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Chapter 1

Introduction

Polyhedral surfaces are probably the most common representation for surfaces in

computer graphics. Because of their simplicity, they can be processed very efficiently

in modern computers and graphics cards.

The field of discrete differential geometry investigates polyhedral surfaces from a

mathematical point of view. The aim is to provide proper discrete analogs of notions

and methods of the smooth differential setting, and to establish a corresponding

theory. The development of a consistent theory is challenging, since arbitrary poly-

hedral surface meshes often lack regularity and a high-level semantic structure. In

particular for triangle meshes, important surface features are often not emphasized

and triangles are not adapted to the overall shape.

Parameterization. Surface parameterization is the process of mapping a sur-

face into the two-dimensional plane. Conceptually, the surface is considered as a

distorted Euclidean plane where the parameterization describes the relation, the

deformation and the differences to the plane. The parameterization equips the

surface with additional structure, such as providing a metric and consistent local

coordinates in all tangent spaces.

The task of generating a parameterization of high quality is challenging. Depending

on the actual application, the desired properties are quite different. However, for

almost all purposes, it is important to achieve low metric distortion, since then the

real surface is approximated well by its image in the flat plane. Applications range

from texture mapping in computer graphics and texture synthesis to remeshing and

automatic construction of hierarchical subdivision surfaces. All of these applications

benefit from the additional structure of a parameterization.

This thesis concerns the mathematical background and theory of global parameter-

izations. The theory is based on the concepts and formalism of discrete differential

geometry. The presented approach is driven by conceptual clarity and establishes

a consistent analogue to the smooth setting in differential geometry. Moreover,

an algorithm called QuadCover is formulated which provides an automatism for

generating a parameterization of any given triangular surface.

Tiling. Parameterization is closely related to surface tiling which is an analogue

to wallpaper tiling for surfaces. A wallpaper tiling covers the two-dimensional plane

with a repetitive pattern, based on the symmetries in this pattern (see Fig. 1.1,

left). These symmetries are isometries, such as translations, rotations and reflec-
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tions, and are classified by the 17 distinct wallpaper groups of the Euclidean plane.

Special tilings are regular tessellations which are made of regular k-gons, k ∈ N and

seamlessly cover the two-plane. There are only three possible regular tessellations,

shown in Fig. 1.1, right: triangular (k = 3), quadrilateral (k = 4) and hexagonal

tessellations (k = 6).

Figure 1.1: Tilings and regular tessellations of the two-plane.

The tiling of curved surfaces using regular patterns is an important yet challeng-

ing problem. Methods based on a local parameterization often lead to a visible

breakup of the patterns along seams, i.e., where the surface is cut open during pa-

rameterization. Using a global parameterization can alleviate this problem when

the translational and rotational symmetry in the parameterization is compatible

with the tiling pattern.

Figure 1.2: Tilings (top) and regular tessellations (bottom) on surfaces have

applications in remeshing.

Most common surface parameterization approaches are made for quadrilateral ti-

lings and generate a regular quadrilateral grid. In this thesis, different tilings and

symmetry groups are also considered.

The proposed algorithm produces parameterizations with different symmetries which

are suited for quadrilateral, triangular or hexagonal remeshing. But also various

patterns of similar symmetry are possible, e.g. rhombic tilings or meshes with mixed

tiles such as octagons and quadrilaterals.

Regular and symmetric patterns occur frequently in architecture and decorative

art. The proposed method can therefore support the design process of architectural
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constructions. Modern architectural styles often use freeform surfaces which are

then covered by a regular structure. Glass roofs or facades are often modeled as

unstructured triangle mesh and then segmented into regular triangles or quadrangles

which define the shape of the glass panels (see Fig. 1.3).

Figure 1.3: Regular patterns on curved surfaces are used in architectural design.

Left: Philological Library of the Freie Universität, Berlin. Middle: Exterior detail

of the Selfridges Building, Birmingham. Right: 30 St Mary Axe Building, London.

1.1 Background on Parameterization

In classical differential geometry, a parameterized surface is often described as the

image of an injective map f : Ω → R3, (u, v) 7→ (x, y, z) from a simply connected

domain Ω ⊂ R2.

This definition provides more than just a set of points in three-space. It also gives a

one-to-one relation of the surface with the domain and therefore induces properties

from the R2, e. g. the metric. The metric of a surface specifies how angles, lengths

and areas are measured. Choosing a different parameterization – and therefore a

different metric – will change the measures of these quantities.

When using a geographic map to navigate through a foreign territory we rely on

having only little metric distortion to respect the actual shapes and sizes. Unfortu-

nately, it follows from the famous “Theorema egregium” [Gauß 1828] that a perfect

shape preserving parameterization does not exist for most surfaces. Thus, in each

atlas of the earth, metric distortion cannot be avoided.

In the past, over 400 different maps are known implying different metric properties.

Important ones are:

Preserving angles: Angle-preserving or conformal parameterizations may intro-

duce enormous length and area distortion. Most famous examples of con-

formal maps of the earth are the stereographic projection and the Mercator

projection.

Preserving area: An area-preserving parameterization maps all countries to a

planar region of the same size. Thereby, its shape can be distorted very
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much. An example is the azimuthally equal-area projection of J. H. Lam-

bert [Lambert 1772] which is commonly used in atlases. The length distortion

is low in the center of the map but increases towards the boundary.

Preserving distance: Preserving all measured lengths in a map of the earth would

result in an isometry and is therefore impossible. There are maps which

preserve a specific subset of distances. The azimuthal equidistant projection

for example reproduces the exact distance of all points to the center of the

map. It is used for radio services to determine distances from the own antenna.

Figure 1.4: Parameterizations of the earth. From left to right: Parallel pro-

jection, Stereographic projection, Lambert azimuthal equal-area projection, Az-

imuthal equidistant projection.

Since it is in general impossible to achieve all of these properties, a practical para-

meterization must make compromises and minimizes all kinds of distortion in some

sense.

1.2 The QuadCover Algorithm

In this thesis, an algorithm called QuadCover is proposed, which takes an unstruc-

tured triangle mesh as input and fully automatically provides a parameterization.

The approach is based on a guiding frame field which is used to steer the shape of

parameter lines. The parameterization pipeline consists of two major steps:

Construct a guiding frame field which encodes local geometric information a-

bout the surface, such as principal curvature directions or special surface

features.

Compute a parameterization whose parameter lines follow the directions of the

frame field in a best possible way.

A guiding-field-based parameterization method like QuadCover allows very spe-

cific control over the alignment of the parameterization and its metric. The auto-

matically computed field in the first step is exchangeable by any other field provided

as input. In this sense, QuadCover is a more general approach which can easily

be adapted to match different user-specified criteria.
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Figure 1.5: QuadCover pipeline. Left: Input triangle mesh. Middle: Guiding

frame field. Right: Parameterization. Singularities are shown in red and blue.

Singularities. It turns out that the quality of the parameterization heavily de-

pends on the proper choice of the guiding field. An unreasonable guiding field can

cause huge distortion.

A key issue for generating good parameterizations is the meaningful placement of

irregular points (also called singularities). They are already present in the guiding

field and determine topological properties of the parameterization. Therefore, the

design of a suitable field with meaningful singularities is essential for the algorithm.

The method proposed in this thesis provides an automatism for frame field genera-

tion. Additionally, the user may have explicit control over the number of singular-

ities and their actual position on the surface.

Covering Spaces. The guiding frame field of a parameterization consists of a

set of vectors in each point of the surface. It can therefore be understood as a

multi-valued vector field.

A more sophisticated viewpoint uses an idea by Riemann, who replaced multi-

valued complex functions with functions whose domain is a Riemann surface. In our

context, a frame field naturally simplifies to a vector field defined on a domain which

is a branched covering of the original surface. Singularities in the field correspond to

branch points of the covering space. This framework provides a clear and conceptual

notion which links the analysis of frame fields to the more explored vector-field

calculus and, hence, provides an analogue theory for frame fields.

Note, that covering spaces are not required for the implementation of QuadCover,

but are used for the theory to establish a coherent setting. When heard for the first

time, the idea of parameterizing a covering surface might seem to be a complex

construct. But once accepted, this setting indeed clarifies the theory, simplifies

notion and furthermore provides a nice connection to Riemannian geometry.
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1.3 Contributions and Outline

This thesis provides a theory and notion of global parameterization based on guid-

ing frame fields. The concept of covering spaces is used for describing frame fields

in terms of vector fields. Thereby we provide a different interpretation of parame-

terizations with rotational discontinuities. This concept is not only valid for Quad-

Cover, but also for other approaches [Tong 2006, Bommes 2009] which implicitly

define a covering surface.

The original QuadCover algorithm [Kälberer 2007] was developed in cooperation

with Felix Kälberer and Konrad Polthier. Since then, the underlying notion of

QuadCover was improved to make it more self-contained, and additional features

are implemented such as an advanced pipeline for frame field generation.

A notable improvement is the introduction of constraints to a parameterization. In

this thesis, two different types of constraints are defined: geometrical and combi-

natorial constraints. Geometrical constraints are defined by curves which are then

exactly respected by a parameter line, e.g. the boundary or sharp creases. Combi-

natorial constraints allow prescribing special properties on the topology of the grid

of parameter lines. Both techniques are very useful for generating nearly perfect

parameterizations of complex models. As far as known to the author, this is the

first attempt to formulate these kinds of constraints for a parameterization.

The second part of the thesis describes how parameterizations are used for surface

tiling with different symmetries, especially for hexagonal- and stripe patterns. In

summary, the main contributions are:

1. Formulate a variational approach QuadCover [Kälberer 2007] for generating

a parameterization from a given guiding frame field together with F. Kälberer,

K. Polthier.

2. Provide an advanced pipeline for field-generation as result of many discussions

with F. Kälberer.

3. Reformulate the notion of frame fields using covering spaces, and show the equiv-

alence to vector field calculus.

4. Introduce Hexagonal Parameterizations [Nieser 2011a] for hexagonal and trian-

gular surface tiling together with J. Palacios, E. Zhang, K. Polthier.

5. Introduce Stripe Parameterizations [Kälberer 2010] for surface tiling using stripe

patterns together with F. Kälberer, K. Polthier.

6. Provide a concept for handling singularities of positive integer index, e.g. poles

or vortices [Nieser 2009] together with K. Polthier.

7. Introduce geometrical constraints to force parameter lines to run along given

curves.

8. Introduce combinatorial constraints to enforce given conditions on the connec-

tivity of the grid of parameter lines.
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1.4 Previous Work on Surface Parameterization

The research area of surface parameterization has a long and fruitful tradition

and there is a wealth of different approaches. Excellent overviews [Hormann 2008,

Sheffer 2006, Floater 2005] are summarizing the methods up to 2008.

Early Work. The notion of barycentric coordinates was already used [Tutte 1963,

Floater 1997] to unfold a simply connected domain into the plane. The boundary is

thereby mapped to a predetermined closed curve. While the method is robust and

the bijectivity of the parameterization is guaranteed, however, it does not adapt to

extrinsic geometrical properties, such as curvature or ridges of the surface.

In subsequent years, further methods are proposed, optimizing different energies

[Lévy 1998, Hormann 2000, Sheffer 2001] in order to reflect the shape of the surface

in a best possible way.

Conformal. A new class of approaches has arisen with the study of conformal

parameterizations. The notion of conformal maps is discretized in various ways:

using circle packings on the surface [Stephenson 1999], minimizing a non-linear en-

ergy [Haker 2000] or defining a least-squares measure for conformality [Lévy 2002,

Desbrun 2002]. An advantage of discrete conformal maps is that they can be com-

puted very efficiently and angles are nearly perfectly preserved, however, at the cost

of possibly large length distortion.

Global. All mentioned methods require that the surface is simply connected. More

complicated surfaces are cut open into a simply connected disk introducing visible

seams in the parameterization. A first impressive work for constructing global pa-

rameterizations of surfaces with arbitrary genus is given by Gu and Yau [Gu 2003],

and then further improved [Jin 2004]. They take the homology class of the surface

into account and propose an algorithm for computing conformal parameterizations

satisfying periodic conditions along each homology cycle.

A different way of parameterizing surfaces of arbitrary genus is to map it to a differ-

ent domain surface instead of the Euclidean plane. The domain surface has the same

genus and is a simpler representation of the shape, e. g. a polycube [Tarini 2004] or

a coarsened version of the input surface [Pietroni 2010].

Singularities. Another important development is the introduction of singularities

(also called irregular points or cone points) of fractional index. They have proven to

be essential for high quality parameterizations and increase the flexibility of purely

conformal mappings. An approach [Kharevych 2006] uses user given singularities

for conformal parameterizations via circle packings. Tong et al. use a hand-picked

quadrilateral meta-layout for positioning singularities [Tong 2006]. They appear at

the nodes of the layout, and the patches are then parameterized solving for a global

harmonic one-form. Still, the approach is constrained by the global nature of har-

monic one-forms, in some sense, similar to the algorithm of Gu and Yau [Gu 2003].

Another method [Dong 2006] uses a similar idea for parameterization but creates
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a quadrilateral meta-layout automatically from the Morse-Smale complex of eigen-

functions of the mesh Laplacian.

An important issue, is the question how to find reasonable locations for singularities.

The placement has huge impact on the quality and distortion of the parameter map.

Two different approaches [Ben-Chen 2008, Springborn 2008] automatically place

singularities optimized for conformal parameterizations. In general, an optimal

placement is very hard to find and is an ongoing research problem today.

Curvature Alignment. The PGP algorithm [Ray 2006] introduces a new per-

spective by generating parameterizations guided by two orthogonal input vector

fields. These directions are normally generated as being eigenvectors of the cur-

vature tensor. However, the global continuous structure of the parameterization

causes problems in the vicinity of singularities. These regions are detected and

reparameterized afterwards.

The approach of QuadCover [Kälberer 2007], strongly inspired by their work,

formulates a consistent framework for frame field calculus. Furthermore, an algo-

rithm is proposed for generating a parameterization which aligns to a user-given

guiding field including the correct handing of singularities. This guiding field can

either be taken from the principal curvature tensor, or be any arbitrary field, e. g.

generated by using one of the recent tools for designing rotational symmetry fields

(see Section 1.5). QuadCover uses a simple heuristic to approximate the solution

of the arising NP hard mixed integer problem.

Special attention must be paid to singularities of positive non-fractional index

[Nieser 2009], since they cannot be represented by a piecewise linear texture map

on a triangle mesh. This issue concerns all parameterization algorithms using linear

finite elements.

Mixed Integer Quadrangulation (MIQ) [Bommes 2009] is a technique based on

QuadCover. While optimizing the same energy, the numerical solver was ex-

changed to enhance the approximation of the minimum. More details and a com-

parison to this method are given in Section 5.2.

A further guiding-field based parameterization method [Zhang 2010] computes a

wave function and generates its Morse-Smale complex which provides a decomposi-

tion for a subsequent parameterization. Zadravec et al. compute parameterizations

which are optimized for use in architectural design [Zadravec 2010].

Finally, parameterizations can also be used to generate layouts which do not con-

sist of quadrilaterals. Different symmetries, such as stripes [Kälberer 2010] or he-

xagons [Nieser 2011a], open a new perspective on generating regular tilings with

surface parameterization.



1.5. Previous Work on Field Design 9

1.5 Previous Work on Field Design

Vector Fields. This thesis studies parameterization methods which are based on

a guiding field. The design of such vector- and tensor fields is a separate task than

the parameterization itself.

Early approaches on vector field design specify a sparse set of vectors and interpolate

them over the whole surface [Praun 2000, Turk 2001]. Further techniques give direct

control over the field topology by directly specifying the location and indices of

singularities [Theisel 2002, Li 2006, Zhang 2006, Fisher 2007].

Line Fields and Cross Fields. Vector fields can be generalized to admit different

rotational symmetries. Zhang et al. concern the design of line fields that do not

distinguish between forward and backward directions [Zhang 2007].

Fields with 90-degrees rotational symmetry are often called frame fields, cross fields

or 4-RoSy fields. They are used to represent principal curvature directions and

play an important role in surface parameterization. Cross fields are computed from

smoothing pricipal curvature directions in [Hertzmann 2000]. A similar method

is used in QuadCover [Kälberer 2007] for the input guiding field of a parame-

terization. Zhang et al. propose to resize principal curvature vectors in order to

minimize the curl [Zhang 2010]. A more general framework [Zadravec 2010] uses

pairs of conjugate directions which serve as a guiding field for parameterization.

Smooth cross fields are very stably computed by variational approaches which mini-

mize the squared angles between vectors in adjacent triangles. Such an energy func-

tion is first proposed by Wei et al. [Wei 2001]. The MIQ algorithm [Bommes 2009]

computes principal curvature directions in some trusted areas and uses a similar

energy to interpolate the cross field to the whole surface. Singularities are found

automatically using a mixed integer solver. The work of Crane et al. provides a

more theoretical relation which shows that a cross field which minimizes a similar

energy can be seen as a discrete Levi-Civita connection [Crane 2010].

N-Rotational Symmetry. Fields with rotational symmetry of 2π/N for arbitrary

N ∈ N are first considered by Palacios and Zhang [Palacios 2007] and called N -

RoSy fields. Based on this notion, further design tools are developed [Ray 2008,

Ray 2009, Lai 2010]. HexCover [Nieser 2011a] computes a 6-RoSy field which

aligns to principal curvature directions.

Recently, Palacios and Zhang [Palacios 2011] have presented a technique for visu-

alization of N -RoSy fields using line integral convolution (LIC).
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Figure 1.6: Parameterization with QuadCover. Left: Input triangle mesh.

Right: Output quadrilateral structure.



Chapter 2

Field-Based Surface

Parameterization

This chapter introduces the QuadCover algorithm which computes a paramete-

rization from a given guiding frame field. Section 2.1 gives an introduction to the

main idea while Section 2.2 settles the underlying notion used in the theory.

For illustrating the main ideas of QuadCover, the algorithm is divided into two

parts: A simple version is considered in Section 2.3, excluding rotational symme-

tries. It is not intended for practical use, but introduces the main concept. The full

algorithm is then explained in Section 2.4.

2.1 QuadCover Approach

Parameterization. The goal of QuadCover is to construct a parameteriza-

tion for a given surface. The concepts described in this section are based on a

setting from differential geometry. Hereby, the underlying surface is a smooth two-

dimensional manifold, which is a second-countable Hausdorff space M covered by

a collection of charts Mi. The charts are homeomorphic to a two-dimensional Eu-

clidean disk and may overlap, i.e. a single point of M may be represented in several

charts.

Definition 2.1.1 A parameterization ϕ of a manifold M with charts Mi is a

collection of injective maps ϕi : Mi → R2, p 7→ (u, v)T . For all overlapping charts

Mi, Mj, the map ϕj · ϕ−1
i : ϕi(Mi ∩Mj) → ϕj(Mi ∩Mj) is called the transition

function between charts.

Note that in this definition, ϕ maps from the manifold into R2 which is inverse

to the common definition of parameterized surfaces in differential geometry (see

Section 1.1). However, this notion is more practicable when different possible pa-

rameterizations of the same surface are considered.

For a non-degenerate parameterization, the set of points with one constant coor-

dinate forms a collection of one-dimensional curves, called parameter lines of a

parameterization. Define u-lines by restricting v, and v-lines by restricting u to a

constant.
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Consider all parameter lines whose isovalue is an integer number. They form a

quadrilateral pattern on each chart and are given as preimage ϕ−1
i (C2) of the unit

grid in R2:

C2 := {(u, v) ∈ R2 |u ∈ Z or v ∈ Z}. (2.1)

In order to obtain a globally consistent quadrangular grid the pattern has to match

up in all overlapping charts (see Fig. 2.1). We therefore restrict all transition

functions to those (linear) functions which leave C2 invariant:

Definition 2.1.2 A quadrangular global parameterization is a parameterization ϕ

whose values in adjacent charts Mi, Mj are related by:

ϕj(p) = Jrijϕi(p) + wij , rij ∈ Z, wij ∈ Z2, ∀p ∈Mi ∩Mj , (2.2)

where J is a rotation by π/2 in the Euclidean plane. wij is called gap between

Mi and Mj and denotes a constant integer translation. rij (called matching) is a

number representing the rotational discontinuity between both charts.

ϕi
ϕi, ϕj

rij=−1

Mi
Mj

Figure 2.1: Left: Parameterization ϕi with u-lines (blue) and v-lines (red).

Right: Parameterization of adjacent charts with matching rij = −1.

Frame Fields. The Jacobian of a parameterization ϕi = (ui, vi)
T is given by

Jac(ϕi) = (∇ui,∇vi)T ∈ R2x3, with ∇ui and ∇vi being the gradient fields of

the components of ϕi. These gradients define two vectors in each tangent space

which are perpendicular to the u- resp. v-lines (see Fig. 2.2, left). The length of

these vectors corresponds to the “speed” of the parameterization (or the density of

parameter lines) in u- and v-direction.

If the parameterization is not degenerated, then (∇ui(p),∇vi(p)) forms a basis of

the tangent space at p and is therefore called a coordinate frame. In overlapping

charts Mi, Mj , gradient frames of a parameterization are related by the formal

matrix-vector multiplication: (
∇uj
∇vj

)
= Jrij

(
∇ui
∇vi

)
. (2.3)

Thus, the matching rij determines how the vectors in both charts are combinatori-

ally identified (or matched), see Fig. 2.2, right. Since the matchings determine the

global topology of the field, they must be specified in the definition of any frame

field.
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Definition 2.1.3 A frame field X on a manifold is defined by two vector fields

Xi := (Ui, Vi) in each chart Mi together with matchings rij ∈ {0, 1, 2, 3} given

for each pair of overlapping charts Mi, Mj. Matchings are anti-symmetric, i.e.

rij = −rji mod 4, and transitive, i.e. if three charts Mi,Mj ,Mk (or more) overlap

in the same point, then: (rij + rjk) mod 4 = rik. Frames in adjacent charts Mi,Mj

are related by:
( Uj

Vj

)
= Jrij

(
Ui
Vi

)
.

ϕiUi
Vi

ϕi, ϕj

rij=3

Mi
Mj

Figure 2.2: Left: Local coordinate frame on a surface. The frame vectors are

perpendicular to the corresponding parameter line. Right: Frames in adjacent

charts with matching rij = 3.

A gradient frame field provides information on metric properties of the parameteri-

zation, e.g. let ∇u|p, ∇v|p be the gradients of a parameterization (ui, vi) in p ∈M ,

then:

1. ϕ is conformal ⇔
〈
∇u|p,∇v|p

〉
= 0, ‖∇u|p‖ = ‖∇v|p‖, ∀p ∈M

2. ϕ is area-preserving ⇔ ‖∇u|p ×∇v|p‖ = 1, ∀p ∈M
3. ϕ is length-preserving ⇔

〈
∇u|p,∇v|p

〉
= 0, ‖∇u|p‖ = ‖∇v|p‖ = 1,∀p ∈M

In general, not all of these properties can be fulfilled at the same time. Even point

3 alone is impossible to achieve if the surface has non-vanishing Gauß curvature.

Energy Formulation. The concept of QuadCover is to separate the problem

into designing a guiding frame field X with Xi = (Ui, Vi) which represents the

desired metric properties and then finding a corresponding parameterization. More

specifically, a parameterization with ∇ϕ ≈ X is computed, i.e. approximating the

frame field best possible in L2-norm by minimizing the QuadCover energy:

E(ϕ) :=

∫
M
‖∇ϕ−X‖2dA. (2.4)

Here, dA denotes the two-dimensional surface element.

If Ui and Vi e.g. are perpendicular and of the same length, then the parameterization

will tend to have low angle distortion. Even though, the exact conformal case will

not be obtained in general, the parameterization will find an intermediate state

between being conformal and aligning to the frame directions. In the same manner,

an input field for optimizing area or length distortion can be defined by using frames

with |Ui × Vi| = 1 resp. perpendicular vectors with |Ui| = |Vi| = 1.

It turns out that the choice of a good frame field is a challenging problem. An

arbitrary field may lead to unintended artifacts and possibly large metric distortion
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in the parameterization. On the other hand, the setup enables the user to have

specific control over the parameterization. Special requirements can easily be in-

corporated, e.g. alignment to surface features or adapting the density of parameter

lines locally by scaling the frame field.

QuadCover Pipeline. A key observation is that the optimization of the energy

in Eqn. (2.4) can be divided into two subproblems and solved independently. They

define the two main steps of QuadCover:

1. (local step) Remove the curl from X to get a new frame field which is locally

integrable.

2. (global step) Compute a global parameterization which is consistent in all

overlapping charts.

Both steps do agree with each other, i.e. they optimize the same energy. It does

not matter if they are combined into one, looking for the best aligning global para-

meterization, or if they are solved successively.

The next section describes the discrete setting while the discrete QuadCover

algorithm is then described in Sections 2.3 and 2.4.

2.2 Setting

This section settles the underlying notion and reviews standard definitions of dis-

crete differential geometry. Section 2.2.1 reviews basic notion of discrete surfaces.

Discrete function spaces and differential operators are introduced in Section 2.2.2

and 2.2.3 and are similar to those introduced by Polthier [Polthier 2002].

2.2.1 Discrete Manifolds

As being a common data structure for representing surfaces in discrete geometry, we

consider polyhedral surfaces. A polyhedral surface Mh consists of a set of triangles

T which are glued along their edges so that the result is homeomorphic to a 2-

dimensional manifold. Henceforth, we only consider surfaces which are connected

and orientable. The set of vertices and edges is referenced by V and E, the total

number of vertices, edges and triangles is denoted by |V |, |E|, resp. |T |.

Charts. In this thesis, polyhedral surfaces are considered as being two-dimensional

discrete manifolds, where each triangle is a single chart. The charts of two adjacent

triangles overlap at their common edge. This chart-based view resolves issues arising

when surfaces with more complicated topology are parameterized.

Definition 2.2.1 Let Mh be a discrete manifold with triangles (charts) T . A dis-

crete parameterization ϕ of Mh consists of two piecewise linear scalar functions
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ϕi = (ui, vi) on each chart ti ∈ T . On the common edge between adjacent charts

ti, tj, the value may differ in both charts and is related by the transition map

ϕj · ϕ−1
i .

Analoguous to the smooth case, the transition maps are restricted by Eqn. (2.2)

in order to define a discrete quadrangular global parameterization. In other words,

the values of ϕ in ti and tj are related by the matchings rij and gaps gij which are

constant per edge. Fig. 2.3, left shows a parameterization with rotational disconti-

nuity.

According to Definition 2.1.3, a discrete frame field X is given by two constant

vectors Xi = (Ui, Vi) per triangle ti together with matchings rij ∈ {0, 1, 2, 3} for all

edges in-between adjacent triangles ti, tj . The QuadCover energy (see Eqn. (2.4))

becomes:

E(ϕ) :=
∑
ti∈T

Ai‖∇ϕi −Xi‖2, (2.5)

where Ai denotes the area of triangle ti.

Euler Characteristic. An important invariant of a discrete manifold is the Euler

characteristic χ = |T | − |E| + |V | which is related to the genus of the surface,

counting the number of handles. If the boundary of M splits into b ≥ 0 connected

components, the genus is related to the Euler characteristic by χ+ b = 2− 2g.

Fundamental group. When analyzing parameterizations, we investigate curves

on surfaces. On a discrete manifold, a curve may pass arbitrarily along edges or

through the inner of triangles. Two curves are called homotopic if they can be

continuously deformed into each other.

On a polyhedral surface Mh, the first fundamental group π1(Mh, p) is defined

similar to that of a differentiable surface. It consists of equivalence classes of all

loops, passing through the root point p ∈ Mh. π1(Mh, p) has a group structure:

curves are added by concatenation and inverted by reversing their direction. The

neutral element is the class of curves which bound a simply connected disk, called

trivial loop. For further material on the fundamental group, see related topology

books, e.g. [Fulton 1995, Munkres 1999].

If Mh is closed (i.e. it has no boundary), then π1(Mh, p) is of dimension 2g. There

is a set of 2g curves, which span the whole group (as in Fig. 2.3, right). If there are

b > 0 connected boundary components, then the dimension is 2g + b− 1.

The generators of the fundamental group are used in QuadCover to describe

harmonic vector fields (see Section 2.3.2).

2.2.2 Discrete Function Spaces

Given a discrete manifold Mh, we consider piecewise linear scalar or vector valued

functions.
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ϕi

rij = 1

wij = ( 5
1 )ti

tj

Figure 2.3: Left: Each triangle is considered as a chart and mapped to R2. The

transition between triangles ti, tj is a 90-degrees rotation. Right: Generators of

the fundamental group of a genus 2 manifold.

Definition 2.2.2 Let

Sh = {u : Mh → R |u is linear on each triangle and continuous on Mh} (2.6)

be the space of conforming finite elements. A basis of Sh is given by the La-

grange basis functions Φi ∈ Sh (also called nodal basis), which are defined by

their values on all vertices pj ∈ V by Φi(pj) := δij (Fig. 2.4, top).

Each conforming function u ∈ Sh is uniquely represented as a linear combination

u =
∑|V |−1

i=0 uiΦi. In the subsequent sections, we will use the letter u to indicate

the function itself as well as its vector representation ~u = (u0, . . . , u|V |−1).

Furthermore, we investigate another function space with data located on edges of

Mh:

Definition 2.2.3 Let

S∗h = {u : Mh → R |u is linear on each triangle and

continuous at all edge midpoints }
(2.7)

be the space of non-conforming finite elements. A basis of this space is given

by the nodal basis functions Ψi with values Ψi(mj) = δij on the edge midpoints mj

(Fig. 2.4, bottom).

Again, each function u∗ ∈ S∗h is uniquely represented by its coefficient vector ~u∗ =

(u∗0, . . . , u
∗
|E|−1) with u∗ =

∑|E|−1
i=0 u∗iΨi.

In this context, vector fields are always restricted to be piecewise constant since we

mainly consider gradient fields ∇u of a piecewise linear function u (in either Sh or

S∗h).

Definition 2.2.4 Let Xh be the space of piecewise constant vector fields with

one vector in the tangent space of each triangle.



2.2. Setting 17

a) b)

pi

c)

d) e)

mj

f)

Figure 2.4: Scalar functions visualized as graph over a triangle domain. a)

Conforming function u ∈ Sh, b) Basis Φi at vertex pi, c) Gradient field ∇Φi, d)

Non-conforming function u∗ ∈ S∗h, e) Basis Ψj at edge midpoint mj , f) Gradient

field ∇Ψj .

2.2.3 Discrete Differential Operators

We have now defined the underlying function spaces used in the theory. For doing

differential geometry, we also need to specify how differential operators act on a

function, like the divergence, the curl and the Laplacian.

Since discrete functions are not differentiable in the seooth sense, it makes no sense

to speak about pointwise evaluation of differential operators. Instead, discrete dif-

ferential operators are defined as functionals, which only gives a real number when

paired with a test function. The test function has to be in Sh (for conforming

elements) resp. in Sh
∗ (for non-conforming elements). Applying the nodal ba-

sis functions Φi resp. Ψi as test function can be understood as the value of the

operator at a specific vertex resp. an edge of the mesh.

Divergence. To motivate the definition of discrete divergence, consider a closed

differential manifold M with a vector field U and a scalar function u. Then the

following relation holds:

∫
M
〈divU, u〉dA = −

∫
M
〈U,∇u〉dA. (2.8)

The left term is a weak formulation of divX, using u as test function. In the

discrete case, the divergence is defined as follows:

Definition 2.2.5 The discrete divergence of a vector field U ∈ Xh at a vertex
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pi, resp. at an edge ei is defined as

divU(pi) := −
∫
Mh

〈U,∇Φi〉dA (2.9)

div* U(ei) := −
∫
Mh

〈U,∇Ψi〉dA (2.10)

The divergence operator measures the “flux” into the vertex star resp. edge star.

Curl. The curl -operator measures the “rotation” around a given point. Let J

be the operator which takes a vector field and rotates each vector by 90 degrees

in its tangent plane in mathematical positive direction. On a differentiable two-

dimensional manifold, the curl is then given as the divergence of the rotated field:

curl(U) = div(JU).

Definition 2.2.6 The discrete curl of a vector field U ∈ Xh at a vertex pi, resp.

at an edge ei is defined as

curlU(pi) := −
∫
Mh

〈JU,∇Φi〉dA (2.11)

curl* U(ei) := −
∫
Mh

〈JU,∇Ψi〉dA =
1

2

〈
U|tr − U|tl , ei

〉
, (2.12)

where U|tr , U|tl are the vectors given in adjacent triangles on the right resp. left

side of the (oriented) edge ei.

Integrability. There is a fundamental relation between gradient fields and curl-

free vector fields which carries over from the differential setting. Consider a function

u ∈ Sh and an edge e between adjacent triangles tr, tl. Then, the gradients ∇u|tr
and ∇u|tl match in the sense, that their path integral along the common edge e

coincide:
〈
∇u|tr , e

〉
=
〈
∇u|tl , e

〉
. According to Eqn. (2.12), this is equivalent to

curl*∇u(e) = 0. More generally:

Theorem 2.2.1 [Polthier 2002] Let U ∈ Xh be a vector field on a simply connected

surface Mh. Then:

There exists a u ∈ Sh with ∇u = U ⇔ curl∗(U) = 0 (2.13)

respectively

There exists a u∗ ∈ S∗h with ∇u∗ = U ⇔ curl(U) = 0. (2.14)

Note. In order to compute the potential u ∈ Sh of a curl*-free field U , set u(v0) := 0

at an arbitrary root vertex p0. For any other vertex p, take an arbitrary curve γ

from p0 to p and set u(p) :=
∫
γ 〈U, γ

′〉ds. This integral is independent of the choice
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of γ. For example, choose a curve γ = (p0, p1, . . . , pn−1, pn = p), n ∈ N which runs

only on edges. The value at v is then computed as:

u(p) =
n−1∑
i=0

〈
pi+1 − pi, U|ti

〉
(2.15)

Here, ti denotes a triangle adjacent to the edge (pi, pi+1). Since curl* U = 0, it does

not matter which adjacent triangle is chosen.

Theorem 2.2.1 does not hold if the surface is not simply connected. In general, the

path integral around a non-trivial loop, such as a handle or a hole, does not vanish.

However, the value of the path integral only depends on the homotopy class of the

loop γ and is called a period of U .

Definition 2.2.7 A vector field U ∈ Xh is called locally integrable in Sh resp.

S∗h, if

curl* U = 0, resp. curlU = 0. (2.16)

It is called globally integrable, if it is locally integrable and all periods vanish.

A vector field U is therefore a gradient field if and only if it is globally integrable.

Harmonic Fields. Harmonic vector fields play a crucial role in surface paramete-

rization. In the differential case, a vector field is called harmonic if it is free of curl

and of divergence.

Definition 2.2.8 A vector field H ∈ Xh is called discrete harmonic if it satisfies

curl*H = 0 and divH = 0 (2.17)

A harmonic field is by definition locally integrable. It is furthermore uniquely

defined, if all periods are given. The set of harmonic fields therefore forms a vector

space which is isomorphic to the fundamental group π1(Mh, p), p ∈ Mh and has

dimension 2g (resp. 2g + b− 1, if b > 0 boundary components are present).

Definition 2.2.9 The discrete Laplace operator of a function u ∈ Sh at a vertex

pi is defined as

4u(pi) := −
∫
Mh

〈∇u,∇Φi〉dA (2.18)

A function u ∈ Sh with 4u = 0 is called discrete harmonic.

According to Definition 2.2.5, the gradient field of a harmonic function always

satisfies div∇u = 0 and is therefore a discrete harmonic vector field.

Using the representation of u as a coordinate vector ~u, the Laplace operator can be

expressed as a quadratic functional:

4u = ~utL~u, (2.19)
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where L is a |V | × |V | matrix with entries

Lij =

∫
Mh

〈∇Φi,∇Φj〉dA (2.20)

=


−1

2(cotαij + cotβij), if pi adjacent to pj

−
∑

k 6=i Lik, if i = j

0, otherwise

αij and βij are the two angles which are opposite to the edge eij in both adjacent

triangles (Fig. 2.5, left).

There is also a non-conformal version of the Laplace matrix L∗, which is given by:

L∗ij =

∫
Mh

〈∇Ψi,∇Ψj〉dA (2.21)

=


−1

2 cot δij , if mi 6= mj , but in same triangle

−
∑

k 6=i L
∗
ik, if i = j

0, otherwise

αij denote the angle between the corresponding edges of mi and mj in the common

triangle (Fig. 2.5, right).

αij βij

pi

pj

δijmi mj

ei ej

Figure 2.5: Left: Angles αij , βij from Eqn. (2.20) are opposite to edge (pi, pj).

Right: Angle δij from Eqn. (2.21) is between edges ei, ej .

2.3 Simplified QuadCover

For explanatory reasons, the formulation of QuadCover is divided into two parts:

a simplified version and a full version. This section focuses on the simplified version

which restricts the symmetries of the texture to pure translations only. The full

algorithm allowing also rotational symmetries is explained in Section 2.4.

2.3.1 Variational Formulation

Starting from a given input frame field X = (Ui, Vi), a parameterization ϕ = (ui, vi)

is computed which maps each triangle ti into the plane adhering valid transitions
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from Eqn. (2.2). For simplified QuadCover, all matchings rij are restricted to 0,

thus all transition functions between adjacent triangles are pure translations.

As a consequence, according to Definition 2.1.3, a frame field decouples into two

vector fields Ui, Vi ∈ Xh; all transition functions match Ui with Uj and Vi with Vj
vectors. The QuadCover-Energy (see Eqn. (2.5)) decouples into two energy terms

E(ui, vi) := EU (ui) + EV (vi) with

EU (ui) =
∑
ti∈T

Ai‖∇ui − Ui‖2, EV (vi) =
∑
ti∈T

Ai‖∇vi − Vi‖2, (2.22)

which can be minimized separately. The remainder of this section focuses on mini-

mizing EU only. Finding a minimizer of EV is done similarly.

QuadCover computes a solution ui from a function space Ŝh which is a general-

ization of the conforming finite element space Sh to discontinuous functions.

Definition 2.3.1 Let Mh be a discrete manifold with triangles T . Define the linear

function space

Ŝh := {(ui : ti → R)ti∈T |ui is linear on triangle ti,

for adjacent ti, tj and p ∈ ti ∩ tj : ui(p) = uj(p) + wu,ij , wu,ij ∈ R}.
(2.23)

A function ui ∈ Ŝh is uniquely given by its values at vertices in all its incident

triangles (i.e. 6——F— many scalar values). The difference between values in

adjacent triangles are restricted to a constant gap wu,ij along the common edge.

Since one of these constraints turns out to be redundant (see Section 2.3.2), and

due to the relation 2|E| = 3|F | for closed triangulations, the dimension of Ŝh on a

closed surface is dim(Ŝh) = 3 |F | − |E| − 1 = |E| − 1.

Two given functions u, v ∈ Ŝh (with gaps wu,ij resp. wv,ij) define a global parame-

terization (u, v) according to Definition 2.1.2 if and only if all wu,ij resp. wv,ij are in

Z. This integer constraint turns the energy minimization into an NP-hard problem

which is equivalent to the known so-called closest vector problem. In practice, if

the number of integer variables is too high we cannot get the optimal solution in

reasonable time.

However, in order to generate a parameterization, QuadCover uses a heuristic to

achieve a nearly-optimal result very efficiently: In the first stage (the local step),

EU is minimized for u ∈ Ŝh ignoring the integer constraint. In a second stage (the

global step), the gaps are enforced to integer values yielding a globally consistent

parameterization. The heuristic is fast and robust and in practice provides nearly

optimal results.



22 Chapter 2. Field-Based Surface Parameterization

2.3.2 Vector Field Analysis

The local step of QuadCover minimizes the energy EU from Eqn. (2.22) for

ui ∈ Ŝh (resp. EV for vi). A direct solution would be to set all partial derivatives

to 0 and solve this linear system of equations using Lagrange multiplier for the

constraints. However, the number of variables is quite large (3 |F |) with |E| many

constraints. From a numerical point of view, it is better (and of course more elegant)

to eliminate redundant variables and solve the system without any constraints.

This section focuses on analysing the input vector field U and provides further

observations about the minimizer of EU . The analysis involves the Hodge-Helmholtz

decomposition of vector fields. While coming from differential geometry, a discrete

version of this theorem was given in [Polthier 2003].

The set of piecewise linear vector fields Xh is a linear vector space, equipped with

the L2 scalar product 〈U, V 〉2 :=
∫
Mh
〈U, V 〉dA, U, V ∈ Xh. Consider the following

linear subspaces of Xh:

X g
h is the space of gradient vector fields in Xh. Any U ∈ X g

h can be written as

U = ∇f for some f ∈ Sh (vanishing on the boundary). A gradient vector

field satisfies curl* U = 0, thus it is free of vorticity; critical points of U are

sinks and sources (Fig. 2.6, bottom left).

X cg
h is the space of co-gradient fields with V = J∇g, g ∈ S∗h (also vanishing on the

boundary). A co-gradient field yields div V = 0 and is therefore free of sinks

and sources, but may have vortices (Fig. 2.6, bottom middle).

Hh is the space of harmonic vector fields, i.e. those fields which apply curl*H = 0

and divH = 0. On a genus g surface without boundary, the dimension of Hh

is 2g. It consists of all more or less “parallel” flows around the topological

handles and the holes of Mh (Fig. 2.6, bottom right).

Notice that X g
h , X cg

h and Hh are perpendicular, i.e. for any two fields in different

spaces, their L2 scalar product vanishes. Furthermore, according to the following

theorem, these spaces span the whole Xh (see Fig. 2.6).

Theorem 2.3.1 [Polthier 2003, Wardetzky 2006] (Discrete Hodge-Helmholtz

decomposition) Let Mh be a polyhedral surface. The space of vector fields Xh

decomposes into the direct sum

Xh = X g
h ⊕X

cg
h ⊕Hh, (2.24)

i.e. each vector field U ∈ Xh can be uniquely written as:

U = ∇f + J∇g∗ +H, (2.25)

with f ∈ Sh, g∗ ∈ S∗h, H ∈ Hh.
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X

=

∇f

+

J∇g∗

+

H
Figure 2.6: Hodge-Helmholtz decomposition of a vector field X.

Notice that by definition, curl*∇f = curl*H = 0, and hence the fields ∇f and H

are locally integrable. The whole curl of U is concentrated in the co-potential term

J∇g∗.

Lemma 2.3.1 The space ∇Ŝh := {∇f | f ∈ Ŝh} satisfies:

∇Ŝh = X g
h +Hh . (2.26)

Thus Ŝh contains exactly the potentials of all locally integrable vector fields.

Proof. For any piecewise linear function u (possibly discontinuous at edges), the

derivative X := ∇u is a piecewise constant vector field X ∈ Xh. Also, any given

vector field X ∈ Xh can be integrated on all triangles locally resulting in a piecewise

linear function u with ∇u = X.

By definition, u ∈ Ŝh if and only if for each edge e connecting the vertices p, p′, the

gap between the adjacent triangles t, t′ is constant, i.e.:

u(p)|t − u(p)|t′ = u(p′)|t − u(p′)|t′

⇔ u(p)|t − u(p′)|t = u(p)|t′ − u(p′)|t′

⇔
〈
X|t, p

′ − p
〉

=
〈
X|r′ , p

′ − p
〉

⇔ curl*X(e) = 0

which is equivalent to X ∈ X g
h +Hh.

p

p′

X|t
t

X|t′

t′e

�
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Theorem 2.3.2 Let U = ∇f+J∇g∗+H be the Hodge-Helmholtz decomposition of

a vector field U ∈ Xh with f ∈ Sh, g∗ ∈ S∗h, H ∈ Hh. Then, u ∈ Ŝh is a minimizer

of EU if and only if

∇u = ∇f +H. (2.27)

Proof. According to Lemma 2.3.1 and the definition of EU in Eqn. (2.22), ∇u is

the projection of U onto the space X g
h +Hh in L2-norm. The theorem follows from

the fact that X g
h , X cg

h and Hh are L2-perpendicular.

�

This observation provides the key for computing the parameterization u. Instead

of minimizing energy EU the same result is obtained by computing the co-potential

part J∇g∗ and subtracting it from U . This curl*-free field ∇u is then directly

integrated.

2.3.3 Parameterization Space

In this section, we define the proper function space for global parameterizations

which is a subspace of Ŝh. Since a given u ∈ Ŝh can be translated by a constant in

any triangle without altering EU (u), there is still too much redundancy. However,

according to Theorem 2.3.2, the gradient ∇u of the solution is uniquely determined.

Given this gradient field, the solution can be computed up to arbitrary integration

constants in each triangle. The solution space has therefore dimension |T | and will

now be restricted to a smaller space in order to obtain a unique solution.

There is a natural choice for the integration constants which removes redundancies:

Let S be an arbitrary triangle spanning tree, i.e. a maximum spanning tree on the

dual of Mh. Starting with the root triangle, integrate ∇u iteratively on all children

and choose the integration constants such that ui fits continuously to the parent

triangle. In other words, the gaps wij are constrained to 0 for all pairs of triangles

ti, tj in S.

If the surface is simply connected, then the solution u does not depend on the

chosen spanning tree (since ∇u is locally integrable). Therefore, all other gaps

automatically vanish as well. u would be restricted to the space of conforming

finite elements Sh.

This is different on surfaces with arbitrary genus g or with boundary. Before inte-

grating ∇u we have to cut the surface into a topological disk.

Definition 2.3.2 Let Mh be a triangular surface. A cut graph G on Mh is a

minimal set of edges of Mh such that Mh \G is simply connected, i.e. if any edge

is removed from G, Mh \G would not longer be simply connected.
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Given a cut graph G, we can w.l.o.g. restrict the parameterization space to:

ŜG,h := {ui ∈ Ŝh | for adjacent triangles ti, tj in Mh \G : wu,ij = 0}. (2.28)

Notice that the minimizer ui ∈ ŜG,h of EU will not depend on the choice of a cut

graph up to adding a constant in some triangles which does not change the overall

energy value.

Next, we will construct a basis of ŜG,h. A cut graph can always be represented

by a collection of curves {γk, k ∈ {0, . . . , N}} with
⋃
k γk = G. Here, the curves

run along edges of Mh and are either closed loops or start and end at the surface

boundary. A surface of genus g with b > 0 boundary components has 2g + b − 1

may cut paths.

Lemma 2.3.2 For any u ∈ ŜG,h, the gaps are constant for all edges along any path

γk. Note that there is one exception if two or more paths partially overlap. In this

case the gaps add up on the common part.

Proof. Let p be a vertex on γk (assuming that no other cut path contains p).

The vertex star is split into two parts: triangles Tr, Tl on the right and left side of

γk. In all ti ∈ Tr, the values ui(p) are identical since gaps are vanishing on Mh \G.

The same is true for all ti ∈ Tl. Thus the gap for the two adjacent edges in γk is

also similar and is just the difference between both values.

�

It therefore makes sense to define the gap wu,k of a path γk as the constant

translational discontinuity across γk. We can represent all u ∈ ŜG,h uniquely by its

coefficients ui and wu,k:

u =
∑
vi∈V

uiΦi +
∑
γk∈G

wu,kΦ̂k, (2.29)

where Φi are the nodal basis functions from Definition 2.2.2 and Φ̂k is defined in a

triangle tj at vertex pi as (see Fig. 2.7, right):

Φ̂k(pi) |tj :=

{
1, if pi ∈ γk and tj is on the right side of γk
0, else

(2.30)

Notice that the dimension of ŜG,h is |V |+ 2g if Mh is closed, resp. |V |+ 2g+ b− 1

if Mh has b > 0 boundary components. Since this is exactly the dimension of

X g
h +Hh, and since ∇ŜG,h = ∇Ŝh = X g

h +Hh, the spaces ∇Φi, ∇Φ̂k form a basis

of all locally integrable vector fields.
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Figure 2.7: Left: Geometry with cut graph G consisting of one path γ0 (blue).

Middle: Harmonic function u ∈ ŜG,h drawn as graph over the surface. Right.

Basis function Φ̂0.

2.3.4 Algorithm

Local Step. Using the knowledge from the previous section, we are now able to

give an algorithm for minimizing EU from Eqn. (2.22). Given a guiding vector field

U defined by vectors Ui on triangles ti, we construct a function u ∈ Ŝh minimizing

EU . In a first step, the co-potential field J∇g∗ = U−∇u is computed by projecting

U onto the space X cg
h , i.e. by minimizing the following energy:

E∗U (g∗) :=
∑
ti∈T

Ai‖J∇g∗|ti − Ui‖
2. (2.31)

Here, g∗ ∈ S∗h is a scalar non-conforming finite element function, which is linear in

each triangle and defined by values on edge midpoints. At midpoints of boundary

edges, g∗ is fixed to 0. Ai denotes the area of triangle ti.

The energy can be written as E∗U (g∗) = ~g∗TL∗~g∗−2 〈 ~g∗, c∗U 〉+const. Hereby, L∗ is

the non-conforming cotan-Matrix (see Eqn. (2.21)) of dimension |E|, c∗U is a vector

with one entry for each edge ei: (c∗U )i = curl* U(ei), and ~g∗ ∈ R|E| contains the

coordinates of g∗ at the edge midpoints. Setting all partial derivatives of E∗U to 0

leads to the following linear system of equations:

L∗~g∗ = c∗U . (2.32)

From the solution ~g∗, the function g∗, its gradient∇g∗ and therefore∇u can directly

be computed.

Next, a cut-graph G is computed. The choice of a cut graph is not unique, but in

theory the parameterization will not depend on the chosen cut-graph. However, in

practice we observe better results when using shorter cut graphs, i.e. minimizing

the total length of cuts. The reason for this is that we will later use a heuristic

to approximate the solution of the NP-hard optimization problem. It will turn out

that this heuristic gives a better approximation if the cuts are shorter, see below

in the global step. Therefore, we use a shortest cut-graph as described in the paper

from Erickson and Whittlesey [Erickson 2005].
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a) b)

c)

u

v
d)

Figure 2.8: a) Discrete surface with gradient frame field (∇u,∇v). b) Cut graph

(blue) and spanning tree (red) c) Triangles mapped to texture space via integrated

functions (u, v). Notice, that both sides of the cut (blue) match perfectly with a

gap of (5.2,−0.05). d) Parameterization of the surface after the local step.

The desired solution u will be computed from its gradient field ∇u as explained

in Section 2.3.3: The surface is cut open along a cut graph G. Then a spanning

tree on Mh \ G is computed and starting with the root triangle, ∇u is iteratively

integrated on all children triangles, choosing the integration constant such that the

function continuously fits to that of the parents (see Fig. 2.8).

Algorithm 1: Local Step

Input: triangle mesh Mh, guiding fields (U, V )

Output: cut graph G, parameterization (u, v) ∈ Ŝ2
G,h

1 Solve L∗~g∗ = dU for ~g∗

2 Compute ∇u = U −∇g∗
3 Compute arbitrary cut graph G =

⋃
γk

4 Integrate ∇u on Mh \G
5 Do the same for function v with input vector field V

Global Step. Up to now, the integer constraint for the gaps, i.e. wu,k ∈ Z,

was ignored, leading to visible seams at the cuts γk. The global step enforces the

integer constraints by rounding the gaps to the nearest integer. Energy EU from

Eqn. (2.22) is then minimized for the new solution ũ holding all gaps fix.
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Notice, that this greedy integer rounding is a heuristic to find the exact minimum

of the energy under integer constraints, which is NP-hard. This is the only part of

the algorithm whose result depends on the choice of a cut graph G since each cut

introduces two integer constraints. The solution of the heuristic is better the more

decoupled the integer constraints are. In practice we observe that the heuristic

works very well if the cut paths are short (and therefore the corresponding integer

variable has more local influence).

The solution u ∈ ŜG,h from the local step is represented by values in all triangles at

the 3 corner vertices. In the global step, we need the representation from Eqn. (2.29)

with coefficients ui, wu,k. For each cut path γk, set wu,k := ui(p) − uj(p) where ti
is a triangle on the right side of γk and tj the adjacent triangle on the left side.

The gaps wu,k are then snapped to the nearest integer [wu,k], and energy EU (ũ) is

minimized for the remaining unknowns. This is done by solving the linear system

of equations:

L~̃u = dU , (2.33)

where the solution vector ~̃u contains all coordinates of ũ at the vertices. L denotes

the conforming Laplace matrix from Eqn. (2.20) and the right hand side dU contains

one entry for each vertex pi: (dU )i = divU(pi)−
∑

γk
[wu,k]

∫
Mh
〈 ∇Φi,∇Φ̂k 〉dA.

ũ

ṽ

Figure 2.9: Surface from Fig. 2.8 with global parameterization. The gap at the

blue cut line is snapped to (5, 0).

Note, that the solution ~̃u is in general very similar to ~u. Thus, in practice the

computing time is reduced by solving L~x = dU − L~u for ~x and setting ~̃u = ~u+ ~x.

Algorithm 2: Global Step

Input: cut graph G = {γk}, parameterization (u, v) ∈ Ŝ2
G,h

Output: globally coherent parameterization (ũ, ṽ) ∈ Ŝ2
G,h

1 Compute gaps wu,k of u for all paths γk
2 Round wu,k to nearest integer

3 Solve Eqn. (2.33) for ~̃u

4 Do the same for v and ṽ
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2.4 Full QuadCover

The previous Section 2.3 introduced the simplified version of QuadCover. Any

given planar texture image which tiles the two-dimensional plane is mapped con-

tinuously onto the surface. The full version of QuadCover extends this setting

to texture images with additional 90 degrees rotational symmetry. The unit grid

texture is for example invariant under rotations of 90 degrees around any corner or

midpoint of a quad.

Using a texture image with rotational symmetry can be exploited to enlarge the

space of parameterizations significantly. A parameter map needs only to be de-

scribed “up to” rotation, i.e. u- and v-parameter lines cannot be distinguished

anymore. Consequently, a frame (Ui, Vi) defined on a triangle ti has no unique

representation, since it is equivalent to (Vi,−Ui), (−Ui,−Vi) and (−Vi, Ui) (see

Fig. 2.10).

Figure 2.10: Rotational symmetric texture image (left) which is mapped by a pa-

rameterization onto a surface. The right four images show the different equivalent

interpretations of the gradient frames (Ui, Vi).

Therefore, the input guiding field for the full QuadCover algorithm is more gen-

eral, e.g. we are now able to use a curvature field whose vectors point in principal

curvature directions. In general this is not possible using vector fields.

This section introduces the notion of frame fields as being vector frames divided

by rotational symmetry. Equivalently, a frame field can be seen as a multi-valued

vector field on the surface. Unfortunately, it is not clear how multi-valued functions

should be handled by QuadCover and how to apply standard vector field calculus,

e.g. the Hodge-Helmholtz decomposition.

One way of dealing with multi-valued functions goes back to the research of Bern-

hard Riemann. Such function can be described as a single-valued function on a

Riemann Surface. We are using this idea to establish the correct calculus for frame

fields. Section 2.4.1 gives an introduction into Riemann Surfaces. Section 2.4.2 and

2.4.3 explain how parameterizations with rotational discontinuities are related to

Riemann surfaces and therefore provide a theoretical justification for the approach.

Parameterizations with rotational discontinuities imply singularities of fractional

index which correspond to branch points of the Riemann surface. They are discussed

in Section 2.4.4. Finally, Section 2.4.5 describes the full QuadCover algorithm. The

reader merely interested in the algorithm can directly go to Section 2.4.4, skipping
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the theory behind the algorithm.

2.4.1 Covering Spaces

Riemann Surfaces and Covering Spaces. Riemann surfaces are a fundamen-

tal concept in modern complex analysis, topology and algebraic geometry. They

were first studied by B. Riemann in his dissertation at Göttingen [Riemann 1851].

Half a century later, F. Klein and H. Weyl emphasized that Riemann surfaces are

an indispensable component, and even the foundation, of the theory of analytic

functions. Since then Riemann surfaces serve as generalized domains for complex

functions because multi-valued complex functions can be turned into single-valued

functions when defined on such a surface instead of the complex plane.

We review the basic notions of Riemann surfaces and ramified covering maps

from algebraic topology. This naturally leads us to the notion of path lifting

and the deck transformation group which are used as a basic concept in the set-

ting of QuadCover. A good overview about the general theory is given e.g.

in [Farkas 1980, Lamotke 2005, Forster 1999, Needham 2000].

Definition 2.4.1 (Riemann Surface) A Riemann Surface is a Hausdorff space

together with a holomorphic structure, i.e. an atlas of charts {(Ui, hi) |hi : Ui → C}
whose transition maps hj ◦ h−1

i are biholomorphic complex functions.

Here, we consider only one-dimensional Riemann Surfaces which are in fact two-

dimensional real manifolds equipped with a complex structure. The concept of

Riemann surfaces is closely related to branched covering spaces.

Definition 2.4.2 (Branched Covering) Let M be an orientable two-dimensio-

nal manifold. A branched covering manifold M ′ of M provides a continuous sur-

jective map π : M ′ → M such that each point p ∈ M has a neighbourhood U ⊂ M

with the following properties:

1. The preimage π−1(U) is a union of countably many disks Vk (called sheets

or layers). pk = π−1(p)∩ Vk denotes the point in sheet Vk which gets mapped

onto p.

2. For all the sets U , Vk, there are local coordinates z : U → C, z(p) = 0 and

wk : Vk → C, wk(pk) = 0, such that π is given by the local representation

wk = zn(pk) with n(pk) > 0 being a constant integer. If n > 1, then pk is

called a branch point or ramification point of index n(pk).

Away from branch points, a covering surface locally consists of multiple copies which

are mapped homeomorphically onto the domain surface M . Globally, the different

layers are globally connected forming a smooth manifold (e.g. as in Fig. 2.11, left).
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At a branch point, several layers are glued together forming a helical winding struc-

ture, like a spiral staircase (Fig. 2.11, middle). Against a first intuition, the vicinity

of a branch point is indeed a topological disk. The covering surface in Fig. 2.11,

right is realized in a way that the covering map π is projecting along the surface

normal. In general, embeddings in R3 are not always possible without having self-

intersection.

π π

π

Figure 2.11: Examples of covering spaces. Left: Covering of a cylinder with

infinitely many layers. Middle: 4-sheeted covering of a disk with branch point (π

projects along the height axis). Right: 4-sheeted covering of a surface with branch

points (red).

Definition 2.4.3 The preimage π−1(p) of a point p ∈ M is called the fibre of

p. It is shown that if the fibre is finite then the sum gr(π) :=
∑

q∈π−1(p) n(q) is

independent of the choice of p and is called the grade of π. Away from branch

points, the grade is simply the number of layers over each point.

The following result is remarkable since it reduces every non-constant holomorphic

map between Riemann surfaces to a very simple local representation.

Theorem 2.4.1 Every non-constant holomorphic map between Riemann surfaces

is a branched covering map.

Using this theorem, the theory of multi-valued complex functions can be described

by the concept of single-valued functions on a covering space. The domain of a

multi-valued function is replaced by a Riemann surface which “covers” the im-

age surface and the function lifts to a single-valued function on the covering (see

Fig. 2.12).
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+
√
z

−
√
z

π

π

f

M ′ C C

Figure 2.12: Representation of a multi-valued function ±
√
z using covering

spaces. The image space (right) is colored by some radial texture image which

is mapped back onto the domain (middle) of the function. Notice that the two

branches +
√
z and −

√
z are discontinuous across the positive real axis. With us-

ing a two-sheeted covering space (M ′, π) (left) of the complex plane containing a

branch point at 0, the function lifts to a single-valued map f on M ′.

Genus of Covering. In the next section, we will construct an n-sheeted covering

M ′ of the input surface M . For the mathematical theory, we are interested in the

genus of M ′. If one thinks of a triangulated surface and branch points are lying on

vertices, then an n-sheeted covering comes with a natural triangulation consisting

of n copies of all triangles, edges and vertices, except at the branch points where

some vertices are identified. The genus of M ′ can now be computed using the Euler

formula which leads to the following relation:

Theorem 2.4.2 (Riemann-Hurwitz) Let M be a closed surface and M ′ a con-

nected k-sheeted covering of M having branch points bi with ramification indices

n(bi). Then the genus g′ of M ′ is related to the genus g of M by:

g′ = k(g − 1) + 1 +
1

2

∑
bi

(n(bi)− 1) (2.34)

Consider a k-sheeted covering of a genus 0 surface. It is impossible to have only

one branch point, since then g′ would be negative. If there are two branch points

bi of index n(bi) = k, the covering is homotopic to another sphere. Each additional

pair of branch points of index k increases the genus by (k − 1) and hence enlarges

the fundamental group of the covering.

Monodromy Action and Deck Transformation Group. From now on, all

coverings are assumed to be connected, locally path connected and semi-locally

simply connected, since these properties are required for the following propositions.
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Given a covering M ′ with the above properties, a root point p′ ∈M ′, p := π(p′) and

a closed curve γ on M starting in p. Then, there is a unique lift γ′ of γ onto the

covering, i.e. π(γ′) = γ, which starts in p′. The end point of this lifted path is not

necessary equal to p′, but is some point in the same fibre. It turns out that the end

point depends only on the homotopy class of γ. Each element in π1(M,p) therefore

is an action on M ′ which maps p′ to a point in its fibre. These actions form a

group, called the monodromy group, which is isomorphic to π1(M,p)/π1(M ′, p′).

Definition 2.4.4 (Deck transformation group) A deck transformation is a

homeomorphism h : M ′ →M ′ which leaves all fibres invariant (π ◦ h = π). The set

of deck transformations form a group under composition, the deck transformation

group Aut(π).

A deck transformation actually permutes the elements in the fibre of all points

p ∈M .

From now on, we restrict our theory to transitive (or normal) coverings provided

that whenever π(p′1) = π(p′2), there is a unique deck transformation f ∈ Aut(Mh)

with f(p1) = p2. For normal coverings, the action of a deck transformation f ∈
Aut(π) coincides with a monodromy action, i.e. the deck group is isomorphic to

the monodromy group and therefore also to π1(M,p)/π1(M ′, p′).

2.4.2 Parameterization on a Covering

We use the concept of covering surfaces to formulate the notion for global parameter-

izations with rotational discontinuities. Hereby, the domain surface Mh is replaced

by a 4-sheeted covering M ′h, π : M ′h → Mh. Let (X, rij) be the guiding frame field

as in Definition 2.1.3. It is then lifted to two vector fields (U ′, V ′) on M ′h and the

parameterization problem is formulated using standard vector field notion similar

to as in Section 2.3. The final parameterization is then projected back onto Mh.

Notice, that this is only a theoretical construct, M ′ is never computed in practice.

Let (Ui, Vi) be the vector frame of X in all triangles ti ∈ T and rij be the match-

ings between triangles. The construction of the covering consists of 3 steps (see

Fig. 2.13).

1. Generate trivial covering. For each triangle ti, construct a trivial 4-

sheeted covering which consists of four copies t′ik, k ∈ {0, 1, 2, 3} of ti.

2. Lift input frames to covering. For each triangle ti, define frames on the

covering as vector fields (U ′i,k, V
′
i,k) which are constant on the sheets t′ik. They

are defined by the formal matrix vector multiplication:(
U ′i,k
V ′i,k

)
:= Jk

(
Ui
Vi

)
.
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The results are two (constant) vector fields on all trivial coverings.

3. Glue sheets together. For each triangle ti, connect the triangles in its fibre

combinatorially to the fibre of adjacent triangles tj , such that corresponding

frames are linked; triangle t′ik is glued to t′j,(k−rij) mod 4. Notice that triangles

are glued in a way that maintains the cyclical order of the triangles in adjacent

fibres.

The result is a polyhedral surface M ′h which is a normal covering of Mh. Its realiza-

tion has self-overfoldings (all triangles in the same fibre are geometrically exactly

identical), however combinatorially, it is a polyhedral surface. Each triangle in M ′h
is connected to three neighbouring triangles (except at the boundary) and the local

neighbourhood of each vertex is a topological disk.

One might think of the 4-sheeted covering surface as a warehouse with four floors.

Between the shops (the transition between triangles), there are staircases which

connect each floor with the next one given by rij cyclically. The matchings prescribe

if there is a staircase between two triangles (rij 6= 0) and describes how many floors

the stairs go upwards.

1. 2. 3.

πi πi πi πj

Figure 2.13: Theoretical concept of constructing a 4-sheeted covering. 1. Trivial

covering over each chart (or triangle). 2. Lifted frame field on covering. 3. Layers

of adjacent charts, glued together (here, the matching is rij = 3).

In the second step, the four possible interpretations of the alignment of the frames

are lifted to the four layers over each triangle in a cyclically ordered way. Since

adjacent sheets are glued in a similar cyclically ordered way in the third step,

corresponding frames are adjacent on M ′h. Although the frames (U, V ) on Mh are

continuous only up to applying matchings, on M ′h they decouple into two separate

vector fields (U ′, V ′).

The lifted frame field can now be used to parameterize the covering surface similarly

as described in Section 2.3. It is thereby very important that the cyclic order of the

layers is maintained by the parameterization:
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Definition 2.4.5 A global parameterization on a covering M ′h is a map ϕ′ ∈
Ŝh(M ′h)2 with the following property:

Let p′k ∈ M ′h, k = {0, 1, 2, 3} be the four cyclically ordered points in one fibre and

p′4 := p′0. Then,

ϕ′(p′k) = Jϕ′(p′k+1).

The property of this definition enforces a symmetric behaviour of a parameterization

on all layers, such that the projection from different layers back ontoMh is congruent

(see Fig. 2.14).

πi

Figure 2.14: Global parameterization on a covering is projected down on the

original surface. The resulting grid does not depend on which layer is used for

projection.

2.4.3 Parameterization on the Domain Surface

In practice, constructing a covering as explained in Section 2.4.2 and using it as

domain is inconvenient. In QuadCover, the parameterization is still computed on

the original surface, but the parameterization on the covering is implicitly defined.

Theorem 2.4.3 Let Mh be a polyhedral surface, (M ′h, π) be a covering arising from

the construction in Section 2.4.2 and ϕ′ be a global parameterization on M ′. Then,

the deck transformation group Aut(π) contains exactly 4 transformations, and each

f ∈ Aut(π) corresponds to a global rotation of ϕ′ by r · π2 , r ∈ {0, 1, 2, 3}, i.e.:

ϕ′(f(p)) = Jrϕ′(p), ∀p ∈M ′h. (2.35)

Proof. Since M ′h is a normal covering, the deck transformations f ∈ Aut(π) are

uniquely determined by the image of one point in M ′h (see Section 2.4.1). Therefore,

there are exactly four deck transformations, mapping an arbitrary point to all four

points in its fibre.

Given a deck transformation f ∈ Aut(π) and a point p ∈Mh, enumerate the points

in fibre π−1(p) by p′0, p
′
1, p
′
2, p
′
3 according to the enumeration of layers in step 1 of

the construction of M ′h. Since Aut(π) is equivalent to the monodromy group (see

Section 2.4.1), there is a closed loop γ : [0, 1]→Mh, γ(0) = γ(1) = p which can be

lifted to a path γ′0 : [0, 1] → M ′h with γ′0 = p′0 and γ′0(1) = f(p′0). The lifted curve

γ′0 ends in the same fibre, i.e. f(p′0) = p′r(p), r(p) ∈ {0, 1, 2, 3}.
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By applying the monodromy action, we can evaluate the image f(pk) of all pk,

k ∈ {0, 1, 2, 3} by lifting the same curve γ with using p′k as start point. Since the

cyclic ordering of layers is maintained in step 3 of the construction of M ′h, the lifted

curve γ′k is similar to γ′0, but shifted by k layers. We obtain the following equation

for all points in the fibre of p:

f(p′k) = p′k+r(p), k ∈ {0, 1, 2, 3}. (2.36)

Eqn. (2.36) is also true for all other points p ∈ M . resulting in a continuous

function r(p). Since r(p) takes only discrete values, it must be constant everywhere.

Therefore the deck transformations globally shifts Mh by r(p) layers. The statement

follows from Definition 2.4.5.

�

The theorem enables us to represent a global parameterization ϕ′ on M ′h by a

function ϕ on Mh. In each triangle ti of Mh, choose one reference triangle t′ik from

the fibre over ti and set ϕ|ti to ϕ′|t′ik
. For adjacent triangles ti, tj , the corresponding

reference triangles must not necessarily be connected in M ′h. There is always a

unique Deck transform f ∈ Aut(M ′h) which maps the reference triangle of ti to

that from tj (on the common edge) which corresponds to a rotation of ϕ′ by some

amount rij . This number rij is associated to the edge. The values ϕ together with

all rij are enough to reconstruct the parameterization on the covering.

The necessary data (ϕ and rij) is similar to the earlier mentioned setting with a

parameterization ϕ on Mh which has rotational discontinuities (matchings) at edges

(see Definition 2.1.1). But now, we have established a different interpretation of

the data: the matching between two triangles represent the Deck transformation

which relates the reference triangles of the covering where the parameterization

is described as a function ϕ′ ∈ Ŝh(M ′h)2. The advantage of this interpretation is

that the rotational discontinuities are eliminated and the frame field decouples into

two vector fields. The problem is therefore reduced to the simplified QuadCover

setting, but with a different underlying surface.

It remains to notice that the QuadCover algorithm and the results are indepen-

dent of the choice of reference triangles. If a different reference triangle is chosen,

then the matchings will change, but this has no effect on the topology of the cover-

ing, the position or index of branch points (see Section 2.4.4). The covering surface

is uniquely determined (up to enumeration of the layers) by knowing its branch

points.

2.4.4 Branch Points

In vector field theory, the topology of a given field is mainly described by its sin-

gular points, e.g. the location of sinks, sources and vortices. A singularity p is
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categorized by its index which measures the angle deficit when tracing a vector on

an infinitesimally small loop γ around p, divided by 2π. The index of a vector field

singularity is always an integer number.

Figure 2.15: Vector fields with singularity in (0, 0). Left: Source, index=1.

Middle: Vortex, index = 1. Right: Saddle, index = -1.

Singularities of frame fields behave differently since frame vectors are allowed to

flip. Thus, when tracing a vector along a loop around p, one may end up with a

rotated version of the vector, see Fig. 2.16. The index of a frame field singularity

is therefore an integer multiple of 1/4.

Figure 2.16: frame fields with singularity in (0, 0). The representation frame

changes across the green curve (matching is 6= 0 there). Left: index=1/4. Middle:

index = 1/2. Right: index = -1/4.

Let p be a singularity of the frame field X = (U, V ), e.g. with an index of 1/4.

When the vector U is traced along a loop γ once around p, it matches V . Therefore,

if γ is lifted to a curve γ′ on the covering surface with π(γ′) = γ, it is not a closed

loop: moving around the singularity once ends on the next top layer. The point p

is therefore a branch point where the covering has the local structure of a helix (as

in Fig. 2.11, middle).

In the discrete setting, branch points always occur at vertices. Despite the fact that

the index is a geometric property of the frame field in the vicinity of a vertex, the

fractional part of the index can be estimated only by knowing the matchings:

Definition 2.4.6 Let p be a vertex with ordered triangles t0, . . . , tk in its vertex
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star. The fractional index of p is defined by:

indf (p) =
1

4

(
k∑
i=0

ri,i+1mod 4

)
. (2.37)

p corresponds to a branch point in the covering M ′h if and only if the fractional

index is not 0. The ramification index is n(p) = 4 if indf (p) ∈ {1, 3} and n(p) = 2

if indf (p) = 2. The fractional index is therefore a property of the covering surface.

Notice that the fractional index is equivalent to the fractional part of the classical

vector field index. The integer part is determined by the index of the vector field

on M ′.

It finally turns out that branch points are introducing restrictions to parameteriza-

tions:

Theorem 2.4.4 Given a global parameterization ϕ and a branchpoint p ∈ Mh.

Then, the value ϕ(p) is uniquely determined by the gaps at adjacent edges to p.

Proof. Let γ be a small positively oriented loop around p which passes through

the triangles t0, . . . , tk, t0. Then, the values ϕ(p) in different triangles are related

by the transition (see Eqn. (2.2)):

ϕ0(p) = Jr01ϕ1(p) + w01, (2.38)

ϕ1(p) = Jr12ϕ2(p) + w12,

. . .

Plugging in each equation in the successor yields:

ϕ0(p) = J4·indf (p)ϕ0(p) + w, (2.39)

with some w ∈ Z2 depending on the gaps at intermediate edges. If p is regular,

then w must be 0. Otherwise, the parameterization is given by:

ϕ0(p) = (Id− J4·indf (p))−1w. (2.40)

�

Notice that eqn. (2.40) gives a direct relation between the gaps wij and the image of

the parameterization at singularities. Inparticular, by computing the inverse matrix

it becomes clear that all singularities are mapped to 1
2Z

2 if all wij ∈ Z2.

2.4.5 Algorithm

In this section, we will formulate the full QuadCover algorithm. The principles are

the same as in the simplified QuadCover, but evaluated on the covering surface.
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Representation of a Parameterization. Given Mh, a parameterization is repre-

sented by its values ϕ at vertices (in all adjacent triangles) together with matchings

rij – which implicitly define a covering surface M ′h – and gaps wij for all edges.

As in the simplified version of QuadCover, there is much redundancy in the choice

of gaps. In a similar way, we restrict all gaps in the interiour of a simply connected

disk D to 0. Singularities can be considered as infinitesimally small holes and must

lie on the boundary of D. To achieve this, we have modified the method by Erickson

and Whittlesey [Erickson 2005] for surfaces with boundary and singularities:

The surface Mh is cut open by a cut-graph G such that D = Mh \ G is simply

connected. For closed surfaces of genus g, the method [Erickson 2005] computes

a system of 2g many shortest loops, whose union is a cut graph. Once we have

more than one boundary component (or singularity), each additional boundary

component needs one path to connect it with G. Thus, in presence of b > 1

boundary components (or branch points) we need 2g + b − 1 paths in total. In

our extension of the method we combinatorially identify all boundary vertices and

branch points into one root point R. On this surface (now without any boundary),

we apply the method of [Erickson 2005] with B as the base point. When we undo

the identification of boundary points, the paths which looped through R now turn

into paths that connect boundary components and branch points.

Notice, that the cut graph is computed on Mh, thus it cuts the covering M ′h into 4

simply connected pieces – however this is no problem, the cut surface may contain

more than one component.

Once, G is computed, gaps at edges in Mh \ G are set to 0. Denote the cut paths

by γk, k ∈ {0, . . . , 2g+ b− 2}. Similar to as in Section 2.3.3, we can represent each

global parameterization by coefficients ui, vi ∈ R, wu,k, wv,k ∈ Z such that

ϕ =
∑

vi∈V \B

(
uiΦ

′
2i + viΦ

′
2i+1

)
+
∑
γk∈G

(
wu,kΦ̂

′
2k + wv,kΦ̂

′
2k+1

)
, (2.41)

where B is the set of branch points. Φ′2i,Φ
′
2i+1 are the hat functions for each

regular vertex p. They are the 2D equivalent of the nodal hat functions Φi: In

one adjacent triangle to p, set Φ′2i(p) = ( 1
0 ) (resp. Φ2i+1(p) = ( 0

1 )). In all other

triangles of the vertex star, the values of the basis functions are rotated according

to the given matchings such that it turns into a continuous function on the covering.

Φ̂′2k and Φ̂′2k+1 are path-based basis functions with a constant gap along path γk.

They are defined similarly to Eqn. (2.30) with a constant value of Φ̂′2k = ( 1
0 ) (resp.

Φ̂′2k+1 = ( 0
1 )) at the right side of path γk. If the path crosses edges with non-

vanishing matching, the value must be rotated accordingly. Furthermore, if γk starts

or ends in a singularity, then its value in this singularity is uniquely determined by

Eqn. (2.40). See Fig. 2.17 for an illustration of the basis functions.

Local Step. For the local step, a non-conforming function g∗ is computed which

is given by its values on edge midpoints. It is represented by coefficients g∗u,i, g
∗
v,i
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Figure 2.17: a) Triangle mesh with two singularities p0 and p2. In direction of

the drawn arrows, the matching is 1 on red edges, 2 on the green edge and 0 on

black edges. b) Values of the nodal basis function Φ′2 on p1. It vanishes on all

other vertices. c) Values of the path basis function Φ̂′0 for a cut path γ0 formed

by the vertices (p0, p1, p2). The gap is ( 1
0 ) at the edges of γ0.

with:

g∗ =
∑

edges ei

(
g∗u,iΨ

′
2i + g∗v,iΨ

′
2i+1

)
.

Here, Ψ′2i, Ψ′2i+1 : Mh → R2 denote the non-conforming basis functions on the

covering. They are (1, 0) (resp. (0, 1)) at the edge ei in one adjacent triangle tj and

Jrjk(1, 0) (resp. Jrjk(0, 1)) in the opposite triangle tk. At all other edge midpoints,

the basis functions are (0, 0).

Given a frame field X as input, the local step consists of solving the linear system

of equations:

L∗~g∗ = c∗X . (2.42)

The entries of the Laplace matrix are: L∗ij =
∫
Mh
〈 ∇Ψ′i,∇Ψ′j 〉dA, and those of the

right vector are: (c∗X)i =
∫
Mh
〈∇Ψ′i, X〉dA. Basically, the matrix is almost similar

to the non-conforming Laplace matrix L∗ from Eqn. (2.21), but each entry is re-

placed by a 2x2-matrix which incorporates the rotation. The right vector contains

the curl* of the input field X.
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Algorithm 3: Local Step

Input: triangle mesh Mh, guiding field X = (Ui, Vi, rij)

Output: cut graph G, parameterization (u, v) ∈ Ŝ2
G,h

1 Solve Eqn. (2.42) for ~g∗

2 Compute (∇u,∇v) = (Ui, Vi)−∇g∗
3 Compute arbitrary cut graph G =

⋃
γi

4 Integrate ∇u, ∇v on Mh \G respecting the matchings

Global Step. The last stage of QuadCover assures the given integer constraints.

It is similar to the global step of the simplified QuadCover but on the covering,

i.e. with representation of a parameterization as in Eqn. (2.41).

The gaps wu,k, wv,k are measured for each path γk and snapped to its nearest integer.

The global step then consists of solving the system:

L~̃u = dX (2.43)

The conforming 2d Laplace matrix has entries: Lij =
∫
Mh
〈 ∇Φ′i,∇Φ′j 〉dA. The

entries of the divergence vector are:

(dX)i =

∫
Mh

〈
∇Φ′i, X

〉
dA (2.44)

−
∑
γk∈G

(
[wu,k]

∫
Mh

〈
∇Φ̂′2k,∇Φ′i

〉
dA+ [wv,k]

∫
Mh

〈
∇Φ̂′2k+1,∇Φ′i

〉
dA

)
.

~̃u is the solution vector containing the coefficients (ui, vi) from Eqn. (2.41).

Algorithm 4: Global Step

Input: parameterization (u, v) ∈ Ŝ2
G,h

Output: globally coherent parameterization (ũ, ṽ) ∈ Ŝ2
G,h

1 Compute gaps wu,k, wv,k of (u, v) at paths γk
2 Round gaps to nearest integer

3 Solve Eqn. (2.43) for ~̃u

Assure a Pure Quadrilateral Mesh. Notice that due to the construction of the

basis functions Φ̂k, the value of each component in a global parameterization at a

singularity is always an integer multiple of 1/2 (see Eqn. (2.40)). If the parameteri-

zation is used for quad remeshing, then a singularity lies either exactly on a corner

of the quad grid, on an edge midpoint (which is only possible if the fractional index

is 1/2) or on the midpoint of a quadrilateral, turning the quad into an n-gon, n 6= 4.

Many applications require a parameterization whose grid of parameter lines consists

of quadrilaterals only. All elements in the parameterization are quads if the singu-

larities are on integer positions, i.e. we just have to enforce that wu,k, wv,k ∈ 2Z.

Therefore, instead of rounding the gaps to the nearest integer, they are rounded to

the nearest point in 2Z.
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An equivalent way to enforce an all-quadrilateral mesh is to use QuadCover as

described above, but with all input frames scaled by 0.5. The result is a paramete-

rization which is twice as coarse. A subsequent scaling of the parameterization by

2 (which actually corresponds to a 1 : 4 subdivision of the mesh) leads to the same

result where all gaps are in 2Z.



Chapter 3

Frame Field Generation

The quality of a parameterization produced with QuadCover depends heavily on

the input frame field. It describes the desired alignment of the parameter lines.

For a given triangle mesh Mh, a frame field consists of two vectors in the tangent

plane of each triangle plus the matchings rij ∈ Z between all adjacent triangles ti, tj
(see Definition 2.1.3). The matchings relate adjacent vector frames and encode the

location and fractional index of singularities.

The generation of good frame fields is essential. The requirements on a “good”

frame field actually depends on the application. Common demands are:

Minimal deviation from orthonormal coordinate frames in order to mini-

mize metric distortion of the parameterization.

Minimal curl since the co-gradient part is subtracted in the local stage of Quad-

Cover. If curl is low, then the original frame directions will be maintained

in the parameterization.

Alignment to visually appealing directions. This is desired especially if the

parameterization is used for design purposes.

Thoughtful singularity placement. Most commonly, distortion in the parame-

terization occurs in the vicinity of singularities, especially if those are placed

in adverse locations.

There exist several methods for frame field generation (see Section 1.5). In this

section, we present a frame field design framework which is based on ideas of differ-

ent techniques [Kälberer 2007, Bommes 2009, Nieser 2011a]. The generated frame

fields are optimized for generating parameterizations with low distortion.

3.1 Principal Curvature Fields

The input to field-based parameterization algorithms are commonly frame fields

whose vectors point in the principal curvature directions. They are the naturally

recognized directions on curved surfaces and align to surface features and to sharp

edges. Furthermore, the quadrilaterals of meshes whose edges are aligned in prin-

cipal curvature direction tend to be more planar.
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Algorithm 5: Generate Principal Curvature Field

Input: triangle mesh Mh

Output: guiding fields (U, V ), matchings rij
1 Compute principal curvature directions per triangle

2 Between adjacent triangles ti, tj , compute best fitting matching rij

In step 1, a discrete approximation to the principal curvature directions is computed

in each triangle. In our implementation, we used a method similar to that by Hilde-

brandt and Polthier [Hildebrandt 2004], but this step can also be exchanged by any

other approach, e.g. [Hildebrandt 2011, Pottmann 2007, Cohen-Steiner 2003]. Note

that we need principal curvature frames per triangle, not per vertex as commonly

produced.

The algorithm is based on computing the shape operator S(ti) in each triangle

ti. The frame vectors are then defined as two perpendicular eigenvectors of S(ti)

scaled to unit length. First, the shape operator is computed on each edge eij as

3× 3 matrix:

S(eij) := Hij(~eij ×Nij)(~eij ×Nij)
t, (3.1)

with the following notation:

• ~eij := vto − vfrom is the (oriented) edge vector of eij which connects the two

incident vertices vfrom, vto.

• Nij :=
Ni+Nj

‖Ni+Nj‖ denotes the edge normal which is computed as average of the

triangle normals Ni, Nj of ti, tj .

• Hij := 2‖~eij‖ cos
Θij

2 is the integrated mean curvature at the edge.

• Θij := ∠(Ni, Nj) is the dihedral angle between triangles ti, tj .

Second, the shape operator in a vertex is the sum over S(eij) of all adjacent edges,

and the shape operator in a triangle ti is averaged over its three vertices. Thus, for

short:

S(ti) :=
∑
ejk∈E

%jkS(ejk), %ij =


2/3, ejk is an edge of ti
1/3, ejk and ti share exactly 1 vertex

0, otherwise

(3.2)

Finally, two orthogonal eigenvectors (Ui, Vi) of S(ti) are computed and scaled to

unit length. For maintaining the positive orientation of the frame, eigenvectors are

chosen such that Vi := JUi. In general, if S(ti) is not a multiple of the identity

matrix, then there are four possibilities of choosing Ui (pointing in minimum or

maximum curvature direction and the sign of the vector). For parameterization,

it does not matter which of these directions is taken since the difference is just a

relabeling, the produced covering surface is exactly the same (see Section 2.4.3).
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Step 2 of Algorithm 5 chooses a matching rij for all edges determining which vector

Ui, Vi, −Ui, −Vi in ti is combinatorially matched to Uj in tj , and therefore how the

parameter lines of the parameterization are locally connected. Since we want the

parameter lines to be as smooth as possible, it is a canonical choice to match those

vectors with the smallest angle in between, i.e.:

rij :=

[
∠(Uj , Ui)

π/2

]
(3.3)

This choice might not be globally optimal since the matchings determine the sin-

gularities and a noisy input field will cause far too many singularities. However, it

defines an initial field for further processing.

3.2 Smoothing Frame Fields

Principal curvature fields are very stable in areas where the curvature is high in one

specific direction and low in the perpendicular direction. However, in umbilic or

planar regions of the surface, the shape operator becomes a multiple of the identity

and there is no unique principal curvature direction. Thus close to an umbilic or

planar region the field is not reliable and very prone to noise, see Fig. 3.1.

Figure 3.1: Principal curvature directions, computed with the algorithm from

Section 3.1. The directions are unstable in planar or spherical regions.

To accommodate this issue, we identify regions where the shape operator is reli-

able. The field is then extended into the non-reliable region (or equivalently, it is

smoothed by taking the reliability into account). The method is similar to that

in [Bommes 2009], but extended to continuous reliability weights in contrast to

having only trusted and non-trusted regions. Here, reliability is defined on each

triangle ti as:

ωi :=
‖κi,1 − κi,2‖

maxtj ‖κj,1 − κj,2‖
(3.4)

where κi,1, κi,2 are the principal curvature values, resp. the eigenvalues of the

shape operator S(ti). In practice, we keep only the most reliable 10% of all frame

directions; all remaining weights are set to 0, which means that the corresponding

frame directions are completely ignored.
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Given an initial frame field (Ui, Vi), the smoothing procedure computes a new field

whose frames are a rotated version of (Ui, Vi) by an angle αi in the current triangle.

Hereby, an energy E := Esmooth + τEalign, τ ∈ R+ is minimized. The smoothing

energy Esmooth minimizes the intrinsic angle between adjacent frames. It is defined

by:

Esmooth(αi, rij) :=
∑

edge eij

‖βij + αj − αi −
π

2
rij‖2 (3.5)

where βij ∈ (−π, π] is the intrinsic angle between Ui and Uj .

The alignment to the original field is measured by the alignment energy Ealign which

is given by:

Ealign(αi, rij) :=
∑

triangle ti

ωi ‖αi‖2. (3.6)

Both energies are linearly combined with a parameter τ . The user chooses between

smooth fields (τ = 0) or maintaining curvature directions (τ →∞).

Figure 3.2: Computation of a stable curvature field. The colors represent the

reliability function ω. Top: In regions where ω is too small (white color), τ is set

to 0 and therefore those vectors are ignored. Bottom: Extended frame field.

This is a quadratic energy which has exactly one minimum for the αi if the match-

ings are held fix. If matchings are variable, then some of the variables are redundant

and we obtain several solutions. Since matchings are restricted to integer values, it

turns into an NP hard optimization problem like the global step of QuadCover.

We therefore minimize the energy in a similar way as done with the QuadCover

energy in Section 2.3.4: First, compute a spanning forest on the dual of Mh, using

all triangles with ωi 6= 0 as root. Second, for all adjacent triangles ti, tj of the
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spanning forest, restrict the matchings rij to 0. This simply removes redundant

variables from the system. Third, minimize the energy (see Eqn. (3.5)) for all αi
and remaining rij . Finally, round all rij to the nearest integer and minimize the

energy again with fixed matchings.

3.3 Optimizing Frame Fields

The outcome of the algorithm described in Section 3.1 and 3.2 is a smooth curvature-

aligned frame field. Notice that the smoothing method relies on a heuristic for

snapping the integer variables which does not provide the best locations for sin-

gularities. In practice, either clusters of singularities appear which are very close

together or the location of singularities is not optimal, especially if aesthetics of the

parameterization is important. In this section, a method for optimizing the location

of singularities is proposed either automatically or by incorporating user requests.

A common artifact is distortion of the parameterization in the vicinity of a singu-

larity (see Fig. 3.3, left). The parameterization “pushes” from one side and “pulls”

from the other side of the singularity resulting in compression and stretching of

parameter lines. If the singularity is allowed to move in direction of the stretched

part, then the parameterization will relax.

Another issue considers the desired number of singularities. This number can be re-

duced by merging several singularities into a new one, and the index is just summed

up. Depending on the application, this is a very useful operation since it produces

smooth parameterizations with only few irregularities. However, the price is that

the initial directions are altered and surface features are less respected (see also

Fig. 5.6 for an example with hexagonal parameterization). Another price is that

merging several singularities of index 1/4 or −1/4 may generate higher order singu-

larities, i.e. with an index of 1/2 (see Fig. 3.3, right). For quad parameterizations,

an index 1/2-singularity corresponds to a hanging node with only 2 adjacent quadri-

laterals. In order to produce quad meshes without hanging nodes, one can easily

modify the following algorithm and disallow merging into an index 1/2 singularity.

All other operations are allowed, such as merging 1/4, −1/4 into 0; merging −1/4,

−1/4 into −1/2, and so on.

Singularity Movement. With our framework, one can move a singularity by

changing the matchings locally. Let p be a singularity of index k/4 and γ be a

path on edges which starts at p and ends at some other vertex q. The singularity

is moved along γ into q by altering the matchings at all edges eij of γ. If ti is the

triangle at eij on the right side of γ and tj the left one, then rij is replaced by

rij − k.

This operation modifies the covering surface and moves the branch point from p to

q, but it does not affect the vectors itself. In fact, the identification of frame vectors

across γ is changed, and the frame field becomes discontinuous. Therefore, we have
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Figure 3.3: Singularity Optimization. Left: Parameterization with distortion

in the vicinity of a singularity. Moving the singularity into right top direction

relaxes the stress. Right: Two singularities (index 1/4) moved into the same

location become merged to a higher order singularity (index 1/2). Notice that

index 1/2 singularities are incident to only 2 quadrilaterals.

to minimize the energy E from Section 3.2 again (for the unknowns αi, holding the

matchings fix) in order to obtain a smooth frame field with desired singularities,

see Fig. 3.4.

The output field is smooth as long as the path γ only passes through non-trusted

regions, i.e. where alignment weights ωi (see Section 3.2) are 0, since otherwise

the alignment energy would produce a discontinuous seam where the matching has

been changed.

Figure 3.4: Top: Initial field and parameterization. The colors represent the

trust function of the frame field. Bottom: Singularity was moved along the red

path. The parameterization adapts to the new position.

We have integrated this singularity prescription in our implementation. After an
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automatic parameterization, the user may pick an individual singularity and click

on a destination vertex. A shortest edge-based path γ between both vertices is

computed and the singularity is moved along γ. Merging of singularities is also

possible, if γ ends on another singularity.

Relaxation. We implemented a simple heuristic for automatic singularity place-

ment. After parameterization, each singularity is optimized locally by moving it

successively to all adjacent vertices. The value of the current position is measured

by the amount of curl of the frame field, since the curl measures how much the

parameterization after the local QuadCover step deviates from the guiding field.

Furthermore, if the distance between two singularities becomes too close, those

singularities will be merged.

This relaxation method finds positions of singularities which are a local minimum

for the total amount of curl. This heuristic gives very nice results in practice and

singularities tend to move into the direction where the parameterization relaxes

most (see Fig. 3.5).

Figure 3.5: Left: Initial frame field generated from curvatures. Middle: Frame

field after relaxation. Right: Parameterization using the relaxed field.
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Surface Tiling

Surface Tiling Using Parameterization. A tiling or tessellation of the Eu-

clidean two-plane is a repetitive pattern that fills the whole plane. Based on the

implied symmetry, tilings are classified into 17 distinct wallpaper groups. A sym-

metry is an isometry which leaves the pattern invariant. There are four categories

of isometries of the plane: translations, rotations, reflections (in a line) and glide

reflections (which are combinations of translations and reflections).

A regular tiling of the plane has always translational symmetries by two linearly

independent displacement vectors. Furthermore, according to the so-called crys-

tallographic restriction theorem, rotations are only possible by 60, 90, 120 or 180

degrees. Here we are only interested in orientation-preserving symmetries, i.e. only

translations and rotations. The related wallpaper groups are called p1, p2, p3, p4

and p6 according to the degree of rotational symmetry.

Parameterization of a two-dimensional manifold is closely related to surface tiling:

a parameterization transfers a wallpaper tiling of the two-plane onto a surface in a

canonical way. Such patterns on geometries are commonly used for design purposes

and in architecture.

In order to obtain a regular tiling on the surface without any visible seams, the

parameterization must be compatible with the symmetry group of the tiling: the

transition between charts must be symmetries of the actual wallpaper tiling. E.g.

the QuadCover algorithm described in Chapter 2 is compatible with wallpaper

group p4 since it allows rotations of 90 degrees. It can be used to produce quad

tilings or any other patterns with similar symmetry, e.g. 4/8 patterns, see Fig. 4.1.

Figure 4.1: Different patterns which with 90 degrees rotational symmetry which

are compatible with quadrilateral parameterizations.

This chapter focuses on different symmetry groups. Section 4.1 introduces hexag-
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onal parameterizations (p6, p3) which can be used to generate regular triangle or

hexagonal meshes. Stripe parameterizations allow 180 degrees rotations (p2) and

are described in Section 4.2. Parameterizations with only translational symme-

tries (p1) are special since they have no singularities with fractional index. As a

consequence, singularities are not resolved as branch points of the covering but as

vector field singularities on the covering. Section 4.3 analyses this phenomenon and

provides an algorithm for handling singularities of positive integer index, i.e. poles.

4.1 HexCover

Regular hexagonal patterns are one of the three regular patterns that can seam-

lessly tile a plane. They provide an optimal approximation to circle packings which

have been linked to the wide appearance of hexagonal patterns in nature, such as

honeycombs, insect eyes, fish eggs, and snow and water crystals, as well as in man-

made objects such as floor tiling, carpet patterns, and architectural decorations (see

Fig. 4.2).

(a) (b) (c) (d) (e)

Figure 4.2: Hexagonal patterns in nature: (a) honeycombs, (b) insect eyes, (c)

snowflakes, (d) crystal, (e) naturally formed basalt columns.

Hexagonal parameterization has an important application in triangular remeshing,

which refers to generating a triangular mesh from an input triangular mesh to

improve its quality. (Note that triangular and hexagonal meshes are dual to each

other, and triangular remeshing can also be used to perform hexagonal remeshing.)

In triangular remeshing, it is often desirable to have all the triangles in the mesh

being nearly equilateral and of uniform sizes, and the edges following the curvature

and feature directions in the surface.

Automatic generation of a hexagonal parameterization from an input surface poses a

number of challenges. First, unlike quadrangular parameterization whose parameter

lines are parallel to either the major or the minor principal curvature directions, in

hexagonal parameterization only one of the two directions can be used at each point

on the surface. One must decide which direction to choose, and how to propagate

such choices from a relatively small set of points to the whole surface to maintain the

smoothness of the resulting parameterization. Section 4.1.1 discusses the generation

of hexagonal frame fields.
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a) b)

c) d)

Figure 4.3: Hexagonal global parameterization (a), used for regular texture (b)

and geometry pattern synthesis (c) with hexagonal patterns and for geometry-

aware triangular remeshing (d).

Second, the continuity conditions developed for quadrangular parameterization

along cut-paths are not appropriate for hexagonal parameterization (see Fig. 4.4).

Section 4.1.2 explains how QuadCover is extended to generate global hexagonal

parameterizations as described in [Nieser 2011a].

4.1.1 Hexagonal Frame Field Generation

Curvature-Aligned Frame Fields. In this section, we describe the pipeline for

generating a geometry-aware hexagonal frame field, or 6-RoSy field, X = (U, V )

given an input surface Mh. In general, an N -symmetric frame field has a set of

N frames in each triangle ti: RkN · (Ui, Vi), k ∈ {0, . . . , N − 1} where (Ui, Vi) is

one reference frame and RkN is the linear operator that rotates a given frame by
2πk
N in the local coordinates defined by the frame, i.e. RkN · (Ui, Vi) = (Ui cos 2πk

N +

Vi sin 2πk
N , Vi cos 2πk

N − Ui sin 2πk
N ).

The relation between the reference frames in adjacent triangles ti, tj is given by

matchings rij ∈ {0, . . . , N − 1}: the frame (Uj , Vj) is combinatorially linked with
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(a) (b) (c)

Figure 4.4: A quadrangular parameterization ensures that the discontinuity

along the cut is invisible (a). The same parameterization is incompatible with a

hexagonal pattern (b), which leads to seams (yellow). In this case a hexagonal

parameterization is needed (c).

the frame R
rij
N · (Ui, Vi). Similar to the quadrangular case (see Chapter 2), the

matchings introduce singularities with fractional index of k
N , k ∈ Z.

To automatically compute a hexagonal frame field, we need to answer the question

of what direction is assigned in each triangle depending on the principal curvature

directions. In the final parameterization, parameter lines should follow principal

curvature directions. Lines ignoring surface features cause “twisting” artifacts (see

Fig. 4.5). We therefore need to solve the problem of matching the 6 directions of

the hexagonal field with the four principal curvature directions.

Figure 4.5: For remeshing, edges should follow principal curvature directions

(right). Edges ignoring surface features (left) cause “twisting” artifacts (on the

ears).

Classification of the Curvature Tensor. To align the parameter lines with

feature lines such as ridges and valleys, we will choose the principal direction that

has the most bending, i.e., maximum absolute principal curvature, as one of the

directions in the hexagonal frame field.

Principal curvature directions are most meaningful in cylindrical and hyperbolic re-

gions due to the strong anisotropy there. However, while purely hyperbolic regions
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possess strong anisotropy, the absolute principal curvatures are nearly indistin-

guishable, thus making both principal curvature directions candidates. Moreover,

the two bisectors between the major and minor principal curvature directions can

also provide viable choices for the edge directions in hyperbolic regions. Due to the

excessive choice of directions in hyperbolic regions and insufficient choice of direc-

tions in planar and spherical regions, we only generate frames in cylindrical regions

and then extend the field to the whole surface.

Let S(ti) be the curvature tensor in one triangle and κ1, κ2 be the corresponding

curvature values as computed in Section 3.1. The vector
(
κ1−κ2
κ1+κ2

)
can be written

in polar coordinates %
(

cos Φ
sin Φ

)
, % ∈ R+, Φ ∈ (−π, π] and classified into six special

configurations. The first satisfying %(p) = 0, i.e., geometry is locally planar. For

the remaining five configurations we have %(p) > 0. Respectively, they correspond

to Φ(p) = π
2 (spherical), Φ(p) = π

4 (cylindrical), Φ(p) = 0 (purely hyperbolic),

Φ(p) = −π
4 (inverted cylindrical), and Φ(p) = −π

2 (inverted spherical). With this

representation, we can classify any point p as being planar if %(p) is smaller than

a given threshold δ, elliptical if Φ(p) ≥ δ and |Φ(p)| > 3
8π, hyperbolic if Φ(p) ≥ δ

and |Φ(p)| < 1
8π, and cylindrical otherwise (see Fig. 4.6).

Figure 4.6: Surface classification scheme to determine directional constraints.

φ ∈ [−π/2, π/2] is color mapped to the [blue,red] arc in HSV color space: Left

top: continuous mapping. Bottom: binned classification. The legend (right) shows

surfaces patches which are locally similar to points with given values.

Field Generation. Given the classification, we select the maximum direction

as reference vector in triangles where Φ > 0 and the minimum direction where
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Φ < 0. Recall that the directions in the output field specify the gradients in our

resulting parameterization, and we wish one of the isolines of the parameters to

be orthogonal to the direction in which the surface is bending the most. Finally,

we propagate the directions in the cylindrical regions into non-cylindrical regions

(planar, spherical, hyperbolic) using the same energy minimization approach as

described in Section 3.2.

In addition to this automatic technique, the editing and frame field optimization

methods described in Section 3.3 also apply to hexagonal frame fields.

4.1.2 Hexagonal Parameterization

In this section the second stage of the pipeline is described, which constructs a

hexagonal global parameterization from an input triangular mesh with a given

hexagonal frame field. We will first describe the differences of hexagonal para-

meterization to the quadrangular case.

Hexagonal Parameterization and Energy. Given a meshMh with |T | triangles,

a global parameterization ϕ : Mh → R2 respecting an N -rotational symmetry is a

collection of linear maps {ϕi | 1 ≤ i ≤ ‖T |} with the following property. For any

adjacent triangles ti and tj we have:

ϕj(p) = R
rij
N ϕi(p) + wij , ∀p ∈ ti ∩ tj . (4.1)

with matchings rij ∈ {0, . . . , N −1} and gaps wij ∈ GN in some integer lattice GN .

In the quadrangular case (N = 4), translational discontinuities wij are required

to be on the set of Gauss integers G4 := {(a, b)T | a, b ∈ Z}. Therefore a texture

image with 90 degrees rotational symmetry around any point in G4 is continuously

mapped onto the surface.

Hexagonal parameterization (N = 6) is similar, except that in this case the texture

image needs to respect hexagonal rotational symmetries. A canonical choice is a

hexagonal or triangular pattern as shown in Fig. 4.7 (c). The texture image has

an aspect ratio of 1 :
√

3 and tiles the plane seamlessly. It is furthermore invariant

under rotations of π
3 around the center of each hexagon. The set of these center

points is known as the Eisenstein integer lattice, shown in Fig. 4.7 (d):

G6 :=

{
a

(
1

0

)
+ b

(
1/2√
3/2

) ∣∣∣∣ a, b ∈ Z
}
. (4.2)

Besides the rotational invariance, the hexagonal grid also remains invariant under

translations by any vector in G6. The discontinuities are therefore not visible if all

gaps wij are in G6 because of the repeating structure of the texture image.

HexCover and Covering Spaces. A hexagonal frame field is actually equivalent

to two multi-valued vector fields on the surface. Similar to the setting in Section 2.4,
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Figure 4.7: (a) Tileable texture with quadrangular rotational symmetry. (b)

Integer lattice G4. (c) Tileable texture with hexagonal rotational symmetry. (d)

Eisenstein integer lattice G6.

we make use of a covering space, which transforms a hexagonal frame field into two

vector fields on a 6-fold covering surface of Mh.

Every triangle ti in Mh has six corresponding triangles in M ′h: t′i,0, . . . , t
′
i,5. The

frame field on Mh is lifted to the covering by distributing the six vectors onto the

six copies, i.e., U ′i,j = Rj6Ui,0, V ′i,j = JU ′i,j where Ui,0 is one of the six directions

of the hexagonal field in ti. For adjacent triangles ti, tj in Mh, the corresponding

copies are combinatorially connected, depending on the matching rij . The triangles

t′i,k, k ∈ {0, . . . , 5} are thereby connected with t′j,k+rij mod 6 (Fig. 4.8).

ti

U ′i
V ′it′i,0

t′i,1
t′i,2
t′i,3
t′i,4
t′i,5

Figure 4.8: Left: Triangle ti with 6-RoSy field. Right: 6-fold covering of ti with

vector fields F ′u, F ′v.

Notice that also in the hexagonal case, the covering is just used as theoretical

construct and is not explicitly computed in the algorithm.

Algorithm. The algorithm for computing a hexagonal parameterization is similar

to QuadCover, but with two main differences:

1. The matching numbers are up to modulo 6 instead of 4. The J-operator in

Eqn. (2.2) turns into a rotation R6 by 60 degrees.

2. To enforce the integer constraints, the gaps wij are modified by rounding them

to the nearest point in G6 instead of G4.

Figure 4.9 shows the hexagonal parameterization of two minimal surfaces using

HexCover.
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Figure 4.9: Minimal surfaces. Left: Schwarz surface with 8 singularities of index

−1/2. Right: Neovius surface with 8 index −1/2 and 6 index −1 singularities.

4.2 Stripe Parameterization

Stripe parameterizations can be used for mapping texture images which are sym-

metric by rotations of 180 but not necessarily 90 degrees, such as stripe textures. A

natural domain are tubular surfaces where the minimum and maximum curvature

directions decouple in most areas into two directional fields. Mathematically these

surfaces can be described as thickened graphs, and the calculated parameteriza-

tion stripe will follow either around the tube, along the tube axis or a spiraling

combination of both.

Tubular surfaces appear in many application areas such as networks of blood ves-

sels and neurons in medicine, or tube and hose systems in industrial environ-

ments. Often a tubular structure must be recovered and segmented from noisy

scan data. QuadCover can be efficiently used for automatic stripe parameteri-

zation of tubular surfaces given as triangle meshes. An additional benefit of the

stripe parameterization is the enhanced visualization of the underlying geometric

structure. The method for computing stripe parameterizations was first described

in [Kälberer 2010].

Differences. Similar to HexCover, the algorithm for computing stripe parame-

terizations differs from QuadCover by another symmetry of the texture pattern

and a different integer property. Transition functions follow Eqn. (4.1) for N = 2

and the gaps are restricted to wij ∈ Z2.

Conceptually, stripe parameterizations are a special case of quad parameterizations

where all indices of singularities are integer multiples of 1/2, i.e. indices like 1/4 or

−1/4 are not allowed. The frames of guiding field for stripe parameterization are

defined up to the sign ±(Ui, Vi) in each triangle ti. Therefore, it decouples into two

(directional) vector fields ±Ui and ±Vi. The covering simplifies to a two-sheeted

covering surface (see Fig. 4.10).

Field-Generation. For frame field generation, a similar method as in Section 4.1.1

can be used: choose the minimum curvature vector in all cylindrical regions and

extend this field onto the whole surface. If we consider tubular surfaces only, this is

especially stable since then the minimum curvature direction provides a stable field

nearly everywhere.
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Figure 4.10: Left: Stripe parameterization with branch point. The isolines of

the u function and its gradient vectors are drawn. Middle: The same parameter

function on the 2-sheeted covering (the covering surface is not embedded, it has

self-intersections). Right: Branch point on a parameterized tube object.

Parameterization. The parameterization step is done similarly to QuadCover

(Section 2.4). Notice that the matrices of the systems of equations may be decom-

posed into two (identical) matrices of half dimension since the u and v component

of the parameterization never interact. The computing time can therefore be speed

up by using the smaller matrix for the u part and then for the v part.

Examples. Here are some examples of tubular surfaces with a stripe parameteri-

zation. The surface in Fig. 4.11 shows a human blood vessel which contains parts

with a very large tube radius as well as very filigree branches. Regardless of this

difference in the scaling, the stripe density stays nearly constant everywhere.

Figure 4.11: Parameterized blood vessel, captured by MRT. Courtesy of Fraun-

hofer MEVIS.

Figure 4.12 shows a complex neuron model of genus 23, captured using confocal

microscopy. The produced parameterization has very little distortion even on this

complicated object. The stripe pattern helps to perceive the complicated shape of

the neuron.

Twisted Stripes. There are two different possibilities of generating twisted stripes

with QuadCover. First, take a stripe parameterization and locally rotate each

frame by any angle in its triangle. Then parameterize again using the twisted field.
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Figure 4.12: Parameterized neuron by courtesy of Freie Universität Berlin, De-

partment of Neurobiology.

The second technique is based on the fact that the stripes in the texture image do

not necessarily point along the u axis. The only requirement is that the image is

180 degrees rotational invariant. If a given stripe texture image is given, consider

the transformation ( uv ) 7→
(
n −k
k n

)
( uv ) with k, n ∈ N+. It is basically a scaling and

rotation of the texture space (e.g. k = n = 1 rotates by 45 degrees) such that the

new texture is still invariant under translations in Z2. Thus, without computing a

new parameterization, the underlying texture image can just be replaced in order

to adjust the twisting behaviour of the stripe pattern.

Figure 4.13: Tree model with diagonal candy cane stripes. Singularities are

marked in green.

4.3 Singularities of Positive Integral Index

4.3.1 Fractional vs Integral Index

For QuadCover parameterizations, the location of singularities with fractional

index are determined by the matchings rij . They are defined as vertices where

the frame vectors exchange when tracing a small loop around the point. Such



4.3. Singularities of Positive Integral Index 61

singularities are resolved as a branch point in the covering surface.

Singularities whose index is an integer behave fundamentally different. If a sphere

e.g. is parameterized in polar coordinates, then all matchings are 0; there is no

flip of the parameter lines anywhere (see Fig. 4.14, left). These singularities do not

introduce any branch points since walking around the pole ends up on the same

layer as started with. The covering itself does not “see” those singularities; they

just arise as gradient field singularities on the covering.

As a direct consequence, once the matchings are known, the location of all fractional

singularities is fixed whereas the location of integer singularities is still variable and

will be optimized as well.

A special case are singularities with positive integral index. Let ϕ = (u, v) be a

parameterization and the gradient field ∇v has a vortex in point p (like the north

pole of the sphere, see Fig. 4.14, right). Unfortunately, vortices cannot be described

using a standard PL parameter map on triangles because of the following reason:

If γ is a small path around p, then the path integral
∫
γ ∇v ds is always a constant

number, which stays the same as the curve gets contracted. Therefore, in the near

vicinity of p, the gradients must tend to infinity (like an irrotational vortex). It is

impossible to represent such a function as a piecewise linear function on a triangle

mesh.

Hence, if there are vortices present in the input frame field, the parameterization

algorithm ignores it and produces a parameter function which is far from the guiding

field (see Fig. 4.14, left). By the way, this issue arises in all parameterization

approaches based on a similar PL setting, like [Tong 2006, Bommes 2009]. They all

rely on having no singularities of positive integer index which is sufficient in most

cases. However, if for some reason a pole is desired, or if the sum of the prescribed

fractional indices is not consistent with the Euler characteristic of the surface, then

singularities of integral index cannot be avoided and special treatment is necessary

for avoiding a degenerated situation like in Fig. 4.14, left.

Figure 4.14: Left: Resulting parameterization if a representation with piecewise

linear functions is used. The v component nearly vanishes everywhere. Right:

Polar parameterization (u, v) of a sphere.

In Section 4.3.2 a method [Nieser 2009] is described which handles those singularities
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and therefore avoids degenerated parameterizations.

4.3.2 Handle Singularities of Positive Integral Index

Use quads. A regular triangle mesh is too rigid for representing a piecewise linear

vortex-like parameter function. Thus, we locally remesh the surface to add some

quadrilateral elements. The shape of the surface stays the same, but the quads

allow a more complex structure of the parameter function.

Let p be a vertex, where the frame field has an index of k ∈ N+. We locally change

the mesh and cut an infinitesimal small hole at p. The vertex star is remeshed as

shown in Fig. 4.15. All triangles in the star become degenerated quads with one

edge of length 0.

p q0

q1
q2q3

q4

Q0

Q1

Q2

Q3

Q4

Figure 4.15: Left: Vertex star of a singularity p. Right: Combinatoric of the

remeshed vertex star. It consists of 4 quads Qi. The inner vertices qi are geomet-

rically located in the same point p, thus one edge of each quad has zero length.

Scalar functions on a mesh with quads are not longer forced to be piecewise lin-

ear. Here, we use functions which are linear on each triangle and bilinear on each

quadrangle. Given function values at the vertices of a quad, the parameterization

is then given by the unique bilinear function, which interpolates these values. The

resulting function is continuous (up to discontinuities introduced by gaps), even if

triangles and quads are mixed in the same mesh.

Figure 4.16: Left: Bilinear texture on a coarse mesh with triangles and quads.

Right: Image of the elements in texture space. The quads in the vertex star of

the singularity are marked in grey.

The advantage of using quadrilaterals is that the singular vertex is now represented

by a set of edges which can be mapped to a polygonal line in texture space. Fig-

ure 4.16 shows a parameterization of a pole.

Approximation. The original QuadCover algorithm works on triangles. It
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would be straight forward to generalize it to quadrangles. The only difference is that

the function space for energy minimization changes. Although, an adaption of the

optimization algorithm to work with bilinear functions turns out to be complicated,

since the computation of the derivatives of the energy requires to solve a non-

linear integral. Instead, we simplified the problem and approximated the optimal

solution. This approximation replaces the quads by triangles again, but with an

altered connectivity. Thus the standard QuadCover algorithm can be used. The

quads are then used afterwards for the final description and visualization of the

result. The outline of the modified QuadCover is listed in Algorithm 6.

Algorithm 6: Modified QuadCover algorithm, Input: Guiding frame field

1: for all vertices p do

2: Measure index of frame field at p

3: if (index mod 1 == 0) and (index > 0) then

4: Store vertex p in array specialSingularities

5: Cut all outgoing edges from p open.

6: Run original QuadCover algorithm

7: for all p in specialSingularities do

8: Replace all adjacent triangles to p by a quadrilateral

9: Compute texture coordinates for the quads

Lines 1–5 do a local remeshing at each vertex p with positive integer index. All

adjacent edges to p are cut open generating a hole in the surface (see Fig. 4.17).

In line 6, QuadCover is applied to the triangle surface. Figure 4.18 shows the

texture domain of the example from Fig. 4.16.

p p0

p1
p2

p3

p4

Figure 4.17: Each vertex star of a singularity p with positive integer index will

be cut open. The right mesh shows the new combinatoric, the inner vertices pi
are geometrically located at p.

Figure 4.18: Texture domain after parameterization with modified mesh con-

nectivity. The surface from Fig. 4.16, left is taken as input.



64 Chapter 4. Surface Tiling

In lines 7–9, the singularities are remeshed again. Each triangle of the vertex star

(which was previously cut open) is now replaced by a quadrangle. All quads are

connected as in the situation of Fig. 4.15, right.

It remains to compute the texture coordinates for the created vertices qi. They

are obtained by just averaging the texture coordinates of the old vertices pi (from

Fig. 4.17, right). In quadrangle Qj , compute the texture coordinates as:

fj(qj) := 1/2 (fj−1(pi−1) + wi−1,i + fj(pj)) (4.3)

fj(qj+1) := 1/2 (fj(pj) + fj+1(pi+1) + wi+1,i)

where wi−1,i is the translational part of the transition (gaps) between chart Qi−1

and Qi, see Eqn. (2.2).

4.4 Constraints and Boundary Conditions

An important feature for parameterization software is the possibility to adhere

to special user given constraints. Commonly, parameter lines should follow sharp

creases in the surface or stick to the boundary. Here we consider two different types

of constraints:

Geometrical Constraint: Force a parameter line to follow a given path δ on the

surface exactly, e.g. running along a crease or the boundary.

Combinatorial Constraint: Constrain the connectivity of the parameter, e.g.

two singularities are forced to be connected by a parameter line, but the

exact path is not given.

Geometrical constraints are the stronger ones and some geometrical constraints im-

plicitly force combinatorial constraints. If e.g. a geometrical constraint is given by

a curve δ which connects two singularities, then this also restricts the combinatorics

of the parameter grid.

Here, we provide an algorithm for processing these kinds of constraints. As far as we

know, this is the very first approach to explicitly enforce combinatorial constraints

to parameterizations, whereas geometrical constraints are also used in other meth-

ods [Bommes 2009, Zhang 2010]. An advantage of our approach is the splitting of

constraints into a pure combinatorial and a geometrical part. This allows further

processing, e.g. one can test if several constraints contradict by checking the rank

of the combinatorial matrix Cc (see next section).

Section 4.4.1 describes how constraints are formulated and integrated into Quad-

Cover. Section 4.4.2 shows how geometrical and combinatorial constraints are

actually implemented.
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4.4.1 QuadCover with Constraints

Given a parameterization ϕi on a triangulated manifold Mh. As formulated in

Section 2.4.5, the parameterization is represented according to Eqn. (2.41) using

the following data:

1. Symmetry order n ∈ N. n = 4 for quadrangular-, n = 6 for hexagonal-, n = 2 for

stripe parameterization or any other symmetry order. In the following, denote

Rn as operator which rotates a given vector in the plane by 2π/n.

2. Matchings rij ∈ {0, . . . , n− 1} on edges. They define the fractional index of all

vertices and therefore the position of singularities.

3. Cut graph G consisting of a set of N cut paths G = {γk, k ∈ {0, . . . , N − 1}}.
4. Gaps wu,k, wv,k for each cut γk
5. Parameter values ui, vi at each regular vertex pi.

The parameterization ϕi = (ui, vi) is piecewise linear and may be discontinuous

across edges. Remember, that adjacent triangles ti,tj are related by:

ϕ|ti = R
rij
n ϕ|tj + wij . (4.4)

Here, the gap wij is equal to the (oriented) sum of gaps wk associated to all cut-

paths γk which proceed over the edge between ti and tj . QuadCover generates a

parameterization by optimizing the free variables ui, vi ∈ R and (wu,k, wv,k) ∈ GN
with an integer lattice GN (see Sect. 4.1.2).

Geometrical Constraints. Geometrical constraints are defined by a set of ν

curves δκ : [0, 1] → Mh, κ ∈ {0, . . . , ν − 1} which w.l.o.g. run over edges of Mh (if

a curve traverses through a triangle, we can subdivide the triangle and δκ becomes

a curve on edges). The curve may be open or a closed loop (δκ(0) = δκ(1)).

We desire that each δκ is exactly represented by a parameter line. For a quadran-

gular parameterization, we therefore constraint one parameter value (u or v) along

each δκ to a value cκ ∈ Z which becomes a new variable in our system. In general

for an arbitrary symmetry order, we want to constrain either the u component of

ϕ or the u component of any rotated version (Rλnϕ)u, λ ∈ {0, . . . , n− 1} to cκ (see

Fig. 4.19).

Let p0 be the start vertex of δκ and t0 be the first triangle on the right side of δκ,

we constrain

(Rλnϕ(p0)|t0)u ≡ cκ. (4.5)

With plugging in Eqn. (2.41), this becomes a linear equation in the coeffients u0,

v0 if all gaps wu,j , wv,j and the constraint value cκ are known.

Since the parameter map ϕ is in general not continuous everywhere, the constraint

must be altered along δκ according to the matching and gaps (if δκ crosses any cut

paths). Therefore, by tracing all vertices and corresponding triangles on the right
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δκ δκ δκ δκ

Figure 4.19: From left to right: quadrilateral parameterization with u-lines

fitting to the constraint δκ; fitting v-lines; hexagonal parameterization with fitting

u-lines; with fitting 60-degrees-rotated u-lines.

side of δκ, we can establish one linear equation for each vertex pi on δκ of the form:(
Rρ
(
ui
vi

)
+
∑
γk∈G

Rρk
(
wu,k
wv,k

))
u

≡ cκ. (4.6)

with coefficients (ρ ∈ Z, ρk ∈ Z). All these linear equations are collected into a

system:

Cg~u = b, (4.7)

where ~u ∈ R2|V | contains all real valued coefficients ui, vi and b ∈ R2|V | is a vector

which depends on all integer coefficients wu,k, wv,k and on cκ.

In the 1st step of QuadCover, we compute a local parameterization ϕ as before

ignoring any given constraints. After that, we measure the value cκ as the average

value on the right side of every path δκ (attending the discontinuities along the

path as described above). When gaps are rounded, the values cκ are also snapped

to the nearest integer (resp. to the nearest integer-multiple of
√

3 if n = 6).

In the 2nd step of QuadCover, the gaps are known and Eqn. (4.7) is used as

linear constaint during energy minimization (e.g. by using Lagrange multiplier).

Combinatorial Constraints. A combinatorial constraint is a linear condition on

the integer variables in our system, i.e. the gaps wu,k, wv,k plus the constraint values

cκ. They alone determine the combinatorial layout of the net, i.e. the exact number

of parameter lines and how they are connected to each other. Thus a combinatorial

constraint prescribes conditions on this layout. We write a combinatorial constraint

by the linear equation:

Cc ~w = 0 (4.8)

where ~w = {wu,0, wv,0, wu,1, wv,1, . . . , wv,N−1, c0, . . . cν−1} ∈ R2N+ν is a vector con-

taining all integer variables of our system.

A geometrical constraint as explained above sometimes enforces a combinatorial

constraint: While tracing the curve δκ all vertices on the curve are constrained

by Eqn. (4.6) with coefficients (ρ, ρk, cκ). It may happen that a vertex is al-

ready constrained (e.g. by another geometrical constraint) with different coefficients
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(ρ, ρ′k, c
′
κ), then we get a combinatorial constraint:

cκ −

(∑
γk∈G

Rρk
(
wu,k
wv,k

))
u

≡ c′κ −

(∑
γk∈G

Rρ
′
k

(
wu,k
wv,k

))
u

. (4.9)

In a similar way, we get a combinatorial constraint whenever δκ touches a singular

vertex, since the parameter values at singularities are uniquely determined by the

gaps (see Eqn. (2.40)).

In summary, if we start with a given set of curves δκ and set up geometrical con-

straints, we get one combinatorial constraint each time a curve touches a singularity

and each time, two curves meet (or one curve meets itself, e.g. if it is a closed curve)

and the coefficient ρ of both curves is similar.

We assemble all combinatorial constraints in the matrix Cc and assure Cc ~w = 0

when rounding the integer variables. We do this by performing a Gauss method

on Cc and eliminate variables which depend on the remaining ones. Notice that Cc
has only integer entries, we therefore do not run into numerical problems. The free

variables are then snapped to the integer grid and the dependent ones are defined

by the linear system (and are of course also integer).

Algorithm 7: QuadCover with constraints

Input: triangle mesh, guiding frame field, constraint curves δκ
Output: global parameterization

1 Perform local QuadCover step and obtain parameterization ϕ with coefficients

ui, vi, wu,k, wv,k
2 Compute constraint values cκ as average of ϕ along δκ
3 Assemble geometrical and combinatorial constraints in matrices Cg and Cc
4 Perform Gauss elimination on Cc
5 Round gaps wu,k, wv,k and cκ to integer grid satisfying Cc ~w = 0

6 Perform global QuadCover step under linear constraints Cg~u = b

4.4.2 Using Meta-Graphs

The extended QuadCover algorithm with constraints can be applied in different

ways. The user can prescribe geometrical constraints by providing a set of curves

δκ. A parameter line will snap to each curve (see Fig. 4.20, top).

A very nice application is that we can also skip the geometrical constraint, i.e.

obmit the linear constraints in step 6 of Algorithm 7. The geometrical alignment of

the parameter line is then fully ignored, but the topology is enforced, i.e. if the path

δκ connects two singularities, then the parameterization contains a parameter line

connecting them as well (see Fig. 4.20, f). If δκ is closed, then the parameterization

will contain a closed parameter line which is homotopic to δκ, avoiding a spiraling

effect as shown in Fig. 4.21.
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a) b) c)

d) e) f)

Figure 4.20: Demonstration on using constraints in QuadCover. All para-

meterizations use the same guiding frame field. a) Parameterization without any

constraints. The singularities (red) are not connected by a parameter line. b)

Arbitrary (jaggy) curve δ0 drawn by the user. c) Parameterization with δ0 as

geometrical constraint. No combinatorial constraints are enforced. d) Arbitrary

curve δ1 connecting the singularities. e) Parameterization with δ1 as geometrical

constraint. It involves a combinatorical constraint which enforces that both sin-

gularities are connected by a parameter line. f) Parameterization using only the

combinatorial constraint induced by δ1. The parameterization is overall smooth

and does not depend on the geometry of δ1.

We have now established a general framework for handling constraints: The user

can provide a set of constraint paths δκ (called initial meta-graph). For each path,

he defines if it is a combinatorial constraint or even a geometrical constraint. The

meta-graph may e.g. consist of geometrical features of the surface (as sharp creases

that should be maintained) or just be an initial decomposition of the surface in order

to keep the parameterization more simple. A good meta-layout helps to generate

coarser parameterizations.
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a) b)

c) d)

Figure 4.21: Parameterized cylinder using a twisted frame field. a) Paramete-

rization without constraints. Parameter lines form a spiraling pattern. b) Con-

straint path δ0 which forms a closed loop. c) Parameterization with geometrical

constraints. d) Parameterization with combinatorial constraints only. Notice how

the lines in axis direction remain unaffected by the constraint, whereas the traver-

sal lines close up.





Chapter 5

Parameterization Results

This section shows some results of parameterized and remeshed surfaces using

QuadCover. The algorithm has been implemented in Java using the JavaView

software library [JavaView]. Results are shown in Section 5.1 whereas Section 5.2

compares QuadCover with different approaches. Limitations and future work are

regarded in Section 5.3.

5.1 Examples of QuadCover and HexCover

The QuadCover technique was tested on various kinds of shapes. In general, it

produces highly regular and smooth patterns.

Figure 5.1 shows a quadrangular parameterization on the rockerarm model. The

frame field is visualized using a LIC technique for frame fields, introduced by Pala-

cios and Zhang [Palacios 2011]. Singularities are highlighted in blue (index of −1/4)

and yellow (index of 1/4).

Figure 5.1: Geometry-aware 4-RoSy field and corresponding texture tiling.
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The pegaso model (Fig. 5.2) is a closed surface of genus 6. Notice that the pa-

rameterization contains isolated triangles and pentagons. They correspond to a

singularity which lies in the center of the element. As explained in Section 2.4.5,

a pure quad mesh can always be achieved by generating a parameterization which

is twice as coarse and by performing one subdivision step which bisects each n-gon

into n quadrangles.

Figure 5.2: Pegaso. Left: Input triangle mesh. Right: Quadrilateral paramete-

rization.

Hexagonal parameterizations are shown in Fig. 5.3. Figure 5.4 demonstrates the

ability of QuadCover to generate meshes with adaptive sized elements. The

vectors of the guiding frame field are scaled by some arbitrary user-defined scaling

function. In order to obtain a finer resolution in curved regions, the scaling function

can be locally defined according to the curvature in each point.

The control over singularities is an important design element for generating param-

eterizations. Figure 5.6 shows that the number of singularities impacts the smooth-

ness of the parameterization with more singularities reproducing more feature de-

tails of the surface. However metric distortion also increases if more singularities are

used as can be represented with the actual mesh resolution (see Fig. 5.6. Choosing

the number of singularities can be considered as a tradeoff between smoothness of

mesh elements and feature preservation.
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Figure 5.3: Hexagonal parameterization visualized with a texture (left) and

using a geometry pattern (right).

5.2 Comparison to Other Techniques

Quadrangular Remeshing. Comparisons to other parameterization approaches

show that QuadCover produces very competitive results (see Fig. 5.7). As the

figure illustrates the curvature alignment of [Ray 2006] has also been achieved by

QuadCover, but the number of irregular points is drastically reduced and the

mesh is restricted to quadrilaterals. In contrast to the methods of [Tong 2006]

and [Dong 2006], QuadCover is suited to handle arbitrary locations of branch

points, as it does not restrict the branch points to be the corners of some coarse

meta-mesh.

Table 5.1 shows that QuadCover exhibits the smallest edge length variation, at the

cost of higher angular deviation. The angular deviation can be reduced significantly

by discarding the curvature alignment term in the smoothing step, see Sect. 3.2.

But then, more wrinkles in the final quad mesh are introduced where parameter

lines do not follow high curvature.

vertices irreg. vert. RSD edge RSD angle

[Ray 2006] 6355 314 25.0% 10.7%

[Tong 2006] 6576 34 28.3% 12.6%

[Dong 2006] 7202 26 30.8% 7.8%

QuadCover 6535 37 18.2% 14.8%

Table 5.1: The number of total and irregular vertices of the models shown in

Fig. 5.7, as well as the relative standard deviation of their edge lengths and vertex

angles.
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Figure 5.4: Adaptive sizing of triangles. Top: Feline model. Scaling function is

linear along the y-axis (left). The triangles adapt to this varying scale (right). Bot-

tom: Blade model. Frames are scaled by the absolute maximal principal curvature

value.

Figure 5.5: Singularities which are closer than the grid size may force the pa-

rameterization to degenerate locally (left). This artifact can be avoided by either

choosing a finer grid size (middle) or by merging nearby singularities (right), e.g.

as described in Section 3.3.

A comparison with the method from Tong et al. [Tong 2006] is shown in Fig. 5.8.
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Figure 5.6: Triangular remeshing with 23, 65, and 151 singularities.

Figure 5.7: Comparison of remeshing results of the Stanford bunny. Models

were produced by [Ray 2006], [Tong 2006], [Dong 2006] and QuadCover. The

upper histogram next to each model shows the distribution of edge lengths, the

lower histogram represents angle distribution.

Figure 5.8: Comparison of the remeshed hand model, remeshed with [Tong 2006]

(left 3 images) and with QuadCover (right 3 images). The hand model is cour-

tesy of Pierre Alliez. Except from setting preprocessing parameters, no interaction

was involved.
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Triangular Remeshing. For triangular remeshing, Figure 5.9 compares the re-

sults of the foot and Venus models with HexCover with that of [Alliez 2002]

and [Yan 2009]. The frame field for the HexCover parameterization was produced

with the automatic singularity clustering method described in [Nieser 2011a].

Figure 5.9: Comparison of HexCover (right) to those from [Desbrun 2002]

(left) and [Yan 2009] (middle). The histograms show occurring inner angles (on

the X-axis from 0 to π/3. For each model, the scale on the Y -axis is the same.

vertices irreg. vert. RSD edge RSD angle

Foot [Desbrun 2002] 23968 146 24.6% 19.9%

Foot [Yan 2009] 20000 3287 11.2% 12.3%

Foot HexCover 26081 13 10.5% 8.5%

Venus [Desbrun 2002] 6541 38 32.5% 29.1%

Venus [Yan 2009] 6000 1449 16.2% 17.3%

Venus HexCover 5791 36 13.9% 11.4%

Table 5.2: The number of total and irregular vertices of the models shown in

Fig. 5.9, as well as the relative standard deviation of their edge lengths and vertex

angles.

Table 5.2 provides the quality statistics of all tested models and the comparison.

Notice that the HexCover method has better overall triangle aspect ratios (larger

minimum angle, smaller maximum angle, and small standard deviation of angles)
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than [Alliez 2002]. In addition, it tends to produce edge directions that better align

with the features in the mesh (such as along the nose of the Venus).

Mixed Integer Quadrangulation. The mixed integer quadrangulation (MIQ) al-

gorithm [Bommes 2009] is an approach based on QuadCover. The MIQ approach

proposes a different way of generating a frame field from a sparse set of vectors.

After field generation, the MIQ algorithm then also aligns the parameterization to

a guiding frame field by minimizing the energy functional from Eqn. (2.4).

Both approaches consider a similar space of parameterizations, but use a different

representation. The formulation of the MIQ approach uses the parameter values

ϕj(pi) ∈ R2 of all vertices pi in each adjacent triangle tj (6 · |T | many variables).

Since there is huge redundancy, a constraint is defined per edge which assures a con-

stant gap along the edge. The constraints are resolved using Lagrange multipliers,

the system to solve has therefore dimension 6 · |T |+ 2 · |E|.

At this point, the representation used by QuadCover has an advantage since

it explores a minimal set of variables: the gaps wu,k, wv,k ∈ Z and coefficients

ui, vi ∈ R for all regular vertices (see Section 2.4.5). The total number of variables

is 2 · |V |+ 4g − 2 (where g is the genus of the surface). No constraints are needed

since all redundancy is eliminated.

Also the formulation of the mixed integer problem is similar in both approaches:

In MIQ, the integer variables are the parameter values at singularities whereas

QuadCover assures integer gaps. As stated in Theorem 2.4.4, the coordinates of

singularities are uniquely determined by the wu,k, wv,k. Assuring integer parameter

values at singularities is equivalent to assuring integer gaps.

The main difference between both methods is the rounding heuristic for minimizing

the energy under integer constraints. Instead of directly rounding all integer vari-

ables at once as done in QuadCover (see Section 2.4.5), the MIQ solver iterates

between rounding an integer variable and solving the system while rounded integer

variables are held fix.

In general, the MIQ rounding strategy should provide a better approximation to

the solution of the NP-hard integer problem than the direct rounding technique

does. However, all our tests show that the enhancement is relatively little and both

rounding techniques produce very similar results. We conjecture that the reason

behind this is the use of a shortest cut graph G. It appears that shorter paths γk
give the variables wk a more local influence, hence directly rounded integer variables

become more accurate.

On the other side, computing a parameterization with QuadCover is much faster,

since only two linear systems of equations need to be solved. The MIQ algorithm

solves as many systems as there are integer variables (using different matrices each

time). The dimension of the linear system is larger with more redundant variables

and linear constraints. The fast rounding technique of QuadCover is especially

strong if a parameterization is generated several times, e.g. for singularity opti-
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mization as described in Section 3.3.

5.3 Limitations and Future Work

The parameterization approach presented in this thesis is highly robust and provides

parameterizations which are very uniform and smooth by the click of a button.

One main issue is still unsolved which is the problem of flips or overfoldings. If

the frame field contains much curl then the result of the local QuadCover stage

is typically distorted. Similarly, if the vectors of the input field have a small scale

(in order to produce especially coarse parameterizations), then the global Quad-

Cover stage typically introduces distortion when rounding the integer variables.

In both cases, if distortion becomes too high, the image of some triangles under the

parameterization may flip, i.e. change their orientation, and the parameterization

is no longer injective.

Flipped triangles cause problems when a parameterization is used for remeshing.

Up to now, there is no method which guarantees a flip-free parameterization.

A very interesting topic is the generalization of QuadCover to 3D volumes, com-

puting a regular hexahedral mesh from a given tetrahedral mesh (see Fig. 5.10).

A first approach [Nieser 2011b] already defines the proper notion and formulates

the parameterization algorithm CubeCover. However, the generation of suitable

3D frame fields turns out being far more challenging than in two dimensions and

remains an open problem for future work.

Figure 5.10: Inner volume of the rockerarm model, tessellated into hexahedra

with CubeCover.
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Zusammenfassung

Die vorgelegte Arbeit beschäftigt sich mit dem Problem der Parametrisierung von

simplizialen Flächen, d.h. deren Abbildung in die Ebene. Dabei sollen sich die

Parameterlinien an vorgegebenen Richtungsfeldern orientieren, häufig den Haupt-

krümmungsrichtungen der Fläche.

Richtungsfelder sind mehrwertige Funktionen. In dieser Arbeit wird die Äquiva-

lenz zu einem (ein-wertigen) Vektorfeld auf einer Riemannschen Fläche gezeigt und

damit die theoretische Grundlage für das QuadCover-Verfahren gelegt.

QuadCover generiert automatisch globale Parametrisierungen von beliebigen zwei-

dimensionalen polyedrischen Mannigfaltigkeiten. Das resultierende Gitter aus Pa-

rameterlinien ist global stetig und erlaubt eine Neuvernetzung der Fläche in ein

hochqualitatives Netz aus reinen Vierecken, Dreiecken oder Sechsecken.

Eine weitere Anwendung von QuadCover ist das Texturieren von Oberflächen.

Diese kann mit beliebigen kachelbaren Mustern überzogen werden. Dabei muss

die Parametrisierung mit der Rotationssymmetrie des Musters kompatibel sein. In

der Arbeit wird gezeigt, wie mithilfe von QuadCover eine Fläche mit Vierecks-,

Sechsecks-, Dreiecks- oder Streifenmuster gekachelt werden kann.

Ein Benutzer hat häufig spezielle Vorstellungen an eine gute Parametrisierung, so

dass es notwendig ist, dass der Benutzer in den Parametrisierungsprozess eingreifen

kann. QuadCover ermöglicht das manuelle Platzieren und Verschieben von Singu-

laritäten auf der Fläche. Desweiteren können Kurven auf der Fläche vorgegeben

werden, die geometrische Nebenbedingungen definieren, d.h. die Parametrisierung

richtet sich exakt an der gegebenen Kurve aus. Ausserdem kann durch Vorgabe

von kombinatorischen Nebenbedingungen Einfluss auf die Netztopologie genommen

werden.
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