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Abstract
In this work we study the global solvability of moisture dynamics with phase changes
for warm clouds. We thereby in comparison to previous studies (Hittmeir et al. in
Nonlinearity 30:3676–3718, 2017) take into account the different gas constants for dry
air and water vapor as well as the different heat capacities for dry air, water vapor and
liquid water, which leads to a much stronger coupling of the moisture balances and the
thermodynamic equation. This refined thermodynamic setting has been demonstrated
to be essential, e.g. in the case of deep convective cloud columns in Hittmeir and Klein
(Theoret Comput Fluid Dyn 32(2):137–164, 2017). The more complicated structure
requires careful derivations of sufficient a priori estimates for proving global existence
and uniqueness of solutions.

Keywords Well-posedness for nonlinear moisture dynamics · Primitive equations ·
Moisture model for warm clouds with phase transition

Mathematics Subject Classification 35A01 · 35B45 · 35M86 · 35Q30 · 35Q35 ·
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1 Introduction

Precipitation causes one of the major uncertainties in weather forecast and climate
modelling and thus also the incorporation of moisture and phase changes into atmo-
spheric flowmodels is still actively debated, see, e.g., Bannon (2002). In the framework
of systematically derived reduced mathematical models for atmospheric dynamics, it
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has been shown that not only the inclusion of moist processes alone, but also the
detailed structure of the moist-air submodels can decisively affect the overall flow
dynamics, see, e.g., Smith and Stechmann (2017), Khouider (2019), Stechmann and
Hottovy (2020). Often the difference of the gas constants for water vapor and dry
air is neglected and further the simple form of the dry ideal gas law is assumed to
hold. Even more typically also the dependence of the internal energy on the moisture
components is neglected, which results in a much simpler form of the thermodynamic
equation. So far global well-posedness of solutions to moisture models has only been
proven based upon these assumptions, see also (Bousquet et al 2014; Coti Zelati et al.
2013; Coti Zelati and Temam 2012; Coti Zelati et al. 2015; Hittmeir et al. 2017, 2020).
As demonstrated, e.g. in the asymptotical analysis in Hittmeir and Klein (2017) for
deep convective cloud columns, exactly these refined thermodynamics lead to a much
stronger coupling of the thermodynamic equation (see below) to the moisture com-
ponents and thereby even change the force balances to leading order. The aim here is
to also incorporate them into the analysis, where the refined thermodynamical setting
in comparison to Hittmeir et al. (2017) requires a different approach for proving a
priori nonnegativity and uniform boundedness of the solution components, since the
antidissipative term in the equation for temperature does not vanish anymore when
rewriting it in terms of the potential temperature. We thus employ an iterative method
similar to the one used by Coti Zelati et al. (2015) to derive an upper bound on the
temperature.

Bousquet et al (2014), Coti Zelati et al. (2013, 2015, 2012) analysed a basicmoisture
model consisting of one moisture quantity coupled to temperature and containing only
the process of condensation during upward motion, see, e.g., Haltiner and Williams
(1980). Since the source term there is modeled via a Heaviside function as a switching
term between saturated and undersaturated regions, the analysis requires elaborate
techniques. The approach based on differential inclusions and variational techniques
has then further been applied to the moisture model coupled to the primitive equations
in Coti Zelati et al. (2015).

In preceding works (Hittmeir et al. 2017, 2020) we studied a moisture model con-
sisting of three moisture quantities for water vapor, cloud water, and rain water, which
contains besides the phase changes condensation and evaporation also the autocon-
version of cloud water to rain water after a certain threshold is reached, as well as the
collection of cloud water by the falling rain droplets. It corresponds to a basic form of
a bulk microphysics model in the spirit of Kessler (1969) and Grabowski and Smo-
larkiewicz (1996). In Hittmeir et al. (2017) we assumed the velocity field to be given
and studied the moisture balances coupled to the thermodynamic equation through
the latent heat. In Hittmeir et al. (2020) this moisture model has been successfully
coupled to the primitive equations by taking over the ideas of Cao and Titi (2007) for
their breakthrough on the global solvability of the latter system.

In this work we extend this moisture model for warm clouds consisting of three
moisture balances and the thermodynamic equation by the refined thermodynamic
setting as explained above, which leads in particular to a much stronger coupling of
the model equations.

In the remainder of this section we introduce the moisture model. In Sect. 2 we then
formulate the full problemwith boundary and side conditions and state the main result

123



Journal of Nonlinear Science            (2023) 33:65 Page 3 of 24    65 

on the global existence and uniqueness of bounded solutions. In Sect. 3 we carry out
the proof for the existence and uniqueness of strong solutions.

1.1 Governing Equations

When modelling atmospheric flows in general, the full compressible governing equa-
tions need to be considered. However, under the assumption of hydrostatic balance,
which in particular guarantees the pressure to decrease monotonically in height, the
pressure p can be used as the vertical coordinate, which have the main advantage that
the continuity equation takes the form of the incompressibility condition (see also
(15) below). We therefore work in the following with the governing equations in the
pressure coordinates (x, y, p) and as in Hittmeir et al. (2017) assume the velocity field
to be given

v = (vh, ω) = (u, v, ω),

where we note that the vertical velocity ω = dp
dt in pressure coordinates takes the

inverse sign in comparison to cartesian coordinates for upward and downward motion.
Also the horizontal and the vertical derivatives and accordingly the velocity compo-
nents in pressure coordinates have different units. The total derivative in pressure
coordinates reads

d

dt
= ∂t + vh · ∇h + ω∂p, with ∇h = (∂x , ∂y). (1)

For the closure of the turbulent and molecular transport we use

D∗ = μ∗�h + ν∗∂p

((
gp

Rd T̄

)2

∂p

)
, with �h = ∂2x + ∂2y , (2)

where T̄ = T̄ (p) corresponds to some background distribution being uniformly
bounded from above and below and Rd is the individual gas constant for dry air. The
operator D∗ thereby provides a close approximation to the full Laplacian in cartesian
coordinates, see also (Lions et al. 1992; Petcu et al.). The thermodynamic quantities
are related via the ideal gas law

p = pd + pv = RdρdT + RvρvT , (3)

where Rv is the individual gas constant for water vapor and pd , pv, ρd , ρv denote the
partial pressures and densities of dry air and water vapor, where we note that liquid
water does not exert any pressure on the volume of air, see, e.g. also (Bannon 2002;
Cotton et al. 2011).

Before going more into details with the ideal gas law (see (7) below), we need to
introduce the moisture quantities. In the case of moisture being present typically the
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water vapor mixing ratio, defined as the ratio of the density of ρv over the density of
dry air ρd ,

qv = ρv

ρd
,

is used for a measure of quantification. If saturation effects occur, then water is also
present in liquid form as cloud water and rain water represented by the additional
moisture quantities

qc = ρc

ρd
, qr = ρr

ρd
.

We focus here on warm clouds, where water is present only in gaseous and liquid
form, i.e. no ice and snow phases occur. The total water content is therefore given by

qT = qv + qc + qr .

For these mixing ratios for water vapor, cloud water and rain water we have the
following moisture balances

dqv

dt
= Sev − Scd + Dqvqv, (4)

dqc
dt

= Scd − Sac − Scr + Dqcqc, (5)

dqr
dt

+ V ∂p

(
p

Rd T̄
qr

)
= Sac + Scr − Sev + Dqr qr (6)

with d
dt as in (1) andD

q j as in (2). Here Sev, Scd , Sac, Scr are the rates of evaporation
of rain water, the condensation of water vapor to cloud water and the inverse evapo-
ration process, the auto-conversion of cloud water into rainwater by accumulation of
microscopic droplets, and the collection of cloud water by falling rain. Moreover, V
denotes the terminal velocity of falling rain and is assumed to be constant.

Having introduced the mixing ratios, we can now reformulate the ideal gas law (3)
as

p = ρ R̃T , (7)

where ρ = ρd + ρv + ρc + ρr is the total density and R̃ depends on the moisture
content

R̃ = Rd
1 + qv

E

1 + qT
, where E = Rd

Rv

,

see, e.g. also (Bannon 2002; Cotton et al. 2011; Hittmeir and Klein 2017). The ther-
modynamic equation accounts for the diabatic source and sink terms, such as latent
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heating, radiation effects, etc., but we will in the following only focus on the effect of
latent heat in associationwith phase changes [see e.g. also (Klein andMajda 2006; Coti
Zelati et al. 2013, 2015; Hittmeir et al. 2017)]. The temperature equation in pressure
coordinates then reads, see, e.g. Hittmeir and Klein (2017); Cotton et al. (2011),

dT

dt
− κ̃

T

p
ω + cl

C̃
qr V ∂pT = L̃(Scd − Sev) + DT T , (8)

where

κ̃ = R̃

C̃
, and C̃ = cpd + cpvqv + cl(qc + qr )

with the heat capacities cpd , cpv at constant pressure for dry air and water vapor and
the heat capacity for liquid water cl , respectively. For the latent heat term, we denote

L̃ = L

C̃
, where L(T ) = L0 − (cl − cpv)(T − T0) and L0 = L(T0),

(9)

where T0 is the reference temperature which is typically chosen as T0 = 273.15K .
We emphasize here once more that so far only models with L, R̃, κ̃, C̃ constant and
cl = 0 have been considered in mathematical analysis studies. Thus, this physically
more refined setting has several extensions in comparison to existing studies.

Remark 1 To describe the state of the atmosphere a common thermodynamic quantity
used instead of the temperature is the potential temperature

θ = T

(
p0
p

)κ

, where κ = Rd

cpd
. (10)

In case of the typical simplification κ̃ = κ and cl = 0, the left-hand side of (8) simply
reduces to T

θ
d
dt θ . This property was essential in the preceding works (Hittmeir et al.

2017) and also (Coti Zelati and Temam 2012) to derive a priori nonnegativity of the
moisture quantities and temperature.

1.2 Explicit Expressions for the Source Terms

The saturation mixing ratio

qvs = ρvs

ρd
,

gives the threshold for saturation, i.e.qv < qvs for undersaturation, qv = qvs corre-
sponds to saturation, and qv > qvs accordingly holds in oversaturated regions. The
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saturation vapor mixing ratio satisfies

qvs(p, T ) = Ees(T )

p − es(T )
,

with the saturation vapor pressure es as a function of T being defined by the Clausius-
Clapeyron equation:

d ln es
dT

= L(T )

RvT 2 .

From this formula it is obvious that es increases in T (as long as L(T ) is positive). Since
the temperature T is given in Kelvin K , only positive values are physical. It should be
noted that the Clausius-Clapeyron equation is only meaningful for temperature ranges
appearing in the troposphere, thus in particular we shall pose in the following the
natural assumption

es(T ) = 0Pa and qvs(p, T ) = 0 for T ≤ T ,

for some T ≥ 0K, which will also be helpful for proving nonnegativity of themoisture
quantities and the temperature, see also (Hittmeir et al. 2017).

Recalling the fact that cl − cpv > 0, we see from (9) that L(T ) decreases in T . In
particular, there exists the critical temperature

Tcrit = L0

(cl − cpv)
− T0 (11)

at which the latent heat of evaporation vanishes, i.e. L(Tcrit ) = 0. At such high
temperatures of about 700K , the gaseous and liquid state become indistinguishable.
Such temperatures however clearly exceed by far the ones present in the relevant
atmospheric layers. Therefore, we in the following pose the natural assumption that

es(T ) = 0Pa and qvs(p, T ) = 0 for T ≥ Tcrit . (12)

For deriving the uniqueness of the solutions, we need additionally the uniform Lips-
chitz continuity of qvs ≥ 0 in T , i.e.we assume

|qvs(p, T1) − qvs(p, T2)| ≤ C |T1 − T2|,

for a positive constant C independent of p.
For the source terms of the mixing ratios, we take over the setting of Klein and

Majda (2006) corresponding to a basic form of the bulk microphysics closure in the
spirit of Kessler (1969) and Grabowski and Smolarkiewicz (1996), which has also
been used in the preceding work (Hittmeir et al. 2017):

Sev = Cev R̃T (q+
r )β(qvs − qv)

+,
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Scr = Ccrqcqr ,

Sac = Cac(qc − q∗
ac)

+

where Cev,Ccr ,Cac are dimensionless rate constants. Moreover, (g)+ = max{0, g}
and q∗

ac ≥ 0 denotes the threshold for cloud water mixing ratio beyond which auto-
conversion of cloud water into precipitation become active. The cutoff of the negative
part in qr is only technical since clearly only nonnegative values for T and q j for
j ∈ {v, c, r} are meaningful.
The exponent β in the evaporation term Sev in the literature typically appears

to be chosen as β ≈ 0.5, see e.g. Grabowski and Smolarkiewicz (1996); Klein and
Majda (2006) and the references therein. Exponent β ∈ (0, 1) causes difficulties in the
analysis for the uniqueness of the solutions. In the case that both C̃ and R̃ are constants,
this problem, however, was overcome in Hittmeir et al. (2017) by introducing new
unknowns, which allow for certain cancellation properties of the source terms and
reveal advantageousmonotonicity properties. Here, however,we need to generalise the
setting to incorporate the more complicated structure of the thermodynamic equation
and in particular the nonconstant C̃, L̃ .

We shall use the closure of the condensation term in a similar fashion to Klein and
Majda (2006)

Scd = Ccd(qv − qvs)qc + Ccn(qv − qvs)
+,

which is in the literature often defined implicitly via the equation of water vapor at
saturation, see, e.g. Grabowski and Smolarkiewicz (1996).

2 Formulation of the Problem andMain Result

We analyse themoisturemodel consisting of themoisture equations (4)–(6) coupled to
the thermodynamic equation (8). As in Hittmeir et al. (2017), we assume the velocity
field v̄ = (vh, ω) to be given and to satisfy

vh ∈ (L2
loc([0,∞); H1(M)))2 ∩ (L∞

loc([0,∞);
L2(M)))2 ∩ (Lr

loc([0,∞); Lq(M)))2, (13)

ω ∈ L∞
loc([0,∞); L2(M)) ∩ Lr

loc([0,∞); Lq(M)), (14)

for some 2 ≤ r ≤ ∞ and 3 ≤ q ≤ ∞ satisfying 2
r + 3

q < 1. Moreover, we assume
mass conservation, taking in pressure coordinates the form of the incompressibility
condition

∇h · vh + ∂pω = 0 in M, (15)

and the no-penetration boundary condition

vh · nh + ω n p = 0 on ∂M. (16)
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This is motivated from the solution of the viscous primitive equations (without mois-
ture) satisfying these required regularity properties in (13), see (Cao et al. 2020, 2016,
2014a, b; Cao and Titi 2007).

Similar as in Coti Zelati et al. (2013); Hittmeir et al. (2017), we letM be a cylinder
of the form

M = {(x, y, p) : (x, y) ∈ M′, p ∈ (p1, p0)},

where M′ is a smooth bounded domain in R
2 and p0 > p1 > 0. The boundary is

given by


0 = {(x, y, p) ∈ M : p = p0},

1 = {(x, y, p) ∈ M : p = p1},

� = {(x, y, p) ∈ M : (x, y) ∈ ∂M′, p0 ≥ p ≥ p1}.

The boundary conditions read as


0 : ∂pT = α0T (Tb0(x, y, t) − T ), ∂pq j = α0 j (qb0 j (x, y, t) − q j ),

j ∈ {v, c, r}, (17)


1 : ∂pT = 0, ∂pq j = 0, j ∈ {v, c, r}, (18)


� : ∂nT = α�T (Tb�(p, t) − T ), ∂nq j = α� j (qb� j (p, t) − q j ),

j ∈ {v, c, r}, (19)

where all given functions α0 j , α� j , α0T , α�T and Tb0, Tb�, qb0 j , qb� j are assumed to
be nonnegative, sufficiently smooth and uniformly bounded.

Throughout this paper, we use the abbreviation

‖ f ‖ = ‖ f ‖L2(M), ‖ f ‖L p = ‖ f ‖L p(M).

According to the weight in the vertical diffusion terms, we also introduce the weighted
norms

‖ f ‖w =
∥∥∥(

gp

Rd T̄

)
f
∥∥∥, ‖ f ‖2H1

w
= ‖ f ‖2 + ‖∇h f ‖2 + ‖∂p f ‖2w,

where we emphasize that, since the weight gp
Rd T̄

is uniformly bounded from above and

below by positive constants, the H1
w(M)-norm is equivalent to the H1(M)-norm.

Moreover, we shall often use for convenience the notation

‖( f1, . . . , fn)‖2 =
n∑
j=1

‖ f j‖2.
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For the initial data space of functions for the moisture components and the temper-
ature, we introduce

X = L∞(M) ∩ H1(M)

and accordingly for strong solutions

YT = { f | f ∈ L∞(M × (0, T )) ∩ L2(0, T ; H2(M)), ∂t f ∈ L2(M × (0, T ))}.

The main result of this paper is the following theorem.

Theorem 1 Let β = 1 and assume that the given velocity field (vh, ω) satisfies (13)–
(16) and the initial data (T0, qv0, qc0, qr0) ∈ X 4 is nonnegative. Then, for any T > 0
there exists a unique global strong solution (T , qv, qc, qr ) ∈ Y4

T to system (4)–(8),
subject to (17)–(19), on M × (0, T ), and the solution components (T , qv, qc, qr )
remain nonnegative and uniformly bounded from above with bounds growing with T .

The proof of this theorem will be presented in the next section.

Remark 2 In Hittmeir et al. (2017), we treated the more complicated case of an evap-
oration source with a general exponent β ∈ (0, 1] of qr that causes in particular
difficulties in the uniqueness. To overcome this problem, we introduced the new
unknowns Q = qv + qr and H = T − L̃(qc + qr ) in Hittmeir et al. (2017), where we
recall that L̃ was assumed to be constant there. Due to the challenge here of treating
the additional terms arising from the refined thermodynamics, we stick to the case
corresponding β = 1 here and leave the more general case β ∈ (0, 1] for future work.

Throughout this paper, we use C to denote a general positive constant which may
be different at different places. For the aim of the future studies on the coupled system
of the moisture dynamics investigated in the present paper to the primitive equations
with either isotropic or anisotropic dissipations, see (Cao et al. 2020, 2016, 2014a, b;
Cao and Titi 2007), the dependence of the constant C on the a priori bounds of the
given velocity field will be explicitly pointed out at the relevant places. However, the
dependence of C on the initial data or the parameters in the system will not be paid
attention to. We will also use Ck, k ∈ N, to denote constants having relevant units.

3 Proof of Theorem 1

As a start point, we consider the following modified system, which however is equiv-
alent to the original system (4)–(8) for nonnegative solutions:

∂t T + (vh · ∇h)T + ω∂pT − κ̃+ T

p
ω + clqr

C̃+ V ∂pT = L̃+(S+
cd − S+

ev) + DT T ,

(20)

∂t qv + vh · ∇hqv + ω∂pqv = S+
ev − S+

cd + Dqvqv, (21)

∂t qc + vh · ∇hqc + ω∂pqc = S+
cd − S+

ac − S+
cr + Dqcqc, (22)
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∂t qr + vh · ∇hqr + ω∂pqr + V ∂p

(
p

Rd T̄
qr

)
= S+

ac + S+
cr − S+

ev + Dqr qr , (23)

where

κ̃+ = R̃+

C̃+ , L̃+ = L(T )

C̃+ , R̃+ = Rd + Rvq+
v

1 + q+
v + q+

c + q+
r

,

C̃+ = cpd + cpvq
+
c + cl(q

+
c + q+

r ),

S+
ev = Cev R̃

+T+q+
r (qvs(p, T ) − qv)

+, S+
cr = Ccrq

+
c q

+
r ,

S+
ac = Sac = Cac(qc − q∗

ac)
+,

S+
cd = Ccd(q

+
v − qvs(p, T ))q+

c + Ccn(qv − qvs(p, T ))+,

with L(T ) given by (9).
Since all the nonlinear terms S+

ev, S
+
cr , S

+
ac, S

+
cd and all the coefficients κ̃+, 1

C̃+ , L̃+
are Lipschitz with respect to qv, qc, qr , and T , the local existence of strong solutions
to the initial boundary value problem of system (20)–(23) follows by the standard
fixed point arguments. In fact, by following the proof in Hittmeir et al. (2017), we can
prove the following proposition on the local existence and uniqueness.

Proposition 1 Assume that the given velocity field (vh, ω) satisfies (13)–(16) and the
initial data (T0, qv0, qc0, qr0) ∈ X 4 is nonnegative. Then, there exists a positive
time T0 depending only on the upper bound of ‖(T0, qv0, qc0, qr0)‖H1(M), such that
system (20)–(23), subject to (17)–(19), onM × (0, T0), has a unique strong solution
(T , qv, qc, qr ) ∈ Y4

T0 .

By applying Proposition 1 inductively, one can extend uniquely the solution
(T , qv, qc, qr ) obtained there to the maximal time interval (0, Tmax), where Tmax is
characterized as

lim sup
T →T −

max

‖(T , qv, qc, qr )‖H1(M) = ∞, if Tmax < ∞. (24)

Observe that if Tmax = ∞, then Proposition 1 implies Theorem 1. Therefore, our aim
is to show that Tmax = ∞. To this end, we assume by contradiction that Tmax < ∞.
Due to this fact, the following assumption will be made in the subsequent propositions
throughout this section.

Assumption 1 Let all the assumptions in Proposition 1 hold, and let the solution
(T , qv, qc, qr ) obtained in Proposition 1 be extended uniquely to the maximal interval
of existence (0, Tmax), where Tmax < ∞.

The main part of this section is to carry out a series of a priori estimates on
(T , qv, qc, qr ).

First, the following proposition about the nonnegative and uniform boundedness
of the moisture components qv, qc, and qr can be proved by slightly modifying the
corresponding proof of Proposition 3.2 in Hittmeir et al. (2017).
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Proposition 2 Let Assumption 1 hold, then the solution (T , qv, qc, qr ) satisfies

0 ≤ qv ≤ q∗
v , 0 ≤ qc ≤ q∗

c , 0 ≤ qr ≤ q∗
r ,

for any T ∈ (0, Tmax ), where

q∗
v = max

{‖qv0‖L∞(M), ‖qb0v‖L∞((0,T )×M′), ‖qb�v‖L∞((0,T )×
�), q
∗
vs

}
,

q∗
c = q∗

c

(
T , ‖qc0‖L∞(M), ‖qb0c‖L∞((0,T )×M′), ‖qb�c‖L∞((0,T )×
�), q

∗
v , q∗

vs

)
,

q∗
r = q∗

r

(
T , ‖qr0‖L∞(M), ‖qb0r‖L∞((0,T )×M′), ‖qb�r‖L∞((0,T )×
�), q

∗
c

)
,

with q∗
vs = max qvs and moreover q∗

c and q∗
r are continuous in T ∈ (0,∞).

Due to the nonnegativity of qv, qc, qr , it is clear that R̃+ = R̃, C̃+ = C̃, κ̃+ =
κ̃, L̃+ = L̃, S+

cr = Scr , S
+
cd = Scd , S+

ac = Sac, and

0 < κ̃ = R̃

C̃
≤ κ1, 0 ≤ clqr

C̃
≤ 1, 0 <

1

C̃
≤ 1

cpd
, (25)

for some positive constant κ1. Besides, by the uniform boundedness of qv, qc, qr , one
has

|Scd | + |Scr | + |Sac| ≤ C, (26)

for some positive constant C depending on q∗
v , q∗

c , q∗
r .

Proposition 3 Let Assumption 1 hold, then for any T ∈ (0, Tmax),

sup
0≤t≤T

‖(qv, qc, qr )‖2 +
∫ T

0
‖∇(qv, qc, qr )‖2dt ≤ K0(T ),

for a continuous bounded function K0(T ) determined by q∗
v , q∗

c , and q∗
r .

Proof Testing (21), (22), and (23), respectively, with qv, qc, and qr , summing the
resultants up, using the uniformboundedness of qv, qc, qr , Sac, Scr , Scd (due to Propo-
sition 2 and (26)), and noticing that S+

evqr ≥ 0, one deduces

1

2

d

dt
‖(qv, qc, qr )‖2 −

∑
j∈{v,c,r}

∫
M

q jDq j q jdM

= −
∑

j∈{v,c,r}

∫
M

(vh · ∇hq j + ω∂pq j )q jd − V
∫
M

qr∂p

(
pqr
Rd T̄

)
dM

+
∫
M

[(S+
ev − Scd)qv + (Scd − Sac − Scr )qc + (Sac + Scr − S+

ev)qr ]dM

≤ −
∑

j∈{v,c,r}

∫
M

(vh · ∇hq j + ω∂pq j )q jd − V
∫
M

qr∂p

(
pqr
Rd T̄

)
dM
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+
∫
M

S+
evqvdM + C . (27)

The integrals in (27) are estimated as follows. For the diffusion terms, integration
by parts and using the boundary conditions (17)–(19), one deduces

−
∫
M

q jDq j q jdM

= −
∫
M

[
μq j �hq j + νq j ∂p

((
gp

RT̄

)2

∂pq j

)]
q jdM

= −μq j

∫

�

(∂nq j )q jd
� − νq j

∫
M′

(
gp

RT̄

)2

(∂pq j )q jdM′
∣∣∣∣∣
p0

p1

+
∫
M

[
μq j ∇hq j · ∇hq j + νq j

(
gp

RT̄

)2

∂pq j∂pq j

]
dM

= μq j ‖∇hq j‖2 + νq j ‖∂pq j‖2w − μq j

∫

�

α� j (q� j − q j )q jd
�

−νq j

∫
M′

(
gp0
RT̄

)2

αb0 j (qb0 j − q j )q jdM′

= μq j ‖∇hq j‖2 + νq j ‖∂pq j‖2w + μq j

∫

�

α� j

[(
q j − q� j

2

)2 − q2� j
4

]
d
�

+νq j

∫
M′

(
gp0
RT̄

)2

αb0 j

[(
q j − qb0 j

2

)2 − q2b0 j
4

]
dM′,

for j ∈ {v, c, r}. This implies for j ∈ {v, c, r} that

−
∫
M

q jDq j q jdM ≥ μq j ‖∇hq
−
j ‖2 + νq j ‖∂pq−

j ‖2w − C, (28)

for a constant C depending only on the given inhomogeneous boundary functions
α0 j , α� j and qb0 j , qb� j . The integral containing the advection term vanishes due to
(15) and (16), since

∫
M

(vh · ∇hq j + ω∂pq j )q jdM = −1

2

∫
M

(vh · ∇h + ω∂p)(q j )
2dM

= −1

2

∫
∂M

(vh · nh + ωn p)(q j )
2d(∂M) + 1

2

∫
M

(q j )
2(∇h · vh + ∂pω)dM = 0.

(29)

The Young inequality leads to

− V
∫
M

qr∂p

(
pqr
Rd T̄

)
dM ≤ νqr

8
‖∂pqr‖2w + C‖qr‖2. (30)
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To estimate the term
∫
M S+

evqvdM, we decompose the domainM asM = M+(t)∪
M−(t), where M+(t) = {(x, y, p) ∈ M|T (x, y, p, t) ≥ Tcrit} and M−(t) = M \
M+(t). Due to (12), one can check that S+

ev = 0 onM+(t), while onM−(t), due to
the nonnegativity and uniform boundedness of qv, qc, qr guaranteed by Proposition 2,
one has S+

ev ≤ C . Therefore, we always have

0 ≤ S+
ev ≤ C on M

and, as result, it holds that
∫
M S+

evqvdM ≤ C . Thanks to this and combining (28)–
(30), the conclusion follows from (27) by the Grönwall inequality. ��

We would like to point out that the a priori estimates obtained in Proposition 2 and
Proposition 3 do not depend on the a priori bounds of the given velocity (vh, ω).

The following lemma will be used later.

Lemma 1 Let f ∈ L∞(0, T ; L2(M)) and g, h ∈ L2(0, T ; H1(M)) ∩ L∞(0, T ;
L2(M)). Then for some arbitrary δg, δh > 0 at a.e. t ∈ (0, T ) the following estimate
holds∣∣∣∣
∫
M

f g h dM
∣∣∣∣ ≤ δg‖∇g‖2L2(M)

+ δh‖∇h‖2L2(M)
+ C

(
‖g‖2L2(M)

+ ‖h‖2L2(M)

)
,

where C = C(δ1, δ2, ‖ f ‖L∞(0,T ;L2(M))).

Proof We first bound the integral by

∣∣∣∣
∫
M

f g h dM
∣∣∣∣ ≤ ‖ f ‖L2(M)‖g h‖L2(M) ≤ C(‖g2‖L2(M) + ‖h2‖L2(M))

where C depends on ‖ f ‖L∞(0,T ;L2(M)). We next employ the Gagliardo Nirenberg
inequality, see e.g. [Friedman (1969), Theorem 10.1] and [Zheng (1995), Theorem
1.1.4], to estimate

‖g2‖L2(M) = ‖g‖2L4(M)
≤ C‖g‖2ϑL2(M)

‖∇g‖2(1−ϑ)

L2(M)
+ ‖g‖2L2(M)

≤ δg‖∇g‖2L2(M)
+ C(δg)‖g‖2L2(M)

which holds for ϑ = 1
4 . In the last estimate we used Young’s inequality. The same

estimate holds for h, which concludes the proof. ��
Nonnegativity of the temperature is proved in the following proposition.

Proposition 4 Let Assumption 1 hold, then the temperature T is nonnegative.

Proof As already mentioned above, for the refined thermodynamic modelling used
in this work, the anti-dissipative term κ̃+ T

pω in the thermodynamic equation (20)
does not vanish anymore, when switching to the potential temperature θ . We therefore
perform the estimate directly from the equation for T .
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Testing the equation for T with −T− yields

1

2

d

dt

∫
M

(T−)2dM +
∫
M

T−DT T dM −
∫
M

(vh · ∇T + ω∂pT )T−dM

=
∫
M

κ̃

p
(T−)2ωdM −

∫
M

clqr
C̃

V T−∂pT
−dM −

∫
M

L̃T−(Scd − S+
ev)dM.

(31)

The various terms in the above equality are estimated as follows. For the diffusion
term, integration by parts and using the boundary conditions (17)–(19), one deduces

∫
M

T−DT T dM =
∫
M

[
μT�hT + νT ∂p

((
gp

RT̄

)2

∂pT

)]
T−dM

= μT

∫

�

(∂nT )T−d
� + νT

∫
M′

(
gp

RT̄

)2

(∂pT )T−dM′
∣∣∣∣∣
p0

p1

−
∫
M

[
μT∇hT · ∇hT

− + νT

(
gp

RT̄

)2

∂pT ∂pT
−
]
dM

= μT ‖∇hT
−‖2 + νT ‖∂pT−‖2w + μT

∫

�

α�T (Tbl − T )T−d
�

+νT

∫
M′

(
gp0
RT̄

)2

α0T (Tb0 − T )T−dM′.

Since the functions α�T , Tbl , α0T , Tb0 are nonnegative and T T− = −(T−)2, the last
two boundary integrals are nonnegative, and we obtain

∫
M

T−DT T dM ≥ μT ‖∇hT
−‖2 + νT ‖∂pT−‖2w. (32)

Same as (29), the integral containing the advection terms vanishes due to (15) and
(16). To bound the first term on the right-hand side containing the vertical velocity
component, we apply Lemma 1 and use (25) as follows

∣∣∣∣
∫
M

κ̃

p
(T−)2ωdM

∣∣∣∣ ≤ C
∫
M

|ω|(T−)2dM ≤ μT

4
‖∇hT

−‖2

+νT

4
‖∂pT−‖2w + C‖T−‖2,

whereC depends on ‖ω‖L∞(0,T ;L2(M)). Using (25) again and by theYoung inequality,
we can estimate the second term as∣∣∣∣

∫
M

clqr
C̃

V T−∂pT
−dM

∣∣∣∣ ≤ νT

4
‖∂pT−‖2w + C‖T−‖2.

123



Journal of Nonlinear Science            (2023) 33:65 Page 15 of 24    65 

It remains to bound the integral with the latent heating terms.

−
∫
M

L̃T−ScddM

= −
∫

L0 + (cl − cpv)T0
C̃

[Ccd(qv − qvs)qc + Ccn(qv − qvs)
+]T−dM

−
∫
M

cl − cpv
C̃

(T−)2[Ccd(qv − qvs)qc + Ccn(qv − qvs)
+]dM ≤ 0,

where we used the fact cpv < cl , qvs = 0 for T ≤ 0, and the nonnegativity of all
moisture quantities. The integral term with the evaporation term in (31) vanishes since
S+
evT

− = Cev R̃T+qr (qrs(p, T ) − qv)
+T− = 0.

Combining all bounds above, we thus obtain from (31) that

1

2

d

dt
‖T−‖2 + μT

2
‖∇hT

−‖2 + νT

2
‖∂pT−‖2w ≤ C‖T−‖2,

and we can conclude by the Grönwall inequality the nonnegativity of T since
T−
0 = 0. ��

Fromnowon, the a priori estimates to be carried out depend on the a priori bounds of
the given velocity (vh, ω). The relevant bounds of the velocity on which the solutions
depend will be explicitly pointed out in the statements of the propositions.

Proposition 5 Let Assumption 1 hold, then for any T ∈ (0, Tmax)

sup
0≤t≤T

‖T ‖2(t) +
∫ T

0
‖∇T ‖2(t)dt ≤ K1(T ),

for a continuous bounded function K1(T ) determined by the quantities
‖ω‖L∞(0,T ;L2(M)), q

∗
v , q∗

c , q∗
r .

Proof By testing the temperature equation with T and by the same calculations as
(28) and (29) to the diffusion terms and the convection terms, we have the following
estimate

1

2

d

dt
‖T ‖2 + μT ‖∇hT ‖2 + νT ‖∂pT ‖2w

≤
∫
M

κ̃

p
ωT 2dM −

∫
M

clqr
C̃

V ∂pT T dM +
∫
M

L̃(Scd − Sev)T dM + C .

To bound the first term on the right-hand side, we use Lemma 1 and (25) to get

∫
M

κ̃

p
ωT 2dM ≤ C

∫
M

|ω|T 2dM ≤ μT

4
‖∇hT ‖2 + νT

4
‖∂pT ‖2w + C‖T ‖2,
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where C depends on ‖ω‖L∞(0,T ;L2(M)). By Young’s inequality and using (25) again,
we obtain ∣∣∣∣

∫
M

clqr
C̃

V ∂pT T dM
∣∣∣∣ ≤ νT

4
‖∂pT ‖2w + C‖T ‖2.

Recalling the expression of L(T ) given by (9), we obtain due to (25) and (26) that∣∣∣∣
∫
M

L̃ ScdT dM
∣∣∣∣ =

∣∣∣∣
∫
M

L(T )

C̃
ScdT dM

∣∣∣∣ ≤ C(C1 + ‖T ‖2).

Since (12) implies Sev = Cev R̃T qr (qvs(p, T ) − qv)
+ = Cev R̃T qr (−qv)

+ = 0, for
T > Tcrit, while (9) and (11) lead to L(T ) ≥ 0, for 0 ≤ T ≤ Tcrit, we therefore have

L̃ Sev = L(T )

C̃
Sev ≥ 0 (33)

and thus

−
∫
M

L̃ SevT dM ≤ 0.

Combining all above estimates, we obtain

1

2

d

dt
‖T ‖2 + μT ‖∇hT ‖2 + νT ‖∂pT ‖2w ≤ C(C2 + ‖T ‖2),

leading to the conclusion by the Grönwall inequality. ��
Uniform boundedness of T is stated and proved in the following proposition.

Proposition 6 Let Assumption 1 hold, then for any T ∈ (0, Tmax)

sup
0≤t≤T

‖T ‖L∞(M)(t) ≤ K2(T ),

for a continuous bounded function K2(T ) determined by the quantities
‖ω‖L∞(0,T ;L2(M)), ‖T0‖L∞(M), ‖Tb0‖L∞((0,T )×M′), ‖Tb�‖L∞((0,T )×
�), q

∗
v , q

∗
c , and

q∗
r .

Proof In Hittmeir et al. (2017), the upper bound for the temperature was derived by
employing the potential temperature equation. Again here this does not alleviate the
computations due to the stronger coupling of the thermodynamic equation (8) to the
moisture quantities. We thus instead apply here the proof of Coti Zelati et al. (2015)
based on the De Giorgi technique.

Let λk ≥ max{‖T0‖L∞(M), Tcrit, ‖Tb�‖L∞((0,T )×
�), ‖Tb�‖L∞((0,T )×
�)}, and
denote Tλk = (T − λk)

+. We claim that

L̃ ScdTλk ≤ 0. (34)
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In fact, if T < λk , then Tλk = (T − λk)
+ = 0 and, as a result, L̃ ScdTλk = 0, while if

T ≥ λk , it is clear by the definition of λk that T ≥ Tcrit, and as a result, noticing that
in this case L(T ) ≤ 0 (due to (9) and (11)) and qvs(p, T ) = 0 (due to (12)), it holds
that

L̃ ScdTλk = L(T )

C̃
[Ccd(qv − qvs)qc + Ccn(qv − qvs)

+]Tλk ≤ 0. (35)

Testing equation (8) with Tλk and by similar calculations as (32) and (29) to the
diffusion terms and the convection terms, we have the following estimate

1

2

d

dt
‖Tλk‖2 + μT ‖∇hTλk‖2 + νT ‖∂pTλk‖2w

≤
∫
M

κ̃

p
ωT TλkdM −

∫
M

clqr
C̃

V ∂pTλk TλkdM +
∫
M

L̃(Scd − Sev)TλkdM

≤ C
∫
M

|ω|(T 2
λk

+ λkTλk )dM + C
∫
M

|∂pTλk |TλkdM, (36)

where (25), (33), (34), and (35) were used in the last step. By Lemma 1 and the Young
inequality, it follows that

C
∫
M

(|ω̄|T 2
λk

+ |∂pTλk |Tλk )dM ≤ 1

2

(
μT ‖∇hTλk‖2 + νT ‖∂pTλk‖2w

)
+ C‖Tλk‖2,

where C depends on ‖ω̄‖L∞(0,T ;L2(M)), which substituted into (36) yields

d

dt
‖Tλk‖2 + μT ‖∇hTλk‖2 + νT ‖∂pTλk‖2w ≤ C‖Tλk‖2 + Cλk

∫
M

|ω̄|TλkdM.

Due to Tλk |t=0 = 0, we obtain by applying the Grönwall inequality to the above

Jk := sup
t∈(0,T )

‖Tλk‖2(t) +
∫ T

0
(μT ‖∇hTλk‖2 + νT ‖∂pTλk‖2w)dt

≤ Cλk

∫ T

0

∫
M

|ω̄|TλkdMdt . (37)

Let M ≥ 2max{‖T0‖L∞(M), Tcrit, ‖Tb�‖L∞((0,T )×
�), ‖Tb�‖L∞((0,T )×
�)} be a
positive constant to be determined later and choose

λk := M(1 − 2−k), Qk := {(x, t) ∈ M × (0, T )|T (x, t) > λk} , for k ≥ 1.

For any (x, t) ∈ Qk , noticing that T (x, t) > λk > λk−1, one deduces

Tλk−1(x, t) = (T − λk−1)
+(x, t) = T (x, t) − λk−1 > λk − λk−1 = 2−kM
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and, thus,

χQk (x, t) ≤ 2k

M
Tλk−1(x, t).

Thanks to this and noticing that Tλk ≤ Tλk−1 and λk ≤ M , one deduces from (37) and
the Gagliardo–Nirenberg inequality that

Jk ≤ CM
∫ T

0

∫
M

|ω̄|TλkdMdt = CM
∫ T

0

∫
M

|ω̄|Tλkχ
4
3
Qk
dMdt

≤ C

M
1
3

16
k
3

∫ T

0

∫
M

|ω̄|T
7
3

λk−1
dMdt ≤ C

M
1
3

16
k
3

∫ T

0
‖ω̄‖‖Tλk−1‖

7
3

L
14
3 (M)

dt

≤ C

M
1
3

16
k
3

∫ T

0
‖Tλk−1‖

1
3

(
‖Tλk−1‖2 + ‖∇Tλk−1‖2

)
dt

≤ C∗
M

1
3

16
k
3 J

7
6
k−1, k = 2, 3, 4, . . . ,

that is

Jk ≤ C∗
M

1
3

16
k
3 J

7
6
k−1, k = 2, 3, 4, · · · , (38)

where C depends on ‖ω̄‖L∞(0,T ;L2(M)). Setting

a = 647C6∗M−2, b = 64, Sk = abk Jk,

and by simple calculations, one can check from (38) that

Sk+1 = abk+1 Jk+1 ≤ (abk Jk)
7
6 = S

7
6
k

and, thus,

64k+8C6∗M−2 Jk+1 = Sk+1 ≤ S

(
7
6

)k
1 =

[
648C6∗M−2 J1

](
7
6

)k
, k = 1, 2, · · · . (39)

Recalling the definition of Jk and applying Proposition 5 lead to

J1 = sup
t∈(0,T )

‖Tλ1‖2(t) +
∫ T

0
(μT ‖∇hTλ1‖2 + νT ‖∂pTλ1‖2w)dt

≤ sup
t∈(0,T )

‖T ‖2(t) +
∫ T

0
(μT ‖∇hT ‖2 + νT ‖∂pT ‖2w)dt ≤ C∗∗. (40)

Choose M large enough such that M ≥ 2max{‖T0‖L∞(M), Tcrit,
‖Tb�‖L∞((0,T )×
�), ‖Tb�‖L∞((0,T )×
�)} and 648C6∗M−2C∗∗ ≤ 1

2 . Then, it follows
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from (39) and (40) that

64k+8C6∗M−2 Jk+1 = Sk+1 ≤
(
1

2

)(
7
6

)k

and, thus, limk→∞ Jk = 0. This leads to the desired bound T ≤ M onM× (0, T ). ��
Proposition 7 If Assumption 1 holds, we have the estimates

sup
0≤t≤T

‖∇(qv, qc, qr , T )‖2(t) +
∫ T

0
‖∇2(qv, qc, qr , T )‖2(t)dt ≤ K3(T ),

for a continuous bounded function K3(T ) determined by the quantities q∗
v , q∗

c , q∗
r ,

K2(T ), ‖T0‖L∞(M), ‖(T0, qv0, qr0, qc0)‖H1(M), and ‖(vh, ω)‖Lr (0,T ;Lq (M)).

Proof We only give the details about the proof for the estimate of T , those for the
moisture components are similar (actually simpler).

We first estimate the vertical derivative ∂pT . Multiplying the thermodynamic equa-
tion by −∂2pT and integrating the resultant over M yields

∫
M

(−∂t T + DT T )∂2pT dM

=
∫
M

[
vh · ∇hT + ω∂pT − κ̃

T

p
ω + clqr

C̃
V ∂pT + L̃(Scd − Sev)

]
∂2pT dM.

(41)

Following the derivations in Hittmeir et al. (2020) (see (87) and (88) there) we have

−
∫
M

∂t T ∂2pT dM ≥ d

dt

(
‖∂pT ‖2

2
+ α0T

∫
M′

(
T 2

2
− T Tb0

)
dM′

∣∣∣∣
p0

)

−C(‖∂pT ‖ + C3), (42)∫
M

DT T ∂2pT dM ≥ 3

4

(
μT ‖∇h∂pT ‖2 + νT ‖∂2pT ‖2w

)
−C(‖∂pT ‖2 + C4). (43)

By the Hölder, Sobolev, and Young inequalities, one deduces

∫
M

(vh · ∇hT + ω∂pT )∂2pT dM

≤ C‖(vh, ω)‖Lq (M)‖∇T ‖
L

2q
q−2 (M)

‖∂2pT ‖

≤ C‖(vh, ω)‖Lq (M)‖∇T ‖1− 3
q ‖∇T ‖1+

3
q

H1(M)
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≤ η‖∇2T ‖2 + Cη

(
‖(vh, ω)‖

2q
q−3

Lq (M)
+ C5

)
‖∇T ‖2, (44)

for any positive number η. Moreover, by (25) and Proposition 6, we obtain by the
Young inequality that

−
∫
M

κ̃
T

p
ω∂2pT dM +

∫
M

clqr
C̃

V ∂pT ∂2pT dM ≤ η‖∂2pT ‖2w + Cη(‖ω‖2

+C6‖∂pT ‖2), (45)

for any positive number η. Due to the nonnegativity and uniform boundedness of
T , qv, qc, qr , it follows from the Young inequality that

∫
M

L̃(Scd − Sev)∂
2
pT dM ≤ C

∫
M

|∂2pT |dM ≤ η‖∂2pT ‖2 + Cη, (46)

for any positive number η. Substituting (42)–(46) into (41), one obtains

d

dt

(
‖∂pT ‖2

2
+ α0T

∫
M′

(
T 2

2
− T Tb0

)
dM′

∣∣∣∣
p0

)
+ 3

4
(μT ‖∇h∂pT ‖2 + νT ‖∂2pT ‖2w)

≤ 3η‖∇2T ‖2 + Cη

(
‖(vh, ω)‖

2q
q−3
Lq (M)

+ ‖ω‖2 + C7

)
(‖∇T ‖2 + C8), (47)

for any positive number η.
Next,we estimate the horizontal gradient∇hT .Multiplying equation (20) by−�hT

and integrating the resultant over M yields

∫
M

(−∂t T + DT T )�hT dM

=
∫
M

[
vh · ∇hT + ω∂pT − κ̃

T

p
ω + clqr

C̃
V ∂pT + L̃(Scd − Sev)

]
�hT dM.

(48)

Following the derivations in Hittmeir et al. (2020) (see (94) and (95) there) we have

−
∫
M

∂t T�hT dM ≥ d

dt

(‖∇hT ‖2
2

+ α�T

∫

�

(
T 2

2
− T Tb�

)
d
�

)
−C(C9 + ‖∇hT ‖), (49)∫

M
DT T�hT dM ≥ μT ‖�hT ‖2 + νT ‖∇h∂pT ‖2w − C . (50)

Similar to (44)–(46), we have

∫
M

(vh · ∇hT + ω∂pT )�hT dM ≤ η‖∇2T ‖2
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+Cη

(
‖(vh, ω)‖

2q
q−3

Lq (M)
+ C10

)
‖∇T ‖2, (51)

−
∫
M

κ̃
T

p
ω�hT dM +

∫
M

clqr
C̃

V ∂pT�hT dM ≤ η‖�hT ‖2 + Cη(‖ω‖2

+C11‖∂pT ‖2w), (52)∫
M

L̃(Scd − Sev)�hT dM ≤ η‖�hT ‖2 + Cη, (53)

for any positive number η. Substituting (49)–(53) into (48) gives

d

dt

(‖∇hT ‖2
2

+ α�T

∫

�

(
T 2

2
− T Tb�

)
d
�

)
+ 3

4
(μT ‖�hT ‖2 + νT ‖∇h∂pT ‖2w)

≤ 3η‖∇2T ‖2 + Cη

(
‖(vh, ω)‖

2q
q−3

Lq (M)
+ ‖ω‖2 + C12

)
(‖∇T ‖2 + C13),

(54)

for any positive number η.
Summing (47) with (54) yields

3

4

(
μT ‖∇h∂pT ‖2 + νT ‖∂2pT ‖2w + μT ‖�hT ‖2 + νT ‖∇h∂pT ‖2w

)

+ d

dt

(
‖∇T ‖2

2
+ α0T

∫
M′

(
T 2

2
− T Tb0

)
dM′

∣∣∣∣
p0

+ α�T

∫

�

(
T 2

2
− T Tb�

)
d
�

)

≤ 6η‖∇2T ‖2 + Cη

(
‖(vh, ω)‖

2q
q−3
Lq (M)

+ ‖ω‖2 + C14

)
(‖∇T ‖2 + C15), (55)

for any positive number η. Applying the elliptic estimate (see Proposition A.2 in
Hittmeir et al. (2017)) to the elliptic equation DT T = f subject to the boundary
condition (17)–(19) leads to

‖∇2T ‖ ≤ C(‖DT T ‖ + C16‖∇T ‖ + C17)

≤ C(‖�hT ‖ + ‖∂2pT ‖2w + C18‖∇T ‖ + C19).

Thanks to this, and noticing that

∫
M′

(
T 2

2
− T Tb0

)
dM′ = 1

2

∫
M′

[
(T − Tb0)

2 − T 2
b0

]
dM′ ≥ −

∫
M′

T 2
b0dM′ ≥ −C,

and

∫

�

(
T 2

2
− T Tb�

)
d
� = 1

2

∫

�

[
(T − Tb�)

2 − T 2
b�

]
d
� ≥ −1

2

∫

�

T 2
b�d
� ≥ −C,

the conclusion follows by applying the Grönwall inequality to (55). ��
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We are now ready to give the proof of our main result, Theorem 1.

Proof of Theorem 1 By Proposition 1, there is a unique local solution (T , qv, qc, qr )
to system (20)–(23), subject to (17)–(19). Due to Proposition 2 and Proposition 4,
qc, qc, qr , and T are all nonnegative and, thus, (T , qv, qc, qr ) is a local solution to
the original system, subject to the corresponding initial and boundary conditions. By
applying Proposition 1 inductively, one can extend the local solution to the maximal
time of existence Tmax characterized by (24). We need to prove Tmax = ∞. Assume,
by contradiction, that Tmax < ∞. Then, by Propositions 2–7, we have the estimate

sup
0≤t≤T

‖(T , qv, qc, qr )‖H1(M) ≤ C0,

for any T ∈ (0, Tmax), and C0 is a positive constant independent of T ∈ (0, Tmax).
This contradicts (24) and, thus, Tmax = ∞, proving the conclusion. ��
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