Abbildungsverzeichnis

1.	Lin	leitung
	P/III	emmy

Abb. 1 Kalt- und Warmphasen während des Holozäns in Taiwar

2. Das Untersuchungsgebiet

Abb. 2	Lage Taiwans
Abb. 3	Lage der Untersuchungsgebiete Nanhuta Shan und Yushan
Abb. 4	Überblick über die Ausdehnung des Untersuchungsgebietes Nanhuta Shan, seine Anbindung und die hydrographischen Verhältnisse
Abb. 5	Überblick über die Ausdehnung des Untersuchungsgebietes Yushan, seine Anbindung und die hydrographischen Verhältnisse
Abb. 6	Schematisches Diagramm der plattentektonischen Situation der Insel Taiwan
Abb. 7	Skizze der Plattentektonische Situation in der Region um Taiwan
Abb. 8	Lithotektonische Einheiten Taiwans
Abb. 9	Geologische Karte von Taiwan
Abb. 10	Mittlerer Luftdruck auf Meeresniveau in Ostasien im Januar
Abb. 11	Mittlerer Luftdruck auf Meeresniveau in Ostasien im Juli
Abb. 12	Die primären synoptischen Zirkulationsmuster während des Winter-Monsuns in Ostasien
Abb. 13	Die primären synoptischen und mesoskaligen Zirkulationsmuster während des Sommer-Monsuns in Ostasien
Abb. 14	Zugbahnen von Taifunen über Taiwan und ihre Häufigkeit
Abb. 15	Lufttemperaturen an der Station Yushan: Monatsmittel, mittlere Minima und Maxima
Abb. 16	Frosttage an der Station Yushan
Abb. 17	Relative Luftfeuchte, Niederschlag und Evaporation an der Station Yushan
Abb. 18	Mittlere Anzahl der Tage mit ≥ 1 mm Niederschlag an der Station Yushan
Abb. 19	Schneefalltage an der Station Yushan
Abb. 20	Karte der 21 Haupt-Flüsse Taiwans
Abb. 21	Jahressummen des Oberflächenabflusses der 21 Haupt-Flüsse Taiwans
Abb. 22	Karte der Vegetation im Nanhuta Shan
Abb. 23	Asiatischer Schwarzbär, Formosa Serau und Formosa Makak

3. Methoden

Abb. 24 Aufbau der meteorologischen Messstation im Nanhuta Shan

4. Der Nanhuta Shan

Abb. 25	Geomorphologische Skizze des Nanhuta Shan
Abb. 26	Panoramaphoto und -zeichnung des Upper und Lower Valley im Nanhuta Shan
Abb. 27	Durchschnittliche Hangneigungen im Nanhuta Shan
Abb. 28	Lage der Sedimentprofile im Nanhuta Shan
Abb. 29	Photo und Skizze der autochthonen Schutthalden im Upper Valley des Nanhuta
	Shan
Abb. 30	Photo und Skizze der drei zusammenhängenden Schuttkegel im Upper Valley des
	Nanhuta Shan.
Abb. 31	Schematischer Ouerschnitt einer Solifluktionsterrassette am Beispiel des Profil V

5. Der Yushan

Abb. 32	Geomorphologische Skizze des Yushan
Abb. 33	Geomorphologische Skizze von Batongguan

6. Synthese und Interpretation der Ergebnisse

Abb. 34	Skizze der geomorphologischen Höhenstufung der Central Mountain Range i
	Taiwan dargestellt in einem Nord-Süd-Profil
	011 1 77 1 1 1 1 7 7 1 1 7 7 1 7 7 1 7

Abb. 35 Skizze der Vergletscherung im Bereich von Batongguan um 30 ka

7. Diskussion

Abb. 36 Die Untergrenze der periglazialen Höhenstufe in den Gebirgen Ostasiens

Anhang A 2 Klimadaten und Klimadiagramme aus dem Nanhuta Shan

Abb. A2-1	Mittlere monatliche Lufttemperaturen
Abb. A2-2	Tagesamplituden der Lufttemperaturen
Abb. A2-3	Anzahl der Eis- und Frosttage
Abb. A2-4	Monatliche Niederschlagssummen
Abb. A2-5	Mittlere prozentuale Verteilung der Niederschläge nach Monaten
Abb. A2-6	Monatliche Verteilung der Niederschlagstage
Abb. A2-7	Mittlere prozentuale Verteilung der Niederschlagstage nach Monaten
Abb. A2-8	Monatliche Verteilung der Tage mit ≥ 1,0 mm Niederschlag
Abb. A2-9	Monatliche Verteilung der Tage mit ≥ 10,0 mm Niederschlag
Abb. A2-10	Monatliche Verteilung der Tage mit ≥ 50,0 mm Niederschlag
Abb. A2-11	Monatliche Verteilung der Tage mit ≥ 100,0 mm Niederschlag
Abb. A2-12	Mittlere prozentuale Verteilung der Tage mit ≥ 1,0 mm Niederschlag nach
	Monaten
Abb. A2-13	Mittlere prozentuale Verteilung der Tage mit ≥ 10,0 mm Niederschlag nach
	Monaten
Abb. A2-14	Mittlere prozentuale Verteilung der Tage mit ≥ 50,0 mm Niederschlag nach
	Monaten
Abb. A2-15	Mittlere prozentuale Verteilung der Tage mit ≥ 100,0 mm Niederschlag nach
	Monaten
Abb. A2-16	Starkregen mit ≥ 150 mm Niederschlag innerhalb von 6 Stunden; 29. / 30.07.2001
Abb. A2-17	Starkregen mit ≥ 150 mm Niederschlag innerhalb von 6 Stunden; 23. – 30.09.2001
Abb. A2-18	Starkregen mit ≥ 150 mm Niederschlag innerhalb von 6 Stunden; 03. / 04.07.2002
Abb. A2-19	Starkregen mit ≥ 150 mm Niederschlag innerhalb von 6 Stunden; 10. – 13.08.2004
Abb. A2-20	Starkregen mit ≥ 150 mm Niederschlag innerhalb von 6 Stunden; 23. – 27.08.2004
Abb. A2-21	Starkregen mit ≥ 150 mm Niederschlag innerhalb von 6 Stunden; 23. – 25.10.2004
Abb. A2-22	Starkregen mit ≥ 150 mm Niederschlag innerhalb von 6 Stunden; 02. – 04.12.2004
Abb. A2-23	Mittlere monatliche Bodentemperaturen (°C) in 2 cm Tiefe
Abb. A2-24	Mittlere monatliche Bodentemperaturen (°C) in 10 cm Tiefe
Abb. A2-25	Mittlere monatliche Bodentemperaturen (°C) in 20 cm Tiefe
Abb. A2-26	Tagesamplituden der Bodentemperaturen in 2 cm Tiefe
Abb. A2-27	Tagesamplituden der Bodentemperaturen in 10 cm Tiefe
Abb. A2-28	Tagesamplituden der Bodentemperaturen in 20 cm Tiefe
Abb. A2-29	Lage der in Tab. 49 angegebenen meteorologischen Stationen des Central Weather
	Bureau sowie der Station im Nanhuta Shan

Anhang A 4	Sedimentprofile und Ergebnisse der Korngrößenanalysen
Abb. A4-1 Abb. A4-2 Abb. A4-3	Skizzen der Sedimentprofile im Nanhuta Shan Nr. I-IV Skizzen der Sedimentprofile im Nanhuta Shan Nr. VII-X Skizzen der Sedimentprofile im Yushan Nr. XI-XIV
Anhang A 7	Längsprofile der Flüsse in den Untersuchungsgebieten
Abb. A7-1 Abb. A7-2	Längsprofile der Flüsse, die im Nanhuta Shan entspringen Längsprofile der Flüsse, die im Yushan entspringen
Anhang A 8	Bemerkung zur Verschriftung der chinesischen Ortsnamen
Abb. A8-1	Lage der im Text erwähnten Orte und Gebirge Taiwans

Tabellenverzeichnis

1. Einleitung

Tab. 1	Klimatische Entwi	cklung während	des Holozäns	in Taiwan
--------	-------------------	----------------	--------------	-----------

2.	Das	Untersuchungs	gebiet
	D us	Circi sacifaligs,	

Tab. 2	Wegpunkte/Etappen zum Nanhuta Shan
Tab. 3	Anzahl wahrnehmbarer Erdbeben in Taiwan in den Jahren 2001 bis 2003
Tab. 4	Häufigkeit der Windrichtungen am Yushan
Tab. 5	Prozentuale Häufigkeitsverteilung der Windrichtungen nach Monaten am Yushan
Tab. 6	Mittlere monatliche Windgeschwindigkeiten am Yushan
Tab. 7	Mittlere maximale Windgeschwindigkeiten am Yushan
Tab. 8	Länge und Einzugsgebietsgrößen der 21 Haupt-Flüsse Taiwans
Tab. 9	Vergleich der Abflussraten großer Flüsse weltweit mit denen der fünf längsten
	Flüsse Taiwans
Tab. 10	Vegetationshöhenstufen in Taiwan

3. Methoden

- **Tab. 12** Messgeräte der meteorologischen Station im Nanhuta Shan und Zubehör zum Auslesen der erhobenen Daten
- **Tab. 13** Mess- und Speichertakte von Niederschlag, Luft- und Bodentemperaturen in Nanhuta Shan

4. Der Nanhuta Shan

 Tab. 14
 Als Niederschlagsereignis gewertete und reale Niederschlagssummen

6. Synthese und Interpretation der Ergebnisse

- **Tab. 15** Lage und Charakteristika der Glatthänge in den Untersuchungsgebieten
- **Tab. 16** Rezente geomorphologische Höhenstufung in der Central Mountain Range, Taiwan

7. Diskussion

Tab. 17 Erosionsraten in der Central Mountain Range, Taiwan nach verschiedenen Autoren
 Tab. 18 Höhengrenzen ostasiatischer Gebirge

9. Quellenverzeichnisse

- Tab. 9.2 a Liste der für das Arbeitsgebiet Nanhuta Shan verwendeten Karten
 Tab. 9.2 b Liste der für das Arbeitsgebiet Yushan verwendeten Karten
 Tab. 9.2 c Liste der für die Erstellung der Flusslängsprofile verwendeten Topographischen Karten
- **Tab. 9.2 a** Liste der verwendeten Luftbilder

Anhang A 2.2 - Klimadaten aus dem Nanhuta Shan - Tabellen

Tab. A2-1	Datenlücken aufgrund von Funktionsstörungen des Bodentemperaturgebers in
	20 cm Tiefe
Tab. A2-2	Jahresmitteltemperaturen der Jahre 2002 bis 2004
Tab. A2-3	Differenzen der monatlichen Lufttemperaturen zwischen den einzelnen Monaten
Tab. A2-4	Jahresgang der mittleren Tagesamplitude der Lufttemperatur (K)
Tab. A2-5	Jahresgang der maximalen Tagesamplitude der Lufttemperatur (K)

Tab. A2-6	Absolute Minima und Maxima der Lufttemperatur (°C)
Tab. A2-7	Tagesgang der Lufttemperaturen (°C) am 15. jeden Monats des Jahres 2002
Tab. A2-8	Tagesgang der Lufttemperaturen (°C) am 15. jeden Monats des Jahres 2003
Tab. A2-9	Tagesgang der Lufttemperaturen (°C) am 15. jeden Monats des Jahres 2004
Tab. A2-10	Anzahl der Frosttage
Tab. A2-11	Anzahl der Eistage
Tab. A2-12	Anzahl der Frostwechsel
Tab. A2-13	Niederschlagssummen
Tab. A2-14	Anzahl der Niederschlagsereignisse klassifiziert nach der Niederschlagsmenge
Tab. A2-15	Niederschlagsintensität klassifiziert nach der Niederschlagsmenge pro Stunde
Tab. A2-16	Minimale, maximale und mittlere Dauer und Intensität der einzelnen
	Niederschlagsereignisse
Tab. A2-17	Starkregen mit ≥ 150 mm Niederschlag innerhalb von 6 Stunden und die Taifune
	bzw. tropischen Zyklonen, die sie beeinflusst haben
Tab. A2-18	Taifune, die Taiwan im Zeitraum April 2001 bis Dezember 2004 betroffen haben
	und die Niederschlagssummen, die jeweils im Nanhuta Shan verzeichnet wurden
T 1 42 40	sowie deren Anteil am Jahresniederschlag
Tab. A2-19	Auftreten von Niederschlägen zu bestimmten Tageszeiten
Tab. A2-20	Jahresmitteltemperaturen in den Bodentiefen 2, 10 und 20 cm
Tab. A2-21	Mittlere monatliche Bodentemperaturen in 20 cm Tiefe
Tab. A2-22	Mittlere Differenzen der monatlichen Bodentemperaturen zwischen den einzelnen Monaten
Tab. A2-23	
1 ab. A2-25	Differenzen der mittleren monatlichen Bodentemperaturen in 2 cm Tiefe und der mittleren monatlichen Lufttemperaturen
Tab. A2-24	Mittlere vertikale Gradienten der Bodentemperaturen errechnet aus den
1 ab. A2-24	Jahresmitteltemperaturen
Tab. A2-25	Jahresgang der mittleren Tagesamplitude der Bodentemperatur in 2 cm Tiefe
Tab. A2-26	Jahresgang der mittleren Tagesamplitude der Bodentemperatur in 10 cm Tiefe
Tab. A2-27	Jahresgang der mittleren Tagesamplitude der Bodentemperatur in 20 cm Tiefe
Tab. A2-28	Jahresgang der maximalen Tagesamplitude der Bodentemperatur in 2 cm Tiefe
Tab. A2-29	Jahresgang der maximalen Tagesamplitude der Bodentemperatur in 10 cm Tiefe
Tab. A2-30	Jahresgang der maximalen Tagesamplitude der Bodentemperatur in 20 cm Tiefe
Tab. A2-31	Absolute Minima und Maxima der Bodentemperatur in 2 cm Tiefe
Tab. A2-32	Absolute Minima und Maxima der Bodentemperatur in 10 cm Tiefe
Tab. A2-33	Absolute Minima und Maxima der Bodentemperatur in 20 cm Tiefe
Tab. A2-34	Tagesgang der Bodentemperaturen in 2 cm Tiefe an der Station Nanhuta Shan am 15. jeden Monats des Jahres 2002
Tab. A2-35	Tagesgang der Bodentemperaturen in 2 cm Tiefe an der Station Nanhuta Shan am
	15. jeden Monats des Jahres 2003
Tab. A2-36	Tagesgang der Bodentemperaturen in 2 cm Tiefe an der Station Nanhuta Shan am
	15. jeden Monats des Jahres 2004
Tab. A2-37	Tagesgang der Bodentemperaturen in 10 cm Tiefe an der Station Nanhuta Shan am
	15. jeden Monats des Jahres 2002
Tab. A2-38	Tagesgang der Bodentemperaturen in 10 cm Tiefe an der Station Nanhuta Shan am
	15. jeden Monats des Jahres 2003
Tab. A2-39	Tagesgang der Bodentemperaturen in 10 cm Tiefe an der Station Nanhuta Shan am
T 1 1 2 10	15. jeden Monats des Jahres 2004
Tab. A2-40	Tagesgang der Bodentemperaturen in 20 cm Tiefe an der Station Nanhuta Shan am
Tab 42 41	15. jeden Monats des Jahres 2002
Tab. A2-41	Tagesgang der Bodentemperaturen in 20 cm Tiefe an der Station Nanhuta Shan am
Tob 42 42	15. jeden Monats des Jahres 2003
Tab. A2-42	Tagesgang der Bodentemperaturen in 20 cm Tiefe an der Station Nanhuta Shan am 15. jeden Monats des Jahres 2004
Tab. A2-43	Frosttage in 2 cm Tiefe nach Monaten
Tab. A2-44	Frosttage in 10 cm Tiefe nach Monaten
Tab. A2-45	Frosttage in 20 cm Tiefe nach Monaten
I UV. 114-TJ	1 100mage in 20 cm 1 lete inten intendent

Tab. A2-46	Eistage in 2 cm Tiefe nach Monaten
Tab. A2-47	Eistage in 10 cm Tiefe nach Monaten
Tab. A2-48	Eistage in 20 cm Tiefe nach Monaten
Tab. A2-49	Anzahl der Frostwechsel der Bodentemperaturen
Tab. A2-50	Lage und Höhe sowie mittlere jährliche Durchschnittstemperaturen und –
	niederschläge an 24 meteorologischen Stationen des Central Weather Bureau sowie
	den Stationen Nanhuta Shan und Gokan Shan
Tab. A2-51	Jahresmitteltemperaturen für die Jahre 2002 bis 2004 und ihre Abweichung von
	denen der Standardperiode 1971-2000 an 23 Stationen in Taiwan
Tab. A2-52	Niederschlagssummen für die Standardperiode 1971-2000 und für die Jahre 2002
	bis 2004 an 23 Stationen in Taiwan
Tab. A2-53	Niederschlagssummen an der Station Alishan im Zeitraum April 2001 bis März
	2005 und im 30jährigen Mittel (1971-2000) nach Monaten
Anhang A 3 -	Liste der GPS-Daten
Tab. A3-1	Liste der GPS-Daten
Anhang A 4 –	Ergebnisse der Korngrößenanalysen
Tab. A4-1	Lage der Sedimentprofile im Nanhuta Shan
Tab. A4-2	Beschreibung der Sedimentprofile im Nanhuta Shan
Tab. A4-3	Lage der Sedimentprofile im Yushan
Tab. A4-4	Beschreibung der Sedimentprofile im Yushan
Tab. A4-5	Ergebnisse der Korngrößenanalysen von Feinsedimenten an 6 Lokalitäten im
	Nanhuta Shan
Tab. A4-6	Ergebnisse der Korngrößenanalysen von Feinsedimenten an 2 Lokalitäten im
	Yushan
Anhang A 5 –	Ergebnisse der OSL-Analysen
Tab. A5-1	Ergebnisse der OSL-Analysen von Feinsedimenten an zwei Lokalitäten im
	Nanhuta Shan
Tab. A5-2	Ergebnisse der OSL-Analysen von Feinsedimenten an drei Lokalitäten im Yushan
Anhang A 6 –	Ergebnisse der dendrochronologischen Untersuchungen
T 1 A C 1	M'41 M' 1 4 1M ' 14 20 I ' D" ' N 1 4 C1
Tab. A6-1	Mittlere, Mindest- und Maximalalter von 28 <i>Juniperus</i> -Bäumen im Nanhuta Shan
T. 1. 4.6.0	aus Jahrringzählungen
Tab. A6-2	Berechnete mittlere, Mindest- und Maximalalter von 18 <i>Juniperus</i> -Bäumen im
	Nanhuta Shan
Ambon = A.7	I in connection don Elizace in don Unterconclusive and bit to
Annang A / –	Längsprofile der Flüsse in den Untersuchungsgebieten
Tob 47 1	Die Elügge der Untergrehungsgehiete Norbute Chen und Vusben
Tab. A7-1	Die Flüsse der Untersuchungsgebiete Nanhuta Shan und Yushan
Ambon = A O	Chinasiasha Outanaman
Annang A 8 –	Chinesische Ortsnamen

$Anhang\ A\ 9-Abk\"{u}rzungsverzeichnis$

Tab. A8-1

 Tab. A9-1
 Bedeutung der verwendeten Abkürzungen

Liste der in der Arbeit erwähnten chinesischen Ortsnamen

Verzeichnis der Photographien

2. Das Untersuchungsgebiet

Photo 1	Grat zwischen Shenmachen Hut und Nanhu North Peak
Photo 2	Wacholderbüsche und -bäume im Upper Valley des Nanhuta Shan
Photo 3	White wood forest im Yushan
Photo 4	Abgeholzte Hänge und Hangrutschungen im Eingangsbereich des Yushan
	Nationalparks auf Höhe des Tatachia Passes

3. Methoden

Photo 34

Nanhuta Shan

Photo 5	Bohrkernentnahme an Wacholderbäumen mit Hilfe eines Zuwachsbohrers auf
	einem Schuttkegel im Nanhuta Shan
Photo 6	Bohrkern aus einem Wacholderbaum
Photo 7	Meteorologische Messstation im Nanhuta Shan

4. Der Nanhuta Shan

Photo 8	Geschlossene Schneedecke im Nanhuta Shan im Winter 2000 / 2001
Photo 9	Kammeis im Nanhuta Shan entlang des Wanderwegs nahe Shenmachen Hut
Photo 10	NE-Valley des Nanhuta Shan talabwärts geblickt
Photo 11	S-Valley des Nanhuta Shan talabwärts geblickt
Photo 12	Steilkante am oberen Ende des NE-Valley im Nanhuta Shan
Photo 13	Grat zwischen dem NE-Valley und dem Tal des Nanhu Xi im Nanhuta Shan
Photo 14	SE-Valley des Nanhuta Shan talabwärts geblickt
Photo 15	Saisonaler Oberflächenabfluss aufgrund schmelzender Schneeflecken im Nanhuta
	Shan
Photo 16	Fluviale Einschneidung und Sortierung der Schotter im Sedimentbecken des Upper
	Valley im Nanhuta Shan in Folge sommerlicher Starkregenereignisse
Photo 17	Oberer Talabschnitt des südlichen Upper Valley im Nanhuta Shan vom
	Plateau aus talabwärts geblickt
Photo 18	Orographisch rechte Talflanke des Lower Valley im Nanhuta Shan
Photo 19	Kantiger Hangschutt im Bereich der südlichen Talabschnitte des Upper und des
	Lower Valley im Nanhuta Shan
Photo 20	Orographisch rechte Talflanke des SE-Valley im Nanhuta Shan
Photo 21	Das nördliche Upper Valley des Nanhuta Shan talaufwärts geblickt
Photo 22	Das nördliche Lower Valley des Nanhuta Shan talaufwärts geblickt
Photo 23	Flussbett des SE-Valley im Nanhuta Shan
Photo 24	Konglomerat im Talboden des SE-Valley im Nanhuta Shan
Photo 25	Profil VIII im Sedimentbecken des Upper Valley im Nanhuta Shan
Photo 26	Profil II im Upper Valley des Nanhuta Shan
Photo 27	Das zwischen dem Main Peak und dem East Peak gelegene Plateau im
	Nanhuta Shan
Photo 28	Glatthang an der orographisch linken Talflanke des Lower Valley des
	Nanhuta Shan
Photo 29	Glatthang an der Südostflanke des E-Peak im Nanhuta Shan
Photo 30	Vegetation auf den Schuttkegeln an der orographisch rechten Talflanke des
	Upper Valley im Nanhuta Shan
Photo 31	Solifluktionsterrassetten im unteren Hangbereich der orographisch rechten
	Talflanke des Lower Valley im Nanhuta Shan
Photo 32	Solifluktionsterrassetten im unteren Hangbereich der orographisch rechten
	Talflanke des nördlichen Lower Valley im Nanhuta Shan
Photo 33	Schuttakkumulation im Upper Valley des Nanhuta Shan

Unsortierte Frostspaltenpolygone im Sedimentbecken des Lower Valley im

Photo 35 Materialsortierung durch Frosteinwirkung im Lower Valley des Nanhuta Shan

5. Der Yushan

Photo 36	Tief eingeschnittene Kerbtäler oberhalb 3.000 m rund um den Yushan
Photo 37	Talflanken der Kerbtäler unterhalb 3.000 m rund um den Yushan
Photo 38	Tal des Laonung Xi von Batongguan aus talaufwärts geblickt
Photo 39	Obergrenze der rückschreitenden Erosion im Yushan festgemacht an einer vom
	Nanzixian Xi unterschnittenen Schutthalde
Photo 40	Talschluss des Shalixian Valley nordöstlich des Yushan Main Peak
Photo 41	Talschluss des Chenyulan Valley nördlich von Batongguan
Photo 42	Aus Richtung Süden auf das Nanzixian Valley im Yushan eingestelltes Hängetal
Photo 43	Dreiecksfacetten südöstlich des Main Peak
Photo 44	Glatthang an der Ostflanke des Yushan Main Peak
Photo 45	Glatthang im Talschluss des Nanzixian Valley zwischen Yushan Main Peak und
	S-Peak
Photo 46	Panorama-Photo der Hänge westlich des Grates zwischen dem Yushan Main Peak
	und S-Peak (Talschluss des Nanzixian Valley)
Photo 47	Massenbewegungen im Yushan
Photo 48	Nivatonsnischen an der ostexponierten Nordflanke des Yushan South Peak
Photo 49	Flussbett des Laonung Xi im oberen Drittel des Tals
Photo 50	Luftaufnahme von Batongguan
Photo 51	Nordsüdlich verlaufendes Tal von Batonguan
Photo 52	Profile XII, XIII und XIV im Yushan (Batonguan)