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Abstract: Concrete symbols (e.g., sun, run) can be learned in the context of objects
and actions, thereby grounding their meaning in the world. However, it is controver-
sial whether a comparable avenue to semantic learning exists for abstract symbols (e.g.,
democracy). When we simulated the putative brain mechanisms of conceptual/semantic
grounding using brain-constrained deep neural networks, the learning of instances of
concrete concepts outside of language contexts led to robust neural circuits generat-
ing substantial and prolonged activations. In contrast, the learning of instances of ab-
stract concepts yielded much reduced and only short-lived activity. Crucially, when
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conceptual instances were learned in the context of wordforms, circuit activations be-
came robust and long-lasting for both concrete and abstract meanings. These results
indicate that, although the neural correlates of concrete conceptual representations can
be built from grounding experiences alone, abstract concept formation at the neurobio-
logical level is enabled by and requires the correlated presence of linguistic forms.

Keywords concept formation; grounding; abstract concepts; deep neural networks;
neurocomputational modeling

Introduction

The meaning of concrete symbols, such as the words hammer or ball, can be
picked up at least in part from the nonverbal contexts in which they are used.
Important in this process are statistical regularities between symbol use and
the presence of objects and actions of certain types (M. Tomasello & Kruger,
1992; Vouloumanos & Werker, 2009; Waxman & Markow, 1995). Even though
such “grounding” of symbolic meaning in objects and actions may not be
sufficient for acquiring all facets of meaning (Barsalou & Wiemer-Hastings,
2005; Kintsch, 1974; Pulvermüller, 2018c), it has been shown to be a neces-
sary component of any semantic learning (Harnad, 1990; Searle, 1980). And
even before and independently of language learning, infants and even animals
may learn some concepts from, and ground them in, experiences, possibly
due to the similarity structure across the instances that fall into a category
(Mandler, 2004; Pearce, 2008; Perszyk & Waxman, 2018; Pusch et al., 2023).
Therefore, most researchers today agree that at least a significant number
of concepts and symbols need to be and are grounded in experiences, and,
thus, in the “world.” With this “grounding set” of symbols as a foundation,
additional concepts and meanings can be learned and grounded indirectly,
based on symbol contexts in which they are typically used (Cangelosi et al.,
2000; Harnad, 2018). In essence, direct grounding establishes a symbol–world
relationship through associations between linguistic symbols and perception-
and action-related experiences, which is indispensable for semantics.
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Direct and Indirect Grounding of Symbols and Concepts
Such associative grounding mechanisms may appear feasible for learning as-
pects of the referential meaning of concrete symbols, but they cannot explain
all aspects thereof. For example, for explaining the difference between proper
names, which can only be used to speak about one specific entity or person,
and category terms applicable to a large set of instances, more is required than
simple association (Nguyen et al., 2024). An unsurmountable set of challenges
is apparently posed by highly abstract concepts and meanings, which, accord-
ing to standard views, have correlates not in the world, but rather in mental
space, where they relate to equally abstract conceptual and semantic features.
Because of their abstract mental nature, it is commonly believed that abstract
symbols such as justice or game pose problems for grounding accounts of se-
mantic meaning.1 Because these concepts lack an experienceable correlate in
the world (Hale, 1988), it is not clear how any symbol–world relationship could
possibly form. As a result, theorists have proposed that “hybrid” accounts are
necessary to cover both concrete and more abstract concepts (Dove, 2016,
2022; Paivio, 1991). Within such accounts, the simpler and more concrete con-
cepts are subject to grounding, whereas the more complex and abstract mean-
ings are not subject to grounding in the (real) world but rather receive their
content from the “mental world” or an amodal symbolic system.

Opinions differ on how exactly to best characterize abstract meaning and
the semantic relatedness between different concepts. The most common pro-
posal, adopted from structuralist semantic theory, is that sets of abstract seman-
tic features, some of which may capture hierarchical taxonomic relationships,
define a given concept or symbol (e.g., [+ANIMATE], [+BEAUTIFUL]; see,
e.g., Katz & Fodor, 1963; Mahon & Caramazza, 2009). An alternative ap-
proach is offered by distributional semantics, which defines meaning in terms
of multidimensional vectors coding for symbol co-occurrences across texts in
large text corpora (Landauer & Dumais, 1997; Lenci et al., 2018). A further
approach postulates that some of the apparently abstract features immanent to
abstract concepts can be “grounded privately” in the individual, by means of
them experiencing the related mental state or emotion and tagging it with a
concept or symbol (Barsalou & Wiemer-Hastings, 2005; Borghi & Binkofski,
2014; Vigliocco et al., 2013).

Common to these approaches is the belief that different mechanisms are
crucial for semantic grounding in the world, to which individuals have access
to similar degrees, and for abstract semantics built on symbol–symbol rela-
tionships or private linkage of symbols, with information directly accessible
only to the individual, be it emotions, mental states, or, in the extreme case,
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the innate conceptual features and representations of a universal “language of
thought” (Fodor, 1975; Pinker, 2008). According to hybrid models of symbolic
and grounded information (Dove, 2016; Paivio, 1990, 1991), the meaning of
any symbol can include both “modal” sensorimotor information and “amodal”
distributional or only-internally-accessible information, with abstract concepts
either relying on amodal information exclusively or more strongly than con-
crete ones, to which the reverse pattern applies, that is, a relatively stronger (or
exclusive) relationship to modal information.

The success of hybrid approaches may be due to the fact that they appear to
be compromises between extreme positions, thus integrating different views to
a degree. However, compromises may also include the weaknesses of one of the
extremes, and in the worst case, of both. If hybrid proposals account for the se-
mantically sophisticated class of abstract concepts, why should a grounding set
of words be postulated at all, given that the grounding mechanism depends on
associative learning, which is widely believed to be insufficient for semantics?
Might it therefore be advisable to revert to classic cognitive theories applica-
ble to all kinds of concepts and entirely based on abstract semantic features or
symbol–symbol relationships? But this would ignore the grounding problem,
which invalidates ungrounded semantic features, subject-internal private tags,
and symbol distributions per se as a genuine mechanism (for discussion, see
Harnad, 1990; Searle, 1980). After the grounding problem had apparently been
solved for some concrete concepts, a hybrid approach seems to imply giving up
on the grounding of abstract terms. Such a position would leave the meaning
of symbols half unexplained; therefore, it appears weak and insufficient. Could
there be ways to extend grounding-in-the-(real-)world to abstract concepts?

One perspective on grounding abstract symbols is offered by distributional
semantics, if high word–word co-occurrence values are taken as a basis of in-
direct grounding of novel word meanings in semantic referential information
provided by already known and grounded ones, following the symbolic theft
hypothesis (Andrews et al., 2009; Cangelosi et al., 2000; Cangelosi & Stra-
mandinoli, 2018; Parisi & Cangelosi, 2002). This can be based not only on
explicit semantic explanation (A zebra is like a horse with stripes, whereby
horse and stripes are in the grounding set; see Harnad, 1990), but also on
symbol distribution (zebra frequently co-occurring with both horse and stripe;
see, e.g., Andrews et al., 2009), which is applicable to abstract words fre-
quently co-occurring with concrete ones (Cangelosi & Stramandinoli, 2018).
However, many abstract symbols, and actually some of the most abstract ones,
primarily co-occur with other abstract symbols (Lenci et al., 2018; Naumann
et al., 2018). For example, the abstract symbol justice preferentially co-occurs
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with the also highly abstract items criminal, system, or law (data from Davies,
2018). For symbols to which this applies, indirect text-based grounding may
fail. Therefore, at least a subset of abstract symbols would need to be directly
grounded in object perception and motor action, unless an alternative avenue
toward learning their relationship to real-world entities can be offered.

Such an avenue could still be provided by some type of “inner grounding.”
Using this expression loosely, it may even be applied to the private association
between an inborn concept and a novel wordform. Some cognitivist theorists
envisage ordered interlinking between symbols used by a language commu-
nity and the individual’s own private knowledge of emotions, mental states,
and amodal concepts (see, e.g., Pinker, 2008). However, such an association
process appears problematic. Most notably, it is unclear how to guarantee that
the correct inner concept, feeling, or representation is activated together with
a novel externally provided symbol, rather than a different one mismatching
with the symbol’s meaning. Likewise, information about the degree of speci-
ficity of the novel symbol would need to be available to allow the individual
to decide whether the word is specific to one particular inner state or rather
more general, comprising an entire class of similar ones instead. In case of ev-
idence for unsuccessful learning, there would need to be criteria for revising
and repeating the semantic learning process (for further discussion, see, e.g.,
Baker & Hacker, 2008; Wittgenstein, 1953), which are, however, missing. All
these difficulties are relatively easy to tackle if the entity that the novel word
is used to speak about is publicly accessible to learners and teachers—which,
arguably, inner or mental states and activities such as anger or thinking are not.

A way to avoid these difficulties is offered by a grounding-in-action per-
spective (Glenberg & Kaschak, 2002; Pulvermüller, 2005): It is not the internal
grounding as a private within-subject process that is relevant; what counts is
the accessibility of the “inner” state or emotion in the behavior and actions of
the language learner to those engaged in symbolic communication. The regular
and natural expression of emotions and inner states in overt bodily actions and
movements by the language-learning child is the basis of grounding of some of
the symbols in the abstract spectrum (see also Dreyer & Pulvermüller, 2018;
Moseley et al., 2012; Moseley & Pulvermüller, 2014; Pulvermüller, 2018b).
Such grounding of abstract concepts was first proposed by Wittgenstein (1953),
who emphasized that an internal state such as joy or suffering from pain is nor-
mally expressed in the behavior of the young learning child by natural oral,
facial, and bodily expressions. These action-related manifestations of the inner
state function as criteria for the correct application of the appropriate verbal
symbols and descriptions by the language-competent adult and, hence, for the
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teaching of appropriate verbal expressions for the inner states experienced by
the child. In this perspective, symbols for supposedly inner, but in fact action-
related, emotional and mental states are learned not privately but interactively,
whereby the interacting adult is guided by criteria for the behavioral manifesta-
tions of these states. In other words, at least some abstract symbols can be, and
typically are, grounded in action. Such grounding-in-action can extend even
to highly abstract expressions, such as causation or regression to the mean
(Glenberg, 2022; Pulvermüller, 2018a). In line with this research and related
modeling work (Henningsen-Schomers et al., 2023; Henningsen-Schomers &
Pulvermüller, 2022), we here aim to further develop, describe, and investigate
a neuromechanistic model of abstract semantic grounding in object perception
and motor action.

The possibility for direct grounding is particularly obvious for symbols and
expressions that can be the basis of statements about real-world facts. However,
in the same way as one can concretely state that “This action was smooth,” one
may claim that “This action was democratic.” Both assertions can be verified
or falsified by applying established criteria (e.g., by assessing the movement
trajectory or recounting votes). This shows that, even though abstract concepts
have no direct correlate in the world, there are real-world “instances” of the
concept, which can be relevant for learning the related symbol. Therefore, by
pointing to concrete instantiations of democratic activities, one can teach the
meaning of the related symbol, very similarly to the way one can teach concrete
meanings by pointing to instances of concrete concepts.

Different Perspectives on Abstract Concepts
When aiming at a mechanistic explanation of concrete and abstract concepts
and meanings, a clear explication of the major difference between the two is
necessary. To this end, a range of different distinctive features are under dis-
cussion (for recent review and discussion, see Borghi et al., 2022). Compared
with concrete ones, abstract meanings are viewed as relatively less grounded
in action and perception, relatively more related to inner states and social inter-
action, more reliant on language and communication, and also more variable
across texts and individuals. Furthermore, some authors describe structural dif-
ferences between concrete and abstract concepts and semantics, with instances
of concrete concepts sharing more object- and action-related semantic features
than abstract ones (Langland-Hassan et al., 2021; Lupyan & Mirman, 2013;
Sloutsky, 2010). Buccino et al. (2019) and Löhr (2022) argue that abstract con-
cepts lack shared grounded semantic features entirely.
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These approaches, which consider absolute or graded differences in the
presence of shared semantic features as the core criterion for the concrete–
abstract distinction, are reminiscent of a claim by Wittgenstein (1953), who,
however, provided a most precise description of the meaning of some rela-
tively abstract symbols. He argued that concepts such as GAME or ABILITY
have instances that indeed do not share a core set of semantic properties but
rather show partial similarities, as the faces of the members of a family might
do. Family resemblance in Wittgenstein’s sense thus means partial sharing of
features across only a subset of category instances (Baker & Hacker, 2008;
Wittgenstein, 1953).

This structural, feature-based approach led Pulvermüller (2013, 2018a,
2023) to propose that, whereas most concrete concepts and meanings can be
characterized by shared category-defining action- and object-related semantic
features, abstract entities are typically characterized by a lack of feature sharing
but by family resemblance instead; and, indeed, a wide range of abstract terms
(beauty, democracy, safety, causation, etc.) fulfill the family-resemblance cri-
terion, whereas many concrete ones seem to be characterized by shared fea-
tures (hare, shirt, hammer). Therefore, we believe that the structural distinc-
tion between full feature sharing and family resemblance (i.e., partial feature
sharing) captures the difference between most concrete and abstract concepts
more precisely than the mere claim about the presence, absence, or prominence
of shared semantic features. In particular, the latter approach leaves open what
“holds together” an abstract category, whereas the family resemblance idea
clarifies this issue.

Operationalizing Concreteness Versus Abstractness as Feature Sharing
Versus Family Resemblance
The proposed structural distinction between concrete and abstract concepts or
meanings is illustrated in Figure 1. Although two extreme cases are illustrated,
this structural distinction implies a continuum between full feature sharing and
family resemblance, along which gradually more concrete or abstract concepts
are situated. One example of such an intermediate semantic type is that of large
categories of objects (e.g., BIRD), which include a majority of instances shar-
ing all semantic features, although some may lack one or more of these other-
wise shared properties (OSTRICH, PENGUIN). In our simulations of concrete
and abstract conceptual and semantic processing and representation, this struc-
tural difference was implemented. Therefore, our results and their interpreta-
tion depend on the claimed parallelism between the contrasts of concreteness
versus abstractness and of semantic feature sharing versus family resemblance.
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Figure 1 Illustrations of conceptual structure—full semantic feature overlap versus
family resemblance—of relatively more concrete and abstract concepts and meanings.
Panel A: Examples of overlapping and specific grounded experiential features of in-
stances of concrete (left) and abstract (right) concepts. Below, a schematic illustration
of the structural difference (full vs. partial semantic feature overlap) is depicted. Panel
B: Specific grounding patterns used in this study. Colors indicate whether a neural ele-
ment is part of one (blue, red, green), two (yellow, cyan, magenta), or all three instances
(white).

We now illustrate the aforementioned structural difference between con-
crete and abstract semantics in terms of feature sharing versus family resem-
blance. We speak of “semantics” or “meaning” with reference to (verbal) sym-
bols and of “concepts” when discussing language-independent representations.

The word hammer is used to refer to a class of objects. What hold this
category together are action-related features (e.g., that all the objects are good
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for hammering) and also visual and haptic features (that all are top-heavy
sticks). Still, hammers can vary widely in shape, size, material, color, or func-
tion. For example, one instance may be ideal for hammering nails into wood,
a second may be better for advancing larger, heavy objects (e.g., poles), and a
third exemplar may have an additional function (e.g., removing nails). These
specific object- and action-related features are not general characteristics of
the concept and are of little relevance semantically.

Now consider different instances of games, such as football, poker, and
Tetris. Poker and football allow several people to partake in them, whereas
Tetris is designed to be played by only one person. Success in football and
Tetris strongly depends on motor skills, but success in poker does not. In poker
and Tetris, the individual plays on their own, whereas football is a team sport.
Note that none of the three features mentioned is shared by all instances of the
semantic category, although one might rightly argue that they capture some of
the “essence” of the meaning of game (Wittgenstein, 1953). One may try to
defend the idea that the game concept is held together by shared features, for
example, by claiming that all games are played for fun. But counterexamples
come to mind immediately (professional gamers, billionaire football players,
so-called Russian roulette). One may claim that after all, a common feature of
games is that they are all governed by rules and conventions, which is correct,
but much too unspecific to be helpful in characterizing the concept or word
meaning (as it applies to almost all human activities). In essence, relevant ex-
periential semantic features across all (or most) instances are missing; similar
examples can be created for other abstract concepts too (BEAUTY, SAFETY,
JUSTICE, etc.). Therefore, we claim that concrete concepts are typically char-
acterized by semantic feature sharing and overlap, whereas, for most abstract
ones, only partial feature sharing or family resemblance applies.

The structural difference between conceptual categories with feature shar-
ing versus those with family resemblance is schematically illustrated in
Figure 1A with the use of Venn diagrams. Each small dot in the Venn diagrams
represents one specific perceptual or action-related feature; the overlapping
ovals represent sets of features characterizing specific instances of a concept.
Features shared between two or more instances of a concept are called seman-
tic or conceptual features. Each instance also includes sensorimotor features
not shared with other category members, which we call unique (or “idiosyn-
cratic”). The set of all shared features of a category is called the semantic or
conceptual representation.

Figure 1A depicts the full feature sharing of concrete concepts as well as
the partial feature sharing of abstract concepts. This depiction can be used for
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explanation if the small dots are considered as neuronal elements, for example,
local clusters of neurons. If these are connected to each other, and neurobio-
logical principles of learning and synaptic modification are applied, predictions
about the functionality of conceptual representation can be derived. Frequent
activation of different instances (due, for example, to instance perception) will
always lead to coactivation of all the shared conceptual neurons of concrete
concepts. Thus, processing of the instances of a concept will build represen-
tations consisting of strongly interconnected shared neurons for concrete con-
cepts. If a verbal symbol is perceived in conjunction with instance activations,
its neuronal correlate will be bound to the conceptual representation, further
strengthening it and building a semantic representation of symbol plus concept.

The situation for abstract concepts with family resemblance is different.
The partially shared neuronal elements included in any instance representation
will activate together only when this same instance is processed; during
other instance experiences, these neuronal elements will activate in a disjoint
manner, thus weakening their mutual links. A link between the disjoint
neuronal subsets (shown in yellow, magenta, and cyan) can be built only
through a different representation frequently coactivated with each of the
subsets. A symbol regularly used together with different instances can serve
this function of linking up with each of the partially shared subsets and thus
binding together the abstract concept (for a more detailed explanation, see the
Discussion section below and Henningsen-Schomers et al., 2023). This model
predicts that concrete concepts can be learned preverbally by experience and
are enhanced by label learning, whereas abstract concept formation requires
concordant symbol learning. In the Discussion section below, we will relate
these predictions to empirical and experimental research.

Aims and Strategies of the Current Study

The main aim of the present research was to investigate plausible mechanistic
correlates of concrete and abstract concept formation in the human brain. To
this end, we used explicit mathematically precise and biologically constrained
deep neuronal networks. To approximate realistic neuronal mechanisms, we
fashioned the networks under study according to known properties of the
human brain (see Methods section; Pulvermüller et al., 2021). In particular,
the models were governed by neurobiologically founded learning mechanisms
and included artificial “neurons” ordered in different sets of model “areas,”
which correspond to areas relevant for language and concept processing in
human cortex (Garagnani & Pulvermüller, 2016; R. Tomasello et al., 2017,
2018). These brain-like models were applied to simulate the learning of

267 Language Learning 74:S1, June 2024, pp. 258–295



Dobler et al. Verbal Symbols Enable Abstract Concept Formation

instances of concrete and abstract concepts in isolation and in the context of
concept-specific symbols. The neuronal circuits that formed in the networks
as a consequence of learning were mapped and interpreted, along with their
activity dynamics.

A range of previous studies have used neural networks to study concept
formation and semantic learning of concepts in linguistic and symbolic con-
text (e.g., Cangelosi et al., 2000; Chen et al., 2017; Elman, 2004; Hoffman
et al., 2018; Ito et al., 2022; Johnston & Fusi, 2023; Lupyan, 2012; Rogers &
McClelland, 2004; Wermter, 2004; Westermann & Mareschal, 2014). However,
these studies did not address the main question of our current research about
mechanistic differences between concrete and abstract semantic processing.
Some of these earlier neural networks were limited to simple examples of con-
crete concepts and were structurally quite basic (e.g., Lupyan, 2012), although
other research suggests that more complex “deep” networks including several
areas or layers are essential for abstract representations (Bengio et al., 2013;
Ito et al., 2022). In the present work, we therefore used more complex net-
works simulating activity in several cortical areas known to be important for
concept and language processing. A further reason to favor reasonably com-
plex networks over simple ones was the main aim of our current work, to re-
veal putative brain mechanisms underlying human cognition. This main aim is
achievable only by using networks that closely resemble, both structurally and
functionally, relevant parts of the human brain. Note that most previous neu-
ral simulation studies used networks quite distant from human brain structure
and function, favoring learning efficacy or standard connectionist architectures
instead of brain constraints. Previous research with brain-constrained network
models has shown them to be well suited for addressing mechanisms of word–
meaning mapping (see Constant et al., 2023; Garagnani & Pulvermüller, 2016;
R. Tomasello et al., 2017, 2018, 2019).

Two previous studies have already used brain-constrained deep neural net-
works to simulate the neurobiological mechanisms underlying concrete and ab-
stract conceptual (Henningsen-Schomers & Pulvermüller, 2022) and semantic
representations (Henningsen-Schomers et al., 2023). Here, we now focus on
the activation dynamics of concept and symbol representations in brain-like
networks. We address the main hypotheses (a) that functional representations
can be learned preverbally for concrete but not for abstract concepts and (b)
that concordant learning of symbols enhances the functionality of concrete
conceptual representations but is necessary for building functional abstract
concepts. Do the dynamics of networks mimicking relevant aspects of the hu-
man brain provide support for these claims?
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Method

Following earlier modeling work (Constant et al., 2023; Henningsen-Schomers
et al., 2023; Henningsen-Schomers & Pulvermüller, 2022; R. Tomasello et al.,
2018, 2019), we modeled neuronal learning and brain activity using brain-
constrained deep neural network models (see Pulvermüller et al., 2014, 2021;
see Figure 2, Panels A and B, and Appendix S1 in the Supporting Informa-
tion online for details). The model was implemented on the neural network
simulation platform Felix (Wennekers, 2009).

Model Architecture
To make sure that the structure of the network resembles the structural features
of the human cortex, a range of areas relevant for language and conceptual
processing were implemented. The model consists of a total of 12 model areas
intended to mimic inferior and dorsolateral frontal cortices, superior temporal
and inferior temporal cortices, as well as occipital cortices. The six perisylvian
areas correspond to cortical areas involved in auditory perception (A1, AB,
PB) and articulatory planning and control (M1i, PMi, PFi). The six extrasyl-
vian areas correspond to the ventral visual stream (V1, TO, AT) and the hand
motor system (M1L, PML, PFL;2 see Figure 2, Panels A and B, for details).
This allows for the simulation of nonlinguistic sensorimotor processes as well
as the articulation and auditory perception of wordforms.

We also made sure that neuronal structure and connectivity within areas
resembled those of cortical areas. Therefore, each model area or layer contains
625 excitatory and 625 inhibitory neurons (called e- and i-cells, respectively)
with within-area connections. Further details about the model, such as how
random connectivity or local and global inhibition are implemented, as well as
relevant equations, are provided in Appendix S1 of the Supplementary Mate-
rials online.

Stimuli
To model the perception of an object (e.g., a hammer) and a typical action
performed with the object (e.g., hammering), we activated neurons thought
to code for perceptual visual features in area *V1, together with additional
neurons in *M1L related to hand motor features of the action. Although this
type of simulation targets the acquisition of both perception- and action-related
information, we speak about “stimulation” using patterns that index real-world
instances. To model learning of a verbal wordform used to speak about a given
instance (i.e., object and/or action), we activated the neuron sets in *V1 and
*M1L together with a set of neurons in *M1i representing the articulatory
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Figure 2 Large-scale network structure and simulation conditions. Panel A: Structure
and connectivity of the neural network model. In total, 12 brain areas were modeled,
including areas in frontal, temporal, and occipital cortex. Perisylvian areas comprise an
inferior frontal articulatory system (red colors) and a superior temporal auditory sys-
tem (blue colors), and extrasylvian areas comprise a lateral dorsal hand motor system
(yellow/brown) and a visual “what” stream of object processing (green). Numbers re-
fer to Brodmann areas, and the colored lines represent long distance cortico-cortical
connections as documented by neuroanatomical studies. Panel B: Schematic depic-
tion of the brain areas modeled (using the same coloring for different brain areas as
in Panel A), along with their connectivity structure. Arrows indicate between-area con-
nections. Panel C: Training regime used for concrete concepts and symbols. Colored
dots indicate whether neural elements are related to instance-specific (blue/green/red),
semantic/conceptual (white), or symbol form (cyan) information. For each concept,
three instance-related grounding patterns were presented separately to the network in
random order. For symbol learning, a wordform pattern was presented together with
one of the instance-related patterns of the related concept.
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features of a spoken word, plus a set of neurons in *A1 thought to stand for the
acoustic phonological features of the same wordform. In all of the simulations,
each instance- or wordform-related stimulation pattern included 12 neurons
in each relevant primary area (either *V1 and *M1L or *A1 and *M1i), with
each neuron coding specific visuomotor, or phonological features. Examples
of specific patterns are shown in Figure 1B, and all patterns used are listed
online on the Open Science Framework platform (https://osf.io/m8dg5).

Three instances of a given concept were modeled (see Introduction for
a detailed discussion). An instance-related activation pattern includes a pair
of neuron stimulation patterns in the sensorimotor extrasylvian primary areas
*V1 and *M1L. Multiple instance patterns of the same concept share a subset
of their stimulated neurons through either full overlap or pairwise overlap. We
implemented the instances of concrete and abstract concepts by way of com-
plete mutual sharing of conceptual feature neurons or pairwise and thus only
partial sharing of features across the instance patterns, respectively (Figure 1).
We call all neurons shared between two or more instances “conceptual” or “se-
mantic,” as their sharedness is what makes the instances members of the con-
cept or category. We accounted for the discrepancy in the numbers of unique
and conceptual neurons between concrete and abstract grounding patterns in
the analysis of our results.

In total, 10 concepts each consisting of three grounding patterns (thus over-
all 30 patterns) containing 12 neurons each were constructed according to the
constraints described above. Unique neurons were instance-specific, that is, no
unique neuron was used in simulations of instances of more than one concept,
to ensure that there was no randomly varying overlap between concepts, which
could have confounded the results; instead, we kept between-concept overlap
at a constant 0.

Spoken wordforms were implemented as correlated neuron stimulation
patterns in the perisylvian primary areas *A1 and *M1i. These wordform-
related grounding patterns consisted of 12 neurons each. Ten nonoverlap-
ping wordform patterns were created, corresponding to the 10 concepts to
be mapped. In different simulation conditions, abstract and concrete concepts
were associated with the same 10 wordform patterns to control for potential
wordform-induced confounds.

Two types of models were trained: one with associated verbal symbols and
one without (symbol and no-symbol conditions). A model without symbols
was thought to imitate pre- or nonverbal concept learning based on the similar-
ity of perceptuo-motor features and therefore received only extrasylvian input
during training. In contrast, a model with symbols mimicked the co-occurrence
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of (a) simultaneously articulating and (b) hearing a correlated wordform while
(c) perceiving visually similar stimuli and (d) activating similar action repre-
sentations (see Figure 2C). Thus, one can interpret the models in the no-symbol
condition as being trained by nonlinguistic experiences in the world, whereas
the symbol condition implements concordant nonlinguistic and linguistic ex-
periences.

Training Procedures
As described in Henningsen-Schomers et al. (2023), training of models was
conducted in a 2 × 2 factorial design, with the variables semantic type (con-
crete vs. abstract grounding patterns) and symbol learning (conceptual ground-
ing patterns copresented with or without a wordform pattern). In each of the
four conditions, 12 models, each with different random initiations of connec-
tions and weights, were trained on the stimuli; these 12 models were the same
across conditions, thus yielding 48 models in total. The 12 base models were
used to account for variation that would be present across human participants
engaged in concept and symbol learning. The split between conditions was
necessary to avoid interference between the conceptual grounding patterns.
Note that previous research has already shown that the neural circuits form-
ing for concrete and abstract concepts and symbols differ in their topography
and robustness (Henningsen-Schomers & Pulvermüller, 2022), thus making it
likely that one may suppress or modify the other during learning. Note fur-
thermore that, in language learning, abstract meanings are acquired later than
concrete ones, which provides further motivation for implementing partly sep-
arate mechanisms.

For models trained without a symbol, a training trial consisted of presenting
a randomly chosen sensorimotor grounding pattern to the extrasylvian primary
areas *V1 and *M1L for 16 timesteps. The perisylvian primary areas *A1 and
*M1i experienced uncorrelated white noise during the training time. For mod-
els with symbol learning, the perisylvian primary areas instead received the
activation pattern of the wordform of the concept to which the sensorimotor
grounding pattern belongs (see Figure 2).

Finally, a wordform control model was trained, which received input only
to *A1 and *M1i, and white noise to the extrasylvian areas. A wordform rep-
resentation learned by this model is not grounded in sensorimotor experience
and encompasses all neurons that represent nongrounded wordform features.
These wordform control neurons were excluded from data analysis, to prevent
an influence of purely wordform-induced activation on the semantic activity
patterns, which our analysis targets.
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Between stimulus presentations, primary model areas received uncorre-
lated white noise activity. The duration of the interstimulus interval was de-
termined by the levels of global inhibition in *A1 and *PB, which had to be
below a threshold of 0.75 or 0.65, respectively, for the next trial to be initi-
ated. This prevented persistent neuronal activity of a given trial from influenc-
ing subsequent ones. In line with previous research, training continued until
each instance had been repeated 2,000 times (Henningsen-Schomers & Pul-
vermüller, 2022).

Testing Procedures
We asked whether the perception of a conceptual instance activates conceptual
or semantic representations. To assess this, we imitated instance experience, by
stimulating model areas *V1 and *M1L with the previously learned grounding
patterns. During testing, wordform patterns were not directly stimulated so that
word-related representations in perisylvian cortex could only become activated
indirectly through their related conceptual instances. The synaptic weights of
the models were fixed during testing, so that no further learning could occur.
Throughout testing, white noise background activity (noise parameter = 8)
was provided, but the unstimulated perisylvian primary areas *A1 and *M1i

did not receive additional uncorrelated input. In separate testing trials, each of
the 30 trained grounding patterns was presented for two timesteps, followed
by 28 poststimulation timesteps, for a total of 30 timesteps. Model activity was
quantified as the number of spikes across all neurons of an area per timestep. To
establish a baseline of network activity, intrinsic network activity was measured
for 10 timesteps prior to stimulation. To reset model activity prior to the next
stimulus presentation, the membrane potential of all neurons was set to 0.

To assess the acquired neuronal representation of a conceptual instance,
we recorded the activity of all neurons of the network following stimulation
of each instance-specific grounding pattern and classified responsive neurons
as active if their dynamic estimated firing rate reached 75% of the maximal
firing rate in their area for at least two timesteps. In addition, we classified each
active neuron according to whether it was activated by only one single instance-
related pattern (“instance-specific neurons”) or by two or all of a concept’s
instances (“conceptual/semantic neurons”).

For all statistical tests, we first calculated average values of the 30 instances
for each of 12 networks, which were thought to simulate processes in differ-
ent simulated “subjects.” Then, these “subject-specific” results were averaged
across networks, and statistical tests were applied (for details, see Appendix
S2 in the Supporting Information online).
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Results

To unravel the influence of verbal symbols on concept and meaning processing,
we assessed two measures of neuronal dynamics. The first is the magnitude of
peak activity, which describes the number of neurons within the instance cell
assemblies (CAs) that are simultaneously active across all extrasylvian areas
at the timestep of maximal activity. We define the point of maximal activity as
the “ignition” of the CA (cf. Braitenberg, 1978). Larger values may indicate
larger and/or more strongly connected neuronal sets. The second measure is
the working memory period or the duration of CA reverberation. It denotes
how long significant activity is maintained within the CA after peak activity
within a given area. In accordance with previous research (Schomers et al.,
2017), it is defined as the number of consecutive timesteps after the activation
peak during which the number of CA spikes exceeds the average number of
spikes in the prestimulation period by two or more standard deviations.

Magnitude of Cell Assembly Ignition
A 2 × 2 ANOVA on the number of spikes at tmax (the timestep of maximal ac-
tivity) with the variables semantic type (concrete vs. abstract) and model type
(no symbol vs. symbol) revealed significant main effects for both variables
as well as for the interaction between them: semantic type, F(1, 11) = 12.11,
p < .0001, ηp

2 = .52, 90% CI [.13,.70]; model type, F(1, 11) = 631.30,
p < .0001, ηp

2 = .98, 90% CI [.95,.99]; interaction, F(1, 11) = 183.87,
p < .0001, ηp

2 = .94, 90% CI [.85,.96].
As the interaction was significant, we conducted post hoc paired t tests

comparing the effect of semantic type on concepts and symbols, and the effect
of associating a symbol by concept type. The results were Bonferroni corrected
for four comparisons (critical p = .0125).

The difference between concrete (M = 72.41, SD = 0.91) and abstract con-
cepts (M = 70.03, SD = 0.64) was significant (t(11) = −6.18, p < .001, Co-
hen’s d = 1.78, 95% CI [1.38, 3.09]), as was that between concrete (M = 75.70,
SD = 1.25) and abstract symbols (M = 81.91, SD = 2.05) (t(11) = 7.64,
p < .001, Cohen’s d = 2.21, 95% CI [1.42, 5.22]). The effect of associating
a wordform with a concept during learning was significant for both concrete
concepts (no symbol: M = 72.41, SD = 0.91, symbol: M = 75.70, SD = 1.25;
t(11) = 9.60, p < .001, Cohen’s d = 2.77, 95% CI [2.02, 5.24]), and abstract
concepts (no symbol: M = 70.03, SD = 0.64, symbol: M = 81.91, SD = 2.05;
t(11) = 23.08, p < .001, Cohen’s d = 6.66, 95% CI [5.37, 11.96]).

All effect sizes, as indicated by Cohen’s d, were large. All differences
were significant when restricting analyses to unique or to conceptual neurons
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(p < .001). Note, however, that without symbol involvement, opposing effects
were present for unique-instance-related neurons (larger numbers for concrete
than for abstract concepts) and for shared conceptual ones (smaller numbers
for concrete than for abstract concepts; see Figure 3C); congruent effects were
seen after symbol-related semantic learning.

Duration of Reverberation: Working Memory Period
We conducted a 2 × 2 ANOVA on the duration of significant CA activity
with the variables semantic type (concrete vs. abstract) and model type (no
symbol vs. symbol). It revealed a significant main effect of model type, F(1,
11) = 5,297.37, p < .0001, ηp

2 = 1.00, 90% CI [.99,1.00], and of semantic
type, F(1,11) = 47.49, p < .0001, ηp

2 = .81, 90% CI [.54,.88]. The inter-
action Model Type × Semantic Type was also significant, F(1, 11) = 743.16,
p < .0001, ηp

2 = .99, 90% CI [.96,.99]. We conducted paired post hoc t tests
with Bonferroni correction for four multiple comparisons (critical p = .0125).
The working memory period was substantially longer for concrete (M = 10.63,
SD = 0.77) than for abstract concepts (M = 4.92, SD = 0.67), t(11) = −14.96,
p < .001, Cohen’s d = −4.32, 95% CI [−6.29, −3.59]; and a reverse differ-
ence was seen for concrete (M = 11.75, SD = 0.58) and abstract symbols
(M = 13.25, SD = 0.40), t(11) = 5.45, p < .001, Cohen’s d = 1.57, 95% CI
[0.94, 3.09]; which, however, may be due in part to the relatively larger number
of conceptual neurons of the latter. The effect of learning a symbol was signif-
icant for both concrete concepts (no symbol: M = 10.63, SD = 0.77, symbol:
M = 11.75, SD = 0.58; t(11) = 7.39, p < .0001, Cohen’s d = 2.13, 95% CI
[1.37, 4.69]), and abstract concepts (no symbol: M = 4 .92, SD = 0.67, sym-
bol: M = 13.25, SD = 0.40; t(11) = 58.63, p < .001, β = 8.33, 95% CI [8.02,
8.65], Cohen’s d = 16.93, 95% CI [13.54, 25.30]); however, it was much larger
for abstract concepts than for concrete ones (see Figure 3B). All effect sizes
were large.

Discussion

We used a brain-constrained network model of human cortical areas essential
for processing language and concepts, as well as areas involved in perceptions
and actions relevant for conceptual and semantic grounding, to investigate the
putative neuronal consequences of experiencing different instances of concrete
and abstract concepts in isolation and in the context of verbal symbols. We
asked whether both concrete and abstract concepts would thereby form and be
grounded in conceptual instances of objects and actions. Concreteness versus
abstractness of a category was operationally defined by a structural difference
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Figure 3 Temporal activity dynamics elicited by instances of concrete and abstract con-
cepts after learning out of and within symbol context. Panel A: Activity dynamics of an
instance-related cell assembly (CA), for either all neurons in the CA (left panel), only
unique neurons (middle panel), or only conceptual neurons (right panel). The stimula-
tion period is marked in gold. Depicted is the number of spikes per timestep, normalized
for the number of neurons in the grounding pattern. Whereas unique neurons contribute
to early stages of CA activity, including its ignition, sustained activity is primarily car-
ried by conceptual neurons. Panel B: Reverberation time or working memory period
(WMP) for concrete and abstract concepts and symbols. Without a symbol, abstract
concepts barely show any prolonged activity or reverberation, whereas concrete con-
cepts do. Abstract concepts benefit the most from learning concepts in context of sym-
bols and become functionally similar to concrete ones. Panel C: The number of spikes at
ignition. Through the addition of a symbol, the raw number of neurons involved in igni-
tion increases. Additionally, relatively more conceptual than unique neurons contribute
to ignition for both types of symbol.
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(see Introduction and Figure 1): The instances of concrete concepts had fully
shared experiential features, whereas those of abstract ones were only partially
shared between some of their instances, thus showing a pattern of family re-
semblance. Experiential information about objects and actions was modeled
by sets of neurons concordantly activated in visual and dorsal motor areas of
the model (Figure 2C, left-hand side). To simulate learning in symbol con-
text, additional articulatory and auditory verbal phonological information was
implemented by concordant neuronal activation patterns in articulatory and
auditory model areas (Figure 2C, right-hand side).

Biologically plausible unsupervised Hebbian learning was applied. We
found that, after learning of conceptual instances, large sets of model neu-
rons (∼86 per concrete instance, ∼81 per abstract instance) widely distributed
across the network reliably activated to each instance’s presentation (see Figure
S2 in Appendix S2 of the Supporting Information online), and that the dynam-
ics of these neuronal sets were dominated by the “semantic neurons” repre-
senting shared features of their conceptual instances. For concrete concepts,
these shared semantic neurons produced substantially stronger activity peaks
(ignitions) and stayed active substantially longer (reverberation) than those
of abstract concepts. Concordant verbal symbol presentation during instance
learning substantially increased set sizes (∼136 per concrete instance, ∼142
per abstract instance), activation peaks, and reverberation times for both con-
cept types. The observed dynamics of reverberation times, a measure related to
working memory, suggest that, within a brain-constrained neural architecture,
maintainable abstract conceptual engrams (memory traces) are only formed if
verbal symbols are available for labeling them.

Simulation Strategy and Evaluation
Concrete and abstract concepts were both modeled by activation patterns
thought to relate to concrete real-world instances of concepts. When present-
ing different instances of each concept, it was assumed that the network would
extract the common features of conceptual instances and build conceptual rep-
resentations based on biological learning of feature correlations (see Pulver-
müller, 2002, 2018c; Sloutsky, 2010; Sloutsky & Robinson, 2008).

In line with brain theory and neurocomputational research, the mechanistic
neurobiological basis of a representation or engram may be a set of strongly
connected neurons that, due to their strong mutual links, function as a unit.
In different brain theory frameworks, these are called cell assemblies (CAs),
neuronal assemblies, groups or circuits, or cognits (Braitenberg, 1978; Deco
et al., 2013; Fuster & Bressler, 2012; Hebb, 1949; Milner, 1957; Palm, 1982;
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Pulvermüller & Garagnani, 2014; Zipser et al., 1993). These CAs can be de-
fined structurally, based on their relatively strong internal connections com-
pared with average neuronal connectivity in a network, or functionally, by way
of activation criteria. Two functional criteria for assessing CAs are that they
strongly activate to stimulation, a process sometimes called “ignition,” and
that they retain activity for some time after stimulation, due to “reverberation”
of neuronal signals between their neurons (Braitenberg, 1978; Hebb, 1949;
Palm, 1982). CA ignition can be interpreted as a mechanistic correlate of the
recognition of objects, actions, or symbols, whereas CA reverberation at an
activity stage significantly above rest is seen as the biological basis of working
memory (Fuster & Bressler, 2012; Schomers et al., 2017; Zipser et al., 1993).
Ignition and reverberation may also reflect the processing of neuronal concep-
tual, linguistic, and semantic representations. In the sections below, we follow
Henningsen-Schomers and colleagues (2022, 2023) in discussing the structure
of neuronal representations that formed in the four conditions—concrete and
abstract concept formation without and with concordant symbols. However,
we extend their previous work by analyses of dynamic aspects, focusing on
measures of ignition and reverberation.

Neuronal Correlates of Concrete and Abstract Concept Formation
After learning of conceptual instances outside symbol context, the simu-
lated experiences of both concrete and abstract conceptual instances led to
reliable and reproducible activations, which overlapped between instances.
Henningsen-Schomers and Pulvermüller (2022) remarked that most of the
activated neurons were shared between two or more instance activations, and
that this predominance over instance-specific ones was particularly strong for
concrete conceptual instances. The relatively greater dominance of shared
semantic neurons suggests more robust representations for concrete than for
abstract concepts. These authors described the distribution of concrete neu-
rons across the model’s extrasylvian areas as exhibiting a “belly shape”—with
more neurons in the central areas (*PFL, *AT) than in primary ones (*M1L,
*V1)— which contrasted with the “slim” figure of the shared-neuron sets of
abstract concepts. They also speculated that this structural difference may
have functional consequences, as a “big belly” with many neurons in central
areas allows for easy activation across a neuronal circuit, whereas a “slim
belly” with only few neurons bridging between primary “peripheral” cortices
may make such circuit-internal processing more difficult.

Considering the functional activation data obtained from our brain-
constrained models, we can resolve these issues: The results for ignition
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dynamics show clearly that overall activation peaks did not substantially
differ between conditions after instance-based concrete and abstract concept
learning without symbols (Figure 3A). However, focusing on shared neurons
only and therefore the network correlates of conceptual representations, one
can see that there are substantially greater ignition amplitudes for the neuronal
correlates of concrete concepts than for those of abstract concepts (Figure 3C).
There is an opposite pattern for instance-specific neurons, which activate
relatively more strongly in the abstract concept condition. This pattern is, once
again, consistent with stronger representations for concrete than for abstract
concepts learned outside symbolic context. In contrast, individual instance
representations seem to be better implemented and more strongly activated
after abstract compared with concrete conceptual learning.

Peak activation data suggest, but do not unambiguously prove, that circuit
representations of, or CAs for, concepts have formed. The answer is, how-
ever, provided by the second functional measure, reverberation times, which
are significantly and substantially longer for concrete than for abstract concepts
learned outside symbol context (Figure 3, Panels A and B). Numerically, peri-
ods of reverberatory activity are more than twice as long on average for con-
crete as compared with abstract concepts (5.0 vs. 12.5 simulation timesteps).
Still, this difference does not strongly argue for or against the presence of CAs
for abstract concepts. The key argument is provided if these numbers are re-
lated to network structure: Stimulation lasts for two timesteps, and after this,
there is free bidirectional activation spreading across the 12 areas of the net-
work. There is a minimum of three synaptic steps between any two primary
areas, so that spreading activation accounts for at least five timesteps, three for
spreading plus two due to stimulation. Strikingly, the abstract learning condi-
tions did not yield significant reverberant activation after five timesteps. The
five timesteps of activation brought about by instances of abstract concepts can
therefore be explained without any actively maintained reverberatory activity.
After five steps of feedforward activity flow, the conceptual neurons of abstract
concepts became inactive, whereas activity persisted for concrete conceptual
neurons. As the second functional criterion for CA activation, that is, presence
of reverberation, is met after concrete but not abstract conceptual learning, we
conclude that the brain-constrained network builds neuronal memory repre-
sentations, engrams, or CAs for concrete concepts outside language context,
but not for abstract ones.

This result is in agreement with empirical results on concept learning in hu-
mans: Concrete symbols tend to be acquired faster than abstract ones (Brown,
1957; Gentner, 1982; Schwanenflugel & Akin, 1994) and can be acquired
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completely nonverbally, not only by human infants (Mandler, 2004; Perszyk &
Waxman, 2018), but even by other species, including nonhuman primates and
birds (Pearce, 2008; Pusch et al., 2023). Our study also allows us to specify the
feature that is critical to an explanation of this difference: The full semantic
feature overlap of all (or at least most) members of concrete categories may
be necessary for the formation of conceptual representations outside symbol
context; partial overlap and family resemblance is not sufficient.

Causal Influence of Language on Concept Formation
Once symbols are learned together with concept instantiations, the picture
described above changes substantially. Even though we controlled for the
additional neuronal material and activations directly caused by symbol-related
coactivation by excluding neurons activated in the wordform-only control con-
dition, the size of activated neuron sets, and in particular that of shared seman-
tic neurons, increased significantly for both types of concepts. Likewise, sym-
bol addition led to more substantial and more prolonged activation, as shown
by peak activation and reverberation measures (e.g., Figure 3, Panels A and B).
This is clear evidence for a facilitatory causal effect of language on conceptual
processing in brain-constrained deep neural networks, which is in line with
classic and current “Whorfian” theories of linguistic relativity (Athanasopou-
los & Casaponsa, 2020; Bohnemeyer, 2021; Gumperz & Levinson, 1991;
Lupyan et al., 2020; Maier & Abdel Rahman, 2019; Majid et al., 2004; Miller
et al., 2018; Thierry, 2016; Whorf & Carroll, 1976). Please note that our sim-
ulation procedures imitating brain processes of perceiving and experiencing
objects and actions in the world remained unchanged across simulations and
learning conditions, and that the influence of linguistic-symbolic learning
documented in the simulations must therefore be present at the neurocognitive
level of stored conceptual and symbolic representations that emerged in the
brain-constrained networks as a result of correlation-driven learning.

The causal effect of language on concept formation was particularly pro-
nounced for abstract concepts. After instantiations of abstract concepts had
been copresented with symbols, they elicited reliable, strong, and prolonged
activations comparable with those of concrete concept instantiations bound
to a symbol. Note, furthermore, that activation magnitude and duration were
carried by shared semantic neurons for both concept types, and that the neu-
rons specific to instances did not contribute to prolonged reverberation (see
Figure 3, Panel B).

In summary, learning a symbol benefits the ignition magnitude and rever-
beration time of both concrete and abstract concepts in a brain-constrained
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neural network. This effect is stronger for abstract than for concrete concepts,
as, with learning outside symbol contexts, there is no clear evidence for ab-
stract concept representations having formed. As the only difference between
concept and symbolic semantic learning is the absence or presence of a co-
occurring wordform, we conclude that this additional linguistic information is
causal for the changes in neuronal dynamics. It is notable that this causal effect
is intrinsically linked to higher within-concept similarity of instance represen-
tations and lower between-concept similarity, implying stronger “Whorfian”
effects for abstract than for concrete concepts (Henningsen-Schomers et al.,
2023). Our present work now shows that there are not only gradual symbol-
learning effects of different sizes on the formation of concrete and abstract
semantic mechanisms. In our simulations, the networks did not build abstract
conceptual representations in the absence of symbol information; copresen-
tation of symbols with family-resemblant instances was necessary to enable
the formation of abstract conceptual-semantic representations. This is qualita-
tively different from the symbol-related solidification of concrete concepts, as
abstract concepts could only emerge in the presence of language. These results
constitute neurocomputational support for strong versions of linguistic relativ-
ity according to which language is not only a weak facilitator of thought but a
conditio sine qua non for some (abstract) cognitive processes (for discussion,
see Henningsen-Schomers & Pulvermüller, 2022; Pulvermüller, 2013, 2023).

The neurocomputational model of concrete and abstract symbol process-
ing can be related to experimental findings. In regard to neuroimaging results
for concrete word processing, many studies have shown particularly strong
activation of sensory and dorsal motor areas processing perception- and action-
related features that are relevant for semantics. For example, action-, sound-
or vision-related words (e.g., grasp, thunder, zebra) respectively produce
particularly strong activation in lateral sensorimotor, auditory, and visual areas
(Binder & Desai, 2011; Kiefer & Pulvermüller, 2012; Pulvermüller, 2018b).
Such category-preferential activation patterns were successfully simulated
with the 12-area semantic model (see, e.g., Garagnani & Pulvermüller, 2016;
R. Tomasello et al., 2017, 2018). The current simulations did not distinguish
between semantic categories of concrete words, but simulated concrete sym-
bols as semantically related to both action and perception, thus allowing for
predictions on brain activity elicited by concrete words generally. Compared
with model activity for these concrete items, abstract words led to relatively
stronger activation, particularly in connector hub areas, including inferior
and lateral prefrontal areas (see Appendix S2 in the Supporting Information
online, Figure S4A, panels AT and PFL). This finding is consistent with,
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and provides a putative explanation for, the enhanced prefrontal activation of
abstract as compared with concrete words observed in previous neuroimaging
work (Binder et al., 2005). However, the match between these experimental
and simulation results is not perfect, as anterior temporal activation differences
predicted by the model are not reported in the aforementioned experimental
work. Future modeling work may fruitfully explore further perspectives on
explaining preexistent and predicting future experimental findings.

Neuronal Mechanisms of Concept Formation
A reason why it is difficult to form stable representations for abstract concepts
lies in the correlation strength across semantic neurons (Pulvermüller, 2013).
Let us reconsider the specific case of our present simulation parameters to
illustrate this: For concrete concepts, all six of the shared conceptual neurons
coactivate whenever an instance is experienced; these neurons’ activations
are therefore highly correlated. Through Hebbian learning, these neurons
strengthen their mutual synaptic links, thus forming sets of neurons that are
likely to act as a conceptual CA. As activity propagates from primary to more
central areas of the model, these frequently active shared semantic neurons
will be most efficient in recruiting additional neurons with similar activation
specificity. This accounts for the development of a “belly shape” across areas
(cf. Henningsen-Schomers & Pulvermüller, 2022). For abstract concepts,
however, only two thirds of conceptual neurons (in our example, eight out of
12) activate to a given instance. If the other instances appear, half of these
neurons (four out of eight) will activate independently of the other half, so
that the three subsets of four semantic neurons (shown in cyan, magenta, and
yellow in Figure 1) exhibit quite a weak correlation; as a consequence, no CA
representation of an abstract concept forms outside of a symbol context (see
Introduction, prediction (a)).

This situation changes significantly due to association with a symbol, with
consequences for the neuronal representations of concrete and abstract sym-
bols. For concrete concepts, this symbol copresentation with conceptual in-
stances increases the set of frequently coactivated neurons and, therefore, the
size of the CA of the shared neuronal set and conceptual-semantic representa-
tions. This results in moderate increases in CA size, ignition amplitude, and re-
verberation time. Even after removing the neurons directly activated by learned
meaningless wordforms, this difference persisted; the increase may therefore
be due to additionally recruited neurons, not by ones directly activated by the
symbol. In contrast, during copresentation of a symbol with instances of an ab-
stract concept, a more substantial change is brought about. Each of the (in our
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example, three) subsets of semantic neurons is now active in a larger fraction
(here two thirds) of the cases of symbol-instance coprocessing, which enables
the formation of an abstract semantic representation binding symbol-related
and shared-instance-related information. In this perspective, the reason why
abstract concepts can form in symbol context but not outside it lies in the
increase in correlation between the partaking neurons, which is provided by
copresent language units (for further explanation, see Pulvermüller, 2023).

In summary, the coactivation of neurons in the perisylvian cortex with
shared semantic neurons in extrasylvian space provides increased correlation
values that help in binding together the disparate subsets of partially shared
semantic neurons of abstract concepts with family resemblance structure. The
low-correlation conceptual neurons active to abstract conceptual instances can
bind to the “mediating” linguistic neurons because these coactivate more fre-
quently than the subsets of partially shared neurons. This enables the formation
of semantic representations for abstract symbols-plus-concepts, which resem-
ble those of concrete concepts. These effects emerged from the implementation
of neurobiological and neuroanatomical principles in a brain-constrained neu-
ral network model (see prediction (b)). As these are general principles of Heb-
bian learning, they do not apply only to category formation through semantic
similarity and category terms, but might also underlie behavioral effects of cat-
egory terms versus proper names on attention modulation and memory perfor-
mance (see, e.g., Althaus & Mareschal, 2014; LaTourrette & Waxman, 2020;
Nguyen et al., 2024).

Limitations and Future Directions

One may argue that the present simulation study is limited as it relies on the
assumption that conceptual and semantic learning start without any explicit
preprogrammed knowledge, almost at a tabula rasa state, and that both con-
cepts and their related verbal symbols are learned from scratch. Therefore,
one may suggest that our approach cannot capture nativist theories of abstract
conceptual representations assuming presence of concepts a priori, before
and independent of any learning (Fodor, 1975, 2008; Pinker, 2008). However,
as we here show how the emergence of representations of abstract concepts
can be explained by neurobiological principles in a neural architecture with
relevant similarity to the human brain and based on the similarity structure
of perceptions and actions along with their symbol contexts, the extreme
position of conceptual nativism may be seen to fall victim to Occam’s razor.
The present results suggest that the strong assumption of a priori concepts,
which is immanent to nativism, is neither necessary nor motivated.
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We note that quite a bit of preprogrammed knowledge is implemented in
the structure of the brain-constrained networks that we applied, for example
in the connectivity structure resembling links between human cortical areas.
Schomers et al. (2017) have shown how such inborn structural information may
determine cognition and language, most importantly the specifically human
capacity for verbal working memory and for building large vocabularies. As
there is a clear link between structural anatomical information immanent to
our brains and the knowledge we can acquire, the impression of a tabula rasa
model must be revised.

One may argue that the model we use here is rather complex, and that sim-
ilar results may be obtainable with much simpler architectures and models.
In this context, some related earlier models may be considered, ranging from
models composed of McCulloch–Pitts neurons to ones implementing areas as
“hidden layers” of a fully distributed parallel distributed processing architec-
ture or as Kohonen maps (Chen et al., 2017; Pulvermüller & Preißl, 1991;
Wermter, 2004). However, as these models come with assumptions with ques-
tionable biological foundation (e.g., learning depending on error-gradients,
winner-takes-all dynamics, lack of connections within each area, nondiscrete-
ness of representations), it may be difficult to find, within these models, clear
candidates for biological counterparts of concrete and abstract concepts and in
particular their distinctive neurocomputational features. We argue that brain-
constrained modeling is necessary to achieve this goal (Pulvermüller et al.,
2021). As already mentioned in the Introduction, our main reasons for choos-
ing a relatively complex model are twofold. First, earlier work suggests that
relatively complex multilayer networks are most suitable for representing ab-
stract concepts or features (Bengio et al., 2013; Ito et al., 2022). Second, we
aim at achieving insights into the workings of the brain. To mimic its processes
in a variety of areas relevant for concepts and language, it is necessary to im-
plement at least a representative subset of these areas and of their connectivity,
internal structure, dynamics, and learning processes. This is impossible with-
out a degree of complexity.

A major caveat concerning the present simulations is the simple and to a
degree artificial nature of the learning examples. We created overlapping sets
thought to stand for individual instances of a concept, with activated neuronal
units representing specific experiential features. Only three instances per con-
cept and only two sets of 12 neuronal units per conceptual instance pattern
were chosen, with emergent conceptual and semantic representations including
about 80–140 artificial neurons. It is desirable to complement this work with
more realistic examples, taking into account specific concepts, symbols, and
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features relevant for semantic grounding. This will require addressing more
complex feature compositions of concepts, which could include prototypes of
given categories, variability of feature overlap patterns, and example categories
in between fully concrete and extremely abstract ones (e.g., the aforementioned
large-category terms). Implementing the continuum of fully shared and pair-
wise shared features (Rosch & Lloyd, 1978) could be the target of fruitful work
in the future.

However, we also wish to mention an advantage of the relatively abstract
and structurally oriented approach chosen here: By using a straightforward
structural difference between conceptual types controlled for number of neu-
rons and features and by choosing a number of neurons still open to meticulous
analysis, it becomes possible to trace neurofunctional and neurostructural dif-
ferences between representations and to uniquely attribute them to the specific
cognitive-structural differences implemented.

Additionally, one may argue that the training regime used in this study is
rather primitive compared with human developmental trajectories of concept
acquisition. We address this concern in Appendix S3 in the Supporting Infor-
mation online.

One may also claim that there are relevant features of abstract concepts (see
Banks & Connell, 2023; Borghi et al., 2022; Dove, 2021; Pexman et al., 2023;
Villani et al., 2021) that our model does not capture. For example, that ab-
stract concepts relate more to emotions, mental states, or complex interaction
schemes than concrete ones is not implemented (but see Introduction for dis-
cussion). A useful strategy to overcome this limitation is to explicitly model a
wider range of subtypes of abstract concepts and symbols semantically related,
for example, relatively more to singular or group actions, to objects and actions
of different types, or to emotions or mental states (see Dreyer & Pulvermüller,
2018; Harpaintner et al., 2020).

The structural difference between concrete and abstract concepts imple-
mented here, feature sharing versus family resemblance, may help explain
several of the observations reported to distinguish between these categories.
That abstract symbols, in contrast to concrete ones, appear in relatively more
variable contexts and carry more different meanings in these variable contexts
(Barsalou & Wiemer-Hastings, 2005; Borghi et al., 2022) can be seen as a
direct manifestation of their family resemblance property, which implies that
they are used to speak about quite different “things.” The greater variability
across contexts comes with a relatively low probability of a symbol occurring
in each specific context, so that the concept is less associated with each of
its contexts. The on-average later age of acquisition of abstract words is also
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naturally explained by the lower feature correlations and therefore relatively
longer time required for building semantic links across the family resemblance
patterns of abstract symbols. Likewise, the lower “perceptual strength” of
real-world associations fits well with the feature variability immanent to
family resemblance. And finally, of course, the present distinction captures
the earlier claim that abstract concepts share fewer features than concrete
ones (Langland-Hassan et al., 2021; Löhr, 2022; Sloutsky, 2010)—with the
additions that family resemblance structure specifies (a) in what way reduced
or absent feature sharing is realized and (b) what underlies the coherence
of abstract concepts, providing a greater degree of precision than a mere
statement about presence, dominance, or absence of shared features. It appears
that the feature sharing versus family resemblance distinction sits well with a
range of known differences between concrete and abstract concepts previously
highlighted in the cognitive and linguistic literature and may in fact provide an
explicit operational avenue toward explaining or capturing several of these.

Conclusion

We conducted a brain-constrained neurocomputation simulation study to ex-
plore the putative brain mechanisms of concept formation and form–meaning
mapping for concrete and abstract symbols, as well as their impact on con-
ceptual and semantic processing. The formation of conceptual representations
in the brain-like networks was manifest in the formation of cell assembly
circuits that ignited and reverberated. We found that the model’s processing
of familiar concrete and abstract concepts was modulated by whether they
had been acquired in the context of an associated verbal symbol. Without a
symbol, the model failed to form reliable, strong, and stable representations
for abstract concepts, but succeeded for concrete ones. With a symbol, the
model succeeded for both types of concepts, which demonstrates a causal
effect of language context on concept formation, as claimed by strong theories
of linguistic relativity. While, in the neurocomputational model, a conceptual-
symbolic link was beneficial for both conceptual types, abstract concepts
required an associated symbol to develop stable conceptual representations.
Thus, the learning of linguistic symbols might be crucial for the human ability
to learn concepts such as JUSTICE, PEACE, GAME, or CAUSALITY.
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Notes

1 In this work, we tend to use the term “symbol” or “wordform” instead of “(verbal)
label.” In the context of semantics, the word “symbol” implies a semantic link
between a wordform and its semantics. Learners induce such semantic links from
copresented information about wordforms and possible referents. The term “label”
presupposes that the labeled entity exists before the labeling process and can then
be given a verbal tag. However, this assumption may be questioned for concepts,
especially for abstract ones, where the formation of the conceptual representation
may in part depend on concordant language (for arguments for this latter claim, see
the Discussion section).

2 In accordance with the nomenclature in previous work, model areas will be referred
to as *A1, *AB, and so on. The asterisk is used to distinguish model areas from
their human cortical area counterparts.
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