A significant body of work reports about failures of PRNGs and successful attacks against

the random input of crypto systems [187, 115, 92, 314, 91, 183, 355]. Hence, provisioning a
cryptographically secure, consistent random infrastructure is a crucial component of a software
system, which should be designed and tested with care. Requirements on CSPRNGs, in-depth
analyses of different mechanisms and classification of those have been presented in [201, 43, 40,
351, 314, 92, 81]. We summarize the key aspects of CSPRNGs in the following paragraphs.

Statistical Randomness. Any statistical bias gives rise to elementary attack vectors. Even
though CSPRNGs mainly consist of deterministic algorithms, a crypto-secure random generator
needs to produce sequences that are statistically indistinguishable from truly random [187].
These properties base on the assumption that in a string of (pseudo-random) bits, probabilities
for one and zero are equal at any time, and they are statistically independent. Even a very
small bias must be considered as potential breach of the randomness assumption and contradicts
crypto-requirements of a secure generator. A variety of statistical properties can be verified with
tests that are available in well established test suites (see Section 9.4).

Unpredictability. CSPRNGs require resistance against external and internal attacks (see
Section 9.1). A common distinction exists between prediction resistance and backtracking resis-
tance. In more detail, prediction resistance means that an attacker cannot guess future results
in computational time by monitoring the generator history, even if the algorithm is perfectly
known. To achieve this at a given statistical quality, the seed needs to be fully unpredictable.
Furthermore, a crypto-secure PRNGs needs to be built on cryptographic functions, usually one-
way hash functions and block ciphers that are practically not invertible and do not produce
colliding output from different inputs.
Every cryptographic system needs to be designed according to a specified security level. An

established threshold is 128 bit of secrecy [1, 313, 371]. Assuming an adversary had to guess
a secret value, it would require trying about half the number of bit combinations, if all states
are equally likely. For 128-bit secrecy this would be 2128−1 tries on average to brute force
a collision, or 2128 in the worst case. This is currently considered secure for computational
resources. Both the seed at the generator input, as well as the internals of its algorithm need to
meet the expected security level. It is important to note that due to the birthday paradox, an
attack on a cryptographic hash function can complete with a reduced number of tries [126, 44].
Furthermore, if an attacker gained knowledge of the internal state of a generator, it should
be ensured that future output is only predictable for a very short time. According to NIST,
this should be achieved by adding fresh and truly random values periodically to the internal
generator state (see Section 9.2.3 on re-seeding).

124

9.2 Generating Randomness in the IoT

Backtracking resistance protects against a reconstruction of previous values or even the seed
after a state compromise. It implies that no correlation between seeds and generated output
should be in place. This behavior is required to assure perfect forward secrecy within crypto-
graphic protocols [166]. Backtracking resistance is realized by applying cryptographic functions
to the internal state of the generator and hardened by storing state in protected memory, if
available.

High Entropy Seeding. A truly random seed value is required to make the output of a
CSPRNG unpredictable [40, 269]. Random bits are usually extracted from physical resources
and the Shannon entropy [340] or the Minimum entropy serve as a measure of its random-
ness. In this context, physically random resources are often referred to as entropy sources.
Physical sources of “randomness” typically exploit variations in electronic circuits (e.g., clock
drifts, uninitialized memory, analog-to-digital converter fluctuations), randomly noisy signals
(e.g., wireless noise, bit errors, thermal noise), or user input signals (e.g., keystrokes, mouse
clicks) which normally are unavailable in the IoT. These real-world entropy sources, however,
do not always admit “full randomness” and additional compression methods are often needed
for maximizing entropy. NIST [373] also advises that seed generation should not rely on a single
entropy source, for resilience. The IRTF recently proposed methods for improving randomness
obtained from weak entropy sources [81].

Full entropy seeds are required for secrecy in a CSPRNG, which is equivalent to requiring
2n−1 tries on average, for guessing a seed of length n bits. If not seeded with sufficient entropy,
an adversary may exploit internal state collisions and determine generator output faster. This
can drastically degrade the security strength of the generator. Hence, great care must be taken
to harvest the number of entropy bits that is required by the cryptographic strength of the
system as defined by and compliant to the algorithm of the CSPRNG [403]. Caution is advised
with implementations that limit the input length of the seeding function. Fresh entropy may
be required repeatedly to re-seed the internal state of a CSPRNG in order to recover from a
potential state compromise, or to serve multiple generator instances, as we will discuss in the
next section.

Health Testing. The quality of cryptographic system components need particular attention,
as it may degrade not only due to software bugs, but also due to hardware aging or side channel
attacks. Most entropy sources used for (re-)seeding rely on physical processes and particularly
benefit from testing. Self-testing demands increase when physical device access is possible. A
variety of tests have been proposed by NIST, which should be executed on all functions of a
PRNG and its seeder. These tests range from known answer testing during validation time up
to health tests that are applied during runtime to monitor vitality of entropy sources as well as
expected execution of deterministic algorithms. The focus of this contribution is not on testing,
and we refer the reader to the specific NIST documents [40, 373, 41].

125

Chapter 9 Random Number Generation in the Low-end IoT

9.2.3 A Note on Re-seeding CSPRNGs

A CSPRNG can recover from potential state compromise by regular re-seeding [187, 201, 40,
403]. Re-seeding of PRNGs is often advised [158, 115, 109] but also under much debate in the
literature [314, 91, 46]. Certain CSPRNGs proposed by NIST even build upon the concept of
re-seeding [40].

Considering that a generator is perfectly secure and was seeded in agreement with its specified
security level, while both its seed and its state are kept in full secrecy, then an adversary cannot
predict the next output by guessing within computational time without any re-seeding. So re-
seeding becomes unnecessary. In this ideal scenario, the only reason for re-seeding is to extend
the finite period of the specific pseudo-random algorithm. The period of a generator describes
the number of cycles it takes to run through all valid internal states. In practice, however,
cryptographically secure PRNGs have long enough periods and are not affected by repeating
pseudorandom output during their lifetime in a common IoT scenario. Re-seeding can even
be disadvantageous as it introduces an interface to inject low entropy values to the internal
state during runtime. This may foster state collisions and thus break the resilience against
unpredictability.

Entropy is a fragile property that is (i) not always in place (ii) in many cases manipulable at
physical device access and (iii) hard to estimate during runtime. Even worse, it may be hard
to depict failures in case of a compromise. To avoid adding compromised entropy values during
runtime, some common security procedures base on a “trust on first use” model [93], which
contradicts the re-seeding approach.

Another vulnerability created by re-seeding was revealed by Ristenpart et al. [314]. Existing
implementations of entropy collectors cache their outputs in memory pools because—due to
its eventually long and indeterministic runtime—entropy gathering is often implemented as
a parallel and asynchronous task. If these numbers are not consumed immediately, a memory
without perfect secrecy exposes an attack vector. Thus, entropy pools and internal states should
run in trusted execution environments, only. Especially on constrained IoT hardware, this is
not always possible, which makes the case for entropy generation on demand. Conversely, the
utilization of insecure memory technologies generally motivates re-seeding with fresh entropy
values.

Entropy sources can get compromised during operation, but the opposite can happen, as
well, if sources did not provide full entropy during PRNG instantiation. In that case, mix-
ing additional entropy values to the internal state during operation can be rescuing. Finally,
few crypto-forums argue that re-seeding protects in case of faulty implementations. Faulty im-
plementations at hand, however, contradict many assumptions of a cryptographically secure
system.

In summary, there are reasons in favor and against re-seeding of PRNGs, and we argue that
a decision should be made by the designer in view of the underlying hardware capabilities,

126

9.2 Generating Randomness in the IoT

North Bound Random Access API

C
on

di
tio

ni
ng

C
on

di
tio

ni
ng

Ext. Noise

Seed Creation
(CS)PRNG

Ext. SoC

Crypto
Accel.

TRNG

I2
C(CS)PRNG

SeededUn-Seeded

Seed flow

Hybrid

Random flow

Microcrontroller

Software

Hardware

Entropy source

NO RNG

Figure 9.1: Overview of hardware and software components for generating randomness in the
IoT.

deployment constraints, application scenarios, and security requirements in place. We conclude
that a re-seeding mechanism should be considered as optional function of a CSPRNG API.
This recommendation applies to IoT environments that require modular software in order to
adapt to the heterogeneity of hardware platforms of varying resources and diverse deployments
in probably (physically) harsh environments. These considerations, however, are not limited to
resource-constrained embedded devices, but apply to regular computers as well.

9.2.4 System Components for Generating Randomness

Random numbers can be produced by hardware or software components. Combinations, in
which assisting hardware improves functionality or performance of a software generator, likewise
exist. Figure 9.1 presents an overview of different random sources that are commonly available
on IoT devices. The access to the different sources is unified via a “North Bound Random
Access API”, which is commonly provided by the random subsystem of an OS. It is noteworthy,
though, that these classifications also apply to ultra-constrained devices which cannot host an
operating system. Such bare metal deployments may replace the random access API dedicated
driver or PRNG calls.
We distinguish between (i) unseeded generators, (ii) seeded pseudo-random number genera-

tors, and (iii) hybrid solutions. (i) includes generators of truly random numbers. Many modern
microcontrollers provide TRNGs that consist of an internal entropy source and a post-processing
hardware circuit that compresses the samples from that source. These sources can feed into the
random access API directly, even though it is debatable whether TRNGs should be deployed
as an alternative to PRNGs (see Section 9.8). Alternatively, external noise from sources such
as thermal noise of a resistor, jitter in free running oscillators, or uninitialized memory cells

127

Chapter 9 Random Number Generation in the Low-end IoT

gets sampled. As noisy data provides only few bits of entropy per sample, it needs a separate
conditioning, which can be implemented in hardware [319] or software.
The output of TRNGs or (conditioned) noise sources is best used to create start values

for seeded PRNGs. (ii) Deterministic general-purpose and crypto-secure PRNGs can be im-
plemented in hardware on the microcontroller itself, or processed in software when random
generating hardware is missing. Software PRNGs can additionally be assisted by hardware ac-
celeration [196], which is available for crypto primitives on many platforms. (iii) Hybrid devices
contain an entropy source and pseudo-random number generator in hardware, which utilizes the
entropy for seeding. This class of devices is composed of dedicated crypto-chips that connect to
the main processor using standard communication buses such as I2C, SPI, or UART.

9.3 Randomness in IoT Operating Systems

9.3.1 General Requirements

Many system services require access to random input, and it is common to expect a random
function at the operating system level. Use cases and applications of random numbers differ
largely, though, as we discussed in Section 9.2. General purpose PRNGs are needed to generate
random events that follow a uniform statistical distribution and are often consumed at high
frequencies. Security related contexts raise the additional requirement of keeping random output
unpredictable, why crypto-secure generators need to maximize entropy with the help of truly
random input. Such input is on the one hand difficult to obtain at often high cost, on the other
hand truly random sources frequently harvest from system hardware, which is best accessed via
the hardware abstraction of an operating system.
Following this perspective, both general purpose and crypto-secure random number generation

should be part of an operating system, but are at the same time only versatile if they meet the
diverging requirements well. We argue that the different use cases and requirements of PRNGs
and CSPRNGs demand for independent methods and APIs. Isolated random functions cannot
only be specifically optimized, but also prevent side channel attacks against the CSPRNG via
the general purpose PRNG. Furthermore, separate APIs force developers to decide for their
individual use cases.

9.3.2 General Purpose PRNGs

Use cases for general purpose PRNGs require statistically well distributed random sequences.
First, single applications should receive a different value out of the whole number range on
each request to avoid repeating patterns. Second, multiple applications that request from a
single PRNG instance should experience the same properties, even if they access only every
k-th PRNG output. This requires a decent empirical distribution in higher dimensions, which is
often a challenge. Security related applications should not use this generator class as it may be

128

9.3 Randomness in IoT Operating Systems

too easy to predict. Furthermore, most go-to PRNGs are invertible which allows to reconstruct
previous sequences. Seeds must be generated differently across devices to prevent a uniform
collective behavior—a decent entropy is desired to provide varying sequences between system
restarts. Seeds may be accessed via the hardware abstraction of the operating system, but
should be configurable to ease debugging.

General purpose PRNGs should be applicable even on very constrained devices and act fru-
gally while requested frequently. Efficiency metrics involve processing time, as well as energy
and memory consumption. The latter can benefit from restricting state to a single PRNG
instance. A central instantiation logic can be managed by the operating system.

9.3.3 Crypto-secure PRNGs

Core Requirements. Security related use cases require crypto-secure PRNGs for sovereign
tasks such as cryptographic key generation. Delicate key material must be largely unpredictable.
A CSPRNG is expected to produce sequences that are indistinguishable from truly random
numbers, as discussed in Section 9.2.2. It is advisable to rely on approved CSPRNG mechanisms
that have been verified by trusted authorities and an operating system or a public library
can provide access to implementations that are tested within this environment. A CSPRNG
internally consists of cryptographic functions [40] to achieve backtracking resistance and the
maximum achievable prediction resistance (security strength) is typically given by that function,
though, the strength of the whole generator should be specified by the designer of the approved
algorithm. In order to assure a predefined security strength, a high quality seed must provide
truly random data with a corresponding amount of entropy during instantiation of the CSPRNG.

In contrast to general purpose PRNGs, CSPRNGs undertake tasks like key generation, which
is typically involved less frequently, but also continuous encryption within stream ciphers, thus,
performance characteristics of CSPRNGs are important, but secondary in comparison to its
security qualifications. Still, computation of cryptographic primitives and entropy conditioning
can be costly [91], in particular on constrained embedded devices. The OS CSPRNG and its seed
generator must comply with the constraints of the target hardware and leave sufficient resources
to deploy a real-world firmware that includes a crypto-stack and the desired application logic.
The operating system should support this in an optimized, configurable environment.

Minimal Standards. Crypto-secure PRNGs rely on true random seeds that meet a security
strength which determines the required amount of entropy in the seed. At least one entropy
source must be in place that meets the requirements. The operating system should provide an
entropy interface, which grants access to true random values generated from varying sources,
dependent on underlying hardware capabilities. Externally connected devices may provide true
random numbers as well, but typically require a device driver. An operating system can simplify
access to relevant components by its hardware abstraction layer, and should additionally allow
for code re-use between different hardware platforms. Configurability requires a highly modular

129

Chapter 9 Random Number Generation in the Low-end IoT

architecture. In the context of IoT software, configuration is commonly done during compile
time to keep firmware sizes small.
Tests are mandatory for generating robust and secure random numbers [40, 373]. Both the

pseudo-random algorithm and the seeding entropy source must be tested, whereas testing proce-
dures can be separated into a priori and live tests during deployment. Due to device constraints,
a priori tests at development time should be favored to save resources on running IoT nodes.
Thereby, bug free execution of the deterministic CSPRNG must be verified by comparing output
sequences against ground truth. Further, seed sources rely on physical processes and should be
evaluated within deployment conditions, because their behavior can be affected by environmen-
tal properties.

Optional Features. Entropy sources are essential for seed creation, but the properties of
underlying physical processes are diverse. Environmental changes as well as attackers with
device access can affect their reliability (see Section 9.1). Involving multiple entropy sources
during seed creation increases seed resilience. Naturally, a physical process does not provide full
entropy, but conditioning is sometimes implemented already in hardware on the microcontroller.
For sources with sparse entropy concentration, a compression mechanism is required. An entropy
module provided by the operating system can increase seed quality, and it should involve three
fundamental building blocks: (i) An estimate about the entropy amount per input which can
be provided by each source, (ii) an accumulation instance to involve multiple sources and keeps
track of the amount of accumulated entropy, and (iii) a compression mechanism to create high
entropy seeds of limited length to meet security requirement of the CSPRNG. Steps (ii) and (iii)
can be combined in one function. The entropy API should provide an interface to pass security
requirements, and it should also be able to report errors back to the CSPRNG.
Re-seeding a CSPRNG is sometimes desired to recover from potential state compromise (see

Section 9.2.3). We argue that re-seeding should be kept optional because seed generation may
drain a significant amount of energy on every re-seed cycle. Enabling and disabling that feature
should be transparent to the application that uses the CSPRNG.
Cryptographic protocols for different purposes require to operate on individual instantiations

of a CSPRNG. The internal state is a vulnerable asset and facilitates forward- and backward
tracking. Hence, it should be isolated, to prevent tampering through backdoors as well as side
channel information leakage. This affects the operating system in two ways. First, seeding
needs to be done separately for each instance—in contrast to the unified approach suitable for
general purpose PRNGs. Second, every instantiation needs its own context to be handled either
internally within the boundaries of the CSPRNG or externally, by dedicating context allocation
to the application. In both ways, the number of contexts should be kept low in an IoT OS,
because the CSPRNG state can consume much memory. It is worth noting that IoT firmware
typically avoids dynamic memory allocation, why the number of CSPRNG instantiations should
be explicitly defined during development.
The state of a generator needs protection and an operating system should involve hardware

130

9.3 Randomness in IoT Operating Systems

security features, if available. In more detail, secure memory technologies can provide tamper
detection along with authorized access and recent low-power platforms even provide trusted
executions environments (e.g., ARM TrustZone [25]) for protected code execution. CSPRNG
state, seeds, and entropy values should be uninstantiated after use to avoid leakage via side
channels. This is of particular importance when secure memory is absent. Memory erasure is
commonly done by setting buffers to zero, though, instructions to “zeroize” a buffer are often
removed by compiler optimizations, which leaves sensitive information in memory. Known
solutions involve explicit_bzero implemented by the GNU C Library, as well as service functions
in cryptographic libraries such as libsodium [239] or Monocypher [271].

Optimizing Parameters. Modern off-the-shelf IoT devices provide on-chip TRNG hard-
ware, which is commonly used for seeding. In addition, accelerating hardware units are often
in place and capable of processing cryptographic primitives such as ciphers and hashes. While
most CSPRNG implementations base on a pure software solution of their internal cryptographic
functions, a transparent substitution by hardware implementations promises performance en-
hancements in terms of speed and energy. The operating system can provide peripheral drivers
to control hardware accelerators and a transparent reconfiguration that accounts for hardware
capabilities. It should automatically select the most performant solution.
Certain IoT boards provide an external hardware accelerator mounted on the same PCB

as the microcontroller, which is typically connected by a peripheral bus. Such devices can
transparently act as (i) a cryptographic accelerator or (ii) an alternate CSPRNG, which off-load
the main processor while enabling cryptographic applications on limited devices that cannot run
CSPRNG software.

9.3.4 IoT Operating Systems

Currently, the most prominent open source IoT operating systems are Contiki-NG, a successor
of the original Contiki operating system [94], mbed OS [23], FreeRTOS [16], zephyr [412],
Mynewt [21], and RIOT [34], all of which implement methods to gather random numbers. In
the following, we give a brief overview about current solutions in different OSs and summarize
the results in Table 9.1. We further focus on RIOT, which serves as the basis for our experiments.
Contiki-NG provides support for a few ARM Cortex-M based microcontrollers, and MSP430

platforms, although its predecessor Contiki provided support for a wider range of architectures.
Contiki-NG implements a sparse random subsystem that does not distinguish between general
purpose and cryptographically secure PRNGs. The random API is implemented as a wrapper
around peripheral TRNG drivers of a platform. The random interface provides a seed function
that limits the input size to an unsigned short integer, but it is left unimplemented in most
cases, because the TRNG does not require a seed. In case of missing hardware random number
support, the random module falls back to the C library function rand. An entropy module for
seed generation is missing.

131

Chapter 9 Random Number Generation in the Low-end IoT

Table 9.1: Overview of common open-source IoT operating systems and their support for ran-
domness.

Operating System

Contiki-NG mbed OS FreeRTOS Zephyr Mynewt RIOT

PRNG
General-
purpose

randa

(C Library)
Xoroshiro128+ randa

(C Library)
Xoroshiro128+ randa

(C Library)
Mers. Twist.
Tiny Mers. Twist.
Xorshift(32)
Park-Miller LCG
Knuth LCG

Crypto-
purpose

8 HMAC DRBG
CTR DRBG

HMAC DRBG
CTR DRBG
Hash DRBG

HMAC DRBG
CTR DRBG

HMAC DRBG
CTR DRBG

HMAC DRBG
CTR DRBG
Hash DRBG
SHA256PRNG
Fortuna

Entropy
Sources TRNG TRNG TRNG

Timerb
TRNG
Timer/
Counterb

TRNG TRNG
SRAM PUF
CPUIDb

Accumul. 8 8 3 8 8 (3)

Additional features
Ext. state 8 3 3c 3c 3c 3c

Err. interf. 8 3 3c 3c 3c 3c

HW accel. 8 3 8 8 8 8

arand maps to an LCG–type PRNG in most libraries.
bPredictable source that varies output between calls or devices.
cFunction or state is not exposed via an OS API.

mbed OS is the ARM operating system for processors of its Cortex-M family. mbed imple-
ments one general purpose PRNG with an API interface to re-seed the internal state. ARM
maintains the SSL library mbed TLS [24] next to the operating system, which generates secure
random numbers. mbed TLS is portable and used in other OSs. The CSPRNG implementa-
tions include external state handling, re-seeding procedures, and a collection of self tests. mbed
TLS implements a dedicated module for entropy gathering, which (i) is capable of accumulating
multiple entropy sources, (ii) provides an interface to add personal entropy sources, (iii) can be
used in a blocking and non-blocking fashion until certain entropy requirements are met, (iv)
distinguishes between weak and strong entropy requirements, and (v) can be compiled with
different complexity levels.
FreeRTOS is a microcontroller OS which is positioned to meet hard real-time requirements.

FreeRTOS provides support for a wide range of platforms, including ARM Cortex-A/M devices,

132

9.4 Statistical Test Suites for Random Numbers

RISC-V, and MSP430. The operating system uses the C library function rand() for general-
purpose random numbers. The external mbed TLS and wolfCrypt [402] security libraries are
ported to FreeRTOS, which enable three different crypto-purpose generators. A common ran-
dom API is missing on the OS level. Self tests, as well as health tests are inherited from the
respective library.

Zephyr supports a large variety of ARM Cortex-M based 32-bit IoT platforms as well as x86,
ESP32, ARC, NIOS II and RISC-V based boards. The operating system implements a PRNG
for general purposes and the external mbed TLS and TinyCrypt [177] libraries are ported to
zephyr, which include crypto-purpose generators. A collection of tests inherited from mbed TLS
and TinyCrypt can be executed on the operating system, as well as selected benchmarks.

Mynewt is an operating system that supports about 40 boards, most of which with an ARM
Cortex-M 32-bit microprocessor, but some also involve MIPS or RISC-V architectures. Similar
to Contiki-NG, it provides access to a TRNG or general purpose random numbers via the
C library function rand(). Both mbed TLS and TinyCrypt are available for cryptographically
secure random number generation, but they are not accessible through an OS level random API.
Selftests from mbed TLS can be executed within the operating system, whereas TinyCrypt tests
are not included.

RIOT currently supports more than 200 boards involving 30 different microcontroller families
that range from 8-bit AVR devices with sparse peripherals over 16-bit MSP430 devices to 32-bit
processors of the ARM Cortex-M family or ESP32 with various MCU peripherals including
dedicated randomness generation hardware circuits, as well as ARM7, MIPS, and RISC-V
based microcontrollers. RIOT implements a collection of PRNGs including ultra-lightweight
general purpose algorithms, as well as crypto-secure generators. Among other embedded crypto
libraries, wolfCrypt, TinyCrypt, and relic [22] run on RIOT, but external CSPRNGs are not
yet integrated into the random subsystem. A random API unifies access to pseudo-random
numbers, but does not differentiate between general purpose and crypto-secure PRNGs. A test
application with user interaction via the shell allows to evaluate vitality and basic performance
metrics of a generator.

9.4 Statistical Test Suites for Random Numbers

The statistical quality of random sequences can be empirically analyzed with many methods
and tools that assess random properties. The NIST Statistical Test Suite (STS) [43] and the
DIEHARDER Random Number Test Suite [61] combine series of such tests. They are estab-
lished as standard tools and openly available. Both suites base on hypothesis tests that analyse
the input against the null hypothesis of perfect randomness. This hypothesis implies that fully
deterministic pseudo-random sequences of ideal random properties cannot be distinguished from
truly random values. Conversely, even ideal random sources may produce sequences that appear

133

Chapter 9 Random Number Generation in the Low-end IoT

to have non-random properties, which occasionally leads to failures of statistical tests—usually
referred to as type-1 error.

9.4.1 NIST Statistical Test Suite

The NIST STS consists of 15 different test cases, some of which are executed repeatedly, leading
to a number of 188 statistics that are processed on each run. With respect to the input size
recommendation for each test [43], we apply the test suite version sts-2.1.2 to 100Mbit generator
output. Every test is repeated 100 times with 1Mbit test sequences. A single test returns a
probability value (p-value) and it is expected to accept the hypothesis of perfect randomness
with a confidence of 1 − α, if the value lies above a significance level of α = 0.01. Otherwise,
the hypothesis of randomness is rejected and the result is interpreted as failure. Each test is
applied repeatedly which results in a vector of p-values. The proportion of passed sequences
for one test is determined using the confidence interval. As a next step, the distribution of
p−values for each test is analyzed using a chi-squared test (χ2)-test, which outputs a second
order probability value (p2-value). The test suite defines a significance level of α2 = 0.0001 for
testing this distribution.

9.4.2 DIEHARDER Random Number Test Suite

The DIEHARDER test suite subsumes 31 tests to analyse statistics of random input streams.
These tests are executed with varying parameters, thus, a full run calculates a total of 122
test statistics. We apply the DIEHARDER test suite version 3.31.1 with default options to
streams of raw binary outputs. In default mode, the number of repetitions of a specific test
varies between psamples in [1, 1000] and the sequence length is variable between tsamples in
[100, 65000000] which demands for much more random input data in comparison to the NIST
STS. Repeated executions deliver multiple probability values (p-values) for each test, similar to
the NIST tests. A Kolmogorov-Smirnov test (KS-test) is applied to test deviations from the
expected distribution, which results in a second order probability value (p2-value).

In DIEHARDER, a test passes if its p2-value lies above a significance level of α2 = 0.000001,
below (1 − α2), and it fails otherwise. The result is considered as weak if p2-value lies above
αw = 0.005 and below (1−αw). It is again worth noting that even truly random numbers might
generate weak results occasionally.

9.4.3 Other Test Suites

Donald E. Knuth was one of the pioneers who described randomness tests in early editions of
The Art of Computer Programming [205] and his tests are part of most established test suites
today.
NIST released the first random number tests in 1994 within the FIPS 140-1 [280] standard,

which specified four statistical tests. In 2001, these tests were updated in FIPS 140-2 [281] with

134

9.5 Hardware Generated Random Numbers

a narrowing of the test criteria. Both documents served as predecessors for the NIST Statistical
Test Suite (STS) released in 2010, which includes all 140 FIPS test cases as a subset. The
Diehard test suite was published in 1995 by Marsaglia [253], who had been active in this field
since years. The test suite implements a collection of 18 test cases, which are a central part of
the DIEHARDER test environment, which has been developed since 2003. Both NIST STS and
DIEHARDER are well known and accepted as standard tools for statistical testing of random
number generators [225, 359].
The TestU01 library [225, 226] was introduced in 2007. It includes the majority of tests from

NIST STS, Diehard, as well as additional tests proposed in literature. Its purpose is to provide
an “extensive set of software tools for statistical testing of RNGs.” [225], which led to a larger
variety of tests, larger sample sizes and an extended test parametrization in comparison to the
other suites. At the core, the environment implements hypothesis tests similar to NIST STS
and DIEHARDER, but instead of rejecting a hypothesis, it simply reports p-values outside the
interval [0.001, 0.9990]. TestU01 can be executed on four complexity levels, of which the most
comprehensive one (BigCrush) involves up to 160 test statistics. Generation of the required
amount of random data can take a long time, in particular when generated on microcontrollers
and transmitted via the UART to feed the library. This drastically increases time requirements
of the evaluation process.
A range of other test environments are less prominent in the literature. The SPRNG (Scalable

Parallel Random Number Generators) [256] library is a tool to optimize distributed processing
for parallel random number generation and it additionally contributes a few standard tests
already covered by NIST STS and DIEHARDER. The ENT test program [388] defines a small-
scale environment that executes only five statistical tests. It relies on a file based data input,
which is not practical when huge datasets have to be analyzed. The CryptRndTest package [87]
analyses cryptographic random numbers, focusing on high precision floating-point numbers with
lengths larger than 64 bits. The latter is uncommon in the IoT.

9.5 Hardware Generated Random Numbers

Common off-the-shelf IoT platforms sometimes provide hardware generated random numbers.
While some platforms implement “true random” circuits for entropy gathering on the same chip
as the CPU, others implement pseudo-random generators in hardware. Still, many microcon-
trollers do not offer random generating hardware at all. In these cases, external components
such as transceivers or cryptographic co-processors may be connected to a bus and contribute
true random numbers. As an alternative, advanced mechanisms can extract random physical
properties from manufacturing variations of the microcontroller itself. In this section, we analyse
typical IoT hardware platforms from different manufacturers, CPU architectures, and feature
sets. Results are summarized in Table 9.2. We run RIOT-2020.01 as operating system with a
collection of custom measurement programs.

135

Chapter 9 Random Number Generation in the Low-end IoT

Table 9.2: Overview of the typical on- and off-chip IoT hardware with their random features
that we analyze. (Abbreviations: RO=Ring Oscillator, LFSR=Linear Feedback Shift
Register, RF=Radio Frequency).

Board Chip Entropy Source Post-processing Error Handling

ST NUCLEO-F410RB STM32F4 3 Free-running ROs
Bias Correction
+ LFSR

Health Tests

Phytec IoT Kit 2 MKW22D 2 Free-running ROs LFSR Status Indication
Nordic nRF52840 DK nRF52840 Thermal Noise Bias Correction Status Indication
Zolertia RE-Mote CC2538 RF Noise (seed only) 16-Bit HWPRNG –
Atmel SAM R21 XPRO SAMD21 – – –
Arduino Mega 2560 MEGA2560 – – –

Openlabs Radio Breakout AT86RF233 RF Noise – –
Microchip
CryptoAuth XPRO-B

ATECC(5|6)08A Quantum Mechanical
Circuit Variations

FIPS HWCSPRNG Health Tests
(ATECC608A)

Both the STM32F4 [354] and MKW22D [288] chips supply a TRNG that gathers entropy
from sampling multiple free running and jittering oscillators, followed by a post processor based
on a linear shift register that ensures statistically well distributed numbers. They also cover
basic runtime health tests implemented in hardware, as proposed by NIST [373]. Although the
data sheets claim to pass the NIST statistical test suite, the manufacturer NXP recommends
against its direct use for cryptographic applications in place of an approved CSPRNG:

“It is important to note there is no known cryptographic proof showing this is a
secure method of generating random data. In fact, there may be an attack against this
random number generator if its output is used directly in a cryptographic application.
The attack is based on the linearity of the internal shift registers. Therefore, it is
highly recommended that this random data produced by this module be used as an
entropy source to provide an input seed to a NIST-approved pseudo-random-number
generator based on DES or SHA-1.”

NXP [288]

The nRF52840 by Nordic [287] implements a TRNG based on sampled thermal noise followed
by an optional post processor that reduces bias. Even though the reference manual describes
the mechanism as suitable for cryptographic purposes, our results indicate a slightly different
picture without the post processor, as we will show later in this section.
The Texas Instruments CC2538 microcontroller [362] implements a PRNG in hardware (HW-

PRNG), which internally consists of a 16-bit shift register. Hence, its period is limited to 215,
in contrast to TRNG peripherals of the previous microcontrollers The HWPRNG is seeded by
noise samples on the receive path of the on-chip radio. A similar approach is established on the
standalone AT86RF233 transceiver module [31], which produces all random values by observing
noise from the radio.

136

9.5 Hardware Generated Random Numbers

SRAM / Entropy

 ROM / Bootloader
Entropy

Extraction
Hash

Function Kernel Init
Modules Init

(PRNG)
IoT

Application

seed

Seed Generation Regular System Operation

Figure 9.2: PUF SRAM random seeder integration in RIOT.

The ATECC508A [261] is a feature-rich cryptographic co-processor that runs a NIST-approved
CSPRNG (HWCSPRNG) combined with an internal seed which is inaccessible from the outside.
Thus, we consider it as hybrid device (cf., Section 9.2.4). The seed is automatically updated on
every power or sleep cycle. It can also be updated on demand. The seed is generated internally
based on entropy extraction from quantum mechanical variations of the circuitry:

“In the crypto devices, the random seed comes from variations at a quantum scale
within the device. The inherent quantum mechanical entropy of the circuitry within
the device provides a truly random seed.” Atmel [30]

Table 9.2 also lists the SAMD21 and the MEGA2560 microcontrollers by Atmel as examples
of the numerous off-the-shelf devices, which completely lack hardware based random sources.
This class of devices heavily benefits from external co-processors as well as internally generated
entropy from physical resources that can seed an approved software PRNG.

9.5.1 SRAM PUF Seeder

Physically unclonable functions (PUFs) are one solution to generate unpredictable numbers even
without dedicated electronic circuits. They extract unique output from individual hardware
properties. Here, we focus on SRAM PUFs because this memory technology is present on
almost all available microcontrollers. Transistor variations of memory cells lead to varying
states after device power-on. The startup state of multiple memory blocks form a device-unique
pattern plus additional noise, which can be extracted, compressed and used as PRNG seed
values [376, 326, 210, 194].

9.5.1.1 OS Integration

Seed Generation. The mechanism of a PUF-based seeder is visualized in Figure 9.2 for the

example of RIOT. It operates during system startup prior to OS kernel initialization and reads
out uninitialized SRAM cells. A PUF measurement is compressed by the lightweight DEK hash
to build a high entropy 32 bit number that seeds a PRNG during its instantiation, afterwards in

137

Chapter 9 Random Number Generation in the Low-end IoT

Table 9.3: Min. Entropy and Hamming
Weight between 50 reads of 1 kB
SRAM on five SAMD21 MCUs
(A–E) at ambient temperature.

Device

A B C D E

(i) Entropy [%] 4.2 5.5 5.3 4.7 5.5
(ii) Weight [%] 50.7 49.5 51.3 49.8 53.1

Table 9.4: Fractional Hamming Distance
from 50 reads of 1 kB SRAM be-
tween five SAMD21 MCUs at
ambient temperature.

Device Pair

A–B A–C A–D A–E

(iii) Distance [%] 49.2 49.8 50.1 50.4

the OS startup sequence. It is noteworthy that the lightweight DEK hash is not a cryptographic
function. Furthermore, 32 bit entropy is not sufficient for cryptographic use, but the mechanism
is extensible to cryptographic requirements.

Re-seed Power Cycle. Only startup state of uninitialized memory after re-powering provides
high entropy values. Either a power-off cycle or a low-power cycle without memory retention is
required to generate a new seed. Among others, the required minimum power-off time depends
on ambient conditions, age and properties of the power source. In our experiments, an off-
time of 1 sec. has proven suitable for all platforms. Schrijen et al. [332] analyze the impact of
environmental and experimental conditions on the SRAM PUF properties in greater detail.
Nevertheless, soft resets or low-power cycles with memory retention can occur and trigger

the startup routine that should not perform a new memory measurement in the absence of
a power-off cycle. For a solution, a simple soft-reset detection mechanism writes a randomly
chosen marker at a known and reserved address in the SRAM. During the subsequent startup,
this memory address is inspected, and a new memory measurement is only performed if the
marker has disappeared. Otherwise, a soft-reset counter is incremented, added to the previously
generated seed and the result is hashed again for creating a new seed value, which is then stored
for the next cycle. The last seed, as well as the soft reset counter could be stored in protected
memory for crypto-safe operations.

9.5.1.2 Evaluation of the SRAM PUF Seeder

Next, we analyse SRAM properties on common off-the-shelf microcontrollers and present results
for the SAMD21 in Tables 9.3 and 9.4.

Memory Properties. As a first step, we inspect the random properties of the memory in
detail. We analyse intra- and inter-device variations between multiple PUF responses at ambient
conditions. Therefore, we calculate (i) the minimum entropy as a measure of randomness and
(ii) the hamming weight to determine bias between multiple startups of one device as well as

138

9.5 Hardware Generated Random Numbers

102 103
SRAM length [Bytes]

5

10

15

20

25

30

En
tro

py
 [B

it]

MEGA2560
SAMD21
CC2538
STM32F4

(a) Minimum Entropy

0 20 40 60 80 100
Frac. Hamming Distance [%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

MEGA2560
p=0.951
SAMD21
p=0.998
CC2538
p=0.998
STM32F4
p=0.998

(, 2)
=0.52
2=0.014

(b) Distributions of Hamming Distances

Figure 9.3: PUF SRAM seed evaluations. Min. Entropy for varying input lengths (left) and
distributions of fractional Hamming Distances (right).

(iii) the fractional hamming distance between different device responses to quantify inter-device
uniqueness. Results for (i) and (ii) indicate existence of a relative min. entropy around 5 %
and unbiased patterns. A relative fractional distance of approximately 50 % in (iii) indicates
uniqueness of device responses.

Seed Properties. For determining the proper size of memory used for seed generation we
evaluate the minimum seed entropy for varying input lengths and different platforms as visual-
ized in Figure 9.3 (left). All measurements converge to approximately 31-Bit entropy with 1 kB
SRAM.
Next, we test the distribution of hamming distances between multiple generated seeds on

every device against normal distribution, using a simple KS-test. The probability function in
Figure 9.3 indicates that seed distances on all devices follow a normal distribution with an
average expectation value of 0,52 which is slightly biased by the influence of the MEGA2560
platform. Still, all four controllers pass the test with probability values greater than 0,95, which
allows to accept that they are unique and uncorrelated.

9.5.2 Statistical Analysis with NIST STS

We now evaluate the statistical properties of all hardware based random sources from Table 9.2
by applying the NIST test suite. Following the input size recommendation for each test [43],
we test 100Mbit of random data. Every test is repeated 100 times, which results in 1Mbit test
sequences. Random integers are generated on the constrained device and fed into the evaluation
tool over UART. It is worth noting that already the serial transmission of the data takes at least
45min. with a baud rate of 115200. This added to the randomness generation time which led
to experiment times ranging from one to over two hours per run. The experiment was executed
under office conditions at ambient temperature.
Results of the χ2-test on the distribution of p-values are shown in Figure 9.4. Certain tests

produce multiple p2-values, and we show the average in that case. We display passing tests

139

Chapter 9 Random Number Generation in the Low-end IoT

with gray bars, and we highlight failed tests with hatched red bars or red arrows in case that
the p2-value is too small to be displayed. The test suite additionally calculates a proportion
of passed test runs and evaluates its significance. Passing tests in Figure 9.4 have a significant
proportion within the confidence interval calculated from α = 0.01.

10−5 10−4 10−3 10−2 10−1 100

Frequency
Block Frequency

Cumulative Sums
Runs

Longest Run
Rank

FFT
Non Overlapping Template

Overlapping Template
Universal

Approximate Entropy
Random Excursions

Random Excursions Variant
Serial

Linear Complexity
STM32F4 + PUF SRAM

10−5 10−4 10−3 10−2 10−1 100

STM32F4 + ATECC508A

10−5 10−4 10−3 10−2 10−1 100

STM32F4 + AR86233RF

10−5 10−4 10−3 10−2 10−1 100

STM32F4 + TRNG

10−5 10−4 10−3 10−2 10−1 100

Frequency
Block Frequency

Cumulative Sums
Runs

Longest Run
Rank

FFT
Non Overlapping Template

Overlapping Template
Universal

Approximate Entropy
Random Excursions

Random Excursions Variant
Serial

Linear Complexity
MKW22D

10−5 10−4 10−3 10−2 10−1 100

nRF52840 w/ bias correction

10−5 10−4 10−3 10−2 10−1 100

nRF52840 w/o bias correction

10−5 10−4 10−3 10−2 10−1 100

CC2538

Test Passed Test failed, p2 < 10−4 Test failed, p2 < 10−6

p2-value

Figure 9.4: Hardware Generated Random Numbers: χ2-test results on the distribution of prob-
ability values from 15 NIST STS tests.

All generators but the nRF52840 (w/o bias correction) and the CC2538 show good statistical
properties and pass the test suite. The STM32F4 indicates one failure for the Block Frequency
test which analyses the proportion of ones in blocks of 128 bit length. A repeated experiment
led to similar results, so we consider this behavior a weakness of that TRNG.
The nRF52840 provides an optional bias correction that is applied to the sampled noise. With

enabled correction the nRF52840 (w/ bias correction) passes all statistical tests without deficits.
If the post-processor is disabled to increase performance, it fails several of the test statistics
as visible in Figure 9.4. As we will see later, the bias correction requires notably more system
resources. We repeated the statistical experiment with and without bias correction multiple
times with similar results.
The CC2538 consists of a simple 16-bit linear shift register HWPRNG that (i) shortens the

generator period (see Section 9.2.3) and (ii) can be attacked with sparse processing resources
due to the linearity of the internal shift registers. Correspondingly, it fails in most of the tests.

140

9.5 Hardware Generated Random Numbers

Table 9.5: Hardware Generated Random Numbers: Throughput and processing time per integer
(#).

Randomness
on STM32F4

Rate
[kB/s]

Avg. time
per # [µs]

σ time
per # [µs]

Other
Platforms

Rate
[kB/s]

Avg. time
per # [µs]

σ time
per # [µs]

STM32F4 MKW22D 316 33.08 0.08
+ PUF SRAM – 296.46a 0.16 nRF52840
+ ATECC508A 3 11609.69b 889.96 w/o correct. 15 246.04 2.25
+ AT86RF233 25 150.48 0.08 w/ correct. 6 600.28 57.03
+ TRNG 1994 1.95 0.04 CC2538 503 6.25 0.37

aDoes not include time for power-off cycle bATECC508A always produces 32Byte blocks

9.5.3 Performance Analysis

Throughput. We measure the throughput and generation time of different random sources on
the STM32F4 platform as well as the internal generators of the other devices listed in Table 9.2.
Our test measures the throughput as a single-threaded application that generates streams of
pseudo-random numbers continuously, and we count the number of values produced within an
interval of 10 seconds. In addition, we measure the time of a single (blocking) function call that
returns a random integer with an oscilloscope by toggling an I/O pin via direct register access
on the test device. In this way the measurement overhead remains negligible. The ATECC508A
crypto-chip always processes 32Bytes per request even if only integer values are requested. We
display rates, average processing times per random integer, and their standard deviation in
Table 9.5.

Clearly, the PUF based seeder as well as the externally connected devices perform two up to
four orders of magnitudes slower in comparison to the on-chip generator of the STM32F4 that
returns random values via direct register access. It is important to note that our measurements
for the SRAM based seeder only include processing times of the generator itself that consists of
the reset detection, memory readout, and hashing to create a final random value. In practice,
the required power-off cycle as well as the OS startup are added, which can take tens to hundreds
of milliseconds and is heavily dependent on the OS configuration. However, in the all-day use of
an IoT-device, low power cycles occur repeatedly. The cryptographic co-processor ATECC508A
is notably the slowest, but it is the only candidate that runs a hardware based cryptographically
secure random number generator. Its performance strongly relates to the mode of its device
driver [262]. In our measurements, we use the polling mode, which queries the device for the
completed execution 4–7 times before random data is ready. Alternatively, in the non-polling
mode, the driver waits a maximum execution time for each command, after which the data

141

Chapter 9 Random Number Generation in the Low-end IoT

is ready to be fetched from the co-processor. This potentially increases execution times but
leaves room for parallel processes to be scheduled or low-power sleeping. Furthermore, the
ATECC508A as well as the AT86RF233 transceiver require additional I2C/SPI transmissions
in comparison to the on-chip solutions. Both the driver overhead and the transport of random
data are included in our measurements. It is noteworthy, though, that a real-world deployment
of the ATECC508A would process random data internally, which relieves transport over the
I/O interface and reduces computation demands of software implementations in a crypto stack.

Among different MCUs on-chip generators, the STM32F4 performs fastest. Although its CPU
runs with the highest frequency (96MHz), the processing time is not directly proportional to
the CPU speed. In comparison, the MKW22D implements a similar TRNG and runs at half
the CPU speed (48MHz), but takes more than ten times longer to produce a random integer
value. The CC2538 unsurprisingly operates comparably fast as it only operates a simple shift
register without sampling noise. Both configurations of the nRF52840 generator indicate low
throughput of 6–15 kB/s in comparison to the other generators, which presumably relates to
the internal sampling procedure. The bias correction leads to statistically good properties of
the output sequences, but it reduces computational speed by a factor of 2.5.

Energy Consumption. To evaluate the energy consumption of each generator, we measure
the current consumption of all hardware based approaches with a digital sampling multimeter
(Keithley DMM7510 7 1/2) at 1MS/s, and we drive the board from an external regulated voltage
supply. All development boards provide a measurement header to probe the current that flows to
the microcontroller. For the externally connected devices (i.e., ATECC508A and AT86RF233),
we additionally measure the current to the power supply pin. Our energy measurements include
driver overhead as well as the transmission over I2C/SPI. Measurements for the SRAM seeder
include reset detection, memory readout, and hashing, referring to our throughput evaluation.
Measurements for on-chip generators include associated testing overheads that are always exe-
cuted, if available on a hardware platform. Some hardware based random generators execute
at the same scale as the sampling resolution, thus, we measure generation of 1000 integers per
run in that case and normalize the cumulated values afterwards. We repeat every experiment
1000 times. In setups that involve external hardware, we measure the MCU and the external
device separately. If applicable, we separate microcontroller and external device consumption
in our graphs.

Figure 9.5 displays our test results on the energy consumption. The radio based approach as
well as the SRAM based seeder consume one order of magnitude more energy than the on-chip
generated numbers, though, both mechanisms miss an online health testing. The ATECC508A
clearly has the highest energy footprint, which is strongly related to the device driver overhead.
As depicted in Table 9.5 the co-processor requires more than 11ms to process the next output,
during which the MCU is polling the co-processors status. While co-processing, though, the
MCU is free to process other data or to go to a deeper sleep mode for energy saving. As
depicted in Figure 9.5, the microcontroller consumed the larger portion of energy up to 190µJ.

142

9.6 Software Generated Pseudo-random Numbers

250

300
Microcontroller
External Device

ATECC508A AT86RF233 PUF SRAM0
20
40
60
80

100

STM32F4 CC2538 MKW22D nRF52840
(w/o proc.)

nRF52840
(w/ proc.)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

En
er

gy
 C

on
su

m
pt

io
n

[u
J]

Figure 9.5: Hardware Generated Random Numbers: Energy consumption of external (left) and
internal on-chip generators (right).

Furthermore, the ATECC508A produces a minimum of 32 random bytes per request, thus, up
to eight integers can be fetched for the same cost. It is worth noting that continuous health
tests are also applied to random samples on the external device.
The radio based random generation is second most energy hungry after the cryptographic

co-processor. Although this approach is ten times faster, it only saves a factor of four in
energy, which is due to the higher current draw of approximately 12.5mA in receive mode of
the AT86RF233 during random bit generation. The ATECC508A on the other hand only drives
around 3mA during operation. Results for the SRAM based seed generator scale similar to the
radio based approach. It is worth noting that we only display the PUF SRAM overhead here
that comes on top of a power-off cycle. Results for on-chip generators reflect similar properties
as the processing times. The consumed energy to produce one random integer is below 3.5 uJ
on all internal on-chip generators. All devices except the CC2538 platform apply continuous
health tests in the hardware. STM32F4 is notably the most frugal competitor and reduces the
consumption per integer to less than 0.35 uJ.
The difference in energy consumption of the two nRF52840 modes attains about a factor of

2.5, which increases only slightly less than the processing times listed in Table 9.5. Still, bias
correction introduces a notable increase in processing time and thereby in energy consumption.

9.6 Software Generated Pseudo-random Numbers

Since von Neumann’s early work [384], the generic method of obtaining pseudo-random numbers
builds up on some (deterministic) function that is iteratively applied to a (random) seed and
attempts to approximate the output of uniformly distributed, independent random trials. As
of today, very many of such pseudo-random number generators exist, which comply to various
random quality and complexity requirements. From the perspective of an IoT operating system,
we are interested in two types of highly efficient, memory-strained algorithms: (i) an ultra-
lightweight general purpose PRNG, and (ii) a crypto-secure PRNG that meets the resource
constraints of class 1 IoT devices. In the following, we will introduce and analyse eight popular

143

Chapter 9 Random Number Generation in the Low-end IoT

generators—four complex generators of high quality and four lightweight candidates for general
purpose random generators in the IoT.
We apply the NIST, DIEHARDER, and the TestU01 suites to these PRNGs using RIOT as

OS platform. Our test programs run as RIOT native processes on Linux servers to speed up
experiments. Thereby, we seeded all generators identically, except for the CTR PRNG and the
NIST Hash DRBG, which impose specific requirements on their seeds.

9.6.1 Complex Generators

Fortuna. The Fortuna PRNG is considered a cryptographic random number generator
(DRG.4 [201]) and was designed to overcome the demand for entropy estimators that tend
to be complex and inaccurate [109]. Internally, the Fortuna algorithm maintains pools of en-
tropy from which a periodic re-seeding is performed. Pools are filled from different available
entropy sources, whose values are distributed among these pools. The entropy accumulation
is conducted by hashing the internal generator state and one entropy pool at a time using a
SHA-256 function. That mechanism allows generating random sequences of unlimited period,
though, it cannot overcome the requirements for proper entropy sources for seeding the gener-
ator and for updating entropy pools. Potential side effects of re-seeding have been discussed in
Section 9.2.3. The final blocks of pseudo-random output are generated by an AES-128 block
cipher in counter mode.

CTR PRNG. The CTR PRNG is a cryptographic generator (DRG.4 [201]) specified and
approved by NIST [40]. It is based on a 128 bit AES block cipher in counter mode, why it
provides 128 bit security strength. For this, the generator requires seeds of at least 128 bits
entropy. The TinyCrypt library implementation, which we use in our subsequent evaluation,
requires seeds with a minimum length of 256 bits. This is in contrast to all other implementations
presented in this section.

SHA256PRNG. The SHA256PRNG is a generator that provides cryptographically strong
random numbers (DRG.2 [201]). The original mechanism of this generator was introduced in
FIPS 186–1 [279] and analyzed by Kelsey et al. [187] and Desaj et al. [88]. Outputs are generated
by hashing the internal generator state, which is updated thereafter by a linear transformation
of the hash.
SHA256PRNG is the successor of the SHA1PRNG, which became popular as the choice of

the Java SecureRandom class. Until recently, it was considered secure [118] but got deprecated
in Android N [17]. The reasons for deprecation mainly relate to a seeding bug in Java and to
NIST deprecating the underlying SHA-1 hash function because Wang et al. [392, 353] discovered
an attack that decreased the number of brute-force tries needed to foster state collisions from
280 to 263 operations. For that reason, SHA256PRNG replaces the SHA-1 output function by
SHA-256.
The generator is forward secure up to the previous-to-last value, which can be recovered

144

9.6 Software Generated Pseudo-random Numbers

from the current generator output by inverting the state update function. SHA256PRNG is
confined to a single hash computation per block, which makes it computationally efficient. To
add full forward secrecy NIST developed a collection of improved and standardized random
bit generators [40], the deployment of which has been recommended in revisions of the FIPS
186 [283, 284] standard.
We briefly discuss results about the NIST Hash DRBG (using the SHA-256 hash) at the

side. It extends the SHA256PRNG by a cryptographic function that hashes the internal gen-
erator state to harden backtracking resistance after state compromise. This requires two hash
computations on each block. The NIST Hash DRBG also implements an approved re-seeding
mechanism to achieve unpredictability even after state compromise (DRG.4 [201]).

Mersenne Twister. The Mersenne Twister is a widely used generator, which in its default
version is known to be non-secure [259], even though crypto-secure variants have been explored
successively. Known advantages of that algorithm are a long period and comparably fast op-
erations, because the generation of pseudo-random numbers avoids multiplication and division.
Instead, it requires a large internal buffer of 624 integers.

9.6.2 Lightweight Generators

Tiny Mersenne Twister. The Tiny Mersenne Twister is a derivate of the original Mersenne
Twister that adapts to resource constraints on the price of a narrowed scope. It heavily reduces
buffer requirements, on the price of a shortened period length. The generator is rather a reduced,
memory efficient fallback solution of the full Mersenne Twister [322].

Xorshift. The Xorshift generator belongs to the family of linear-feedback shift register gen-
erators that are not cryptographically secure. It is known for its resource efficiency as it is
confined to simple XOR and shift operations. In its simplest 32 bit state generator, we refer
to it in the following. Marsaglia [254] proposed a collection of extended Xorshift PRNGs with
an increased period length and improved statistical properties. Vigna et al. analyzed and im-
proved these generators further [378, 379, 50]. We briefly discuss results about the Xorshift64*
and the Xoroshiro128+ derivatives at the side, which we integrated into RIOT for comparison.
The Xorshift64* consists of a 64 bit state and applies a constant multiplication to the output
for bit scrambling. The Xoroshiro128+ requires 128 bit state, although it only outputs 64 bit
values per cycle. In contrast to Xorshift64* it adds two consecutive state values as a nonlinear
transformation to the output.

Park-Miller “Minimal Standard”. The Minimal Standard algorithm is a linear congruential
generators (LCG) and has been known for decades [298]. Motivated by its objective to design a
lightweight generator that is confined to 32 bit arithmetic without divisions, it was criticized for
its statistical properties repeatedly [395]. The generator has a period or 231−1, and it is limited
to produce 31 pseudo-random bits during each cycle. In RIOT, however, the API presumes 32
bit random integers, thus, one integer is generated by combining two generator outputs on each

145

Chapter 9 Random Number Generation in the Low-end IoT

random request, which limits the usable period to 230− 1. LCGs are generally not designed for
cryptographic purposes.

Knuth LCG. The Knuth LCG is a widely used linear congruential generator, which is computa-
tionally lightweight and has been examined for decades. It is implemented in a range of software
projects and the source code is available in different standard libraries such as Newlib [383] or
Musl C [277]. The generator adopts a multiplier that was obtained by Knuth [205, Chapter
3.3.2, p. 108] but current implementations differ from the “MMIX” Knuth LCG in its increment.
Furthermore, it truncates the most significant bits of the 64 bit state to 32 bit output values
due to known poor statistical properties of the lower bits in modulo-2 generators [252].

9.6.3 Statistical Analysis with NIST STS

10−5 10−4 10−3 10−2 10−1 100

Frequency
Block Frequency

Cumulative Sums
Runs

Longest Run
Rank

FFT
Non Overlapping Template

Overlapping Template
Universal

Approximate Entropy
Random Excursions

Random Excursions Variant
Serial

Linear Complexity
Fortuna

10−5 10−4 10−3 10−2 10−1 100

CTR PRNG

10−5 10−4 10−3 10−2 10−1 100

SHA256PRNG

10−5 10−4 10−3 10−2 10−1 100

Mersenne Twister

10−5 10−4 10−3 10−2 10−1 100

Frequency
Block Frequency

Cumulative Sums
Runs

Longest Run
Rank

FFT
Non Overlapping Template

Overlapping Template
Universal

Approximate Entropy
Random Excursions

Random Excursions Variant
Serial

Linear Complexity
Tiny Mersenne Twister

10−5 10−4 10−3 10−2 10−1 100

Xorshift

10−5 10−4 10−3 10−2 10−1 100

Minimal Standard

10−5 10−4 10−3 10−2 10−1 100

Knuth LCG

Test Passed Test failed, p2 < 10−6

p2-value

Figure 9.6: Pseudo Random Numbers: χ2-test results on the distribution of probability values
from 15 NIST STS tests. p2-values≥ 10−4 pass the hypothesis of uniformity.

Our first statistical analysis applies the NIST STS test suite to these generators. The results
of the χ2-test are shown in Figure 9.6. Analog to Section 9.5.2, tests are only passed after a
significant proportion of repeated successful runs. That is, 96 successful results for a sample size
of 100 sequences. Test 11 and Test 12 (Random Excursions and Random Excursions Variant),
however, are not always applicable and as such they reduce the sample size internally. In our

146

9.6 Software Generated Pseudo-random Numbers

configuration, this led to proportions of sequences passing one of both tests in ranges from 53/56
to 67/71 in different PRNG measurements.

All generators except for the Xorshift pass all 15 statistical NIST tests. Xorshift flaws in the
Rank (Binary Matrix Rank) test. This test analyses linear dependencies among substrings of
a sequence. In our case, all 100 test sequences fail already the first order hypothesis test and
thus, the χ2-distributions test fails in consequence. We consider this an algorithmic weakness.
The deficit is fixed by the extensions applied to Xorshift64* and Xoroshiro128+, which pass all
tests.

The Frequency Test on the Mersenne Twister had a very small p-value on the first run (not
displayed here) and we ran the same test again with altered seed value during initialization.
This succeeded the test as displayed in Figure 9.6. We want to stress that the magnitude of a
p-value in hypothesis testing is not a causal measure of quality. This means that a low p-value
confirms to reject a null hypothesis (sequence is not random) but it does not claim how likely
it is that the alternative hypothesis is true (sequence is random). For further interpretation
of statistical tests, we refer the reader to the NIST test suite description [43] and work by
Greenland et al. [134].

9.6.4 Statistical Analysis with DIEHARDER

Next, we apply the DIEHARDER test suite to our random generator candidates. DIEHARDER
test values behave similar to the NIST STS results presented in the previous section, but pro-
cedures are more demanding and failures are more distinctive.

Results of the Kolmogorov-Smirnov test for each PRNG in RIOT are displayed in Figure 9.7.
Similar to the NIST tests, we plot average p2-values, where applicable. In the style of previous
graphs, we display passing tests with gray bars, and we highlight failed tests with hatched
red bars or red arrows in case that the p2-value is too small to be displayed. Additionally,
we mark weak results with black bars. All complex generators displayed in the first row of
Figure 9.7 (i.e., Fortuna, CTR PRNG, SHA256PRNG, and Mersenne Twister) pass all tests.
Several failures must be observed for the lightweight generators displayed in the second row of
Figure 9.7. One test returns weak results, which is expected in 1 % of the test cases due to
the uniform distribution of p-values. The DIEHARDER help page [60] recommends repeated
test executions and analysis of p-value histograms on weak results. All weak results passed a
repeated experiment run with a different seed.

Several failures must be observed for the lightweight generators displayed in the second row
of Figure 9.7 (i.e., Tiny Mersenne Twister, Xorshift, Minimal Standard, Knuth LCG). The Tiny
Mersenne Twister fails Tests OQSO (Overlapping Quadruples Sparse Occupancy Test), and the
DNA test, which both examine the distribution of overlapping substrings in a stream of random
integer values. These results indicate a systematic problem of the generator. The Xorshift
generator fails the Monobit 2 test, the 32x32 Binary Rank test, and the Count the 1s Stream

147

Chapter 9 Random Number Generation in the Low-end IoT

10−5 10−4 10−3 10−2 10−1 100
Birthdays
OPERM 5

32x32 Binary Rank
6x8 Binary Rank

Bitstream
OPSO
OQSO

DNA
Count the 1s (stream)

Count the 1s (byte)
Parking Lot

Minimum Distance (2d Circle)
Minimum Distance (3d Sphere)

Squeeze Test
Sums
Runs

Craps
Marsaglia and Tsang GCD

Monobit
Runs

Serial
Bit Distribution

Generalized Minimum Distance
Permutations
Lagged Sum

Kolmogorov-Smirnov Test
dab_bytedistrib

DCT
Fill Tree

Fill Tree 2
Monobit 2

Fortuna

10−5 10−4 10−3 10−2 10−1 100

CTR PRNG

10−5 10−4 10−3 10−2 10−1 100

SHA256PRNG

10−5 10−4 10−3 10−2 10−1 100

Mersenne Twister

10−5 10−4 10−3 10−2 10−1 100
Birthdays
OPERM 5

32x32 Binary Rank
6x8 Binary Rank

Bitstream
OPSO
OQSO

DNA
Count the 1s (stream)

Count the 1s (byte)
Parking Lot

Minimum Distance (2d Circle)
Minimum Distance (3d Sphere)

Squeeze Test
Sums
Runs

Craps
Marsaglia and Tsang GCD

Monobit
Runs

Serial
Bit Distribution

Generalized Minimum Distance
Permutations
Lagged Sum

Kolmogorov-Smirnov Test
dab_bytedistrib

DCT
Fill Tree

Fill Tree 2
Monobit 2

Tiny Mersenne Twister

10−5 10−4 10−3 10−2 10−1 100

Xorshift

10−5 10−4 10−3 10−2 10−1 100

Minimal Standard

10−5 10−4 10−3 10−2 10−1 100

Knuth LCG

Test passed Weak result Test failed, p2 > (1 − 10−6) Test failed, p2 < 10−6

p2-value

Figure 9.7: KS-test results on the distribution of probability values from 31 DIEHARDER tests.
p2-values in the significance interval (α, 1−α) with α = 10−6 pass the test. p2-values
within the interval (α2, 1− α2) with α2 = 5 · 10−3 are considered as weak.

test. The Monobit 2 is a derivate of the NIST Frequency test and measures the proportion of
zeros and ones within blocks (12-bit blocks applied here). Surprisingly, the general Monobit
test, which counts “1” bits in a long sequence of random samples (100000 samples considered
here) does not fail. Hence, the Xorshift introduces bias within smaller sub-blocks, which is
compensated over the whole sequence. Results persist after repeated experiment executions
with different seeds. Failing on the matrix rank test was expected, as the equivalent from the
NIST STS already failed in a similar configuration. The Count the 1s Stream Test examines
whether the distribution of ones in a stream of bytes matches that of uniform random bytes
(Binomial(8, 0.5)). Failures indicate that Xorshift output streams produce repeated “words”

148

9.6 Software Generated Pseudo-random Numbers

Table 9.6: Summary of test results from the “BigCrush” of the TestU01 environment.

Generator Fortuna CTR
PRNG

SHA256
PRNG

Mersenne
Twister

Tiny Mers.
Twist.

Xorshift Minimal
Standard

Knuth
LCG

Failures 1/160 0/160 0/160 2/160 13/160 58/160 71/160 9/160

that appear with pronounced probability. It is likely that the same effect led to bad results of
the linear dependency test among sub-matrices. The advanced Xorshift64* and Xoroshiro128+
generators pass all DIEHARDER tests.

The Minimal Standard generator fails the Bitstream and the Generalized Minimum Distance
test. The first successively analyses overlapping 20-bit tuples (220 possible words) and tests
the statistic of missing words for a normal distribution. Failing this test indicates recurrence
of patterns with enhanced probability. The second test places random pairs of points in a
square and tests its squared distances for an exponential distribution. The Minimal Standard
generator fails to produce outputs that appear independent in this dimension. Finally, this
generator issues a suspiciously high number of weak test results. For further interpretation of
test results, we refer to the DIEHARDER Test Suite description [61].

9.6.5 Statistical Analysis with TestU01

We additionally apply the “BigCrush” from the TestU01 test suite to all software generators.
Table 9.6 summarizes test results with failures reflecting the number of reported test statistics
with p-values outside the confidence interval [0.001, 0.9990].

Results reflect a similar picture as depicted by NIST and DIEHARDER. TestU01, though,
stresses more failures due to a higher number of tests and tighter hypothesis criteria. According
to L’Ecuyer et al. [225], p-values outside the significance interval are obtained approximately 2%
of the time, even if the PRNG behaves well. This, however, should not reoccur systematically.

The Minimal Standard misses almost half of all tests (45%), and the Xorshift fails a surpris-
ingly high number of 58 tests (35%), which reduces to 1–2 failures for its enhanced derivatives
Xorshift64* and Xoroshiro128+. The Tiny Mersenne Twisters attains a failure rate of 8%,
which still exceeds the acceptable rate by a factor of four, whereas the Knuth LCG performs
notably better, failing about 5% of the test statistics.

For the Mersenne Twister, both failures have a p-value of more than (1−10−15), which signifi-
cantly misses the acceptance interval, and unacceptable results reappear in repeated experiments
with different start values. This indicates systematic weaknesses. In contrast, all CSPRNGs
report zero or singular failures based on p-values at the order of 10−4, which disappear for
repeated tests.

149

Chapter 9 Random Number Generation in the Low-end IoT

9.6.6 Performance Analysis

In the constrained IoT, an important dimension for any base system primitive lies in its per-
formance. To assess the value of the different random number generators, we measure the
computational speed, the memory overhead, and the energy consumption of all pseudo-random
number generators. Thereby, we consider base mechanisms, and we disable re-seeding, if avail-
able.

Throughput. We measure the throughput and speed of each generator on the STM32F4
hardware platform that has been introduced in Section 9.5. Our test applications are imple-
mented like presented in Section 9.5.3. In addition, we display maximum values for cases, in
which a generator occasionally takes significant time to rebuild its internal state. Results are
summarized in Table 9.7.

Table 9.7: PRNG throughput and processing time per integer (#) measured on STM32F4.

Generator
Rate
[kB/s]

Avg. time
per # [µs]

Max. time
per # [µs]

Fortuna 44 87.50 –
CTR PRNG 102 442.01a –
SHA256PRNG 393 10.04 69.60
Mersenne Twister 3605 0.85 189.20
Tiny Mers. Twist. 4807 0.62 –
Xorshift 8152 0.28 –
Minimal Standard 3348 0.98 –
Knuth LCG 6147 0.44 –

aCTR PRNG calculates at least one AES-128 cipher per call

Naturally, the four lightweight generators are fastest. They can reliably compute a random
number in less than a microsecond. The two ultra-lightweight algorithms Knuth LCG and
Xorshift can even produce several numbers per microsecond on the constrained microcontroller,
which must be considered a very low runtime overhead. With a production rate of more than five
MB/s, these generators could seamlessly support a stream cipher, if they were cryptographically
secure. Unfortunately they are not, but showed some weaknesses in statistical tests as discussed
in the previous section. Xorshift clearly has the highest throughput. Its derivatives Xorshift64+
and Xoroshiro128+ perform around 2–3 times slower.
From the complex generators, SHA256PRNG and the Mersenne Twister are presented with

additional maximal values in processing time. For SHA256PRNG this is due to the algorith-
mic property of producing 32Bytes in one hash call, which thereafter are split into 8Byte long
integer values. Hence, a hash value is computed only every fifth call, which then takes signif-

150

9.6 Software Generated Pseudo-random Numbers

icantly longer. The Mersenne Twister follows a similar approach, although it does not involve
cryptographic functions. At the initialization and every 624 calls, it generates 624 fresh pseudo-
random integers, which takes up to 190µs. This is orders of magnitudes longer than simply
returning a value from its buffer. This notably degrades its performance in comparison with
the other lightweight generators.
The three cryptographically secure generators Fortuna, CTR PRNG and SHA256PRNG op-

erate more than one order of magnitude slower than the general purpose counterparts. All
algorithms involve cryptographic functions (AES-128, SHA-256), which are computationally
expensive on constrained microcontrollers. Clearly, the SHA256PRNG is the most vital among
all crypto-generators presented, requiring around 70µs on every hash computation, which leads
to an average time of 10µs per integer with number caching, and a rate of almost 400 kB/s. The
more advanced NIST Hash DRBG (SHA-256) doubles the time per integer due to additional
hash computation in the feedback path. The implementation, however, does not allow number
caching. This overhead is compensated while requesting larger random blocks or streams be-
cause state updates only occur once after each API call, while generating large outputs requires
multiple hashing.
In comparison to SHA256PRNG, the CTR PRNG generates random four times slower in a

stream of numbers, whereas returning one random integer takes between six and thirty times
longer. The CTR PRNG on the other hand has an almost constant runtime per integer. It
is noteworthy that up to 16Bytes can be obtained by the CTR PRNG without runtime over-
head because this generator computes one AES-128 block on every call that delivers 128Bit
from which four 32Bit integers can be created. The Fortuna operates slowest when requesting
continuous random data, and it halves the throughput of the CTR PRNG. It has a constant
runtime per integer of less than 90µs, which on the other hand is faster by a factor of five than
the CTR PRNG. It requires approximately 120% of time as the SHA256PRNG when processing
a new hash internally (every eighth call), why the rate is less by a factor of almost ten.
The different design choices between SHA256PRNG and CTR PRNG relate to security im-

plications. Holding a precomputed hash value in RAM as SHA256PRNG does while only one
integer is requested may violate security requirements. In the presence of protected memory, a
generator could secure its state and its cached numbers to reduce the attack surface. Low-cost
devices often lack memory protection mechanisms and as such, a design might be favored that
avoids keeping sensitive data in memory for longer intervals in order to prevent (i) manipulation
of future output (see Section 9.1) as well as (ii) predicting future random numbers (see Sec-
tion 9.2). In the presence of frequent re-seeding from fresh entropy, the generator state becomes
less sensitive to memory attacks. In contrast, the purpose of caching is performance enhance-
ment and random numbers would be simply returned without update after re-seeding. Still,
the performance per integer request of the CTR PRNG would notably benefit from a caching
mechanism.

Memory Overhead. Memory is a particular scarce resource on IoT devices, why memory of

151

Chapter 9 Random Number Generation in the Low-end IoT

7.5

8.0 ROM Dep.
ROM

For
tun

a

CTR
 PR

NG

SH
A25

6P
RNG

Mers
en

ne
 Tw

iste
r

Tin
y M

ers
. T

wist.

Xors
hif

t

Minim
al

Sta
nd

ard

Kn
uth

 LC
G

0.0
0.5
1.0
1.5

M
em

or
y

Ov
er

he
ad

 [k
By

te
s]

(a) ROM

3.0

4.0 RAM Dep.
RAM

For
tun

a

CTR
 PR

NG

SH
A25

6P
RNG

Mers
en

ne
 Tw

iste
r

Tin
y M

ers
. T

wist.

Xors
hif

t

Minim
al

Sta
nd

ard

Kn
uth

 LC
G

0.0
0.5
1.0
1.5

M
em

or
y

Ov
er

he
ad

 [k
By

te
s]

(b) RAM

Figure 9.8: PRNGmemory overhead in ROM (left) and RAM (right) measured on the STM32F4
microcontroller. “Dep.” denotes memory requirements of dependent software mod-
ules (i.e., hashes, ciphers) that a generator may include.

random number generators should have the lowest possible footprint. We evaluate the memory
overhead, which comes on top of a minimal RIOT build while enabling different PRNGs at
compile time for the target STM32F4 MCU in Figure 9.8. Numbers are differentiated w.r.t.
RAM and ROM memory. Furthermore, crypto-purpose generators include dependencies such
as hash functions and ciphers, which are highlighted as “RAM/ROM Dep.”.

Results reassure the unsurprising previous observation that complexity of the PRNGs corre-
lates with resource consumption. Similar to the throughput measurements, Xorshift, Minimal
Standard and Knuth LCG generators remain most frugal in memory and only require around
100Bytes additional ROM and few additional Bytes in RAM. The internal state size (32 bit),
i.e., 4Bytes in RAM suffice for the Xorshift, whereas the Knuth LCG adds an internal mul-
tiplier to a total of 8 Bytes RAM. Similarly, Xorshift64* has an 8Byte state, but it requires
additional memory to split and buffer 8Bytes generated on each cycle into two 32 bit inte-
gers. In total, Xorshift64* allocates 20 Bytes RAM and Xoroshiro128+ allocates 28 Bytes. The
Xorshift-derivatives hence operate on a different scale than the ultra-lightweight alternatives.
Both Mersenne Twisters allocate between 250–300Bytes in ROM, whereby the “tiny” version
surprisingly requires the higher amount. The Mersenne Twister is comparably RAM intensive
by allocating up to 2.5 kB, which is mainly used for its buffer of 624 integers.

Crypto-secure PRNGs such as SHA256PRNG and CTR PRNG are rather efficient in RAM
when compared to the Mersenne Twister, but are more demanding in ROM memory. This is
mainly due to its dependent cryptographic functions. The NIST Hash DRBG (SHA-256) uses
RAM similar to the SHA256PRNG, but it requires additional 800Bytes ROM. The reasons
relate to its extra logic in the state update function as well as its re-seeding capabilities. The
most demanding generator in terms of ROM memory is the Fortuna due to its dependencies

152

9.6 Software Generated Pseudo-random Numbers

For
tun

a

CTR
 PR

NG

SH
A25

6P
RNG

Mers
en

ne
 Tw

iste
r

Tin
y M

ers
. T

wist.

Xors
hif

t

Minim
al

Sta
nd

ard

Kn
uth

 LC
G

10−2

10−1

100

101

En
er

gy
 C

on
su

m
pt

io
n

[u
J]

Figure 9.9: PRNG energy consumption per integer measured on a STM32F4 microcontroller.

to multiple cryptographic functions. It includes the SHA-256 and the AES-128 RIOT modules,
which is the main source of high ROM requirement. Furthermore, the Fortuna internally im-
plements an entropy pool that by default initializes 32 SHA-256 contexts, one of which requires
104Bytes. This is the main reason for its high RAM consumption of around 3,5 kB. Here it
must be stressed that this already consumes 10% of the available memory on the test device,
or 44% on an Arduino Mega 2560.

Energy Consumption. We evaluate the energy consumption with the same setup as described
in Section 9.5. Figure 9.9 displays the energy consumed by each pseudo-random generators in
RIOT, measured on the STM32F4 platform. The Fortuna, CTR PRNG and the SHA256PRNG
crypto-purpose generators are most expensive in energy—up to several micro Joule per integer.
Thereby, SHA256PRNG operates at the lower end and the SHA256-based NIST Hash DRBG
consumes about twice as much. The CTR PRNG notably demands maximal resources. Using
approximately 24µJ it drains a factor of 3.7 more energy than the Fortuna. The CTR PRNG
generates four integers in one call, why it outperforms the Fortuna slightly in a stream of random
numbers.

All other PRNGs operate on the same scale as the on-chip TRNG on that device (compare
Figure 9.5), which takes approximately 0.03µJ. Non-cryptographic generators remain by a factor
of 20–100 below the most efficient cryptographic generator SHA256PRNG. The most resource-
friendly general-purpose PRNGs are the Xorshift with an average of 0.01µJ and the Knuth LCG
with 0.02µJ per integer, which is in agreement with our findings from throughput measurements
in Table 9.7. The enhanced Xorshift64* and Xoroshiro128+ consume 3–4 times more energy

153

Chapter 9 Random Number Generation in the Low-end IoT

Table 9.8: Summary of the security properties vers. performance trade-offs for CSPRNGs.
Backward secrecy can be enabled with external entropy source (:). Resource con-
sumption is high (↑), medium (→), or low (↓).

Security Properties Performance

Generator Statistic Forward Backward Runtime ROM RAM Energy

Fortuna 3 3 : → ↑ ↑ →
CTR PRNG 3 3 : ↑ → → ↑
SHA256PRNG 3 3a : ↓ → → ↓

a Previous-to-last random value not protected by forward secrecy.

than their lightweight 32 bit Xorshift companion, which is a notable increase over the Knuth
LCG.

9.6.7 Recommendations on PRNGs

Having examined eleven widely available software-PRNGs (eight algorithms plus three variants)
that cover the basic levels and functions, we are now ready to make the choice of recommendation
for random number generators to be included in a constrained IoT operating system. Following
the previous discussion in Section 9.3, we differentiate our selections in one general purpose and
one crypto-secure PRNG as two different system functions.

General Purpose Generator. The general purpose generator should be very lightweight,
while complying with common statistical requirements. It should run seamlessly on very con-
strained 8 bit microcontrollers at low energy costs.
From the two ultra-lightweight generators, only the Knuth LCG passes all NIST and DIEHARDER

statistical tests. It performs second best. The Xorshift generator consumes about half of its
resources, but has notable statistical flaws. The Knuth LCG produces better output sequences
while being similarly fast. The enhanced Xorshift64* or Xoroshiro128+ generators exceed re-
source consumption of the Knuth LCG significantly. All other lightweight generators admit
lower statistical quality at higher cost. We therefore recommend the Knuth LCG to be used as
general-purpose, non-cryptographic PRNG in the constrained IoT.

Crypto-secure Generator. The Fortuna, SHA256PRNG, (NIST Hash DRBG,) and CTR
PRNG are the only candidates for a CSPRNG, as they are constructed from secure and non-
invertible cryptographic functions. Table 9.8 summarizes the security properties and perfor-
mance and illustrates the design trade-offs as a basis of our recommendation.
The CRPRNGs pass all statistical tests (including BigCrush) and fulfill the requirements of

unpredictability and brute-force resistance. Perfect forward and backward secrecy after a state
compromise is assured by the Fortuna, CTR PRNG and the NIST Hash DRBG based on their
one-way nature during state update in combination with re-seeding. The SHA256PRNG holds

154

9.7 Random Numbers on AI Platforms

a (linear combination of) the previous-to-last state and thus only guarantees forward secrecy for
earlier values due to its secure one-way SHA-256 output function (cf., [187]). Backward secrecy
can be added by re-seeding on demand to all generators as discussed in 9.2.3 using predefined
interfaces to entropy sources.
The SHA-256 generator stands out as it is the only cryptographically secure algorithm that at-

tains moderate performance values. All competitors exceed the SHA-256 performance measures
by one order of magnitude in at least one dimension. We conclude that the resource frugality
in combination with modular cryptographic robustness justify to commend SHA256PRNG as
the CSPRNG in the constrained IoT.

9.7 Random Numbers on AI Platforms

Machine learning and other algorithms of Artificial Intelligence (AI) recently gained attention
and are considered for deployment at the IoT Edge. They shall serve use cases such as voice
recognition, object counting, or anomaly detection. Machine learning, in particular reinforce-
ment learning makes heavy use of random numbers, since randomized algorithms (e.g., Monte-
Carlo methods [306]) are involved to explore state spaces. Software libraries for machine learning
evolve and exist already, optimized for constrained embedded devices [84, 35].
High processing demands triggered a new set of hardware platforms to facilitate computation

of AI algorithms at minimal energy consumption. A common approach is represented by dual-
core SoCs and hardware accelerators to offload the main CPU from processing. We identified
the following three categories in the data sheets: signal processors, neural network accelerators,
and tailored hardware engines for assisted audio-video processing. Commercial products largely
base on ARM Cortex-M processors with a proprietary instruction set architecture (ISA). The
academic community introduced a series of open source RISC-V processors that vary with dedi-
cated purposes while targeting low energy consumption [328]. Parallel ultra low power (PULP)
processors feature an optimized processor design. Multiple cores can be clustered and share a
coarse-grained memory architecture, the instruction cache and peripherals. Energy efficiency
is achieved by speedup after parallelization and operating the cores ‘near threshold’ by apply-
ing voltage and frequency gating [122]. This extends utility in the contexts of signal-, neural
network-, or audio-video processors. PULP clusters can be augmented [77] by cryptographic
hardware engines to facilitate low-overhead encryption of network traffic, or by convolution
engines.
The modular design and performance of these novel RISC-V based processors have been

analyzed and simulated by De Giovanni et al. [125]. They observe a speedup factor of five
and energy savings of 40% for an 8-core PULP cluster over a single core. Additional hardware
acceleration decreases energy consumption down to 50%. Their findings are in agreement with
Wang et al. [393], who analyzed neural network inference on constrained IoT devices. They
compare the processing overhead and energy consumption of a machine learning algorithm

155

Chapter 9 Random Number Generation in the Low-end IoT

Table 9.9: Overview of the different processor cores on the RV32M1 microcontroller. It runs at
48MHz and provides 384 kB RAM, 1.2MB internal and 4.0MB external flash mem-
ory. The naming scheme IEFCM resolves to the following architectural components.
I: base integer instruction set, E: embedded base integer instruction set, F: single pre-
cision floating point extension, C: extensions for compressed instructions, M: integer
multiplication and division extension.

Processor Core
Instr. Set

Architecture
Pipelining
[# stages]

Special Features

ZERO-RISCY RV32-IECMa 2
Area optimized (2.2 x smaller than RI5CY)
Energy boost for mixed control/arithmetic code

RI5CY RV32-I(F)CMb 4

Post-incrementing load and stores
Single-cycle multiply-add & ALU extensions
Auto increment hardware loops
Memory protection unit

ARM Cortex-M4F ARMv7E-Mc 3
Branch speculation engine
Single-cycle multiply-add extension
Memory protection unit

running on an off-the-shelf ARM Cortex-M4 node and two optimized RISC-V platforms, one
single-core (RI5CY) and one 8-core cluster of RI5CY processors (Mr. Wolf IoT processor [309]
for high processing demands). Their results indicate that RI5CY outperforms Cortex-M by a
factor of up to 1.3 for fixed point integer arithmetic. The neural network use case provides
a speedup of six times and reduces the energy consumption by up to 70% on the multi-core
platform in comparison with a single-core Cortex-M4 operation.

The shift of computational complexity towards edge devices imposes new requirements on
the random number generation. The rate of statistical (pseudo-)random numbers consumed at
low-end edge devices increases, whereas crypto-secure random generation remains unaffected by
this paradigmatic shift. Conversely, new AI platform architectures may counter these increased
demands.

We evaluate different pseudo-random number generators (cf., Section 9.6) on two single-core
RISC-V based processors of the PULP family and compare the performance to an off-the-
shelf ARM Cortex-M core. Table 9.9 summarizes the hardware properties of our reference
platform: The VEGAboard [293] holds multiple cores on the RV32M1 chip, which it can operate
independently. We use this platform to compare ARM and RISC-V properties. In terms of
processor complexity and application targets, the ZERO-RISCY [310] is on par with a Cortex-
M0+ processor, while RI5CY [311] is on par with Cortex-M4. All four cores operate at the
same CPU frequency and share memory as well as peripherals which includes a TRNG.

156

9.7 Random Numbers on AI Platforms

Table 9.10: Throughput and energy consumption per integer (#) for non-crypto PRNGs running
on three different processor cores of the VEGAboard.

Byte rate [kB/s] Average energy per # [nJ]a

Generator ZERO-RISCY RI5CY Cortex-M4 ZERO-RISCY RI5CY Cortex-M4

Mersenne Twister 1118 1527 2290 79.5 60.3 43.3
Tiny Mers. Twist. 2158 2935 2608 49.3 36.7 39.4
Xorshift 5869 6264 7227 14.8 13.2 10.9
Minimal Standard 1715 2331 2134 61.9 46.9 50.9
Knuth LCG 3682 4697 4581 26.3 20.2 20.2

TRNG 2.4·10−2 2.1·106

aStandard deviations are low for PRNGs (σ < 1.5%) and high for the TNRG (σ ≈ 22%).

Table 9.10 presents our measurement results running five non-crypto PRNGs on three cores
of the VEGAboard platform, as well as the embedded TRNG. The pseudo-random number
throughput ranges from 1000–6000 kB/s on ZERO-RISCY, and RI5CY speeds up by a factor of
1.1–1.4 which is achieved by additional hardware extensions of the processor. The Cortex-M4
increases performance of PRNGs that involve multiple XOR operations (Xorshift, Mersenne
Twister), though, RI5CY outperforms the Cortex-M4 by 10% for the others, making effect of
the ALU extensions and hardware loops.

Energy demands reflect similar properties with ≈ 20 nJ consumption on both RI5CY and
Cortex M4 while operating the recommended Knuth LCG. The fastest PRNG Xorshift is content
with 10 nJ per integer on the Cortex-M4, which is only 75% of the RI5CY consumption. The
TRNG performance operates at the lower end compared to other hardware generated random
numbers (Section 9.5.3), however, it should be involved only for seeding.

Despite small variations, the performance of random number generation on a single core scales
similarly to our measurements presented in Section 9.6.6, regardless of the processor architecture.
Our measurements are also in rough agreement with the single-core results presented by Wang et
al. [393] who found a speedup factor of 1.3 for RI5CY over Cortex-M, operating neural networks.
For multi-core processors, we expect the same upscale to hold and ≈ 6 x speedup with about 50–
70% energy savings for pseudo-random number generation. In the context of machine learning
at the edge, random input can be parallelized with these concurrent hardware architectures,
which addresses high processing requirements at low energy consumption.

As an alternative, Forooghifar et al. [112] introduce “self-awareness” as an architecture-
independent solution to improve nodal lifetime when operating machine learning at the edge.
Complex computations are outsourced from battery driven nodes and distributed between the
edge, fog, and cloud, following an energy estimation on the constrained node.

Processing demands for AI are and will continue to be costly on IoT edge devices. In contrast,

157

Chapter 9 Random Number Generation in the Low-end IoT

many simple sensor nodes will commonly process only little data and require only a single
processor. Consequently, performance enhancements of a targeted AI hardware platform will
enfold limited impact in conventional IoT use cases, as indicated by our measurement results.

9.8 Discussion: Hardware or Software for Randomness in
the IoT

An increasing number of embedded controllers is expected to provide hardware primitives for
basic cryptographic operations in the near future, which bring promise of fast and efficient
random generators and contribute real entropy. The performance of on-chip hardware based
random number generators, however, is heterogeneous. Some devices operate fast and save
battery resources (i.e., STM32F4), while others are slow and require notably larger amounts of
energy (i.e., nRF52840) than corresponding software. As shown in Section 9.5, few devices even
produce poor statistical output (i.e., CC2538). Some manufacturers advice against an immedi-
ate use for cryptographic random number. Other manufacturers describe their on-chip random
number generators as suitable for cryptographic purposes without providing a cryptographic
proof (Nordic). Truly random generators rely on real entropy from a physical process. This
may be influenced by environmental factors, which opens an attack surface compared to seeded
pseudo-random number generators.
Common IoT operating system such as RIOT need to make decisions on which hardware

functions to include and how to integrate hardware and software components into the random
subsystem. These multi-platform multi-purpose systems want to provide an overall lean solution
of reliable quality at a predictable performance. To aid this design process, we now analyze key
performance properties of the different hardware- and software-based random number generators
that are either unseeded (TRNG), seeded ((CS)PRNG), or hybrid.
In Figure 9.10, we compare energy consumption and average run-time per integer (left) as

well as the average current flow (right) for the hardware systems summarized in Table 9.2.
Software PRNGs are measured on the STM32F4 board. We observe that the lightweight software
generators are fastest and consume the least energy together with the TRNG on the chip of
STM32F4. While software PRNGs operate up to five times faster, they charge a higher current
than the TRNG which results in a similar energy footprint. On-chip hardware generators on the
CC2328 (HWPRNG) and MKW22D (TRNG) devices consume about one order of magnitude
more time and energy. Hence, we argue for the choice of a lightweight software generator
(i.e., the Knuth LCG) for the regular production of random numbers. Hardware generators are
best used for (re-)seeding, when true entropy is required.
Running a cryptographically secure generator demands unsurprisingly more energy resources

in comparison to its lightweight PRNG alternatives or the STM32F4 on-chip TRNG. Among
the three software CSPRNGs, SHA256PRNG is clearly most frugal with an energy consumption
of 0.5µJ for one integer and an average current consumption of 17mA. Note that caching is

158

9.8 Discussion: Hardware or Software for Randomness in the IoT

100 101 102 103 104
Avg. Time [us]

10−2

10−1

100

101

102

Av
g.

 E
ne

rg
y

[u
J]

Xo
rs

hi
ft

Kn
ut

h
LC

G
Ti

ny
 M

er
se

nn
e

Tw
ist

er
M

er
se

nn
e

Tw
ist

er
M

in
im

al
 S

ta
nd

ar
d

ST
M

32
F4 CC

25
38

SH
A2

56
PR

NG

M
KW

22
D

Fo
rtu

na
AT

86
RF

23
3

nR
F5

28
40

 w
/o

PU
F

SR
AM

CT
R

PR
NG

nR
F5

28
40

 w
/

AT
EC

C5
08

A

5 10 15 20 25
Avg. Current [mA]

10−2

10−1

100

101

102

Av
g.

 E
ne

rg
y

[u
J]

Hardware-generated:
STM32F4 + ATECC508A
STM32F4 + AT86RF233
STM32F4 + PUF SRAM
STM32F4 (TRNG)

CSPRNGs on STM32F4:
Fortuna
CTR PRNG
SHA256PRNG

PRNGs on STM32F4:
Mersenne Twister
Tiny Mersenne Twister
Xorshift
Minimal Standard
Knuth LCG

Other Platforms:
CC2538 (HWPRNG)
MKW22D (TRNG)
nRF52840 (TRNG) w/o bias correction
nRF52840 (TRNG) w/ bias correction

Figure 9.10: Average energy consumption over average time (left) and average current draw
(right) for hardware and software generated random integers.

involved here, thus, only every eighth requested integer involves computation of a new hash
which then causes currents up to 20mA. Fortuna and CTR PRNG drain notably more energy
in comparison to the SHA256PRNG as already visible in the previous analysis. CTR PRNG
consumes up to 24µJ for one integer, which is four times more than Fortuna, even though its
average current consumption is similar to the SHA256PRNG that uses 5mA less than Fortuna.
The increased energy consumption for one integer may be compensated in a stream or by caching
intermediate numbers. Hardware based random numbers on the nRF52840 controller consume
energy similar to the CSPRNGs, although the low-power MCU drains less than 5mA in both
operation modes (w/ and w/o bias correction). This is due to its slow operation.

The external ATECC508A chip, which implements an approved HWCSPRNG with seeding
in hardware, exhibits a worse performance than all software CSPRNGs. The throughput of the
software solutions is 20–100 times higher while the energy consumption remains 3–10 times less.
The average current of the ATECC508A solution remains small in comparison to the software
solutions that do not have to power a second device. This is because the main controller
idles while the external chip processes random values. The external chip requires only a small
current as shown in Section 9.5.3. Eventually, the total energy consumption can be improved by
further driver optimizations. A minimum of 280µJ is required to request from one up to eight
integers. It is noteworthy that this chip implements secure seeding on its own, which enhances
very constrained devices without proper entropy sources. Furthermore, it implements tamper
detection in hardware which provides additional protection against side channel attacks with
physical device access.

Memory limitations of very constrained devices (e.g., ATmega2560 with only 8 kB RAM

159

Chapter 9 Random Number Generation in the Low-end IoT

and 256 kB Flash) are unable to run complex software CSPRNGs due to memory constraints.
The Fortuna CSPRNG requires almost 50% of the ATmega2560 RAM leaving only 4 kB for
firmware and the remaining security protocols, which is insufficient for real-world IoT-networking
applications [34]. Instead, the device driver for the ATECC508A chip can be included which
(i) reduces memory requirements of cryptographic functions, (ii) offloads processing of complex
algorithms on the device, and (iii) includes additional crypto-related features.
Next to the dedicated crypto-chip, other external randomness generators, namely the AT86RF233

transceiver as well as the SRAM PUF are energy expensive using up to one order of magnitude
more than the SHA256PRNG. Both mechanisms, though, are not designed to be used period-
ically. Instead, they act as seed sources that are utilized once during instantiation of a PRNG
and on re-seeding. The current consumption differs notably between the transceiver and the
PUF SRAM. The transceiver powers two devices in active mode because the MCU polls random
bytes via the SPI while the radio needs to stay in receive mode. This draws a current of up
to 26mA in total. The PUF SRAM on the other hand takes twice as long to retrieve a high
entropy integer but it drains less than 10mA on average. As depicted in Section 9.5.1, this
procedure needs to take place very early on startup—even before clock and bus initialization in
the operating system.
In summary, we argue that seeded pseudo-random number generators—a lightweight general

purpose PRNG or an approved CSPRNG—are the preferable solution for producing (secure)
random numbers. Co-processors and external hardware assistance are vital for adding entropy
and can help to reduce memory footprints for tiny devices. They lead to a decreased throughput,
though, when compared to software that runs on the main controller. Conversely, special
crypto-chips can offload processing demands from the main controller. Transceivers as well as
uninitialized SRAM are essential on devices lacking TRNGs. Even though PUF SRAM and the
radio-based entropy sources are costly, they uniquely contribute entropy and are rarely needed
for seeding purposes.

9.9 Conclusions

In this chapter, we explored the building blocks for randomness in the constrained Internet
of Things: hardware and software components that generate statistical randomness, entropy,
and resilience against cryptographic attacks. We systematically derived the requirements for
IoT random subsystems from the perspectives of statistics, security, and operating system in-
tegration. An extensive, comparative evaluation using several prominent test suites as well
as detailed performance measurements on popular devices delivered insights into the overall
quality and suitability of the different components under test. This work derives four major
recommendations:

1. Separate general purpose random generators from cryptographically secure generators on
the OS level. Avoid any mixture or interference between the two.

160

9.9 Conclusions

2. Prefer (software) PRNGs over random generating hardware, as they are more efficient and
reliable. Exploit hardware components as additional entropy sources for (re-)seeding or
when CSPRNG operation is infeasible on a constrained node.

3. The Knuth LCG is the most efficient general purpose generator that provides decent
statistical quality. It is simple and lean enough to run on very constrained devices.

4. We recommend SHA256PRNG as a cryptographically secure generator, since it outper-
forms its competitors by an order of magnitude in several dimensions.

With this work, we hope to contribute to a thoughtful development toward a secure Internet
of Things. This will be of particular importance, as more and more (sensitive) data originates
from IoT nodes and needs protection. Content object security with OSCORE [335, 150] and
LAKE [385], for example, will facilitate the encryption of individual information units, but will
extend the use of cryptographic primitives such as random numbers during operation.

161

Chapter 10

Seed- and Key Generation with Physical
Unclonable Functions

Abstract

Security is essential for the Internet of Things (IoT). Cryptographic operations for authentication
and encryption commonly rely on random input of high entropy and secure, tamper-resistant
identities, which are difficult to obtain on constrained embedded devices. In this chapter, we
design and analyze a generic integration of physically unclonable functions (PUFs) into the IoT
operating system RIOT that supports about 250 platforms. Our approach leverages uninitialized
SRAM to act as the digital fingerprint for heterogeneous devices. We ground our design on an
extensive study of PUF performance in the wild, which involves SRAM measurements on more
than 700 IoT nodes that aged naturally in the real-world. We quantify static SRAM bias,
as well as the aging effects of devices and incorporate the results in our system. This work
closes a previously identified gap of missing statistically significant sample sizes for testing the
unpredictability of PUFs. Our experiments on COTS devices of 64 kB SRAM indicate that
secure random seeds derived from the SRAM PUF provide 256Bits-, and device unique keys
provide more than 128Bits of security. In a practical security assessment we show that SRAM
PUFs resist moderate attack scenarios, which greatly improves the security of low-end IoT
devices.

10.1 Problem Statement and Related Work

Pappu et al. [297] are the first to introduce “physical one-way functions” and the notion of a
PUF dates back to Gassend et al. [121]; both describe a technique to uniquely identify and
authenticate individual integrated circuits. The research community identified PUFs as an
attractive solution for the IoT [323], because the intrinsic hardware variations can feed security
primitives on low-end devices without increasing hardware cost. Orthogonal to PUFs that
utilize variations of low-cost, multi-purpose building blocks, research also advances in the field
of hardware security at the transistor level [324, 360, 169]. PUFs can be distinguished into two
classes [297, 138]. They either process many inputs (i.e., challenges) to produce varying outputs

163

Chapter 10 Seed- and Key Generation with Physical Unclonable Functions

(i.e., responses), or only few inputs which produce few, or only one response. More precisely, a
PUF is denoted as strong if it provides a large challenge-response space, whereas a weak PUF
provides only few challenge-response pairs that typically scale linearly or polynomially with the
design size [260]. Hence, a memory readout which produces one response can be classified as a
weak PUF.
A variety of use cases for PUFs emerged, such as secure key storages [100], communication

protocols [68, 49], supply chain security [105], remote attestation [333], firmware updates [308],
or generic trust anchors [255].
The security of these applications as derived from PUFs is only as strong, as the secrets

extracted from the underlying hardware variations. In this section, we review the fundamental
properties, basic assessment measures, and pose the question of potential weaknesses in PUFs.

10.1.1 Properties of Uninitialized SRAM

Reading out uninitialized SRAM produces a digital fingerprint. Manufacturing processes intro-
duce variations in the silicon of transistors that construct a memory cell. When powered on,
some cells drift to the logical state 1, others to 0, and cells without bias fluctuate according to
environmental conditions. The resulting patterns require a careful assessment between devices
(inter-device) in order to estimate their uniqueness, and between power-cycles on one device
(intra-device), in order to quantify the (random) noise. This noise can be utilized as an entropy
source, or needs to be removed for reliably reproducing an exact version of the pattern.

Aging Bias. Uniformly random variations result in an equal proportion of stable cells that
power up with 0 or 1 on a single SRAM pattern. Aging and utilization, however, skew this
distribution, due to drifting voltage threshold values of the transistors that form a memory
cell [106]. The increased probability for one symbol (1 or 0) introduces a bias, which in turn
benefits an attacker, who tries to guess bit values. Guin et al. [139] find a bias of up to 54%
under artificial aging. Holcomb et al. [173] counter that ‘normal’ use patterns of intermittently
powered devices prevent an identical skew.
The state-of-the-art motivates additional and more realistic analyses of bias and aging effects

on platforms that naturally aged while executing real-world IoT applications over a long period
of time (see Section 10.3).

Static Bias. In contrast to an aging bias, real-world PUFs may be affected by a static bias at
certain bit positions [398]. Rahman et al. [312] observe systematic correlation between SRAM
patterns across chips, and cell-neighborhood interactions due a systematic physical arrangement
on the silicon. Both effects reduce the device uniqueness. An attacker, who owns a chip of the
same type, could utilize a local measurement to guess bit values at specific positions with a
better chance than 50%, which facilitates prediction of a secret value derived thereof.
Conditioning the SRAM resolves systematic bias. Bit selection [404, 209] is an approach to

exclude biased bit addresses of the SRAM, but adds enrollment complexity for each individual

164

10.1 Problem Statement and Related Work

node. Storing a bit mask for cell selection requires additional memory, which conflicts with
limited memory resources on IoT devices. Instead, extending the SRAM PUF input increases
the total amount of unbiased bits that generate a secret, which ideally prevents successful
guesswork. Increasing the length, though, threatens fuzzy extraction (see Section 10.1.4) which
may leak information about the secret, and requires a careful assessment of (i) the remaining
entropy as well as (ii) the increase in processing overhead on resource-constrained nodes.

Environmental Bias. PUFs are subject to noise, which is affected by environmental oper-
ating conditions. Related work analyzes SRAM startup patterns under varying voltages and
temperatures. A body of work shows that SRAM PUFs are robust against variations of the
supply voltage [332, 185, 74, 38], tested at ± 10% of the nominal value. Adjusting the voltage
ramp-up speed [79, 228] can mitigate effects of temperature variations, which affect the SRAM
startup behavior more severely. These solutions require special hardware, though.
The effect of temperature variations on the startup pattern of SRAM is commonly analyzed

within the industrial operating temperature range of -40°C to +80°C. Leest et al. [375] quan-
tify the intra-device relation between startup pattern of a device, which shows that the min.
entropy is minimal at a low temperature of -40°C, and gains up to ≈2% of noisy cells when the
temperature increases to +80°C. When quantifying the required SRAM length for seed genera-
tion, the lower bound should serve as a conservative starting point, while higher temperatures
improve seed generation due to higher entropy.
Schrijen et al. [332] compare the intra-device hamming distance of SRAM patterns taken

under different temperatures, compared to an enrollment readout at ambient temperature. The
startup noise between patterns of the same device almost doubles when increasing the operation
temperature from 20℃ to 80℃. Claes et al. [74] present an increase of the fractional hamming
distance from 0.06 to 0.1 at the extreme operating temperatures of -40/+80°C. Katzenbeisser
et al. [185] present similar results but find that the SRAM PUF is more robust against varying
operational conditions compared to other PUFs (e.g., arbiter or flip-flop PUFs). Overdesigning
the error correction code can mitigate this effect, but increases the computational complexity—
sometimes in conflict with IoT device constraints as well as the remaining key entropy.
Holcomb et al. [173] show that the increase in noise which is introduced by temperature

variations overrules a predictable aging effect of NBTI. This has a positive effect on the inter-
device uniqueness, which increases with the absence of an identical skew.

10.1.2 Empirical Evaluation of PUFs

The common measure to quantify the unpredictability of a pattern is given by the min. entropy
metric:

Hmin(pmax) = −log2(pmax) (10.1)

For a single bit, pmax = max(p, 1 − p), i.e., the maximum probability for attaining one (p) or

165

Chapter 10 Seed- and Key Generation with Physical Unclonable Functions

zero (1− p) at the same SRAM bit position. An ideal probability of pmax = 0.5 maximizes the
min. entropy to Hmin = 1. This metric is used to assess intra-device variations across multiple
pattern of the same device, or inter-device variations between the pattern of multiple devices.
Random noise increases the intra-device min. entropy after a power-cycle, which facilitates seed
generation, but challenges a reliable key construction. Over-dimensioning the fuzzy extractor
(see Section 10.1.3) can mitigate this effect, but increases the computational complexity—in
conflict with IoT device constraints.
Schrijen et al. [332] present intra-device measurements across SRAM technologies in differing

setups and find that variations across SRAM of different vendors are not significant. Katzen-
beisser et al. [185] show that the inter-device min. entropy is invariant to temperature. This
enables longer repetition codes to correct multiple errors, which would otherwise leak secret
information in the case of a low inter-device entropy (cf. Section 10.6).
The inter-device min. entropy assesses device uniqueness and the impact of bias. The lit-

erature reports inter-device min. entropy values from 0.7 [74] to 0.9 [206] between SRAM
patterns. Quantifying this metric requires multiple samples which is particularly challenging
since it involves many nodes.

Min. Entropy Convergence. The maximum probability pmax in Equation 10.1 can be em-
pirically sampled from a limited number of probes n (i.e., nodes). Then the empirical estimator

H ′min(i, n) = −log2
[
max

(
i

n
, 1− i

n

)]
(10.2)

with i positive events (ones) in n samples from individual nodes converges to the min. entropy
in Equation 10.1. Statistical convergence, however, is slow. According to the central limit
theorem [108],

∣∣Hmin(pmax)−H ′min(i, n)
∣∣ ∼ σ√

n
(as n→∞), (10.3)

where the dispersion σ = σH′
min
≈ 1.

Hence, estimating the inter-device bias from 100 samples of SRAM PUFs still includes an
error of 10%. Accordingly, the largest available SRAM evaluation of 144 nodes [396] bears an
uncertainty of more than 8% This shows the need for significantly larger samples in order to
approximate the inter-device min. entropy accurately, which we will present in Section 10.3.

Bit-Aliasing. Maiti et al. [251] introduce bit-aliasing to quantify systematic inter-device bias
(cf. Section 10.1.1) among 125 FPGAs that implement a ring oscillator (RO) PUF. Large-scale
evaluations of RO PUFs on 217 FPGAs [171, 137], and 133 ASICs [408] show that the location
of cells within the FPGA affect performance properties. The bit-alias of uninitialized SRAM
between 50 [38] and 144 [396] devices reveals a slight double-peaked distribution of the bit-alias
scores due to SRAM layout systematics, but seem to miss convergence due to an insufficient
sample size.Wilde et al. [397] identify a research gap in convergence and deduce that qualified

166

10.1 Problem Statement and Related Work

inter-device bit-alias measurements require more than 600 devices to converge with an error
below 5%.

Quantifying possible inter-device correlations using hundreds of devices demands for high cost
and engineering efforts. In the subsequent analyses, we will tackle these challenges by taking
advantage of a large-scale testbed.

10.1.3 Random Seed and Key Generation

SRAM PUFs promise to support bootstrapping security on embedded IoT nodes by deriving
random seeds and private keys from uninitialized memory. Commercial IoT platforms more
and more provide isolated PUF circuits for this purpose, but an open software implementation
that enables PUF-functionality without dedicated PUF-circuitry is missing. To enable software-
based SRAM PUFs on a wide range of heterogeneous IoT platforms, the hardware abstraction
layer of an operating system can enable low-level hardware access and facilitate PUF-based seed
and key generation.

Seed Generation. Random numbers are essential for security. Commonly, a sequence gener-
ated by a true random number generator (TRNG) acts as seed or refresh value for a pseudo-
random number generator (PRNG) as well as a cryptographically secure PRNG (CSPRNG).
Van der Leest et al. [375] derive the min. entropy of repeated SRAM startup patterns on a
device for creating a random seed value. The concept was applied to off-the-shelf MCUs [376]
and revealed a diverse picture. Not all embedded SRAM technologies are qualified to produce
high entropy seeds. SRAM, so the lessons learned from this study, must be analyzed prior to
deployment. Krentz et al. [210] propose an SRAM seeding mechanism and add antenna noise
to uninitialized memory pattern. The combined values are conditioned with a van Neumann
extractor, which introduces variable runtime overhead.

SRAM must be uninitialized to obtain entropy between power-cycles, which is why the PUF
operation should only take place during system startup before the memory has been utilized.
This startup sequence, however, might be executed without a cold boot, possibly leading to
zero-entropy seeding. Hence, a PUF implementation needs to ensure a preceding power-off
cycle.

Key Generation. A reliable key generation depends on the removal of random noise. The
related concept of fuzzy extraction was first presented in the context of biometric authentication
systems [182, 90] to reliably reconstruct an exact version of a reference measurement. Fuzzy
extractors are based on error correction codes. Error correction schemes for PUFs [407] were
evaluated on an FPGA [172]. For complexity reasons, not all codes are applicable to low-
end devices with its constrained resources. Korenda et al. [209] reduce the computational
requirements by identifying stable values before encoding, which reduces the error probability.
Leest et al. [374] propose specific hardware implementations for soft-decision decoders, which

167

Chapter 10 Seed- and Key Generation with Physical Unclonable Functions

improve the correction capabilities and require only half of the PUF bits for secret generation
compared to hard decision decoders.
A deployment of a fuzzy extractor proceeds in two phases, enrollment and reconstruction. The

enrollment is a trusted process and produces helper data [86], which is later used to reconstruct
the PUF value. Helper data is publicly stored in non-volatile memory.
A PUF response does not contain maximum entropy, which flaws its immediate use as a

cryptographic key. Besides, it may be too long or too short, adjusting its length to include
a required amount of entropy. For mitigation, a compression scheme can be used to create a
key with maximized entropy and to preserve forward secrecy of the PUF response. Practical
implementations [99, 59, 249] employ a cryptographic hash function that compresses the lengthy
PUF response.
Error correction [86], and crypto-processing [196] quickly exceed the computational-, and en-

ergy resources on constrained embedded devices. A modular and configurable PUF implementa-
tion should ease the deployment under varying environmental conditions and adjust to the capa-
bilities of heterogeneous platforms (e.g., processing power, availability of crypto-acceleration).

10.1.4 Security Analysis of PUFs

The related work presents threats to PUFs mainly from three angles.

Analytical Attacks. Public helper data techniques leak information if the PUF is biased [409].
For the code offset method, helper data lengths should be kept small to avoid information
disclosure–in conflict with PUF bias which may increase the required length. Koeberl et al. [206]
conservatively estimate the entropy loss during helper data construction for varying error cor-
rection codes in the fuzzy extractor, but were criticized to be overly pessimistic [86]. Maes et
al. [250] present methods that calculate the entropy leakage exactly, and de-biasing which re-
solves bias on an FPGA. Liu et al. [242] present countermeasures to bias on an MCU.

Modeling Attacks. PUFs are susceptible to modeling attacks [119, 344, 400]. Rührmair et
al. [320] apply machine learning to challenge-response pairs of PUFs with many inputs and
predict their outputs, which requires the ability to eavesdrop PUF responses. Strieder et al. [357]
exploit helper data of PUFs with many inputs for training. PUFs with few (or only one) input
are less vulnerable to learning attacks due to restricted input/output variables.

Hardware (Invasive) Attacks. Helfmeier et al. [170] cloned SRAM of a common IoT device
using a focused ion beam instrument. Zeitouni et al. [411] present a side-channel analysis on an
SRAM PUF, using remanence decay. Both attacks require physical control of the device under
attack.
These analyses are tied to specific algorithms, or dedicated PUF implementations in hardware

or software. A practical threat model that analyses the remaining security risks of SRAM PUFs
on low-end hardware from the perspective of an IoT operating system is missing. We will fill
this gap in Section 10.7.

168

10.2 Experimental Setup

10.2 Experimental Setup

We want to analyze the properties of uninitialized SRAM on a large scale, and assess our
measurements on IoT-typical constrained hardware. Therefore, we chose an existing testbed
as an evaluation environment (Section 10.2.1), which provides many off-the-shelf nodes (Sec-
tion 10.2.2) and grants open (remote) access for reproducibility. The drawback of this approach,
however, is that we cannot vary the operational conditions of nodes.
On the software side of our experiments (Section 10.2.3), we chose the open source IoT

operating system RIOT [34] for three reasons. (i) RIOT is an off-the-shelf OS that is used in
many IoT deployments [96] with support of numerous heterogeneous platforms. In RIOT, PUF
support brings benefit to a broad range of systems and applications. (ii) It provides support for
the FIT IoT-LAB testbed nodes. This allows us to easily benefit from the existing tools and
facilities. (iii) An active open source community, which had first hand experiences with initial
SRAM PUF trials [194], facilitates code contributions.

10.2.1 Testbed Environment

We conduct our experiments on the FIT IoT-LAB testbed [5] to attain a large number of nodes.
The testbed consists of seven sites with different topologies and a total number of more than
1500 nodes of 25 architectures. The M3 nodes make up the majority (≈ 800 nodes) and reflect
properties of commercial off-the-shelf class 2 IoT devices [58]. Each node is attached to a control
node which provides a power monitor (INA220), allowing to measure the operational voltage and
current that flows to the MCU and the external board components. Nodes are deployed across
facilities of INRIA in France. Hence, all our experiments are conducted under environmental
conditions of work offices.
We use 708 M3 nodes in our experiments. To automate experiment control, we utilize the

command-line interface iotlabcli. Nodes serial outputs are piped to individual log files. Note,
when reproducing the experiments, high data volumes are generated, while testbed users have
limited disk quota. Data compression, moving files periodically, and asking for increased quota
can assist.

10.2.2 Hardware Platform

Testbed. M3 nodes consist of a 32-bit ARMCortex-M3 CPU, integrated into the STM32F103REY
MCU, which runs at max. 72MHz and provides 64 kB embedded SRAM, and 512 kB internal
flash. The MCU offers common features that we exploit: (i) Low-power standby mode turns off
the whole SRAM. All content in SRAM and registers are lost, except for the backup domain. (ii)
Real-time clock remains operable during standby, to trigger an interrupt for wakeup. (iii) Power
control registers indicate whether the MCU has been in standby after a system restart. But
this MCU lacks hardware security features, i.e., a random number generator, crypto-accelerator,

169

Chapter 10 Seed- and Key Generation with Physical Unclonable Functions

and secure key storage. M3 nodes additionally connect external components via SPI: An 16MB
external NOR flash allows storing data persistently, and a low-power radio which is the only
alternative to gather entropy on this board, by sampling antenna noise.
The microchips of the M3 nodes in the FIT IoT-LAB testbed originate from two lots and four

wafers, two of which build the majority of devices. We conducted several experiments to find a
systematic variation. But we could not find significant differences between these batches, hence,
we treat them equally in our evaluation and exclude the results of the batch comparisons.

Local. To evaluate the PUF performance on heterogeneous IoT devices with varying archi-
tectures, we also perform local experiments on two different off-the-shelf IoT platforms, and
measure the processing time on a single device per platform: The ESP32 , which consists of
an Xtensa 32-bit CPU with 520 kB SRAM, 4MB flash, and operates at max. 240MHz. The
HiFive which consists of a RISC-V RV32IMAC CPU that provides 16 kB SRAM, 4MB off-chip
flash, and operates at max. 320MHz.

10.2.3 Software Platform

We base our PUF implementation on RIOT 2022.01. It supports different architectures (8–32-
bit CPUs), over 150 MCUs, and nearly 250 IoT boards. The OS provides multi-threading with
preemption, power management, and a hardware abstraction layer to enable portability. We
utilize and complement these features in our implementation (Section 10.4). RIOT provides
its own IPv6 network stack (GNRC) and supports multiple low-power radios as well as wired
interfaces. For the M3 nodes, we added drivers to access power control registers and the
external flash memory. To broaden our experimental basis, we integrated the PUF initialization
to the ESP32 and HiFive architectures.
In our experiments, we trigger repeated power cycles on the nodes. For this, we utilize existing

RIOT interfaces, namely, the power management (PM) interface to enter standby, which turns-
off the SRAM, and the real-time clock (RTC) to generate a future wakeup interrupt.

10.3 Large Field Study of Uninitialized SRAM

10.3.1 Inter-device Correlation

We want to analyze the similarity between individual SRAM patterns. Therefor we read the
whole memory of 708 available M3 nodes and compute the Pearson product-moment correlation
coefficient which is defined as:

r(a, b) =

∑m
i=1(ai − ā)(bi − b̄)√∑m

i=1(ai − ā)2
√∑m

i=1(bi − b̄)2
(10.4)

where a and b denote the SRAM pattern of two devices with a length of m=64 kB. Figure 10.1
presents the matrix of correlation coefficients between the SRAM readout of all node pairs, as

170

10.3 Large Field Study of Uninitialized SRAM

0 100 200 300 400 500 600 700

Device [#]

0

100

200

300

400

500

600

700

D
ev

ic
e

[#
]

Corr. Coef. = 1

0.02

0.03

0.04

0.05

0.06

Figure 10.1: SRAM correlation between 708 nodes. The Pearson product-moment correlation
coefficient of each pair is encoded in gray intensity. Autocorrelation results in a
coefficient of one.

a measure of linear dependency between nodes. A coefficient of 1 indicates perfect correlation
(pairs are equal), -1 represents negative correlation (pairs are opposite), and 0 means (linear)
independence. All coefficients are small with a small positive bias (0.02–0.06), which indicates
high independence between the memory patterns and motivates their usage as PUF source.
Certain samples, however, indicate a slightly increased coefficient when compared to others. To
better understand these correlations, we chose to further analyze the inter-device relations with
a metric that incorporates the bit locality, e.g., the bit-alias [251] quantifies inter-device bias
(cf. Section 10.3.2).

10.3.2 Analysis of Static Bias

We calculate the bit-alias which quantifies the proportion of zeros and ones at every bit position
j in the memory pattern between n devices:

p̂j =
1

n

n∑

i=1

pj,i, (10.5)

where pj,i denotes the measured bit probability at position j of device i. If the probability
for attaining one or zero is unbiased, the expectation value at each bit position equals 0.5 and
the distribution of the empirical p̂j-values follows a normal (error) distribution. Our evaluation

171

Chapter 10 Seed- and Key Generation with Physical Unclonable Functions

0.3 0.4 0.5 0.6 0.7

Relative Bit Aliasing

0

2

4

6

8

F
re

q
u
en

cy

Figure 10.2: Distribution of bit-alias values between 708 nodes.

indicates repetitive pattern with (multiples) of 32Bit blocks. Rahman et al. [312] find similar
effects and relate this to the physical layout of the SRAM. Figure 10.2 displays the histogram of
the bit-alias metric for all bit positions of the 64 kB memory. It reveals a bimodal distribution
with peaks around 0.4 and 0.6. Previous work [396] suggested a double-peak distribution, but
its sample size was too small [397]. To the best of our knowledge, our results show the first
SRAM evaluation of the bit-alias with an error around 3%.
Inter-device correlations in regions of SRAM can be beneficial for an attacker. Analysing a

large set of equally produced devices may assist prediction of SRAM bit values at certain posi-
tions. In detail, a deviation of≈ 0.1 from the ideal bit probability of pj = 0.5 increases the chance
of guessing the correct value by 10%. This lowers the inter-device entropy, which we quantify
in Section 10.5.1, and requires careful consideration when generating keys (see Section 10.6.2).
While not all SRAM technologies seem to be affected by this inter-device correlation, a pre-
selection of uncorrelated bits for the enrollment process can mitigate this effect [312].

10.3.3 Analysis of Aging

The MCU age is noted on the chip package and our local M3 sample devices indicate a pro-
duction date in January 2012. This is in line with testbed statistics that date back the first
experiment to September 2012. We further managed to get experiment metadata from the
testbed team. Figure 10.3 displays the active utilization time of our test nodes since their
deployment until the end of 2021. The majority of our publicly accessible nodes have been
operated 2.5–8 thousand hours since their deployment. Thus, in contrast to prior work, we
analyze devices that naturally aged under real-world conditions.
We want to analyze whether certain devices or memory blocks show anomalous behavior

caused by aging or wear-out from similar firmware images. To that end, we quantify the intra-
device bias by calculating the relative hamming weight:

HW (r) = |{ri 6= 0 : 1 ≤ i ≤ m}| · 1

m
(10.6)

where r denotes the bit value of one device at position i in a block of the length m. Hence, the

172

10.4 PUF Design for the RIOT OS

0 100 200 300 400 500 600 700

Node [#]

0

2500

5000

7500

10000

U
sa

g
e

[h
]

Figure 10.3: M3 node active experiment operation time in hours. Nodes are ranked according
to their utilization.

hamming weight reflects the proportion of ones (p1). The proportion of ones and zeros should
be equal (p1 = 1− p0 = 0.5) without bias. Figure 10.4a displays the intra-device measurements
across the whole memory of all boards (m=64 kB) which shows an average hamming weight of
0.508± 0.003(σ). This slight (positive) bias is the effect of aging and is still small compared to
the results of Guin et al. [139] who find biases of up to 0.54 after 336 hours (14 days) of stressed
operation.
Figure 10.4b displays the hamming weight separated into memory blocks (m=1024Bytes).

We show average values across all devices, and two subsamples that include 50% of the most
and least used devices. (i) An increase at ≈ 4 kB is introduced by the bootloader. In real-world
implementations, this can barely be avoided and PUFs should exclude SRAM at that region. (ii)
The bias of heavier utilized devices increases less used ones by ≈ 0.0025, which confirms aging
by operation, with a small magnitude. (iii) Besides (ii), the first ≈ 26.5 kB of memory exhibit
a higher skew compared to the remaining. Common firmware sizes of large-scale networking
experiments on these testbed nodes report (e.g., [142]) memory requirements of 22–28 kB in
RAM, which matches the region of systematic wear-out. Hence, we report strong indications
of visible wear-out effect by long-term testbed utilization and avoid that memory region in
our PUF design (Sections 10.4.4 and 10.4.5). Operating systems likely organize the program
memory from the start of the address space. At the same time, real- world firmware images do
not necessarily utilize the whole memory (uniformly), which fosters bespoke unbalanced wear-
out effects. Testbed operators as well as PUF developers should include anti-aging techniques
in the future to mitigate wear-out patterns of various characteristics in practice.

10.4 PUF Design for the RIOT OS

A wide availability of PUFs requires grounding in the ecosystem of an OS. The heterogeneity
of supported platforms requires an integration into the configuration and the build system to
adjust the diverse device properties. OS tests and tools provide useful interfaces to verify PUF

173

Chapter 10 Seed- and Key Generation with Physical Unclonable Functions

0 200 400 600

Node [#]

0.480

0.500

0.520

0.540

p
1

All devices
25-75th percentile

Ideal

(a) Avg. and 25-75th perc. weight by device.

0 8 16 24 32 40 48 56 64

Memory Address [kiB]

0.504

0.508

0.512

0.516

p
1

26.5kiB

50% most used
All devices
50% least used

(b) Avg. weight by address.

Figure 10.4: 64 kB SRAM is split and analyzed in blocks of 1024 Bytes. The relative hamming
weight is displayed for every device (10.4a) and memory address (10.4b); the latter
distinguishes the half most/least used devices.

viability and to assess crucial configuration parameters (e.g., required SRAM lengths). PUFs
bootstrap system security and must therefore extend the OS startup code, module initialization,
and finally the secure operation. Figure 10.5 presents an overview of our PUF integration in
RIOT for creating (i) a simple seed for general purpose PRNG initialization, (ii) a secure seed for
CSPRNG initialization, and (iii) a secret key. In addition, to ensure qualified PUFs, we provide
a soft-reset detection mechanism that prevents initialized SRAM (i.e., caused by insufficient
power-off cycles) from generating seeds or keys.

10.4.1 Compile-time Configuration

RIOT supports many boards of largely varying hardware capabilities [55] that demand for
a systematic compile-time modeling of its features. This modeling enables extensible code
paths where possible, and facilitates reduced feature sets on platforms without certain hardware
capabilities. RIOT uses a feature modeling based on Kconfig [366, 196]. Kconfig allows defining
symbols that represent features, based on which dependencies and conditional default values
are defined. For the PUF module, a platform can indicate capabilities as follows. HAS_PM

enables low-power mode, and HAS_PM_TIMER enables programmatic wakeup from low-power
mode. HAS_PM_INDICATION enables additional power-cycle detection during soft-reset detection.
HAS_CRYPTO_ACCEL enables crypto hardware acceleration (future work).
Both seeders (Section 10.4.4) and the key generator (Section 10.4.5) provide configurations

for PUF algorithms: (i) separate start addresses in SRAM, (ii) length of the considered SRAM

174

10.4 PUF Design for the RIOT OS

Modules Init
(CS)PRNG

Protocols &
Application

General Purpose Seed

1. Seeder 2. Seeder

Key GeneratorR
es

et
D

et
ec

t.

PUF Module

Secure Seed

Secure Key

SRAM / Entropy

Flash / Configs.

Kernel Init

Figure 10.5: Integration of the SRAM PUF module in the IoT operating system RIOT.

blocks, (iii) choice of a cryptographic hash function,(iv) configuration of the error correction
code for the key generator. Default values are chosen according to our evaluation.

10.4.2 Integration into OS Startup Routine

System Reset. RIOT provides a reset_handler, which is the start point after every system
reset. A default startup routine follows four steps. (i) The data section is loaded from flash
to RAM. (ii) The .bss (block starting symbol) section (used for uninitialized data) is set to
zero. (iii) The MCU and board specific components are initialized. (iv) The OS kernel is
loaded and (v) auto_init initializes modules prior to starting applications.We perform our
PUF initialization prior to step (i), to obtain a pristine response of uninitialized memory.

Linker Attributes and Erasure. To prevent PUF outputs from erasure by the subsequent
startup routine, a .noinit section in the linker script of every supported CPU architecture defines
a PUF attribute with which we declare variables used to store the PUF seeds and keys. Seeds
and the key are consumed during auto_init and unavailable by the end of the initialization
(see Section 10.4.6).

Startup Delay. PUF execution adds a delay (see Section 10.6.3) to the system startup, which
is primarily introduced by resource-intensive crypto-operations on constrained devices [196]. If
available, crypto-accelerators can reduce that time. When operated in software, the execution
may degrade due to the early PUF execution on perhaps uninitialized system clocks, prior to
MCU initialization. An interface that allows conditional PUF execution during the next reset
can mitigate this affect in the future.

10.4.3 Detection of Soft Resets

Memory must be uninitialized for PUF operations, which is achieved by a sufficiently long
power-off cycle. Short resets can occur, however. In such cases, the PUF procedure must not be
executed to prevent duplicate seeds and false key construction. Kietzmann et al. [199] present
a simple detection mechanism to catch soft-resets. In a nutshell, the soft-reset writes a memory
marker to a known address. On soft-reset, the marker will persist in memory. Conversely,
a sufficient power-off cycle changes the value of the marker and enables PUF operation. One
caveat of this approach is a false negative decision, which can be triggered by only a single bit flip

175

Chapter 10 Seed- and Key Generation with Physical Unclonable Functions

in the marker variable, while old values stay in memory. In a baseline experiment we analyzed
the hamming distance between the marker variable and the expected value and decreased the
duration of the low-power cycle. Our results show notable signs of memory retention (decrease
of the hamming distance) below 3ms, which should be excluded. Longer cycles, however, may
still incur memory retention, sometimes in the order of seconds [332].

Distance Detection. A future soft-reset detection stage could improve the false negative
sensitivity and incorporate a distance metric to the detection algorithm. Additionally, an in-
dividual marker per device could utilize the inverse startup pattern, maximizing the range of
potentially flipping bits, which increases granularity.

Sleep State Report Interface. The memory marker is at risk to be manipulated during
runtime, by software defects, or intentionally by adversaries that manage to execute malicious
code (Section 10.7). This can cause an undetected soft-reset, resulting in zero-entropy seeding
and false key reconstruction. We extend the power management (PM) API in RIOT by a
function to report the preceding state after a reset. Only if the marker-based detection fails and
the system starts from deep sleep, PUF operation is executed. Not all platforms support this
feature, unfortunately.

10.4.4 Random Seed Generation

Uninitialized SRAM contains randomness for the seed generator and is compressed to provide
a concise value of maximized entropy. We provision two seed generation functions that take as
input the SRAM start address and considered memory length. By default, we utilize a randomly
chosen start address in the center of the memory map, to circumvent systematic wear-out effects
that likely occur in the beginning of the RAM (cf. Section 10.3.3), and we locate regions for
both seed functions successively. Addresses and lengths can be configured, though. A dynamic
mechanism could thus mitigate potential aging phenomena.

Construction. Our first seed is extracted by the lightweight DEK hash [205] and compressed to
an integer value, which is utilized to seed a non-secure general purpose PRNG. The second seed
is created for security purposes and bases on compression by a cryptographic hash (SHA256
by default). Hence, the size of the seed corresponds to the digest length. It can be utilized
to feed an entropy accumulator, or the CSPRNG initialization directly. Potential CSPRNG
re-seeding [199], however, requires a power-cycle to obtain fresh entropy from the SRAM.

General Purpose vs Secure Seeds. General purpose seeds must not be used in cryptographic
contexts due to insufficient entropy and lack of forward secrecy. Conversely, cryptographic seeds
can be used for general purpose, but exhibit higher cost (see Section 10.6.3). The same seed
must not be used for both types of generators [199], since typical PRNGs are invertible, hence,
their outputs disclose information about the initial value. Similarly to PRNGs, our general
purpose seed generator is invertible. Consequently, this seed can disclose information about the

176

10.4 PUF Design for the RIOT OS

Golay
Encoder

Repetition
Encoder Helper

Random
Offset

Crypto
Hash

KeySRAM

(a) Enrollment

Golay
Decoder

Random
Offset Helper

Golay
Encoder

Repetition
Encoder

Crypto
Hash

Key

Repetition
Decoder

SRAM
(Noisy)

SRAM

(b) Reconstruction

Figure 10.6: A fuzzy extractor based on the code-offset construction. Offset is created at ran-
dom. Deployments consist of enrollment, and reconstruction during regular device
operation.

initial PUF response. Hence, cryptographic seed- and key generators should never operate on a
memory region that was used by the simple seeder before.

Secure Seeds on Soft Reset. A fresh and secure seed that was used on CSPRNG initializa-
tion should be disguised after use to preserve privacy. Hence, we hash it after CSPRNG seeding
and keep the updated value in memory, for a future soft-reset. This prevents backtracking of
former random sequences. A future soft-reset adds a soft-reset counter and re-hashes it. This
provides statistical variation among soft-resets (general purpose seeds follow that same proce-
dure). Disclosure of the updated seed, however, makes future sequences predictable. Hence, a
status indication field (using the .noinit PUF attribute) can report the PUF status persistently.
CSPRNG initialization can follow its own policy to accept or reject seeding after soft-reset.

10.4.5 Key Generation

Our key generator follows the approach of the code offset method [182]. Deployments of such a
system consist of two phases, namely the enrollment (Figure 10.6a), which has to be executed
in a trusted environment, and the reconstruction (Figure 10.6b), which reflects regular device
operation.

Enrollment. Our key generator provides two enrollment options. (i) Helper data is calculated
on the device itself. This greatly simplifies a deployment and allows for re-enrollment during
deployment time (e.g., via firmware updates). Re-enrollment must be authenticated, though, to
prevent invalidation of intact helper data. Self-assessment takes a reference measurement uti-
lizing a low-power power-cycle. A true randomness source is required to generate the random
code offset [182] (cf. Figure 10.6). We utilize the PUF based secure seed (see Section 10.4.4)

177

Chapter 10 Seed- and Key Generation with Physical Unclonable Functions

to initialize a crypto-secure SHA256PRNG, which provides unpredictable code offsets of con-
figurable lengths. (ii) Helper data is calculated externally, which is convenient for devices with
very limited hardware resources. Thereby, a reference SRAM readout is transmitted via UART
and an external (trusted) party deals with code offset generation and encoding. In turn, helper
data is formatted into a header file that is part of the subsequent compilation of the firmware.
This option requires individual compilation for every device to deploy.
For the error correction scheme, we rely on lightweight alternatives, namely, a concatenation

of the Golay [127]- and repetition codes, which provide output bit error probabilities of approx.
10−5 to 10−7 for common PUF failure rates and lengths [59]. Our modular OS integration
allows a seamless replacement of corrections codes in the future.

Reconstruction. A device can reconstruct the key after a power-off cycle, utilizing the helper
data. After error correction, the key is calculated by a secure hash (SHA256 by default) and
stored in a reserved key variable (see Section 10.4.2) to prevent overwriting by subsequent OS
startup code. Isolated memory resources are more secure and could hold keys in future, if
available on the hardware platform.

10.4.6 Access to PUF Primitives

Random seeds and the secret key are not directly accessible by the user to prevent unauthorized
readout, misuse, or tampering. Instead, this vulnerable data is utilized during module initial-
ization, before application code starts in main. Seeds are consumed on (CS)PRNG initialization
and further processed to obfuscate secret start values, as well as to prepare for the case of a
future soft-reset (Section 10.4.4). As a result, application code simply faces a readily usable
(CS)PRNG. The secret key can be utilized for the initialization of consuming modules, e.g., as a
master key for deriving additional keys that bootstrap security protocols, or to decrypt secured
storage. By the end of the module initialization, the PUF derived key is erased, to prevent direct
access by the main application. Hence, it does not persist through a soft-reset but requires a
real power-off cycle to be re-generated. Alternatively, the key can be stored in isolated memory
with controlled access in the future.

10.5 Evaluation of OS-integrated SRAM PUFs

10.5.1 Estimation of the Min. Entropy Convergence

Bitwise Inter-device Minimal Entropy. We want to evaluate the unpredictability of
uninitialized SRAM between multiple devices using the min. entropy. (i) Based on experiment
data, we measure the relative frequency pmax = max(p, 1 − p) for attaining one (p) or zero
(1 − p) at the same SRAM bit position of the different devices. Based on a vector of pmax

values for every bit position, we evaluate the empirical min. entropy for varying sample sizes
(cf. Equation 10.2) For this, we pick ten sets of devices randomly, and calculate their average

178

10.5 Evaluation of OS-integrated SRAM PUFs

0 100 200 300 400 500 600 700

Sample Size [#]

0.4

0.6

0.8

1.0

R
el

.
M

in
.

E
n
tr

o
p
y

Hmin(pmax=0.5)

Hmin(p̂)

Hmin(pmax=0.7)

Ĥmin

1.000

0.515

0.746

(a) Convergence of the min. entropy estimators for differ-
ent bias values

0 100 200 300 400 500 600 700

Sample Size [#]

0.000

0.001

0.002

S
td

.
D

ev
ia

ti
o
n σ(Ĥmin)

(b) Standard deviation of min. entropy measurements

Figure 10.7: Expectation and measurement of the min. entropy for varying max. probabilities
(pmax) and increasing sample sizes.

min. entropy and p-values. (ii) An estimator theoretically calculates the expected min. entropy
or the empirical estimator as a function of the sample size, i.e., the number of nodes, and the
maximum probability for logical zero or one.

Robustness of Estimator. To assess the validity of our min. entropy measurements, we eval-
uate its convergence rate. We compare our measurements with a sequence of perfect Bernoulli
trials and quantify the convergence for different values of pmax (cf. Section 10.1.2).
Figure 10.7a presents the results with convergence limits labeled at the right y-axis. For

different pmax values, the estimated convergence rate varies. Exemplary, a pmax of 0.7 decreases
the number of samples needed for convergence, but it also decreases the relative min. entropy
Hmin(pmax = 0.7) down to ≈ 0.5. In contrast, the ideal case of pmax = 0.5 should converge
to Hmin(pmax = 0.5) ≈ 1, which however does not occur within 700 displayed samples. This
demonstrates the need for large sample sizes.
In our measurements, we find a relative frequency of p̂1 = 0.596, which slowly converges to

a min. entropy of Ĥmin ≈ 0.749 after more than 125 samples. The standard deviation of our
measurements σ(Ĥmin) yields 2.3 · 10−3 at max. (Figure 10.7b), and decreases with increasing
sample sizes. A comparison of measurement results with our empirical estimator shows almost
perfect agreement. We conclude that our measurements with 708 nodes are empirically robust.

10.5.2 Blockwise Evaluation of the Uniqueness

Evaluation between Devices. We want to quantify the device uniqueness and analyze
the fractional hamming distance [165] between devices and blocks, as a preparation to derive
unpredictable secrets:

HD(ra, rb) = |{ra,i 6= rb,i : 1 ≤ i ≤ m}| · 1

m
(10.7)

where ra,i and rb,i denote the bit values of two devices at position i in a block of the length

179

Chapter 10 Seed- and Key Generation with Physical Unclonable Functions

8 16 24 32 40 48 56 64

Memory Address [kiB]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
ra

c.
H

a
m

m
in

g
D

is
ta

n
ce

Ideal Hamm. Dist. (left axis)

0.0

0.2

0.4

0.6

0.8

R
el

a
ti

v
e

M
in

.
E

n
tr

o
p
y

Rel. Min. Entropy (right axis)

(a) Between 708 nodes.

8 16 24 32 40 48 56 64

Memory Address [kiB]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
ra

c.
H

a
m

m
in

g
D

is
ta

n
ce

0.00

0.02

0.04

0.06

0.08

R
el

a
ti

v
e

M
in

.
E

n
tr

o
p
y

Rel. Min. Entropy (right axis)

Avg. Rel. Min. Entropy (right axis)

(b) Between ≈ 700 reboots on one device.

Figure 10.8: SRAM evaluation. A total of 64 kB SRAM is split and analyzed in blocks of
1024Bytes. Boxes show fractional hamming distances between all blocks (left y-
axis) and lines show min. entropies (right y-axis). IQR: 25th–75th percentile,
whiskers: Q1-1.5·IQR and Q3+15·IQR.

m=1024Bytes. Figure 10.8a displays our results for the fractional hamming distance between
unique device pairs. Assuming a location-independent occurrence of zeros and ones, the ideal
distance is 0.5. Our measurements fluctuate around an average value of 0.48 except for the
block at 4 kB (bootloader, cf. Section 10.3.3), a slight deviation from the optimum case. Based
on these results, we consider memory pattern as unique.

Figure 10.8a additionally presents the blockwise min. entropies (cf. Equation 10.1) between
all devices as a lower bound of its uniqueness. The min. entropy is commonly used to determine
input lengths in crypto-contexts (e.g., key lengths). Our results reveal a min. entropy of ≈ 75%
for each block, which is in agreement with Section 10.5.1 and sufficient to derive unique secrets.
As an example, a naive key generator would require 171Bits of uninitialized memory to create
a 128Bit maximum entropy key.

Evaluation on a Single Device. We apply the same methodology to ≈ 700 readouts on
the same device to quantify its initial randomness, required to derive distinct seeds. Thereby
we utilize a low-power cycle with a sleep delay of one second. Figure 10.8b presents our
results for the blockwise hamming distances and min. entropies. The intra-device hamming
distances reveal a different picture than the inter-device analysis. Even though a majority of
bits remain stable over retries, a small portion adds noise, which leads to intra-device distances
of ≈ 0.06 (average). This behavior remains stable among all memory blocks. Bit flips lead to
an intra-device min. entropy of 6.8%±0.51(σ), which supports seed generation. Conversely, a
reproducible key generator must eliminate these. To dimension sufficient correction schemes,
we also search for the bit error probability in every block and between all measurements, and
find the maximum at pe=0.086.

180

10.6 Analysis of Seed and Key Generation

0 10 20 30
Bit [#]

0.2

0.5

0.8
p

1
=

1
−
p

0 Min. Entropy: 93.62%

0 10 20 30
Bit [#]

Min. Entropy: 89.05%

Figure 10.9: Evaluation of general purpose seeds. Index based distribution of bit probabilities
throughout 32Bit integer values and min. entropy per device.

10.6 Analysis of Seed and Key Generation

10.6.1 Analysis of Random Seeds

We evaluate the quality of seeding and generate two seeds on each startup, (i) a secure 256Bit
seed with maximum entropy, (ii) a 32Bit general purpose seed for non security purposes. Our
evaluation program triggers periodic power-off cycles of 1 sec. over two days, which results in
≈ 180 k values per device, and 45.1Mbit secure / 5.7Mbit general purpose seed bits.
Secure Seeds. We calculate the required bits from SRAM based on the intra-device min.

entropy of ≈ 7% as obtained in Section 10.5.2. We account for the entropy loss using the leftover
hash lemma [37] (L = log2(1/ε) with ε = 2−256 close to uniform) while targeting at 256Bit
entropy in our final seeds. This requires a minimum of 7314Bits/914Bytes of uninitialized
memory. We conservatively chose 1024Bytes. It is worth noting that SRAM portions should be
chosen based on a deployment specific initial evaluation of SRAM properties. All seed values
are unique and uniformly distributed due to the properties of the SHA256 hash.

General Purpose Seeds. A min. entropy of 7% requires a minimum of 457Bits/57Bytes of
SRAM to provide 32Bit of seed entropy. Conservatively, we choose 128Bytes with well aligned
values in return. Figure 10.9 presents the probabilities of p for every bit in the 32Bit seed,
from two sample devices. They roughly follow a normal distribution and provide 89–95% min.
entropies, which we consider sufficient for non-security purposes.

10.6.2 Analysis of the Fuzzy Extractor for Key Generation

Figure 10.10 visualizes the fuzzy extractor properties for varying configurations (cf. Sec-
tion 10.4.5). Similar to the seed evaluation, every configuration produces ≈ 180 k values. We
vary the code offset from 9 to 24Bytes on the y-axis, and the number of repetitions by the
repetition error-correction code between 1–13 on the x-axis. A repetition of 1 reflects a sin-
gle occurrence of the code word. The Golay code is active in all cases. Lower right triangles

181

Chapter 10 Seed- and Key Generation with Physical Unclonable Functions

in Figure 10.10 (blue) encode the length of required SRAM bits. The same length is required
for helper data on non-volatile memory.

1 3 5 7 9 11 13

Repetitions [#]

9

12

15

18

21

24

C
o
d
e

O
ff

se
t

[B
y
te

s]

1.
4e

-0
1

2.
1e

-0
1

2.
3e

-0
1

2.
5e

-0
1

5.
5e

-0
1

7.
9e

-0
1

7.
3e

-0
5

9.
5e

-0
5

1.
1e

-0
5

2.
3e

-0
4

2.
3e

-0
5

1.
9e

-0
2

<
3e

-0
8

<
2e

-0
8

<
2e

-0
8

<
1e

-0
8

<
1e

-0
8

<
6e

-0
9

<
2e

-0
8

<
1e

-0
8

<
1e

-0
8

<
1e

-0
8

<
8e

-0
9

<
4e

-0
9

<
9e

-0
9

<
7e

-0
9

<
5e

-0
9

<
5e

-0
9

<
4e

-0
9

<
3e

-0
9

<
7e

-0
9

<
6e

-0
9

<
5e

-0
9

<
4e

-0
9

<
3e

-0
9

<
3e

-0
9

<
6e

-0
9

<
5e

-0
9

<
4e

-0
9

<
3e

-0
9

<
3e

-0
9

<
2e

-0
9

0 1000 2000 3000 4000
SRAM Length [Bits]

020406080100120140160
Leftover Entropy [Bits]

Figure 10.10: SRAM length, remaining entropy, and measured reconstruction failure rate for
different configurations of the fuzzy extractor.

Remaining Key Entropy. A naïve estimation of the entropy of a key output would multiply
the SRAM length by the inter-device min. entropy to determine its cryptographic strength. For
example, a code offset of 9Bytes with repetition 1 leads to an SRAM length of 18Bytes/144Bits;
multiplied with a min. entropy of ≈ 0.75 would then yield 108Bits of entropy in the SRAM used
for key derivation. For biased SRAM, however, publicly available helper data leak information
about the generated key [206, 86, 250], which is due to the concatenation of the two error
correction codes as part of the fuzzy extractor. This leakage further reduces the remaining
entropy in the key and requires additional random code offset- and SRAM bits to compensate.
Maes et al. [250] derived methods for calculating the leakage and the remaining entropy as a
function of bias, which reflects the average-case resistance against brute force attacks [257].

182

10.6 Analysis of Seed and Key Generation

We determine the remaining entropy for varying fuzzy extractor configurations and for our
measured SRAM bias of p̂1 = 0.596 (cf. Section 10.5.1). Figure 10.10 visualizes the results for
various configurations of the fuzzy extractor. The upper left triangles (red) reflect the remaining
key entropy after fuzzy extraction. Increasing code offsets increase the required SRAM length
(i.e., initial entropy) and the remaining entropy in the extracted keys. Increasing repetitions
unsurprisingly increase the required input lengths too, whereas the remaining entropy shows a
reversed trend and increases with fewer repetitions. Code offsets of 24Bytes expose remaining
entropies from 182Bits (1 repetition) down to 82Bits (13 repetitions). A random code offset of
24Bytes with 5 repetitions provides 144Bits of remaining entropy and meets the recommended
security strength [39] of 128Bits key entropy.

Reliability. Figure 10.10 also presents the empirical reconstruction failure rate, which is intro-
duced by bit errors between SRAM readouts that cannot be corrected by the fuzzy extractor.
Increasing code offsets increases the error rate (notable in Figure 10.10 following repetitions 1
and 3 for bottom to top). Following repetitions fewer than five, all fuzzy extractor configurations
reveal a notable failure probability, which contradicts the common key reconstruction error rate
of 10−6 [138, 374, 250, 172]. Five or more Repetitions expose errors smaller than 3 ·10−8. In our
measurements, no uncorrected bit error occurred in reconstructed outputs and the error values
represent the multiplicative inverse of all successfully reconstructed bits.

Discussion. Increasing the SRAM length is undesirable since memory is sparse on very
constrained IoT devices. Repetitions should remain few to avoid entropy loss. Conversely,
multiple repetitions are required to provide an acceptable reconstruction rate, in particular
for deployments of large SRAM noise level [332]. A code offset of 24Bytes and five repetitions
preserves sufficient key entropy on ourM3 nodes at a failure rate that meets the requirements for
a PUF design. Other fuzzy extractor configurations either sacrifice reliability by an intolerable
reconstruction failure rate at the required level of security, or they sacrifice the remaining key
entropy. Our overall balanced strategy provides highly unique and reliable device identities at
an acceptable security level. Pre-processing of the SRAM pattern as proposed in [404, 312, 242]
can further reduce the required SRAM length and increase the remaining key entropy from
biased SRAM PUFs, which promises to improve the performance at the same or better security
strength.

10.6.3 Resource Overhead

Processing Time. We measure processing times on M3 nodes and compare the PUF perfor-
mance with two different off-the-shelf IoT platforms: ESP32 and HiFive (see Section 10.2).
First, we analyze the startup latency of two RIOT applications executed on the M3 node,

without the PUF module. (i) Hello world is a minimal single-threaded application and in-
troduces a startup latency of 1.1ms. (ii) gnrc_networking is the standard IPv6 networking
application which initializes many modules in 8 threads prior to execution of application code.

183

Chapter 10 Seed- and Key Generation with Physical Unclonable Functions

Table 10.1: Additional operating system startup latencies introduced by soft-reset detection and
generation of two seeds.

Platform Soft-reset detection [ms] Common routines [ms]
Seed generation [ms]

simple secure

M3 7.65 · 10−3 3.00 · 10−3 0.13 13.65
ESP32 22.59 · 10−3 0.47 · 10−3 0.02 1.37
HiFive 494.91 · 10−3 1.50 · 10−3 0.08 27.03

This requires 10.8ms for startup. The latter case excludes seed generation. Here, we utilize a
static CSPRNG seed, since microcontroller lacks an entropy source (without the PUF).

Table 10.1 presents the processing overhead of (i) soft-reset detection, (ii) common routines,
and (iii) both seed generators. Soft-reset detection is mandatory with our PUF module and
adds a small overhead of < 8µs on the M3 node. ESP32 adds ≈ 23µs and HiFive surpris-
ingly requires ≈ 65 times longer than M3 . This is an effect of PUF operation prior to system
clock initialization. Common processing adds a negligible overhead on all platforms. General
purpose seed generation (≈ 0.02–0.13ms) is lean compared to secure seed generation (up to
14ms on M3) which is comparable to gnrc_networking, though, seed generation from real
entropy sources is slow in general [199]. Secure seeds take ± 12ms on ESP32 and HiFive. Flash
memory access during SHA256 computation is slower on HiFive due to a serial interface. In
agreement with previous measurements, processing times do not directly reflect CPU frequency.
Initializing clocks prior to PUF execution can improve performance in the future, but requires
rearrangement of the OS startup routine. Exemplary, we rearrange the startup code for the M3
platform and find a speedup of almost 7 times, though, system clock speed increased by a factor
of 9, comparing the hardware default state (8MHz) and the RIOT configuration (72MHz).

Next, we look at the processing overhead of the fuzzy extractor and focus on reconstruction
since enrollments happen rarely. We present four relevant configurations for key construction
in Figure 10.11. ‘Helper’ contains readout of the helper data from flash. ‘XOR’ contains the over-
head from bitwise xor operation at the input and output of the fuzzy extractor (Figure 10.6a).
‘Decode’ includes overhead of the concatenated Golay- and repetition decoder, and ‘Encode’
includes renewed encoding of the corrected code offset. ‘Hash’ calculates a digest over the re-
constructed PUF measurement. Finally, ‘Clear’ contains the overhead of re-setting vulnerable
data structures after usage.

The absolute latency (numbers above bars) depends on the SRAM length and requires 10–
20ms on M3 in all presented cases. The order of magnitude compares to gnrc_networking

and the secure seed generator. Reconstruction and seed generation add to the existing startup
latency, though. Other platforms reflect results from Table 10.1 and take 1.6–2.6ms (ESP32)

184

10.6 Analysis of Seed and Key Generation

M3 ESP32 HiFive
0

25

50

75

100

R
el

a
ti

v
e

P
ro

c.
T

im
e

[%
]

19%

34%
52%

38%

11% 11%
18%

29% 28% 33%

∑
20.0 ms 2.6 ms 50.4 ms

Helper XOR Decode Encode Hash Clear

M3 ESP32 HiFive
0

25

50

75

100

R
el

a
ti

v
e

P
ro

c.
T

im
e

[%
]

17%

37%
55%

40%

14% 14%
23%

26% 24% 29%

∑
13.2 ms 2.0 ms 40.9 ms

(a) Reps.: 5, Code offs.: 24Bytes

M3 ESP32 HiFive
0

25

50

75

100

R
el

a
ti

v
e

P
ro

c.
T

im
e

[%
]

19%

34%
52%

38%

11% 11%
18%

29% 28% 33%

∑
20.0 ms 2.6 ms 50.4 ms

(b) Reps.: 9, Code offs.: 24Bytes

M3 ESP32 HiFive
0

25

50

75

100

R
el

a
ti

v
e

P
ro

c.
T

im
e

[%
]

17%

37%
55%

41%

14% 14%
20%

26% 25% 31%

∑
10.0 ms 1.6 ms 34.8 ms

(c) Reps.: 5, Code offs.: 18Bytes

M3 ESP32 HiFive
0

25

50

75

100

R
el

a
ti

v
e

P
ro

c.
T

im
e

[%
]

18%

33%
50%

37%

10% 11%
17%

32% 31% 37%

∑
15.7 ms 2.1 ms 42.4 ms

(d) Reps.: 9, Code offs.: 18Bytes

Figure 10.11: Additional OS startup latency introduced by PUF reconstruction for four config-
urations of the fuzzy extractor on different boards.

and 35–50ms (HiFive) respectively. Readout of the helper data is only notable on the M3
(≈ 17%) due to its slow NOR flash. The relative processing time for fuzzy extraction increases
almost linearly with longer code offsets (Figure 10.11 bottom to top). Increasing the number of
repetitions (Figure 10.11 left to right) also increases the relative hashing time for a reduction in
decoding. Longer inputs affect the cryptographic hash efforts moderately more than the simple
decoder.

In summary, the collection of PUF features moderately delays the startup routines of our
sample applications. This motivates our modular design, which allows for selective configuration
of PUF features. Furthermore, a positive soft-reset detection skips parts of the PUF execution.
The order of tens of milliseconds is still small compared to the required SRAM power-off time
(1 second has proven suitable for different platforms) to generate a fresh memory pattern. In

185

Chapter 10 Seed- and Key Generation with Physical Unclonable Functions

Table 10.2: Current- and energy consumption of the PUF for four configurations of the fuzzy
extractor, and a comparative use case—measured on an M3 node.

Reps. [#] 5 9 5 9 Comparative
caseCode offs. [B] 24 24 18 18

Avg. Current [mA] 8.26 8.19 8.28 8.07 44.72
Energy [µJ] 757.49 941.88 681.06 807.21 439.52

practice, most IoT applications only awake a few times per hour or day, which obviates the
latency overhead.

Energy Consumption. Table 10.2 presents the average current flow and the energy con-
sumption of PUF execution on the M3 node, including the generation of two seeds following
four configurations of our fuzzy extractor, in agreement with Figure 10.11. To compare these
results, we have added a Comparative case which acts as a simple alternative for seed- and key
inclusion without the PUF. Thereby, we create two seeds by requesting noise from the external
radio module (without further conditioning) on the M3 board and assume a pre-provisioned
key to persist in external flash memory, which we import. The quality of randomness, unpre-
dictability, and uniqueness, in this case does not compare to the PUF. PUF execution prior to
systems initialization drains a small current of less than 8.3mA on average, whereas the energy
consumption ranges from 680–942µJ, depending on the input length. This is in line with the
processing time. Our Comparative case drains more than five times higher current compared
to the PUF, for two reasons. First, this case additionally requires the radio module to be pow-
ered. Second, it is operated after systems initialization. This speeds up the execution time
(≈3ms), however, a higher clock speed further increases the MCU current, leading to a total
energy consumption of ≈ 440µJ. In summary, the energy demands of the PUF are on the same
order of magnitude compared to a simplified use case, and increase the consumption by a factor
between 1.5 and 2. Therefore, our PUF contributes conditioned seeds and uniform keys across
devices, at little current drain, without depending on additional external hardware modules on
the boards.

186

10.6 Analysis of Seed and Key Generation

T
ab

le
10

.3
:T

hr
ea
t
ov
er
vi
ew

of
th
e
SR

A
M

P
U
F
in
te
gr
at
io
n.

N
o.

T
h
re

at
d
es

cr
ip

ti
on

A
ss

et
(§
10
.7
.1
)

A
d
ve

rs
ar

y
(§
10
.7
.2
)

S
u
rf

ac
e

(§
10
.7
.3
)

S
T

R
ID

E
(§
10
.7
.4
)

M
it

ig
at

io
n

T
0

R
ea
do

ut
pu

bl
ic

he
lp
er

da
ta
.

A
5

H
ar
dw

ar
e

S2
I

•
C
on

se
rv
.
en
tr
op

y
es
ti
m
.
du

ri
ng

en
ro
llm

en
t.

T
1

R
ea
d/

w
ri
te

da
ta
.

A
1–
5

H
ar
dw

ar
e

S2
ST

R
ID

E
•

E
na

bl
e
de
bu

g
po

rt
lo
ck
.

•
U
se

on
e-
ti
m
e
pr
og
ra
m
.
m
em

or
y
/
w
ri
te

pr
ot
ec
t.

•
C
ut

in
pu

t/
ou

tp
ut

co
nn

ec
ti
on

s.
•

D
ep
lo
y
de
vi
ce

w
it
h
ta
m
pe

r
pr
ot
ec
t.

en
cl
os
ur
e.

T
2

M
an

ip
ul
at
e
op

er
at
io
na

lc
on

di
ti
on

s.
A
1

H
ar
dw

ar
e

S3
T
ID

•
A
dd

it
io
na

le
nt
ro
py

so
ur
ce
s
fo
r
se
ed

ge
ne
ra
ti
on

.
•

Se
ns
or
s
to

m
on

it
or

en
vi
ro
n.

co
nd

it
io
ns

[1
8]
.

T
3

(C
ry
pt
o-
)a
na

ly
si
s
of

ne
tw

or
k
tr
affi

c.
A
1–
3

So
ft
w
ar
e

S1
I

•
C
on

se
rv
.
en
tr
op

y
es
ti
m
.
du

ri
ng

en
ro
llm

en
t.

•
Sh

or
t
er
ro
r
co
rr
ec
ti
on

co
de

s.

T
4

R
ea
do

ut
pu

bl
ic
/s
ec
re
t
da

ta
.

A
5

So
ft
w
ar
e

S1
I

•
C
le
ar

m
em

or
y
af
te
r
us
ag
e.

•
Se
pa

ra
te

m
em

.
fo
r
no

n-
/s
ec
ur
e
se
ed
s
an

d
ke
y.

T
5

O
ve
rw

ri
te

co
nt
ro
ld

at
a.

A
4–
5

So
ft
w
ar
e

S1
T
R
ID

•
E
na

bl
e
ha

rd
w
ar
e
as
si
st
ed

so
ft
-r
es
et

de
te
ct
io
n.

T
6

C
on

tr
ol

op
er
at
io
na

lc
on

di
ti
on

s.
A
1-
3

So
ft
w
ar
e

(&
H
ar
dw

ar
e)

S1
T
ID

•
E
na

bl
e
ha

rd
w
ar
e
as
si
st
ed

vo
lt
ag
e
de
te
ct
io
n.

187

Chapter 10 Seed- and Key Generation with Physical Unclonable Functions

10.7 Security Analysis

PUFs need to maintain unpredictability and unclonability. A secret is embedded in the chip,
hence, no seed or key is stored during device sleep, the prevalent state of a battery-driven IoT
device. Secrets only persist during a short time after system startup, reducing the attack vector
to a limited time. Practical attacks, however, can still exploit a number of vectors. We identify
(i) assets, (ii) attackers, and (iii) attack surfaces of our PUF module, and present (iv) threats.
Risks arise from the combination of specific hardware capabilities, the deployment consideration,
application requirements, and related attacker assumptions. Hence, we are aiming to provide
an overview of the prevalent risks, together with a series of mitigations.

10.7.1 Assets

The most vulnerable resources of the SRAM PUF are the uninitialized memory pattern (A1),
the output of the PUF, namely secure seeds (A2), and the key (A3). These assets must preserve
confidentiality and integrity. In our implementation, the memory marker (A4) (e.g., for soft-
reset detection, see Section 10.4) persist after OS startup and is vulnerable because it controls
the next reset behavior, i.e., can instruct to skip or execute the PUF on a future reset. Hence,
this data must preserve integrity. Non-volatile memory (A5) stores helper data that is required
for key reconstruction. Although helper data is considered public, it is still susceptible. It must
preserve integrity and availability to reconstruct the PUF correctly. Authenticity is also desired,
but conventionally very challenging to achieve.

10.7.2 Adversaries

We distinguish two types of adversaries. First, software attackers that try to compromise,
manipulate, or analyze the system under attack without hardware access. This includes crypto-
analysis and the application of learning algorithms. Software attackers exploit software back-
doors, weak implementations, or software bugs to reveal secret information, or disturb code
execution. Considering networked nodes in the IoT, attackers can be in wireless reach or con-
nected remotely. Second, hardware attackers that have direct physical device access. We
distinguish two types of hardware attackers: Non-invasive attackers try to interface the device
during sleep or operation. They utilize interfaces such as system peripherals, or try to manip-
ulate the device operation conditions. Invasive hardware attackers have deep knowledge and
access to advanced techniques to gather or manipulate information on the silicon level. We
exclude invasive attacks from the remainder of this section because they are (i) rare due to high
financial and knowledge requirements and (ii) very specific to chip constructions, and so are
mitigations, which contradicts our goal to improve the security of cheap, heterogeneous, and
possibly already deployed devices.

188

10.7 Security Analysis

10.7.3 Surfaces

We categorize the attack surfaces into three groups. (i) The communication interface (S1),
e.g., the low-power radio can act as an entry point to inject malicious inputs, or be used for
(crypto-) analysis of protocols that make use of random numbers derived by the PUF seed,
or the key derived by the fuzzy extractor. This interface also acts as entry point for software
updates (future work). (ii) I/Os provide an interface to the MCU (S2). Peripherals such as
UART, SPI, or GPIO can revel system internals through logging output, and open an attack
vector for interaction with the system. More crucial, debugging interfaces such as JTAG open
a direct interface to the chip memory. (iii) The physical presence of a device (S3) provides a
surface to operational conditions (e.g., temperature, magnetic field) and the power supply.

10.7.4 Threats & Mitigations

We classify threats using STRIDE [207] which defines six categories of security threats: Spoofing
identity (S), Tampering with data (T), Repudiation (R), Information disclosure (I), Denial of
service (D), and Elevation of privilege (E). Table 10.3 summarizes our results and presents
mitigations for hardware (T0–T2) and software (T3–T6) adversaries.

T0. An attacker manages to read non-volatile memory, by (physically) connecting to the flash
memory. Without the PUF, persistent keys would be stored as plain text, directly disclosing the
secret. PUFs provide additional security by storing only the public helper data in flash. This
attack, however, may disclose information in cases of high bias. Hence, helper data readout
should still be impractical.

T1. An attacker manages to read/write data such as the uninitialized SRAM pattern, seeds,
or keys. Debug interfaces can directly interact with the processor. Adversaries that manage to
connect to the debug lines and initiate a debug session, can halt the CPU during startup to
read out memory. If the PUF primitive is used for authentication, this enables spoofing and
elevation of privileges without repudiation. Tampering can invalidate operation leading to denial
of service which, however, is simple to achieve with physical device access. It is noteworthy that
PUFs do not introduce additional threats compared to pure software solutions.

T2. An attacker manages to tamper by manipulating environmental operation conditions of
the device. Common examples vary the temperature or control the power supply, e.g., the
power-off time, operation voltage, or startup slope. This affects random physical processes,
including but not limited to SRAM startup state. A reduction of entropy disqualifies seeds and
discloses information, especially in combination with T0. False key reconstruction can lead to
denial of service. Without the PUF, applications require alternative sources for seed generation,
or sometimes use TRNGs permanently which are similarly affected by the environment. PUFs
thus act as an additional source of entropy to increase seed security.

T3. An attacker monitors (secured) network traffic that utilizes random numbers or keys. This
attack might be complemented by owning and analyzing the SRAM on a device of the same type,

189

Chapter 10 Seed- and Key Generation with Physical Unclonable Functions

exploiting bias to predict the initial SRAM pattern. Crypto-analysis of the output of known
algorithms can disclose information of secrets derived from insufficient entropy. Combined with
T0, learning attacks become a risk [357] in these cases. Without the PUF, however, random
numbers are unavailable on platforms without a TRNG which fully prevents security. Keys are
sometimes shipped by the vendor and reutilized across devices, leading to zero entropy on large
quantities of nodes [317, 364]. PUFs enable security contributing a uniformly random seed and
a unique key that is derived from individual device variations.

T4. An attacker manages to read data structures through software backdoors, which challenges
privacy regardless of PUFs (e.g., compromise of keys in working memory). At the time that the
network interface is up and running, SRAM is not uninitialized anymore, and vulnerable seeds
should be cleared. A state compromise of a non-forward secure PRNG, however, potentially
allows backtracking of the initial SRAM pattern and discloses information. Without the PUF,
initial secrets are likely stored persistently in plain text. PUFs reduce this attack surface to
helper data disclosure (see T0).

T5. An attacker manages to overwrite vulnerable data structures (e.g., forcing buffer overflow).
Tampering with the soft-reset memory marker (Section 10.4.3) can trigger a false negative
detection on next reset, which leads to zero entropy seeding and defect key reconstruction.
Similarly, tampering helper data is a risk. This causes information disclosure and enables
denial of service without repudiation. Interfering with code execution threatens code execution
regardless of PUFs, though.

T6. Combines T2 and T5. An attacker manages to tamper with the voltage supply through
software interfaces–likely present in low-power OSs for undervolting. Dynamic adjustments
during program execution that do not affect startup conditions after reset (sleep) are uncritical,
since the PUF is processed before operation. Adjustments that persist after reset, however, are
crucial. A lower voltage causes the reduction of SRAM entropy which disqualifies seeds, leading
to information disclosure. Alternative random sources might be similarly affected by this attack
(see T2).

Threat discussion. PUFs provide non-uniform keys across devices, which means that each
device has to be attacked separately, rather than attacking one and owning all devices. The
success of a hardware attacker depends on (i) the device accessibility and (ii) the additional
security features of the chip. Hardware attacks are typically small-scale, which contradicts the
large-scale characteristics of common IoT deployments. A non-invasive hardware attack requires
high efforts for a single device, whereas many threats can be mitigated by standard hardware
features. High security applications, however, should design specific hardware-security features
and consider device enclosures.

Software attacks are more likely in the IoT since devices become accessible remotely through
the network. Thereby, the attack surface reduces notably, compared to hardware attacks. Pre-
suming an adequate enrollment, the prevalent software-based threat is given by information

190

10.8 Conclusions

disclosure and tampering through a software backdoor (T4–T6). These threats, however, do
not assault the PUF in particular, but generally impede operation of this constrained device
class. Hence, the PUF adds a layer of security in practice. To reduce this attack surface, vendors
include trusted execution environments (e.g., ARM TrustZone, RISC-V PMP) on modern IoT
platforms, that allow for code isolation and privileged memory access. Privileged PUF oper-
ations can improve security by separating user facing, networking, or driver code from secure
operations. Conversely, secure processing environments require a root of trust, which can be
assisted with a PUF. Hence, both features could complement each other in the future.

10.8 Conclusions

This chapter started from the observation that many commodity IoT devices provide little to
no hardware security features, sometimes not even a source of randomness. We presented the
first comprehensive PUF integration into an IoT operating system to fill this gap and broadly
enhance embedded security. Our PUF proposal uses uninitialized SRAM, which is available on
common IoT platforms, and is portable due to an integration below the hardware abstraction
layer of the open-source operating system.

We evaluated SRAM PUF on typical class 2 devices in an open testbed using 708 nodes. This
is, to the best of our knowledge, the first empirical PUF study with several hundreds constrained
IoT nodes, albeit prior work [397] proved the need for large sample sizes for the subtle analysis
of SRAM bias. Our analysis revealed four key insights.

(i) An inter-device distance of ≈ 48% between node pairs shows high uniqueness, which
enables the generation of unpredictable keys. Still, the physical SRAM layout introduces inter-
device bias, which becomes visible when analyzing high numbers of nodes. This reduces the
inter-device min. entropy to ≈ 75%, and thereby the number of unpredictable bits per node.
Key generation relies on public helper data, which may reveal information about the SRAM
pattern in the case of bias. Our analysis of the entropy leakage identified a fuzzy extractor
configuration that results in 144Bits of remaining key entropy at a failure rate of 6 · 10−9.
(ii) An intra-device min. entropy of ≈ 7% allows for secure seed generation on startup. (iii)
The uninitialized SRAM properties of real-word aged, heavily utilized testbed nodes are still
sufficient to achieve (i) and (ii). (iv) A configurable OS integration can seamlessly provide PUF
services to the IoT at moderate start-up overhead while shielding soft resets.

We could also show that a number of hardware-based non-invasive attacks against SRAM
PUFs heavily depend on the availability of platform features such as device pinouts or debug
port locks. The availability of PUFs upgrades the security of commercial off-the-shelf devices
without cryptographic hardware and strengthens the resistance against the more dangerous
software attacks from remote parties throughout the Internet. Contributing non-uniform keys

191

Chapter 10 Seed- and Key Generation with Physical Unclonable Functions

across devices, our PUF integration reduces the efficacy of these attacks, since each node needs
to be attacked individually, rather than attacking one and owning all.

Acknowledgments. We would like to thank Nils Wisiol for his careful feedback, which has
significantly helped to improve the chapter. This work was supported in part by the German
Federal Ministry for Education and Research (BMBF) within the project PIVOT: Privacy-
Integrated design and Validation in the constrained IoT.

Availability of software and reproducibility. We support reproducible research ([4, 327])
and utilize open source software and open testbed platforms. All of our work is publicly released.
The code of the software components, pre-compiled binary images, the implementation of the
estimator, documentation, data sets and related tools are available on GitHub at https://

github.com/inetrg/IEEE-TDSC-PUF23.

192

https://github.com/inetrg/IEEE-TDSC-PUF23
https://github.com/inetrg/IEEE-TDSC-PUF23

Chapter 11

Conclusions and Outlook

Unreliable wireless transmissions, and the need for protection against threats of the Internet,
impose severe challenges to resource-constrained IoT networks. We discussed detailed conclu-
sions and aspects of future work in the respective chapters. In the remainder of this chapter,
we summarize the overall conclusions and survey the directions for future research.
Information-centric networking is beneficial for the IoT. Instead of maintaining stable com-

munication channels like in IP-based protocols, hop-wise data transfer and content caching
increase reliability in low-power lossy networks, reduce bandwidth demands, and improve the
resource utilization on constrained nodes. The lack of a name to MAC mapping, however, leads
to an energy excess by broadcast forwarding, which conflicts with limited device resources. This
motivated our work on the link layer convergence in ICN. We designed ICN over DSME, us-
ing LoRa as a transmission technology. Our system design enables robust communication for
long-range radios, and a decentralized (information-centric) network architecture with caches
facilitates edge deployments that preserve limited energy resources on battery-driven nodes.
Inter-connecting these networks with the Internet, however, is challenging due to a different
understanding of timescales. Sporadic IoT data generation, and extremely long producer delays
challenge the pull-based ICN scheme and quickly lead to data polling, demanding for delay-
tolerant ICN-extensions which we provided in this thesis.
Our crypto-integration into a commodity IoT operating system facilitates the deployment of

protocols with full security features enabled, using hardware accelerated cryptography instead
of software. But there is a caveat: Random generating hardware, e.g., peripheral TRNGs,
sometimes exhibit a high energy consumption and poor statistical properties. Hence, our ran-
domness OS-subsystem prefers software (CS)PRNGs, perhaps complemented with accelerated
crypto-operations, instead of directly mapping to random generating hardware peripherals be-
low the user interface. An embedding in the ecosystem of the operating system enables entropy
gathering from different hardware resources through the hardware abstraction layer, to generate
reliable (CS)PRNG seed values. Many low-end IoT devices lack hardware security features. Our
SRAM PUF OS-integration provides a zero-cost approach that bootstraps the cryptographic
subsystem, contributing seed and key material from hardware variations. We hope this will ease
deployment efforts and contribute to a more secure IoT in the future.

193

Chapter 11 Conclusions and Outlook

Potentials of ICN for Constrained IoT Networks. Based on experiments from real de-
ployments of host-centric protocols (CoAP, MQTT-SN), and information-centric networking
(NDN) in a testbed, we gained insights on their performance in constrained low-power networks.
Our competitive benchmarks revealed that push-based protocols (e.g., CoAP Observe) operate
fastest in single-hop scenarios. In challenged multi-hop scenarios, the pull-based NDN flow with
hop-wise data transfer and caching outperforms IP-based protocols, which initiate end-to-end
communication channels without intermediate caching (e.g., CoAP GET). The data-centric ap-
proach increases reliability by up to 100% compared to host-centric protocols while reducing
corrective actions (retransmissions), and reduces latency and link stress. Producer-initiated
data transfer, however, is not available in plain NDN and requires publish-subscribe extensions
(HoPP), that standard protocols natively inherit.

MAC Address Mapping in ICN. Broadcast forwarding on the wireless medium simplifies
content distribution in NDN, but includes two major drawbacks. (i) Broadcast excludes error
handling mechanisms of the link layer, which increases the rate of unsatisfied Interest requests
up to 12%, compared to unicast with ARQ. (ii) Nodes in wireless reach need to process all
packets, which conflicts with resource constraints, i.e., broadcast forwarding increases the active
CPU time per node by two orders of magnitude, compared to unicast. Mapping names to the
unicast address, however, requires additional logic to learn and maintain routes. The missing
link layer convergence in NDN motivated our subsequent work on a new MAC layer for the
information-centric IoT.

Decentralized MAC and Network Layer for LoRa. Our long-range wireless communi-
cation system puts the 802.15.4 DSME MAC layer in place for reliable and bidirectional LoRa
communication, and combines the system with information-centric principles. Instead of rely-
ing on a centralized network server like in LoRaWAN, the ICN-based system design reduces
dependencies on centralized components and exploits ICN features (selective forwarding, Inter-
est aggregation) that reduce wireless link utilization. Based on simulation results, we explored
different mappings of ICN message semantics onto the multifaceted MAC layer and find that our
system provides horizontal scalability and robust media access for LoRa radios. An extended
caching gateway facilitates low-power operation and acts as custodian for sleepy nodes.

Delay-tolerant Networking with ICN. Long and vastly differing producer delays challenge
information-centric data retrieval on the end-to-end path, since high-speed forwarders on the
Internet operate on a different timescale, leading to premature state expiration and polling. Two
recently proposed ICN protocol extensions were adopted, namely RICE and reflexive forwarding,
to deal with varying and dramatically higher round trip times. Our practical implementation
of LoRa-ICN enabled comparative experiments between basic NDN-style communication, and
the delay-tolerant alternatives, serving slow edge networks. Executed on off-the-shelf IoT nodes
and an emulated Internet, our results revealed that both extensions for Internet consumer-

194

initiated and producer-initiated communication exhibit almost 100% data reliability, targeted
completion time for sporadic data generation, and lifetimes of over one year for battery powered
LoRa nodes, while maintaining core ICN features.

Analysis and Integration of Cryptographic Backends. A novel OS-level crypto-subsys-
tem enabled our measurement study for widely used cryptographic primitives across various off-
the-shelf IoT platforms. The resource analyses gained two main insights. (i) Crypto-hardware
outperforms software by more than 100%, which is crucial for nodal lifetime. (ii) External
crypto-processors operate slowly on symmetric crypto-operations, but provide write-only key
storages, which demands for an identifier based key management. These results are a first step
to prevent performance pitfalls in the future. Heterogeneous crypto-backends require different
levels of hardware support to utilize features most efficiently, and a configurable environment
that models these features at compile time, reducing the memory footprint. Our subsystem
isolates this complexity from the developer and contributes to code usability, and portability
across devices.

Random Number Generation in the Low-end IoT. Random number generation remains
an active research topic due to the increasing amount of IoT data, the development and stan-
dardization of new protocols that secure network traffic, and the advent of machine learning at
the Internet edge that increases the need for random numbers on IoT devices. The landscape
of random generating hardware and software that produce statistical randomness or entropy
challenges a system design that integrates these components uniformly. Our comparison of
state-of-the-art open source OSs shows that randomness building blocks are poorly grounded in
the ecosystem and often rely on some external library, which impedes a full exploitation of hard-
ware features (e.g., for entropy gathering) and sometimes ignores device constraints. Based on
a comparative evaluation of the statistics, security, and performance on popular IoT platforms,
we derived recommendations and requirements that guide the design of systems that operate
constrained embedded devices.

Seed- and Key Generation with Physical Unclonable Functions. PUFs enable security
on low-end platforms that lack hardware-based security features. The quality of seeds and keys
derived by a PUF are subject to bias and aging, though. Analyzing these effects requires a
large sample size, which we contributed in this thesis. Our SRAM evaluation on 708 nodes
showed a static bias at certain bit positions, and stress marks by past experimentation on the
nodes from a testbed. An intra-device analysis still revealed sufficient random noise between
power-cycles on one device to generate random seeds with 256Bits of entropy. An inter-device
analysis revealed sufficient uniqueness to generate unpredictable keys with 128Bit of security.
Our practical threat model assessed the security of SRAM PUFs. The most dangerous attacks
in the IoT are remote attacks which can be performed at a large scale with low overhead, and
without physical device access. Here, our SRAM PUF advances the security of devices that lack
security hardware and fall back to pure software solutions otherwise.

195

Chapter 11 Conclusions and Outlook

Directions for Future Work

Information-centric networking has promising features for the IoT. More large-scale deployment
studies are necessary, however, to gain insights on how resource-constrained ICN edge networks,
interconnected via multi-tenant gateways, perform at a global scale, and to identify technological
gaps in our initial system design. A first step in that direction is the device bootstrapping and
trust establishment with a custodial gateway at the edge.
Progressing on the convergence between the ICN network layer and other wireless technologies

(Sigfox, NB-IoT) as well as the alignment with recent IETF/IRTF standards, e.g., header
compression in wide area networks (SCHC), or ICN over personal area networks (ICNLoWPAN),
can increase technological versatility and gain insights about inter-domain performance and
scalability of the data-centric approach in the IoT.
Novel protocol standards such as ACE-OAuth, or upcoming standards such as EDHOC and

LAKE may introduce notable security overheads and will make heavy use of crypto-operations.
The advent of quantum-resistant cryptography will transition cryptographic algorithms used in
existing protocols, and may increase the required bandwidth, latency, and energy in the future.
The effect of heavy crypto-utilization on the performance of these novel protocols should be
investigated to assess the impact on the lifetime of securely networked IoT nodes.
PUFs increase the security of low-cost devices, but are subject to aging. Quantifying aging

effects of real-world node operation requires controlled long term experiments that go beyond
artificial aging, ideally at large scale to gain statistical significance. This gives insights about the
correlation between node utilization, i.e., operated by realistic IoT firmware, and its impact on
hardware degradation over the time. As a first step, the effectiveness of existing countermeasures
against (artificial) aging can be examined, based on naturally aged nodes. As a second step, this
may enable the design of novel runtime countermeasures that comply with resource-constraints,
that should mitigate entropy loss on degrading nodes in the future.
New hardware architectures will become increasingly available on modern IoT platforms and

should extend our crypto-integration, e.g., Ascon is a novel standard1 for lightweight cryptogra-
phy and may replace the common AES cipher suite in constrained networks. Quantum-resistant
cryptography may increase crypto-hardware utilization in the future due to an increasing al-
gorithm complexity that conflicts with current IoT device resources. NIST has selected the
first four quantum-resistant algorithmic standards2, and more could follow in the future. Het-
erogeneous accelerators are likely to appear, which may require additional hardware-software
co-designs for configurability. Once available, analyzing the upcoming hardware landscape will
act as a starting point to identify suitable abstraction levels for an OS-integration.

1https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
2https://nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-

resistant-cryptographic-algorithms

196

https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms

List of Figures

1.1 Overview of the parts and chapters included in this thesis. 12

2.1 Forwarding of Interest/data packets in NDN, and common data structures to
save routes, forwarding state, and content. 18

2.2 Node deployment in two sites of the FIT IoT-LAB testbed in France. 19

3.1 Relative protocol overhead under relaxed network conditions. 26
3.2 Use case scenario of a multi-hop IoT topology. 27
3.3 Resource consumption of ROM and RAM for the different software stacks. 29
3.4 Security overheads—CPU consumption (left) and data overhead (right) per con-

tent transaction for IP/DTLS and NDN/HMAC. 30
3.5 Time to content arrival for scheduled publishing in a single-hop topology at dif-

ferent intervals. 31
3.6 Pull protocol performance at random publishing in [1s . . . 3s]. 32
3.7 Time to content arrival in multi-hop topologies of 50 nodes. 34
3.8 Goodput for the NDN and MQTT protocols at different publishing intervals. . . 35
3.9 Goodput for the CoAP protocols at different publishing intervals. 35
3.10 Link traversal vers. shortest path for a 15 s publishing interval. The scatterplots

reveal the link stress with dot sizes proportional to event multiplicity. 36
3.11 Energy consumption over time for each node in the topology using a 15 s pub-

lishing interval. 36

4.1 System environment: Integration of RIOT and CCN-lite to implement dynamic
broadcast and unicast faces in NDN. 46

4.2 Number of system wakeups for varying network setups. 47
4.3 Absolute CPU usage for varying network setups. 48
4.4 Average energy excess per producer: Broadcast with and without common prefix

routes vs. unicast. 49
4.5 Network of 30 nodes w/ 20 producers and 10 contents items per producer. 50

5.1 LoRa-ICN stacks and networks. 55
5.2 Mapping schemes of Interest/Data and ICN extension packets to DSME frames.

Data flows from Node to Gateway . 57

197

List of Figures

5.3 Mapping schemes of Interest/Data and ICN extensions packets to DSME frames.
Data flow is from Gateway to Node. 58

5.4 Simulation environment and our extensions. 60

5.5 Time to content arrival with different mapping schemes for Interest/Data (with
L3 retransmission) and Data push for varying network sizes. 62

5.6 Success rates [%] depending on network sizes and content invervals for different
ICN mappings. 63

6.1 LoRa-ICN network and time domains. 70

6.2 Overview of the DSME multi-superframe structure. Perspective of a coordinator.
Exemplary schedule for Interest (I) and data (D). 71

6.3 Delay-tolerant ICN. 75

6.4 LoRa-ICN stacks on different devices with varying resources and network latencies. 76

6.5 Sequence flows of Interest/Data and ICN extensions between nodes of different
time domains. 78

6.6 Time to content arrival with long producer delays and varying retransmission
techniques. 81

6.7 Transmissions per content item with long producer delays and varying retrans-
mission techniques. 83

7.1 The software support layer of RIOT integrating crypto-peripherals, external crypto-
devices, and crypto-libraries using a common crypto API. 91

7.2 The role of random number generation in IoT applications. 93

7.3 PUF security services provided by an operating system enable lightweight crypto-
operations on low-cost hardware in the IoT. 95

8.1 Processing time of different crypto-algorithms on different platforms for short
and long input data using hardware accelerated or software crypto. 105

8.2 Energy consumption of hardware accelerated crypto on different platforms. 107

8.3 Processing time of different elliptic curve algorithms. Crypto-operations are ei-
ther accelerated in hardware, on an external chip, or in software. 110

8.4 Energy consumption of different elliptic curve algorithms on the nRF52840 plat-
form and overhead compared to crypto-software running on the same device. . . . 111

8.5 Comparison of the processing time, energy consumption, and memory require-
ments of AES CBC. 113

8.6 Comparison of the processing time, energy consumption, and memory require-
ments of ECDSA. 113

8.7 Qualitative comparison of thread and crypto-peripheral activity with (bottom)
and without (top) CPU offloading using DMA. 115

198

List of Figures

9.1 Overview of hardware and software for generating randomness in the IoT 127
9.2 PUF SRAM random seeder integration in RIOT. 137
9.3 PUF SRAM seed evaluations. Min. Entropy for varying input lengths (left) and

distributions of fractional Hamming Distances (right). 139
9.4 Hardware Generated Random Numbers: χ2-test results on the distribution of

probability values from 15 NIST STS tests. 140
9.5 Hardware Generated Random Numbers: Energy consumption of external (left)

and internal on-chip generators (right). 143
9.6 Pseudo Random Numbers: χ2-test results on the distribution of probability values

from 15 NIST STS tests. p2-values≥ 10−4 pass the hypothesis of uniformity. . . . 146
9.7 KS-test results on the distribution of p-values from 31 DIEHARDER tests. 148
9.8 PRNG memory overhead in ROM and RAM measured on the STM32F4 micro-

controller. “Dep.” denotes memory requirements of dependent software modules. 152
9.9 PRNG energy consumption per integer measured on a STM32F4 microcontroller. 153
9.10 Average energy consumption over average time (left) and average current draw

(right) for hardware and software generated random integers. 159

10.1 SRAM correlation between 708 nodes. 171
10.2 Distribution of bit-alias values between 708 nodes. 172
10.3 M3 node active experiment operation time in hours. Nodes are ranked according

to their utilization. 173
10.4 Relative hamming weight displayed for every device and memory address. 174
10.5 Integration of the SRAM PUF module in the IoT operating system RIOT. 175
10.6 A fuzzy extractor based on the code-offset construction. Deployments consist of

enrollment, and reconstruction. 177
10.7 Expectation and measurement of the min. entropy for varying max. probabilities

(pmax) and increasing sample sizes. 179
10.8 SRAM evaluation. Fractional hamming distances between memory blocks and

min. entropies. 180
10.9 Evaluation of general purpose seeds. Index based distribution of bit probabilities

throughout 32Bit integer values and min. entropy per device. 181
10.10SRAM length, remaining entropy, and measured reconstruction failure rate for

different configurations of the fuzzy extractor. 182
10.11Additional OS startup latency introduced by PUF reconstruction for four config-

urations of the fuzzy extractor on different boards. 185

199

List of Tables

3.1 Comparison of CoAP, MQTT, and ICN protocols. CoAP and MQTT support
reliability only in confirmable mode (c) and QoS levels 1 and 2 (Q1, Q2). 25

4.1 Unsatisfied Interests with different face to MAC address mappings under presence
of link layer interference. 45

5.1 Performance overview of mapping schemes. 61

6.1 Scenario and parameter overview including four measured nodes. 80
6.2 Energy consumption per multi-superframe and lifetime for varying protocols. . . 85

8.1 Overview of typical on- and off-chip IoT hardware with their crypto-acceleration
features that we analyze. 101

8.2 Performance of SHA-256 on 64 Byte inputs implemented in different software on
the nRF52840. 102

8.3 Performance of a single block AES-128 operation implemented in different soft-
ware on the nRF52840. RAM is 38Byte for all platforms. 103

8.4 Memory consumption of crypto-algorithms on different platforms. Crypto-operations
are hardware accelerated. Overheads denote the difference to software operation. 108

8.5 Memory consumption of ECC algorithms on different platforms. Crypto-operations
are hardware accelerated. Overheads denote the difference to software operation. 112

8.6 Processing time for 2000 AES-128 encryptions from two threads (1000 encryptions
each) on the EFM32 with different diver implementations. 115

8.7 Performance on the ATECC608A platform with different driver properties. 116

9.1 Overview of common open-source IoT OSs and their support for randomness. . . 132
9.2 Overview of the typical on- and off-chip IoT hardware with their random features.136
9.3 Min. Entropy and Hamming Weight between 50 reads of 1 kB SRAM on five

SAMD21 MCUs (A–E) at ambient temperature. 138
9.4 Fractional Hamming Distance from 50 reads of 1 kB SRAM between five SAMD21

MCUs at ambient temperature. 138
9.5 Hardware Generated Random Numbers: Throughput and processing time per

integer (#). 141
9.6 Summary of test results from the “BigCrush” of the TestU01 environment. 149

201

List of Tables

9.7 PRNG throughput and processing time per integer (#) measured on STM32F4. . 150
9.8 Summary of the security properties vers. performance trade-offs for CSPRNGs.

Backward secrecy can be enabled with external entropy source. 154
9.9 Overview of the different processor cores on the RV32M1 microcontroller. 156
9.10 Throughput and energy consumption per integer (#) for non-crypto PRNGs

running on three different processor cores of the VEGAboard. 157

10.1 Additional operating system startup latencies introduced by soft-reset detection
and generation of two seeds. 184

10.2 Current- and energy consumption of the PUF. 186
10.3 Threat overview of the SRAM PUF integration. 187

202

Bibliography

[1] D. E. 3rd, J. Schiller, and S. Crocker. Randomness Requirements for Security. RFC 4086,
IETF, June 2005. URL https://doi.org/10.17487/RFC4086.

[2] A. Abrardo and A. Pozzebon. A Multi-Hop LoRa Linear Sensor Network for the Monitor-
ing of Underground Environments: The Case of the Medieval Aqueducts in Siena, Italy.
Sensors, 19(2):402, 2019.

[3] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and C. Stransky.
Comparing the Usability of Cryptographic APIs. In Proc. of the IEEE Symposium on
Security and Privacy (SP ’17), pages 154–171, Los Alamitos, CA, USA, 2017. IEEE
Computer Society.

[4] ACM. Result and Artifact Review and Badging. http://acm.org/publications/

policies/artifact-review-badging, Jan., 2017.

[5] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-Gibollet,
F. Saint-Marcel, G. Schreiner, J. Vandaele, and T. Watteyne. FIT IoT-LAB: A large
scale open experimental IoT testbed. In 2015 IEEE 2nd World Forum on Internet of
Things (WF-IoT), pages 459–464, Piscataway, NJ, USA, Dec 2015. IEEE Press. doi: 10.
1109/WF-IoT.2015.7389098A. URL https://doi.org/10.1109/WF-IoT.2015.7389098.

[6] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu, W. Shang, Y. Li,
S. Mastorakis, Y. Huang, J. P. Abraham, E. Newberry, S. DiBenedetto, C. Fan, C. Pa-
padopoulos, D. Pesavento, G. Grassi, G. Pau, H. Zhang, T. Song, H. Yuan, H. B.
Abraham, P. Crowley, S. O. Amin, V. Lehman, M. Chowdhury, and L. Wang. NFD
Developer’s Guide. Technical Report NDN-0021, NDN, August 2021. URL https:

//named-data.net/publications/techreports/ndn-0021-11-nfd-guide/.

[7] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. A Survey of
Information-Centric Networking. IEEE Communications Magazine, 50(7):26–36, July
2012.

[8] B. Ahlgren, A. Lindgren, and Y. Wu. Demo: Experimental Feasibility Study of CCN-
lite on Contiki Motes for IoT Data Streams. In Proceedings of the 2016 conference on
3rd ACM Conference on Information-Centric Networking, pages 221–222, New York, NY,
USA, 2016. ACM.

203

https://doi.org/10.17487/RFC4086
http://acm.org/publications/policies/artifact-review-badging
http://acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1109/WF-IoT.2015.7389098
https://named-data.net/publications/techreports/ndn-0021-11-nfd-guide/
https://named-data.net/publications/techreports/ndn-0021-11-nfd-guide/

Bibliography

[9] M. Al-Zubaidie, Z. Zhang, and J. Zhang. Efficient and Secure ECDSA Algorithm and
its Applications: A Survey. Int. Journal of Communication Networks and Information
Security (IJCNIS’19), 11(1), 2019.

[10] J. Alamos, P. Kietzmann, T. C. Schmidt, and M. Wählisch. DSME-LoRa – A Flexible
MAC for LoRa. In Proc. of 29th IEEE International Conference on Network Protocols
(ICNP 2021), Poster Session, Piscataway, NJ, USA, November 2021. IEEE. URL https:

//doi.org/10.1109/ICNP52444.2021.9651945.

[11] J. Alamos, P. Kietzmann, T. C. Schmidt, and M. Wählisch. DSME-LoRa: Seamless Long
Range Communication Between Arbitrary Nodes in the Constrained IoT. Transactions
on Sensor Networks (TOSN), 18(4):1–43, November 2022. URL https://dl.acm.org/

doi/10.1145/3552432.

[12] J. Alamos, P. Kietzmann, T. C. Schmidt, and M. Wählisch. WIP: Exploring DSME
MAC for LoRa – A System Integration and First Evaluation. In 23rd IEEE Interna-
tional Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM),
pages 169–172, Piscataway, NJ, USA, June 2022. IEEE. URL https://doi.org/10.1109/

WoWMoM54355.2022.00050.

[13] G. Alderisi, G. Patti, O. Mirabella, and L. L. Bello. Simulative assessments of the ieee
802.15.4e dsme and tsch in realistic process automation scenarios. In 13th International
Conference on Industrial Informatics (INDIN’15), pages 948–955, Piscataway, NJ, USA,
2015. IEEE.

[14] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro. Named data networking for IoT: An
architectural perspective. In 2014 European Conference on Networks and Communications
(EuCNC), pages 1–5, Piscataway, NJ, USA, June 2014. IEEE.

[15] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro. Information Centric Networking in
IoT scenarios: The case of a smart home. In Proc. of IEEE International Conference on
Communications (ICC), pages 648–653, Piscataway, NJ, USA, June 2015. IEEE.

[16] Amazon Web Services. FreeRTOS Real-time operating system for microcontrollers.
https://www.freertos.org/, last accessed 30-11-2020, 2020.

[17] Android Developers (Blog). Security “Crypto” provider deprecated in
Android N. https://android-developers.googleblog.com/2016/06/

security-crypto-provider-deprecated-in.html, last accessed 12-10-2020, 2016.

[18] M. T. H. Anik, J.-L. Danger, S. Guilley, and N. Karimi. Detecting Failures and Attacks
via Digital Sensors. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 40(7):1315–1326, 2021.

204

https://doi.org/10.1109/ICNP52444.2021.9651945
https://doi.org/10.1109/ICNP52444.2021.9651945
https://dl.acm.org/doi/10.1145/3552432
https://dl.acm.org/doi/10.1145/3552432
https://doi.org/10.1109/WoWMoM54355.2022.00050
https://doi.org/10.1109/WoWMoM54355.2022.00050
https://www.freertos.org/
https://android-developers.googleblog.com/2016/06/security-crypto-provider-deprecated-in.html
https://android-developers.googleblog.com/2016/06/security-crypto-provider-deprecated-in.html

Bibliography

[19] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Du-
rumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Ma-
son, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou. Understanding
the Mirai Botnet. In 26th USENIX Security Symposium (USENIX Security 17), pages
1093–1110, Vancouver, BC, Aug. 2017. USENIX Association.

[20] Apache Software Foundation. Contiki-NG: The OS for Next Generation IoT Devices.
https://github.com/contiki-ng/contiki-ng, last accessed 10-11-2020.

[21] Apache Software Foundation. Apache Mynewt. https://mynewt.apache.org, last ac-
cessed 07-17-2020, 2020.

[22] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao. RELIC is an
Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic, last
accessed 11-25-2020, 2020.

[23] ARM Ltd. Mbed OS. https://www.mbed.com, last accessed 07-17-2020, 2020.

[24] ARM Ltd. Mbed TLS. https://tls.mbed.org, last accessed 07-17-2020, 2020.

[25] ARM Ltd. TrustZone for Cortex-M. https://developer.arm.com/ip-products/

security-ip/trustzone/trustzone-for-cortex-m, last accessed 12-10-2020, 2020.

[26] S. Arshad, M. A. Azam, M. H. Rehmani, and J. Loo. Recent Advances in Information-
Centric Networking-Based Internet of Things (ICN-IoT). IEEE Internet of Things Jour-
nal, 6(2):2128–2158, 2019.

[27] O. Ascigil, S. Reñé, G. Xylomenos, I. Psaras, and G. Pavlou. A Keyword-based ICN-IoT
Platform. In Proc. of 4th ACM Conference on Information-Centric Networking (ICN),
pages 22–28, New York, NY, USA, September 2017. ACM.

[28] C. Ashokkumar, B. Roy, B. S. V. Mandarapu, and B. Menezes. "S-Box" Implementation
of AES Is Not Side Channel Resistant. Journal of Hardware and Systems Security, 4:
86–97, 2019.

[29] Atmel. Low Power 2.4 GHz Transceiver for ZigBee, IEEE 802.15.4, 6LoWPAN, RF4CE,
SP100, WirelessHART, and ISM Applications. Atmel Corporation, September 2009. URL
http://www.atmel.com/images/doc8111.pdf.

[30] Generating Random Secrets: ATSHA204A, ATECC108A, and ATECC508A. Atmel,
September 2015. Rev. 8843B.

[31] AT86RF233 Low Power, 2.4GHz Transceiver for ZigBee, RF4CE, IEEE 802.15.4, 6LoW-
PAN, and ISM Applications. Atmel, July 2017. Rev. 8315E–MCU Wireless–07/14.

205

https://github.com/contiki-ng/contiki-ng
https://mynewt.apache.org
https://github.com/relic-toolkit/relic
https://www.mbed.com
https://tls.mbed.org
https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m
https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m
http://www.atmel.com/images/doc8111.pdf

Bibliography

[32] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C. Schmidt. RIOT OS: Towards
an OS for the Internet of Things. In Proc. of the 32nd IEEE INFOCOM. Poster, pages
79–80, Piscataway, NJ, USA, 2013. IEEE Press.

[33] E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, and M. Wählisch. Information Centric
Networking in the IoT: Experiments with NDN in the Wild. In Proc. of 1st ACM Conf.
on Information-Centric Networking (ICN-2014), pages 77–86, New York, September 2014.
ACM. URL http://doi.org/10.1145/2660129.2660144.

[34] E. Baccelli, C. Gündogan, O. Hahm, P. Kietzmann, M. Lenders, H. Petersen, K. Schleiser,
T. C. Schmidt, and M. Wählisch. RIOT: an Open Source Operating System for Low-
end Embedded Devices in the IoT. IEEE Internet of Things Journal, 5(6):4428–4440,
December 2018. URL http://doi.org/10.1109/JIOT.2018.2815038.

[35] C. R. Banbury, V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holleman, X. Huang, R. Hurtado,
D. Kanter, A. Lokhmotov, D. A. Patterson, D. Pau, J. Seo, J. Sieracki, U. Thakker,
M. Verhelst, and P. Yadav. Benchmarking TinyML Systems: Challenges and Direction.
Technical Report arXiv:2003.04821, Open Archive: arXiv.org, August 2020. URL https:

//arxiv.org/abs/2003.04821.

[36] A. Banks and R. G. (Eds.). MQTT Version 3.1.1. Oasis standard, OASIS, October 2014.
URL http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.

[37] B. Barak, Y. Dodis, H. Krawczyk, O. Pereira, K. Pietrzak, F.-X. Standaert, and
Y. Yu. Leftover Hash Lemma, Revisited. In P. Rogaway, editor, Advances in Cryptology
(CRYPTO ’11), pages 1–20, Berlin, Heidelberg, 2011. Springer–Verlag.

[38] M. Barbareschi, E. Battista, A. Mazzeo, and N. Mazzocca. Testing 90 nm microcon-
troller SRAM PUF quality. In 10th International Conference on Design & Technology of
Integrated Systems in Nanoscale Era (DTIS’15), Piscataway, NJ, USA, 2015. IEEE.

[39] E. Barker. Recommendation for Key Management. Technical Report NIST SP 800-57
Part 1, National Institute of Standards and Technology, Gaithersburg, MD, US, May
2020.

[40] E. B. Barker and J. M. Kelsey. Recommendation for Random Number Generation Using
Deterministic Random Bit Generators. Special Publication NIST SP 800-90A, National
Institute of Standards & Technology, Gaithersburg, MD, United States, 2012.

[41] E. B. Barker and J. M. Kelsey. Recommendation for Random Bit Generator (RBG)
Constructions. Special Publication NIST SP 800-90C, National Institute of Standards &
Technology, Gaithersburg, MD, United States, 2016.

206

http://doi.org/10.1145/2660129.2660144
http://doi.org/10.1109/JIOT.2018.2815038
https://arxiv.org/abs/2003.04821
https://arxiv.org/abs/2003.04821
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

Bibliography

[42] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli. The Hitchhiker’s Guide to
Successful Wireless Sensor Network Deployments. In Proceedings of the 6th ACM Con-
ference on Embedded Network Sensor Systems (SenSys’08), pages 43–56, New York, NY,
USA, 2008. ACM.

[43] L. Bassham, A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson,
M. Vangel, D. Banks, N. A. Heckert, J. Dray, and S. Vo. A Statistical Test Suite for
Random and Pseudorandom Number Generators for Cryptographic Applications. Special
Publication NIST SP 800-22, National Institute of Standards & Technology, Gaithersburg,
MD, US, 2010.

[44] M. Bellare and T. Kohno. Hash Function Balance and Its Impact on Birthday Attacks.
In EUROCRYPT ’04: Advances in Cryptology, volume 3027 of LNCS, pages 401–418,
Berlin, Heidelberg, 2004. Springer.

[45] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Proceedings of the 1st ACM Conference on Computer and Commu-
nications Security, CCS ’93, pages 62–73, New York, NY, USA, 1993. ACM.

[46] D. J. Bernstein. Entropy Attacks! The conventional wisdom says that hash outputs
can’t be controlled; the conventional wisdom is simply wrong. https://blog.cr.yp.to/
20140205-entropy.html, last accessed 07-17-2020, 2014.

[47] D. J. Bernstein and T. Lange. Faster Addition and Doubling on Elliptic Curves. In
K. Kurosawa, editor, Advances in Cryptology — ASIACRYPT 2007, volume 4833 of Lec-
ture Notes in Computer Science, pages 29–50. Springer, Berlin, Heidelberg, Germany,
2007.

[48] M. Bezunartea, R. V. Glabbeek, A. Braeken, J. Tiberghien, and K. Steenhaut. Towards
Energy Efficient LoRa Multihop Networks. In International Symposium on Local and
Metropolitan Area Networks (LANMAN ’19), pages 1–3, Piscataway, NJ, USA, 2019.
IEEE.

[49] G. Bianchi, A. L. Rosa, and G. Restuccia. RIOT-AKA: cellular-like authentication over
IoT devices. In 29th IEEE Int. Conf. on Network Protocols (ICNP’21), pages 1–6, Pis-
cataway, NJ, USA, 2021. IEEE.

[50] D. Blackman and S. Vigna. xoshiro / xoroshiro generators and the PRNG shootout.
http://prng.di.unimi.it/, last accessed on 04-01-2020, 2020.

[51] Bluetooth Special Interest Group. Bluetooth Core Specification. Bluetooth Specification
5.1, Bluetooth SIG, January 2019. URL https://www.bluetooth.com/specifications/

bluetooth-core-specification.

207

https://blog.cr.yp.to/20140205-entropy.html
https://blog.cr.yp.to/20140205-entropy.html
http://prng.di.unimi.it/
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification

Bibliography

[52] Bluetooth Special Interest Group. Mesh Profile. Bluetooth Specification 1.0.1,
Bluetooth SIG, January 2019. URL https://www.bluetooth.com/specifications/

mesh-specifications/.

[53] L. Blum, M. Blum, and M. Shub. A Simple Secure Pseudo-Random Number Generator.
Technical Report UCB/ERL M82/65, EECS Department, University of California, Berke-
ley, 1982. URL http://www2.eecs.berkeley.edu/Pubs/TechRpts/1982/28538.html.

[54] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo
random bits. In 23rd annual Symp. on Foundations of Computer Science (SFCS ’82),
pages 112–117, Los Alamitos, CA, USA, 1982. IEEE Computer Society.

[55] L. Boeckmann, P. Kietzmann, L. Lanzieri, T. C. Schmidt, and M. Wählisch. Usable
Security for an IoT OS: Integrating the Zoo of Embedded Crypto Components Below a
Common API. In Proc. of Embedded Wireless Systems and Networks (EWSN’22), pages
84–95, New York, USA, October 2022. ACM. URL https://dl.acm.org/doi/10.5555/

3578948.3578956.

[56] L. Boeckmann, P. Kietzmann, T. C. Schmidt, and M. Wählisch. Poster Abstract: Of-
floading Crypto Processing with RIOT. In Proc. of ACM/IEEE Int. Conf. on Information
Processing in Sensor Networks (IPSN ’22), Poster Session, pages 535–536, Piscataway,
NJ, USA, May 2022. IEEE. URL https://doi.org/10.1109/IPSN54338.2022.00068.

[57] C. Bormann. 6LoWPAN-GHC: Generic Header Compression for IPv6 over Low-Power
Wireless Personal Area Networks (6LoWPANs). RFC 7400, IETF, November 2014. URL
https://doi.org/10.17487/RFC7400.

[58] C. Bormann, M. Ersue, and A. Keranen. Terminology for Constrained-Node Networks.
RFC 7228, IETF, May 2014. URL https://doi.org/10.17487/RFC7228.

[59] C. Bösch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and P. Tuyls. Efficient Helper Data
Key Extractor on FPGAs. In Cryptographic Hardware and Embedded Systems - CHES
2008, pages 181–197, Berlin, Heidelberg, 2008. Springer-Verlag.

[60] R. G. Brown. dieharder(1) - Linux man page. https://linux.die.net/man/1/

dieharder, last accessed 12-10-2020, 2020.

[61] R. G. Brown, D. Eddelbuettel, and D. Bauer. Dieharder: A Random Number Test Suite,
2019. URL https://webhome.phy.duke.edu/~rgb/General/dieharder.php.

[62] J. Burke, P. Gasti, N. Nathan, and G. Tsudik. Securing Instrumented Environments
over Content-Centric Networking: the Case of Lighting Control and NDN. In Computer
Communications Workshops (INFOCOM WKSHPS), 2013 IEEE Conference on, pages
394–398, Piscataway, NJ, USA, 2013. IEEE.

208

https://www.bluetooth.com/specifications/mesh-specifications/
https://www.bluetooth.com/specifications/mesh-specifications/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1982/28538.html
https://dl.acm.org/doi/10.5555/3578948.3578956
https://dl.acm.org/doi/10.5555/3578948.3578956
https://doi.org/10.1109/IPSN54338.2022.00068
https://doi.org/10.17487/RFC7400
https://doi.org/10.17487/RFC7228
https://linux.die.net/man/1/dieharder
https://linux.die.net/man/1/dieharder
https://webhome.phy.duke.edu/~rgb/General/dieharder.php

Bibliography

[63] J. Burke, P. Gasti, N. Nathan, and G. Tsudik. Secure Sensing over Named Data Network-
ing. In 13th International Symposium on Network Computing and Applications (NCA’14),
pages 175–180, Washington, DC, USA, 2014. IEEE Computer Society.

[64] Bushing and Marcan and Segher and Sven. Console Hacking 2010 - PS3
Epic Fail. https://fahrplan.events.ccc.de/congress/2010/Fahrplan/attachments/
1780_27c3_console_hacking_2010.pdf, last accessed 07-17-2020, 2010.

[65] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[66] G. Carofiglio, L. Muscariello, M. Papalini, N. Rozhnova, and X. Zeng. Leveraging ICN
In-Network Control for Loss Detection and Recovery in Wireless Mobile Networks. In
Proceedings of the 3rd ACM Conference on Information-Centric Networking, pages 50–
59, New York, NY, USA, 2016. ACM.

[67] A. Carzaniga, M. Papalini, and A. L. Wolf. Content-based Publish/Subscribe Networking
and Information-centric Networking. In Proc. of the ACM SIGCOMM WS on Information-
centric Networking (ICN ’11), pages 56–61, New York, NY, USA, 2011. ACM.

[68] U. Chatterjee, R. S. Chakraborty, and D. Mukhopadhyay. A PUF-Based Secure Commu-
nication Protocol for IoT. ACM Trans. Embed. Comput. Syst., 16(3), 2017.

[69] J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and K. Ramakrishnan. COPSS: An Efficient
Content Oriented Publish/Subscribe System. In ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (ANCS’11), pages 99–110, Los Alamitos,
CA, USA, Oct. 2011. IEEE Computer Society.

[70] Y. Chen and T. Kunz. Performance evaluation of IoT protocols under a constrained
wireless access network. In International Conference on Selected Topics in Mobile &
Wireless Networking (MoWNeT), pages 1–7, Piscataway, NJ, USA, 2016. IEEE.

[71] R. Chiocchetti, D. Rossi, and G. Rossini. ccnSim: An highly scalable CCN simulator. In
Proc. of IEEE International Conference on Communications (ICC’13), pages 2309–2314,
Piscataway, NJ, USA, 2013. IEEE.

[72] N. Choudhury, R. Matam, M. Mukherjee, and J. Lloret. A Performance-to-Cost Analysis
of IEEE 802.15.4 MAC With 802.15.4e MAC Modes. IEEE Access, 8:41936–41950, 2020.

[73] Cifra Authors. A collection of cryptographic primitives targeted at embedded use. https:
//github.com/ctz/cifra, last accessed 10-11-2020.

[74] M. Claes, V. van der Leest, and A. Braeken. Comparison of SRAM and FF PUF in 65nm
Technology. In P. Laud, editor, Information Security Technology for Applications, pages
47–64, Berlin, Heidelberg, 2012. Springer–Verlag.

209

https://fahrplan.events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://github.com/ctz/cifra
https://github.com/ctz/cifra

Bibliography

[75] T. Community. The Things Network. https://www.thethingsnetwork.org/, last ac-
cessed 04-12-2022, 2022.

[76] A. Compagno, M. Conti, C. Ghali, and G. Tsudik. To NACK or Not to NACK? Negative
Acknowledgments in Information-Centric Networking. In 24th International Conference
on Computer Communication and Networks (ICCCN’15), Piscataway, NJ, USA, 2015.
IEEE Press.

[77] F. Conti, R. Schilling, P. D. Schiavone, A. Pullini, D. Rossi, F. K. Gürkaynak,
M. Muehlberghuber, M. Gautschi, I. Loi, G. Haugou, S. Mangard, and L. Benini. An
IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics.
IEEE Transactions on Circuits and Systems I: Regular Papers, 64(9):2481–2494, 2017.

[78] H. Corrigan-Gibbs and S. Jana. Recommendations for Randomness in the Operating
System, or How to Keep Evil Children out of Your Pool and Other Random Facts. In
15th Workshop on Hot Topics in Operating Systems (HotOS XV), Berkeley, CA, USA,
2015. USENIX Association.

[79] M. Cortez, S. Hamdioui, V. van der Leest, R. Maes, and G.-J. Schrijen. Adapting voltage
ramp-up time for temperature noise reduction on memory-based PUFs. In International
Symposium on Hardware-Oriented Security and Trust (HOST’13), pages 35–40, Piscat-
away, NJ, USA, 2013. IEEE.

[80] J. R. Cotrim and J. ao Henrique Kleinschmidt. LoRaWAN Mesh Networks: A Review
and Classification of Multihop Communication. Sensors, 20(15):4273, 2020.

[81] C. Cremers, L. Garratt, S. Smyshlyaev, N. Sullivan, and C. Wood. Randomness Im-
provements for Security Protocols. RFC 8937, IETF, October 2020. URL https:

//doi.org/10.17487/RFC8937.

[82] CSOonline. A Critical Random Number Generator Flaw Affects Bil-
lions of IoT Devices. https://www.csoonline.com/article/3629437/

iot-devices-have-serious-security-deficiencies-due-to-bad-random-number-generation.

html, last accessed 11-10-2022, 2021.

[83] J. Daemen and V. Rijmen. AES Proposal: Rijndael, 1999.

[84] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger, I. Nappier, M. Na-
traj, S. Regev, R. Rhodes, T. Wang, and P. Warden. TensorFlow Lite Micro: Embed-
ded Machine Learning on TinyML Systems. Technical Report arXiv:2010.08678, Open
Archive: arXiv.org, October 2020. URL https://arxiv.org/abs/2010.08678.

[85] R. de Clercq, L. Uhsadel, A. Van Herrewege, and I. Verbauwhede. Ultra Low-Power
Implementation of ECC on the ARM Cortex-M0+. In Proceedings of the 51st Annual
Design Automation Conference, DAC ’14, pages 1–6, New York, NY, USA, 2014. ACM.

210

https://www.thethingsnetwork.org/
https://doi.org/10.17487/RFC8937
https://doi.org/10.17487/RFC8937
https://www.csoonline.com/article/3629437/iot-devices-have-serious-security-deficiencies-due-to-bad-random-number-generation.html
https://www.csoonline.com/article/3629437/iot-devices-have-serious-security-deficiencies-due-to-bad-random-number-generation.html
https://www.csoonline.com/article/3629437/iot-devices-have-serious-security-deficiencies-due-to-bad-random-number-generation.html
https://arxiv.org/abs/2010.08678

Bibliography

[86] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede. Helper Data Algorithms for PUF-
Based Key Generation: Overview and Analysis. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 34(6):889–902, 2015.

[87] H. Demirhan and N. Bitirim. CryptRndTest: An R Package for Testing the Cryptographic
Randomness. The R Journal, 8:233–247, 2016.

[88] A. Desai, A. Hevia, and Y. L. Yin. A Practice-Oriented Treatment of Pseudorandom
Number Generators. In EUROCRYPT ’02: Advances in Cryptology, volume 2332 of
LNCS, pages 368–383, Berlin, Heidelberg, 2002. Springer.

[89] J. Dizdarevic, F. Carpio, A. Jukan, and X. Masip-Bruin. Survey of Communication
Protocols for Internet-of-Things and Related Challenges of Fog and Cloud Computing
Integration. ACM Comput. Surv., 51(6):116–1 – 116–29, Jan. 2019.

[90] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy Extractors: How to Generate
Strong Keys from Biometrics and Other Noisy Data. SIAM Journal on Computing, 38
(1):97–139, 2008.

[91] Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergniaud, and D. Wichs. Security Analysis of
Pseudo-random Number Generators with Input: /dev/random is not Robust. In Proc.
of the ACM SIGSAC Conference on Computer & Communications Security (CCS ’13),
pages 647–658, New York, NY, USA, 2013. ACM.

[92] L. Dorrendorf, Z. Gutterman, and B. Pinkas. Cryptanalysis of the Windows Random
Number Generator. In Proc. of the 14th ACM Conference on Computer and Communi-
cations Security (CCS ’07), pages 476–485, New York, NY, USA, 2007. ACM.

[93] V. Dukhovni. Opportunistic Security: Some Protection Most of the Time. RFC 7435,
IETF, December 2014. URL https://doi.org/10.17487/RFC7435.

[94] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - A Lightweight and Flexible Operating
System for Tiny Networked Sensors. In Proc. of IEEE Local Computer Networks (LCN),
pages 455–462, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[95] A. Durand, P. Gremaud, J. Pasquier, and U. Gerber. Trusted Lightweight Communication
for IoT Systems Using Hardware Security. In 9th International Conference on the Internet
of Things (IoT ’19), pages 1–4, New York, NY, USA, 2019. ACM.

[96] Eclipse Foundation. IoT & Edge Developer Survey Report. https://outreach.eclipse.
foundation/iot-adoption-2019, last accessed 03-12-2022, 2019.

[97] Eclipse Foundation. IoT & Edge Developer Survey Report. https://outreach.eclipse.
foundation/iot-edge-developer-2021, last accessed 21-11-2022, 2021.

211

https://doi.org/10.17487/RFC7435
https://outreach.eclipse.foundation/iot-adoption-2019
https://outreach.eclipse.foundation/iot-adoption-2019
https://outreach.eclipse.foundation/iot-edge-developer-2021
https://outreach.eclipse.foundation/iot-edge-developer-2021

Bibliography

[98] Eclipse Foundation. IoT & Edge Developer Survey Report. https://outreach.eclipse.
foundation/iot-edge-developer-survey-2022, last accessed 21-11-2022, 2022.

[99] G. S. Edward and S. Devadas. Physical Unclonable Functions for Device Authentication
and Secret Key Generation. In Proc. of the 44th Annual Design Automation Conference
(DAC ’07), pages 9–14, New York, NY, USA, 2007. ACM.

[100] I. Eichhorn, P. Koeberl, and V. van der Leest. Logically Reconfigurable PUFs: Memory-
Based Secure Key Storage. In Proc. of the 6th ACM Workshop on Scalable Trusted Com-
puting (STC ’11), pages 59–64, New York, NY, USA, 2011. ACM.

[101] H. E. Elbsir, M. Kassab, S. Bhiri, and M. H. Bedoui. Evaluation of LoRaWAN Class B
efficiency for downlink traffic. In 2020 16th International Conference on Wireless and Mo-
bile Computing, Networking and Communications (WiMob), pages 105–110, Piscataway,
NJ, USA, October 2020. IEEE.

[102] H. E. Elbsir, M. Kassab, S. Bhiri, and M. H. Bedoui. Evaluation of LoRaWAN Class B
efficiency for downlink traffic. In 16th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob’20), pages 105–110, Piscataway,
NJ, USA, 2020. IEEE.

[103] A. Elmangoush, R. Steinke, T. Magedanz, A. A. Corici, A. Bourreau, and A. Al-Hezmi.
Application-derived communication protocol selection in M2M platforms for smart cities.
In Proc. of 18th International Conference on Intelligence in Next Generation Networks
(ICIN), pages 76–82, Piscataway, NJ, USA, 2015. IEEE.

[104] European Telecommunications Standards Institute. Electromagnetic compatibility and
Radio spectrum Matters (ERM); Short Range Devices (SRD); Radio equipment to be
used in the 25 MHz to 1 000 MHz frequency range with power levels ranging up to 500
mW; Part 1: Technical characteristics and test methods. Technical Report ETSI EN 300
220-1 V2.1.1, IEEE, Sophia Antipolis, France, Jan. 2006.

[105] A. Falcone, C. Felicetti, A. Garro, A. Rullo, and D. Saccà. PUF-Based Smart Tags for
Supply Chain Management. In 16th International Conference on Availability, Reliability
and Security (ARES’21), New York, NY, USA, 2021. ACM.

[106] R. Faraji and H. R. Naji. Adaptive Technique for Overcoming Performance Degradation
Due to Aging on 6T SRAM Cells. IEEE Transactions on Device and Materials Reliability,
14(4):1031–1040, 2014.

[107] S. Farrell. Low-Power Wide Area Network (LPWAN) Overview. RFC 8376, IETF, May
2018. URL https://doi.org/10.17487/RFC8376.

212

https://outreach.eclipse.foundation/iot-edge-developer-survey-2022
https://outreach.eclipse.foundation/iot-edge-developer-survey-2022
https://doi.org/10.17487/RFC8376

Bibliography

[108] W. Feller. An Introduction to Probability Theory and Its Applications, volume 2. Wiley
& Sons, New York, 2nd edition edition, 1971.

[109] N. Ferguson, B. Schneier, and T. Kohno. Cryptography Engineering: Design Principles
and Practical Applications. Wiley Publishing, Indianapolis, Indiana, USA, 2010.

[110] G. Ferre. Collision and packet loss analysis in a LoRaWAN network. In 25th European
Signal Processing Conference (EUSIPCO’17), pages 2586–2590, Piscataway, NJ, USA,
2017. IEEE.

[111] J. Finnegan, S. Brown, and R. Farrell. Evaluating the Scalability of LoRaWAN Gateways
for Class B Communication in ns-3. In IEEE Conference on Standards for Communica-
tions and Networking (CSCN’18), pages 1–6, Piscataway, NJ, USA, 2018. IEEE.

[112] F. Forooghifar, A. Aminifar, and D. Atienza. Resource-Aware Distributed Epilepsy Mon-
itoring Using Self-Awareness From Edge to Cloud. IEEE Transactions on Biomedical
Circuits and Systems, 13(6):1338–1350, 2019.

[113] N. Fotiou, H. Islam, D. Lagutin, T. Hakala, and G. C. Polyzos. CoAP over ICN. In Proc.
of IFIP NTMS, pages 1–4, Piscataway, NJ, USA, 2016. IEEE.

[114] N. Fotiou, G. Xylomenos, G. C. Polyzos, H. Islam, D. Lagutin, T. Hakala, and E. Hakala.
ICN Enabling CoAP Extensions for IP Based IoT Devices. In Proc. of ACM ICN, pages
218–219, New York, NY, USA, 2017. ACM.

[115] A. Francillon and C. Castelluccia. TinyRNG: A Cryptographic Random Number Gener-
ator for Wireless Sensors Network Nodes. In WIOPT ’07: 5th International Symposium
on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks and Workshops,
pages 1–7, Limassol, Cyprus, 2007. IEEE.

[116] M. Frey, C. Gündogan, P. Kietzmann, M. Lenders, H. Petersen, T. C. Schmidt, F. Shzu-
Juraschek, and M. Wählisch. Security for the Industrial IoT: The Case for Information-
Centric Networking. In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT)
(WF-IoT 2019), pages 424–429, Piscataway, NJ, USA, April 2019. IEEE Press. URL
http://doi.org/10.1109/WF-IoT.2019.8767183.

[117] E. Frimpong and A. Michalas. SeCon-NG: Implementing a Lightweight Cryptographic Li-
brary Based on ECDH and ECDSA for the Development of Secure and Privacy-Preserving
Protocols in Contiki-NG. In 35th Symposium on Applied Computing (SAC ’20), pages
767–769, New York, NY, USA, 2020. ACM.

[118] N. Galbreath. Cryptography for Internet and Database Applications: Developing Secret
and Public Key Techniques with Java. Wiley Publishing, Indianapolis, Indiana, USA,
2002.

213

http://doi.org/10.1109/WF-IoT.2019.8767183

Bibliography

[119] F. Ganji, S. Tajik, F. Fäßler, and J.-P. Seifert. Strong Machine Learning Attack Against
PUFs with No Mathematical Model. In Cryptographic Hardware and Embedded Systems
(CHES’16), pages 391–411, Berlin, Heidelberg, 2016. Springer–Verlag.

[120] J. J. Garcia-Luna-Aceves. ADN: An Information-Centric Networking Architecture for the
Internet of Things. In Proc. of the 2nd International Conference on Internet-of-Things
Design and Implementation, IoTDI ’17, pages 27–36, New York, NY, USA, 2017. ACM.

[121] B. Gassend, D. Clarke, van Marten Dijk, and S. Devadas. Silicon Physical Random Func-
tions. In Proc. of the 9th ACM Conference on Computer and Communications Security
(CCS ’02), pages 148–160, New York, NY, USA, 2002. ACM.

[122] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi, E. Flamand, F. K.
Gürkaynak, and L. Benini. Near-Threshold RISC-V Core With DSP Extensions for Scal-
able IoT Endpoint Devices. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 25(10):2700–2713, 2017.

[123] A. H. Gerez, K. Kamaraj, R. Nofal, Y. Liu, and B. Dezfouli. Energy and Processing
Demand Analysis of TLS Protocol in Internet of Things Applications. In International
Workshop on Signal Processing Systems (SiPS ’18), pages 312–317, Piscataway, NJ, USA,
2018. IEEE.

[124] O. Gimenez and I. Petrov. Static Context Header Compression and Fragmentation
(SCHC) over LoRaWAN. RFC 9011, IETF, April 2021. URL https://doi.org/10.

17487/RFC9011.

[125] E. D. Giovanni, F. Montagna, B. W. Denkinger, S. Machetti, M. P. Quiros, S. Benatti,
D. Rossi, L. Benini, and D. A. Alonso. Modular Design and Optimization of Biomedi-
cal Applications for Ultra-Low Power Heterogeneous Platforms. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 39(11):3821–3832, 2020.

[126] M. Girault, R. Cohen, and M. Campana. A Generalized Birthday Attack. In EURO-
CRYPT ’88: Advances in Cryptology, volume 330 of LNCS, pages 129–156, Berlin, Hei-
delberg, 1988. Springer.

[127] M. J. E. Golay. Notes on Digital Coding. Proc. of the Institute of Radio Engineers (IRE
’49), 37:657–657, 1949.

[128] I. Goldberg and D. Wagner. Randomness and the Netscape Browser. https://people.

eecs.berkeley.edu/~daw/papers/ddj-netscape.html, last accessed 07-17-2020, 1996.

[129] C. Gomez, J. Crowcroft, and M. Scharf. TCP Usage Guidance in the Internet of Things
(IoT). RFC 9006, IETF, March 2021. URL https://doi.org/10.17487/RFC9006.

214

https://doi.org/10.17487/RFC9011
https://doi.org/10.17487/RFC9011
https://people.eecs.berkeley.edu/~daw/papers/ddj-netscape.html
https://people.eecs.berkeley.edu/~daw/papers/ddj-netscape.html
https://doi.org/10.17487/RFC9006

Bibliography

[130] N. Gonzalez, A. V. D. Bossche, and T. Val. Specificities of the LoRa physical layer
for the development of new ad hoc MAC layers. In 17th International Conference on
Ad Hoc Networks and Wireless (AdHoc-Now’18), volume 11104, pages 163–174, Cham,
Switzerland, 2018. Springer.

[131] G. Grassi, D. Pesavento, L. Wang, G. Pau, R. Vuyyuru, R. Wakikawa, and L. Zhang.
ACM HotMobile 2013 Poster: Vehicular Inter-networking via Named Data. SIGMOBILE
Mob. Comput. Commun. Rev., 17(3):23–24, November 2013.

[132] G. Grassi, D. Pesavento, L. Wang, G. Pau, R. Vuyyuru, R. Wakikawa, and L. Zhang.
Vehicular Inter-Networking via Named Data. Technical Report arXiv:1310.5980, Open
Archive: arXiv.org, October 2013.

[133] M. Green and M. Smith. Developers are Not the Enemy!: The Need for Usable Security
APIs. IEEE Security and Privacy, 14(5):40–46, 2016.

[134] S. Greenland, S. J. Senn, K. J. Rothman, J. B. Carlin, C. Poole, S. N. Goodman, and
D. G. Altman. Statistical tests, P values, confidence intervals, and power: a guide to
misinterpretations. European Journal of Epidemiology, 31(4):337–350, 2016.

[135] M. Gritter and D. R. Cheriton. An Architecture for Content Routing Support in the
Internet. In Proc. USITS’01, pages 4–4, Berkeley, CA, USA, 2001. USENIX Association.

[136] T. C. Group. Trusted Platform Module Library, Part 1: Architecture, Level
00 Revision 1.59. Technical report, TCG Published, November 2019. URL
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_

Architecture_pub.pdf.

[137] C. Gu, C.-H. Chang, W. Liu, N. Hanley, J. Miskelly, and M. O’Neill. A large-scale
comprehensive evaluation of single-slice ring oscillator and PicoPUF bit cells on 28-nm
Xilinx FPGAs. Journal of Cryptographic Engineering, 11(3):227–238, 2021.

[138] J. Guajardo, S. S.Kumar, G.-J. Schrijen, and P. Tuyls. FPGA Intrinsic PUFs and Their
Use for IP Protection. In P. Paillier and I. Verbauwhede, editors, Cryptographic Hard-
ware and Embedded Systems (CHES’07), pages 63–80, Berlin, Heidelberg, 2007. Springer–
Verlag.

[139] U. Guin, W. Wang, C. Harper, and A. D. Singh. Detecting Recycled SoCs by Exploiting
Aging Induced Biases in Memory Cells. In International Symposium on Hardware Oriented
Security and Trust (HOST’19), pages 72–80, Piscataway, NJ, USA, 2019. IEEE.

[140] C. Gündogan. Information-centric Networking for the Constrained Internet of Things.
Doctoral dissertation, Department of Mathematics and Computer Science, Freie Univer-
sität Berlin, July 2022. URL http://doi.org/10.17169/refubium-35327.

215

https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
http://doi.org/10.17169/refubium-35327

Bibliography

[141] C. Gündogan, P. Kietzmann, T. C. Schmidt, M. Lenders, H. Petersen, M. Wählisch,
M. Frey, and F. Shzu-Juraschek. Information-Centric Networking for the Industrial IoT. In
Proc. of 4th ACM Conference on Information-Centric Networking (ICN), Demo Session,
pages 214–215, New York, NY, USA, September 2017. ACM. URL https://doi.org/

10.1145/3125719.3132099.

[142] C. Gündogan, P. Kietzmann, M. Lenders, H. Petersen, T. C. Schmidt, and M. Wählisch.
NDN, CoAP, and MQTT: A Comparative Measurement Study in the IoT. In Proc. of 5th
ACM Conference on Information-Centric Networking (ICN), pages 159–171, New York,
NY, USA, September 2018. ACM. URL https://doi.org/10.1145/3267955.3267967.

[143] C. Gündogan, P. Kietzmann, T. C. Schmidt, M. Lenders, H. Petersen, M. Wählisch,
M. Frey, and F. Shzu-Juraschek. Demo: Seamless Producer Mobility for the Industrial
Information-Centric Internet. In Proc. of 16th ACM International Conference on Mobile
Systems, Applications (MobiSys), Demo Session, New York, NY, USA, June 2018. ACM.
URL https://doi.org/10.1145/3210240.3211114.

[144] C. Gündogan, P. Kietzmann, T. C. Schmidt, M. Lenders, H. Petersen, M. Wählisch,
M. Frey, and F. Shzu-Juraschek. Resilient Machine-to-Machine Communication for an
Information-centric Industrial IoT. In Proc. of the 43rd Annual IEEE Conference on
Local Computer Networks (LCN’18, Demo Session), Piscataway, NJ, USA, October 2018.
IEEE Press.

[145] C. Gündogan, P. Kietzmann, T. C. Schmidt, and M. Wählisch. HoPP: Publish–Subscribe
for the Constrained IoT. In Proc. of 5th ACM Conference on Information-Centric Net-
working (ICN), Demo Session, pages 216–217, New York, NY, USA, September 2018.
ACM. URL https://doi.org/10.1145/3267955.3269020.

[146] C. Gündogan, P. Kietzmann, T. C. Schmidt, and M. Wählisch. HoPP: Robust and
Resilient Publish-Subscribe for an Information-Centric Internet of Things. In Proc. of the
43rd IEEE Conference on Local Computer Networks (LCN), pages 331–334, Piscataway,
NJ, USA, Oct. 2018. IEEE Press. URL http://doi.org/10.1109/LCN.2018.8638030.

[147] C. Gündogan, P. Kietzmann, T. C. Schmidt, and M. Wählisch. ICN-LoWPAN: Header
Compression for the Constrained IoT. In Proc. of 5th ACM Conference on Information-
Centric Networking (ICN), Poster Session, pages 184–185, New York, NY, USA, Septem-
ber 2018. ACM. URL https://doi.org/10.1145/3267955.3269006.

[148] C. Gündogan, P. Kietzmann, T. C. Schmidt, and M. Wählisch. ICNLoWPAN –
Named-Data Networking in Low Power IoT Networks. In Proc. of 18th IFIP Net-
working Conference, pages 1–9, Piscataway, NJ, USA, May 2019. IEEE Press. URL
http://doi.org/10.23919/IFIPNetworking.2019.8816850.

216

https://doi.org/10.1145/3125719.3132099
https://doi.org/10.1145/3125719.3132099
https://doi.org/10.1145/3267955.3267967
https://doi.org/10.1145/3210240.3211114
https://doi.org/10.1145/3267955.3269020
http://doi.org/10.1109/LCN.2018.8638030
https://doi.org/10.1145/3267955.3269006
http://doi.org/10.23919/IFIPNetworking.2019.8816850

Bibliography

[149] C. Gündogan, P. Kietzmann, T. C. Schmidt, and M. Wählisch. Your Message Rescues
Me: Enhancing NDN Communication Quality in Disaster Scenarios. In Proc. of 6th ACM
Conference on Information-Centric Networking (ICN), Demo Session, pages 173–174,
New York, September 2019. ACM. URL https://doi.org/10.1145/3357150.3357414.

[150] C. Gündogan, C. Amsüss, T. C. Schmidt, and M. Wählisch. IoT Content Object Security
with OSCORE and NDN: A First Experimental Comparison. In Proc. of 19th IFIP
Networking Conference, pages 19–27, Piscataway, NJ, USA, June 2020. IEEE Press. URL
https://ieeexplore.ieee.org/document/9142731.

[151] C. Gündogan, P. Kietzmann, T. C. Schmidt, and M. Wählisch. Designing a LoWPAN
convergence layer for the Information Centric Internet of Things. Computer Communi-
cations, 164(1):114–123, December 2020. ISSN 0140-3664. URL https://doi.org/10.

1016/j.comcom.2020.10.002.

[152] C. Gündogan, J. Pfender, P. Kietzmann, T. C. Schmidt, and M. Wählisch. On the
Impact of QoS Management in an Information-centric Internet of Things. Computer
Communications, 154:160–172, March 2020. ISSN 0140-3664. URL https://doi.org/

10.1016/j.comcom.2020.02.046.

[153] C. Gündogan, P. Kietzmann, M. S. Lenders, H. Petersen, M. Frey, T. C. Schmidt, F. Shzu-
Juraschek, and M. Wählisch. The Impact of Networking Protocols on Massive M2M
Communication in the Industrial IoT. IEEE Transactions on Network and Service Man-
agement (TNSM), 18(4):4814–4828, Dec. 2021. URL https://doi.org/10.1109/TNSM.

2021.3089549.

[154] C. Gündogan, P. Kietzmann, T. C. Schmidt, and M. Wählisch. Information-Centric
Networking for the Industrial Internet of Things. In N. H. Mahmood, N. Marchenko,
M. Gidlund, and P. Popovski, editors, Wireless Networks and Industrial IoT, pages 171–
189. Springer, Februar 2021. ISBN 978-3-030-51473-0. URL https://doi.org/10.1007/

978-3-030-51473-0_9.

[155] C. Gündogan, C. Amsüss, T. C. Schmidt, and M.Wählisch. Content Object Security in the
Internet of Things: Challenges, Prospects, and Emerging Solutions. IEEE Transactions
on Network and Service Management (TNSM), 19(1):538–553, March 2022. URL https:

//doi.org/10.1109/TNSM.2021.3099902.

[156] C. Gündogan, P. Kietzmann, T. C. Schmidt, and M. Wählisch. A Mobility-compliant
Publish Subscribe System for an Information Centric Internet of Things. Computer Net-
works, 203(108656):1–14, February 2022. ISSN 1389-1286. URL https://doi.org/10.

1016/j.comnet.2021.108656.

217

https://doi.org/10.1145/3357150.3357414
https://ieeexplore.ieee.org/document/9142731
https://doi.org/10.1016/j.comcom.2020.10.002
https://doi.org/10.1016/j.comcom.2020.10.002
https://doi.org/10.1016/j.comcom.2020.02.046
https://doi.org/10.1016/j.comcom.2020.02.046
https://doi.org/10.1109/TNSM.2021.3089549
https://doi.org/10.1109/TNSM.2021.3089549
https://doi.org/10.1007/978-3-030-51473-0_9
https://doi.org/10.1007/978-3-030-51473-0_9
https://doi.org/10.1109/TNSM.2021.3099902
https://doi.org/10.1109/TNSM.2021.3099902
https://doi.org/10.1016/j.comnet.2021.108656
https://doi.org/10.1016/j.comnet.2021.108656

Bibliography

[157] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing Elliptic Curve
Cryptography and RSA on 8-bit CPUs. In M. Joye and J.-J. Quisquater, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2004, volume 3156 of Lecture Notes
in Computer Science, pages 119–132, Berlin, Heidelberg, Germany, 2004. Springer.

[158] P. Gutmann. Software Generation of Practically Strong Random Numbers. In SSYM
’98: Proc. of 7th USENIX Security Symposium, pages 19–19, Berkeley, CA, USA, 1998.
USENIX Association.

[159] Z. Guttermann, B. Pinkas, and T. Reinman. Analysis of the Linux Random Number
Generator. In Symposium on Security and Privacy (S&P ’06), pages 371–385, Berkeley,
CA, USA, 2006. IEEE.

[160] C. Gündoğan, T. C. Schmidt, and M. Wählisch. Publish-Subscribe Deployment
Option for NDN in the Constrained Internet of Things. Internet-Draft – work
in progress 01, IETF, July 2017. URL https://datatracker.ietf.org/doc/html/

draft-gundogan-icnrg-pub-iot-01.

[161] C. Gündoğan, T. C. Schmidt, M. Wählisch, C. Scherb, C. Marxer, and C. Tschudin.
ICN Adaptation to LowPAN Networks (ICN LoWPAN). Internet-Draft – work
in progress 02, IETF, July 2018. URL https://datatracker.ietf.org/doc/html/

draft-gundogan-icnrg-ccnlowpan-02.

[162] O. Hahm, C. Adjih, E. Baccelli, T. C. Schmidt, and M. Wählisch. ICN over TSCH: Poten-
tials for Link-Layer Adaptation in the IoT. In Proc. of 3rd ACM Conf. on Information-
Centric Networking (ICN 2016), Poster Session, pages 195—196, New York, NY, USA,
September 2016. ACM. URL http://doi.org/10.1145/2984356.2985226.

[163] O. Hahm, C. Adjih, E. Baccelli, T. C. Schmidt, and M. Wählisch. Designing Time Slotted
Channel Hopping and Information-Centric Networking for IoT. In Proc. of 8th IFIP
International Conference on New Technologies, Mobility & Security (NTMS), Piscataway,
NJ, USA, November 2016. IEEE Press.

[164] O. Hahm, E. Baccelli, T. C. Schmidt, M. Wählisch, C. Adjih, and L. Massoulié. Low-power
Internet of Things with NDN and Cooperative Caching. In Proc. of 4th ACM Conference
on Information-Centric Networking (ICN), pages 98–108, New York, NY, USA, September
2017. ACM.

[165] R. W. Hamming. Error detecting and error correcting codes. The Bell System Technical
Journal, 29(2):147–160, 1950.

[166] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). RFC 2409, IETF, November
1998. URL https://doi.org/10.17487/RFC2409.

218

https://datatracker.ietf.org/doc/html/draft-gundogan-icnrg-pub-iot-01
https://datatracker.ietf.org/doc/html/draft-gundogan-icnrg-pub-iot-01
https://datatracker.ietf.org/doc/html/draft-gundogan-icnrg-ccnlowpan-02
https://datatracker.ietf.org/doc/html/draft-gundogan-icnrg-ccnlowpan-02
http://doi.org/10.1145/2984356.2985226
https://doi.org/10.17487/RFC2409

Bibliography

[167] K. Hartke. Observing Resources in the Constrained Application Protocol (CoAP). RFC
7641, IETF, September 2015. URL https://doi.org/10.17487/RFC7641.

[168] M. Haubro, C. Orfanidis, G. Oikonomou, and X. Fafoutis. TSCH-over-LoRA: long range
and reliable IPv6 multi-hop networks for the internet of things. Internet Technology
Letters, 3(4):e165, 2020.

[169] Y. He, D. Li, Z. Yu, and K. Yang. ASCH-PUF: A “Zero” Bit Error Rate CMOS Physically
Unclonable Function With Dual-Mode Low-Cost Stabilization. IEEE Journal of Solid-
State Circuits, pages 1–11, early access, Jan. 2023.

[170] C. Helfmeier, C. Boit, D. Nedospasov, and J.-P. Seifert. Cloning Physically Unclonable
Functions. In IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST ’13), pages 1–6, Piscataway, NJ, USA, June 2013. IEEE.

[171] R. Hesselbarth, F. Wilde, C. Gu, and N. Hanley. Large scale RO PUF analysis over slice
type, evaluation time and temperature on 28nm Xilinx FPGAs. In International Sympo-
sium on Hardware-Oriented Security and Trust (HOST’18), pages 126–133, Piscataway,
NJ, USA, 2018. IEEE.

[172] M. Hiller, L. Kürzinger, and G. Sigl. Review of error correction for PUFs and evaluation
on state-of-the-art FPGAs. Journal of Cryptographic Engineering, 10(3):229–247, 2020.

[173] D. E. Holcomb, W. P. Burleson, and K. Fu. Power-Up SRAM State as an Identifying
Fingerprint and Source of True Random Numbers. IEEE Transactions on Computers, 58
(9):1198–1210, 2009.

[174] IEEE 802.15 Working Group. IEEE Standard for Low-Rate Wireless Networks. Technical
Report IEEE Std 802.15.4™–2015 (Revision of IEEE Std 802.15.4-2011), IEEE, New York,
NY, USA, 2016.

[175] M. Iglesias-Urkia, A. Orive, and A. Urbieta. Analysis of CoAP Implementations for
Industrial Internet of Things: A Survey. Procedia Computer Science, 109:188–195, 2017.

[176] INET Authors. INET Framework - An open-source OMNeT++ model suite for wired,
wireless and mobile networks. https://inet.omnetpp.org/, last accessed 06-04-2021,
2021.

[177] Intel Corporation. TinyCrypt Cryptographic Library. https://github.com/intel/

tinycrypt, last accessed 07-17-2020, 2017.

[178] International Society of Automation. Wireless Systems for Industrial Automation: Process
Control and Related Applications. Technical Report Standard ISA-100.11a-2011, ISA,
2011.

219

https://doi.org/10.17487/RFC7641
https://inet.omnetpp.org/
https://github.com/intel/tinycrypt
https://github.com/intel/tinycrypt

Bibliography

[179] H. Islam, D. Lagutin, and N. Fotiou. Observing IoT Resources over ICN. In Proc. of IFIP
Networking Workshop on Information-Centric Fog Computing, pages 1–8, Piscataway, NJ,
USA, 2017. IEEE.

[180] V. Jacobson, D. K. Smetters, J. D. Thornton, and M. F. Plass. Networking Named
Content. In 5th Int. Conf. on emerging Networking Experiments and Technologies (ACM
CoNEXT’09), pages 1–12, New York, NY, USA, Dec. 2009. ACM.

[181] José Quevedo and Rui Ferreira and Carlos Guimarães and Rui L. Aguiar and Daniel
Corujo. Internet of things discovery in interoperable information centric and ip networks.
Internet Technology Letters, 1:1–6, 2017.

[182] A. Juels and M. Wattenberg. A Fuzzy Commitment Scheme. In Proc. of the 6th ACM
Conference on Computer and Communications Security (CCS ’99), pages 28–36, New
York, NY, USA, 1999. ACM.

[183] D. Kaplan, S. Kedmi, R. Hay, and A. Dayan. Attacking the Linux PRNG on Android:
Weaknesses in Seeding of Entropic Pools and Low Boot-Time Entropy. In 8th USENIX
Conference on Offensive Technologies (WOOT ’14), Berkeley, CA, USA, 2014. USENIX
Association.

[184] T. Karunathilake, A. Udugama, and A. Förster. LoRa-DuCy: Duty Cycling for LoRa-
Enabled Internet of Things Devices. In 12th International Conference on Ubiquitous and
Future Networks (ICUFN ’21), pages 283–288, Piscataway, NJ, USA, 2021. IEEE.

[185] S. Katzenbeisser, Ü. Kocabaş, V. Rožić, A.-R. Sadeghi, and I. V. C. Wachsmann. PUFs:
Myth, Fact or Busted? A Security Evaluation of Physically Unclonable Functions (PUFs)
Cast in Silicon. In E. Prouff and P. Schaumont, editors, Cryptographic Hardware and
Embedded Systems (CHES ’12), pages 283–301, Berlin, Heidelberg, 2012. Springer–Verlag.

[186] F. Kauer, M. Köstler, and V. Turau. Reliable Wireless Multi-Hop Networks with De-
centralized Slot Management: An Analysis of IEEE 802.15.4 DSME. Technical Report
arXiv:1806.10521, Open Archive: arXiv.org, June 2018.

[187] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Cryptanalytic Attacks on Pseudorandom
Number Generators. In FSE ’98: Proceedings of the 5th International Workshop on Fast
Software Encryption, pages 168–188, London, UK, UK, 1998. Springer-Verlag.

[188] J. Kelsey, B. Schneier, and N. Ferguson. Yarrow-160: Notes on the Design and Analysis
of the Yarrow Cryptographic Pseudorandom Number Generator. In 6th Annual Workshop
on Selected Areas in Cryptography, pages 13–33, Berlin, Heidelberg, 1999. Springer.

[189] Ken MacKay. micro-ecc. http://kmackay.ca/micro-ecc/, last accessed 10-11-2020.

220

http://kmackay.ca/micro-ecc/

Bibliography

[190] P. Kietzmann. RIOT - Betriebssystem für das IoT. In Informationstechnologie von A-Z.
Weka Media GmbH & Co. KG, Kissing, Germany, 2017. ISBN 978-3-8245-8190-0.

[191] P. Kietzmann, M. Landsmann, T. C. Schmidt, H. Petersen, M. Lenders, and M. Wählisch.
Leistungsmessung eines modularen Netzwerk-Stacks für das IoT-Betriebssystem RIOT.
In Proc. of the 14. GI/ITG KuVS Fachgespräch Sensornetze (FGSN2015), pages 19–
22, Erlangen-Nürnberg, Germany, Sep 2015. Friedrich-Alexander-Universität Erlangen-
Nürnberg, Dept. of Computer Science.

[192] P. Kietzmann, T. C. Schmidt, and M. Wählisch. RIOT - das freundliche Echtzeitbetrieb-
ssystem für das IoT. In Internet der Dinge, pages 43–52, Berlin, Nov. 2016. Springer
Vieweg. URL https://www.doi.org/10.1007/978-3-662-53443-4_5.

[193] P. Kietzmann, C. Gündogan, T. C. Schmidt, O. Hahm, and M. Wählisch. The Need for
a Name to MAC Address Mapping in NDN: Towards Quantifying the Resource Gain. In
Proc. of 4th ACM Conference on Information-Centric Networking (ICN), pages 36–42,
New York, NY, USA, September 2017. ACM. URL https://dl.acm.org/doi/10.1145/

3125719.3125737.

[194] P. Kietzmann, C. Gündogan, T. C. Schmidt, and M. Wählisch. A PUF Seed Generator for
RIOT: Introducing Crypto-Fundamentals to the Wild. In Proc. of 16th ACM International
Conference on Mobile Systems, Applications (MobiSys), Poster Session, New York, NY,
USA, June 2018. ACM. URL https://doi.org/10.1145/3210240.3210805.

[195] P. Kietzmann, D. Kutscher, T. C. Schmidt, and M. Wählisch. Long-Range IoT: Is
LoRaWAN an Option for ICN? In Proc. of the 7th ACM Conference on Information-
Centric Networking (ICN), pages 152–154, New York, NY, USA, 2020. ACM. URL
https://doi.org/10.1145/3405656.3420228.

[196] P. Kietzmann, L. Boeckmann, L. Lanzieri, T. C. Schmidt, and M. Wählisch. A Per-
formance Study of Crypto-Hardware in the Low-end IoT. In Proc. of Embedded Wire-
less Systems and Networks (EWSN’21), New York, USA, February 2021. ACM. URL
https://dl.acm.org/doi/10.5555/3451271.3451279.

[197] P. Kietzmann, J. Alamos, D. Kutscher, T. C. Schmidt, and M. Wählisch. Delay-Tolerant
ICN and Its Application to LoRa. In Proc. of 9th ACM Conference on Information-Centric
Networking (ICN), pages 125–136, New York, September 2022. ACM. URL https://doi.

org/10.1145/3517212.3558081.

[198] P. Kietzmann, J. Alamos, D. Kutscher, T. C. Schmidt, and M. Wählisch. Long-Range
ICN for the IoT: Exploring a LoRa System Design. In Proc. of 21th IFIP Networking
Conference, pages 1–9, Piscataway, NJ, USA, June 2022. IEEE Press. URL https://

doi.org/10.23919/IFIPNetworking55013.2022.9829792.

221

https://www.doi.org/10.1007/978-3-662-53443-4_5
https://dl.acm.org/doi/10.1145/3125719.3125737
https://dl.acm.org/doi/10.1145/3125719.3125737
https://doi.org/10.1145/3210240.3210805
https://doi.org/10.1145/3405656.3420228
https://dl.acm.org/doi/10.5555/3451271.3451279
https://doi.org/10.1145/3517212.3558081
https://doi.org/10.1145/3517212.3558081
https://doi.org/10.23919/IFIPNetworking55013.2022.9829792
https://doi.org/10.23919/IFIPNetworking55013.2022.9829792

Bibliography

[199] P. Kietzmann, T. C. Schmidt, and M. Wählisch. A Guideline on Pseudorandom Number
Generation (PRNG) in the IoT. ACM Comput. Surv., 54(6):112:1–112:38, July 2022. URL
https://dl.acm.org/doi/10.1145/3453159.

[200] P. Kietzmann, T. C. Schmidt, and M. Wählisch. PUF for the Commons: Enhancing
Embedded Security on the OS Level. IEEE Transactions on Dependable and Secure Com-
puting, 2023. URL http://doi.org/10.1109/TDSC.2023.3300368.

[201] W. Killmann and W. Schindler. A proposal for: Functionality classes for random number
generators. Technical Report AIS 20 / AIS 31, BSI, Bonn, Germany, 2011.

[202] K. H. Kim, J. Choe, S. Y. Kim, N. Kim, and S. Hong. Speeding up Elliptic Curve Scalar
Multiplication without Precomputation. IACR Cryptol. ePrint Arch., (Report 2017/669),
2017.

[203] Y.-S. Kim and G. Kim. A Performance Analysis of Lightweight Cryptography Algorithm
for Data Privacy in IoT Devices. In International Conference on Information and Com-
munication Technology Convergence (ICTC ’18), pages 936–938. IEEE, 2018.

[204] R. King and R. Sugiyama. A New Remote Communications Link to Reduce Residential
PV Solar Costs. Technical Report DE-EE0007592, U.S. Department of Energy Office of
Scientific and Technical Information, 2017.

[205] D. E. Knuth. The Art of Computer Programming (Second Edition). Addison Wesley,
Reading, MA, USA, 2009. ISBN 0-201-89685-0.

[206] P. Koeberl, J. Li, A. Rajan, and W. Wu. Entropy loss in PUF-based key generation
schemes: The repetition code pitfall. In IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST ’14), pages 44–49, Piscataway, NJ, USA, 2014. IEEE.

[207] L. Kohnfelder and P. Garg. The threats to our products. Technical report, Microsoft, 1999.
URL https://adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx.

[208] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and I. Stoica.
A Data-Oriented (and beyond) Network Architecture. SIGCOMM Computer Communi-
cations Review, 37(4):181–192, 2007.

[209] A. R. Korenda, F. Afghah, B. Cambou, and C. Philabaum. A Proof of Concept SRAM-
based Physically Unclonable Function (PUF) Key Generation Mechanism for IoT De-
vices. In Workshop on Security Trust and Privacy in Emerging Cyber-Physical Systems
(SECON’19), Piscataway, NJ, USA, 2019. IEEE.

[210] K. Krentz, C. Meinel, and H. Graupner. Secure self-seeding with power-up SRAM states.
In ISCC ’17: Symposium on Computers and Communications, pages 1251–1256, Herak-
lion, Greece, 2017. IEEE.

222

https://dl.acm.org/doi/10.1145/3453159
http://doi.org/10.1109/TDSC.2023.3300368
https://adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx

Bibliography

[211] M. Król, K. Habak, D. Oran, D. Kutscher, and I. Psaras. RICE: Remote Method Invoca-
tion in ICN. In Proceedings of the 5th ACM Conference on Information-Centric Network-
ing, ICN ’18, pages 1–11, New York, NY, USA, 2018. ACM. ISBN 9781450359597.

[212] C. P. Kruger and G. P. Hancke. Benchmarking Internet of things devices. In Proc. of 12th
IEEE International Conf on Industrial Informatics (INDIN), pages 611–616, Piscataway,
NJ, USA, 2014. IEEE.

[213] M. Kuai, X. Hong, and Q. Yu. Delay-tolerant forwarding strategy for named data network-
ing in vehicular environment. International Journal of Ad Hoc and Ubiquitous Computing,
31(1), 2019.

[214] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich, D. Kuznetsov, R. Gupta, and
Z. Durumeric. All Things Considered: An Analysis of IoT Devices on Home Networks. In
28th USENIX Security Symposium (USENIX Security 19), pages 1169–1185, Santa Clara,
CA, Aug. 2019. USENIX Association. ISBN 978-1-939133-06-9.

[215] S. Kumar, M. P. Andersen, H.-S. Kim, and D. E. Culler. Performant TCP for Low-
Power Wireless Networks. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pages 911–932, Santa Clara, CA, Feb. 2020. USENIX
Association.

[216] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. Impact of NBTI on SRAM read stability
and design for reliability. In 7th International Symposium on Quality Electronic Design
(ISQED’06), Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[217] R. Kumari and R. L. Ujjwal. Name Data Networking for Interplanetary Internet: An
Architectural Perspective. International Journal of Research in Advent Technology, 7(5):
436–441, 2019.

[218] H. Kurunathan, R. Severino, A. Koubaa, and E. Tovar. Symphony: Routing Aware
Scheduling for DSME Networks. SIGBED Review, 16(4):26–31, January 2020.

[219] D. Kutscher, S. Eum, K. Pentikousis, I. Psaras, D. Corujo, D. Saucez, T. Schmidt, and
M. Waehlisch. Information-Centric Networking (ICN) Research Challenges. RFC 7927,
IETF, July 2016. URL https://doi.org/10.17487/RFC7927.

[220] C. Lachner and S. Dustdar. A Performance Evaluation of Data Protection Mechanisms
for Resource Constrained IoT Devices. In International Conference on Fog Computing
(ICFC ’19), pages 47–52, Piscataway, NJ, USA, 2019. IEEE.

[221] M. Landsmann, P. Kietzmann, T. C. Schmidt, and M. Wählisch. Demo: Topological
Robustness of RPL with TRAIL. In Proc. of Embedded Wireless Systems and Networks

223

https://doi.org/10.17487/RFC7927

Bibliography

(EWSN ’16), Demonstration, pages 219–220, New York, NY, USA, Feb. 2016. ACM. URL
https://dl.acm.org/doi/10.5555/2893711.2893742.

[222] L. Lanzieri, P. Kietzmann, T. C. Schmidt, and M. Wählisch. Poster Abstract: Third
Party Authorization of LwM2M Clients. In Proc. of ACM/IEEE Int. Conf. on Internet
of Things Design and Implementation (IoTDI ’21), pages 263–264, New York, NY, USA,
May 2021. ACM. URL https://doi.org/10.1145/3450268.3453512.

[223] L. Lanzieri, P. Kietzmann, T. C. Schmidt, and M.Wählisch. Secure and Authorized Client-
to-Client Communication for LwM2M. In Proc. of ACM/IEEE Int. Conf. on Information
Processing in Sensor Networks (IPSN ’22), pages 158–170, Piscataway, NJ, USA, May
2022. IEEE. URL https://doi.org/10.1109/IPSN54338.2022.00020.

[224] L. Lanzieri, P. Kietzmann, G. Fey, H. Schlarb, and T. C. Schmidt. Ageing Analysis of
Embedded SRAM on a Large-Scale Testbed Using Machine Learning. In Proc. of 26th
Euromicro Conference on Digital System Design (DSD), pages 335–342. IEEE, September
2023. URL https://doi.org/10.1109/DSD60849.2023.00054.

[225] P. L’Ecuyer and R. Simard. TestU01: A C Library for Empirical Testing of Random
Number Generators. ACM Trans. Math. Softw., 33(4):1–40, 2007.

[226] P. L’Ecuyer and R. Simard. TestU01 A Software Library in ANSI C for Empirical Testing
of Random Number Generators. User’s guide, compact version. Technical report, Depart-
ment of Computer Science and Operations Research, University of Montreal, Montreal,
Canada, 2013.

[227] H.-C. Lee and K.-H. Ke. Monitoring of Large-Area IoT Sensors Using a LoRa Wireless
Mesh Network System: Design and Evaluation. IEEE Transactions on Instrumentation
and Measurement, 67(9):2177–2187, 2018.

[228] J. Lee, D.-W. Jee, and D. Jeon. Power-up control techniques for reliable SRAM PUF.
IEICE Electronics Express, 16(13), 2019.

[229] D. H. Lehmer. Mathematical Methods in Large-scale Computing Units. In Proceedings
of the Second Symposium on Large Scale Digital Computing Machinery, pages 141–146,
Cambridge, MA, US, 1951. Harvard University Press.

[230] M. Lenders, P. Kietzmann, O. Hahm, H. Petersen, C. Gündogan, E. Baccelli, K. Schleiser,
T. C. Schmidt, and M. Wählisch. Connecting the World of Embedded Mobiles: The
RIOT Approach to Ubiquitous Networking for the Internet of Things. Technical Report
arXiv:1801.02833, Open Archive: arXiv.org, January 2018. URL https://arxiv.org/

abs/1801.02833.

224

https://dl.acm.org/doi/10.5555/2893711.2893742
https://doi.org/10.1145/3450268.3453512
https://doi.org/10.1109/IPSN54338.2022.00020
https://doi.org/10.1109/DSD60849.2023.00054
https://arxiv.org/abs/1801.02833
https://arxiv.org/abs/1801.02833

Bibliography

[231] M. S. Lenders, C. Gündogan, T. C. Schmidt, and M. Wählisch. Connecting the Dots:
Selective Fragment Recovery in ICNLoWPAN. In Proc. of 7th ACM Conference on
Information-Centric Networking (ICN), pages 70–76, New York, September 2020. ACM.
URL https://doi.org/10.1145/3405656.3418719.

[232] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and C. Wachter. Ron
was wrong, Whit is right. https://eprint.iacr.org/2012/064, last accessed 07-17-2020,
2012.

[233] L. Leonardi, L. L. Bello, F. Battaglia, and G. Patti. Comparative Assessment of the
LoRaWAN Medium Access Control Protocols for IoT: Does Listen before Talk Perform
Better than ALOHA? Electronics, 9(4):553, 2020.

[234] C. Lerche, K. Hartke, and M. Kovatsch. Industry adoption of the Internet of Things:
A constrained application protocol survey. In Proc. 17th IEEE International Conf on
Emerging Technologies & Factory Automation (ETFA), pages 1–6, Piscataway, NJ, USA,
2012. IEEE.

[235] T. Li, Z. Kong, and L. Zhang. Supporting Delay Tolerant Networking: A Comparative
Study of Epidemic Routing and NDN. In International Conference on Communications
Workshops (ICC’20 Workshop), Piscataway, NJ, USA, 2020. IEEE Press.

[236] Y. Li, A. Afanasyev, J. Shi, H. Zhang, Z. Zhang, T. Li, E. Lu, B. Zhang, L. Wang,
and L. Zhang. NDN Automatic Prefix Propagation. Technical Report NDN-0045, NDN,
March 2018.

[237] J. C. Liando, A. Gamage, A. W. Tengourtius, and M. Li. Known and Unknown Facts
of LoRa: Experiences from a Large-Scale Measurement Study. Transactions on Sensor
Networks (TOSN), 15(2):16, Feb. 2019. URL https://doi.org/10.1145/3293534.

[238] T. Liang, Z. Xia, G. Tang, Y. Zhang, and B. Zhang. NDN in Large LEO Satellite
Constellations: A Case of Consumer Mobility Support. In Proceedings of the 8th ACM
Conference on Information-Centric Networking, New York, NY, USA, 2021. ACM.

[239] Libsodium Community. A modern, portable, easy to use crypto library. https://github.
com/jedisct1/libsodium, last accessed 12-10-2020, 2020.

[240] C. H. Lim and P. J. Lee. More Flexible Exponentiation with Precomputation. In Advances
in Cryptology (CRYPTO’94), pages 95–107, Berlin, Heidelberg, 1994. Springer.

[241] J. D. C. Little. A Proof for the Queuing Formula: L = λW. Operations Research, 9(3):
383–387, 1961.

225

https://doi.org/10.1145/3405656.3418719
https://eprint.iacr.org/2012/064
https://doi.org/10.1145/3293534
https://github.com/jedisct1/libsodium
https://github.com/jedisct1/libsodium

Bibliography

[242] H. Liu, W. Liu, Z. Lu, Q. Tong, and Z. Liu. Methods for Estimating the Convergence of
Inter-Chip Min-Entropy of SRAM PUFs. IEEE Transactions on Circuits and Systems I:
Regular Papers, 65(2):593–605, 2018.

[243] Y. Liu, L. Njilla, A. Dowling, and W. Du. Empowering named data networks for ad-
hoc long-range communication. In Wireless and Optical Communications Conference
(WOCC’20), pages 1–6, Piscataway, NJ, USA, 2020. IEEE.

[244] P. Longa and C. Gebotys. Novel Precomputation Schemes for Elliptic Curve Cryptosys-
tems. In Applied Cryptography and Network Security (ACNS’09), pages 71–88, Berlin,
Heidelberg, 2009. Springer.

[245] LoRa Alliance – Technical Committee. Lorawan 1.1 specification. Technical report,
LoRa Alliance, Oct. 2017. URL https://lora-alliance.org/sites/default/files/

2018-04/lorawantm_specification_-v1.1.pdf.

[246] A. Ludovici, P. Moreno, and A. Calveras. TinyCoAP: A Novel Constrained Applica-
tion Protocol (CoAP) Implementation for Embedding RESTful Web Services in Wireless
Sensor Networks Based on TinyOS. J. Sensor and Actuator Networks, 2(2):288–315, 2013.

[247] J. Mades, G. Ebelt, B. Janjic, F. Lauer, C. C. Rheinländer, and N. Wehn. TLS-Level
Security for Low Power Industrial IoT Network Infrastructures. In Design, Automation
Test in Europe Conference Exhibition (DATE ’20), pages 1720–1721, Piscataway, NJ,
USA, 2020. IEEE.

[248] R. Maes and V. van der Leest. Countering the effects of silicon aging on SRAM PUFs.
In International Symposium on Hardware-Oriented Security and Trust (HOST’14), pages
148–153, Piscataway, NJ, USA, 2014. IEEE.

[249] R. Maes, A. V. Herrewege, and I. Verbauwhede. PUFKY: A Fully Functional PUF-Based
Cryptographic Key Generator. In E. Prouff and P. Schaumont, editors, Cryptographic
Hardware and Embedded Systems (CHES ’12), pages 302–319, Berlin, Heidelberg, 2012.
Springer–Verlag.

[250] R. Maes, V. van der Leest, E. van der Sluis, and F. Willems. Secure key generation from
biased PUFs: extended version. Journal of Cryptographic Engineering, 6(2):121–137, 2016.

[251] A. Maiti, J. Casarona, L. McHale, and P. Schaumont. A large scale characterization of RO-
PUF. In International Symposium on Hardware-Oriented Security and Trust (HOST’10),
pages 94–99, Piscataway, NJ, USA, 2010. IEEE.

[252] G. Marsaglia. Random Numbers Fall Mainly in the Planes. Proc. of the National Academy
of Sciences, 61(1):25–28, 1968.

226

https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf
https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf

Bibliography

[253] G. Marsaglia. The Marsaglia Random Number CDROM including the Diehard Battery of
Tests of Randomness. https://web.archive.org/web/20160125103112/http://stat.

fsu.edu/pub/diehard, last accessed 07-17-2020, 1995. Originally published in https:

//stat.fsu.edu/pub/diehard.

[254] G. Marsaglia. Xorshift RNGs. Journal of Statistical Software, Articles, 8(14):1–6, 2003.
URL https://www.jstatsoft.org/v008/i14.

[255] Marten van Hulst. Anchoring TrustZone with SRAM PUF. https://community.

arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/

anchoring-trustzone-with-sram-puf, last accessed 09-29-2021, 2019.

[256] M. Mascagni and A. Srinivasan. Algorithm 806: SPRNG: A Scalable Library for Pseudo-
random Number Generation. ACM Trans. Math. Softw., 26(3):436–461, 2000.

[257] J. L. Massey. Guessing and entropy. In Proceedings of IEEE International Symposium on
Information Theory (ISIT’94), page 204, 1994.

[258] B. Mathieu, C. Westphal, and P. Truong. Towards the usage of ccn for iot networks.
In Internet of Things (IoT) in 5G Mobile Technologies, pages 3–24. Springer, Cham,
Switzerland, 2016.

[259] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally Equidistributed
Uniform Pseudo-random Number Generator. ACM Trans. Model. Comput. Simul., 8(1):
3–30, 1998.

[260] T. McGrath, I. E. Bagci, Z. M. Wang, U. Roedig, and R. J. Young. A PUF taxonomy.
Applied Physics Reviews, 6(1):011303, 2019.

[261] ATECC508A CryptoAuthentication Device Complete Data Sheet. Microchip, December
2017. Rev. A.

[262] Microchip Technology. CryptoAuthLib – Microchip CryptoAuthentication Library.
https://github.com/MicrochipTech/cryptoauthlib, last accessed 12-10-2020, 2020.

[263] K. Mikhaylov, J. Petäjäjärvi, and A. Pouttu. Effect of Downlink Traffic on Performance of
LoRaWAN LPWA Networks: Empirical Study. In 29th Annual International Symposium
on Personal, Indoor and Mobile Radio Communications (PIMRC’18), Piscataway, NJ,
USA, 2018. IEEE.

[264] K. Mikhaylov, R. Fujdiak, A. Pouttu, V. Miroslav, L. Malina, and P. Mlynek. Energy
Attack in LoRaWAN: Experimental Validation. In 14th International Conference on Avail-
ability, Reliability and Security (ARES ’19), pages 1–6, New York, NY, USA, 2019. ACM.

227

https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/diehard
https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/diehard
https://stat.fsu.edu/pub/diehard
https://stat.fsu.edu/pub/diehard
https://www.jstatsoft.org/v008/i14
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/anchoring-trustzone-with-sram-puf
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/anchoring-trustzone-with-sram-puf
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/anchoring-trustzone-with-sram-puf
https://github.com/MicrochipTech/cryptoauthlib

Bibliography

[265] A. Minaburo, L. Toutain, C. Gomez, D. Barthel, and J. Zuniga. SCHC: Generic Frame-
work for Static Context Header Compression and Fragmentation. RFC 8724, IETF, April
2020. URL https://doi.org/10.17487/RFC8724.

[266] A. Minaburo, L. Toutain, and R. Andreasen. Static Context Header Compression (SCHC)
for the Constrained Application Protocol (CoAP). RFC 8824, IETF, June 2021. URL
https://doi.org/10.17487/RFC8824.

[267] K. Mindermann, P. Keck, and S. Wagner. How Usable Are Rust Cryptography APIs? In
International Conference on Software Quality, Reliability and Security (QRS ’18), pages
143–.154, Los Alamitos, CA, USA, 2018. IEEE Computer Society.

[268] Mininet Project Contributors. Mininet - An Instant Virtual Network on your Laptop (or
other PC). http://www.mininet.org/, last accessed 09-06-2022, 2022.

[269] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomization and Prob-
abilistic Techniques in Algorithms and Data Analysis (Second Edition). Cambridge Uni-
versity Press, Cambridge, MA, USA, 2017. ISBN 110715488X, 9781107154889.

[270] I. Moiseenko, L. Wang, and L. Zhang. Consumer / Producer Communication with Ap-
plication Level Framing in Named Data Networking. In Proceedings of the 2nd ACM
Conference on Information-Centric Networking, ICN ’15, pages 99–108, New York, NY,
USA, 2015. ACM. ISBN 9781450338554.

[271] Monocypher Authors. Boring crypto that simply works. https://monocypher.org/, last
accessed 12-10-2020, 2020.

[272] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission of IPv6 Packets
over IEEE 802.15.4 Networks. RFC 4944, IETF, September 2007. URL https://doi.

org/10.17487/RFC4944.

[273] P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48(177):243–264, 1987.

[274] M. Mosko, I. Solis, and C. Wood. Content-Centric Networking (CCNx) Semantics. RFC
8569, IETF, July 2019. URL https://doi.org/10.17487/RFC8569.

[275] M. Mössinger, B. Petschkuhn, J. Bauer, R. C. Staudemeyer, M. Wójcik, and H. C. Pöhls.
Towards quantifying the cost of a secure IoT: Overhead and energy consumption of ECC
signatures on an ARM-based device. In 17th Intern. Symp. on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM’16), pages 1–6. IEEE, 2016.

[276] P. S. Munoz, N. Tran, B. Craig, B. Dezfouli, and Y. Liu. Analyzing the Resource Utiliza-
tion of AES Encryption on IoT Devices. In Asia-Pacific Signal and Information Processing

228

https://doi.org/10.17487/RFC8724
https://doi.org/10.17487/RFC8824
http://www.mininet.org/
https://monocypher.org/
https://doi.org/10.17487/RFC4944
https://doi.org/10.17487/RFC4944
https://doi.org/10.17487/RFC8569

Bibliography

Association Annual Summit and Conference (APSIPA ASC’18), pages 1200–1207, Piscat-
away, NJ, USA, 2018. IEEE.

[277] Musl C Authors. musl libc a new libc striving to be fast, simple, lightweight, free, and
correct. https://wiki.musl-libc.org/, last accessed 12-10-2020, 2020.

[278] J. Nieminen, T. Savolainen, M. Isomaki, B. Patil, Z. Shelby, and C. Gomez. IPv6 over
BLUETOOTH(R) Low Energy. RFC 7668, IETF, October 2015. URL https://doi.

org/10.17487/RFC7668.

[279] NIST. Digital Signature Standard. Federal Information Processing Standards 186–1,
National Institute of Standards & Technology, Gaithersburg, MD, US, December 1998.

[280] NIST. Security Requirements for Cryptographic Modules. Federal Information Processing
Standards 140–1, National Institute of Standards & Technology, Gaithersburg, MD, US,
January 2001.

[281] NIST. Security Requirements for Cryptographic Modules. Federal Information Processing
Standards 140–2, National Institute of Standards & Technology, Gaithersburg, MD, US,
May 2002. Supersedes FIPS 140–1.

[282] NIST. Standards for Security Categorization of Federal Information and Information
Systems. Technical Report FIPS-199, National Institute of Standards and Technology,
Gaithersburg, MD, US, February 2004.

[283] NIST. Digital Signature Standard. Federal Information Processing Standards 186–3, Na-
tional Institute of Standards & Technology, Gaithersburg, MD, US, June 2009. Supersedes
FIPS 186–2.

[284] NIST. Digital Signature Standard. Federal Information Processing Standard 186–4, Na-
tional Institute of Standards & Technology, Gaithersburg, MD, US, July 2013.

[285] R. A. Nofal, N. Tran, C. Garcia, Y. Liu, and B. Dezfouli. A Comprehensive Empirical
Analysis of TLS Handshake and Record Layer on IoT Platforms. In 22nd International
ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWIM ’19), pages 61–70, New York, NY, USA, 2019. ACM.

[286] K. Nohl, D. Evans, S. Starbug, and H. Plötz. Reverse-Engineering a Cryptographic RFID
Tag. In 17th Conference on Security Symposium (SS ’08), pages 185–193, San Jose, CA,
USA, 2008. USENIX Association.

[287] nRF52840 Product Specification. Nordic Semiconductor, March 2018. Version 1.0.

[288] MKW2xD Reference Manual. NXP, May 2016. Rev. 3.

229

https://wiki.musl-libc.org/
https://doi.org/10.17487/RFC7668
https://doi.org/10.17487/RFC7668

Bibliography

[289] S. Y. Oh, D. Lau, and M. Gerla. Content Centric Networking in tactical and emergency
MANETs. In 2010 IFIP Wireless Days, pages 1–5, Piscataway, NJ, USA, Oct 2010. IEEE.

[290] M. O’Kennedy, T. Niesler, R. Wolhuter, and N. Mitton. Practical evaluation of carrier
sensing for a LoRa wildlife monitoring network. In Proc. of 19th IFIP Networking Con-
ference, pages 10–18, Piscataway, NJ, USA, June 2020. IEEE Press.

[291] K. Okeya and T. Takagi. The Width-w NAF Method Provides Small Memory and Fast
Elliptic Scalar Multiplications Secure against Side Channel Attacks. In M. Joye, editor,
Topics in Cryptology — CT-RSA 2003, volume 2612 of Lecture Notes in Computer Science,
pages 328–343. Springer, Berlin, Heidelberg, Germany, 2003.

[292] N. Ollrogge, P. Kietzmann, L. Lanzieri, T. C. Schmidt, and M. Wählisch. First Steps
Towards FIDO2 for the Internet of Things. In Proc. of the 19. GI/ITG KuVS Fachgespräch
Sensornetze (FGSN’22), pages 29–32, Berlin, Germany, Sep 2022. HTW Berlin. URL
https://doi.org/10.34702/mncp-qb18.

[293] OpenISA Community. OpenISA VEGAboard. https://open-isa.org/, last accessed
12-10-2020, 2020.

[294] D. R. Oran and D. Kutscher. Reflexive Forwarding for CCNx and NDN Protocols.
Internet-Draft – work in progress 01, IETF, April 2020. URL https://datatracker.

ietf.org/doc/html/draft-oran-icnrg-reflexive-forwarding-01.

[295] D. R. Oran and D. Kutscher. Reflexive Forwarding for CCNx and NDN Protocols.
Internet-Draft – work in progress 06, IETF, September 2023. URL https://datatracker.

ietf.org/doc/html/draft-oran-icnrg-reflexive-forwarding-06.

[296] C. Orfanidis, L. M. Feeney, M. Jacobsson, and P. Gunningberg. Cross-Technology Clear
Channel Assessment for Low-Power Wide Area Networks. In 16th International Confer-
ence on Mobile Ad Hoc and Sensor Systems (MASS’19), pages 199–207, Washington, DC,
USA, 2019. IEEE Computer Society.

[297] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld. Physical One-Way Functions. Science,
297(5589):2026–2030, 2002.

[298] S. K. Park and K. W. Miller. Random Number Generators: Good Ones Are Hard to Find.
Commun. ACM, 31(10):1192–1201, 1988.

[299] M. Passing and F. Dressler. Experimental Performance Evaluation of Cryptographic
Algorithms on Sensor Nodes. In IEEE Int. Conf. on Mobile Ad Hoc and Sensor Systems
(MASS’06), pages 882–887. IEEE, 2006.

230

https://doi.org/10.34702/mncp-qb18
https://open-isa.org/
https://datatracker.ietf.org/doc/html/draft-oran-icnrg-reflexive-forwarding-01
https://datatracker.ietf.org/doc/html/draft-oran-icnrg-reflexive-forwarding-01
https://datatracker.ietf.org/doc/html/draft-oran-icnrg-reflexive-forwarding-06
https://datatracker.ietf.org/doc/html/draft-oran-icnrg-reflexive-forwarding-06

Bibliography

[300] N. Patnaik, J. Hallett, and A. Rashid. Usability Smells: An Analysis of Developers’
Struggle With Crypto Libraries. In Fifteenth Symposium on Usable Privacy and Security
(SOUPS 2019), pages 245–257, Washington, D.C., Aug. 2019. USENIX Association.

[301] V. Paxson, M. Allman, J. Chu, and M. Sargent. Computing TCP’s Retransmission Timer.
RFC 6298, IETF, June 2011. URL https://doi.org/10.17487/RFC6298.

[302] B. Pearson, L. Luo, Y. Zhang, R. Dey, Z. Ling, M. Bassiouni, and X. Fu. On Misconception
of Hardware and Cost in IoT Security and Privacy. In 53rd International Conference on
Communications (ICC ’19), pages 1–7, Piscataway, NJ, USA, 2019. IEEE.

[303] H. Petersen, P. Kietzmann, C. Gündogan, T. C. Schmidt, and M. Wählisch. Bluetooth
Mesh under the Microscope: How much ICN is Inside? In Proc. of 6th ACM Conference
on Information-Centric Networking (ICN), pages 134–140, New York, 2019. ACM. URL
https://doi.org/10.1145/3357150.3357398.

[304] H. Petersen, P. Kietzmann, T. C. Schmidt, and M. Wählisch. NDN meets BLE: A Trans-
parent Gateway for Opening NDN-over-BLE Networks to your Smartphone. In Proc. of
6th ACM Conference on Information-Centric Networking (ICN), Demo Session, pages
175–176, New York, September 2019. ACM. URL https://doi.org/10.1145/3357150.

3357411.

[305] C. Pham. Investigating and experimenting CSMA channel access mechanisms for LoRa
IoT networks. In Wireless Communications and Networking Conference (WCNC ’18),
pages 1–6, Piscataway, NJ, USA, 2018. IEEE.

[306] J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of
Computation, 32(143):918–924, july 1978.

[307] G. C. Polyzos and N. Fotiou. Building a reliable Internet of Things using Information-
Centric Networking. Journal of Reliable Intelligent Environments, 1(1):47–58, 2015.

[308] M. A. Prada-Delgado, A. Vázquez-Reyes, and I. Baturone. Trustworthy firmware update
for Internet-of-Thing Devices using physical unclonable functions. In Global Internet of
Things Summit (GIoTS ’17), pages 1–5, Piscataway, NJ, USA, 2017. IEEE.

[309] A. Pullini, D. Rossi, I. Loi, A. D. Mauro, and L. Benini. Mr. Wolf: A 1 GFLOP/s
Energy-Proportional Parallel Ultra Low Power SoC for IOT Edge Processing. In 44th
European Solid State Circuits Conference (ESSCIRC’18), pages 274–277, Piscataway, NJ,
USA, 2018. IEEE.

[310] zero-riscy: User Manual. PULP Platform, January 2018. URL https://www.

pulp-platform.org/docs/user_manual.pdf. Rev. 0.2.

231

https://doi.org/10.17487/RFC6298
https://doi.org/10.1145/3357150.3357398
https://doi.org/10.1145/3357150.3357411
https://doi.org/10.1145/3357150.3357411
https://www.pulp-platform.org/docs/user_manual.pdf
https://www.pulp-platform.org/docs/user_manual.pdf

Bibliography

[311] RI5CY: User Manual. PULP Platform, April 2019. URL https://www.pulp-platform.

org/docs/ri5cy_user_manual.pdf. Rev. 4.0.

[312] M. T. Rahman, A. Hosey, Z. Guo, J. Carroll, D. Forte, and M. Tehranipoor. Systematic
Correlation and Cell Neighborhood Analysis of SRAM PUF for Robust and Unique Key
Generation. Journal of Hardware and Systems Security, 1(2):137–155, 2017.

[313] E. Rescorla and N. Modadugu. Datagram Transport Layer Security Version 1.2. RFC
6347, IETF, January 2012. URL https://doi.org/10.17487/RFC6347.

[314] T. Ristenpart and S. Yilek. When Good Randomness Goes Bad: Virtual Machine Reset
Vulnerabilities and Hedging Deployed Cryptography. In Network and Distributed System
Security Symposium (NDSS ’10), Reston, VA, USA, 2010. Internet Society.

[315] M. Rizzi, P. Ferrari, A. Flammini, E. Sisinni, and M. Gidlund. Using LoRa for industrial
wireless networks. In 13th International Workshop on Factory Communication Systems
(WFCS’17), pages 1–4, Piscataway, NJ, USA, 2017. IEEE Press.

[316] D. Ron, C.-J. Lee, K. Lee, H.-H. Choi, and J.-R. Lee. Performance Analysis and Opti-
mization of Downlink Transmission in LoRaWAN Class B Mode. IEEE Internet of Things
Journal, 7(8):7836–7847, 2020.

[317] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn. IoT Goes Nuclear: Creating
a ZigBee Chain Reaction. In IEEE Symposium on Security and Privacy (SP), pages
195–212, Piscataway, NJ, USA, 2017. IEEE Press.

[318] M. Rottleuthner, T. C. Schmidt, and M. Wählisch. Eco: A Hardware-Software Co-
Design for In Situ Power Measurement on Low-end IoT Systems. In ACM SenSys, 7th
International Workshop on Energy Harvesting & Energy-Neutral Sensing Systems (ENSsys
2019), pages 22–28, New York, November 2019. ACM. URL https://doi.org/10.1145/

3362053.3363495.

[319] V. Roz̆ić and I. Verbauwhede. Hardware-Efficient Post-Processing Architectures for True
Random Number Generators. IEEE Transactions on Circuits and Systems II: Express
Briefs, 66(7):1242–1246, 2019.

[320] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhuber. Modeling
Attacks on Physical Unclonable Functions. In Proc. of the 17th ACM Conference on
Computer and Communications Security (CCS’10), pages 237–249, New York, NY, USA,
2010. ACM.

[321] M. Saelens, J. Hoebeke, A. Shahid, and E. D. Poorter. Impact of EU duty cycle and
transmission power limitations for sub-GHz LPWAN SRDs: an overview and future chal-
lenges. EURASIP Journal on Wireless Communications and Networking, 2019(219):219–
251, 2019.

232

https://www.pulp-platform.org/docs/ri5cy_user_manual.pdf
https://www.pulp-platform.org/docs/ri5cy_user_manual.pdf
https://doi.org/10.17487/RFC6347
https://doi.org/10.1145/3362053.3363495
https://doi.org/10.1145/3362053.3363495

Bibliography

[322] M. Saito and M. Matsumot. Tiny Mersenne Twister (TinyMT): A small-sized variant of
Mersenne Twister, 2011. URL http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/

TINYMT. Retrieved 2019-11-24.

[323] M. G. Samaila, M. Neto, D. A. B. Fernandes, M. M. Freire, and P. R. M. Inácio. Challenges
of securing Internet of Things devices: A survey. Security and Privacy, 1(2):e20, 2018.

[324] S. Satpathy, S. K. Mathew, V. Suresh, M. A. Anders, H. Kaul, A. Agarwal, S. K. Hsu,
G. Chen, R. K. Krishnamurthy, and V. K. De. A 4-fJ/b Delay-Hardened Physically
Unclonable Function Circuit With Selective Bit Destabilization in 14-nm Trigate CMOS.
IEEE Journal of Solid-State Circuits, 52(4):940–949, 2017.

[325] D. Saxena, V. Raychoudhury, and N. SriMahathi. SmartHealth-NDNoT: Named Data
Network of Things for Healthcare Services. In Proc. of Workshop on Pervasive Wireless
Healthcare (MobileHealth), pages 45–50, New York, NY, USA, 2015. ACM.

[326] A. Schaller. Lightweight Protocols and Applications for Memory-Based Intrinsic Physically
Unclonable Functions Found on Commercial Off-The-Shelf Devices. Doctoral dissertation,
Department of Computer Science, Technische Universität Darmstadt, December 2017.
URL http://tuprints.ulb.tu-darmstadt.de/7014/.

[327] Q. Scheitle, M. Wählisch, O. Gasser, T. C. Schmidt, and G. Carle. Towards an Ecosys-
tem for Reproducible Research in Computer Networking. In Proc. of ACM SIGCOMM
Reproducibility Workshop, pages 5–8, New York, NY, USA, August 2017. ACM.

[328] P. D. Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Flamand, and L. Benini.
Slow and steady wins the race? A comparison of ultra-low-power RISC-V cores for
Internet-of-Things applications. In 27th Intern. Symp. on Power and Timing Model-
ing, Optimization and Simulation (PATMOS’17), pages 1–8, Piscataway, NJ, USA, 2017.
IEEE.

[329] T. Schläpfer and A. Rüst. Security on IoT Devices with Secure Elements. Technical
report, WEKA, 2019.

[330] T. C. Schmidt, S. Wölke, N. Berg, and M. Wählisch. Let’s Collect Names: How PANINI
Limits FIB Tables in Name Based Routing. In Proc. of 15th IFIP Networking Conference,
pages 458–466, Piscataway, NJ, USA, May 2016. IEEE Press.

[331] E. M. Schooler, D. Zage, J. Sedayao, H. Moustafa, A. Brown, and M. Ambrosin. An
Architectural Vision for a Data-Centric IoT: Rethinking Things, Trust and Clouds. In
IEEE 37th Intern. Conference on Distributed Computing Systems (ICDCS), pages 1717–
1728, Piscataway, NJ, USA, June 2017. IEEE.

233

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/TINYMT
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/TINYMT
http://tuprints.ulb.tu-darmstadt.de/7014/

Bibliography

[332] G.-J. Schrijen and V. van der Leest. Comparative analysis of SRAM memories used as
PUF primitives. In DATE ’12: Design, Automation Test in Europe Conference Exhibition,
pages 1319–1324, Piscataway, NJ, USA, 2012. IEEE.

[333] S. Schulz, A.-R. Sadeghi, and C. Wachsmann. Short Paper: Lightweight Remote Attesta-
tion Using Physical Functions. In Proc. of the 4th ACM Conference on Wireless Network
Security (WiSec ’11), pages 109–114, New York, NY, USA, 2011. ACM.

[334] K. Scott and S. Burleigh. Bundle Protocol Specification. RFC 5050, IETF, November
2007. URL https://doi.org/10.17487/RFC5050.

[335] G. Selander, J. Mattsson, F. Palombini, and L. Seitz. Object Security for Constrained
RESTful Environments (OSCORE). RFC 8613, IETF, July 2019. URL https://doi.

org/10.17487/RFC8613.

[336] A. Shamir. On the Generation of Cryptographically Strong Pseudorandom Sequences.
ACM Trans. Comput. Syst., 1(1):38–44, 1983.

[337] W. Shang, Y. Yu, T. Liang, B. Zhang, and L. Zhang. NDN-ACE: Access Control for
Constrained Environments over Named Data Networking. Technical Report NDN-0036,
NDN, December 2015.

[338] W. Shang, A. Afanasyev, and L. Zhang. The Design and Implementation of the NDN Pro-
tocol Stack for RIOT-OS. In Proc. of IEEE GLOBECOM 2016, pages 1–6, Washington,
DC, USA, 2016. IEEE.

[339] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, A. Afanasyev, J. Thompson, J. Burke,
B. Zhang, and L. Zhang. Named Data Networking of Things (Invited Paper). In Proc.
of IEEE International Conf. on Internet-of-Things Design and Implementation (IoTDI),
pages 117–128, Los Alamitos, CA, USA, 2016. IEEE Computer Society.

[340] C. E. Shannon. A Mathematical Theory of Communication. Bell System Technical Jour-
nal, 27:379–423, 623–656, July/Oct. 1948.

[341] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol (CoAP).
RFC 7252, IETF, June 2014. URL https://doi.org/10.17487/RFC7252.

[342] J. Shi and B. Zhang. NDNLP: A Link Protocol for NDN. NDN, Technical Report NDN-
0006, NDN Team, July 2012.

[343] J. Shi, T. Liang, H. Wu, B. Liu, and B. Zhang. Ndn-nic: Name-based filtering on network
interface card. In Proc. of ACM ICN, pages 40–49, New York, NY, USA, 2016. ACM.

[344] J. Shi, Y. Lu, and J. Zhang. Approximation Attacks on Strong PUFs. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 39(10):2138–2151, 2020.

234

https://doi.org/10.17487/RFC5050
https://doi.org/10.17487/RFC8613
https://doi.org/10.17487/RFC8613
https://doi.org/10.17487/RFC7252

Bibliography

[345] Y. Shiferaw, A. Arora, and F. Kuipers. LoRaWAN Class B Multicast Scalability. In Proc.
of 19th IFIP Networking Conference, pages 609–613, Piscataway, NJ, USA, June 2020.
IEEE Press.

[346] D. Shumow and N. Ferguson. On the Possibility of a Back Door in the NIST SP800-90
Dual EC PRNG. http://rump2007.cr.yp.to/15-shumow.pdf, last accessed 07-17-2020,
2007.

[347] T. Silde. Comparative Study of ECC Libraries for
Embedded Devices. https://tjerandsilde.no/files/

Comparative-Study-of-ECC-Libraries-for-Embedded-Devices.pdf, last accessed
10-09-2020, 2019.

[348] V. A. Siris, C. N. Ververidis, G. C. Polyzos, and K. P. Liolis. Information-Centric Net-
working (ICN) architectures for integration of satellites into the Future Internet. In First
AESS European Conference on Satellite Telecommunications (ESTEL’12), Piscataway,
NJ, USA, 2012. IEEE.

[349] M. Slabicki, G. Premsankar, and M. Di Francesco. Adaptive Configuration of LoRa
Networks for Dense IoT Deployments. In Proc. of IEEE/IFIP Network Operations and
Management Symposium (NOMS’18), pages 1–9, Piscataway, NJ, USA, 2018. IEEE Press.

[350] O. SpecWorks. Lightweight Machine to Machine Technical Specification: Core v1.2. Tech-
nical report, Open Mobile Alliance, 2020.

[351] W. Stallings. Cryptography and Network Security. Prentice Hall, Upper Saddle River, NJ,
USA, 6 edition, 2014.

[352] A. Stanford-Clark and H. L. Truong. MQTT For Sensor Networks (MQTT-SN) Ver-
sion 1.2. Protocol specification, IBM, November 2013. URL http://mqtt.org/new/

wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf.

[353] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov. The First Colli-
sion for Full SHA-1. In Advances in Cryptology (CRYPTO ’17), pages 570–596, Cham,
Switzerland, 2017. Springer.

[354] STM32F410 advanced Arm-based 32-bit MCUs. STMicroelectronics, November 2018. Rev.
3.

[355] Introduction to STM32 microcontrollers security. STMicroelectronics, October 2019. Rev.
3.

[356] E. G. Straus. Addition chains of vectors (problem 5125). American Mathematical Monthly,
70:806–808, 1964.

235

http://rump2007.cr.yp.to/15-shumow.pdf
https://tjerandsilde.no/files/Comparative-Study-of-ECC-Libraries-for-Embedded-Devices.pdf
https://tjerandsilde.no/files/Comparative-Study-of-ECC-Libraries-for-Embedded-Devices.pdf
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf

Bibliography

[357] E. Strieder, C. Frisch, and M. Pehl. Machine Learning of Physical Unclonable Functions
using Helper Data: Revealing a Pitfall in the Fuzzy Commitment Scheme. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems (TCHES ’21), 2021(2):1–36,
2021.

[358] S. S. Subramanian, J. Pasquale, and G. C. Polyzos. CoAP for Content-Centric Networks.
In Proc. of IEEE CCNC, pages 467–472, Piscataway, NJ, USA, 2017. IEEE.

[359] M. Sýs and Z. Říha. Faster Randomness Testing with the NIST Statistical Test Suite.
In SPACE ’14: Security, Privacy, and Applied Cryptography Engineering, pages 272–284,
Cham, Switzerland, 2014. Springer.

[360] S. Taneja, V. K. Rajanna, and M. Alioto. In-Memory Unified TRNG and Multi-Bit PUF
for Ubiquitous Hardware Security. IEEE Journal of Solid-State Circuits, 57(1):153–166,
2022.

[361] T. Teubler, M. Hail, and H. Hellbrück. Efficient Data Aggregation with CCNx in Wireless
Sensor Networks. In 19th Open European Summer School (EUNICE), volume 8115 of
LNCS, pages 209–220, Berlin Heidelberg, 2013. Springer.

[362] CC2538 System-on-Chip Solution for 2.4-GHz IEEE 802.15.4 and ZigBee/ZigBee IP Ap-
plications. Texas Instruments, May 2013. Version C.

[363] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan. Performance evaluation of
MQTT and CoAP via a common middleware. In Proc. of ISSNIP, pages 1–6, Piscataway,
NJ, USA, 2014. IEEE.

[364] The Hacker News. Millions of IoT Devices Using Same Hard-Coded CRYPTO
Keys. https://thehackernews.com/2015/11/iot-device-crypto-keys.html, last ac-
cessed 02-12-2022, 2015.

[365] The Hacker News. A Critical Random Number Generator Flaw Af-
fects Billions of IoT Devices. https://thehackernews.com/2021/08/

a-critical-random-number-generator-flaw.html, last accessed 29-03-2022, 2021.

[366] The Linux Kernel Development Community. Kconfig Language. https://www.kernel.

org/doc/html/latest/kbuild/kconfig-language.html, last accessed 28-09-2020, 2020.

[367] S. Thielemans, M. Bezunartea, and K. Steenhaut. Establishing transparent IPv6 commu-
nication on LoRa based low power wide area networks (LPWANS). In Wireless Telecom-
munications Symposium (WTS ’17), pages 1–6, Piscataway, NJ, USA, 2017. IEEE.

[368] J. Tillmanns, J. Classen, F. Rohrbach, and M. Hollick. Firmware Insider: Bluetooth
Randomness is Mostly Random. In 14th USENIX Workshop on Offensive Technologies
(WOOT ’20), Berkeley, CA, USA, 2020. USENIX Association.

236

https://thehackernews.com/2015/11/iot-device-crypto-keys.html
https://thehackernews.com/2021/08/a-critical-random-number-generator-flaw.html
https://thehackernews.com/2021/08/a-critical-random-number-generator-flaw.html
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html

Bibliography

[369] E. Tromer, D. A. Osvik, and S. Adi. Efficient Cache Attacks on AES, and Countermea-
sures. Journal of Cryptology, 23(1):37–71, 2010.

[370] B. Tsao, Y. Liu, and B. Dezfouli. Analysis of the Duration and Energy Consumption of
AES Algorithms on a Contiki-Based IoT Device. In 16th Proc. of the EAI Int. Conf. on
Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous ’19),
pages 483–491, New York, NY, USA, 2019. ACM.

[371] H. Tschofenig and T. Fossati. Transport Layer Security (TLS) / Datagram Transport
Layer Security (DTLS) Profiles for the Internet of Things. RFC 7925, IETF, July 2016.
URL https://doi.org/10.17487/RFC7925.

[372] C. Tschudin, C. Scherb, et al. CCN Lite: Lightweight implementation of the Content
Centric Networking protocol, 2018. URL http://ccn-lite.net.

[373] M. S. Turan, E. B. Barker, J. M. Kelsey, K. A. McKay, M. L. Baish, and M. Boyle.
Recommendation for the Entropy Sources Used for Random Bit Generation. Special Pub-
lication NIST SP 800-90B, National Institute of Standards & Technology, Gaithersburg,
MD, United States, 2018.

[374] V. van der Leest, B. Preneel, and E. van der Sluis. Soft Decision Error Correction for Com-
pact Memory-Based PUFs Using a Single Enrollment. In E. Prouff and P. Schaumont, ed-
itors, Cryptographic Hardware and Embedded Systems (CHES ’12), pages 268–282, Berlin,
Heidelberg, 2012. Springer–Verlag.

[375] V. van der Leest, E. van der Sluis, G.-J. Schrijen, PimTuyls, and H. Handschuh. Efficient
Implementation of True Random Number Generator Based on SRAM PUFs, pages 300–
318. Springer, Berlin, Heidelberg, 2012.

[376] A. van Herrewege, V. van der Leest, A. Schaller, S. Katzenbeisser, and I. Verbauwhede.
Secure PRNG Seeding on Commercial Off-the-shelf Microcontrollers. In 3rd International
Workshop on Trustworthy Embedded Devices (TrustED ’13), pages 55–64, New York, NY,
USA, 2013. ACM.

[377] A. Varga. The OMNeT++ Discrete Event Simulation System, 2003.

[378] S. Vigna. An Experimental Exploration of Marsaglia’s Xorshift Generators, Scrambled.
ACM Trans. Math. Softw., 26(4):59–82, 2016.

[379] S. Vigna. Further Scramblings of Marsaglia’s Xorshift Generators. J. Comput. Appl.
Math., 315(C):175–181, 2017.

[380] X. Vilajosana, K. Pister, and T. Watteyne. Minimal IPv6 over the TSCH Mode of IEEE
802.15.4e (6TiSCH) Configuration. RFC 8180, IETF, May 2017. URL https://doi.org/

10.17487/RFC8180.

237

https://doi.org/10.17487/RFC7925
http://ccn-lite.net
https://doi.org/10.17487/RFC8180
https://doi.org/10.17487/RFC8180

Bibliography

[381] B. C. Villaverde, D. Pesch, R. de Paz Alberola, S. Fedor, and M. Boubekeur. Constrained
Application Protocol for Low Power Embedded Networks: A Survey. In Proc. of 6th
International Conf on Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS), pages 702–707, Washington, DC, USA, 2012. IEEE Computer Society.

[382] V. D. Vincenzo, M. Heusse, and B. Tourancheau. Improving Downlink Scalability in Lo-
RaWAN. In IIEEE International Conference on Communications (ICC’19), Piscataway,
NJ, USA, 2019. IEEE.

[383] C. Vinschen and J. Johnston. Newlib C library. https://sourceware.org/newlib/, last
accessed 12-10-2020, 2020.

[384] J. von Neumann. Various Techniques Used in Connection with Random Digits. J. Res.
Nat. Bur. Stand. Appl. Math. Series, 5:768–770, 1951.

[385] M. Vučinić, G. Selander, J. P. Mattsson, and D. Garcia-Carillo. Requirements for a
Lightweight AKE for OSCORE. Internet-Draft – work in progress 04, IETF, June 2020.
URL https://datatracker.ietf.org/doc/html/draft-ietf-lake-reqs-04.

[386] M. Wählisch, T. C. Schmidt, and M. Vahlenkamp. Bulk of Interest: Performance Mea-
surement of Content-Centric Routing. In Proc. of ACM SIGCOMM, Poster Session,
pages 99–100, New York, August 2012. ACM. URL http://conferences.sigcomm.org/

sigcomm/2012/paper/sigcomm/p99.pdf.

[387] M. Wählisch, T. C. Schmidt, and M. Vahlenkamp. Backscatter from the Data Plane –
Threats to Stability and Security in Information-Centric Network Infrastructure. Com-
puter Networks, 57(16):3192–3206, Nov. 2013. URL http://doi.org/10.1016/j.comnet.

2013.07.009.

[388] J. Walker. A Pseudorandom Number Sequence Test Program. http://www.fourmilab.

ch/random/, last accessed 07-17-2020, 2008.

[389] L. Wang, A. Afanasyev, R. Kuntz, R. Vuyyuru, R. Wakikawa, and L. Zhang. Rapid
Traffic Information Dissemination Using Named Data. In Proc. of 1st ACM Workshop
on Emerging Name-Oriented Mobile Networking Design - Architecture, Algorithms, and
Applications (NoM), pages 7–12, New York, NY, USA, 2012. ACM.

[390] Q. Wang and J. Jiang. Comparative Examination on Architecture and Protocol of Indus-
trial Wireless Sensor Network Standards. IEEE Communications Surveys Tutorials, 18
(3):2197–2219, 2016.

[391] Q. Wang, X. Vilajosana, and T. Watteyne. 6TiSCH Operation Sublayer (6top) Protocol
(6P). RFC 8480, IETF, November 2018. URL https://doi.org/10.17487/RFC8480.

238

https://sourceware.org/newlib/
https://datatracker.ietf.org/doc/html/draft-ietf-lake-reqs-04
http://conferences.sigcomm.org/sigcomm/2012/paper/sigcomm/p99.pdf
http://conferences.sigcomm.org/sigcomm/2012/paper/sigcomm/p99.pdf
http://doi.org/10.1016/j.comnet.2013.07.009
http://doi.org/10.1016/j.comnet.2013.07.009
http://www.fourmilab.ch/random/
http://www.fourmilab.ch/random/
https://doi.org/10.17487/RFC8480

Bibliography

[392] X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In CRYPTO
’05; Proceedings of the 25th Annual International Conference on Advances in Cryptology,
pages 17–36, Berlin, Heidelberg, 2005. Springer-Verlag.

[393] X. Wang, M. Magno, L. Cavigelli, and L. Benini. FANN-on-MCU: An Open-Source Toolkit
for Energy-Efficient Neural Network Inference at the Edge of the Internet of Things. IEEE
Internet of Things Journal, 7(5):4403–4417, 2020.

[394] T. Watteyne, M. Palattella, and L. Grieco. Using IEEE 802.15.4e Time-Slotted Channel
Hopping (TSCH) in the Internet of Things (IoT): Problem Statement. RFC 7554, IETF,
May 2015. URL https://doi.org/10.17487/RFC7554.

[395] R. Whittle. Park-Miller-Carta Pseudo-Random Number Generator, 2005. URL http:

//www.firstpr.com.au/dsp/rand31/. Retrieved 2019-11-25.

[396] F. Wilde. Large Scale Characterization of SRAM on Infineon XMC Microcontrollers as
PUF. In Proc. of the 4th Workshop on Cryptography and Security in Computing Systems
(CS2’17), pages 13–18, New York, NY, USA, 2017. ACM.

[397] F. Wilde and M. Pehl. On the Confidence in Bit-Alias Measurement of Physical Unclon-
able Functions. In International New Circuits and Systems Conference (NEWCAS’19),
Piscataway, NJ, USA, 2019. IEEE.

[398] F. Wilde, C. Frisch, and M. Pehl. Efficient Bound for Conditional Min-Entropy of Physical
Unclonable Functions Beyond IID. In International Workshop on Information Forensics
and Security (WIFS’19), Piscataway, NJ, USA, 2019. IEEE.

[399] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik,
J. Vasseur, and R. Alexander. RPL: IPv6 Routing Protocol for Low-Power and Lossy
Networks. RFC 6550, IETF, March 2012. URL https://doi.org/10.17487/RFC6550.

[400] N. Wisiol, B. Thapaliya, K. T. Mursi, J.-P. Seifert, and Y. Zhuang. Neural Network
Modeling Attacks on Arbiter-PUF-Based Designs. IEEE Transactions on Information
Forensics and Security, 2022.

[401] M. Woehrle, C. Plessl, J. Beutel, and L. Thiele. Increasing the Reliability of Wireless Sen-
sor Networks with a Distributed Testing Framework. In 4th WS on Embedded Networked
Sensors, EmNets’07, pages 93–97. ACM, 2007.

[402] wolfSSL Inc. wolfCrypt Embedded Crypto Engine. https://www.wolfssl.com/

products/wolfcrypt/, last accessed 10-11-2020, 2020.

[403] J. Woodage and D. Shumow. An Analysis of NIST SP 800-90A. In EUROCRYPT ’19:
Advances in Cryptology, volume 11477 of LNCS, pages 151–180, Berlin, Heidelberg, 2019.
Springer.

239

https://doi.org/10.17487/RFC7554
http://www.firstpr.com.au/dsp/rand31/
http://www.firstpr.com.au/dsp/rand31/
https://doi.org/10.17487/RFC6550
https://www.wolfssl.com/products/wolfcrypt/
https://www.wolfssl.com/products/wolfcrypt/

Bibliography

[404] K. Xiao, M. T. Rahman, D. Forte, Y. Huang, M. Su, and M. Tehranipoor. Bit selection
algorithm suitable for high-volume production of SRAM-PUF. In International Sympo-
sium on Hardware-Oriented Security and Trust (HOST’14), pages 101–106, Piscataway,
NJ, USA, 2014. IEEE.

[405] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos, K. V.
Katsaros, and G. C. Polyzos. A Survey of Information-Centric Networking Research. IEEE
Communications Surveys and Tutorials, 16(2):1024–1049, 2014.

[406] G. Yapar, T. Tugcu, and O. Ermis. Time-Slotted ALOHA-based LoRaWAN Scheduling
with Aggregated Acknowledgement Approach. In 25th Conference of Open Innovations
Association (FRUCT’19), pages 383–390, Piscataway, NJ, USA, 2019. IEEE.

[407] M.-D. Yu and S. Devadas. Secure and robust error correction for physical unclonable
functions. IEEE Design & Test of Computers, 27(1):48–65, 2010.

[408] M.-D. Yu, R. Sowell, A. Singh, D. M’Raïhi, and S. Devadas. Performance metrics and
empirical results of a PUF cryptographic key generation ASIC. In International Sympo-
sium on Hardware-Oriented Security and Trust (HOST’12), pages 108–115, Piscataway,
NJ, USA, 2012. IEEE.

[409] M.-D. M. Yu, D. M’Raïhi, S. Devadas, and I. Verbauwhede. Security and Reliability
Properties of Syndrome Coding Techniques Used in PUF Key Generation, 2013.

[410] T. Yu, Z. Zhang, X. Ma, P. Moll, and L. Zhang. A Pub/Sub API for NDN-Lite with
Built-in Security. Technical Report NDN-0071, NDN, Jan. 2021.

[411] S. Zeitouni, Y. Oren, C. Wachsmann, P. Koeberl, and A.-R. Sadeghi. Remanence Decay
Side-Channel: The PUF Case. IEEE Transactions on Information Forensics and Security,
11(6):1106–1116, 2016.

[412] Zephyr Project. Zephyr. https://www.zephyrproject.org, last accessed 07-17-2020,
2020.

[413] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley, C. Papadopoulos,
L. Wang, and B. Zhang. Named Data Networking. SIGCOMM Comput. Commun. Rev.,
44(3):66–73, 2014.

[414] M. Zhang, V. Lehman, and L. Wang. Scalable name-based data synchronization for named
data networking. In IEEE INFOCOM’17, INFOCOM ’17, pages 1–9, Los Alamitos, CA,
USA, 2017. IEEE Computer Society.

[415] B. Zhou, M. Egele, and A. Joshi. High-performance low-energy implementation of crypto-
graphic algorithms on a programmable SoC for IoT devices. In High Performance Extreme
Computing Conference (HPEC’17), pages 1–6. IEEE, 2017.

240

https://www.zephyrproject.org

Bibliography

[416] L. Zhou, C. Su, Z. Hu, S. Lee, and H. Seo. Lightweight Implementations of NIST P-
256 and SM2 ECC on 8-bit Resource-Constraint Embedded Device. ACM Trans. Embed.
Comput. Syst., 18(3):1–13, 2019.

[417] ZigBee Alliance. ZigBee Specification. Specification Document 05-3474-21, ZigBee Al-
liance, August 2015. URL https://zigbeealliance.org/wp-content/uploads/2019/

11/docs-05-3474-21-0csg-zigbee-specification.pdf.

[418] D. Zorbas, K. Abdelfadeel, P. Kotzanikolaou, and D. Pesch. TS-LoRa: Time-slotted
LoRaWAN for the Industrial Internet of Things. Computer Communications, 153:1–10,
2020.

241

https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf
https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf

	Introduction
	Networking the Internet of Things
	Securing the Internet of Things
	Research Questions
	Robust and Energy-efficient Wireless Edge Communication
	System-level Security on Constrained Embedded Devices

	Methods
	Contributions and Document Outline

	Robust and Energy-efficient Wireless Edge Communication
	Motivation and Problem Statement
	Protocols for Data Retrieval in the IoT
	Media Access in Wireless ICN Networks
	Long-range ICN and Delay-tolerance at the Edge

	Potentials of ICN for Constrained IoT Networks
	Background and Use Cases
	CoAP
	MQTT
	ICN Protocols
	Protocol Comparison

	Implementation and Experimental Setup
	Evaluation
	Analyses and Metrics
	Protocol Stack Sizes
	Security Overheads
	Single-hop with Scheduled Publishing
	Single-hop with Unscheduled Publishing
	Multi-hop Topologies

	Related Work
	ICN and IoT
	Interoperation and Adoption of CoAP and MQTT in ICN
	Performance evaluation of CoAP and MQTT

	Conclusions

	MAC Address Mapping in ICN
	Problem Statement and Related Work
	The IoT Use Case
	Current Solutions and Challenges

	Design Space by Instrumenting Existing Link Layer Features
	Broadcast or Unicast for Interest or Data
	The Case for Link Layer Assistance

	Evaluation
	Experimental Setup
	Single-hop Scenario
	Multi-hop Scenario

	Conclusions

	Decentralized MAC and Network Layer for LoRa
	Background and Challenges
	Design Goals
	ICN over LoRa
	Mapping DSME to LoRa
	A MAC for ICN using a LoRa-Proxy

	Simulation Environment
	Evaluation
	Data from Node to Gateway
	Data from Gateway to Node

	LoRa-ICN Convergence Layer
	Related Work
	Conclusions

	Delay-tolerant Networking with ICN
	Background
	LoRa and LoRaWAN
	DSME and LoRa

	Problem Statement
	System Overview
	Mapping of ICN to DSME
	Gateway Node Requirements
	Delay-tolerant ICN Protocols

	Implementation and Deployment
	System Setup
	Protocols for Data Retrieval

	Evaluation
	Experimental Setup
	Completion Time and Resilience
	Communication Overhead
	System Overhead

	Related Work
	Conclusions

	System-level Security on Constrained Embedded Devices
	Motivation and Problem Statement
	Heterogeneous Crypto-hardware and Software in the IoT
	Revisiting Randomness Generation on Embedded Devices
	Hardware-intrinsic Sources of Entropy and Uniqueness

	Analysis and Integration of Cryptographic Backends
	A Crypto-subsystem in RIOT
	Design Space
	Integration of Crypto Modules

	Experimental Setup
	Platform Overview
	Measured Resources

	The Impact of a Software Implementation
	Basic Crypto-hardware Acceleration
	Processing Time
	Energy Consumption
	Memory Requirements

	ECC Hardware Acceleration
	Processing Time
	Energy Consumption
	Memory Requirements

	Comparison of Speed, Energy, and Memory
	The Impact of Driver Implementations
	Vendor Driver and Concurrent Access
	Power Management and State Handling

	Related Work
	Conclusions

	Random Number Generation in the Low-end IoT
	The Impact of Random Input on IoT Security
	Cryptographic Taxonomy
	Embedded Device Taxonomy
	System-centric Taxonomy

	Generating Randomness in the IoT
	General Purpose PRNGs
	Cryptographically Secure PRNGs
	A Note on Re-seeding CSPRNGs
	System Components for Generating Randomness

	Randomness in IoT Operating Systems
	General Requirements
	General Purpose PRNGs
	Crypto-secure PRNGs
	IoT Operating Systems

	Statistical Test Suites for Random Numbers
	NIST Statistical Test Suite
	DIEHARDER Random Number Test Suite
	Other Test Suites

	Hardware Generated Random Numbers
	SRAM PUF Seeder
	Statistical Analysis with NIST STS
	Performance Analysis

	Software Generated Pseudo-random Numbers
	Complex Generators
	Lightweight Generators
	Statistical Analysis with NIST STS
	Statistical Analysis with DIEHARDER
	Statistical Analysis with TestU01
	Performance Analysis
	Recommendations on PRNGs

	Random Numbers on AI Platforms
	Discussion: Hardware or Software for Randomness in the IoT
	Conclusions

	Seed- and Key Generation with Physical Unclonable Functions
	Problem Statement and Related Work
	Properties of Uninitialized SRAM
	Empirical Evaluation of PUFs
	Random Seed and Key Generation
	Security Analysis of PUFs

	Experimental Setup
	Testbed Environment
	Hardware Platform
	Software Platform

	Large Field Study of Uninitialized SRAM
	Inter-device Correlation
	Analysis of Static Bias
	Analysis of Aging

	PUF Design for the RIOT OS
	Compile-time Configuration
	Integration into OS Startup Routine
	Detection of Soft Resets
	Random Seed Generation
	Key Generation
	Access to PUF Primitives

	Evaluation of OS-integrated SRAM PUFs
	Estimation of the Min. Entropy Convergence
	Blockwise Evaluation of the Uniqueness

	Analysis of Seed and Key Generation
	Analysis of Random Seeds
	Analysis of the Fuzzy Extractor for Key Generation
	Resource Overhead

	Security Analysis
	Assets
	Adversaries
	Surfaces
	Threats & Mitigations

	Conclusions

	Conclusions and Outlook
	List of Figures
	List of Tables
	Bibliography

