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Active learning approach to simulations of strongly correlated matter
with the ghost Gutzwiller approximation
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Quantum embedding (QE) methods such as the ghost Gutzwiller approximation (gGA) offer a powerful
approach to simulating strongly correlated systems, but come with the computational bottleneck of computing
the ground state of an auxiliary embedding Hamiltonian (EH) iteratively. In this work, we introduce an active
learning (AL) framework integrated within the gGA to address this challenge. The methodology is applied to
the single-band Hubbard model and results in a significant reduction in the number of instances where the
EH must be solved. Through a principal component analysis (PCA), we find that the EH parameters form a
low-dimensional structure that is largely independent of the geometric specifics of the systems, especially in
the strongly correlated regime. Our AL strategy enables us to discover this low-dimensionality structure on the
fly, while leveraging it for reducing the computational cost of gGA, laying the groundwork for more efficient
simulations of complex strongly correlated materials.
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I. INTRODUCTION

At present, most quantitative simulations of quantum
matter utilize standard approximations to density functional
theory (DFT) [1,2]. However, these approximations face lim-
itations when simulating the properties of strongly correlated
systems, which are solids and molecules where electrons
are localized around specific atomic sites and have inten-
sified interactions due to spatial confinement. This issue is
especially relevant in materials containing transition metals
from the three-dimensional (3D) series and to lanthanides
and actinides. To address this challenge, various QE [3,4]
many-body techniques have been developed. Methods such
as dynamical mean-field theory (DMFT) [5–9], density ma-
trix embedding theory (DMET) [10,11], rotationally invariant
slave boson theory (RISB) [12–14], and the multiorbital
Gutzwiller approximation (GA) [15–22], are now widely
used for quantitatively simulating strongly correlated systems.
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Recently an extension of the GA, denoted as the gGA [23,24],
has been developed. The gGA framework incorporates aux-
iliary Fermionic degrees of freedom to enrich the variational
space. Notably, gGA has demonstrated accuracy that is com-
parable to DMFT [23–27], indicating that it might serve as
an advantageous alternative, especially when aiming for a
combination of accuracy and computational manageability.

However, all of the available QE many-body techniques
pose a computational burden for emerging applications in ma-
terials discovery, where computational efficiency is crucial for
reducing both the time and cost of material development. The
main reason lies in their common QE algorithmic structure,
that requires the iterative solution of an EH for each correlated
fragment in the system, constituting the most computationally
intensive step [20,28–30]. Addressing this bottleneck could
enable accurate simulations of strongly correlated materials at
computational costs comparable to traditional approximations
to DFT.

In prior work, a machine-learning-based solution to this
problem was proposed both in the context of DMFT [31,32]
and in the context of the GA [33], exploiting the observation
that the mathematical structure of the EH is determined solely
by the electron shell structure of the impurity, thus being con-
sistent across diverse materials and molecules. This intrinsic
commonality that arises when solving the EH across different
materials and molecules, which we refer to as ”universality,”
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suggests that machine learning (ML) techniques could, in
principle, be trained once and for all to solve the EH problem,
thereby bypassing the computational bottleneck of all subse-
quent QE simulations. In particular, in Ref. [33] a method
combining the GA method with a ML algorithm, termed “n-
KRR,” demonstrated success in implementing this program
for a series of actinide systems. However, this achievement
was enabled by the possibility to specifically conjecture the
physically relevant range of training data for these materials—
an advantage that is not generally available. Indeed, this
represents the primary barrier to overcome for extending this
approach to general many-body systems: it is generally im-
possible to preemptively determine which training data should
be generated. Consequently, a different approach is required
to make this ML strategy universally applicable.

To overcome the challenge of determining a priori training
data, here we introduce an active learning methodology that
marries probabilistic ML techniques—specifically, a recent
extension of Gaussian process regression (GPR)—with the
gGA framework. As new gGA calculations proceed, our ac-
tive learning model continuously evaluates new instances of
the EH problem, adaptively updating and refining its own
training set based on the level of uncertainty in its predictions.
This strategy eliminates the need for a predefined training set
and ensures that only physically relevant data are gathered
throughout the computational process.

We benchmark our method using the single-band Hubbard
model across varying geometries and interaction strengths,
thereby significantly reducing the required number of ex-
plicit EH calculations. Using a PCA, we show that the EH
parameters explored throughout these calculations have a
low-dimensional structure, largely independent of the spe-
cific lattice configurations, particularly in strongly correlated
regimes. We discuss how such inherent low-dimensional
structure of the parameter space opens a path for compu-
tational techniques commonly found in computer science,
underlining the potential of our active learning strategy to
generalize across a wide array of strongly correlated materials
in future work.

II. MODEL AND gGA METHOD

This section aims to lay the foundation for the subsequent
development of the QE algorithmic structure. We begin by in-
troducing the single-band Hubbard model, that we employ in
our benchmark calculations. We then present the formulation
of the gGA. A primary focus of gGA is to iteratively solve for
the ground state of an EH, an essential component of the QE
approach.

A. Single-band Hubbard model

For clarity, in this work we present the formalism under-
lying our AL framework focusing on a generic single-band
Hubbard Hamiltonians represented as follows:

Ĥ =
N∑

i, j=1
i �= j

∑
σ=↑,↓

ti jc
†
iσ c jσ +

N∑
i=1

U

2
(n̂i − 1)2 − μ

N∑
i=1

n̂i, (1)

where N is the number of system sites (which we refer to as
”fragments” from now on), c†

iσ and ciσ are Fermionic creation
and annihilation operators, σ is a spin label, i and j are frag-
ment labels, μ is the chemical potential, U is the interaction
strength and n̂i = ∑

σ c†
iσ ciσ is the number operator for the

system fragment i, and ti j is a generic hopping matrix, with
arbitrary entries.

B. gGA Lagrange function

Specializing the theory presented in Refs. [23,24] to the
single-orbital Hubbard equation given by Eq. (1), and fo-
cusing on solutions preserving both spin and translational
symmetries, we find that the ground state in the gGA can be
obtained by extremizing the following Lagrange function:

L[�, Ec; R,�; D,�c; �,�0, E ; μ]

= 〈�0| Ĥqp[R,�] |�0〉 + E (1 − 〈�0|�0〉)

+
N∑
i=1

[〈�i| Ĥ i
emb

[
Di,�

c
i ,U, μ

]|�i〉 + Ec
i (1 − 〈�i|�i〉)

]

−
N∑
i=1

⎡
⎣ ∑

σ=↑,↓

B∑
a,b=1

(
[�i]ab + [

�c
i

]
ab

)
[�i]ab

+
∑

σ=↑,↓

B∑
c,a=1

(
[Di]a[Ri]c[�i(I − �i )]

1
2
ca + c.c.

)⎤⎦, (2)

where I is the identity matrix, the integer number B controls
the size of the gGA variational space and, in turn, the precision
of the gGA approach, E and Ec

i are scalars, and �i, �i,
and �c

i are B × B Hermitian matrices. Additionally, Di and
Ri are B × 1 column matrices. The so-called ”quasiparticle
Hamiltonian” (Ĥqp) and EH (Ĥ i

emb) are defined as

Ĥqp[R,�] =
N∑
i=1

B∑
a,b=1

∑
σ=↑,↓

[�i]ab f †
iaσ fibσ

+
N∑

i, j=1
i �= j

B∑
a,b=1

∑
σ=↑,↓

[Riti jR†
j ]ab f †

iaσ f jbσ , (3)

Ĥ i
emb

[
Di,�

c
i ,U, μ

] = U

2
(n̂i − 1)2 − μ n̂i

+
B∑

a=1

∑
σ=↑,↓

[[Di]a c†
iσ biaσ + H.c.]

+
B∑

a,b=1

∑
σ=↑,↓

[
�c

i

]
ab bibσ b†

iaσ . (4)

Here the vector |�i〉 is the most general embedding state
for the fragment i, i.e., the most general state within the
Fock space spanned by the 2(B + 1) modes c†

iσ and b†
iaσ ,

with (B + 1) Fermions in total (half-filled). The vector |�0〉
is the most general single-particle state within the so-called
”quasiparticle” space, spanned by the 2BN modes f †

iaσ .
For B = 1, Eq. (2) reduces to the standard GA Lagrange

function. In this work we set B = 3, which proved to be
sufficient for capturing the ground-state properties with
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accuracy comparable to DMFT for the ground-state properties
[23–27].

C. Gauge invariance and physical observables

It can be readily verified that the gGA Lagrangian is invari-
ant with respect to the following gauge transformation:

|�0〉 → U†(θ )|�0〉, (5)

|�i〉 → U †
i (θ )|�i〉, (6)

Ri → u†
i (θ )Ri, (7)

Di → uT
i (θ )Di, (8)

�i → uT
i (θ )�i u∗

i (θ ), (9)

�i → u†
i (θ )�i ui(θ ), (10)

�c
i → u†

i (θ )�c
i ui(θ ), (11)

with

ui(θi ) = eiθi , (12)

Ui(θi ) = ei
∑B

a,b=1[θi]abb†
iabib, (13)

U (θ ) = ei
∑N

i=1

∑B
a,b=1[θi]ab f †

ia fib, (14)

where θ = (θ1, .., θN ), θi are B × B Hermitian matrices and
the superscript ”T” denotes the transpose, while the super-
script ”∗” denotes the complex conjugate. The name ”gauge”
here refers to the fact that modifications of the parameters
generated by such a gauge transformation do not influence
any physical observable, which can be extracted from the
variational parameters that extremize the Lagrange function.

For completeness, below we write explicitly how the phys-
ical observables that we calculate in this paper are computed
as a function of the variational parameters, based on the theo-
retical framework derived in previous work [23,24].

The total energy of the system is given by the Lagrange
function value after extremization (which is gauge invariant).
The expectation values for local observables are encoded in
|�i〉. In particular, the local double-occupancy expectation
value in the gGA ground state is given by the following gauge-
invariant expression:

〈n̂i↑n̂i↓〉gGA = 〈�i| n̂i↑n̂i↓ |�i〉,
where n̂iσ = c†

iσ ciσ . To calculate the quasiparticle weight, it is
convenient to express the variational parameters in a gauge
where [�i]ab = [li]aδab (which always exists, since �i is
Hermitian). In this gauge, the mathematical expression for the
quasiparticle weight is the following:

Zi =
[

1 − ∂
i

∂ω

]−1

ω=0

=
(
[li]2 [li]3 [Ri]2

1 + [li]1 [li]3 [Ri]2
2 + [li]1 [li]2 [Ri]2

3

)2

[li]2
1 [li]2

3 [Ri]2
2 + [li]2

2

(
[li]2

3 [Ri]2
1 + l2

1 [Ri]2
3

) ,

(15)

where 
i(ω) is the self-energy.

III. FORMULATION OF THE ML PROBLEM

A pivotal insight at the base of the ML approach proposed
in this work is that the problem of extremizing the Lagrange
function in Eq. (2) can be formally tackled by first solving
for |�i〉 and Ec

i as a function of the other parameters. This
amounts to replacing the original variational problem of ex-
temizing L in Eq. (2) with the problem of extremizing the
following Lagrange function:

L̄[R,�; D,�c; �,�0, E ; μ]

= 〈�0| Ĥqp[R,�] |�0〉 + E (1 − 〈�0|�0〉)

+
N∑
i=1

Ē c
(
Di,�

c
i ,U, μ

)

−
N∑
i=1

⎡
⎣ ∑

σ=↑,↓

B∑
a,b=1

(
[�i]ab + [

�c
i

]
ab

)
[�i]ab

+
∑

σ=↑,↓

B∑
c,a=1

(
[Di]a[Ri]c[�i(I − �i )]

1
2
ca + c.c.

)⎤⎦,

(16)

where

Ē c(D,�c,U, μ) = 〈
Ĥ i

emb[D,�c,U, μ]
〉
D,�c,U,μ

, (17)

Ĥ i
emb is the EH defined in Eq. (4), and the expectation value

is taken with respect to the corresponding half-filled ground
state |�i〉. Note that the subscript i is not present in the
function Ē c of Eq. (16), highlighting the fact that the function
does not depend on it.

A key property of the function Ē c(D,�c,U, μ) is that it is
”universal,” in the sense that its definition is irrespective of the
details of the model system under study, but it only depends on
the type of fragment (e.g., whether it corresponds to a shell of
s,p,d or f electrons) and the gGA variational space employed
(i.e., the parameter B used). For example, when applying gGA
to any of the Hubbard models defined in Eq. (45), the form
of Ē c(D,�c,U, μ) would remain consistent, independent of
the specific lattice structure or the numerical values of the
hopping matrix t . Therefore, if one could learn the energy
function Ē c(D,�c,U, μ), along with its gradient, then the
computational cost of extremizing L̄ would be significantly
alleviated. The purpose of this work is to derive a ML model
to accomplish this goal.

A. EH Universal Function

The Lagrange equations obtained by extremizing the La-
grange function in Eq. (16) can be solved iteratively [23,24].
The specific algorithm employed in this work is detailed in the
Supplemental Material [34].

For the purposes of this paper, the essential point is
that the algorithmic structure involves iteratively evaluating
Ē c(Di,�

c
i ,U, μ) and its gradient, as the parameters Di and

�c
i are updated at each step. Specifically, the computational
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bottleneck lies in the evaluation of the ground-state single-
particle density matrix elements of each fragment i:

∂Ē c

∂[Di]a
= 2

[
ρ

hyb
i

]
a = 2

〈∑
σ

c†
iσ biaσ

〉
Di,�

c
i ,U,μ

, (18)

∂Ē c

∂
[
�c

i

]
ab

= [
ρbath

i

]
ab =

〈∑
σ

bibσ b†
iaσ

〉
Di,�

c
i ,U,μ

, (19)

where the identities above hold true because of the Hellmann–
Feynman theorem.

B. Reducing the complexity of the learning problem

In the previous subsection we have introduced the function
Ē c(D,�c,U, μ). Note that, since D and �c are generally
complex and �c is Hermitian, Ē c is a function of 2B + B2 + 2
real parameters.

In this section we show that it is possible to reduce the
problem of learning the aforementioned universal EH energy
function to the problem of learning the following function of
only 2B real variables:

E
(
D̃1, .., D̃B, �̃c

11, .., �̃
c
BB

)
= 〈

Ĥemb
[
D̃1, .., D̃B, �̃c

11, .., �̃
c
BB

]〉
D̃1,..,D̃B,�̃c

11,..,�̃
c
BB

, (20)

representing the ground-state energy of the following
Hamiltonian:

Ĥemb
[
D̃1, .., D̃B, �̃c

11, .., �̃
c
BB

]
= 1

2
(n̂ − 1)2 +

B∑
a=1

∑
σ=↑,↓

[
D̃a c†

σ baσ + H.c.
]

+
B∑

a=1

∑
σ=↑,↓

�̃c
aa baσ b†

aσ (21)

at half filling. Furthermore, it is sufficient to learn the function
E , defined by Eq. (20), over the restricted domain such that
D̃1 � D̃2 � ...D̃B.

This simplification is made possible by the fact that the
EH function Ē c, defined in Sec. III A, satisfies the following
general properties:

(1) Invariance of half-filled ground state |�〉 under simul-
taneous shift of impurity and bath energies:

Ē c(D,�c,U, μ) = Ē c(D,�c + μI,U, 0) − μ , (22)

(2) Linear homogeinity:

Ē c(xD, x�c, xU, xμ) = xĒc(D,�c,U, μ) ∀ x , (23)

(3) Gauge invariance:

Ē c(uTD, u†�cu,U, μ) = Ē c(D,�c,U, μ) ∀ u , (24)

where x is any real number and u is any B × B unitary matrix
(i.e., a gauge transformation, see Sec. II C). From the proper-
ties above it follows that

Ē c(D,�c,U, μ) = Ē c(D,�c + μI,U, 0) + μ

= UĒc(D̃, �̃c, 1, 0) + μ

= UE
(
D̃1, .., D̃B, �̃c

11, .., �̃
c
BB

) + μ, (25)

where

�̃c = 1

U
u†(�c + μI)u, (26)

D̃ = 1

U
uTD, (27)

and the unitary matrix u is a gauge transformation chosen in
such a way that �̃c is diagonal and the entries of D̃ are real and
sorted in descending order, as detailed in the Supplemental
Material [34].

Another important consequence of Eqs. (23) and (24) is
that, as shown in the Supplemental Material [34], also the
gradient of Ē c is fully encoded in the gradient of E , which
is given by the following equations:

∂E
∂D̃a

= 2ρ̃hyb
a = 2

〈∑
σ

c†
σ baσ

〉
D̃1,..,D̃B,�̃c

11,..,�̃
c
BB

, (28)

∂E
∂�̃c

aa

= ρ̃bath
aa =

〈∑
σ

baσ b†
aσ

〉
D̃1,..,D̃B,�̃c

11,..,�̃
c
BB

, (29)

where the expectation values are taken with respect to the
ground state of the EH defined in Eq. (21).

C. Summary

In summary, in this section we have reduced the problem
of solving the gGA equations to an iterative procedure which
consists of evaluating iteratively the functions

E (X) = E
(
D̃1, .., D̃B, �̃c

11, .., �̃
c
BB

)
, (30)

F(X) = ∇E (X), (31)

where we have introduced the 2B-dimensional real vector,

X = (
D̃1, .., D̃B, �̃c

11, .., �̃
c
BB

)
. (32)

Each evaluation of E (X) and F(X) requires to calculate the
ground state of the EH defined in Eq. (21), whose dimension
is 22(B+1). While the cost of this operation is essentially neg-
ligible for B = 3, it can quickly become the computational
bottleneck of the gGA framework as B or the fragment’s
dimension increase, which we aim to mitigate using ML.

An important point to highlight is the simplification intro-
duced by reducing the problem to the learning of a single
scalar function E (X), which we achieved through the use
of the Hellmann–Feynman theorem. This approach reduces
computational cost and improves predictive accuracy com-
pared to the method of individually learning each entry of the
ground-state single-particle density matrix of the EH (which
is the technique we previously employed in Ref. [33]). First,
learning a single scalar function is computationally less de-
manding than learning an array of functions corresponding to
each matrix element. Second, this method also automatically
enforces inherent prior information about these specific func-
tions, such as the condition that

∇ × F(X) = 0, (33)

i.e., F(X) is conservative, thereby enhancing the overall pre-
dictive accuracy of the model.

Interestingly, from the mathematical perspective, the prob-
lem outlined above bears a striking resemblance to a specific
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successful ML application, namely learning force fields for
accelerating molecular dynamics simulations [35–37]. In fact,
in both instances, the challenge revolves around learning the
total energy E (X) of a system and its gradient F(X) from
computational data. However, there are two key differences:

(1) Universality: Within our framework, if we could learn
once and for all E (X), then the resulting model could be
used to bypass such computational bottleneck for any system
involving single-orbital fragments (e.g., all models of the form
represented in Eq. (45), for all hopping matrices ti j and for any
values of U and μ).

(2) Domain structure: In gGA the sequence of points Xα

explored throughout the computation of any given model
always converges towards the specific X̄ realizing the cor-
responding solution. Therefore, the majority of these points,
where E (x) needs to be learned, gravitate around X̄, instead
of being spread around the whole parameters space.

These unique characteristics suggest a more tractable
learning problem. Specifically, we are not compelled to learn
the universal function E (X) over its entire domain, hereafter
referred to as the ”ambient space.” Rather, we can confine our
attention to a subset of parameters situated in the proximity of
the ground states of physical models. These ground states en-
capsulate the possible physical embeddings, i.e., the feasible
interactions that fragments can have with their environment
in the ground state of physical systems. Such parameters pre-
sumably constitute a limited fraction of the ambient space.

Therefore, we are confronted with a dual challenge. The
first is learning the function E (X) over this restricted domain,
hereafter referred to as the ”latent space.” The second is
concurrently unveiling the structure of this latent space, which
is expected to have lower dimensionality than the ambient
space. The successful completion of the latter task would
considerably streamline the overall learning problem, specif-
ically by potentially mitigating the effects of the so-called
”curse of dimensionality,” where computational cost grows
exponentially with the number of dimensions.

In the next section we describe an AL framework for
learning E (X) and F(X), which is specifically tailored for this
purpose, capitalizing on the observations above.

IV. ACTIVE LEARNING FRAMEWORK

In this section, we outline an AL strategy based on
probabilistic ML to overcome the computational challenges
delineated in the previous section.

A critical aspect of our strategy is the use of a probabilis-
tic ML model, i.e., a model capable of combining our prior
knowledge and observed data to make predictions for E and
its gradient F as expectation values 〈E (X)〉 and 〈F(X)〉 with
respect to a suitable probability distribution, and to quantify
their uncertainties through standard deviations:


0(X) = [〈E2(X)〉 − 〈E (X)〉2]
1
2 , (34)


i(X) = [〈
F 2

i (X)
〉 − 〈Fi(X)〉2

] 1
2 , (35)

where Fi(X) are the components of F(X), with i = 1, . . . , 2B,
where 2B is the dimension of X. Furthermore, we require a
model capable of learning both the energy function E and its
gradient F simultaneously, ensuring exactly the consistency

FIG. 1. Schematic representation of the AL structure. A machine
is trained on the fly while performing gGA calculations. If the uncer-
tainty estimate 
 for ML predictions at a given point X is within
a threshold, then the prediction is accepted. Otherwise, the machine
database is updated with energy E and gradient F data, and a new
machine evaluation is performed.

between these two quantities. We achieve this by a recent
generalization of GPR, satisfying both of these requirements
[38,39], described in Sec. IV B and in the Supplemental
Material [34].

A. gGA + AL Algorithmic Structure

Given a probabilistic ML method with the requirements
listed above in place, we proceed to outline the AL strategy
as follows:

(1) For each self-consistency cycle, the gGA algorithm
produces a parameter vector X for every impurity in the
system.

(2) The probabilistic ML framework predicts the ex-
pectation values 〈E (X)〉 and 〈F(X)〉. It also estimates the
uncertainty quantification of these predictions, termed 
0(X)
and 
i(X), respectively.

(3) If the existing data can produce a sufficiently ac-
curate prediction for 〈E (X)〉 and 〈F(X)〉 (with respect to
pre-established accuracy thresholds), then the ML model’s
outputs are directly employed, thereby bypassing the need for
ground-state computation of the EH.

(4) If the data are insufficient for an accurate prediction
corresponding to the EH at the given X, then new training data
are computed for suitable parameters Xα . These data points
are then added to the database for future use.

(5) The output, obtained through either step 3 or 4, is fed
back into the QE algorithm to initiate the next iteration. The
process is repeated until convergence is achieved.

The salient features of this framework, as depicted in
Fig. 1, are twofold: (1) Since all data are generated through
actual gGA calculations, they are inherently situated in the
proximity of the ”latent space” of physically meaningful
embeddings. This circumvents the issue of requiring prior
knowledge of the QE latent space, as discussed in Sec. III C.
(2) Owing to the universality of the EH, data collected
during any calculation for strongly correlated systems are
retained permanently. Consequently, the ML component of
our framework becomes increasingly efficient with each new
calculation, potentially enhancing the computational effi-
ciency of all subsequent gGA simulations.
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The details about the algorithm implementation outlined
above are described in the subsections below.

B. Generalized Gaussian process regression

Above in this section we introduced the need for a proba-
bilistic ML model that can learn and predict both the energy
function E and its gradient F, as well as quantify their uncer-
tainties. To meet these requirements, we employ a generalized
form of Gaussian process regression (GPR) [38,39], as im-
plemented in a development version of the program package
MidasCpp [40]. The method constructs a so-called ”posterior
probability distribution” for the function to learn, which is
based on a prior probability distribution and available data.

(1) The prior encodes our expectations about the general
properties of the function we aim to learn, such as its range
and smoothness.

(2) The observed data in our case consist of a database:

D = {Xα, Eα, Fα, σ0α, σα}, (36)

where Xα are points with evaluated energies Eα and gradients
Fα , σ0α measures the uncertainty associated with the energy
data Eα , and σα = (σ1α, .., σdα ), where σiα is the uncertainty
associated with the i-th component of the gradient data Fiα

and d is the dimension of Xα .
In GPR the prior probability distribution is assumed to be

a zero-mean Gaussian. Consequently, it is fully characterized
by the so-called ”kernel function,” which is essentially the
correlation function 〈E (X)E (X′)〉prior, where the expectation
value is taken with respect to the prior probability distribution.
The kernel function we employ in this work is the ”square
exponential kernel,” given by

k(X, X′) = 〈E (X)E (X′)〉prior

= σ 2
f exp

(
− (X − X′)2

2l2

)
. (37)

This choice is motivated by its simplicity and effectiveness in
describing the essential qualitative features of the EH energy
landscape that we aim to imbue within the model, which are
governed by two hyperparameters: l and σ f . The parameter
l is essentially a correlation length, defining the expected
”minimum wavelength” or smoothness of the function E (X).
The parameter σ f specifies the expected range of the function,
serving as an infrared cutoff. Specifically, k(X, X) = σ 2

f cor-
responds to the expected variance 〈E (X)2〉prior of the function.

The posterior probability distribution thus integrates both
our prior knowledge and the available observed data,
generating predictions for E and F that align with the observed
data, while utilizing the prior for making predictions else-
where. In particular, our AL framework requires to compute
the following quantities at any given point X:

Ē (X) = 〈E (X)〉l,σ f ,D, (38)

F̄i(X) = 〈Fi(X)〉l,σ f ,D, (39)


0(X) = [〈E2(X)〉l,σ f ,D − 〈E (X)〉2
l,σ f ,D

] 1
2 , (40)


i(X) = [〈
F 2

i (X)
〉
l,σ f ,D

− 〈Fi(X)〉2
l,σ f ,D

] 1
2 , (41)

where the expectation values are taken with respect to the
posterior distribution, that depends on the hyperparameters
l, σ f , as well as the available data D. Explicit expressions for
these distributions are provided in the Supplemental Material
[34].

It is important to note that, as opposed to standard GPR
and the KRR-based method previously used in Ref. [33],
the generalized GPR framework outlined above enforces by
construction the condition

F̄(X) = ∇Ē (X), (42)

where F̄i(X) are the components of F̄(X), with i = 1, . . . , d ,
where d = 2B is the dimension of X. Enforcing exactly
these conditions yields more accurate predictions. However,
as explained in the Supplemental Material [34], such gain
comes with additional computational cost. Specifically, if the
database D contains N training data points, then making pre-
dictions requires to invert a matrix (the so-called ”covariance
matrix”), whose size is N (d + 1) × N (d + 1), while it is only
N × N in standard GPR. In light of this, the computational
complexity and matrix size present two challenges that need
to be carefully addressed:

(1) RAM Storage: The large covariance matrix, of
size N (d + 1) × N (d + 1), necessitates considerable memory
storage. This can become a significant issue as the number of
data loaded in the GPR framework grows.

(2) Scalability: The matrix inversion operation itself has
a time complexity of O((N (d + 1))3). As N increases, it be-
comes computationally burdensome. Specific measures must
be incorporated into our active learning framework to ensure
its scalability for large databases.

(3) Numerical Stability: The large size of the covari-
ance matrix and closely spaced data points in D can make
the matrix inversion prone to numerical issues. Specifically,
the matrix can become ill-conditioned, having a large condi-
tion number, which is the ratio of the largest to the smallest
eigenvalue. This makes the matrix sensitive to small changes,
potentially leading to a loss of numerical precision.

In the following subsection, we detail how these challenges
are addressed in our active learning framework, and also elab-
orate on our procedure for choosing the hyperparameters l and
σ f .

C. Addressing computational and numerical
challenges in AL framework

To cope with the computational and numerical challenges
presented by the large covariance matrix, we have designed
the following strategy within our AL framework.

Our approach is based on the construction of a hyper cubic
lattice discretization of the d-dimensional parameter space X,
yielding a set of grid points Xi1,...,id . Each iα index covers all
integers, effectively tiling the whole parameter space. We use
a lattice spacing a = 0.0125, which is set to be much smaller
than 1, taking into account the dimensionless nature of our
parameters. When predicted values for a given X are being
requested during the self-consistent embedding computations
we find the nearest point on the lattice to this point. In addition
we also consider this lattice points 2d nearest neighbors on
the lattice (corresponding to id ± 1 for all d). Should any of
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these 2d + 1 points not already be in the database D, they
are calculated and added. Note that these calculations are
independent of each other and, therefore, can be executed
in parallel. For each evaluation at X, the GPR prediction
and its associated uncertainties are calculated based solely
on these 2d + 1 data points. We locate these nearest points
using a k-d tree-based algorithm to maintain computational
efficiency. This step effectively imposes a ”budget” on the
number of training data we use for making GPR predictions,
thereby controlling the size of the covariance matrix and the
associated computational complexity.

Next, we address the setting of the hyperparameter σ f

within this localized framework. For the GPR prediction of
each point X, the hyperparameter σ f for the squared exponen-
tial kernel is set based on the data as follows:

σ 2
f = 1

2d + 1

2d+1∑
α=1

E2(Xα ), (43)

which is consistent with its interpretation in terms of the prior
probability distribution: σ 2

f = 〈E2(X)〉prior. To determine the
appropriate value of the hyperparameter l , we employ the
following iterative approach:

(1) Initialize l at linit = 0.5. The range for l is predeter-
mined to be between linit and lfinal = 2.0, with increments of
�l = 0.1.

(2) For the current l , calculate 
max, which is the
maximum of the uncertainties 
i(X) associated with all com-
ponents of the gradient F(X) for i = 1, .., d .

(3) If 
max < 
̄ = 10−3, then accept the current GPR pre-
diction for that l and terminate the loop.

(4) Otherwise, increment l by �l and return to step 2. If l
exceeds lfinal, then revert to exact calculations for that specific
test point and terminate the loop.

The uncertainty parameters σiα , see Eq. (36), have been all
set to 10−5 in all of our calculations.

The rationale underlying this algorithm is to initiate with
the smallest l value, thereby making the least assumptions
about the landscape’s smoothness and relying more heavily on
the data for our predictions. If this l proves insufficient, then
we then increment l in a stepwise manner, each time reassess-
ing the prediction quality. This iterative fine-tuning of l is in
essence a method for optimizing the trade-off between bias
and variance, a standard criterion in ML, which ensures that
our model is neither too simplistic (high bias; large l) nor too
sensitive to fluctuations in the data (high variance; small l).
Note also that our choice of l range is in line with the fact that
our parameters X are dimensionless, from which we expect
the optimal l to be around 1. Furthermore, it is consistent
with the assumption l � a, acknowledging that we cannot
resolve scales smaller than the lattice spacing a. Finally, note
that our choice of 
̄ = 10−3 is consistent with the assumption

̄ � σiα , acknowledging that it is impossible to make pre-
dictions with higher accuracy than the available data. Thus,
the framework above effectively manages challenges related
to RAM storage, computational scalability, and numerical
stability, while maintaining a balance between computational
cost and prediction accuracy.

V. RESULTS

In this section we document the results obtained by apply-
ing the AL algorithm described above to gGA calculations on
the single-band Hubbard model at half filling. Here, we con-
sider different values for the Hubbard interaction strength U
and hopping parameters ti j (corresponding to multiple lattice
geometries).

We carry out our calculations within the gGA framework
set at B = 3, which, as proven in previous work, is sufficient
for achieving accuracy comparable to DMFT for ground-state
properties. As clarified in Sec. III C, in this setting the di-
mension of the ”ambient space” of parameters X, where the
energy function E (X) is defined, is 2B = 6. All training-data
evaluations for E (X) and F(X) are calculated using the exact
diagonalization (ED) method.

In Secs. V B and V C we document the efficiency and ac-
curacy obtained in these calculations using our AL approach.
In Sec. V D, we demonstrate that the parameters explored
span a low-dimensional latent space and discuss the practical
implications of these results, as well as their physical inter-
pretation in relation to Mott physics. Additional calculations
and analysis for the Hubbard model away from half filling are
presented in the Supplemental Material [34].

A. Goal of benchmark calculations

Our aim is to test the AL method within all interaction
regimes of the half-filled Hubbard model at zero tempera-
ture, including the so-called coexistence region, which is an
interval of parameters U featuring a metastable Mott state. To
capture all of these regimes, all calculations are organized into
series constructed as follows. Each series starts from a large
value of interaction strength Umax and decreases it in intervals
of �U to a small value Umin. Then, the interaction strength is
increased back to Umax with the same spacing. From now on,
we refer to such a series of calculations as a ”sweep.”

A critical metric for quantifying the efficiency of our
gGA + AL approach is the ratio of the number of times new
data must be acquired and added to the database during a
given calculation, Ndata, to the total number of gGA itera-
tions necessary to perform the same calculation without ML,
Niterations:

S = Ndata

Niterations
, (44)

which we would like to be as small as possible.
It is important to note that the value of S is heavily in-

fluenced by the choice of hyper-parameters, as detailed in
Sec. IV C. In these benchmarks we strived for high accuracy
by requiring that both the energy E and its gradient F are
estimated to a precision of at least 
̄ = 10−3. Furthermore, a
minimum of 2d + 1 training points are required within a grid
with tight lattice spacing a = 0.0125 for each test point. This
ensures that new calculations are invoked when the explo-
ration enters a new parameter region spaced by more than a.

In the forthcoming benchmark calculations, we aim to
address three specific scientific questions for evaluating the
utility and efficiency of our gGA + AL method:

(1) Ability to learn: Can a sweep of gGA + AL calcula-
tions, once completed and with the data stored, be repeated
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without requiring any new data for the Hamiltonian pa-
rameters already explored? This is a necessary condition
for realizing the computational benefits of our data-driven
approach.

(2) Transfer-learning efficiency: If multiple sweeps are
performed, each with different settings such as �U or ti j ,
then can data acquired in one sweep be leveraged in another
to reduce the need for new calculations? We are interested in
whether the explored parameters can span a latent space with
overlapping regions that can be exploited for computational
efficiency in future calculations.

(3) Accuracy preservation: Is the accuracy in physical
quantities preserved when completing a calculation using the
gGA + AL method? While it is always feasible to refine the
results through a few standard gGA iterations without active
learning at the end of any gGA + AL calculation, achieving
high accuracy directly with AL is preferable for maximizing
computational gains.

B. Benchmarks for Hubbard model
on infinite-coordination Bethe lattice

In this subsection we present benchmarks of our gGA +
AL method as applied to the Hubbard model represented by
the following Hamiltonian:

Ĥ = U

2

∑
i

(n̂i − 1)2 − t
∑
〈i, j〉

∑
σ=↑,↓

(c†
iσ c jσ + H.c.), (45)

where t the hopping between nearest-neighbor sites, and
the the hopping parameters are finite only between nearest-
neighbor sites on a infinite-coordination Bethe lattice, with
semicircular density of states ρ(ω) = 2

√
D2 − ε2/(πD2).

The energy measure is set in unit of the half-bandwidth
D ∝ t .

1. Efficiency starting with empty database

For each �U , we start with an empty database and execute
a sweep of calculations, as defined in Sec. V A. Immediately
following this, a test sweep is performed, leveraging the data
acquired during the initial sweep. Once the test sweep for
a specific �U is completed, the database is reset to empty,
and the entire process is repeated for the subsequent �U
values. The results of these benchmarks are summarized in
Fig. 2, where each row corresponds to a different �U . The
figure showcases the value of the efficiency metric S for both
the original and test sweeps. The left and right columns of
the figure display the S values for metallic and Mott states,
respectively.

A key observation is that no additional training data are
required in the test sweeps for all �U values, with the
only exception at �U = 0.6, where a few new training data
are added to the database. This confirms the ability of our
framework to ”learn monotonically,” in the sense outlined
in Sec. V A. It is also remarkable that the computational
gains achieved through our gGA + AL approach are sub-
stantial even in the initial sweep, when starting from an
empty database. In fact, the average of the efficiency metric
S registered throughout each sweep at �U = 0.6, 0.3, 0.15,

0.075 is at 83%, 73%, 56%, and 40%, respectively, when
considering both the Mott and metallic phases. The fact that

FIG. 2. Efficiency metric S for sweeps performed at different val-
ues of �U . Each row corresponds to a unique �U . The left and right
columns show S values for metallic and Mott states, respectively. The
results of both the original sweep and the subsequent test sweep are
included.

tighter meshes lead to increased overall computational savings
is explained by the fact that data acquired along the way for
solving the gGA equations can be used by the AL framework
for reducing computational cost of subsequent calculations
with similar interaction strengths.

From the physical perspective, a very interesting feature of
the results shown in Fig. 2 is that S is smaller in the Mott
phase and the strongly correlated metallic phase, pointing
to higher transfer-learning efficiency in these regions, com-
pared to the weakly correlated regime. This finding, and its
physical interpretation, is discussed later in Sec. V D with
a PCA.

2. Efficiency with progressive data accumulation

In Fig. 3, we compare the efficiency of our gGA + AL
method across the sweeps with spacings �U = 0.3, 0.15,

0.075. Each row of the figure corresponds to one of such
sweeps. The top panels present the S values obtained when
starting with an empty database for each new sweep, as in
Fig. 2. In contrast, the bottom panels show the S values cal-
culated starting from a database that was initially populated
at the end of a �U = 0.6 sweep and subsequently updated
without resetting as we traverse through the mentioned series
of �U values.

We observe that, using the scheme that retains data, the
metric S demonstrates a computational gain of over 50%
compared to calculations performed with a reset database.
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FIG. 3. Comparison of the efficiency metric S for different
sweeps: �U = 0.3, 0.15, 0.075. Each row corresponds to mesh
spacing �U . The left and right columns represent the S values for
metallic and Mott states, respectively. For each �U , the top panel
shows S calculated using an empty database at the start of each
sweep. The bottom panel displays S calculated starting from the
database obtained at the end of the �U = 0.6 sweep and updated
continuously as we proceed through the series of �U , from the
largest to the tightest.

Specifically, in this same scheme, the average of the effi-
ciency metric S registers at 33%, 22%, and 10% for �U =
0.3, 0.15, 0.075, respectively. Consistently with the trend of
the results in Fig. 2, this gain is even more significant in
the regime of strongly correlated parameters. This further
supports the transfer-learning ability of our AL framework.

It is important to note that, as mentioned in Sec. III B,
in the gGA framework the sequence of points Xi explored
throughout the computation of any given model always
converges towards the point X̄ realizing the corresponding
solution. Thus, the majority of these points, where E (X) needs
to be learned, tend to cluster around X̄ instead of being
distributed throughout the entire parameter space. As a result,
the data effectively form an approximate one-dimensional
latent structure (parametrized by U ), embedded within the
6-dimensional ambient space, as we are going to show explic-
itly in Sec. V D with a PCA. The ”transfer-learning” ability
displayed by our AL framework (i.e., its ability to exploit the
data previously stored for improving efficiency of subsequent
calculations) is grounded on its ability to exploit such type
of low-dimensional structures, effectively bypassing the expo-
nential computational burden associated with the unnecessary
task of learning E (X) in the whole ambient space.

C. Benchmarks for Hubbard model with different
lattice structures

Here we extend our analysis to consider different geome-
tries, specifically variations in the hopping matrices ti j . This

FIG. 4. Efficiency metric S for 3D cubic (upper panels) and 2D
square (lower panels) lattices. Each panel is divided into two sec-
tions: The upper section shows results obtained without storing any
data, while the lower section presents results where all previously
acquired data, including that from the Bethe lattice calculations, were
retained. Mott points are depicted on the right side, and metallic
points are on the left.

enables us to evaluate how the gGA + AL framework per-
forms when the data do not naturally span an approximately
one-dimensional curve solely parametrized by U . A central
question we aim to address is whether a low-dimensional
structure is commonly present among the embedding parame-
ters X in these more general scenarios, and if so, whether our
AL framework can leverage this structure for more efficient
and accurate calculations.

1. Efficiency with progressive data accumulation

To extend the scope of our analysis, we have also per-
formed calculations of the Hubbard model on 3D cubic and
2D square lattices, employing a mesh with �U = 0.075. The
resulting efficiency metrics S for these calculations are illus-
trated in Fig. 4.

The figure is organized as follows: the upper panels cor-
respond to the 3D cubic lattice calculations, while the lower
panels are for the 2D square lattice. Within each panel, the
upper and lower parts distinguish between the two modes of
data acquisition. The upper part of each panel displays the
efficiency metrics obtained without any stored data, whereas
the lower part showcases results when retaining all previously
acquired data, including that from our Bethe lattice calcula-
tions.

The results of Fig. 4 are consistent with our previous find-
ings. Even when starting from an empty database, there is a
significant computational advantage. More notably, employ-
ing the data acquisition model that continuously accumulates
data results in additional gain compared to the data-reset
calculations. This suggests that despite the differences in
geometry between the systems, there is a degree of over-
lap in the data that is explored. Intriguingly, these gains are
predominantly observed in the Mott phase and strongly cor-
related regime, implying a greater degree of overlap in these
cases compared to the weakly correlated regime.
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FIG. 5. Comparison of total energy, local double occupancy, and quasiparticle weight calculated using gGA + AL and standard gGA
methods. The results referred to as ”exact results” correspond to the exact gGA solutions and are represented by continuous black lines. The
results obtained with gGA + AL are represented by triangles.

These observations lead us to conclude that the latent
space of the ”physically relevant embeddings,” or the set of
parameters X probed during gGA ground-state calculations,
possesses a ”special” structure. Specifically, this structure may
be such that it occupies only a small subset of the ambient
parameter space. We delve deeper into understanding this
”special” structure of the latent space in Sec. V D, where
we employ the PCA to study the data structure in detail and
provide a physical interpretation of these findings.

2. Accuracy of gGA + AL solution

In addition to computational efficiency, another criti-
cal aspect of our gGA + AL framework is its accuracy in
calculating physical observables. To rigorously evaluate this,
we consider observables such as the total energy, local dou-
ble occupancy, and quasiparticle weight. These observables
are computed from the variational parameters obtained after
convergence, as detailed in Sec. II C.

From Fig. 5, it is evident that the application of our ML
algorithm does not result in a significant loss of accuracy
compared to a canonical gGA algorithm. Also, the endpoint of
the metal-insulator transition Uc1 is in perfect agreement with
that obtained using the standard method. The only discrepancy
is that the endpoint of the metal-insulator coexistence region
Uc2 shows a slight overestimation on the 2D square lattice
when using our ML algorithm.

It is also worth pointing out that, as previously mentioned
in Sec. V A, it is always possible to refine the results with

a few iterations of the standard gGA method after the active
learning steps. This ensures that the computational efficiency
gained by the gGA + AL framework does not compromise
accuracy, providing a risk-free framework for high-efficiency,
reliable calculations.

D. PCA analysis of the training database

In this section, we turn our attention to the underlying
structure of the database that has been acquired in the course
of our calculations. Our primary objective is to probe the
latent space within which our AL framework operates. In
particular, we aim to elucidate why our AL framework shows
notably higher transfer-learning efficiency in the strongly cor-
related regime, and to discuss the physical implications of
these findings.

Our database comprises vectors Xα from calculations on
the Bethe lattice in the limit of infinite coordination number,
the 2D square lattice, and the 3D cubic lattice, all initiated
without pre-existing data. To investigate the low-dimensional
structure of such ”latent space” of embedding parameters, we
perform a PCA analysis.

1. Definition of the PCA

The PCA analysis of our database consists of the following
steps.

(1) We construct a N × d data matrix M, where d = 6
is the dimension of the vectors Xα and N is the number of
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database points, by placing each EH parameter vector Xα of
the database as a row, leading to:

M =

⎡
⎢⎣

...

Xα
...

⎤
⎥⎦, (46)

i.e., Mαi = [Xα]i.
(2) The singular value decomposition (SVD) of M is rep-

resented as a sum of the outer products of its singular vectors:

M =
d∑

r=1

σrurvT
r , (47)

where σr denotes the singular values sorted from the largest
to the smallest, the vectors ur and vr are the column
vectors corresponding to the left and right singular vectors,
respectively. From Eq. (47) it follows that the data points Xα

can be expressed as the following expansion of vT
r :

Xα =
d∑

r=1

σr[ur]αvT
r , (48)

with coefficients xrα = σr[ur]α , where [ur]α denotes the α

component of ur . Since the singular values σr are sorted from
the largest to the smallest, the first terms of Eq. (48) retain the
most significant features of the parameter space.

(3) The approximation of each data point Xα is thus ob-
tained by truncating the sum in Eq. (48) as follows:

Xα =
dcut∑
r=1

σr[ur]αvT
r , (49)

where dcut is the number of retained principal components
selected to capture the desired amount of total variance from
M, and vT

r are the corresponding ”principal axes.”

2. Application of the PCA

The results of the PCA analysis described above are in
Fig. 6, which shows the first two principal components, i.e.,
[u1]ασ1 and [u2]ασ2, where σ1 = 77.8 and σ1 = 14.6. These
two principal components account for more than 88% of the
variability of the data.

To further investigate the low-dimensional structure of
the latent space, we present a scatter plot of these first two
principal components in Fig. 6, providing us with a pictorial
representation of the latent space. In this plot, the points are
color-coded based on the lattice type and the stage of the
calculation. Specifically, points obtained after convergence for
the Bethe lattice, 2D square lattice, and 3D cubic lattice are
colored in blue, red, and green, respectively. All other points,
which are gathered during the self-consistency procedure but
do not correspond to converged solutions, are colored in gray.

In line with our earlier discussion in Sec. V B 2, the data for
each lattice effectively form an approximate one-dimensional
latent curve, parametrized by U , which bifurcates within the
coexistence region. Remarkably, data subsets corresponding
to each lattice structure are very similar. Furthermore, we
observe that the separation between the data corresponding to
different lattices is more pronounced in the weakly correlated
regime (small U , lower-left part of the graph). As U increases,

FIG. 6. Scatter plot of the first two principal components of the
training database. Points obtained after convergence for the Bethe
lattice, 2D square lattice, and 3D cubic lattice are colored in blue,
red, and green, respectively. All other points are colored in gray.

the data corresponding to different lattices in the metallic
regime become increasingly overlapping, culminating in max-
imum overlap near the end of the coexistence region Uc2.

From the computational perspective, these observations
shed light on the higher transfer-learning efficiency of our
AL framework in the strongly correlated regime. The over-
lapping data imply that similar regions of the feature space
are explored across different calculations. Consequently, the
data from one calculation can be effectively transferred to
subsequent calculations, reducing the need for additional data
points.

From a physical standpoint, the observed overlapping be-
havior of the databases across different lattice structures is
rooted in the generality of Mott physics. The parameters Xα

obtained after convergence, represented by the colored dots
in Fig. 6, can be interpreted as physical embeddings of the
correlated fragments. These embeddings capture the essence
of electron localization induced by the Hubbard interaction,
which transcends the specifics of the lattice structure. While
in the weakly correlated regime the influence of the different
lattice structures on the fragment’s electronic structure is rel-
atively pronounced, requiring to sample different regions of
the ambient space, as we approach and enter the Mott phase
in the strongly correlated regime, the fragments become less
entangled with their surrounding environment due to reduced
charge fluctuations. Consequently, it is understandable that
the physical embeddings become increasingly less dependent
on the lattice type, leading to the observed overlaps in the
databases.

3. Possible future methodological enhancements

In light of our findings concerning the low-dimensional
latent space, and their general origin rooted in Mott physics,
it is natural to consider additional computational techniques
that could further leverage this structure in future applications
to complex multiorbital strongly correlated systems. Specif-
ically, deep kernel kearning with autoencoders could further
facilitate learning within our AL framework, as it could offer
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enhanced flexibility and scalability for discovering optimal
feature spaces, all while preserving the essential element of
uncertainty quantification employed within our AL procedure.

VI. CONCLUSIONS AND OUTLOOK

In this study, we have presented an AL framework inte-
grated within the gGA to efficiently explore the ground state
of the EH in the context of the single-band Hubbard model.
From a computational standpoint, this approach leads to a
marked reduction in the number of EH instances that must
be solved iteratively, thus significantly mitigating the compu-
tational cost inherent to gGA. Moreover, our PCA analysis
reveals that the parameters of the EH reside in a latent space
with a low-dimensional structure that is largely invariant to
the specifics of the lattice geometry, especially in the strongly
correlated regime.

From the physical perspective, the existence of this low-
dimensional latent space can be attributed to the universal
features of Mott physics. The phenomenon of electron lo-
calization, caused by the Hubbard interaction, transcends the
geometric specifics of the systems studied. As a result, the
correlated fragments are less susceptible to environmental
influences, leading to a latent space whose characteristics are
conserved across various lattice structures.

Looking forward, extending this methodology to more
complex systems involving multiple orbitals, such as 5-orbital
d systems and 7-orbital f systems, presents an interesting
challenge. While the universality of Mott physics gives us
reason to expect similar low-dimensional structures in these
more complicated systems, the actual existence and dimen-
sionality of such a latent space remains an open question. In
this respect, it is important to note that, when considering
real-material calculations, the parameters of the electronic
Hamiltonian are not freely adjustable. Structural stability,
which emerges from the interplay between electronic and
lattice degrees of freedom, imposes further constraints on the

physically realizable electronic structures, which do not exist
in model calculations, where all parameters can be tuned in
arbitrary ways. A trivial example of how structural stability
limits the possible quantum embeddings of the correlated
degrees of freedom is that it often leads to symmetry, which
can be exploited to reduce the number of gGA parameters us-
ing group-theoretical considerations. Additionally, structural
stability restricts the possible atomic environments based on
fundamental principles of chemistry, such as valence com-
patibility between atoms. These constraints may significantly
limit the dimensionality and structure of the latent space
of physically realizable embeddings, facilitating the learning
problem.

Hence, the implementation of our AL framework in
real-material calculations, potentially within an ab-initio
DFT+gGA framework, could provide further insights into
the structure of this latent space and its limitations, laying
the groundwork for more efficient simulations of complex
strongly correlated materials.
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