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Structure prediction of protein-ligand
complexes from sequence information
with Umol

Patrick Bryant 1,2,3 , Atharva Kelkar1, Andrea Guljas4, Cecilia Clementi 4 &
Frank Noé 1,4,5

Protein-ligand docking is an established tool in drug discovery and develop-
ment to narrow down potential therapeutics for experimental testing. How-
ever, a high-quality protein structure is required and often the protein is
treated as fully or partially rigid. Herewe develop an AI system that can predict
the fully flexible all-atom structure of protein-ligand complexes directly from
sequence information. We find that classical docking methods are still
superior, but depend upon having crystal structures of the target protein. In
addition to predicting flexible all-atom structures, predicted confidence
metrics (plDDT) can be used to select accurate predictions as well as to dis-
tinguish between strong and weak binders. The advances presented here
suggest that the goal of AI-based drug discovery is one step closer, but there is
still a way to go to grasp the complexity of protein-ligand interactions fully.
Umol is available at: https://github.com/patrickbryant1/Umol.

Docking of small molecules to protein targets is an important problem
for the evaluation of new drugs and the repositioning of known ones1.
However, existing docking methods have significant limitations: (i) A
high-quality structure of the protein is needed as the protein is usually
treated at least partially rigid. (ii) The problem of identifying the cor-
rect docking pose is not solved2. (iii) Most evaluations are performed
on structures in their bound (holo) form, limiting the search for new
ligands to thosewhich have identical bindingmodes to knownones3. A
system that could predict the entire protein-ligand complex structure
fromagivenprotein sequence and the chemical structure of the ligand
would address these challenges.

Recently, machine learning has been applied to the problem of
protein-ligand docking2,4–6. However, these systems have not yet
outperformed classical methods based on scoring functions7–9 when
considering a known target area or “pocket” 10. This is a relevant test
case as designing new drugs involves targeting specific binding sites
on proteins11, hence one can assume that the binding pocket
is known.

On the other hand, it is not reasonable to assume that a protein
structure is available in the bound (holo) form consistent with the
ligand. When considering structures predicted with ESMfold12, the
success rate (SR, ligand ≤RMSD 2Å) decreases to half of that on holo-
structures (20.3% vs 38.2% of structures) using current state-of-the-art
methods2. This suggests that pure protein structure prediction tools
are not able to produce structures that are suitable for ligand docking.

Evaluation sets partitioned on release date and not on structural
similarity is another confounder. When considering receptors dissim-
ilar from those seen during training the SR is about half of that of seen
holo receptors (20.8%)2. Considering unseen structures and the che-
mical validity (bond lengths and angles) of the ligands, the SR of some
methods cango from51% to only 1%13. Evaluating the samemethods on
unseen apo (unbound) structures likely results in even lower
performance.

Protein flexibility is crucial to reach the holo state and for suc-
cessful ligand docking. Recently, an all-atom version of RoseTTAFold
has been developed. RoseTTAFold All-Atom (RFAA)14 allows for
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predicting proteins in combination with ligands and other biomole-
cules. The SR on the PoseBusters’ test set13 for protein-ligand predic-
tion is 42%, but it is not known how well the network performs on
proteins that have not been seen during training14. This suggests that
the challenge of protein-ligand prediction is not yet solved.

Here, we develop an AI method that predicts the structure of
protein-ligand complexes from sequence information by extending
the EvoFormer fromAlphaFold215. The network is similar to RFAA,with
the difference of not including a 3D track, using template structures or
additional crystallographic ligand data as input or during training. In
addition, we provide the possibility to specify a binding pocket when
this is known as this is often the case in targeted drug development16.

Results
Here we develop a protein-ligand co-folding network as a first step
towards aUniversalmolecular framework,Umol (Fig. 1a). Starting from
a protein sequence, optional protein target positions (pocket) and
ligand SMILES, a multiple sequence alignment (MSA) and a bond
matrix are created. From these, features are generated within the
network and a 3D structure is produced. There are no limitations on
theflexibility of either protein or ligand sinceno structural information
is required to produce the final protein-ligand complex structure.

Protein-ligand structure prediction
Figure 2a shows the success rate (SR, the fraction of predictions with a
Ligand RMSD ≤ 2 Å17,18), on 428 diverse protein-ligand complexes13 for
11 protein-ligand docking methods in addition to Umol. Two different
versions of Umol are presented, one that utilises pocket information
(Umol-pocket) and one that is completely blind (Umol). Umol,
NeuralPlexer119 and RoseTTAFold All-Atom (RFAA)14 are the only
methods that do not require native protein structures as input. Umol
achieves a SR of 18% and Umol-pocket 45% compared to 24% for
NeuralPlexer1 and 42% for RFAA. RFAA without template information
(similar structures) amounts to an SR of 8%. The best method is
AutoDock Vina7 with 52% SR but requires both a native holo-protein
structure and a target area as input (see Supplementary Table 1 for
all SRs).

To see if it is possible to overcome the hurdle of native holo-
protein structures, we use AlphaFold2 (AF). Using AF together with
DiffDock results in an SR of 21%. The predicted protein pockets have to
be highly accurate for successful predictions to be obtained. The
average RMSD is 0.91 for the successful models and just slightly above
1 Å (1.23) for the wrong predictions. Since the protein structures are
predicted independently of the ligand, it is a priori unclear if a given AF
structure is suitable for docking.

Fig. 1 | Description of Umol. An Evoformer network that processes both protein
and ligand atom information. There are 48 Evoformer blocks. The protein is
represented by a multiple sequence alignment (MSA) and optional target posi-
tions in the protein (pocket, Cβs within 10Å from the ligand) are also defined.
When target positions are not known, this information can simply be left out. A
SMILES string represents the ligand. Two different tracks are present. The top
track processes the MSA (gaps for the ligand) and the bottom track processes
pairwise connections within and between the protein and ligand. The resulting

representations are fed into the structure module (8 blocks) which produces a 3D
structure of the protein-ligand complex. The entire network is trained end-to-
end and the representations and predicted atom positions are recycled to refine
the final structure. An example for PDB ID 7NB4 (ligand RMSD =0.57) is shown
with the predicted protein in green, the predicted ligand in blue and the native
ligand in grey. The ligands are coloured by atomic types (blue=nitrogen,
red=oxygen, remaining=carbon). This example was predicted using pocket
information.
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A success cutoff of 2 Å ligand RMSD (LRMSD) is arbitrary. Figure 2b
shows the SR vs the ligand RMSD threshold. Umol-pocket has many
complexes right above the 2Å mark, suggesting that many ligands are
almost in their native configuration. At just above 2Å (2.35 Å), Umol-
pocket surpasses all other methods and at a threshold of 3Å, the SR is
69% forUmol vs 58% forVina.Umol-pockethasno successful complexes
below 0.5 Å, but Vina and Gold do. This is likely a consequence of these
methods using the native structures as an input, resulting in errors of
close to 0Å which should not be possible in a realistic setting.

A highly important aspect of drug design is affinity20,21. Fig-
ure 2e displays the affinity (Kd) for 45 held-out targets without
homology to the Umol training set vs. the Umol-pocket ligand
plDDT (see below). At above 70 ligand plDDT, the median affinity
is 30 nM, while it is above 500 nM below 60 plDDT. This suggests
that high- and low-affinity targets can be distinguished based on
the ligand plDDT as well as the accuracy of the ligand positions
(Fig. 2c). At really high affinity (<10 nM, n = 13), there is a strong
correlation with the ligand plDDT (Pearson R = −0.77). Affinity can

Fig. 2 | Prediction accuracy. a Success rates (fraction of predictions with ligand
RMSD ≤ 2 Å) on the PoseBuster benchmark set (n = 428). Note that only Umol (the
method developed here), NeuralPlexer1 and RoseTTAFold All-Atom (RFAA) do not
require the native protein structures as input (target structure unknown). The AF
+DiffDock predictions are based on structures predicted with AlphaFold2(AF)
without ligands. b Success rate vs ligand RMSD threshold on the PoseBuster
benchmark set (n = 428). Umol has many complexes right above the 2 Å mark,
suggesting that many ligands are almost in their native configuration. At a
threshold of 3 Å, the SR is 69% for Umol vs 58% for Vina. c Affinity vs ligand plDDT
for structures predicted with Umol-pocket on a held out test set (n = 45). The
affinity values (Kd) are from experimental studies extracted from the PDB. Values

with a maximum of 1000nM (1mM) were selected. There is only one point above
80 and one below 50 plDDT, which is why the thresholds differ from that in 2c. At
>70 plDDT, the median affinity (horizontal lines) is 30 nM, while it is >500nM at
<60 plDDT. The centre boxes encompass data quartiles and horizontal lines mark
the medians for each distribution with min/max values marked by diamonds.
d Examples of predictions from the Posebusters test set with low homology to the
Umol training set (<30% sequence identity). The native structures are in grey and
the predicted protein/ligand in green/cyan. The ligands are coloured by atomic
types (blue = nitrogen, orange=phosphorus, red = oxygen, remaining=carbon).
PDB IDS: 7PL1 and 8SLG with ligand RMSDs 1.53, 1.61 vs 1.72, 1.74 for Umol and
Umol-pocket respectively.
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also be distinguished without pocket information (see section
BindingDB).

Figure 2d shows examples of predictions from both Umol and
Umol-pocket with low homology to the training set (<30% sequence
identity) in structural superposition with the native complexes. Umol-
pocket predicts the protein structures very well, but not all protein
regions are entirely accurate for Umol. The position of the ligand
relative to the protein interface is accurate with both Umol and Umol-
pocket, suggesting that both methods can be used to obtain accurate
predictions.

Confidence metrics and chemical validity
To see if accurate predictions can be distinguished from inaccurate
ones based on the Umol model outputs, we analyse the relationship
between the ligand RMSD and the predicted lDDT22 (plDDT, Fig. 3). At
plDDT >80, the SR is 72% and <50 plDDT 0% with Umol-pocket sug-
gesting that accurate ligandposes canbedistinguished (Fig. 2a, b). The
same is true forUmolwithout pocket information (Fig. 2c, d)where the
SR is 80% >85 and 1.2% <50. The protein pocket (all CBs within 10 Å
from any ligand atom) plDDT displays Pearson correlations of 0.81 and
0.78 with the lDDT for Umol-pocket and Umol, respectively.

Previous AI methods produce ligands that are not chemically
valid13. Since we use RDKit, the generated ligands will make sense
chemically. 98% of ligands are valid for Umol-pocket according to
PoseBuster’s ligand criteria. We also conclude that the proteins are
predicted with high accuracy overall (Supplementary Fig. 1), reporting
an average TM-score23 of 0.96 with Umol-pocket.

Structure prediction of BindingDB
BindingDB contains experimentally determined protein-ligand bind-
ing affinity measurements curated from literature (https://pubmed.
ncbi.nlm.nih.gov/17145705/).

29583 of the measurements are below 1000nM in either KI, IC50,
KD or EC50 and have less than 600 residues. We predicted the struc-
ture of these with Umol (no pocket information) to investigate what
advancements in structural annotation can be expected.

Figure 4 shows affinity metrics vs the ligand plDDT for 27810
complexes that were successfully predicted. All experimental techni-
ques show a relationship with the ligand plDDT, suggesting that Umol
can distinguish between low- and high-affinity binders to some degree
even without pocket information. The biggest separation is for Kd
measurements where themedian affinity is 10 nM at plDDT values > 80

and 80nM <50 plDDT. The lowest separation is for EC50, which
increases up to 50 plDDT where it drops suddenly. This is reflected in
the ROC AUC scores for selecting high-affinity binders (<20 nM, KD
AUC=0.66 and p-value = 1.58e-17, EC50 AUC=0.55 and p-value =
0.059, Supplementary information). We note that previous studies
have pointed out issues with affinity data compiled from different
studies24. At an FPR of ≈10%, ≈45% of high-affinity KD binders can be
accurately selected (Supplementary Fig. 5).

We selected predicted complexes that have a ligand plDDT>85 as
these are 80% likely to be correct (Fig. 2) resulting in 336 complexes
from 42 different proteins. Figure 4e shows examples from different
classes of proteins with both single ligands and clusters of different
ligands together aspredicted in the samestructures.Wenote that even
though these structures seem plausible and their L-plDDT scores are
high, they remain experimentally verified.

Discussion
We have introduced Umol, a neural network for predicting the com-
plete all-atom structure of protein-ligand complexes only fromprotein
sequence information, the position of the binding site in the sequence
(optionally), and the chemical graph of the ligand. Umol does not
depend on any structural information in contrast to all other ligand
docking methods that rely on native holo protein structures or tem-
plate information. Compared to its closest relatives, RoseTTAFold All-
Atom and NeuralPlexer1, Umol obtains a higher success rate (SR,
Ligand RMSD ≤ 2 Å) when including pocket information on the
PoseBusters test set (45% vs 42% and 24%, respectively) making it the
highest performing method for protein-ligand structure prediction.

When pocket information is removed from Umol and template
information from RFAA, the SR drops to 18% and 8%, respectively.
When using DiffDock with AF predictions, the accuracy is 21% but is
dependent on highly accurate interface predictions (pocket RMSD<
1 Å). All methods except for RFAA have higher performance on
structures similar to those in the training set, suggesting potential data
leakage in the training or validation procedure for RFAA (Supple-
mentary Table 1).

Many ligand poses slightly above the success threshold of 2 Å are
likely equivalent, which indicates that a more flexible scoring system
may be required. This is exemplified by the fact that Umol surpasses
the success rate of AutoDock Vina at a threshold of 2.35 Å. In cases
where the native protein structures are not used for the scoring, even
small errors in alignment become an issue.

Fig. 3 | Confidence metrics and accuracy. a Ligand plDDT vs ligand RMSD for
structures predicted with Umol-pocket (n = 428). The success rate (ligand
RMSD ≤ 2 Å) for each bin is 80-100: 72.3%, 70-80: 58.2%, 60-70: 34.4%, 50-60: 5.3%,
0-50: 0.0%. The centre boxes encompass data quartiles and horizontal lines mark
the medians for each distribution with min/max values marked by diamonds.
b Proteinpocket (all CBswithin 10Å fromany ligand atom)predicted lDDT (plDDT)
vs pocket lDDT for structures predicted with Umol-pocket (n = 428) as a density
plot with each datapoint represented as a green scatter. The Pearson correlation
coefficient is 0.81, suggesting a strong relationship between the two. c Ligand

plDDT vs ligand RMSD for structures predicted with Umol (n = 428). The centre
boxes encompass data quartiles and horizontal lines mark the medians for each
distribution with min/max values marked by diamonds. The success rate (ligand
RMSD ≤ 2 Å) for each bin is 80–100: 50.0%, 70–80: 52.6%, 60–70: 16.7%, 50–60:
1.8%, 0–50: 1.2%. At a plDDT threshold of >85, the SR is 80% for Umol without
pocket information, enabling the selection of blind predictions with high con-
fidence. d Protein pocket predicted lDDT (plDDT) vs pocket lDDT for structures
predicted with Umol (n = 428) as a density plot with each datapoint represented as
a green scatter. The Pearson correlation coefficient is 0.78.
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Co-folding protein-ligand complexes has the potential to accel-
erate drug repositioning. In particular, we find that the predicted lDDT
(plDDT) of the ligand canbe used to select accurate docking poses and
that the pIDDT of the protein pocket is suitable for selecting accurate
interfaces (Fig. 3). The ligand plDDT also separates high- and low-
affinity ligands, suggesting that some of the predictions that Umol and
Umol-pocket are uncertain about may be weak binders (Figs. 2 and 4).
This further speaks for the ability of Umol and underlines that
important aspects of protein-ligand interactions seem to have been
learned.

Although the accuracy without pocket information is 18%, the
network can still separate strong andweak binders to a certain degree.
This is especially useful for annotating unknown complexes and we
present 336 protein-ligand structures with very high confidence
(ligand plDDT>85). We note that even though these structures seem
plausible and their L-plDDT scores are high, they remain to be
experimentally verified.

We do not find clear relationships between themodel’s predictive
performance and different features related to the protein or ligand
(Supplementary Fig. 2). However, we do find that among the cases
where other methods struggle, Umol-pocket is accurate in 3 out of 5
cases (Supplementary Fig. 3). By inverting the trained network, it is
possible that new ligand-binding proteins or protein-binding ligands
can be designed. Another option is using transfer learning to create a

generative diffusionmodel for the same purposes14,25. In such settings,
the ligand or protein plDDT could be maximised to attempt the crea-
tion of high-affinity binders.

The current release of PDBbind contains data processed fromPDB
in 2019. Since then, many more protein-ligand complexes have been
submitted suggesting that higher accuracymay be possible to achieve.
However, it is unclear what accuracy is needed to obtain meaningful
results for protein-ligand docking. The high accuracy observed in
protein structure prediction is not obtained for tasks involving other
molecules, such as small molecules or RNA26–28. Without coevolu-
tionary information on proteins, the accuracy of the structure pre-
diction decreases rapidly12,15. As there is no similar source of
information for small molecules or RNA, one has to rely solely on
atomistic representations.

Here, we suggest that pocket information is useful, as we observe
that the Deep Learning methods seem prone to overfitting without it
(Supplementary Table 1). This finding is further exemplified by the
observation that although many of the molecules in the PoseBusters
test set contain highly similar analogues in the training dataset (cal-
culated by the Tanimoto similarity coefficient, Supplementary Fig. 4)
this similarity does not correlate with model success.

Overfitting is not observed to the same extent for structure-based
docking methods like Vina or Gold (Supplementary Table 1). This is
expected as these are based on atomistic scoring functions and

Fig. 4 | BindingDB predictions. a–d Affinity (log scale) KD, Ki, EC50 and IC50,
respectively vs average Umol ligand plDDT binned in steps of 10 (no pocket
information, n = 27810). The centre boxes encompass data quartiles and horizontal
lines mark the medians for each distribution with min/max values marked by dia-
monds. All experimental measures show a relationship with the ligand plDDT
suggesting that the network can distinguish strong from weak binders. We also
calculate the p-values between the affinity distributions using a selection of plDDT

<50 or >80. The Corresponding p-values (one-sided t-test associating having a
higher affinity valuewith a lowerplDDT) are 1.58e-17, 5.45e-18,0.0052 and0.059 for
Kd, Ki, EC50 and IC50 data, respectively (a–d). e Examples of predicted protein-
ligand complexes from BindingDB. The UniProt IDs and the range of ligand plDDT
(L-plDDT) scores are displayed above the structures. We note that even though
these structures seem plausible and their L-plDDT scores are high, they remain to
be experimentally verified.
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thereby do not rely on protein homology to the same extent. The issue
with Deep Learning methods having a substantially higher perfor-
mance on the training set suggests that protein homology plays a
significant role in protein-ligand docking. We note here that RFAA has
higher performance on the test set than the training set, suggesting
potential data leakage between the train and test sets.

There is still a long way to go to grasp the complexity of protein-
ligand interactions fully, but leveraging deep learning for structure
prediction of the entire complex may bring us one step closer to the
solution.

Methods
PDBbind
Weused PDBbind from2019 (2020 release29) processedby the authors
from EquiBind (https://zenodo.org/record/6408497, 19119 protein-
ligand complexes).Weparsed all protein sequences from the PDB files.
18884 out of 19119 protein structures (99%) could be parsed (<80%
missing CAs and >50 residues). Only the first protein chain in all
protein-ligand complexes used here and in the evaluation was
extracted. Features (see below) could be generated for 17936/18884
(95%) protein-ligand complexes. The failed ones did so due to issues of
converting SMILES to 3D structures using RDKit (version 2023.03.2,
https://www.rdkit.org).

Data partitioning
We cluster all protein sequences with MMseqs2 (version
f5f780acd64482cd59b46eae0a107f763cd17b4d)30 at 20% sequence
identity with the options:

mmseqs easy-cluster DB.fasta clusterRes tmp --min-seq-id
0.2 -c 0.8 --cov-mode 1

We obtain 1486 sequence clusters at 20% sequence identity,
representing the number of possible protein folds.Most sequences are

below 1000 residues (median=263 residues, Fig. 5a) and most clusters
have only a few entries (Fig. 5b). We select 90% of the clusters for
training, 5% for validation and 5% for eventual calibration tasks (used
for the affinity analysis) (Table 1).

Note that the main evaluation and comparison with other meth-
ods (Fig. 2, Supplementary Table 1) is performed on the PoseBusters
benchmark set that only includes structures not included in PDBbind
2020 (described below). The partition of the data in PDBBind was
made before the PoseBusters benchmark was available, whereupon a
decision to use that test set instead was made.

Affinity data from the PDB
We extracted affinity values from the PDB using the calibration set. In
total 516 out of 671 examples have some kind of affinity measure, but
these vary widely in technology and accuracy. Therefore, we chose to
focus on only Kd values in the high accuracy range (<1000nM),
resulting in 45 protein-ligand complexes with affinity values of which
13 have affinities <10 nM. None of the protein-ligand complexes in the
PoseBusters test set has available affinity data in the PDB, which is why
this set was not used.

BindingDB
There are 92366 affinity measurements curated from literature (2024-
12-18) in Binding DB (https://pubmed.ncbi.nlm.nih.gov/17145705/).
44890 have some affinity measure ([‘Ki (nM)’, ‘IC50 (nM)’, ‘Kd (nM)’,
‘EC50 (nM)’]) that is below 1000nM andmost (60%) are <100 nM. The
proteins consist of 1000 unique UniProt IDs and there are 27993
unique ligands. We limit the protein length to 600 residues, resulting
in 29583 complexes from 705 UniProt IDs and 18530 ligands, 62% of
these have affinity <100nM. 27810 (94%) of the complexes were suc-
cessfully predicted. The ones that failed did so due to MSA generation
errors resulting in missing alignments.

PoseBusters test set
We evaluate the trained network and compare it with 8 other methods
for protein-ligand docking on the PoseBusters benchmark set which
contains 428 complexes not present in the PDBbind 2020 release29

used for training here. We also compared the performance by dividing
the dataset based on the sequence overlap to the training set (Sup-
plementary Table 1)13.

We downloaded the PoseBusters set and scores for all methods
except for RFAA from https://zenodo.org/record/8278563. The suc-
cess rate for RFAA was taken from their preprint14.

We predicted all test complexes using three recycles (as for the
validation set) and only one prediction was run per target. 15

Fig. 5 | Sequencemetrics. a Length distribution (n = 17936, median length=263 residues).bNumber of sequences in each 20% sequence identity cluster (n = 1652,median
cluster size = 2).

Table 1 | Data partitioning for training, validation and cali-
bration (affinity)

Partition Number ofclusters Number of protein-ligand
complexes

Train 1486 16420

Valid 82 845

Calibration (affinity) 84 671

Total 1652 17936
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complexes are out of memory using an NVIDIA A100 GPU with 40Gb
of RAM during inference (above 1000 residues). We crop these to 500
residues to include asmany of the target residues (pocket) as possible.

In the published version of the PoseBusters study, any proteins
that include crystal contacts were removed from the evaluation13. We
decided to include the set from the original study as a method for
predicting protein-ligand structures should not be influenced by
experimental artefacts. The effect of the crystal contacts on the
protein-ligand interaction can also not be known and many other
experimental artefacts such as different conditions for protein
expression, cofactors and ligand concentrations exist.

Network description and inference
The network architecture is a modification of the EvoFormer used in
AlphaFold215. For an overview of the network, see Fig. 1. Note that no
template information is used in the network, making it purely
sequence-based. Here, we outline the encoding and processing of the
different network inputs.

Pocket encoding
All CB (CA for Glycine) within 10 Å from any ligand atom are one hot
encoded. This is an arbitrary threshold similar to that of DeepDock31.
Likely, similar thresholds will perform equally well. The encoding is
used to bias both the MSA and pair representations and is processed
throughout the network.

No pocket version
For the version of Umol that does not use pocket information, the one
hot encoding is simply omitted. Otherwise, the networks are identical
allowing for inferencewith the samecodebut different sets of network
weights.

Ligand encoding
All atoms present at least 100 times in the ligands of the training
dataset (B, C, F, I, N,O, P, S, Br, Cl) areone hot encoded. All other atoms
are encoded with the same hot encoding representing rare ligand
atoms (As, Co, Fe, Mg, Pt, Rh, Ru, Se, Si, Te, V, Zn). We decided not to
encode rare atoms to not overfit to these and to save space as this
would result in a much sparser atom encoding.

The ligand bonds are one hot encoded as well. We encode single,
double, triple and aromatic bonds separately and all other bonds
as rare.

MSA generation and processing
To generate multiple sequence alignments, we search
uniclust30_2018_0832 with HHblits (from HH-suite33 version 3.1.0) with
the options:

hhblits -E 0.001 -all -oa3m -n 2

We add a gap for the ligand atoms in the MSA representation and
process theMSA in theMSA track alone. TheMSA track is aware of the
ligand through interactions with the pair track and due to the size and
encoding of this in the initial MSA representation.

Pair processing
We process the pair representation with the atoms directly: amino
acids+atoms, and let the MSA information flow to the pairwise inter-
actions to influence the folding.

Recycling operations
The pair representation, the first row of the MSA representation and
intermediate predicted final atom positions are recycled through the
network 1-3 times sampled uniformly during training. For the predic-
tions, three recycles were used.

Loss
Weuse the samemain loss functions and lossweights as in AlphaFold2,
but with slight modifications to better suit the problem of protein-
ligand structure prediction. The loss used up to step 24500 is

Loss =0:5 � FAPE +0:5 � AUX +0:3 � Distance+0:2 �MSA

+0:01 � Conf idence ð1Þ

Where FAPE is the frame aligned point error, AUX a combination of the
FAPE and angular losses, Distance a pairwise distance loss, MSA a loss
over predicting masked out MSA positions and Confidence the differ-
encebetween true andpredicted lDDT scores. These losses aredefined
exactly as in AlphaFold2 and we refer to the description there15.

The FAPE is calculated using only the amino acid N-CA-C frames
towards ligand atoms as well. The MSA loss is only applied for the
protein as well, but the distance and aux loss include both protein and
ligand.

All ligand atoms are represented as their own frames (like a gas of
atoms without constraints). The alternative is to enforce bond dis-
tances and known geometric properties. To enforce accurate bond
lengths, we introduce an L2 distance loss at step 24500. This L2 dis-
tance loss is defined using the distance from the ideal ligand bond
lengths extracted from a generated conformer in RDKit (clipped at
10Å). The reason for not including this initially is to let the network
learn freely how the protein and ligand should interact. This loss has a
weight of 0.1 and is added into the AUX loss. This loss acts as a formof
harmonic potential for the ligand bonds.

Training and validation
Wesample the sequenceswith inverse probability to the 20% sequence
identity cluster size. We use a learning rate of 0.001 with 1000 steps of
linear warmup and clip the gradients with a global norm of 0.1 as in
AlphaFold215. The optimiser is Adam34 applied through the Optax
package in JAX (JAX version 0.4.23, https://github.com/deepmind/jax/
tree/main). We train the pocket network for 50000 steps and the no-
pocket network for 90000 steps (until convergence) across 8 NVIDIA
A100 GPUs, with a combined batch size of 24 (3 examples per GPU).

We crop the protein-ligand complexes to 256, where the protein
size is 256 subtractedwith the ligand size (number of atoms, the entire
ligand is always included) residues. The protein is cropped uniformly
around the protein pocket region. Each step takes approximately
18 seconds.We validate every 10000 steps and assess the ligandRMSD
and the protein pocket RMSD using the relaxation and scoring pro-
cedures described below.

Training with pocket information
The loss function declines rapidly (Eq. 1, Fig. 6a). ThemaskedMSA loss
saturates quickly (Fig. 6b), while the distogram loss is noisy through-
out the training procedure (Fig. 6c). The structure module loss
(Fig. 6d) is not saturated at step 50,000, although the lDDT22 for the
protein and ligand only improves slowly (Fig. 6e). Figure 6f suggests
that the network starts to overfit to the training set between steps
40,000–50,000. The success rate on the validation set is the highest at
step 40,000 (26%). The total training time is approximately 10 days.

Both the lDDT of the protein and ligand are improving together,
but there is a tradeoff in the SR. The pocket RMSD is the highest at the
step where the SR is (Fig. 6g and h), suggesting a tradeoff between
these two. There is a difference of only 0.18 Å in the median pocket
RMSD between the validation checkpoints, but the SR differs
8.6% (Fig. 6h).

Training without pocket information
The training without pocket information closely follows that of when
pocket information is available (Fig. 7). The SR is much lower without
pocket information though, suggesting that this is needed to obtain
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more accurate results. Interestingly, the lDDT training curves are very
similar between the two runs. Since the lDDT curves are similar,
resulting in a similar training set performance, but with the validation
SR being 20% lower. This suggests that the network overfits to certain
proteins when pocket information is not present.

The total training time is approximately 19 days. The highest
validation SR is obtained at 60000 steps and this checkpoint was used
for all analyses here.

Conformer generation with RDKit
Conformer generation with RDKit is important to ensure that the
predicted structures have realistic bond angles13 and to adjust for small
errors in e.g. the predicted protein side chain angles. Since the ligand
atoms are represented as a point cloud, there are no constraints on
bonds or angles resulting in possible violations in the predictions. To
fix these issues, we align conformers generated by RDKit (version
2023.03.2, https://www.rdkit.org) from the input SMILES string using
the ligand atom distance matrix as constraints to the predicted
structures. We generate a total of 100 conformers and select the one
with the lowest difference in atomic positions to the predicted
positions.

Relaxation with openMM
We noticed that some of the predictions contain clashes (here defined
as twoatoms being less than 1 Å apart). This is a commonproblemwith
protein structure prediction15, but can be easily amended using fast
energy minimisation in a molecular dynamics force field, so-called
relaxation. To relax the predicted structures, we add hydrogens to the

protein and ligand and minimise the energy using OpenMM (version
8.0)35. We constrain the protein CA positions and the ligand positions,
meaning that only the protein side chains are moved significantly.

The energy minimisation does not improve the ligand RMSD but
fixes clashes and other errors within the protein. We use a Brownian
Integrator and minimise the energy of the protein with a tolerance of
1 kJ for amaximumof 1000 stepswith a restraining forceof 100 kJ/nm2.
This is a very fast relaxation procedure that essentially only alters side
chain positions.

For the Posebuster test set, the relaxation resolves clashes in the
protein-ligand interfaces. Before relaxation, 12% of interfaces pre-
dicted with Umol-pocket have at least one clash, compared to 0.7%
after the relaxation. The success rate is diminished by 2%, resulting in
an SR of 43.3% compared to 45.3% before relaxation. This is a marginal
change and we allow the user to determine if this is acceptable or not
through the choice of relaxing the predicted structures or keeping
them in their unrelaxed states.

Inference
For inference, the same information as generated for training is used.
An MSA is generated for the protein (see above) and the ligand atoms
are encoded directly (see above). The difference between Umol-
pocket and Umol is a simple one-hot encoding of what residues have
CBs within 10Å from any ligand atom. In all other aspects, Umol and
Umol-pocket are identical in their architectures.

Timings
Table 2.

Fig. 6 | Training curves and metrics for Umol-pocket. The dashed vertical line
indicates the time point where the additional L2 ligand distance loss was intro-
duced (step 24500). a The combined loss function (Eq. 1) vs the training step.
b Masked MSA loss vs training step. c Distance loss vs training step. d Structure
module loss vs training step. This is the combination of FAPE and AUX (Eq. 1)
e lDDT for protein and ligand vs training step. The protein accuracy is higher than
that of the ligand. f Success rate (SR, % of protein-ligand complexes predicted
with ligand RMSD ≤ 2 Å) for the validation set (n = 741 protein-ligand complexes)
at checkpoint intervals of 10000 steps. The examples that failed (n = 104) did so
due to RAM limitations andmissing interface atoms. The SR is 17.3, 20.3, 23.5, 25.9

and 22.8 for steps 10000-50000, respectively. gRMSDof the atoms in the protein
pocket for the validation set (n = 741 protein-ligand complexes) at checkpoint
intervals of 10000 steps. The examples that failed (n = 104) did so due to RAM
limitations and missing interface atoms. Boxes encompass data quartiles, hor-
izontal lines mark the medians and upper and lower whiskers indicate respec-
tively maximum and minimum values for each distribution. h Median pocket
RMSD vs SR for the validation set (n = 741 protein-ligand complexes) at the dif-
ferent checkpoints. The examples that failed (n = 104) did so due to RAM lim-
itations and missing interface atoms.
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Comparison methods
We compare the performance on the PoseBusters benchmark13 with
the methods evaluated there for protein-ligand docking and the
recently released RoseTTAFold All-Atom (RFAA). We describe the dif-
ferent methods briefly below:

AutoDock Vina. A classical docking method based on perturbing the
ligand structure and calculating a score until convergence. Requires
the native holo protein structure, a description of possible ligand
poses, and a cube with a side length of 25 Å centred on the centre of
mass of the heavy ligand atoms7.

Gold. A classical docking method based on perturbing the ligand
structure and calculating a score until convergence. Requires the
native holo protein structure, a description of possible ligand poses,
and a cube with a radius of 25 Å centred on the centre of mass of the
heavy ligand atoms36.

RoseTTAFold All-Atom. RoseTTAFold All-Atom (RFAA) is a neural
network for predicting interactions between proteins and ligands as
well as other atoms such as metal ions. RFAA lets each ligand atom
move freely and treats the amino acids as N-CA-C frames as in Umol.
The biggest differences to Umol are the “3D track”, the input of tem-
plate and sterical information, the treatment of each ligand atom as an
individual frame in the loss calculations (FAPE). Compared to Umol-
pocket the biggest difference is the lack of defining a pocket.

In Umol, the FAPE is only calculated as seen through the amino
acid frames. This is because even though all ligand atoms can have
frames, they will be highly variable depending on the predicted posi-
tions of the other ligand atoms. In contrast, the amino acid frames will
be constant as the N-CA-C relationship remains the same regardless of
the predicted positions.

As in Umol, RFAA uses relaxation of the predicted protein-ligand
structures. RFAA uses Rosetta37, while Umol uses molecular dynamics
with OpenMM. Another difference in the loss calculations is that RFAA

Fig. 7 | Training curves andmetrics for Umol. a The combined loss function (Eq. 1)
vs the training step. b Masked MSA loss vs training step. c Distance loss vs training
step. d Structure module loss vs training step. This is the combination of FAPE and
AUX (Eq. 1) e lDDT for protein and ligand vs training step. The protein accuracy is
higher than that of the ligand. f Success rate (SR, % of protein-ligand complexes
predicted with ligand RMSD≤ 2Å) for the validation set (n =741 protein-ligand com-
plexes) at checkpoint intervals of 10000 steps. The examples that failed (n= 104) did
so due to RAM limitations andmissing interface atoms. The SR is 2.8, 5.6, 6.4, 5.0, 6.4,

6.8, 4.4, 6.2 and 6.4 for steps 10000-90000, respectively. g RMSD of the atoms in the
protein pocket for the validation set (n =741 protein-ligand complexes) at checkpoint
intervals of 10000 steps. The examples that failed (n= 104) did so due to RAM lim-
itations andmissing interface atoms. Boxes encompass data quartiles, horizontal lines
mark the medians and upper and lower whiskers indicate respectively maximum and
minimumvalues for each distribution.hMedian pocket RMSD vs SR for the validation
set (n =741 protein-ligand complexes) at the different checkpoints. The examples that
failed (n= 104) did so due to RAM limitations and missing interface atoms.

Table 2 | Average time per process (the “real” time from the bash script is reported) needed for generating features and
predicting the protein-ligand complex structures

What Average time Computational resources

MSA generation 285 s 8 ×2.5GHz Intel(R) Xeon(R) CPU E5-2680 v3 with 2.5Gb RAM

Network input feature generation 11 s 2 ×2.5GHz Intel(R) Xeon(R) CPU E5-2680 v3 with 2.5Gb RAM

Protein-ligand structure prediction 182 s 1 x NVIDIA A100 GPU with 40Gb RAM

RDKit ligand conformer generation 13 s 1 ×2.5GHz Intel(R) Xeon(R) CPU E5-2680 v3 with 2.5Gb RAM

OpenMM protein relaxation 27 s 1 x NVIDIA RTX A4000 with 16Gb of RAM

Total 518 s ≈ 9minutes At least 2 ×2.5GHz Intel(R) Xeon(R) CPU E5-2680 v3 with 2.5Gb RAM and 1 x NVIDIA A100 GPU with
40Gb RAM

The most time-consuming process is the MSA generation and the least is the network feature generation. The time is the same for Umol and Umol-pocket.

Article https://doi.org/10.1038/s41467-024-48837-6

Nature Communications |         (2024) 15:4536 9



reorders all ligand atoms to find the lowest possible loss. The reason
for not applying this here is that it is very difficult to exactly determine
what atoms are interchangeable. Often, atoms can be interchangeable
on a local scale, but not when considering the whole ligand14.

RoseTTAFold All-Atom w/o templates. To analyse the impact of
known structures on the outcome, we reran RFAA on the PoseBusters
test set without templates using the same MSAs as for Umol and their
default configuration.Wefind that the SRdecreased substantially from
that reported using templates (8% vs 42%14, Supplementary Table 1).
The protein structures are predicted with high accuracy (average
protein pocket RMSD= 1.43), suggesting that the coevolutionary
information for the protein is sufficient. The most reasonable expla-
nation for the decreased performance is, therefore, the exclusion of
interface information available through protein structural templates.

DiffDock. DiffDock takes ligand SMILES and the native holo protein
structure as input and generates amino acid embeddings with ESM2.
An initial ligand conformation is generated with RDKit which is upda-
ted and docked to the native protein structure using a diffusion pro-
cess and deep learning. DiffDock does not require a defined pocket2.

AF+DiffDock. We predicted the protein structures with AF v2.1, model
1 (parameters available from https://storage.googleapis.com/
alphafold/alphafold_params_2021-07-14.tar) using 3 recycles and 1
ensemble15.We then input these structures to DiffDock2 and generated
one model per target structure.

NeuralPlexer version 1. NeuralPlexer1 uses a diffusion concept on
amino acid frames and ligand atoms. We ran NeuralPlexer1 with the
default config “batched_structure_sampling” (16 samples, 40 steps and
a chunk size of 4), langevin_simulated_annealing and only protein
sequence information for the protein as input. This ensures that the
protein-ligand complex is co-folded. We select the first-rankedmodels
for scoring19.

Uni-Mol. A deep learning method that takes a ligand and native holo
protein structure as input. Requires all protein residues within 6Å of
any heavy ligand atom38.

DeepDock. A deep learningmethod that takes a ligand and native holo
protein structure as input. Requires a protein surface mesh of all
protein residues within 10Å of any heavy ligand atom31.

TankBind. A deep learning method that takes a ligand and native holo
protein structure as input. Does not require a defined pocket4.

Equibind. An SE(3)-equivariant geometric deep learning method that
takes a ligand and native holo protein structure as input. Does not
require a defined pocket5.

Scoring protein and ligand poses
To score the predicted protein-ligand complexes, we align the pocket
CAs to the native structures and transform the predicted ligand
accordingly. We then calculate the ligand RMSD and the RMSD of all
available atoms in the protein pocket (Eq. 2). We assume that the
atomic order is the same for the predicted/native ligands and do not
adjust for symmetry. This can result in a lower success rate in some
cases, but very few cases should be affected by symmetrical swaps
beyond the 2Å RMSD threshold.

RMSD=
1
n

Xn

i= 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i
ðpci � nciÞ

2
r

ð2Þ

Where pc is the predicted 3D atomic coordinate (x,y,z) and nc is the
native 3D atomic coordinate, and n is the number of heavy (non-
hydrogen) atoms.

We score the overall protein structures with TM-align (version
20220412)39 and the command:

TMalign native.pdb predicted.pdb

Number of effective sequences (Neff)
We clustered sequences at 62% identity to estimate the amount of
information available in each MSA of the test set40. The resulting
number of clusters were used as the number of effective sequences
(Neff). We used MMseqs2 (version f5f780acd64482cd59b46eae0a107
f763cd17b4d)30 with the command:

mmseqs easy-cluster MSA clusterRes tmp --min-seq-id 0.62
-c 0.8 --cov-mode 1

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The predicted structures used for the calculation of various metrics
presented in the figures here as well as the input features for the
training of the network and summary statistics used to produce all
figures can be found at: https://zenodo.org/records/10809161.

Code availability
Umol is available at: https://github.com/patrickbryant1/Umol.
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