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Dynamical simulation via quantum machine learning with provable generalization
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Much attention has been paid to dynamical simulation and quantum machine learning (QML) independently
as applications for quantum advantage, while the possibility of using QML to enhance dynamical simulations has
not been thoroughly investigated. Here we develop a framework for using QML methods to simulate quantum
dynamics on near-term quantum hardware. We use generalization bounds, which bound the error a machine
learning model makes on unseen data, to rigorously analyze the training data requirements of an algorithm within
this framework. Our algorithm is thus resource efficient in terms of qubit and data requirements. Furthermore,
our preliminary numerics for the XY model exhibit efficient scaling with problem size, and we simulate 20 times
longer than Trotterization on IBMQ-Bogota.
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I. INTRODUCTION

The exponential speedup of dynamical quantum simulation
provided the original motivation for quantum computers [1,2].
In the long term, large-scale quantum simulations are
expected to transform fields such as materials science, chem-
istry, and high-energy physics. Nearer term, since efficient
classical dynamical simulation methods are lacking (in con-
trast to those for computing static quantum properties like
electronic structure), dynamical simulation may plausibly be
one of the first applications to see quantum advantage.

Achieving near-term quantum advantage for dynamics
will require long-time simulations on noisy intermediate-
scale quantum (NISQ) hardware [3]. Standard methods like
Trotterization grow the circuit depth in proportion to the
simulation time, ultimately running into the decoherence
time of the NISQ device [4,5]. Fast-forwarding methods for
long-time simulations on NISQ devices have recently been
introduced [6–9], but are limited by various inefficiencies
(e.g., qubit and data requirements). Here, we address these
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inefficiencies, potentially opening the door for near-term
quantum advantage.

In parallel to these developments, quantum machine
learning (QML) [10,11] has emerged as another potential
application for quantum advantage [12]. At its core, QML
involves using classical or quantum data to train a parame-
terized quantum circuit. A number of promising paradigms
for training are being pursued, including variational quantum
algorithms using training data [13], quantum generative ad-
versarial networks [14,15], and quantum kernel methods [11]
(to name just a few). Here we seek to combine the potential
of QML and dynamical simulation, by leveraging recent ad-
vances in QML to reduce resource requirements for dynamical
simulation.

To assess the scalability of QML methods, as well as their
applicability to real world problems, it is critical to under-
stand their training data requirements, quantified by so-called
generalization bounds [16–29]. These provide bounds on the
error a machine learning model makes on unseen data, as
a function of the amount of data the model is trained on
and of the training performance. In this paper, we assess the
training data requirements of QML approaches to dynamical
simulation.

Our analysis provides the groundwork for a QML-inspired
algorithm for dynamical simulation that we call the “resource-
efficient fast-forwarding” algorithm (REFF). This algorithm
uses training data to learn a circuit that allows for fast for-
warding, where long-time simulations can be performed using
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a fixed-depth circuit. The REFF algorithm is efficient in the
amount of training data required. It is also qubit efficient in the
sense that simulating an n-qubit system only requires n qubits,
in contrast to earlier paper [6], which required 2n qubits. We
use generalization bounds to rigorously lower bound the final
simulation fidelity as a function of the amount of training
data used, the optimization quality (i.e., final cost obtained),
and the simulation time. This analysis is complemented by
numerical implementations, as well as a demonstration of our
algorithm on IBMQ-Bogota.

II. GENERAL FRAMEWORK

Given a set of initial states Sρ and an n-qubit Hamiltonian
H , the goal of dynamical simulation is to predict the evolution
of a set of observables SO up to time T . A promising approach
in the NISQ era is to use QML to fit a time-dependent quan-
tum model that can be extrapolated to long-simulation times
using a short-depth quantum circuit [6–8,30]. This is valuable
in the NISQ era since high noise levels constrain the depth
of circuits that may be simulated. More concretely, the aim is
to find some time-dependent quantum neural network (QNN)
Vt (α), and optimized parameters αopt, such that for any time
t < T ,

Tr[Vt (αopt )ρVt (αopt )
†O] ≈ Tr[e−iHtρeiHt O] (1)

for any ρ ∈ Sρ and O ∈ SO. Possible time-dependent QNNs
include those formed from the Newton-Cartan decomposition
of H [30,31], or a diagonalization of H [7,32,33], or of the
propagator for short-time evolution [6,8]. Figure 1 depicts this
framework.

In training Vt (α), the most appropriate choice in training
data will depend on the set of initial states Sρ and observables
SO, but typically will be generated by the properties of the
system at short times. For example, if one is interested in
only knowing the evolution of a single observable, the training
data could consist of the evolution of this observable for
some subset of the target states up to some short time �t .
Alternatively, if one is interested in simulating the evolution
of any possible n qubit observable, it would be natural to
use training data consisting of N pairs of input-output states
D(N ) = {(|� ( j)〉, |�( j)〉)}N

j=1 where the output states are gen-
erated by evolving the input states for some short time, i.e.,
|�( j)〉 = U�t |� ( j)〉 where U�t ≈ e−iH�t is a gate sequence
(such as a Trotterization) that approximates the true time
evolution.

The training data is initially used to train the QNN to
reproduce the properties of the system at short times, i.e., to
ensure that Eq. (1) holds for times t � �t . Crucially, while
trained on a subset of the target states and/or observables, the
hope is that the learned QNN generalizes to the unseen target
data, i.e., it well reproduces Eq. (1) for short times (t � �t)
for any ρ ∈ Sρ and O ∈ SO. The properties of the system at
some longer time T can then be extrapolated via VT (αopt ).

Generalization bounds quantify the performance of a QNN
on unseen data, after optimization on a limited training set.
In particular, the generalization error measures how much
the performance on new data differs from the performance
on the training data. Reference [24] has shown that if the
parameterized quantum circuit has K trainable local gates, the

FIG. 1. QML framework for dynamical simulation. Our general
framework (left panel) consists of using quantum training data, e.g.,
composed of input-output state pairs and/or input-output observable
pairs, to train a time-dependent QNN Vt (α). Typically the training
occurs at a short time �t , resulting in the trained QNN, V�t (αopt ).
The evolution of the system at some longer time T is extrapo-
lated via VT (αopt ). The resource efficient fast-forwarding (REFF)
algorithm (right panel) is an illustrative example of this framework.
The training data consists of Haar-random product states as inputs
and then the time-evolved states as outputs, i.e., evolved under U�t ≈
exp(−iH�t ). The time-dependent QNN is a parameterized quantum
circuit in a diagonal form, W (θ)Dt (γ )W †(θ). Hence training the
QNN amounts to approximately diagonalizing the short-time evo-
lution U�t , resulting in the trained QNN, W (θopt )D�t (γopt )W

†(θopt ).
This model can simulate the evolution of arbitrary input states up to
time T via W (θopt )DT (γopt )W

†(θopt ).

generalization error scales at worst as Õ(
√

K/N ). Crucially, as
established in Ref. [26], these training states may be product
states. Below we use these quantum generalization bounds to
quantify the performance of dynamical simulation via QML.

REFF algorithm. For the remainder of this letter, we focus
on a time-dependent QNN of the following form:

Vt (α) = W (θ)Dt (γ )W †(θ), (2)

where α = (θ, γ ) and W (θ) is a time-independent unitary.
Dt (γ ) is a time-dependent unitary that is diagonal in the
standard basis. Since D is diagonal, M applications of Dt are
equivalent to one application of DMt , i.e., Dt (γ )M = DMt (γ )
for any positive integer M. We will train Vt (α) at time t = �t
to obtain the trained QNN, V�t (αopt ). If this well approximates
the target unitary, i.e., V�t (αopt ) ≈ U�t , then we have learned
an approximate diagonalization of U�t and the long-time
simulation e−iHT can be approximated using the fixed depth
circuit VT (αopt ) [6,8]. Below we formally bound the fidelity
between the simulated evolution and the exact evolution.

In what follows we consider the (most difficult) task of
learning the dynamics for all input states and all observables,
i.e., where Sρ is the whole Hilbert space and SO is the set of
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all positive operator valued measure (POVM) elements. (We
remark, however, that our analysis can be extended to dynam-
ics within subspaces, such as subspaces that preserve certain
symmetries.) For this task, as discussed above, a natural
choice in training data would be N pairs of input-output states
D(N ) = {(|� ( j)〉,U�t |� ( j)〉)}N

j=1, where each input state is
evolved by a Trotter operator of fixed �t . A simple choice for
the input training states |� ( j)〉 would be to use (Haar) random
n-qubit states. However, such random states will typically be
highly entangled, requiring deep circuits to prepare, and thus
are unsuitable for NISQ hardware. A more promising ap-
proach is to use tensor products of (Haar) random single-qubit
states, which are preparable using only single-qubit gates, and
so induce less noise. Thus we suppose that U�t is learned
using a set of product input states, i.e., that the training data
has the form

DP(N ) := {(∣∣� ( j)
P

〉
,
∣∣�( j)

P

〉)}N

j=1 with
∣∣� ( j)

P

〉 = n⊗
i=1

∣∣ψ ( j)
i

〉
,

(3)

where the states {|ψ ( j)
i 〉}N

i=1 are independently drawn from the
single-qubit Haar distribution [34].

There is freedom in how exactly this training data is used
to learn U�t but a natural approach would be to minimize the
distance between the target output state |�( j)

P 〉 = U�t |� ( j)
P 〉

and the hypothesized output state V�t (α)|� ( j)
P 〉, averaged over

the N states in the training set. That is, we minimize the
following cost:

CG
DP (N )(α) = 1

4N

N∑
j=1

∥∥∣∣�( j)
P

〉〈
�

( j)
P

∣∣− V
∣∣� ( j)

P

〉〈
�

( j)
P

∣∣V †
∥∥2

1,

(4)

where for compactness we write V�t (α) ≡ V and ‖ · ‖1 de-
notes the trace norm. We can rewrite this cost in terms of the
fidelity as

CG
DP (N )(α) = 1

N

N∑
j=1

(
1 − ∣∣〈�( j)

P

∣∣V ∣∣� ( j)
P

〉∣∣2), (5)

which can be measured on a quantum computer using the
Loschmidt echo circuit [28] shown in Appendix C.

While natural and intuitive, Eq. (5) is a global cost [35]
since it is measured via the global measurements 1 −
|� ( j)

P 〉〈� ( j)
P | on all n qubits of the states V †|�( j)

P 〉〈�( j)
P |V for

j = 1, . . . , N . Hence, it encounters exponentially vanishing
gradients, known as barren plateaus [35–46]. To mitigate such
trainability issues, we advocate instead training using a local
version of the cost of the form

CL
DP (N )(α) = 1

N

N∑
j=1

Tr
[
V †
∣∣�( j)

P

〉〈
�

( j)
P

∣∣V O( j)
L

]
, (6)

with O( j)
L := 1 − 1

n

∑n
i=1 |ψ ( j)

i 〉〈ψ ( j)
i | ⊗ 1i, where i denotes

the set of all qubits except for i. This cost is faithful [47], i.e.,
vanishing if and only if U�t = V , but crucially is also trainable
as long as the ansatz is not too deep [35].

We call this algorithm, which uses the local product state
cost, Eq. (6), to learn a diagonalization QNN of the short-

time evolution unitary of a system and thereby fast forward
its evolution, the resource-efficient fast-forwarding (REFF)
algorithm. The algorithm is both efficient in terms of qubit
usage (requiring only n qubits to simulate an n-qubit system)
and, as shown below, in terms of quantum data usage.

III. SIMULATION ERROR BOUNDS

An operationally meaningful measure of the quality of the
simulation via VT (αopt ) is given by the average simulation
fidelity [48]

F (αopt, T ) =
∫

ψ

|〈ψ |VT (αopt )
†e−iHT |ψ〉|2 dψ, (7)

where the integral is over states |ψ〉 chosen according to the
n-qubit Haar measure. In this section, we lower bound the
final simulation fidelity F (αopt, T ) for the REFF algorithm,
allowing for an arbitrary optimization procedure. Our bound
depends on the time simulated T , the amount of training data
N , the learning error over the training data [i.e., the minimum
cost achieved CG

DP (N )(αopt ) or CL
DP (N )(αopt )], and the error in-

curred from approximating the short-time evolution e−iH�t

with the gate sequence U�t , that is ε = ‖U�t − e−iH�t‖2. The
Trotter error can be reduced by using a higher-order approxi-
mation of the Trotter unitary.

Theorem 1 (Simulation error for product-state training—
Informal). Consider a QNN Vt (α) given by Eq. (2) and
composed of K parameterized local gates. When trained
with the global cost CG

DP (N ) using training data DP(N ), the
simulation fidelity after time T = M�t , for a positive integer
M, satisfies

F (αopt, T ) � 1−8M2
[
ε̃2 + CG

DP (N )(αopt )
]− O

(
M2 f (K, N )

)
,

(8)

with high probability over the choice of random product state

data. Here f (K, N ) :=
√

K log(K )
N and ε̃ := ε

2
√

(2n+1)
with ε =

‖U�t − e−iH�t‖2 the Trotter error.
Alternatively, if the local cost CL

DP (N ) is used for train-
ing, Eq. (8) holds with CG

DP (N )(αopt ) → nCL
DP (N )(αopt ) and

O(M2 f (K, N )) → O(nM2 f (K, N )).
Theorem 1 implies that the fast-forwarded simulation fi-

delity deviates from 1 at worst quadratically in the number
of fast-forwarding steps M. That is, if we can predict the
short-time dynamics, we should also be able to approxi-
mately predict the longer-time dynamics. We highlight that
Theorem 1 requires CG

DP (N )(αopt ) to be smaller than O( 1
M2 );

this condition is that a high-fidelity simulation for a longer
time requires the compilation to be correspondingly more
accurate. Moreover, inverting Eq. (8) provides a means of
bounding the number of product state training pairs and the
minimal cost function sufficient to guarantee a given desired
simulation fidelity and total simulation time.

In particular, Theorem 1 implies that a high fidelity may
be achieved whenever the number of training pairs N is effec-
tively of the same order as M4Kn2, i.e., scales polynomially
in the product of the number of fast-forwarding steps, the
number of parameters used for the diagonalization, and the
system size. Thus, the success of this QML-inspired approach
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to simulation depends critically on the number of parameters
required to approximately diagonalize the short-time evolu-
tion of a system.

For example, Ref. [49] analytically constructs the circuits
required to exactly diagonalize the Ising chain. These circuits,
which can simulate the XY model and Kitaev’s honey-comb
lattice, require n gates for the diagonal matrix D and O(n2)
gates for W . Thus, assuming the correct discrete structure is
known (or can be approximately found variationally), such
models are captured by ansätze with only a polynomial num-
ber of parameters. This provides hope that other systems may
similarly be diagonalized with favorable parameter number
scalings.

IV. IMPLEMENTATIONS

In practice, even less training data than that suggested
by our theoretical bounds may suffice. Here we numeri-
cally investigate the minimal training data required for two
oft-studied Hamiltonians. We train on random product input
states, and to simplify notation we write CL/G

REFF ≡ CL/G
DP (N )(α).

To evaluate the quality of the learned diagonalization and the
resulting simulation, we use the average fidelity FM between
the learned diagonalization and a second-order Trotterized
unitary U M

�t . [This is similar to Eq. (7), but with U M
�t replacing

e−iHT .]
Let us consider the 4-qubit Heisenberg Hamiltonian H =∑4
i=1 Si · Si+1 with periodic boundary conditions. For a set

of input states composed of 3, 4, or 5 Haar-random prod-
uct states, we minimized the CG

REFF cost and simultaneously
tracked the average gate fidelity between the ansatz [50] and
the Trotter unitary (with �t = 0.1), as shown in Fig. 2(a).
The optimization was repeated for 10 different sets of train-
ing data, from which we computed the geometric mean and
standard deviation (arithmetic mean and standard deviation
in logspace). We found that five input states were sufficient
to perform a full Hilbert space diagonalization, with all 10
runs of five training states achieving 1 − F1 < 10−6 once
CG

REFF had reached 10−8. As shown in the inset, the QNN
trained with k = 5 states generalized well, producing a long-
time high-fidelity simulation of the Hamiltonian evolution. To
give evidence for the wider applicability of the algorithm, we
present further numerical simulations in Appendix C of REFF
applied to two systems exhibiting frustrated magnetism.

Next, we study the scaling with system size of the num-
ber of training states required to simulate the XY model.
Figure 2(b) shows the results of using REFF to diagonalize
and fast forward the XY Hamiltonian, H =∑n−1

i=1 XiXi+1 +
YiYi+1 with open boundary conditions, for n ∈ {4, 6, . . . , 12}.
Here we use the local training cost, Eq. (6), to help miti-
gate the exponential suppression of gradients as the system
size grows due to barren plateaus. In all system sizes tested,
as shown by the overlap of the lines and markers, only a
single training state was required to diagonalize over the en-
tire Hilbert space. The inset of Fig. 2(b) indicates that the
final simulation error, as measured by 1 − FM , scales sub-
quadratically with time, as predicted. In addition, we observe
efficient (i.e., polynomial) scaling with n for the gate count
required for diagonalization. For further elaboration on this
point, and as well as additional implementation details, see

FIG. 2. Numerical simulations. (a) REFF is used to diagonalize
the 4-qubit Heisenberg Hamiltonian with periodic boundary condi-
tions. Only five Haar-random product training states are required to
generalize over the whole Hilbert space, measured by the decrease
in simulation infidelity 1 − F1. The inset shows that the average
fidelity FM ≡ F (αopt, M�t ) in this case remains over 0.95 for 2000
time steps. (b) REFF is applied to increasing sizes of the XY model.
For all sizes tested, a single Haar-random product training state was
sufficient to achieve a machine precision simulation infidelity. For
each system size, the ansatz is saved upon reaching CL

REFF = 10−14

and used to fast forward the evolution, as shown in the inset.

Appendix C. We note that our simulation fidelities are com-
puted with respect to the Trotterized unitary, to quantify the
quality of the learning of the target unitary. The Trotterization
has an associated Trotter error that will cause a deviation from
the true dynamics of the Hamiltonian; however, increasing
the order of the Trotter approximation can arbitrarily decrease
this error. This effect on the simulation fidelity is numerically
explored further in Appendix C.

To demonstrate the suitability of REFF for near-term hard-
ware, we implemented REFF to diagonalize and fast forward
a 2-qubit spin chain, described by the XY Hamiltonian. The
decrease in the noise-free cost as the optimization progresses
shows the algorithm successfully learning a diagonalization
for the Hamiltonian, and the separation between the noisy cost
measured on the quantum computer and the noise-free cost
computed classically demonstrates the noise resilience of the
algorithm. The clear alignment between CG

REFF and 1 − F1 in
Fig. 3(a) shows that, whilst only using a single unentangled
training state, a full approximate diagonalization has been
successfully learned. This then enables the high-fidelity fast
forwarding shown in Fig. 3(b). Namely, for random input
states we achieved, on average, a fidelity of 0.8 for 94 time
steps [51]. This is a factor of 23.8 improvement on the stan-
dard Trotter method, which has a fidelity of less than 0.8 after
4 time steps.

V. DISCUSSION

In this paper, we introduced a framework for leveraging
the power of QML for dynamical quantum simulations. The
core idea is that quantum training data may be used to train a
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FIG. 3. Quantum hardware implementation. (a) The 2-qubit XY
Hamiltonian is diagonalized via REFF on ibmq_bogota using 216

measurement shots per circuit. The noisy CG
REFF cost is measured on

ibmq_bogota, whereas the noise-free CG
REFF cost and 1 − F1 are com-

puted classically. (b) After training, the fast-forwarded performance
is compared to the iterated Trotter method for five Haar-random
product states and we plot the mean and standard deviations.

time-dependent QNN, which can then predict the evolution of
the properties of the target system at long times using a short-
depth circuit. By way of example, we introduced the REFF
algorithm, which uses training data composed of product-state
inputs and corresponding time-evolved outputs to learn an
approximate diagonalization of the short-time evolution of
the system. We showed that generalization bounds provide
a tool to rigorously ground this QML-driven approach to
quantum simulation. Specifically, for REFF we proved that
a high-fidelity simulation may be achieved with a number of
training pairs N that scales polynomially in the product of the
number of fast-forwarding steps, the number of parameters of
the QNN, and the system size.

We stress that we do not claim to prove that it will always
be possible to successfully train. Indeed, no fast-forwarding
theorems [52] imply that this will not always be possible.
Nonetheless, we are optimistic that it will be possible in
certain cases of interest (for a discussion see Appendix Note
5 of Ref. [6]). To support this, our approach is successfully
employed in a quantum hardware demonstration, numerical
simulations of frustrated models and large simulations for the
XY model. Further work will investigate methods for how to
construct diagonalizing circuits for more interesting interact-
ing Hamiltonians.

While our error analysis and implementations focus on
REFF, the framework is much more general. In particular,
the product state compilation method advocated here is highly
transferable. Important future steps include investigating alter-
native ansätze for time-dependent QNNs and alternative forms
of training data. The most appropriate choice of training data
is dictated partially by the states and observables one wants
to simulate and partially by what is available. For example,
to simulate only within a particular subspace, one may use
only training data from that subspace or attempt to constrain
the ansatz to exploring a subspace using ideas from geometric
QML [53,54]. How to do so most efficiently remains an open
question.
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APPENDIX A: GENERALIZATION BOUNDS FOR
VARIATIONAL QUANTUM MACHINE LEARNING

AND UNITARY COMPILING

Here, we recall the theoretical results of Ref. [24]
and discuss how they apply to our setting with quantum
training data. Mathematically, a quantum neural network
(QNN) (or variational quantum machine learning model)
is a parametrized completely positive and trace-preserving
(CPTP) map EQNN

α (·), where the parameter vector α = (k, θ)
consists of continuous parameters θ and potentially also of
discrete parameters k. Importantly, the parametrization is de-
termined by the structure of the QNN, e.g., by the layout of the
underlying quantum circuit and the chosen parametrization of
the gates therein. The performance of such a QNN on a data
point (|�〉, |�〉) is evaluated by a cost/loss function

�(α; |�〉, |�〉) = Tr
[
Oloss

|�〉,|�〉EQNN
α (|�〉〈�|)], (A1)

with a Hermitian loss observable Oloss
|�〉,|�〉, which may depend

on the data point.
When using a QNN for machine learning purposes, given

a data set D = D(N ) = {(|� ( j)〉, |�( j)〉)}N
j=1 consisting of N

input-output pairs, we train the parameters α in such a way as
to achieve small average cost on the training data. The latter
is given as

CD(N )(α) = 1

N

N∑
j=1

�(α; |� ( j)〉, |�( j)〉) (A2)

and is also often called the training error of the QNN with
parameter setting α. To analyze the performance of the QNN
beyond the training data, we consider the prediction error,
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given by the expected cost

CP(α) = E(|�〉,|�〉)∼P[�(α; |�〉, |�〉)], (A3)

where P is the data-generating probability distribution. In
using the QNN, our goal is to identify a parameter set-
ting that achieves small prediction error. However, as the
data-generating distribution is typically unknown, we cannot
directly evaluate this quantity. Instead, a common strategy
in machine learning is to attempt to achieve small training
error instead. Justifying this strategy requires bounding the
generalization error gen(α) = CP(α) − CD(N )(α).

In this paper, we make use of the following two general-
ization guarantees for QNNs. The first applies to QNNs that
have only continuous parameters, but no discrete parameters
allowing for training the structure of the QNN:

Theorem 2 ([24], Theorem 11). Let EQNN
θ

(·) be a QNN
with a fixed architecture consisting of K parameterized lo-
cal CPTP maps and an arbitrary number of nontrainable,
global CPTP maps. Let P be a probability distribution over
input-output pairs. Suppose that, given training data D(N ) =
{(|� ( j)〉, |�( j)〉)}N

j=1 of size N , with the (|� ( j)〉, |�( j)〉) drawn
i.i.d. according to P, our optimization yields the parameter
setting θ∗ = θ∗(D(N )).

Then, with probability at least 1 − δ over the choice of i.i.d.
training data D(N ) of size N according to P,

CP(θ∗)−CD(N )(θ
∗)�O

(
Closs

(√
K log (K )

N
+
√

log(1/δ)

N

))
,

(A4)

with Closs = sup|�〉,|�〉 ‖Oloss
|�〉,|�〉‖.

To also allow for optimizing over the structure of the quan-
tum circuit used in the QNN, we use the following:

Theorem 3 ([24], Corollary 3). Let EQNN
α (·) be a QNN

with a variable structure. Suppose that, for every κ ∈ N,
there are at most Gκ ∈ N allowed structures with exactly
κ parameterized local CPTP maps and an arbitrary number
of nontrainable, global CPTP maps. Let P be a probabil-
ity distribution over input-output pairs. Suppose that, given
training data D(N ) = {(|� ( j)〉, |�( j)〉)}N

j=1 of size N , with the
(|� ( j)〉, |�( j)〉) drawn i.i.d. according to P, our optimization
yields a (data-dependent) structure with K = K (S) parame-
terized 2-qubit CPTP maps and the parameter setting α∗ =
α∗(D(N )).

Then, with probability at least 1 − δ over the choice of i.i.d.
training data D(N ) of size N according to P,

CP(α∗) − CD(N )(α
∗)

� O
(

Closs

(√
K log (K )

N
+
√

log GK

N
+
√

log(1/δ)

N

))
,

(A5)

with Closs = sup|�〉,|�〉 ‖Oloss
|�〉,|�〉‖.

As observed in Ref. [24], Theorems 2 and 3 can be ap-
plied to obtain rigorous guarantees for variational unitary
compilation. In this setting, training examples are of the form
(|�〉, |�〉), where |�〉 = U |�〉 with U the (unknown) target
unitary to be learned. The loss of a unitary QNN VQNN

α (·) =

Vα(·)V †
α on the example (|�〉, |�〉) is

�(α; |�〉, |�〉) = 1
4

∥∥|�〉〈�| − VQNN
α (|�〉〈�|)∥∥2

1 (A6)

= 1 − Tr
[|�〉〈�| · VQNN

α (|�〉〈�|)] (A7)

= 1 − Tr[V †
α |�〉〈�|Vα · |�〉〈�|]. (A8)

For convenience, we change the perspective to the Heisenberg
picture. That is, given a training data point (|�〉, |�〉), we
think of |�〉 as the input state to the unknown unitary U † and
of |�〉 as the output state. Then, we see that the loss above is
of the form of Eq. (A1), with loss observable

Oloss
|�〉,|�〉 = 1 − |�〉〈�|, (A9)

which gives

�(α; |�〉, |�〉) = Tr
[
V †

α |�〉〈�|Vα · Oloss
|�〉,|�〉

]
. (A10)

Correspondingly, given a training data set D(N ) =
{(|� ( j)〉, |�( j)〉)}N

j=1 of size N , the training loss takes the
form

CD(N )(α) = 1

N

N∑
j=1

Tr
[
V †

α |�( j)〉〈�( j)|Vα · Oloss
|� ( j)〉,|�( j)〉

]
(A11)

= 1

N

N∑
j=1

(1 − ∣∣〈�( j)|Vα|� ( j)〉∣∣2). (A12)

The expected cost is given by

CP(α) = E|�〉∼P[Tr[V †
α |�〉〈�|Vα · Oloss

|�〉,|�〉]] (A13)

= 1 − E|�〉∼P[|〈�|Vα|�〉|2], (A14)

where |�〉 = U |�〉 and P is the data-generating measure. In
this setting, the guarantees of Theorems 2 and 3 become:

Corollary 1. Let VQNN
θ

(·) be a unitary QNN with a fixed
architecture consisting of K parameterized local unitaries and
an arbitrary number of nontrainable, global unitaries. Let P
be a probability distribution over input-output pairs. Suppose
that, given training data D(N ) = {(|� ( j)〉, |�( j)〉)}N

j=1 of size
N , with the |� ( j)〉 drawn i.i.d. according to P and |�( j)〉 =
U |� ( j)〉, our optimization yields the parameter setting θ∗ =
θ∗(D(N )).

Then, with probability at least 1 − δ over the choice of i.i.d.
training data D(N ) of size N according to P and U ,

CP(θ∗) − CD(N )(θ
∗) � O

(√
K log (K )

N
+
√

log(1/δ)

N

)
.

(A15)

Again, this result has a variant for variable structure QNNs:
Corollary 2. Let VQNN

α (·) be a unitary QNN with a vari-
able structure. Suppose that, for every κ ∈ N, there are at
most Gκ ∈ N allowed structures with exactly κ parameter-
ized local unitaries and an arbitrary number of nontrainable,
global unitaries. Let P be a probability distribution over
input-output pairs. Suppose that, given training data D(N ) =
{(|� ( j)〉, |�( j)〉)}N

j=1 of size N , with the |� ( j)〉 drawn i.i.d.
according to P and |�( j)〉 = U |� ( j)〉, our optimization yields
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a (data-dependent) structure with K = K (S) parameterized lo-
cal unitaries maps and the parameter setting α∗ = α∗(D(N )).

Then, with probability at least 1 − δ over the choice of i.i.d.
training data D(N ) of size N according to P and U ,

CP(α∗) − CD(N )(α
∗)

� O
(√

K log (K )

N
+
√

log GK

N
+
√

log(1/δ)

N

)
. (A16)

Note that we can define the loss function, and thus the train-
ing and expected cost, also using different loss observables
Oloss

|� ( j)〉,|�( j)〉 in Eqs. (A10), (A11), and (A13). As Theorems 2
and 3 allow for such general loss observables, a change of this
kind does not alter the statements of Corollaries 1 and 2. We
will make use of this observation in Appendix B 2 to define a
suitable local cost.

APPENDIX B: PROOFS OF RESULTS PRESENTED
IN THE MAIN TEXT

In this Appendix, we give complete proofs for all analytical
results presented in the main text. We start in Appendix B 1
by providing the error analysis for training using fully Haar
random n-qubit training states. These training states will typi-
cally be highly entangled and so hard to prepare on near term
hardware. While we do not advocate this training strategy in
practice, the error analysis for this case is simpler and thus acts
as preparation for our subsequent analysis. In Appendix B 2,
we provide the error analysis for the approach proposed in
the main text whereby the training data is composed of tensor
products of locally random states.

1. Training with Haar-random n-qubit input states

Haar-random n-qubit states provide a natural ensemble for
generating data on which to train or test our ansatz V�t (α)
for the short-time evolution. When working in the setting
of unitary compilation described in Appendix A, choosing
the n-qubit Haar measure as data-generating distribution in
Eq. (A11) leads to training data of the form

DE(N ) = {(|� ( j)〉, |�( j)〉)}N
j=1 = {(|� ( j)〉,U |� ( j)〉)}N

j=1,

(B1)

where the |� ( j)〉 are i.i.d. Haar-random n-qubit states, typ-
ically highly entangled, and the |�( j)〉 = U |� ( j)〉 are the
corresponding output states under the (approximate short-
time) evolution U = U�t that is to be learned. Plugging such
a data set DE(N ) into Eq. (A11), we obtain the corresponding
training cost

CG
DE (N )(α) = 1

N

N∑
j=1

Tr
[
V †

α |�( j)〉〈�( j)|Vα · Oloss
|� ( j)〉,|�( j)〉

]
(B2)

= 1 − 1

N

N∑
j=1

|〈� ( j)|U †V�t (α)|� ( j)〉|2. (B3)

According to Eq. (A13), the corresponding expected cost is

CG
Haarn

(α) = E|�〉∼Haarn

[
Tr
[
V�t (α)†|�〉〈�|V�t (α) · OG

|�〉,|�〉
]]

(B4)

= 1 − E|�〉∼Haarn [Tr[U |�〉〈�|U †V�t (α)|�〉〈�|V�t (α)†]],

(B5)

where the expectation is with respect to states drawn from the
n-qubit Haar measure, and |�〉 = U |�〉, for U the approxi-
mate short-time evolution unitary to be learned.

There is another natural candidate for measuring the dis-
tance between two unitaries, and thus for evaluating the cost
in our compilation task. Namely, we could also consider the
Hilbert-Schmidt test (HST) cost, arising from the Hilbert-
Schmidt inner product, given by

CHST (U,V�t (α)) = 1 − 1

d2
|Tr[U †V�t (α)]|2, (B6)

where we write d = 2n. This cost was proposed for the vari-
ational compilation of unitaries in Ref. [47]. In fact, the HST
cost and the cost based on an expected fidelity over the n-qubit
Haar measure are closely related:

Lemma 1. When taking a Haar-random n-qubit state as test
state, the true cost for the time step �t takes the form

CG
Haarn

(α) = 1 − F (U,V�t (α)) = d

d + 1
CHST(U,V�t (α)).

(B7)
Here, we denote by

F (U,V�t (α)) := E|�〉∼Haarn [|〈�|U †V�t (α)|�〉|2] (B8)

the average fidelity over Haar-random inputs.
Proof. By definition of the cost function CG

Haarn
(α) and the

average fidelity F (U,V�t (α)), we directly have CG
Haarn

(α) =
1 − F (U,V�t (α)). The relation

CHST(U,V ) = 1 − 1

d2
|Tr[U †V ]|2 = d + 1

d
(1 − F (U,V ))

(B9)

can, e.g., be found in Refs. [47,56,57]. �
Lemma 1 effectively allows us to freely choose in our

analysis whether we work with CG
Haarn

(α), F (U,V�t (α)), or
CHST(U,V�t (α)). With this freedom, we can now establish a
guarantee on the overall simulation fidelity for an evolution
along a Hamiltonian H for time T , given by

F (αopt, T ) = F (e−iT H ,VT (αopt )), (B10)

when using a QNN with K trainable local gates to learn
the approximate short-time evolution. We denote by M the
number of time steps of size �t needed to achieve the over-
all time T , i.e., T = M · �t . Moreover, as in the main text,
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we denote by

ε = ‖U�t − e−iH�t‖2, (B11)

the short-time approximation error (measured according to
the Schatten 2-norm) incurred by approximating e−iH�t with
U�t . With this notation in place, we state and prove our first
guarantee:

Theorem 4 [Simulation error (entangled training, global
cost)]. For a QNN V�t (α) with K parameterized local gates,
with probability � 1 − δ over the choice of training data
DE(N ) = {(|�i〉,U |�i〉)}N

i=1, with the |�i〉 independent
Haar-random n-qubit states and U = U�t the unknown

approximate short-time evolution unitary, the total simulation
fidelity satisfies

F (αopt, M · �t ) � 1 − 2M2

(
ε2

d + 1
+ 2CG

DE (N )(αopt )

)

− O
(

M2

(√
K log (K )

N
+
√

log(1/δ)

N

))
,

(B12)

where αopt denotes the final parameter setting after training.
Proof. By Theorem 2, with probability � 1 − δ over the

choice of training data DE(N ) = {(|�i〉,U |�i〉)}N
i=1, with

the |�i〉 independent Haar-random n-qubit states, the final

parameter setting αopt satisfies

CG
Haarn

(αopt ) � CG
DE (N )(αopt ) + O

(√
K log (K )

N
+
√

log(1/δ)

N

)
. (B13)

Once we recall from Lemma 1 that CG
Haarn

(αopt ) = d
d+1CHST(U,V�t (αopt )), we see that the above gives a bound on the HST

cost of the learned short-time evolution in terms of the training cost on N Haar-random n-qubit states, which holds with high
probability. Namely, with probability � 1 − δ,

CHST(U,V�t (αopt )) �
d + 1

d
CG
DE (N )(αopt ) + O

(
d + 1

d

(√
K log (K )

N
+
√

log(1/δ)

N

))
. (B14)

Next, we make use of the behavior of the HST cost under iterated applications of unitaries, which it inherits from the Schatten
2-norm. Namely, according to Eq. (S20) of Ref. [6], we have√

1 −
√

1 − d + 1

d
(1 − F (αopt, M · �t )) � M√

2d
ε + M

√
1 −√1 − CHST(U,V�t (αopt ). (B15)

Rearranging this inequality, and applying both
√

1 − x � 1 − x for x ∈ [0, 1] and (a + b)2 � 2(a2 + b2) for a, b ∈ R, we can
conclude

F (αopt, M · �t ) � 1 − 2M2

d + 1
[ε2 + 2d · CHST(U,V�t (αopt ))], (B16)

where ε denotes the short-time approximation error as defined above. Now, we can plug in the bound from Eq. (B14) and obtain

F (αopt, M · �t ) � 1 − 2M2

d + 1

[
ε2 + 2d ·

(
d + 1

d
CG
DE (N )(αopt ) + O

(
d + 1

d

(√
K log (K )

N
+
√

log(1/δ)

N

)))]
(B17)

= 1 − 2M2

(
ε2

d + 1
+ 2CG

DE (N )(αopt )

)
− O

(
M2

(√
K log (K )

N
+
√

log(1/δ)

N

))
, (B18)

which is the claimed bound. �
Theorem 4 tells us: When using a QNN to learn the ap-

proximate short-time evolution by training on a data set with
Haar-random input states, a training data size effectively scal-
ing as N ∼ M4 · K log(K ) will, with high probability, lead
to good generalization also on the level of the long-time
evolution.

Remark 1. From a more practical perspective, we can in-
terpret Theorem 4 as justifying a purely training-cost-based
termination condition for training if a large enough train-
ing data set is used. We can see this as follows: Suppose
we want to achieve a simulation fidelity � 1 − ε for up to
M0 forwarding steps, with some fixed success probability,

say � 0.95. Then, it suffices to choose training data of size
N ∼ M4

0 · K log(K )
(ε/2)2 and to ensure that the training cost and the

short-time approximation error satisfy ε2

d+1 + 2CG
DE (N )(αopt ) �

ε

4M2
0
. In other words, assuming a suitable training data size is

chosen, we can terminate training as soon as the training cost
satisfies CG

DE (N )(αopt ) � ε

8M2
0

− ε2

2(d+1) . (Naturally, this presup-
poses a small enough short-time approximation error, namely
ε2

d+1 < ε

4M2
0
.)

Remark 2. Throughout our proofs in this subsection, the
only property of the n-qubit Haar measure Haarn that en-
tered our reasoning was the connection of the corresponding
expected cost to the average fidelity and the HST cost, see
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Lemma 1. We can replace the data-generating measure Haarn

by an n-qubit 2-design. This will lead to the same expected
cost, still satisfying Lemma 1, and thus to the same simulation
error guarantee.

2. Training with product of Haar-random
single-qubit input states

The costs presented in Appendix B 1 are based on
Haar-random n-qubit states. However, these are costly to pre-
pare in practice as they require deep quantum circuits. In
particular, assuming access to a training data set consisting
of multiple Haar-random n-qubit states and their output states
under (approximate) short-time evolution might be too opti-
mistic for many practical applications as n grows. Therefore,

we instead use a different notion of cost, based on tensor
products of easy-to-prepare Haar-random single-qubit states.
That is, we work with training data of the form

DP(N ) = {(∣∣� ( j)
P

〉
,
∣∣�( j)

P

〉)}N

j=1

=
{(

n⊗
i=1

∣∣ψ ( j)
i

〉
,U

(
n⊗

i=1

∣∣ψ ( j)
i

〉))}N

j=1

, (B19)

where the |ψ ( j)
i 〉 are drawn i.i.d. according to the single qubit

Haar measure Haar1 and U = U�t is the unknown short-time
evolution that we are trying to learn. Note that, if we have
access to a black box implementing the evolution according
to U , we can create such a training data set efficiently because
only local Haar random states are required as inputs.

a. Global cost function

If we plug this training data for product state inputs into Eq. (A11), we see that the training cost is given by

CG
DP (N )(α) = 1

N

N∑
j=1

Tr
[
V †

α

∣∣�( j)
P

〉〈
�

( j)
P

∣∣Vα · OG
|�P〉,|�P〉

]
(B20)

= 1 − 1

N

N∑
j=1

Tr
[
U
∣∣� ( j)

P

〉〈
�

( j)
P

∣∣U †V�t (α)
∣∣� ( j)

P

〉〈
�

( j)
P

∣∣V�t (α)†
]
. (B21)

This cost is a global cost because the loss observables Oloss
|� ( j)

P 〉,|�( j)
P 〉 = OG

|� ( j)
P 〉,|�( j)

P 〉 = 1 − |� ( j)
P 〉〈� ( j)

P | are global measurements.

That is, they require performing measurements on all n qubits. We will begin by providing rigorous results for the global cost.
Later, we will discuss generalization to the local version that enjoys a better trainability.

Following Eq. (A13), for the global cost using product training states, Eq. (B20), the expected cost is

CG
Haar⊗n

1
(α) = E|�P〉∼Haar⊗n

1

[
Tr
[
V�t (α)†|�P〉〈�P|V�t (α) · OG

|�P〉,|�P〉
]]

(B22)

= 1 − E|�P〉∼Haar⊗n
1

[Tr[U |�P〉〈�P|U †V�t (α)|�P〉〈�P|V�t (α)†]]. (B23)

Here, we write �P =⊗n
i=1 |ψi〉 ∼ Haar⊗n

1 to express that the expectation is over tensor products of states, each drawn from
Haar1, and |�P〉 = U |�P〉.

As a special case of [26, Lemma 1], we obtain that the product cost CG
Haar⊗n

1
(α) is closely related to the entangled cost CG

Haar (α):

Lemma 2 [Product versus entangled cost (global)]. For any parameter setting α, we have the following relation between the
global versions of the product and the entangled cost on n qubits,

CG
Haar⊗n

1
(α) � d + 1

d
CG

Haarn
(α) � 2CG

Haar⊗n
1

(α). (B24)

With this connection between CG
Haarn

(α) and CG
Haar⊗n

1
(α) in place, we can now prove the first part of Theorem 1, which we state

formally here:
Theorem 5 (Simulation error (product training, global cost)—First half of Theorem 1). For a QNN V�t (α) with K parameter-

ized local gates, with probability � 1 − δ over the choice of training data DP(N ) = {⊗n
j=1 |ψ ( j)

i 〉,U
⊗n

j=1 |ψ ( j)
i 〉}N

i=1, with the

|ψ ( j)
i 〉 independent Haar-random single-qubit states, the total simulation fidelity satisfies

F (αopt, M · �t ) � 1 − 2M2

[
ε2

d + 1
+ 4CG

DP (N )(αopt )

]
− O

(
M2

(√
K log (K )

N
+
√

log(1/δ)

N

))
, (B25)

where αopt = αopt(DP(N )) denotes the final parameter setting after training.
Proof. By Theorem 2 and Corollary 1, we know: With probability � 1 − δ over the choice of training data DP(N ) =

{⊗n
j=1 |ψ ( j)

i 〉,U
⊗n

j=1 |ψ ( j)
i 〉}N

i=1, with the |ψ ( j)
i 〉 independent Haar-random single-qubit states, the final parameter setting

αopt = αopt(DP(N )) satisfies

CG
Haar⊗n

1
(α) � CG

DP (N )(αopt ) + O
(√

K log (K )

N
+
√

log(1/δ)

N

)
. (B26)
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By Lemmas 1 and Lemma 2, this implies that, with probability � 1 − δ,

CHST(U,V�t (αopt )) = d + 1

d
CG

Haarn
(α) � 2CG

Haar⊗n
1

(α) � 2CG
DP (N )(αopt ) + O

(√
K log (K )

N
+
√

log(1/δ)

N

)
. (B27)

We now recall from Eq. (B16) that

F (αopt, M · �t ) � 1 − 2M2

d + 1
[ε2 + 2d · CHST(U,V�t (αopt ))], (B28)

with ε the short-time approximation error

ε = ‖U�t − e−iH�t‖2. (B29)

If we plug our above upper bound on the HST cost CHST(U,V�t (αopt )) into this lower bound for the overall simulation fidelity
F (αopt, M · �t ), we obtain: With probability � 1 − δ,

F (αopt, M · �t ) � 1 − 2M2

d + 1

[
ε2 + 2d ·

(
2CG

DP (N )(αopt ) + O
(√

K log (K )

N
+
√

log(1/δ)

N

))]
(B30)

= 1 − 2M2

[
ε2

d + 1
+ 4d

d + 1
· CG

DP (N )(αopt )

]
− O

(
M2 · d

d + 1
·
(√

K log (K )

N
+
√

log(1/δ)

N

))
(B31)

� 1 − 2M2

[
ε2

d + 1
+ 4CG

DP (N )(αopt )

]
− O

(
M2

(√
K log (K )

N
+
√

log(1/δ)

N

))
, (B32)

as claimed. �
In the case of a variable structure QNN for learning the approximate short-time evolution, we have the following guarantee:
Corollary 3. For a QNN V�t (α) with a variable structure such that, for every κ ∈ N, there are at most Gκ ∈ N allowed

structures with exactly κ parameterized local gates, with probability � 1 − δ over the choice of training data DP(N ) =
{⊗n

j=1 |ψ ( j)
i 〉,U

⊗n
j=1 |ψ ( j)

i 〉}N
i=1, with the |ψ ( j)

i 〉 independent Haar-random single-qubit states, the total simulation fidelity
satisfies

F (αopt, M · �t ) � 1 − 2M2

[
ε2

d + 1
+ 4CG

DP (N )(αopt )

]
− O

(
M2

(√
K log (K )

N
+
√

log GK

N
+
√

log(1/δ)

N

))
, (B33)

where K = K (DP(N )) denotes the number of parameterized local gates used in the final structure after training and αopt =
αopt(DP(N )) denotes the final parameter setting after training.

Proof. The proof of this Corollary is analogous to the proof of Theorem 5, we only have to use the generalization guarantees
of Theorem 3 and Corollary 2 instead of Theorem 2 and Corollary 1. �

Analogously to Remark 1, one can use Theorem 5 and Corollary 3 to define a termination condition based on the achieved
training cost, if a sufficiently large training data set is used.

b. Local cost function

While tensor products of Haar-random single-qubit states are relatively cheap to prepare, a training cost of the form used
in Theorem 5 and Corollary 3 also can be challenging to deal with. Namely, it is based on performing measurements on all n
qubits at the output of a parametrized quantum circuits, which leads to poor trainability due to barren plateaus even for QNNs
of moderate depth [35]. This occurs because the loss observables Oloss

|� ( j)
P 〉,|�( j)

P 〉 = OG
|� ( j)

P 〉,|�( j)
P 〉 = 1 − |� ( j)

P 〉〈� ( j)
P | are global. In

contrast, using a cost function that depends only on measurements of single qubits at the circuit output can lead to improved
trainability for shallow QNNs [35].

Therefore, we consider a local version of our cost based on Haar-random single-qubit states. We still employ the product state
training data

DP(N ) = {(∣∣� ( j)
P

〉
,
∣∣�( j)

P

〉)}N

j=1 =
{(

n⊗
i=1

∣∣ψ ( j)
i

〉
,U

(
n⊗

i=1

∣∣ψ ( j)
i

〉))}N

j=1

, (B34)

with the |ψ ( j)
i 〉 drawn i.i.d. according to Haar1. Now, we define the local loss observables

Oloss
|� ( j)

P 〉,|�( j)
P 〉 = OL

|� ( j)
P 〉,|�( j)

P 〉 = 1 − 1

n

n∑
i=1

∣∣ψ ( j)
i

〉〈
ψ

( j)
i

∣∣⊗ 1ī, (B35)
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which again have operator norm bounded by 1. Here 1ī denotes the identity acting on all but the ith qubit. With this choice of
training data and loss observables, Eq. (A11) gives the training cost

CL
DP (N )(α) = 1

N

N∑
j=1

Tr
[
V †

α

∣∣�( j)
P

〉〈
�

( j)
P

∣∣Vα · OL
|�P〉,|�P〉

]
(B36)

= 1 − 1

nN

N∑
j=1

n∑
i=1

Tr
[
U
∣∣� ( j)

P

〉〈
�

( j)
P

∣∣U †V�t (α)
(∣∣ψ ( j)

i

〉〈
ψ

( j)
i

∣∣⊗ 1ī

)
V�t (α)†

]
. (B37)

Comparing this expression to CG
DP (N )(α), we see that CL

DP (N )(α) still uses tensor products of random single-qubit states as inputs,
but instead of measuring all qubits at the output, we average over simple single-qubit measurements. And the expected cost
arising from Eq. (A13) is

CL
Haar⊗n

1
(α) = E|�P〉∼Haar⊗n

1

[
Tr
[
V�t (α)†|�P〉〈�P|V�t (α) · OL

|�P〉,|�P〉
]]

(B38)

= 1 − E|�P〉∼Haar⊗n
1

[
1

n

n∑
i=1

Tr
[
U |�P〉〈�P|U †V�t (α)

(∣∣ψ ( j)
i

〉〈
ψ

( j)
i

∣∣⊗ 1ī

)
V�t (α)†

]]
. (B39)

The first observation underlying our analysis of the overall simulation fidelity in terms of CL
Haar⊗n

1
(α) is that the global and

local versions of the cost defined in terms of tensor products of Haar-random single-qubit states are tightly related:
Lemma 3 (Product cost: Global versus local). For any parameter setting α, we have the following relation between the global

and local versions of the product cost on n qubits,

CL
Haar⊗n

1
(α) � CG

Haar⊗n
1

(α) � n · CL
Haar⊗n

1
(α). (B40)

Proof. The proof of this Lemma is a direct application of the reasoning from Appendix C of [47]. �
This relation between the two costs allows us to extend our previous analysis to CL

Haar⊗n
1

(α):

Corollary 4 (Simulation error (product training, local cost) – Second half of Theorem 1). For a QNN V�t (α) with K
parameterized local gates, with probability � 1 − δ over the choice of training data DP(N ) = {⊗n

j=1 |ψ ( j)
i 〉,U

⊗n
j=1 |ψ ( j)

i 〉}N
j=1,

with the |ψ ( j)
i 〉 independent Haar-random single-qubit states, the total simulation fidelity satisfies

F (αopt, M · �t ) � 1 − 2M2

[
ε2

d + 1
+ 4nCL

DP (N )(αopt )

]
− O

(
M2n

(√
K log (K )

N
+
√

log(1/δ)

N

))
, (B41)

where αopt = αopt(DP(N )) denotes the final parameter setting after training.
Proof. We start by stating the generalization guarantee obtained from Theorem 2 and Corollary 1 for our scenario: With

probability � 1 − δ over the choice of training data DP(N ) = {⊗n
i=1 |ψ ( j)

i 〉,U
⊗n

j=1 |ψ ( j)
i 〉}N

i=1, with the |ψ ( j)
i 〉 independent

Haar-random single-qubit states, the final parameter setting αopt = αopt(DP(N )) satisfies

CL
Haar⊗n

1
(α) � CL

DP (N )(αopt ) + O
(√

K log (K )

N
+
√

log(1/δ)

N

)
. (B42)

Combining Lemma 1, Lemma 2, and Lemma 3, this implies that, with probability � 1 − δ,

CHST(U,V�t (αopt )) = d + 1

d
CG

Haarn
(α) (B43)

� 2CG
Haar⊗n

1
(α) (B44)

� 2nCL
Haar⊗n

1
(α) (B45)

� 2nCL
DP (N )(αopt ) + O

(
n

(√
K log (K )

N
+
√

log(1/δ)

N

))
. (B46)

We again recall that, by Eq. (B16),

F (αopt, M · �t ) � 1 − 2M2

d + 1
[ε2 + 2d · CHST(U,V�t (αopt ))]. (B47)
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Algorithm: 1 Resource Efficient Fast Forwarding

Input: n-qubit Hamiltonian, H ; Target simulation fidelity at M0 fast-forwarding steps, 1 − ε; Diagonal ansatz,
Vt (θ, γ ) = W (θ)D(tγ )W (θ)† with K parameterized gates; set of N ∼ M4

0
K log(K )

(ε/2)2 input-output training

states, D(N ) = {(|� ( j)〉, |�( j)〉)}N
j=1 where the input states are random product states {⊗n

i=1 |ψ ( j)
i 〉}N

j=1,
with |ψ ( j)

i 〉 drawn from the 1-qubit Haar distribution, and the output states are generated by evolving the
input states by a short-time Trotterized evolution operator |�( j)〉 = U�t |� ( j)〉 where U�t ≈ e−iH�t .

Output: Time-dependent QNN Vt (θopt, γopt )
1 Randomly initialize the parameters of Vt (θ, γ )
2 while CG

DP (N )(θ, γ ) > ε

16M2
0

− ε2

4(2n+1) do

3 Calculate gradient vector using Eqs. (C1) & (C3) via the circuit shown in Fig. 4.
4 Update parameters of V�t (θ, γ ) with classical optimizer
5 return (θopt, γopt )

Plugging our above upper bound on the HST cost CHST(U,V�t (αopt )) into this lower bound for the overall simulation fidelity
F (αopt, M · �t ), we obtain: With probability � 1 − δ,

F (αopt, M · �t ) � 1 − 2M2

d + 1

[
ε2 + 2d ·

(
2nCL

DP (N )(αopt ) + O
(

n

(√
K log (K )

N
+
√

log(1/δ)

N

)))]
(B48)

= 1 − 2M2

[
ε2

d + 1
+ 4d

d + 1
· nCG

DP (N )(αopt )

]
− O

(
M2n · d

d + 1
·
(√

K log (K )

N
+
√

log(1/δ)

N

))
(B49)

� 1 − 2M2

[
ε2

d + 1
+ 4nCG

DP (N )(αopt )

]
− O

(
M2n

(√
K log (K )

N
+
√

log(1/δ)

N

))
, (B50)

which is the claimed bound. �
Again, we can easily state the variable structure version of this Theorem.
Corollary 5. For a QNN V�t (α) with a variable structure such that, for every κ ∈ N, there are at most Gκ ∈ N allowed

structures with exactly κ parameterized local gates, with probability � 1 − δ over the choice of training data DP(N ) =
{⊗n

j=1 |ψ ( j)
i 〉,U

⊗n
j=1 |ψ ( j)

i 〉}N
i=1, with the |ψ ( j)

i 〉 independent Haar-random single-qubit states, the total simulation fidelity
satisfies

F (αopt, M · �t ) � 1 − 2M2

[
ε2

d + 1
+ 4nCL

DP (N )(αopt )

]
− O

(
M2n

(√
K log (K )

N
+
√

log GK

N
+
√

log(1/δ)

N

))
, (B51)

where K = K (DP(N )) denotes the number of parameterized local gates used in the final structure after training and αopt =
αopt(DP(N )) denotes the final parameter setting after training.

As before, from Corollaries 4 and 5 we can derive termination conditions based on the training cost achieved in the
optimization and the size of the training data sets.

Remark 3. As the results of Ref. [26] also apply when replacing the data-generating measure Haarn
1 by a tensor product of

1-qubit 2-designs, we can do the same replacement here and still obtain the same bounds. As a concrete example, the same
guarantees hold when training on tensor products of uniformly random single-qubit stabilizer states.

APPENDIX C: FURTHER DETAILS ON NUMERICAL
IMPLEMENTATIONS

1. Statement of Algorithm

The REFF algorithm is outlined with pseudocode in
Algorithm 1. By inverting Theorem 1, our results provide
an upper bound on the number of training states required
to achieve a target simulation fidelity, 1 − ε, after M0 fast-
forwarding steps at N ∼ M4

0
K log(K )

(ε/2)2 . Our numerical results,
however, have found that a full generalization can be achieved
with far fewer states than this bound would suggest. To take

advantage of this and seek a minimally sized training dataset,
an algorithm variant is motivated, starting with a small train-
ing dataset that is grown over time until generalization is
observed. As we are working below the upper bound, the
guarantees on generalization no longer apply, so an extra vali-
dation error is required to quantify the QNN’s generalization.
This could be implemented by creating a validation dataset of
Haar-random product states that the CREFF cost is periodically
tested against as the optimization progresses. If the training
CREFF is decreasing during the optimization, but the validation
CREFF is observed to plateau, this indicates the training dataset
is too small and its size should be increased.
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FIG. 4. REFF circuit. A generalized 3-qubit representation of the circuit used to compute CREFF is displayed. Hk is a Haar-random single-
qubit unitary. For a training dataset of size N , the output of this circuit is averaged over the N unique training states to compute the cost
function.

2. Gradient Formula

Following the method of [6,8], the partial derivative of
CREFF(U,V (θ, γ )) with respect to θl , is

∂CREFF(U,V )

∂θl

= 1

2
(CREFF(U,Wl+DW †) − CREFF(U,Wl−DW †)

+ CREFF(U,W D(Wl+)†) − CREFF(U,W D(Wl−)†)).

(C1)

The unitary Wl+ (Wl−) is generated from the original unitary
W (θ) by the addition of an extra π

2 (−π
2 ) rotation about a given

parameter’s rotation axis,

Wl± := W (θl±) with (θl±)i := θl ± π

2
δi,l . (C2)

The analogous formula for the partial derivative with respect
to γl , is

∂CREFF(U,V )

∂γl

= 1

2
(CREFF(U,W Dl+W †) − CREFF(U,W Dl−W †)).

(C3)

3. Application to Alternate Topologies

Here we demonstrate the resource efficient fast-forwarding
algorithm applied to systems with topologies and interactions
causing frustrated magnetism. Figure 5(a) shows the learning
of a diagonalization of a bond-frustrated 6-qubit section of the
Kitaev Honeycomb model [58], the topology is shown in the
inset. We use the basin-hopping global optimizer [59], causing
the sharp decreases in loss function when a new local mini-
mum is found. The training loss, CREFF, was computed using
two product training states, which was sufficient to achieve

FIG. 5. Frustrated magnetism diagonalizations. Here we apply the REFF algorithm to two systems exhibiting frustrated magnetism, the
respective topologies are shown in the insets. CREFF corresponds to the training loss function using product state overlaps; 1 − F1 corresponds
to the testing loss signifying the global compilation over the Hilbert space. (a) Bond-frustrated 6-qubit section of the Kitaev Honeycomb model:
two product states are required to result in a compilation infidelity, 1 − F1, equal to 2.09×10−10 after convergence of the global optimizer.
(b) Geometrically-frustrated 5-qubit “bowtie” with Heisenberg interactions: 10 product states are required to result in a compilation infidelity
equal to 6.46×10−6 after convergence of the global optimizer.
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FIG. 6. Scaling. (a) REFF is applied to increasing sizes of the n-qubit Heisenberg Hamiltonian, H =∑n
i=1 Si · Si+1 with periodic boundary

conditions. An increasing size dataset of Haar-random product states is used for training, to determine the minimum number required for
generalization. This is seen when minimizing the training loss (CG

REFF ) results in simultaneously minimizing the testing loss (1 − F1) without
premature plateauing. (b) The minimum number of training states required for generalization in the above numerics are plotted against the
number of parameterized gates in its VFF ansatz, showing an apparent sublinear scaling.

generalization, signified by the simultaneous minimization of
the testing loss 1 − F1. The ansatz in total had 98 trainable
parameters. Figure 5(b) shows the learning of a diagonal-
ization of a geometrically-frustrated five qubit “bowtie” with
Heisenberg interactions. Here, 10 product training states were
used to achieve sufficient generalization. The ansatz had in
total 399 trainable parameters.

4. Choice of Ansatz

XY Hamiltonian. For our diagonalizing unitary, we exploit
the particle-number conservation property of the Heisenberg
Hamiltonians, and for W use only 2-qubit Givens rotation
gates that also respect this symmetry. This ensures the state
remains in the symmetry subspace, simplifying the optimiza-
tion. For the numerics shown in Fig. 2(b), a brickwork-style
ansatz was used for W . Each layer was composed of a Givens
rotation gate between odd pairs of qubits, then a Givens ro-
tation gate between even pairs of qubits, resulting in n − 1
gates per layer. All the examples used 1.5n layers, resulting

in a total gate count for W of 1.5n(n − 1) and a depth of
3n; this can be considered an improvement to the O(n2)
gate count and O(n log(n)) circuit depth presented in [49].
The ansatz for D was composed of a single Rz gate on each
qubit.

Heisenberg Hamiltonian. It is known [60] that a 2-local
nearest-neighbor gate fabric of Givens rotations is not uni-
versal for the Hamming-weight preserving subgroup H(2n),
so the ansatz we used for the XY Hamiltonian does not di-
agonalize the more general Heisenberg Hamiltonian. In these
numerics, for the W layered ansatz, we instead use the most
general 2-qubit gate that conserves the particle number, which
takes four parameters and is displayed below:

Sym(θ1, θ2, θ3, θ4)

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 cos(θ1) −eiθ2 sin(θ1) 0

0 eiθ3 sin(θ1) ei(θ2+θ3 ) cos(θ1) 0

0 0 0 eiθ4

⎞
⎟⎟⎟⎟⎠ (C4)
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D is composed of an Rz rotation gate on each qubit, and an Rzz

gate between all pairs of qubits.
Kitaev honeycomb model. For the diagonalizing unitary, W ,

we use a hardware efficient ansatz, applying noncommuting
layers of CNOTs, dressed with layers of Ry and Rz single
qubit rotation gates. The diagonal unitary D was composed
of single qubit Rz gates.

5. Data Requirements for Generalization

Theorem 1 upperbounds the number of training states re-
quired to guarantee a high-simulation fidelity for a QNN with
K parameterized gates by the scaling O(K log(K )). Here we
numerically investigate this bound by performing REFF on
increasing n-qubit Heisenberg Hamiltonians and observe the
minimum number of training states required for generaliza-
tion. For each system size, we perform REFF with a range
of training set sizes, training until CG

REFF = 10−8 and simul-
taneously compute the simulation fidelity (1 − F1) as our
metric for generalization. Each instance of REFF performed
on a particular training set size was repeated five times to
generate a mean and standard deviation. We observe, as shown
in Fig. 6, that training sets of insufficient size do not produce
generalization when trained on, but when the training set
reaches some critical threshold, minimizing CG

REFF simultane-
ously minimizes the simulation fidelity. The scaling of this
threshold is plotted in Fig. 6(b) as a function of the number
of parameterized gates,K , the required number of training
states N , appears to scale sub-linearly, within our analytic
upperbound.

6. Simulation fidelity against the true Hamiltonian evolution

The numerical results in Fig. 2 demonstrate that with the
correct ansatz design, the Hilbert-Schmidt test between the
Trotterized unitary and the diagonalized ansatz can reduced
arbitrarily small for the systems tested. As shown in the inset
of Fig. 2(b), this allows the action of the Trotterized unitary to
be fast forwarded for long-time simulations. The unitary we
are learning is a Trotterization, with an associated Trotter error
with respect to the true Hamiltonian evolution, which will
also be learned during the REFF training. REFF can at best
perfectly learn the evolution with this Trotter error included;
however, increasing the order of the Trotter approximation
decreases this error to reproduce the true Schrödinger evo-
lution. Figure 7 shows the fast forwarding of a diagonalized
ansatz after REFF training against the 10 qubit Hamiltonian

FIG. 7. Trotter error. The REFF algorithm is applied to the 10
qubit Hamiltonian H =∑9

i=1 XiXi+1 + YiYi+1 with open boundary
conditions, and the resulting diagonalized unitary performs a fast
forwarding of the Hamiltonian. The Trotterization has a timestep
of �t = 0.1. The fidelity of the fast forwarding is computed with
respect to the Trotterized unitary and the true Hamiltonian evolution.

H =∑9
i=1 XiXi+1 + YiYi+1 with open boundary conditions. To

compare the simulation fidelity against the Trotter unitary
U (�t ) for noninteger multiples of �t , for t = M�t + c (with
c < �t) the unitary applied is UTrotter(t ) = U (�t )MU ( c

�t ).
Here the Trotterization is a second-order Suzuki-Trotter ap-
proximation, with Trotter number 10, and hence has a very
low Trotter error. The VFF ansatz had in total 360 CNOT
gates, compared to 380 in the Trotter unitary.

7. Quantum state tomography of hardware implementation

Figure 3(b) shows the evaluation of the fast-forwarding
performance of the QNN trained on ibmq_bogota. We use
quantum state tomography to reconstruct the output density
matrix of both the REFF-evolved state and the Trotter-evolved
state at timestep N , ρ(N ), and compute the fidelity with
respect to the noise-free Trotter evolved state |ψ (N )〉. The
method for performing this follows [8]; an n-dimensional
density matrix ρ can be decomposed into the Pauli product
basis as ρ = η · σ (n). Here σ (n) is a 4n dimensional vector
composed of the elements of the n-qubit Pauli group Pn =
{σI , σX , σY , σZ}⊗n and η is the corresponding vector of Pauli
weights, i.e., ηk = 1

2n Tr(σ (n)
k ρ). The values ηk were computed

on the quantum device using 8192 shots, then used to classi-
cally calculate the fidelity F (N ) = 〈ψ (N )|ρ(N )|ψ (N )〉.

[1] R. P. Feynman, Simulating physics with computers, Int. J.
Theor. Phys. 21, 467 (1982).

[2] S. Lloyd, Universal quantum simulators, Science, 273 1073
(1996).

[3] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[4] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D.
Somma, Simulating Hamiltonian dynamics with a truncated
Taylor series, Phys. Rev. Lett. 114, 090502 (2015).

[5] G. H. Low and I. L. Chuang, Hamiltonian simulation by qubiti-
zation, Quantum 3, 163 (2019).

[6] C. Cirstoiu, Z. Holmes, J. Iosue, L. Cincio, P. J. Coles, and
A. Sornborger, Variational fast forwarding for quantum sim-
ulation beyond the coherence time, npj Quantum Inf. 6, 82
(2020).

[7] B. Commeau, M. Cerezo, Z. Holmes, L. Cincio, P. J. Coles,
and A. Sornborger, Variational Hamiltonian diagonalization for
dynamical quantum simulation, arXiv:2009.02559.

013241-15

https://doi.org/10.1007/BF02650179
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1038/s41534-020-00302-0
https://arxiv.org/abs/2009.02559


JOE GIBBS et al. PHYSICAL REVIEW RESEARCH 6, 013241 (2024)

[8] J. Gibbs, K. Gili, Z. Holmes, B. Commeau, A. Arrasmith, L.
Cincio, P. J. Coles, and A. Sornborger, Long-time simulations
for fixed input states on quantum hardware, npj Quantum Inf. 8,
135 (2022).

[9] M. R. Geller, Z. Holmes, P. J. Coles, and A. Sornborger,
Experimental quantum learning of a spectral decomposition,
Phys. Rev. Res. 3, 033200 (2021).

[10] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, Quantum machine learning, Nature (London)
549, 195 (2017).

[11] M. Schuld, Quantum machine learning models are kernel meth-
ods, arXiv:2101.11020.

[12] H.-Y. Huang, M. Broughton, J. Cotler, S. Chen, J. Li, M.
Mohseni, H. Neven, R. Babbush, R. Kueng, J. Preskill, and J. R.
McClean, Quantum advantage in learning from experiments,
Science 376, 1182 (2022).

[13] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo,
K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J.
Coles, Variational quantum algorithms, Nat. Rev. Phys. 3, 625
(2021).

[14] S. Lloyd, Quantum approximate optimization is computation-
ally universal, arXiv:1812.11075.

[15] C. Zoufal, A. Lucchi, and S. Woerner, Quantum generative
adversarial networks for learning and loading random distribu-
tions, npj Quantum Inf. 5, 103 (2019).

[16] M. C. Caro and I. Datta, Pseudo-dimension of quantum circuits,
Quantum Mach. Intell. 2, 14 (2020).

[17] K. Bu, D. E. Koh, L. Li, Q. Luo, and Y. Zhang, Statistical
complexity of quantum circuits, Phys. Rev. A 105, 062431
(2022).

[18] C. Gyurik, D. Vreumingen, van, and V. Dunjko, Structural risk
minimization for quantum linear classifiers, Quantum 7, 893
(2023).

[19] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and S.
Woerner, The power of quantum neural networks, Nat. Comput.
Sci. 1, 403 (2021).

[20] Y. Du, Z. Tu, X. Yuan, and D. Tao, Efficient measure for the
expressivity of variational quantum algorithms, Phys. Rev. Lett.
128, 080506 (2022).

[21] M. C. Caro, E. Gil-Fuster, J. J. Meyer, J. Eisert, and R. Sweke,
Encoding-dependent generalization bounds for parametrized
quantum circuits, Quantum 5, 582 (2021).

[22] C.-C. Chen, M. Watabe, K. Shiba, M. Sogabe, K. Sakamoto,
and T. Sogabe, On the expressibility and overfitting of quantum
circuit learning, ACM Trans. Quantum Comput. 2, 1 (2021).

[23] C. M. Popescu, Learning bounds for quantum circuits in the
agnostic setting, Quant. Info. Proc. 20, 286 (2021).

[24] M. C. Caro, H.-Y. Huang, M. Cerezo, K. Sharma, A.
Sornborger, L. Cincio, and P. J. Coles, Generalization in
quantum machine learning from few training data,
Nat. Commun. 13, 4919 (2022).

[25] H. Cai, Q. Ye, and D.-L. Deng, Sample complexity of learning
parametric quantum circuits, Quantum Sci. Technol. 7, 025014
(2022).

[26] M. C. Caro, H.-Y. Huang, N. Ezzell, J. Gibbs, A. T. Sornborger,
L. Cincio, P. J. Coles, and Z. Holmes, Out-of-distribution gen-
eralization for learning quantum dynamics, Nat. Commun. 14,
3751 (2023).

[27] K. Poland, K. Beer, and T. J. Osborne, No free lunch for quan-
tum machine learning, arXiv:2003.14103.

[28] K. Sharma, M. Cerezo, Z. Holmes, L. Cincio, A. Sornborger,
and P. J. Coles, Reformulation of the no-free-lunch theorem for
entangled datasets, Phys. Rev. Lett. 128, 070501 (2022).

[29] T. Volkoff, Z. Holmes, and A. Sornborger, Universal compiling
and (no-)free-lunch theorems for continuous-variable quantum
learning, PRX Quantum 2, 040327 (2021).

[30] E. Kökcü, T. Steckmann, J. Freericks, E. F. Dumitrescu, and
A. F. Kemper, Fixed depth Hamiltonian simulation via Cartan
decomposition, Phys. Rev. Lett. 129, 070501 (2022).

[31] T. Steckmann, T. Keen, A. F. Kemper, E. F. Dumitrescu, and
Y. Wang, Simulating the mott transition on a noisy digital
quantum computer via Cartan-based fast-forwarding circuits,
arXiv:2112.05688.

[32] S. K. Radha, Quantum constraint learning for quantum approx-
imate optimization algorithm, arXiv:2105.06770.

[33] H. Horowitz, P. Rao, and S. K. Radha, A quantum genera-
tive model for multi-dimensional time series using Hamiltonian
learning, arXiv:2204.06150.

[34] We can replace the assumption of independent Haar-random
single-qubit states by an assumption of independent states
drawn at random according to a 1-qubit 2-design and our error
analysis will still hold.

[35] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, Cost
function dependent barren plateaus in shallow parametrized
quantum circuits, Nat. Commun. 12, 1791 (2021).

[36] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Barren plateaus in quantum neural network training
landscapes, Nat. Commun. 9, 4812 (2018).

[37] M. Cerezo and P. J. Coles, Higher order derivatives of quantum
neural networks with barren plateaus, Quantum Sci. Technol. 6,
035006 (2021).

[38] A. Arrasmith, M. Cerezo, P. Czarnik, L. Cincio, and P. J.
Coles, Effect of barren plateaus on gradient-free optimization,
Quantum 5, 558 (2021).

[39] Z. Holmes, A. Arrasmith, B. Yan, P. J. Coles, A. Albrecht, and
A. T. Sornborger, Barren plateaus preclude learning scramblers,
Phys. Rev. Lett. 126, 190501 (2021).

[40] Z. Holmes, K. Sharma, M. Cerezo, and P. J. Coles, Connect-
ing ansatz expressibility to gradient magnitudes and barren
plateaus, PRX Quantum 3, 010313 (2022).

[41] T. Volkoff and P. J. Coles, Large gradients via correlation in
random parameterized quantum circuits, Quantum Sci. Technol.
6, 025008 (2021).

[42] K. Sharma, M. Cerezo, L. Cincio, and P. J. Coles, Trainabil-
ity of dissipative perceptron-based quantum neural networks,
Phys. Rev. Lett. 128, 180505 (2022).

[43] A. Pesah, M. Cerezo, S. Wang, T. Volkoff, A. T. Sornborger,
and P. J. Coles, Absence of barren plateaus in quantum convo-
lutional neural networks, Phys. Rev. X 11, 041011 (2021).

[44] A. Uvarov and J. D. Biamonte, On barren plateaus and cost
function locality in variational quantum algorithms, J. Phys. A:
Math. Theor. 54, 245301 (2021).

[45] C. O. Marrero, M. Kieferová, and N. Wiebe, Entanglement-
induced barren plateaus, PRX Quantum 2, 040316 (2021).

[46] T. L. Patti, K. Najafi, X. Gao, and S. F. Yelin, Entanglement
devised barren plateau mitigation, Phys. Rev. Res. 3, 033090
(2021).

[47] S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T.
Sornborger, and P. J. Coles, Quantum-assisted quantum com-
piling, Quantum 3, 140 (2019).

013241-16

https://doi.org/10.1038/s41534-022-00625-0
https://doi.org/10.1103/PhysRevResearch.3.033200
https://doi.org/10.1038/nature23474
https://arxiv.org/abs/2101.11020
https://doi.org/10.1126/science.abn7293
https://doi.org/10.1038/s42254-021-00348-9
https://arxiv.org/abs/1812.11075
https://doi.org/10.1038/s41534-019-0223-2
https://doi.org/10.1007/s42484-020-00027-5
https://doi.org/10.1103/PhysRevA.105.062431
https://doi.org/10.22331/q-2023-01-13-893
https://doi.org/10.1038/s43588-021-00084-1
https://doi.org/10.1103/PhysRevLett.128.080506
https://doi.org/10.22331/q-2021-11-17-582
https://doi.org/10.1145/3466797
https://doi.org/10.1007/s11128-021-03225-7
https://doi.org/10.1038/s41467-022-32550-3
https://doi.org/10.1088/2058-9565/ac4f30
https://doi.org/10.1038/s41467-023-39381-w
https://arxiv.org/abs/2003.14103
https://doi.org/10.1103/PhysRevLett.128.070501
https://doi.org/10.1103/PRXQuantum.2.040327
https://doi.org/10.1103/PhysRevLett.129.070501
https://arxiv.org/abs/2112.05688
https://arxiv.org/abs/2105.06770
https://arxiv.org/abs/2204.06150
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1088/2058-9565/abf51a
https://doi.org/10.22331/q-2021-10-05-558
https://doi.org/10.1103/PhysRevLett.126.190501
https://doi.org/10.1103/PRXQuantum.3.010313
https://doi.org/10.1088/2058-9565/abd891
https://doi.org/10.1103/PhysRevLett.128.180505
https://doi.org/10.1103/PhysRevX.11.041011
https://doi.org/10.1088/1751-8121/abfac7
https://doi.org/10.1103/PRXQuantum.2.040316
https://doi.org/10.1103/PhysRevResearch.3.033090
https://doi.org/10.22331/q-2019-05-13-140


DYNAMICAL SIMULATION VIA QUANTUM MACHINE … PHYSICAL REVIEW RESEARCH 6, 013241 (2024)

[48] Note that by relating fidelity to trace distance and then invoking
the operational meaning of the latter in terms of observable
differences [55], the simulation fidelity gives rise to an upper
bound on the difference between the left- and right-hand sides
in Eq. (1).

[49] F. Verstraete, J. I. Cirac, and J. I. Latorre, Quantum circuits for
strongly correlated quantum systems, Phys. Rev. A 79, 032316
(2009).

[50] For more details on the ansatz we used see Appendix C.
[51] Quantum state tomography is used to reconstruct the output

density matrix, ρ, of the noisy fast forwarding, which is used
to compute the fast-forwarding fidelity, 〈ψ |ρ|ψ〉, where |ψ〉 is
the target noise-free state.

[52] Y. Atia and D. Aharonov, Fast-forwarding of Hamiltonians and
exponentially precise measurements, Nat. Commun. 8, 1572
(2017).

[53] J. J. Meyer, M. Mularski, E. Gil-Fuster, A. A. Mele, F.
Arzani, A. Wilms, and J. Eisert, Exploiting symmetry in vari-
ational quantum machine learning, PRX Quantum 4, 010328
(2023).

[54] M. Ragone, Q. T. Nguyen, L. Schatzki, P. Braccia, M. Larocca,
F. Sauvage, P. J. Coles, and M. Cerezo, Representation theory
for geometric quantum machine learning, arXiv:2210.07980.

[55] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information (Cambridge University Press,
Cambridge, 2000).

[56] M. Horodecki, P. Horodecki, and R. Horodecki, General
teleportation channel, singlet fraction, and quasidistillation,
Phys. Rev. A 60, 1888 (1999).

[57] M. A. Nielsen, A simple formula for the average gate fidelity of
a quantum dynamical operation, Phys. Lett. A 303, 249 (2002).

[58] A. Kitaev, Anyons in an exactly solved model and beyond, Ann.
Phys. 321, 2 (2006).

[59] D. J. Wales and J. P. Doye, Global optimization by basin-
hopping and the lowest energy structures of Lennard-Jones
clusters containing up to 110 atoms, J. Phys. Chem. A 101, 5111
(1997).

[60] G.-L. R. Anselmetti, D. Wierichs, C. Gogolin, and R. M.
Parrish, Local, expressive, quantum-number-preserving VQE
ansätze for fermionic systems, New J. Phys. 23, 113010 (2021).

013241-17

https://doi.org/10.1103/PhysRevA.79.032316
https://doi.org/10.1038/s41467-017-01637-7
https://doi.org/10.1103/PRXQuantum.4.010328
https://arxiv.org/abs/2210.07980
https://doi.org/10.1103/PhysRevA.60.1888
https://doi.org/10.1016/S0375-9601(02)01272-0
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1021/jp970984n
https://doi.org/10.1088/1367-2630/ac2cb3

