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1 Summary

Cancer biology and machine learning represent two seemingly disparate yet
intrinsically linked fields of study. Cancer biology, with its complexities
at the cellular and molecular levels, brings up a myriad of challenges. Of
particular concern are the deviations in cell behaviour and rearrangements of
genetic material that fuel transformation, growth, and spread of cancerous
cells. Contemporary studies of cancer biology often utilise wide arrays of
genomic data to pinpoint and exploit these abnormalities with an end-goal
of translating them into functional therapies.

Machine learning allows machines to make predictions based on
the learnt data without explicit programming. It leverages patterns and
inferences from large datasets, making it an invaluable tool in the modern era
of large scale genomics. To this end, this doctoral thesis is underpinned by
three themes: the application of machine learning, multi-omics, and cancer
biology. It focuses on employment of machine learning algorithms to the
tasks of cell annotation in single-cell RNA-seq datasets and drug response
prediction in pre-clinical cancer models.

In the first study, the author and colleagues developed a pipeline
named Ikarus to differentiate between neoplastic and healthy cells within
single-cell datasets, a task crucial for understanding the cellular landscape of
tumours. Ikarus is designed to construct cancer cell-specific gene signatures
from expert-annotated scRNA-seq datasets, score these genes, and distribute
the scores to neighbouring cells via network propagation. This method
successfully circumvents two common challenges in single-cell annotation:
batch effects and unstable clustering. Furthermore, Ikarus utilises a multi-
omic approach by incorporating CNVs inferred from scRNA-seq to enhance
classification accuracy.

The second study investigated how multi-omic analysis could en-
hance drug response prediction in pre-clinical cancer models. The research
suggests that the typical practice of panel sequencing — a deep profiling
of select, validated genomic features — is limited in its predictive power.
However, incorporating transcriptomic features into the model significantly
improves predictive ability across a variety of cancer models and is especially
effective for drugs with collateral effects. This implies that the combined
use of genomic and transcriptomic data has potential advantages in the
pharmacogenomic arena.

This dissertation recapitulates the findings of two aforementioned
studies, which were published in Genome Biology and Cancers journals
respectively. The two studies illustrate the application of machine learn-
ing techniques and multi-omic approaches to address conceptually distinct
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problems within the realm of cancer biology.
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1 Zusammenfassung

Die Krebsbiologie und das maschinelle Lernen sind zwei scheinbar konträre,
aber intrinsisch verbundene Forschungsbereiche. Insbesondere die Krebsbio-
logie ist auf zellulärer und molekularer Ebene hoch komplex und stellt den
Forschenden vor eine Vielzahl von Herausforderungen. Zu verstehen wie ab-
weichendes Zellverhalten und die Umstrukturierung genetischer Komponente
die Transformation, das Wachstum und die Ausbreitung von Krebszellen
antreiben, ist hierbei eine besondere Herausforderung. Gleichzeitig bestrebt
die Krebsbiologie diese Abnormalitäten zu nutzen zu machen, Wissen aus
ihnen zu gewinnen und sie so in funktionale Therapien umzusetzen.

Maschinelles Lernen ermöglicht es Vorhersagen auf der Grundla-
ge von gelernten Daten ohne explizite Programmierung zu treffen. Es er-
kennt Muster in großen Datensätzen, erschließt sich so Erkenntnisse und
ist deswegen ein unschätzbar wertvolles Werkzeug im modernen Zeitalter
der Hochdurchsatz Genomforschung. Aus diesem Grund ist maschinelles
Lernen eines der drei Haupthemen dieser Doktorarbeit, neben Multi-Omics
und Krebsbiologie. Der Fokus liegt hierbei insbesondere auf dem Einsatz von
maschinellen Lernalgorithmen zum Zweck der Zellannotation in Einzelzell-
RNA-Sequenzdatensätzen und der Vorhersage der Arzneimittelwirkung in
präklinischen Krebsmodellen.

In der ersten, hier präsentierten Studie, entwickelten der Autor und
seine Kollegen eine Pipeline namens Ikarus. Diese kann zwischen neoplas-
tischen und gesunden Zellen in Einzelzell-Datensätzen unterscheiden. Eine
Aufgabe, die für das Verständnis der zellulären Landschaft von Tumoren
entscheidend ist. Ikarus ist darauf ausgelegt, krebszellenspezifische Gensi-
gnaturen aus expertenanotierten scRNA-seq-Datensätzen zu konstruieren,
diese Gene zu bewerten und die Bewertungen über Netzwerkverbreitung
auf benachbarte Zellen zu verteilen. Diese Methode umgeht erfolgreich zwei
häufige Herausforderungen bei der Einzelzellannotation: den Chargeneffekt
und die instabile Clusterbildung. Darüber hinaus verwendet Ikarus, durch das
Einbeziehen von scRNA-seq abgeleiteten CNVs, einen Multi-Omic-Ansatz
der die Klassifikationsgenauigkeit verbessert.

Die zweite Studie untersuchte, wie Multi-Omic-Analysen die Vor-
hersage der Arzneimittelwirkung in präklinischen Krebsmodellen optimie-
ren können. Die Forschung legt nahe, dass die übliche Praxis des Panel-
Sequenzierens - die umfassende Profilierung ausgewählter, validierter ge-
nomischer Merkmale - in ihrer Vorhersagekraft begrenzt ist. Durch das
Einbeziehen transkriptomischer Merkmale in das Modell konnte jedoch die
Vorhersagefähigkeit bei verschiedenen Krebsmodellen signifikant verbessert
werden, ins besondere für Arzneimittel mit Nebenwirkungen.
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Diese Dissertation fasst die Ergebnisse der beiden oben genannten
Studien zusammen, die jeweils in Genome Biology und Cancers Journalen
veröffentlicht wurden. Die beiden Studien veranschaulichen die Anwendung
von maschinellem Lernen und Multi-Omic-Ansätzen zur Lösung konzeptionell
unterschiedlicher Probleme im Bereich der Krebsbiologie.
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2 Introduction

2.1 Early Genomics

Back in 1986, in Bethesda, on the eve of a well-sized international meeting,
a group of geneticists, including Dr Thomas H. Roderick, attended an
unassuming downtown bar to discuss the name of a new genome-oriented
journal to be started. Naturally, Genome was already in use, announced as a
new name for the Canadian Journal of Genetics and Cytology in its next issue.
Compound names with Genomes were not appealing either. Somewhen in the
pitcher, he came up with a historical idea — Genomics. Such wise, the first
-omics discipline, Genomics, took its name from a witty proposal in a pitcher
to name a new journal [1]. Later in 1988, when asked about his definition of
Genomics, Dr Roderick gave an excellent commentary: “We thought of the
genome as a functioning whole beyond just single genes or sequences spread
around a chromosome” [1]. The author believes it underlines the unifying
idea upon which all later -omics disciplines are built — the shift of focus
from an individual element, in this case, a gene, to a system or an ensemble,
in this case, a genome.

Undoubtedly, the systematic approach postulated in the definition
of Genomics requires whole genome sequences to leverage their full potential.
But what is this potential? To correctly answer this question, the author
recommends to further back into the pre-genome era. The basic premise of
medical genetics is that most, if not every, with the exclusion of trauma,
the disease carries a genetic background. Which, of course, even back then
was not new since those tend to cluster in families and related individuals.
But how to identify the genetics behind the disease? Let’s look at the
first hereditary disease for which the causal gene was identified — Chronic
Granulomatous Disease (CGD). Now we know that the condition stems from
insufficient production of reactive oxygen species in specific immune cells
that is rooted in a defective NAPDH-oxidase. CGD was first characterised
in children suffering from recurrent infections; however, in 1954, the basis for
children’s susceptibility was not identified [2]. More than a decade after the
first record of the disease, in 1966, researchers established the cellular nature
of the affliction: the phagocytes were involved [3]. A year further, solid
physiological and biochemical studies succeeded in mapping the molecular
mechanism and linked it to a dysfunctional oxidase complex that failed to
oxidise reporter molecules [4]. Altogether, by the end of the 70s, scientists
figured out what was functionally wrong within the disease and ventured
forth in search of the gene-disorder connection. It took a stunning 20 years
to locate and clone the gene [5].

Another hereditary disease has a discovery story very much alike —
Cystic Fibrosis (CF), a Mendelian, i.e. monogenic, a disease with variable
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degrees of symptoms among those affected. First characterised in 1938, a lot
was known about CF’s physiology in 1970 [6].

Nonetheless, the effort to find the CF gene took more than 11 years,
spanning most of the eighties and cost roughly 50 million dollars before the
causal gene, appropriately named Cystic Fibrosis Transmembrane Regulator
(CFTR), was identified in 1989 [7, 8]. In both cases, the technique known as
positional cloning was used to locate and clone the causal gene [9]. In short,
this method relies on linkage analysis, for which, at a time, a technique called
Restriction Fragment Length Polymorphism (RFLP) was used. In the latter,
DNA from the sample is digested, Southern blotted to estimate fragment
length and then hybridised to random DNA probes. Because restriction
enzymes favour specific restriction sites, i.e., DNA sequence motifs, DNA
fragments will be cut at different positions if a polymorphism disrupts a
restriction site, producing fragments of different lengths. If the size of the
fragment differs between individuals, then the sequences are not identical.
In the case of CF, the discovered polymorphism was a humble deletion of
three nucleotides in the CF gene of affected individuals that were otherwise
present in the healthy genotype. The deletion of these three nucleotides,
CTT, is the most common cause of CF, a disease of enormous complexity and
one that causes a great deal of human suffering. The timeframe mentioned
above, and the costs well describe how tedious a procedure like this is when
employed to locate a polymorphism in a single gene on the scale of the human
genome, which is 3 billion letters long. A task that fits the analogy made by
David Botstein, the method’s inventor: “coming in from outer space towards
Chicago”. However, instead of searching blindly, one could use a map.

Herein lies the pivotal importance of the Human Genome Project
(HGP), which was finished in 2001 simultaneously by public and private
ventures [10, 11]. The initial sequencing of the human genome chartered the
genomic landscape and highlighted the marked variation in the distribution
of genomic features, such as transposable elements, CpG islands, and, most
importantly, genes. Of the latter, 30,000 to 40,000 protein-coding genes
were presumed to exist at the time. Since our genomes are 99% the same,
the initial sequence of the genome provided an invaluable reference for
genetic research and sped up biological research to an unimaginable degree.
Alongside, nearly one and a half million single nucleotide polymorphisms
(SNPs) in the human genome were characterised and assembled in a database
called dbSNP by The SNP Consortium (TSC) [12]. In 2003, only two years
after the human genome was published, the HapMap project was initiated
to discover genetic factors contributing to common diseases. As ambitious
as HGP covered the entirety of the human genome, “including 99.9% where
we are all the same”, HapMap set out to describe “the common patterns
within that 0.1% where we differ from each other” [13]. By then, the number
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of SNPs in dbSNP had grown nearly ten times to a staggering 9 million.
Association studies, i.e. studies that assess the correlation between a genetic
variant in a population and a particular phenotype of interest, that were
common in the early days of genomics underwent a qualitative elaboration
following an inflow of unprecedented amount of information, something that
was considered futuristic only a few years ago. SNPs, copy number variants
(CNVs), and new genomic variants were deposited to databases in millions,
and millions more were to be recorded.

13



2.2 Early Transcriptomics

Alongside Genomics, other -omics developed. Establishing SAGE (Serial
Analysis of Gene Expression) heralded the beginning of early transcriptomics
[14]. SAGE allowed the simultaneous capture of 60 thousand sequences
transcribed from 4655 genes in S. cerevisiae, a breakthrough from exist-
ing techniques [15]. Expression Sequence Tag (EST) -based methods, a
workhorse at the time, were instrumental for gene identification, but like
Northern blotting, RT-qPCR, and RNase protection assays were tedious in
implementation and lacked in yield to cover more than a handful of genes in
one run.

Alongside technological advancement, the publication of this research
saw the definition of “transcriptome” first worded — “identity of each
expressed gene and its level of expression for a defined population of cells”
[15], therefore, making S. cerevisiae the first living eukaryotic organism
in history with a sequenced transcriptome and breaking the ground for
another -omics discipline, Transcriptomics (worth to mention, that a year
before the transcriptome was finished, in 1996, yeast genome was completely
sequenced [16], thus making S. cerevisiae a forerunner for both omics among
the eukaryotic species).

Soon, another method became available — Massive Parallel Sig-
nature Sequencing (MPSS) [17]. It was developed by the team of Sydney
Brenner, the famous populariser of nematode Caenorhabditis elegans, in
Lynx therapeutics, one of the forerunners of sequencing technologies. Their
approach relied on microscopic beads to which the DNA template, or “signa-
ture sequence”, was hybridised. These beads are assembled on a planar array,
and the templates’ sequences are read through ligation cycles and cleavage
by labelled adapters. After each cycle, the image is taken, which records
a tagged adapter and stored for analysis. Gene expression, i.e., fractional
abundance, could be estimated from the recorded sequence data. While
capacity-wise similar to the early SAGE, MPSS followed a conceptually
different approach, somewhat reminiscent of the microarray technologies that
will be discussed later. Cap Analysis of Gene Expression (CAGE) [18] is a
notable modification of the SAGE technique that added another modality to
the gene expression data.

In contrast to SAGE, which identified short tags from the 3´-ends
of transcripts, CAGE sequenced tags from the 5´-end. It, therefore, allowed
us to gather information on promoters and identify transcription start sites
(TSSs) of mRNA transcripts. Although CAGE never outcompeted its progen-
itor technology in popularity, its importance could hardly be overlooked. This
technique was the workhorse of the FANTOM Consortium that published a
gene expression atlas covering 975 human and 379 mouse samples, including
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tissues, primary cells and cell lines [19, 20]. Due to its technological similari-
ties with SAGE, this technique never really became widespread, remaining
a niche technology to study the regulation of transcription. Due to this,
CAGE remained in use much longer than its progenitor technology until
it was overshadowed by more potent Next Generation Sequencing (NGS)
methods.

In the time of early transcriptomics, high-density oligonucleotide
arrays were the central pillar of transcriptomic research [21]. Array-based
methods to quantify mRNA expression existed before, namely spotted arrays.
However, they carried a disadvantage that limited their throughput: to
prepare the array, many cDNAs must be amplified, purified, catalogued and
spotted on a specialised surface, either modified microscope slides [22] or a
nylon membrane [23]. Therein lay the main disadvantage of spotted arrays
before oligonucleotide arrays. For the latter method, the preparation and
handling of cDNA and PCR products were no longer necessary. Instead,
20-mer oligonucleotides (probes) based on sequences of interest are designed
in silico and synthesised directly on an array in known locations. A standard
1.28 x 1.28 cm array contains 300,000 probing oligonucleotides and can record
the expression of roughly 40,000 human genes and expressed sequence tags
(ESTs) [24, 25]. The versatility of custom probe synthesis and array design
also allowed for quantifying specific exons and unique splice isoforms [26].
Higher yield is generally a positive quality, yet it makes the data analysis
more complex and requires an accompanying computational framework.
The popularity of the method guaranteed that it would shortly follow. In
2003, a seminal paper by Rafael Irizarry standardised the approach to data
analysis of Affymetrix arrays, cementing its status as a “go-to” method
for gene expression analysis [27]. First introduced in 1996, oligonucleotide
arrays overtook other competing transcriptomics techniques and remained
an unparalleled leader in the field until the advent of high-throughput RNA
sequencing.
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2.3 The need for annotation

Naturally, a more readily available platform for transcriptome characterisa-
tion led to the accumulation of transcriptomic data. Most of the data were
generated on human and mouse chips, giving extensive characterisations of
transcriptomes for different tissues and cell types of these organisms [28].
The majority of these datasets focused on particular biological processes
and perturbations. However, the sheer amount of information proved hard
to characterise; with human and mouse genomes sequenced, tens of thou-
sands of genomic features were now recorded in a transcriptome snapshot
for researchers to quantify and analyse. Technological advancements were
outpacing biological conceptualisation and staggered the interpretations of
sequencing results. The situation called for a unified and descriptive gene
annotation system to bridge the data and knowledge gap. An Ontology was
needed, and one was already in development since 2000 — Gene Ontology
[29].

Gene Ontology Consortium (GOC) aimed to produce a common
vocabulary for gene and protein roles in cells for all eukaryotes. An ambitious
goal, but not anymore unrealistic. As was mentioned earlier, the yeast
genome was sequenced in 1996, the genome of the nematode Caenorhabditis
elegans was finished in 1998 [30], and the fruit fly Drosophila melanogaster
done a year after [31], both famous model organisms that deserve their
chapters outside of this thesis. The initial sequence of the human genome
was done in 2001 and was shortly followed by a draft of a mouse genome [32].
An early comparison study between yeast and worm genomes should have an
unexpected level of genetic conservation. About a tenth of a worm’s protein-
coding genes can be functionally annotated by their putative orthologues
in the yeast. A three-way comparison study of human, worm, and fruit
fly genomes similarly showed substantial conservation [33]. The same year,
before sequences of human and mouse genomes were published, a group
identified 1,185 orthologous gene pairs between humans and mice that shared
approximately 85% of the coding sequence [34]. For the sake of brevity,
the author will not iterate over all metazoan genomes sequenced or close to
completion at the time but only mention that by 2003, 25 were already made
public [35]. Such an arsenal at the hands of comparative genomics guaranteed
the success of GOC that aimed at integrating many gene- and protein-keyword
databases, including SwissPROT, EMBL, Pfam, and Genbank [36, 37, 38,
39].

Ultimately, GOC assembled three main categories to be used, among
others, in the annotation of gene expression data that we all now know by
heart: Cellular compartment, Biological process and Molecular function.
Many ontologies and semantic entities annotate groups of gene-protein pairs
related to a specific cellular compartment, biological process, or molecular
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function within these three categories. Ontologies assembled had a graph-
based structure, meaning that entities within were interconnected, reflecting
a reality where one protein can fulfil a wide array of functions.

Another notable database, the Kyoto Encyclopedia of Genes and
Genomes (KEGG), was built upon the pre-existing idea of molecular pathways
[40]. On top of looking for conservation in coding sequences, KEGG founders
grouped genes into sets based on the involvement of their protein products
in a specific cell function, i.e. pathway. Functional transcriptomic studies of
yeast metabolism well showcase this idea. A recurrent and well-known cycle
in the natural history of yeast involves a shift from anaerobic (fermentation)
to aerobic (respiration) metabolism that occurs when fermentable glucose in
the media is depleted, and yeast starts to metabolise ethanol, a by-product
of the previous step, as a carbon source. Well-executed time-series analysis
with transcriptome capture by microarrays allowed us to identify genes active
in both processes, i.e. pathways [41]. Because the same gene-protein pairs
can be involved in multiple pathways, KEGG compiled genes and protein
products into a connected molecular pathway-oriented graph, building upon
orthology and data from functional studies.

Others, like GenMAPP, provided the community with the tools to
visualise gene expression data in a pathway context and assemble their own
gene sets to test [42]. The importance of these ontological constructs is well
exemplified by the fact that now, 20 years after, these are still in active
use. Fundamental ideas behind these databases underlined the growing
idea in transcriptomics — to study functionally related gene sets instead of
individual genes or whole transcriptomes. There was, however, another issue
to solve.

Microarrays have been very successful in studying diseases like cancer,
where genomic aberrations often lead to large changes in the expression of
individual genes [43]. However, unlike modern RNA-sequencing methods
sensitive to tiny changes in the transcriptome when sequenced deep enough,
arrays struggled to detect modest perturbations in gene expression. In
some cases, many genes show a unidirectional change in expression between
conditions. Although common sense suggests the biological meaning behind
this shift, these results will most likely be discarded as non-significant after the
correction for multiple hypotheses testing [44]. It was clear that perturbations
occur in individual genes and groups of functionally related genes and gene
sets. However, a statistical framework was lacking to measure and test for
differences between the expression of entire gene sets.

It didn’t take long for this major bottleneck to be resolved. The
basic idea was that by combining measurements across multiple genes, one
could more reliably detect subtle but coordinated changes in gene expression.
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One of the first attempts devised an approach that examined the enrichment
of gene set members among the top-ranking genes selected by a user-defined
cut-off. Those were later tested against a null distribution where the genes
were picked randomly [45]. Looking at this method, one can see that the
definition of top-ranking genes restricts it, and thus the method can vary in its
results, potentially leading to false positives. However, a major drawback was
that this tool was embedded into a large and unwieldy microarray analysis
software suite, which the author believes prevented its popularity.

In contrast, an alternative method called Gene Set Enrichment
Analysis (GSEA) suggested a lightweight solution [46, 47]. The idea behind
GSEA is elegant in its simplicity. For pairwise comparison, imagine a list L
containing genes ranked and ordered according to an appropriate metric of
difference, such as a logged ratio between intensities or a correlation between
gene expression and class labels when many samples are available. The
Null hypothesis is that genes in the list L are randomly distributed and
not associated with the compared classes’ diagnostic categories. In the case
of the original publication, individuals with normal glucose tolerance were
compared to those with diabetes. An alternative hypothesis is that the order
of genes in the list L is not random and associated with the categorisation
of the samples. Then, for each a priori defined gene set S, a running-sum
statistic called Enrichment Score (ES) is calculated by walking down the list
L and increasing the ES for every encounter of a gene from S and decreasing
for every gene that is not in S. The magnitude of the increment depends
on the rank of a gene in L. The final score of the gene set S is assigned
to the Maximum ES recorded during the random walk. The significance of
the ES is estimated from the empirical permutation test. Namely, a null
distribution of ESs is constructed by re-calculating the ES for the gene set S in
randomly permuted data, against which the original ES is later tested. GSEA
readily proved to be a great complement to single-gene studies: reanalysis of
published studies from the new perspective generated more biological insight.
While the original method was shipped together with 1325 pre-defined gene
sets, nothing prevented it from operating with other gene sets assembled
by mentioned GO and KEGG databases. To summarise, GSEA provided
a user-friendly tool that allowed gene expression analysis on a higher level
of biological organisation, finally bridging the gap between single-gene and
gene set studies. Generally speaking, tens of thousands of dimensions in the
gene expression matrix could be collapsed into several hundred (dozen or
thousand, depending on the question of the study) biologically meaningful
pathway scores. Abstraction of this sort enabled analysis of microarray
transcriptomic data from a genome-wide perspective.
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2.4 Cancer transcriptomics

It would be only natural to think that diseases of high complexity would
be the most welcome target for an approach that works in abstractions of
higher order. What can be more complex than cancer? A tumour-bearing
disease that arises from different tissues, different organs, and different cells
of an organism. Inherently variable by the mutational nature of the tumour’s
forebear cells and the microenvironment where they reside, cancer cells and
the tumours they compose should still bear a resemblance. After all, cancer
can be viewed as a consequence of the dysregulation of finely tuned cellular
pathways that typically coerce cells to co-exist as a multicellular organism
and, when highjacked, improve cancer cells’ relative fitness. Following
this perspective, cancer cells should exhibit specific traits, derivative of
dysregulated pathways, distinguishing them from normal cells of the organism
while remaining common between different tumours. After a quarter century
of cancer research, these traits have been concisely dried into six hallmarks
of cancer: avoidance of apoptosis, sustained proliferative signalling, evasion
of growth suppressors, induction of angiogenesis, replicative immortality,
and ability to metastasise [48]. Because cancer is a disease of the genome,
the number of genetic lesions causal to either of these processes can be
uncountable. Worth to mention, that the further expansion of cancer biology
in the 21st century reflected in the widening of cancer hallmarks; the latest
instalment of hallmarks of cancer included six new characteristics and totalled
twelve [49].

Nevertheless, similarly to how cancer traits can be condensed into
six hallmarks, these genetic lesions, although numerous and heterogeneous,
should lead to similar functional outcomes or, more precisely, shapes of
the transcriptome, i.e. patterns of coordinated gene expression, something
very fitting to gene set analysis. Built on this idea, many laboratories
worldwide rigorously interrogated the accumulated corpus of microarray gene
expression data [50, 51, 52, 53]. In one study, Authors pulled together 1975
gene expression datasets covering primary tumours of 22 distinct types from
26 published studies [54]. Employing curated gene sets from GO, KEGG and
GeneMAPP databases mentioned beforehand, they further narrowed input to
“activated” and “repressed” gene modules by extracting the core expression
cluster of the gene set. These modules corresponded to specific tumour types,
subtypes, and malignant processes. For example, an osteoblastic module was
significantly responsive in some cases of hepatocellular carcinoma (HCC),
lung, and breast cancers, all known to metastasise in bones, suggesting that
this gene expression pattern is associated with metastatic processes. Although
this finding might sound trivial today, in the early 2000s, the metastatic
potential of primary tumours was still debatable [55, 56]. Overall, this period
in the history of cancer transcriptomics can be described as a “gene set rush”,
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assumingly alluding to the gold rushes of the 19th century. Worth mentioning
an allusion that was first made towards the rush to clone human genes in
the 1980s [57]. To not downplay the importance of that period, it is worth
saying that an incredible amount of knowledge was generated from these
studies. Hundreds of gene sets describing cellular processes contributed to
the public databases ensuring their sustained growth and future application.
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2.5 Early Genome-wide Association Studies (GWASs)

Transcriptomics was not the only -omic discipline reshaped by array technol-
ogy; successes of the array designs readily permeated into Genomics as well
leading to a revolution in genetic screening. However, everything in order.
First of all, why the genetic screening is important? For the knowledge of
identified genetic risk variants to benefit an individual, these variants must
be detected, i.e. screened for, in patients. The screening allows to gain
insight into genetic predisposition to disease and helps to select treatments.

In already discussed examples of CF and CGD, relatively uncommon
Mendelian disorders, a fistful of causal mutations produce the disease pheno-
type. And through tremendous effort, those mutations have been mapped.
The outcome of these mutations is categorical; whether one has a disease or
not, early genotyping methods could still suffice to test those at risk. Let’s,
however, look at the example of breast cancer. Unlike CF, where the 3-base
deletion accounts for most cases, the majority of breast cancer cases stem
from an ensemble of mutations in two genes — BRCA1 and BRCA2 [58,
59]. There are unique groups, like the Ashkenazi Jewish population, where
there are only a couple of common mutations in BRCA1 and BRCA2, which
makes it easier to test. However, in most of the population representing more
outbred groups, one must scan the whole gene to gather clinically helpful
information. Already in the 1990s, we knew 200 risk-inducing mutations
scattered all over these two very long genes ( 110Kb and 80Kb, respectively).
And those do not convey categorical information on the occurrence of breast
cancer, but rather a probabilistic estimate like 45% or 75% higher risk than
the baseline. To be clinically valuable, one needs a test that covers the
entirety of the genes.

In the 1990s, the mentioned RFLP method was based on early ge-
netic fingerprinting. Naturally, a common theme among different genome
fingerprinting approaches ran along enzymatic digestion of the DNA sample,
followed by an adaptor ligation at the restriction sites and amplification with
a common primer. One method called Amplified Fragment Length Polymor-
phism (AFLP) uses a specific set of primers to amplify genomic loci [60].
This approach was successfully employed by TSC, albeit its methodological
limitations required a lot of automation and laborious sample preparation,
thereby preventing genotyping on a large scale. In 2003, Kennedy et al.
described a technology behind constructing large-scale SNP arrays, or chips
— Whole Genome Sampling Analysis (WGSA) [61]. Building on the millions
of identified SNPs, this array allows rapid interrogation of both alleles for
over 10 thousand SNPs.

Further enlargement of databases and improvement of this technology
increased the number of SNPs on an array, from 100,000 by 2004 and later to

21



500,000 SNPs [62]. Most importantly, when designed, these chips can be mass-
produced and, as a natural consequence, decrease the price of genotyping.
First, this technology allowed affordable genotyping (an estimate from the
1990s was around 10 to 20 dollars per test for breast cancer) for diseases of
higher genetic complexity in the clinic. Second, it was now feasible to truly
genotype large cohorts for association studies of qualitatively new kinds. The
stage was set for the appearance of GWASs, association studies that survey
most of the genome for correlated genetic variants [63].

Unlike approaches focused on identifying rare mutations responsible
for Mendelian diseases, GWAS allowed researchers to investigate common
genetic variations responsible for complex traits and diseases along the whole
genome in large groups of individuals. By comparing individuals with and
without a particular trait, GWASs identified thousands of genetic variants
associated with everything from height and weight to cardiovascular diseases
and cancer [64, 65]. Early GWASs led to significant advances in the latter by
identifying genetic variants associated with increased risk for various types of
cancer. For example, a landmark GWAS study published in 2007 identified
common genetic variants associated with an increased risk for breast cancer
[66]. An international group stretching across continents, including several
research institutions in US and UK, conducted a multi-stage GWAS: first,
4398 breast cancer cases and 4316 controls were genotyped to scan for SNP
candidates, and then 30 selected SNPs were validated on a cohort of 21,860
patients and 22,587 controls. This colossal scale was allowed mainly by
the advances and expanse of microarray technology (in this study, a 550
thousand human SNP array by Illumina was used) and impressive data-
sharing initiatives of the Breast Cancer Association Consortium (BCAC).
The genotyping data for the SNP confirmation stage was pulled together
from 22 studies. Before this research was published, the known susceptibility
genes — such as BRCA1 and BRCA2 — accounted only for a quarter of
the hereditary risk of breast cancer [67]. While previously studied genes
corresponded to DNA repair, the new candidate genes from the study -
FGFR2, TNRC9, MAP3K1 and LSP1 — were more related to cell growth
and signalling. Breast cancer as a complex disease proved to be more complex
than anticipated. Nevertheless, the study demonstrated the power of GWAS
to identify genetic variants associated with complex diseases like cancer. It
identified novel associated genes that provided new avenues for researching
the causes behind breast cancer.

This success spurred a great deal of attention, and more studies
followed. Genomics of cancer was still mostly an uncharted territory and
benefitted greatly from GWASs. In the two years from 2007 to 2009, other
studies have identified novel genetic variants associated with an increased risk
for colorectal, prostate, and lung cancers, among others [68, 69, 70]. In 2009,
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the group behind the first breast cancer GWAS refined the tentative genetic
association identified in the original GWAS through a large replication study.
Combining data from BCAC and Cancer Genetic Markers of Susceptibility
(CGEMS) collaborations, researchers pulled together 37,012 cases and 40,069
controls, surpassing the initial research’s power. While demonstrating the
promise behind large-scale association studies, the authors hinted at the
limitation that plagues association studies: “The power to have detected these
associations with this strategy was still limited, suggesting that other breast
cancer loci should be detectable by further large GWAS”. The expectation
has been that the enlargement of the sample size will detect more true cancer
driver genes, i.e. increased sensitivity, while better separating the true signal
from the background noise, i.e. increased specificity. We will see later that,
particularly in the case of cancer, this line of thought led to results rather
opposite to expectations [71].

Nevertheless, cumulative findings of early GWASs challenged the
prevailing view that cancer susceptibility was driven primarily by rare, highly
penetrant mutations. They highlighted the importance of common genetic
variation in cancer risk. Even more valuable were the millions of cancer-
associated genomic aberrations, SNPs, and CNVs that were identified and
deposited into public databases to be readily used in future studies.
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2.6 Next Generation Sequencing (NGS)

Sometime in 1970, in a debate over creationism, an evolutionary biologist
Theodosius Dobzhansky memorably said: “Nothing in biology makes sense
except in the light of evolution” [72]. And what is a genome if not the record
of evolution? Creation of the methodology to read the genome or, more
commonly, to sequence the DNA brought unseen prospects to biology. The
history behind the development of DNA sequencing was rich and full of
wonders, and it had its trailblazer [73]. Since its inception in 1977, Sanger
sequencing has long been the dominant approach in DNA sequencing [74]. Its
position was further solidified with the development of the first automated
Sanger sequencer by Applied Biosystems in 1986 [75]. Decades of gradual
improvement guaranteed exceptional accuracy over read lengths up to 1000
base pairs (bps), making it a sure shot for the tasks that necessitate fidelity.

These qualities keep Sanger sequencing in use to this day despite
its modest throughput — an automated Sanger sequencing machine can
generate around 100 Kilobases (Kb) of sequence per run, largely making
it tedious and expensive for massive sequencing [76]. While both Sanger
and NGS sequencing methodologies rely on the elongation of a single-strand
DNA template, they are principally different in how the sequence is recorded.
In that regard, Sanger’s approach is sequencing by termination. Elongation
proceeded with modified di-deoxynucleotides that lack hydroxy-moiety at
the 3’ position. The latter prevented the formation of the bond between
nucleotides terminating the elongation and creating a truncated fragment
with a labelled base in the last position, which is to be recorded.

Next-generation sequencing, on the other hand, mostly follows se-
quencing by synthesis (SBS). In that approach, every nucleotide added by a
DNA polymerase initiates a fluorescent process that is recorded. The first
attempts to pursue this principle were made in the early 1990s by researchers
at the Royal Technical University, Sweden [77]. They were working on a
technology that would later be developed into ”pyrosequencing”. The initial
approach employed luciferase that emitted light upon nucleotide addition.
However, it lacked throughput because, after each addition of the nucleotide
mixture, the solution must be washed away before the next nucleotide mixture
is added. This bottleneck was resolved some five years after by the addition
of an enzyme apyrase, hence the name “pyrosequencing”, that degraded the
remaining nucleotides in the mixture, allowing to keep the enzymes from the
initial mixture [78].

Finally, by 2005, a microfluidic-based, fully automated pyrosequenc-
ing apparatus was showcased by sequencing and de novo assembly of a
full genome of bacteria Mycoplasma genitalium (550kb) in one run [79].
When commercialised, a standard pyrosequencing machine was capable of
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sequencing up to 120 Megabases (Mb) per run [76]. More importantly,
it demonstrated reliable sequencing accuracy with short reads; for pyrose-
quencing, they are within 100 to 300bps, something to be shared among all
second-generation sequencing methods.

Years following the publication of this technology saw an explosion
as companies continued to innovate and improve their platforms. In 2005,
another method was published called polony sequencing, a portmanteau to
polymerase colony [80]. This technique implemented sequencing by ligation
principle that proceeds in sequential rounds of hybridisation and ligation
of different nonameric oligonucleotides. In detail, each nonamer is tagged
by one of the four colour-coding fluorescent dyes that distinguish a central
base of the nonamer (A, C, T, or G). A tagged nonamer mixture is added
to the ligation reaction, where a successfully ligated nonamer - exactly
matching the DNA template — records the central base of the sequence.
The ligation cycles are then completed until the template is decoded. Polony
sequencing was commercialised in the same year by Applied Biosystems
as a supported oligonucleotide ligation and detection (SOLiD) system. It
improved throughput, capable of sequencing up to 1.2Mb per run but
suffered from very short reads ( 35bp) [76].

There was another SBS technology, which built upon the success of
microarrays, developed by a company called Solexa. Their method followed
a slightly different approach and aimed at sequencing of individual DNA
molecules that were covalently bound in clusters on a planar surface of
a microarray. The clustering ensued an in situ amplification of the DNA
templates via a pair of primers bound to an array [81]. Sequencing was then
carried out by adding tagged reversible terminators and DNA polymerase,
which resulted in adding one nucleotide to the template and the emission of
the fluorescent signal depending on the added base. The signal is recorded, the
block is removed, and the cycle repeats until all the templates are sequenced.
In 2006, Solexa launched their first sequencer apparatus — Genome Analyser
(GA) - capable of generating approximately 1.3Mb of sequence with 40bp
reads in a single run [82].

Shortly after, in 2007, Solexa was bought by Illumina. The GA line
was expanded with the release of GA II and GA IIx, further improving on
the capabilities of the original, now allowing sequencing of the paired-end
reads with up to 75bp length. The explosion of DNA sequencing technologies
was an enormous leap forward for biological research. In a matter of days,
whole genomes could now be sequenced on the base of one facility. A
task that a decade ago required international collaboration. Gradually, the
understanding of this capacity changed the scope in which future biological
projects could be conceptualised. Far from the position where the data was
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scarce, researchers now held a panoply of datasets at hand, the potential of
which only seemed to be restricted by the analytical capacity of that day’s
computers [83].
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2.7 Ribonucleic Acid Sequencing (RNA-seq)

As much as RNA is inseparably tethered to DNA through transcription,
DNA is likewise connected to RNA through a reverse process unambiguously
called reverse transcription. A mechanism that founds the lifecycle of reverse
transcribing viruses that carry an RNA genome while relying on DNA
intermediate reverse transcribed from their RNA genome in order to replicate
[84]. Alike to early sequence-based methods SAGE, CAGE, and MPSS, the
application of NGS DNA sequencing to RNA — RNA sequencing — is based
on the same process of reverse transcription [85].

As previously defined, the transcriptome is the “identity of each
expressed gene and its expression level for a defined population of cells”.
Transcriptome serves as a functional link between the genome and the current
phenotype of the cell or a group of cells, which was touched upon in the
discussion on early cancer transcriptomics in section 2.4. Therefore, it
is essential to record the transcriptome to characterise a cell’s or tissue’s
current functional status and to understand disease or development in the
same regard. The most popular methods for early transcriptomics have
already been described: SAGE, MPSS, CAGE, and oligonucleotide arrays.
The latter drove an early expansion of transcriptomics but also suffered
certain drawbacks. First, arrays relied on a set of hybridised sequences
predefined by already assembled genomes, thus restricting the de novo
assembly of a transcriptome and making the search for new isoforms tedious.
Additionally, arrays suffered from background signals coming from cross-
hybridisation [86]. RNA-seq methods showed improvement over microarrays
in the majority of the drawbacks of the latter. To better illustrate, the author
will summarise a standard RNA-seq library preparation protocol for coding
poly-A selected RNAs as performed in 2008 [87]. After the poly-A selection,
RNA molecules are digested by hydrolysis to the average size selected by
the researcher. Digesting RNAs into smaller fragments breaks down RNA
secondary structures and reduces the cDNA amplification bias in the next
step. After RNAs are sheared, they are reverse transcribed and amplified
by random priming. The generated library is then sequenced on a DNA
sequencer. The first thing to catch the eye is that in the case of poly-A
RNA, RNA-seq captures the snapshot of the transcriptome together with
the sequences of the coding regions and UTRs, allowing the discovery of
new isoforms, i.e. splicing analysis [88]. Additionally, with relatively deep
coverage, genetic variations like SNPs could be called directly from RNA-seq
data [89]. Last, RNA-seq greatly improves the dynamic range of estimated
gene expression compared to microarrays. In the former, dynamic range
is limited to the number of probes dedicated to a specific feature, usually
ranging between one to two hundred, while the depth of sequencing generally
borders the dynamic range of RNA-seq; for example, in the study of yeast
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transcriptome with RNA-seq that sequenced 16 million reads the dynamic
range was 9000 [90].

Nevertheless, the biggest advantage of RNA-seq over microarrays is
the interpretability and integrability of the results between different exper-
iments run over different tissues, cells, and even model organisms without
sophisticated normalisation methods [91, 92][90, 91]. Nevertheless, as with
every new technology, it comes with its challenges. First, the effects of condi-
tions of library preparation were not fully explored. Some earlier approaches,
instead of digesting RNA, proceeded directly to reverse transcription and
only then followed with DNA digestion. This tends to create an uneven cov-
erage profile over a transcript with a heavy 5’ bias [90]. Moreover, preparing
stranded libraries that reliably detect transcripts from overlapping regions
of opposite strands was tedious to produce [92].

On the other side, there are computational challenges. First of all,
due to the immense amount of data generated, data formats in use were not
feasible anymore. The development of the now universal SAM (Sequence
Alignment/Map) format and its binary equivalent, BAM, largely solved this
problem by 2009 [93]. Second, traditional alignment tools like Blast and
Blat couldn’t cope with the scale of generated data [94, 95]. Other more
efficient methods struggled with aligning short reads that were signature of
NGS RNA-seq [96]. Similar to the age of microarrays, the rapid development
of computational software followed the explosion of generated data, but not
many of those stood the test of time [97, 98, 99]. It is worth mentioning those
still in use today, such as BowTie, TopHat and STAR, the latter of which
arguably remains the most popular alignment tool for standard RNA-seq
analysis [100, 88, 101].

Overall, RNA-seq proved to be superior to microarrays for tran-
scriptome analysis. Initial afflictions that restricted access to RNA-seq were
solved throughout the second decade of the 2000s allowing the new method
to gain momentum as more and more laboratories gained access to this
approach. By the end of 2015, RNA-seq surpassed microarrays in popularity
and effectively started a new era in transcriptomics (Figure 1).
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Figure 1: Expansion of RNA-seq technologies
Histograms showing the number of publications per year referencing either oligonucleotide
microarrays or RNA-seq for gene expression assays from 1990 to 2022.
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2.8 Human Genome Projects of Cancer

The success of the iterative and distributed approach of the Human Genome
Project provided a vantage point to plan future large-scale projects in biology.
When the human genome was finished, the interest in the cancer genome was
second to none. As was quoted earlier, HGP was designed to make a reference
genome that would be “where we are all the same”. Now, the aim was to
find genomic signatures that are alike within a cancer type. However, even
within the same type of cancer, this is not an easy task to tackle due to the
inherent mutational nature of cancer. Although we know that cancerogenic
mutations, i.e. driver mutations, tend to accumulate in specific driver genes
shared within the same cancer type, they only explain a fraction of genomic
variability. They are accompanied by other mutations [102, 103]. Within
each tumour are subpopulations of cancerous cells, each carrying in their
genome a mutational record of clonal evolution to a malignant state [104, 105,
106]. Together with driver mutations, this assembly of genetic aberrations is
called the mutational signature of cancer. It would be reasonable to assume
that tissue microenvironments, where cancer originates, put specialised
evolutionary constraints and favour specific mutational signatures. This
would imply that many more than a single path to malignancy exists for a
cell, i.e. a multitude of different mutational signatures can lead to the same
malignant phenotype.

Consequently, it would take many cancer genomes to charter a
comprehensive map of cancer signatures. With the distribution of high-
throughput of sequencing, maiden steps were readily taken in this direction.
In 2006, a consensus coding sequence derived from 11 breast and 11 colorectal
cancer cases was published [107]. The majority of the reported mutations were
single-base substitutions. 81% corresponded to missense, 7% to antisense
and 4% to splice site alteration, while the remaining covered insertions,
deletions and duplication events. Interestingly, although the fraction of single
base substitutions was the same in both cancers, the nucleotide context
was drastically different. More importantly, research manages to identify
the genetic (mutational) basis for the genes previously suggested by earlier
transcriptomic studies [108]. Further sequencing of different breast cancer
genomes identified more and more novel somatic rearrangements [109, 110].
In 2007, a combined study of both genome and transcriptome of Acute
Myeloid Leukaemia (AML) was published [111]. This study is of particular
interest because of its overall controlled design.

First, to ease the identification of novel mutations, investigators
selected a case that carried a remarkably normal cytogenotype, i.e. no
inter- or intra- chromosomal translocation events were detected, limiting
the background mutational burden. Second, investigators collected samples
from a primary tumour, relapse tumour, and skin from the same individual,
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thereby controlling for germline and background mutations, and sequenced
all three in parallel. In the analysis, a total of 63 thousand tumour-specific
SNVs in coding regions were recorded. And of those, ten non-synonymous
somatic mutations are specific to the cancer genome. Two mutations were
well known, and eight others were unknown, undetected by array-based
methods. Half of the novel mutations in metabolic pathways were previously
not associated with cancer by curated cancer genes. Another exciting study
gathered patterns of genomic alterations signature to lung cancer with tobacco
exposure [112].In contrast to previous studies, here, researchers expanded
the scope of their genome screening outside coding regions and surveyed
regulatory parts of the genome. To summarise, NGS allowed unbiased and
genome-wide mutational screens to be carried out routinely, accumulating
cancer genomic data on an unprecedented scale. An explosion was akin to
the early transcriptomics boom of the microarray era.

At the turn of the millennium, the director of Wellcome Trust Sanger
Institute, then called Sanger Institute, Michael Stratton, suggested a project
under the same name (Cancer Genome Project or CGP) to map out unique
mutations that distinguish the human genome from the cancer genome
[113]. By 2002, the project saw its first success in identifying the BRAF
gene, mutations of which are responsible for the lion’s share of melanomas,
followed by several impactful discoveries in cancer genomics [102, 114, 115,
116]. Besides their research, CGP curated and accumulated the scientific
literature on known cancer genes and mutations. Work started shortly
after the publication of the just-mentioned study on coding sequences from
Breast and Colorectal cancer genomes [107]. In 2009, the CGP team released
COSMiC, the Catalogue of Somatic Mutations in Cancer, which covered
7734 published articles, including all genome-wide screens [117]. With the
ever-accelerating speed of DNA sequencing, this undertaking rivals Gene
Ontology’s value. It provided the centralised resource with curating schemas
that accumulated and kept accumulating the great expanse of “Somatic
Mutations in Cancer”. The latter was not the last data-sharing initiative of
CGP. One year later, an International Cancer Genome Consortium (ICGC)
was announced [118]. This time, the goal was not to curate but to coordinate
cumulative efforts of various global data centres towards characterisation
and centralised deposition of genomic data on 50 types/subtypes of human
tumours that bear societal weight. Looking backwards, an approach taken
by ICGC proved to be the right one. Instead of heavy investments in the
generation of datasets, ICGC built infrastructure for data to be easily accessed
by the scientific community, furthering this by hosting a web platform for
quick data access and analysis via cloud computing [119].

Alongside Cancer Genome Project and across the ocean, another
initiative was conceptualised with the goal as ambitious. With more and
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more affordable DNA sequencing looming ahead, an idea of a “Human Cancer
Genome Project” was proposed, assumingly hinting at the scale and impact
of HGP, with the goal of “obtaining a comprehensive understanding of the
genomic alterations that underlie all major cancers” [120]. Following HGP’s
footsteps, the initiative put the ideas of public access and data-sharing at
the core of the inceptive project. On the eve of 2005, a pilot project was
initiated under The Cancer Genome Atlas (TCGA); the goals are set to map
lung, brain, and ovarian cancers. Conceived as a large-scale project at its
core, TCGA funded many genome centres to generate and process data in a
unified format [121]. For the pilot, samples from selected tumours were to be
screened in parallel for mutations, copy number variants and gene expression
profiles. Herein the particular value of this undertaking — a multi-omic
approach to cancer studies, in this case, profiling genomic and transcriptomic
data from the same sample. In 2008, the first fruits were harvested, and
the consortium published Glioblastoma characterisation [122]. Although
the initial glioblastoma dataset was generated using pre-NGS technologies,
the largely successful publication allowed the project to attract additional
funding and guarantee its operations for years. More importantly, seven
more new genomic sequencing centres were established, outfitted with NGS
sequencers, allowing the application of the multi-omic approach on a truly
grand scale. A plan was charted to cover 20 more cancer types and reprocess
already collected samples, including whole genome sequencing (WGS), whole
exome sequencing (WES), CNV and SNP profiling, DNA methylation, micro-
RNA sequencing, RNA-sequencing, and proteomic data from RPPA arrays
for a selected set of biomarkers. Three years after the initial publication,
TCGA gathered 5000 cancer samples in their repository and followed the
charted strategy of publishing a comprehensive study on ovarian cancer,
already using NGS technologies [123].

The coming years saw a stream of publications covering six more
cancer types [124, 125, 126, 127, 128, 129]. Alongside the publications, new
data was readily deposited to the publicly accessible data portal in operation
since 2012. The most intriguing, of course, was the now real possibility of
performing a pan-cancer analysis to search for shared genomic and tran-
scriptomics features across different cancers. It was already hypothesised
that tissue lineage and surrounding microenvironment are likely to favour
similar patterns of clonal evolution in different cancer types [130]. Next
year, a pan-cancer project was drafted to “gain analytical breadth—defining
commonalities, differences and emergent themes across cancer types and
organs of origin” [131]. Although studies on individual cancers showed that
most genomic aberrations are unique for a cancer type, they tend to be
somehow related to similar pathways, i.e. hallmarks of cancer. However, mu-
tations in the same pathway sometimes result in opposite effects in different
tissues, and the prime example is the NOTCH family of genes, which are
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inactivated in some squamous cell carcinomas but activated in leukaemia
[131]. The idea behind integrating multimodal datasets was twofold: first, it
would identify some convergence point to which different cancers gravitate;
second, the bird-eye view at the micro cancer verse would better highlight
the uniqueness of each tumour type. The overarching aim of uniting these
two somewhat opposite tasks is to locate markers that would allow us to
move further from histological classification. Strictly speaking, pan-cancer
analysis is a clustering problem. By 2014 it was done and published, largely
confirming many of the hypotheses but failing to identify the convergence
point [132]. Methodologically, the analysis followed a rigid design: for each
data modality, samples from all 12 tumours were pulled together and strati-
fied by hierarchical clustering, using appropriate metrics for each data type.
Then, samples were super clustered using the Cluster of Clusters Assignment
(COCA) algorithm, which is a weighted hierarchical clustering based on
previously assigned clusters with weights assigned depending on the total
number of clusters in each variable (data modality) [133, 134].

Ultimately, this approach recreated the tissue architecture of the
original histological annotation while successfully grouping squamous-like tu-
mour types from the lung, bladder, head and neck [131]. The parallel analysis
allowed better transcriptomic and genomic characterisation of squamous-like
cancer phenotype. Looking backwards, the study carried certain limitations.
First, the pan-cancer clustering did not utilise multi-omic modalities alto-
gether, rather clustering them individually and using the obtained cluster
vectors onwards. Given the nature of the data, it is reasonable to assume
that some features in each data modality correlate, representing a flow of
information from the genome to transcriptome to proteome. Therefore, inde-
pendent clustering within each data modality effectively cuts this link. While
maximising the between-cluster variance within each data modality, the links
between data types are not considered resulting in suboptimal multi-omic
clustering. Second, this study was likely limited by the linear nature of the
clustering metric used. Re-clustering with a non-linear metric, as an example
of support vector clustering with a non-linear kernel, could potentially recover
a finer structure within the data. The other limitation comes from the innate
heterogeneity of tumour samples, otherwise known as cellularity. In the case
of even the most careful resection, the cell composition of the sample is not
uniform and transcriptomic analysis was likely to be biased by the RNA
from normal/healthy organismal cells residing in a tumour microenvironment
[135]. Most of these shortcomings were addressed in the next iteration of
pan-cancer analysis published four years later that further surpassed the
scale of the initial incorporating a total of ten thousand tumour samples
across 33 cancers [136]. In this instance, the authors used an integrative
clustering approach iCluster that simultaneously optimises cluster structure
across data modalities using Expectation Maximisation (EM) algorithm [137].
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Cellularity was also considered; expectedly, a cellularity-driven structure
underlying clusters suggested a heterogeneous cellular composition existed.
Finally, the integrative clustering converged to a 28-cluster solution; among
those, only a third were mono-tissue, and the other two-thirds corresponded
to mixed-tissue subpopulations, greatly adding to the results of the previ-
ous analyses. Particularly peculiar are the dissimilar immune signatures
expressed in some mixed clusters hinting at potential targets for immune
modulation.

Another instance of particular interest is the second flagship paper,
where the consortium assayed the alterations of ten oncogenic pathways
across the same dataset of 33 cancer types [138]. There, great work was
done to characterise the signatures of pathway alteration across this massive
data compendium as comprehensively as possible. Pathway analyses from
reports on individual cancer types were curated alongside public databases
to refine the gene sets used to score the pathway in each tumour sample.
Summed together, how a resource like this can be of use? This carefully
curated data can be drawn into a map of actionable drug targets, often
covering co-mutated oncogenic pathways. This brings to mind two possible
ways to utilise this resource: first, it can be used as a base for the design
of a test platform for tumour profiling; second, it can be of great help
to customise a multi-drug cocktail specific to a tumour to maximise the
efficiency of therapy. A project as massive as TCGA requires a foreword.
Yet, skimming the publications accompanying this compendium over its
ten years of history, the author struggles to narrow it down to a uniform
conclusion. Undoubtedly, the contribution of publicly available uniformly
processed multi-omic datasets to the scientific community is paramount.
The TCGA consortium publications have been cumulatively cited roughly
fifty thousand times [139]. Yet, cancer proved to be more complex than we
expected. Even when integrated by a large consortium, an immense corpus
of data seems to produce more questions than answers. As Robert Weinberg
wrote some four years before the conclusion of TCGA: “The data that we
now generate overwhelm our abilities of interpretation, and the attempts of
the new discipline of “systems biology” to address this shortfall have to date
produced few insights into cancer biology beyond those revealed by simple,
home-grown intuition” [140].
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2.9 Capturing the complexity with cancer models

The paragraphs above focused on the analysis of patient-derived tumour
samples and the translation of tumour genomic and transcriptomic data
into potential knowledge that can be utilised to combat cancer. There
are, however, specific restrictions on the extraction of therapeutic insight
from genomic data imposed by the nature of tumour biospecimens. Tumour
samples must be resected and then stabilised before being stored in a biobank
for profiling. Stabilisation often involves freezing and fixation in formalin,
which carries on specific issues [141]. First, even in the most standardised
conditions, tissues experience some degree of degradation [142]. Second, the
assays are done, in essence, on dead tissue, which is largely unimportant
for genomic characterisation but disallows screenings for drug sensitivity.
Therefore, testing for drug sensitivity requires a model system to function
as a proxy for a tumour. To this end, immortalised human cancer cell
lines represent a centrepiece of preclinical cancer research and have been
widely used to model tumour response to anti-cancer therapies [143, 144,
145]. Notably, this practice was pioneered in the early nineties with a panel
covering sixty cancer cell lines called NCI-60 (National Cancer Institute
60) [146]. In fact, at the turn of the millennium, nearly 60,000 anti-cancer
compounds were already screened against the NCI-60 panel [147]. Despite
the large-scale pharmacologic characterisation of the cancer cell lines (CCL),
these data were rarely generated in synergy with genomic and transcriptomic
profiling, mainly utilised in studies on individual cancer types. However, with
the increasing accessibility to sequencing technologies, generating large-scale
pharmacogenomic datasets became a feasible enterprise. In 2012, two large
compendiums of CCL genomic data were released side by side. The first
one, Cancer Cell Line Encyclopaedia (CCLE), in its initial release, recorded
pharmacogenomic profiles over 947 cancer cell lines encompassing 34 cancer
types. All cell lines were profiled for mutations, CNVs, and gene expression
with microarrays. In parallel, 24 anti-cancer compounds were tested on
the larger part of the dataset ( 500 cell lines) [148]. Following a similar
microarray-based design, the second dataset Genomics of Drug Sensitivity in
Cancer (GDSC), went public with pharmacogenomic profiles of 639 cancer
cell lines over 130 drugs [149, 150]. The main advantage of these systematic
studies is that interrogation of multi-omic data over multiple CCL lineages,
i.e. cancer types, allows for pinpointing the dependencies that are shared in a
specific CCL lineage or by CCLs that carry a specific mutational signature, all
of which would be impossible to detect in the individual CCL datasets. The
initial forays into large-scale pharmacogenomic studies readily bore results.
In pharmacogenomic studies, genomic and transcriptomic features can be
mapped to a potential drug-gene (drug target) pair, allowing prediction
of drug response from this signature. Expectedly, in many cases, known
genomic and transcriptomic features directly associated with a drug target

35



appear at the top of the predictor’s list, like mutations and overexpression
of EGFR that lead to a heightened response to Erlotinib, a selective EGFR
inhibitor [148]. There are, however, an abundance of peculiarities. For
example, overexpression of the SLFN11 gene leads to a stronger response to
topoisomerase inhibitors, particularly in Ewing’s sarcomas [148]. Similarly,
the GDSC core group mapped an Ewing’s sarcoma characteristic genomic
EWS-FLI1 rearrangement to sensitivity to a PARP inhibitor Olaparib [149].
Based on the initial successes, it would be only reasonable to consider that a
more thorough genomic characterisation would uncover more dependencies
between drug response and genomic features.

Nevertheless, despite all their positive sides, CCL assays are still
tedious to perform en masse because CCLs cannot be mixed and therefore
need to be cultured individually. Since the publication of the initial CCLE
in 2012, a pooled strategy approach to simultaneous cell line profiling was
conceptualised. This methodology relied on introducing specific barcodes
to the genome of individual CCLs that could later be cultured in a mixture.
The presence of a barcode allows for a quantitative read-out of the cell
number that is proportional to the barcode signal. By 2015, the concept was
reshaped into a proper high-throughput platform Profiling Relative Inhibition
Simultaneously in Mixtures (PRISM), and the proof of principle paper was
published in 2016 with promising results [151]. Although there are concerns
regarding the interactions of the heterogeneous CCLs via paracrine and
juxtacrine signalling, these are largely outweighed by the high-throughput
capacity of the platform. To compare, in their initial releases, CCLE and
GDSC screened 24 and 130 compounds, respectively, over roughly five
hundred CCLs. PRISM profiled the responses of 103 CCLs to a stunning
8,400 compounds in its initial release. This technology was further employed
in large screenings of non-oncology-related drugs for potential repurposing
into anti-cancer therapies [152].

Another improvement could be made to the methodologies of depen-
dency screenings themselves. So far, we have discussed only the drug screens
where the drug effects are usually reported in three different values: half
maximal inhibitory concertation (IC50), half maximal effective concentration
(EC50), and activity area. All these metrics are estimated from a drug
response curve that reflects the dependency between drug-induced growth
inhibition relative to negative control and the concentration of the adminis-
tered drug. Therefore, IC50 is the drug concentration necessary for half of
the possible maximal biological response, i.e. half to the negative control.
EC50 records the drug concentration corresponding to half of the recorded
maximal biological effect, i.e. half to the inhibition biological response of
the largest administered dose. Last, the activity curve is the area above
the response curve. In this approach, drug-gene dependencies are sought
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from the perspective of the drug. The alternative approach would be to look
from the perspective of the gene, i.e. to conduct functional studies. To this
end, a project Achilles was established that leveraged genome-wide loss of
function screens using CRISPR-Cas9 and RNAi screens [153]. The ultimate
shared contribution of all these initiatives is building and maintaining the
infrastructure for public access to the respective databases. Since 2014, they
have operated through a unified infrastructure under the Cancer Dependency
Map consortium (DepMap) [154].

Under the umbrella of the DepMap consortium, another project was
not discussed — Cancer Cell Line Factory (CCLF). While all aforementioned
initiatives research methodologies and characteristics of CCL models, CCLF
is fully dedicated to developing and characterising new cancer models. Since
the establishment of DepMap, in its joint operations, somewhat 1500 CCLs
have been cumulatively developed, characterised, and made publicly available,
while somewhat 1000 CCLs exist in private collections [155]. In the earlier
stages of contemporary cancer research, this number seemed sufficient. Yet,
the discoveries of TCGA and ICGC show that the expanse of genomic
and transcriptomic complexity of cancer greatly surpasses the variants of
those 1500 CLLs in use. The genetic aberrations in the existing models are
insufficient to cover human cancer’s heterogeneity comprehensively [155].
Therefore, CCLF took upon the task of developing cancer models from
patient samples with selected backgrounds, including those with rare cancers
that are underrepresented in the CCL collections [156].

Another part of this initiative was directed at developing qualitatively
new cancer models. Normally, mammalian cells, even cancer-derived cell
lines, are known for their limited proliferation capacity in culture and early
onset of senescence [157, 158]. In older methodologies, the senescence block
is bypassed by the immortalisation process, i.e. unlocking the cells’ unlimited
proliferative capacity. It is achieved by introducing viral oncogenes or
exogenous telomerase, which alters the phenotype [159]. Advances in cell
culture technologies allowed the rapid expansion of stable CCL cultures
from as little as a needle biopsy retaining the tumorigenic characteristics
of the original tumour [160]. The new approach bypasses the need for
immortalisation. It relies on introducing a specific mixture of ligands and
signalling molecules to the extracellular matrix (ECM) to reprogram the cells
to maintain their proliferative capacity. Cells grown in this way retain the
ability to differentiate and, under the right conditions, can form organotypic,
three-dimensional structures commonly called organoids or “organs in a dish”.
Unlike two-dimensional in vitro cultures, organoids resemble the original
tissue in its architecture and composition, harbouring subpopulations of
differentiated cells in proportions somewhat similar to those of the living
tissue [161]. Another beneficial quality of this model is logistical: organoids
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can be expanded indefinitely and cryopreserved in biobanks. Therefore,
organoids bridge the gap between cell lines and in vivo models striking a fine
balance between the feasibility of operations and the biological proximity of
the model to the real tissues, which makes them an attractive platform for
cancer models [162]. To this end, CCLF collaborated with Human Cancer
Models Initiative (HCMI) to create the first thousand next-generation cancer
models (NGCMs), including patient-derived organoids and reprogrammed
cells. So far, in the collection of CCLF are 648 newly generated cancer models
derived from 501 patients. Of those, over a third are rare malignancies, and
278 are organoid models from a joint effort in HCMI.

Among NGCM, another up-and-coming model is a xenograft — a
tumour growing in the body of immunodeficient mice, a xenopatient. Al-
though facing competition from organoids, this in vivo model comes closest to
replicating the biological complexity of an entire tumour [163]. Of particular
interest is that xenografts could faithfully recapitulate the drug response in
patients from whom the xenografts were derived [164]. Studies in patient-
derived xenografts (PDX) of colorectal cancer successfully identified HER2
as a potential target in a subpopulation of resistant tumours [165]. Based on
these initial studies, collaboration with industry was struck to generate an
encyclopaedia of xenografts. The initial dataset covered 1,000 xenografts
with full genomic and transcriptomic characterisation alongside pharmacolog-
ical data for 62 compounds [166]. Despite the positive discoveries made with
PDX, there are certain difficulties with analysing the PDX models. While
histological parameters remain largely similar between the donor tumour
and xenograft, one report observed drastic changes in the transcriptomes
of xenografts, hinting at the potential post-engraftment clonal evolution of
tumour cells within the mouse host [166]. In particular, expression of the
genes annotated to immune- and ECM- related pathways was downregulated
in xenografts compared to primary tumours, while cell division pathways were
up-regulated. Given our accumulated knowledge of cancer, the adaptation
of tumour cells to the organism of the “xenopatient” is not surprising. Yet,
the degrees of the phenotypical changes are not properly characterised. One
could hypothesise that the immunodeficiency of the xenopatient relieves the
evolutionary constraints imposed on the tumour cells of the primary tumour
by the immune system of the original host and therefore promotes a clonal
evolution towards different phenotypes. This can lead to dissimilarities in
drug responses between PDX and the primary tumours. A parallel genomic
and transcriptomics profiling of donors and xenografts could potentially
delineate common xenograft adaptation patterns to xenopatient to control
for those in data analyses.

Alongside developing new models, efforts were put into deepening
the multi-omic profiling of the existing CCL models. By 2019, CCLE amassed
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more than a thousand cancer cell lines profiled in eight data modalities (WGS,
WES, DNA methylation and chromatic profiling, mRNA expression and
splicing, miRNA expression, and protein assays by RPPA) [167]. A year later,
the CCLE dataset was complete with the addition of the last unexplored data
modality - proteome [168]. All of the datasets discussed before are covered
by the infrastructure of the Dependency Map Consortium that allows unified
access. It would be worthy to say that at this point, the sheer size of the
database turns the analysis task into a “needle in the haystack” like search.
Nevertheless, in the publications supporting the releases of the updated
datasets, the authors of CCLE well showcased how each added data modality
allowed for uncovering a new, unexpected cancer dependency. Therefore, it
would take years of computational analysis to interrogate such massive a
collection of data exhaustively.

39



2.10 Reduced representation models

DepMap was not the only consortium that tried to connect genomic and
transcriptomic features with the effects of pharmacological agents. Similar
in goal but different in concept, another consortium was working to charter
a Connectivity map (CMap) of connections “among small molecules sharing
a mechanism of action (MOA), chemicals and physiological processes, and
diseases” [169]. Subprojects of the DepMap consortium were unified in their
approach to generating translational insight from cancer models, and this
approach was twofold. First, to generate cancer models that recapitulate the
original tumour as closely as possible regarding architecture, environment,
and physiology. Second, to characterise cancer models as comprehensively
as possible using different data modalities generated by multi-omic assays.
This approach can be termed “maximalist” as it strives to achieve the
most wholesome recapitulation of the disease in the model and the most
comprehensive disease characterisation by biological assays, i.e. multi-omics
[167, 168]. The benefits of this approach are apparent and many, while
the limitations are ultimately tied to the cost of data generation and the
computational limits of data integration and analysis. Worth to mention
that the latter tends to improve swiftly, thereby ensuring the value of the
DepMap datasets in future. CMap’s approach, on the contrary, can be
termed “reductionist” as it aims to achieve a minimalistic yet comprehensive
biological representation of the disease [169]. But let the introduction be
done with decorum and with order.

Conceptually, CMap draws inspiration from a seminal work of Hughs
et al. from the era of early transcriptomics [170]. That work showed how
a single assay, that being whole-genome gene expression profiling, over a
large compendium (300 profiles) allows to connect perturbations, be it the
administration of a drug or an unknown mutation, to a specific state of the
transcriptome, thereby allowing the identification of the functional impact of
a perturbation by similarity to transcriptional profiles in the compendium. To
better illustrate, let’s look at the example of drug target identification from
the original publication. Among the profiles in the compendium was a yeast
culture treated with a common topical anaesthetic, Dyclonine [171]. The
expression profile of the dyclonine treated yeast culture was strikingly similar
to the expression profile of erg2 mutant yeast, suggesting the inhibition of
erg2 by dyclonine. The human protein with the highest sequence similarity
to yeast Erg2 protein is a sigma receptor, a human neurosteroid interacting
protein that regulates potassium conductivity and binds several neuroactive
drugs, thus suggesting it to be a target of dyclonine [172, 173]. This concept
could be similarly applied to human gene expression signatures corresponding
to genetic and pharmacologic perturbations, as similar signatures can disclose
previously unrecognised connections between MOAs of two small molecules,
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a small molecule and mutation or two mutations that perturb the same
pathway.

CMap leveraged the non-parametric approach conceptually similar
to the GSEA to assess the connectivity between gene expression profiles
unambiguously. Every perturbagen in cell culture has its gene expression
profiled in parallel to negative vehicle control, generating two gene expression
datasets: perturbed dataset A and control dataset B. Then, each gene in the
expression profile is ranked according to a difference between A and B using
an appropriate metric, creating a rank-based gene expression “ladder” specific
to the perturbagen. The whole dataset is then amassed from the individual
perturbagen-control “ladders”. These ladders are used to test for a biological
state of interest, i.e. a gene signature of interest, which is measured against
the ranks of the genes in a ladder to generate a connectivity score derived in
the same way as the enrichment score in GSEA; the derivation of ES was
outlined in section 2.3. For example, in the original publication, the authors
showcased a test of a 13-gene-long signature of histone deacetylase (HDAC)
inhibitors derived from another study on CCLs [169, 174]. When tested
against the ladders, the Connectivity map revealed strong transcriptomic
connectivity of this signature to the two structurally distinct perturbations,
HC toxin and valproic acid, known for their HDAC-inhibitory qualities [175,
176]. If the gene signature, however, was not pre-emptively characterised,
CMap would have uncovered that connection. The initial CMap release
covered 164 perturbagen in 3 CCLs [169]. Over the years, the platform
assisted with drug repurposing and generating new therapeutic hypotheses.
Notably, CMap was employed to identify the potential of an anthelmintic
drug, parbendazole, as an inducer of osteoclast differentiation and Celastrol
as a treatment for obesity [177, 178]. That being said, CMap also performed
well in some cancer studies [179, 180]. While the initial CMap proved the
concept’s applicability, the small scale of the dataset restricted its utility:
it lacked a variety of cell types as well as pharmacological and genetic
perturbations.

The next edition of CMap was released more than ten years later,
commonly known as CMap2 or CMapL1000 [181]. Although it aimed to
expand on all aspects of the earlier iteration, this dataset’s peculiarity lies
in the way the data was generated: as much as the dataset was expanded,
the transcriptional redout was “reduced”. The authors brought up the
“reduced” transcriptome concept to break off from the cost limits imposed
by extensive transcriptomic profiling. At its core, the idea was that most
of the information recorded by a snapshot of the transcriptome could be
narrowed down to a handful of information-heavy transcripts, referred to
by authors as “landmark” transcripts, whilst the rest of the transcripts are
largely non-informative and could be discarded. The authors pulled together
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twelve thousand gene expression microarray datasets to identify the landmark
transcripts, all using the same Affymetrix HGU133A platform to minimise
the platform-dependent variability. The transcript recovery then proceeded:
a combined, centred and scaled gene expression dataset was reduced to 386
principal components, cumulatively accounting for 90% of the variance. The
authors did not report the initial number of transcripts in the combined
dataset, but we can hypothesise with a decision that it covered from ten
to fifteen thousand transcripts. Then, the transcripts were clustered in the
reduced subspace of 386 principal components using a variant of k-means
clustering called “tight clustering” [182]. In detail, the dataset was randomly
subsampled with resampling into 100 partitions, with each partition covering
75% of the original dataset. These partitions were then each clustered by
k-means with 20 to 100 centroids. The final output of the procedure yielded
a consensus matrix that recorded the proportion of trials in which each pair
of genes were in the same cluster. Genes surpassing the threshold of 80% of
trials were recorded into the “landmark” transcripts. Finally, this analysis
showed that as few as one thousand landmark transcripts could capture 82%
of the variance in the initial dataset. Recording the gene expression of one
thousand landmark transcripts should technically provide a comprehensive
image of the transcriptome. Building upon this idea, the authors designed a
“minimal” oligonucleotide array system L1000 to profile the expression of 978
selected landmark transcripts. However, measurements of these thousand
transcripts won’t suffice for the end goal of the CMap2 simply because gene
signature queries are very likely to be underrepresented among the landmark
transcripts, which will obstruct the scoring of the queries. Therefore, the
next step after L1000 profiling and normalisation is an inference of the
transcriptome from the gene expression of landmark genes. The inference
follows a rather straightforward approach: expression for the remaining part
of the transcriptome is predicted using a collection of linear regression models
with weights derived from training on the initial collection of microarray
datasets. This approach performed surprisingly well and reliably recovered
the expression of 9200 genes out of the 11350 genes inferred when tested on
the GTEx dataset [183]. However, questions about its reliability remain and
will be addressed later.

The validation analyses performed by the authors cogently stressed
the reliability of Cmap2 connectivity scores. In one case, the authors queried
signatures derived from tumour gene expression profiling in patients receiving
MEK-pathway inhibitors. Consistent with the clinical data, Cmap2 assigned
a high positive connectivity score to MEK-pathway inhibition signatures
when drugs were administered and high negative connectivity in patients
who experienced relapse after the treatment. According to the authors,
this minimal approach allowed for the reduction of the cost of one gene
expression profile to a mere two dollars (for reagents), which in turn allowed
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the screening of a vastly larger number of perturbations, totalling more
than twenty thousand small molecules and a little more than five thousand
gene perturbations including both gain- and loss- of function, altogether
summing up to more than 1.3 million L1000 profiles. Concordant with
the concept of the authors of Cmap2, it found its application suggesting
therapeutic hypotheses and support existing evidence in cancer studies [184,
185]. Notably, it was used in the pan-cancer analysis of stemness by the
mentioned TCGA consortium (section 2.8) to look up compounds connected
with the identified stemness signatures of cancer [186]. As of 2022, Cmap2 is
integrated into the web-based resource iLINCS which aggregates multi-omic
signatures derived from a vast collection of datasets [187].

Nevertheless, the author cannot ignore the potential shortcomings
of the reduced approach to perturbation models. The data-driven process
for selecting landmark genes tries to minimise the loss of information by
reducing the dimensionality of the gene expression profile. Consider an
ideal case where a size m x n matrix can be reduced to a lower-dimensional
representation without losing information. The latter is only possible when
some of the dimensions of the initial matrix are functions of other dimensions,
which an appropriate dimensionality reduction technique can recover. In
the case of Cmap2, approximately 9000 dimensions were recovered from a
reduced representation of a thousand features fitted into an array of linear
models. Considering transcriptional noise and the error of measurements,
it is hardly arguable that this proxy of gene expression introduces a bias
to inferred transcripts, which is likely to depend on the complexity of the
inferred transcriptome. Although authors validated the reliability of L1000
to recover expression measurements similar to RNA-seq data, others reported
limited reproducibility between the original Cmap and Cmap2 expression
measurements and connectivity estimates [188]. Additionally, subsequent
analyses highlighted that the reliability of the reference signatures depends on
the strength of the differential expression induced by a perturbagen [188]. In
short, Cmap2 tends to miss the small changes in transcriptional profiles while
reliably recovering strong effects, an observation somewhat expected given
the mental framework of the reductionist approach. The author hypothesises
that more sensitive approaches can recover untapped information from the
generated landmark signatures. To this end, there were attempts to improve
the inference of unmeasured genes [189]. In that particular report, authors
managed to infer the expression of approximately 22,000 transcripts using
a fully connected neural network. Despite the dropping costs of RNA-
sequencing, the production of millions of whole-genome RNA-seq profiles
in a uniform setting would still be economically unfeasible, therefore more
precise transformation of L1000 profiles into RNA-seq-like data would likely
improve the usability of Cmap2 for future applications.
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2.11 From Breadth to Depth — understanding cancer evolu-
tion

Decades of multi-omic assays of tumours brought many insights into can-
cer biology. Mutational signatures for diagnosis, thoroughly characterised
molecular pathways, multi-omic defined subtypes accompanying histological
classifications, prognosis predictors, and drug response markers were cat-
alogued in databases of enormous scale. Building upon this accumulated
knowledge, new non-invasive test systems were designed, which assess tumour
status from mutational signatures detected in the cell-free DNA from blood
samples [190]. Other collectives developed protocols to detect mutational
signatures from tumour DNA recovered from saliva [191]. Of particular
interest is the test panel cancerSEEK that utilises the combined assays of
genetic material and protein biomarkers from the blood samples; initial
results give high promises as the test performs reliably along eight different
cancer types (successful median detection of 70% in all eight cancer types)
[192]. Authors also remark on potential limitations of these approaches:
cases of less advanced diseases might pass the test undetected, resulting in a
higher rate of false negatives, while the unaccounted background processes
like non-cancer driven inflammation could lead to a false positive result. The
massive influx of genomic data expanded the clinical use of targeted therapies,
exemplifying the use of EGFR inhibitors such as Erlotinib in non-small cell
lung cancer (NSCLC) and KIT inhibitors in gastrointestinal tumours and
myeloid leukaemia [193, 194, 195].

Similarly, widespread genomic characterisation of CCL screens pro-
moted the repurposing of existing medications to the oncological field produc-
ing new and unexpected lines of treatments [196, 197]. A better understanding
of molecular pathways hijacked by cancer cells allowed the development of
combined therapies that simultaneously target multiple elements in a pathway
[198, 199, 200]. In the United States, prognoses have improved yearly since
1991 across all cancer types, with overall 5-year relative survival reaching
70% as of 2015. Survival rates of thyroid, testis, prostate, breast, and skin
(melanoma) cancers currently exceed 90% [201].

Nevertheless, lung, colon or pancreas cancer examples show a much
grimmer picture. Lung cancer claims more lives than any other and still
poorly responds to treatment, while metastatic tumours generally remain
mostly incurable. A portion of deaths can be attributed to an untimely
diagnosis, particularly for slow-growing tumours like pancreatic cancer that
are usually detected already in an advanced stage where surgical resection
is no longer possible. While some other tumours, even when diagnosed on
time, possess near miraculous ability to adapt to any line of medication put
against them. This ability stems from a continuous evolution process that
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underlies cancer progression.

To illustrate, let us consider a case of multiple myeloma consisting
of a clonal population with BRAF activating mutation and several subclones
that acquired additional mutations in KRAS and NRAS. The administration
of BRAF inhibitors would effectively kill a bulk of BRAF-carrying cells but,
at the same time, would increase the relative fitness of KRAS and NRAS
subclones by removing competition from BRAF mutant clones that harbour
wild-type KRAS and NRAS [202]. In the end, the expansion of the new clonal
population, potentially more aggressive, would nullify the clinical benefits of
the therapy. Although the theory of clonal evolution was conceptualised in
the seventies, in the past, only a few experimental surveys in this direction
were attempted, primarily limited by the available methodology, by which
the author means NGS (see section 2.6).

The current standard of whole genome sequencing used to assay
tumour samples generates 100x coverage of the genome, orders of magnitude
smaller than the number of cancer cells in the sample. Considering the
admixture of normal cells from the tumour microenvironment (TME), under
this sequencing depth, only the genomic profile of the most abundant clone
would be reliably assayed. At the same time, the subpopulations harbouring
additional mutations would largely remain undetected [203]. From the
evolutionary perspective, the genomic snapshot of bulk sequencing informs
us of the most recent common ancestor in the cancer cell population that
is already extinct in the ever-growing malignancy. To better understand
which methodological approaches are more suited to dissect the clonality of
tumours, the author will outline what is currently known of the evolutionary
processes that underlie the genetic heterogeneity of cancer.

Cancer cells generally adhere to the rules of evolution regarding
how cells mutate, adapt, grow, and die off. The enormous population size
ranging billions of cells and confined environment makes cancer evolution
processes akin to those in bacterial populations. Fundamentally, they follow
the evolutionary mechanics of asexually reproducing species: ”replication,
heritable variation, genetic drift, selection and environmental changes” [204].
Based on these mechanisms, different modes of cancer evolution are hypoth-
esised: selection, neutral evolution, branching evolution, linear evolution
and punctuated evolution. When, under specific environmental conditions,
one lineage is favoured over another and produces larger and more viable
progeny, it adapts this population. This process is the main driving force of
evolution and is called selection. Generally, a positive selection that increases
the frequency of the more adapted lineage is the process that fuels tumour
progression [204]. Negative selection, on the other hand, is the evolutionary
process by which phenotypically unfit lineages are removed from the popula-
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tion. In case of cancer progression, it can, for example, cleanse the population
from neo-antigen-carrying cells, as the attraction of immune response to the
neo-antigens reduces their fitness [205]. As much as selection depends on
an environmental context, it cannot always be operative. For example, if
the environment does not favour differential survival within the population,
the absence of positive selection would lead to neutral evolution, where only
mutation and genetic drift are at play. Neutral evolution usually occurs
in the intervals between selection events that either prune or expand the
phylogenetic tree of the population [206]. Suppose a mutation arises during
the stochastic mutational process that increases the fitness of a particular
clone. In that case, it can initiate a clonal sweep, a process when a specific
clone with fitness advantage is positively selected for and displaces other
lineages leading to reduced population diversity. Therefore, a mutational
rate itself could be subject to selection. As much as a higher mutational
rate diversifies the population, it increases the chances of both positive
and deleterious mutations appearing, whereby the tumour growth could be
hampered. Therefore, a fine balance of chromosomal instability should be
selected, as too much instability leads to autonomous cell mortality, while
too little would restrict the generation of new and potentially advantageous
mutations. Consequences of this selection could be observed even on a
macro- level, when tumours with medium levels of chromosomal instability
correlate with overall poorer survival prognosis, while extreme and low levels
confer an improved prognosis [207]. Some mathematical models suggest that
“mutator phenotypes” are selected in the population of cancer cells because
the stochastic acquisition of the positive mutations leads to a two-edged
benefit in fitness: from the advantages of the clone’s positive mutation and
the deleterious mutations appearing in the rest of the population [208, 209].

Although the evolutionary process is always branched, the presence
of mutator phenotypes makes it particularly true for cancer cells. Constant
cell divisions and mutations lead to constant diversification of the population,
i.e. branching. Random fluctuations in some lineages’ birth and death rates
lead to the overrepresentation of specific genetic variants in the population,
a process called genetic drift. Genetic drift is considered a form of neutral
evolution, as all the lineages are neutral in their chances to produce a surviving
progeny [210]. Interestingly, similar evolutionary patterns are observed in
healthy tissue, suggesting that branching is a natural consequence of cellular
proliferation [211]. In the case of cancer, however, due to the dysregulation
of control circuits managing cell proliferation, when a subclone acquires a
mutation in a driver gene, it can quickly expand over the population driven
by positive selection.

Similarly, parallel evolution can occur when multiple subclones
acquire mutations in the driver genes and expand simultaneously within the
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same tumour [212]. In a mock contrast to this, linear evolution postulates
that only one lineage survives over time. This, however, does not imply that
there was ever only one single lineage evolving step by step. It is problematic
to infer linear evolution from genomic data due to the limitations in the
resolution of NGS technologies.

Finally, the last mode of evolution to be discussed focuses on the
sudden changes in the genotype, called punctuated evolution. This mode
posits rapid bursts of adaptation followed by long periods of relative stasis in
contrast to stepwise evolution; theories that explain evolutionary dynamics
through sudden and sizeable events are called saltationists, from the Latin
salto, which means to jump [213]. In general, contemporary saltationist
evolutionary theories, including punctuated evolution, share a conceptual
reference point in a seminal paper by Gould et al., originally conceived to
explain gaps in fossil records [214]. This theory, called punctuated equilibrium,
suggests that adaptation occurs in small geographically segregated niches
and largely remains undetected before the more fit lineage leaves the niche
and disperses through the population. Henceforth, punctuated equilibrium
posits long periods of stasis interrupted by short periods of change. This
theory, however, was designed to explain population dynamics of sexually
reproducing species and drew the idea of evolutionary puncta, i.e. sudden and
short periods of adaptation, as a direct consequence of allopatric speciation.
The fact that cancer cells are not a mating population and are not separated
by geographical borders, at least in the primary tumour, makes the theory
of Gould et al., to the largest extent, unfit to explain the evolutionary
dynamics of cancer. Nevertheless, the idea of evolutionary puncta fits well
with the mutational bursts observed in cancer. Such puncta can occur,
for example, after extreme rearrangements of the genome, e.g. loss, gain,
fusion, translocation of the chromosomes and ultimately chromothripsis or
chromoplexy, that give rise to an extremely adaptive clone that can sweep
through the population [215, 216]. Much more fitting to this non-Darwinian
evolutionary process is a theory under the same name that terms such clone a
“hopeful monster”, where monster refers to the colossal genomic aberrations
and hopeful refers to the meagre likelihood of the genomic alterations to
be non-lethal [217]. Overall, the phenomena of punctuated evolution were
observed in multiple cancers. However, it is difficult to say if this process is
common in specific or widespread across all tumour types [218, 219].

Drawing from the mathematical abstractions of population genetics,
many mathematical models were developed to replicate the evolution of
cancer populations [220, 221]. Some specialised models could reliably predict
the time of appearance of resistant clones after administering the anti-cancer
drug, i.e. the selection and expanse of the adaptive lineage [222]. In that
study, a group retrospectively analysed a temporal regiment of serum samples
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from 28 patients with chemorefractory metastatic colorectal cancer. The
samples were taken 7+/- 2 weeks and 25+/-10 weeks after administering
EGFR inhibitor panitumumab and screened for KRAS mutations [223].
A branching process model built with data-derived parameters predicted
an appearance of resistant clones on average after 22 weeks after the
administration of EGFR inhibitors, with a 95% confidence interval from 18
to 25 weeks. Other studies introduced a spatial component into the modelling
of tumour growth. The model’s inspiration was built upon observing growth
patterns of hepatocellular carcinoma, which is shaped into “balls” of cancer
cells separated by normal tissue [224]. Simplification of the 3-dimensional
space of tumour growth into a sphere allowed a feasible opportunity to
model clonal dynamics, such as the resurgence of resistant subpopulations
after treatment. As much as this model used parameters from the EGFR
resistance modelling, it is unsurprising to see that the predicted time to a
resurgence of resistant clones is per the previous model (one month and 22
weeks).

Peculiarly, the model also predicts higher speeds of tumoral growth
and regrowth after treatment for cancer cells with the increased capacity to
move and migrate, not necessarily to the distant parts of the host organism.
Even slight cellular movement and dispersion of cancer cells lead to drastic
changes in the predicted morphology and growth rate. To this end, there were
reports that the loss of E-cadherin, the gene encoding a cell-adhesion protein
that allows cells to adhere to each other, forming organised superstructures,
is associated with the more lethal phenotype of pancreatic cancer [225]. In
another line of research, building on observations in colon cancer, Sattariva
et al. conceptualised a

”
Big Bang” model that posits a massive adaptive

event followed by the expansion of intermixed clones happens early in the
timeline of the tumour and is responsible for most of the detected mutational
signatures, ultimately resulting in “star-shaped” phylogenies [226]. Although
new mutations would be continuously generated during the expansion, their
effect would not be pervasive, as they will be diluted in the growing subclonal
populations. The methodology of this study adds gravity to the results:
Sattiriya et al. profiled the genomes derived from the single tumour glands
(¡10,000 tumour cells) that were sampled in different locations across 15
tumours, totalling 359 genomic profiles, together with bulk tumour profiles.
Considering the spatial positions of individual glands, analysis of their
genomic profiles against the profile of the bulk tumour allowed the reliable
reconstruction of the evolutionary timeline. Concordantly with other previous
reports, this analysis also showed an absence of clonal sweeps after the initial
expansion, suggesting that the clonal expansion is a relatively infrequent
event in the evolution of colorectal cancer [226, 227, 228].

Additionally, the model’s framework explains why the potentially
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more aggressive and less frequent clones remain undetected until the bulk of
the population is wiped out by a selection event such as the administration
of anti-cancer drugs. Nevertheless, the model has implications in the origins
of metastasis; why do some tumours grow large but remain indolent while
others actively metastasise in other regions? Interestingly, in the analysed
panel of colorectal cancers, all invasive tumours had a variegated pattern
of clonal expansion, i.e. clones of the same lineage are observed in distant
locations within the tumour. Although this observation could be a result of
an early scattering of the clones during the initial expansion, it might also
be an early sign of an invasive phenotype, suggesting that some tumours can
just be “born to be bad”, as was hypothesised in the past [225, 229, 230].

This review should give a bird’s eye to the current perception of
tumour evolutionary processes. Evolutionary dynamics and mutational
patterns underlying tumour growth, resistance, and metastasis are vital to
developing a framework for combinatorial targeted therapies or, eventually,
gene therapies. The utilisation of liquid biopsies is a prospective approach.
Genomic profiling of circulating tumour cells and cell-free tumour DNA
opens venues for designing personalised therapeutic regimens to tackle the
unique mutational background of a tumour. Knowledge of clonal dynamics
inferred from sequenced genomes could help create multi-layered therapies
preventive to the expansion of mutated and resistant clones [231, 232].

However, understanding processes underlying tumour growth and
formation is lacking, mainly because the abundance of generated genomic
data rarely follows the same tumours temporally, instead recording genomic
snapshots of the most recent common ancestors in different tumours [203].
For some time, the only approach to properly assay tumoral evolution
processes was simultaneous genomic profiling of the same tumour from
different locations, as implemented in Sattariva et al. [226]. The application
of this approach culminated in the TracerX (TRAcking Cancer Evolution
through therapy (Rx)) consortium that planned to massively widen the scale
of multi-region genome profiling of tumours to track common and specific
evolutionary patterns [233]. To this end, the TracerX consortium initiated
four parallel research venues to assay clonal dynamics in different cancers:
renal, lung (NSCLC), prostate, and melanoma [234, 235, 236, 237]. As of now,
renal cancer received the most comprehensive characterisation; therefore, the
author will accentuate that particular tumour to describe the results of this
consortium.

As a foreword, let us briefly introduce renal cancer, clear cell renal
cell carcinoma (ccRCC) in particular. This tumour is believed to arise from
epithelial cells of the proximal convoluted tube of the nephron [238]. ccRCC
contributes 5% of all new cancer cases in the United States, with around 81
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thousand more estimated to be diagnosed in 2023, of which approximately
a quarter would die from a disease [201]. Adding to the value of this case
study, the genome of ccRCC has a distinctive feature — the loss of the short
arm on chromosome 3 (3p) is detected in more than 90% of all cases [129].
This opens possibilities for reconstruction of the timeline of tumour evolution
with significant precision by taking the 3p loss as the reference point.

Thereby, the first out of three ccRCC studies focused on recon-
structing the evolutionary timeline [239]. To this end, whole-genomes from
99 multi-regional biopsies from 33 patients were sequenced and analysed.
Concordantly with other public results, most of the genomes experienced the
3p loss. Closer examinations of genomic rearrangement surrounding the loss
of the 3p, of which the most common pattern is the reshuffling of the 3p with
the long arm of chromosome 5 (5q) that creates a hybrid chromosome t(3,5),
implies their origin in chromothripsis. It is fascinating to see the evidence
that the most ubiquitous cancer-initiating event is chromothripsis, in full ac-
cordance with the “hopeful monster” hypothesis [217]. Of particular interest
is that reconstruction of the time of chromothripsis events from mutational
signatures suggested them to occur early in adolescence, decades earlier than
the emergence of the most recent common ancestor in the population. It
indicates that the accumulation of driver mutations takes decades before the
disease manifests itself.

Peculiarly, a Hippel-Landau disease caused by a germline mutation in
the VHL gene is characterised by the early onset of ccRCCs. Genomic analysis
of ccRCC cases with concurrent Hippel-Landau disease showed the same
pattern of 3p loss and t(3,5) evidence of the same chromosome catastrophe
[240]. This soundly explains the later onset of sporadic ccRCC, as the gap
years before the disease onset are needed to acquire a somatic mutation that
would inactivate VHL. The model built from these genomic data suggests
that as little as one hundred cells persist before the inactivation of VHL
to initiate the tumour expansion. Taken together, this study uncovered
stable evolutionary paths taken by ccRCC in its progression. These factors
could facilitate early diagnosis and target the nascent cancer cells before
inactivating VHL and other carcinogenic mutations. Particularly, targeting
the essential genes on 3p could be beneficial.

The second venue of research assessed in detail how specific evolu-
tionary trajectories taken after the onset of malignancy focuses the tumour
growth [234]. This study operated an expanded dataset of 101 ccRCC tu-
mours that passed stringent quality controls, for example, eliminating those
with germline VHL mutation and containing 1208 multi-region samples. All
samples were screened for driver mutations using bespoke panels with a
612x median depth of sequencing (ranging from 105x to 1,520x). Detailed
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analysis of the clonal trajectories established their connection to the common
ccRCC prognostic variables such as the presence of necrosis, TNM tumour
stage, Fuhrman grade, a pathological grading scheme for tumours of the
kidney that is based on the shape of the nucleus and presence of nucleoli,
and overall tumour size. The number of acquired driver mutations positively
correlated with all these variables. The quantity of branching events, i.e.
intra-tumour heterogeneity, behaved similarly. Interestingly, the number of
clonal populations existing in parallel showed a non-linear association with
time: averaging four clonal populations per tumour (median), their number
reaches a plateau at a tumour size of 10cm and starts to decrease. This
observation might be an example of earlier discussed linear evolution that
suggests the ultimate convergence of the cancer population to one lineage.
Although parallel evolution was apparent in different clonal populations
within some tumours, some genes were never co-mutated in the same clone
(BAP1 and SETD2) while often co-occur within the same tumour. Finally, an
unsupervised clustering based on evolutionary features such as evolutionary
timing, order, and co-occurrence, identified seven clusters of tumours with
distinct physiological features and clinical behaviour. Cancer cell populations
within the most aggressive tumours were dominated by a small number
( 5) of clones, each harbouring multiple driving mutations, evidence of a
history where a dominant clone achieved a sufficient selective advantage that
initiated a clonal sweep over the population. Interestingly, another cluster
of high-stage tumours progressed through drastically different evolutionary
trajectories: they showed very high intra-tumour heterogeneity. Usually, they
averaged 12 clones simultaneously growing within a tissue. These tumours,
however, showed twice as longer time to relapse compared to the tumours
with “multiple driving mutations” clones (11.7 months to 4.7 months, al-
though not statistically significant), suggesting that branching evolution and
selective pressure on subclones limits the speed of tumour growth. Other
clusters comprised early-stage tumours populated by BAP1-only mutants
and clones that only bypassed VHL and have not yet accumulated additional
mutational drivers. This suggests an early stage before progression to the de-
fined evolutionary trajectories. This work serves mainly as the experimental
documentation of the deterministic nature of cancer evolution, which could
be utilised to develop an evolutionary grading system based on biopsies.

As much as the discussed studies concerned the evolution within
primary tumours, the third study focused on tracking the evolutionary
routes to metastasis [241]. ccRCC, with its well-established genetic land-
scape within the primary tumour, is a compelling model to study clonal
evolution to metastasis. It readily spreads through both lymphatic and
hematogenous routes. It can colonise various tissues, including the lung,
bone, liver, brain, pancreas, and soft tissues, with the worst prognosis usually
associated with the liver [242, 243]. The spatial distribution of metastases is
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also variable. It ranges from solitary metastasis in a single location to oligo
metastases, defined as up to three of five invasion sites in limited locations
and to widespread metastases over multiple regions. Although patients
with synchronous solitary or oligometastatic tumours can be managed with
local strategies, i.e. surgical removal of primary tumour and metastases
or ablative therapi1es, a fifth of these show signs of tumour progression as
early as one-month post operation [244]. Building upon seven conserved
evolutionary subtypes characterised before, the endpoint of TracerX was to
distinguish metastasis-competent clones and explore the routes and timing of
metastasis to different anatomical sites. For a better glance at the potential
power of this study, a total of 575 primary and 335 metastatic multi-region
biopsies taken from 100 patients were analysed, which greatly exceeds the
average biopsy to tumour ratio of similar studies, e.g. 2 to 3 biopsies per
tumour on average [245]. Provided that metastases emerge late in the tumour
evolution and are thought to be seeded by small groups of cancer cells, the
loss in the heterogeneity in metastases is to be expected. However, questions
remain whether the metastases grow as a monoclonal population that evolves
on the new site from a single clone or whether the metastases mirror the
clonal composition of the primary tumour, and if yes, does it mean that the
majority if not all subclones share the metastatic potential [246, 247]. From
the analysis of the TracerX cohort, it is evident that the clonal population
in metastases are much more homogenous, with the proportion of clonal
variants reaching an average of 87%, contrasting 32% in primary tumours.
Similarly, cancer cells in metastatic lesions carried fewer somatic driver mu-
tations than those in their matched primary tumour, averaging 9 and 12,
respectively. Peculiarly, only 5.4% of driver mutations observed in metastases
appeared de novo, indicating that metastatic competence was selected within
the primary tumour. Those “selected” clones that progressed to other sites
showed higher frequencies of somatic copy-number alterations, heightened
proliferation, and loss of heterozygosity in HLA, suggesting the ability to
evade the immune response. Peculiarly, the loss of either the short arm of
chromosome 9 (9p) or the long arm of chromosome 14 (14q) or both of them
together was a hallmark of the majority of metastatic cases (71%). Oppo-
sitely, these genomic alterations were absent in tumours without metastatic
disease at the time of analysis. Could another catastrophic chromosome
event be needed to pass the evolutionary bottleneck? Considering the loss
of 14q and 9p as potential biomarkers for the detection of early metastasis,
14q and 9p were predominantly subclonal and might go undetected by single
biopsies [234]. In retrospect to the study on primary tumours, the identified
evolutionary clusters exhibited distinct metastatic potentials. The “multi-
ple clonal drivers” and BAP1-driven populations that exhibited attenuated
chromosomal instability and low intratumor heterogeneity, i.e. populations
whose clonality and genetic composition are evident of punctuated evolution,
drive the more aggressive disease that culminates in rapid progression to
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multi-region metastasis. In these tumours, the metastatic potential is ac-
quired already within the most recent common ancestor, which drives swift
metastatic spread. Similar evolutionary tendencies have been observed in
other cancers of pancreatic, breast and uveal origins, consistent with the
tendency of some tumours to metastasise rapidly [248, 213, 249]. In contrast,
tumours that grow through the branched evolutionary process and consist of
highly heterogenous populations with moderate levels of genomic instability
progress slowly to solitary or oligo metastases. One could hypothesise that
clonal competition between the abundance of clones that limits the speed
of primary tumour growth should similarly confine the progress towards
metastasis.

The preceding section supplemented the earlier discussed modes of
cancer evolution with experimental evidence. Some evolutionary trajectories
of tumour progression are rigid and reliably replicated in tumours from
different patients: even across cancer types, some tumours evolve in a similar
mode of punctuated evolution through early and rapid speciation events that
are followed by an expansion of a small variety of adapted clones, while others
evolve stepwise in a better image of Darwin’s phyletic gradualism. These
conserved trajectories could provide a basis for a new method of clinical
classification or guide therapeutic decision-making, e.g., drafting drug regi-
ments to blockade clonal resistance or deciding on surgical intervention. The
development of new sequencing methodologies and theoretical frameworks
facilitates the capture of tumour mutational signatures from the circulating
tumour cells and cell-free DNA derived from blood and even salivary samples
[250, 251, 252, 253]. Although the resolution of these approaches still would
not detect rare subpopulations, a combination of the detected signatures
with known evolutionary trajectories could help better describe the clonal
composition of a tumour. Large-scale attempts were made to pan-cancer
studies of cancer evolution based on the massive WGS data from TCGA and
ICGC [254]. Although informative, due to the shallow sequencing (average
coverage is 30x), these results cannot pierce deep into phylogenetic trees
of cancers and miss infrequent but clinically relevant clones. Other studies
focusing on individual cancer types and utilising the deepest available WGS
data (coverage of 80x) add to the overall knowledge of cancer evolution
[255]. More temporal studies like this and TracerX that utilise deep sequenc-
ing would benefit from creating a reliable catalogue of stable evolutionary
trajectories. In this regard, another large-scale longitudinal study soon
finishes recruiting patients, and it would be interesting to see more cancer
types profiled this way [256]. Despite the comprehensive characterisation
of tumours from genomic, transcriptomic, and temporal perspectives, the
main limiting factor in cancer studies comes from the complexity of the bulk
sequencing data, which, however, might soon no longer be an issue with the
maturation of single-cell sequencing technologies [257, 258].

53



2.12 The promise of single-cell sequencing

Previous sections followed the development of omic technologies since the
inception of the earliest methods like SAGE, through the explosion of mi-
croarray genotyping and transcriptomics, to the advent and establishment of
NGS. The applications of multi-omics to cancer research were scrutinised
alongside the limitations of the existing approaches. As becomes evident in
the deliberation on the evolution of cancer, the heterogeneity of cancer cell
populations, i.e. presence of clones with different adaptive capabilities in
variable proportions, is the force that drives the resistance to therapy as well
as the progression of the disease in general. Despite numerous informative
studies and databases of cancer genomic data that utilise bulk sequencing,
translating these data into knowledge seems to have reached its methodologi-
cal limit. Cellular heterogeneity and the spatial organisation of clones within
the tumour influence the disease’s progression and, therefore, the potential
venues for therapy. Thus, cancer heterogeneity necessitates the methodology
that captures genomic and transcriptomic data on a cellular level for its
mysteries to be recorded, analysed, and re-purposed.

RNA sequencing in single cells has a long history, with individual
cell profiles recorded in the early nineties [259]. In that study, Eberwine
et al. profiled gene expression of single neurons from rat’s hippocampus
using a sophisticated methodology: selected neurons were dissociated, after
which primers, nucleotides, and enzyme mixtures were microinjected directly
into the cell. The libraries from RNA were created by in vivo reverse
transcription (RT) coupled with amplification by in vitro transcription
(IVT). This approach measured the relative expression of four mRNAs in
fifteen cells. Although humble, yet still a beginning. The incorporation of
PCR amplification improved both and allowed simultaneous quantification
of the absolute number of RNA molecules transcribed from two dozen genes,
still far away from transcriptome-wide studies, which was first achieved by
applying new amplification methodologies that allowed the preparation of
libraries from single cells to be profiled by hybridization-based microarrays
[260, 261]. In 2012, the first Smart-seq protocol was published, providing the
experimental framework to achieve nearly bulk RNA-seq quality. However,
this approach was still limited to the assay of only a handful of cells due
to universal reliance of early methodologies on isolating single cells in the
individual tubes before lysis and library preparation, which essentially was a
bottleneck for up-scaling the number of cells that can be profiled per run [262].
Some peculiar designs utilised bespoke cell-pickers to improve the throughput
(number of cells assayed) [263]. The alternative was to couple the method
in use with FACS sorting to automate the loading of cells into microwells
[264]. The addition of post-cell capture automation further improved the
capacity of FACS-based methods [265]. Nevertheless, the actual expanse

54



of the single-cell sequencing capacity happened when new approaches for
passive cell capture were developed. The C1 chip from Fluidigm was the
first to be commercialised. This chip allowed the passive capture of up to 96
cells and their delivery in an exact volume of enzymatic mixture to reactors
where the cDNA is prepared [266]. In parallel, another method was designed
for a random capture of cells in nanolitre drops of emulsion: in a microfluidic
circuit, two channels flow, one delivering an enzymatic mixture with beads
covered by polyT primers and the other cells in a buffer [267]. Then, the
flows of these two liquids are combined, resulting in a drop containing the
cells and all the reagents. This process is imperfect; sometimes, no cells or
multiple cells are captured, causing the creation of a “doublet”, which are
deconvoluted computationally during data analysis. Instead of using the flow
of two channels, the parallel approach used gravity to mix cells in picolitre
reactors, with the cell mixtures calculated according to Poisson statistic to
maximise the chance for a well to receive only one cell [268]. Today’s most
popular platform for single-cell assays, Chromium from 10x, utilises a similar
approach to drop-seq [269]. The captured cell drops are then collected in oil
within a tube, where cDNA is created and barcoded. The barcoding process
is vital, allowing us to identify RNAs from individual cells.

Additionally, due to the random nature of cell capture, a fraction
of cells will always be missed; therefore, the pool of available barcodes
should always be larger than the number of cells in the mixture. To this
end, combinatorial barcodes allow multiplexing of tens of thousands of cells
simultaneously [268]. The combination of these approaches pushed ahead
the capacity of single-cell methods, with the number of cells assayed per
study increasing exponentially up to 2017 [270]. In a similar trend, the
overall number of published articles that utilise single-cell RNA-sequencing
(scRNA-seq) in one way or another grows to the bulk RNA sequencing, while
the percentage of single-cell RNA-seq among all RNA-seq studies increasing
from 5% in 2016 to more than a quarter in 2022 ( 26%) (Figure 2).

Outside of RNA-sequencing, WGS and WES of single cells are also of
interest concerning cancer heterogeneity. As was mentioned in the discussion
on cancer clonality, sequencing individual cancer cells from different parts of
the tumour would provide an unprecedented snapshot into the evolutionary
trajectory of that particular tumour. However, the single-cell resolution
comes at a price. Valid for all single-cell sequencing methods, the main trade-
off is the tiny amount of RNA/DNA available in each cell. Therefore, all
genomic single-cell approaches rely on whole genome amplification techniques
(WGA). These methods allow DNA amplification from a meagre starting
amount but inherently introduce various biases.

Currently, there exist three main WGA methods: multiple displace-
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ment alignment or isothermal amplification (MDA), degenerate nucleotide
primed PCR (DOP-PCR), and hybrid methods that combine the usage of
MDA with DOP-PCR [271].

MDA is based on annealing random hexamers with primers to the
single-strand denatured DNA, followed by DNA fragment synthesis [272].
The synthesis proceeds through a DNA polymerase’s sequential displacement
of de novo synthesised DNA fragments with strand displacement activity. The
most commonly used protocols utilise ϕ29 polymerase with high processivity
and low error rates [273]. Displaced fragments are amplified by the newly
annealed hexamers with primers, resulting in a network of branched DNA
structures. The main shortcomings of MDA application in single cells are high
rates of allelic dropout and preferential amplification. These two processes
are connected and could exacerbate the adverse effects of each other. In
that regard, allelic dropout corresponds to a random non-amplification of
one of the alleles in a heterozygous sample, which can vary drastically
between different studies: 25% and 60% rates have been reported [272, 274].
Preferential amplification, as evident from the name, refers to the relative
overamplification of one of the alleles. It is still being determined if the
process is random or systematically biased towards specific loci [271, 272].
Nevertheless, both processes may be a severe hindrance to quantitative
genomics. Additionally, ϕ29 activity creates low levels of chimeric sequence
side products [275]. The latter usually coincides with the branching process
and can be mitigated by an endonuclease-driven debranching reaction [119].

As the name implies, the second group of methods uses PCR-based
amplification with random priming [276]. In practice, PCR/based methods
suffered a loss of signal from most of the genome during the amplification
process due to differences in the density of common sequences and variability
of PCR efficiency between different loci [271]. Further exacerbating these
problems, these methods use thermostable DNA polymerases with higher
error rates than thermolabile polymerases, resulting in a high rate of false
negatives. To overcome the low coverage of PCR-based methods and an
uneven signal from isothermal MDA methods, new hybrid approaches were
developed that combined features of both. The first one, known as displace-
ment DOP-PCR or PicoPLEX, achieves the initially limited amplification of
the DNA by MDA, followed by PCR amplification of the fragments generated
by the MDA. The PCR reaction is primed by the common sequences intro-
duced into the amplicons by MDA [277]. This idea was further developed in
a protocol named multiple annealing and looping-based amplification cycles,
or MALBAC. MALBAC’s principal difference from its predecessor is that
it cycles the temperature regime during displacement amplification. This
procedure promotes the looping of the isothermal displacement amplicons,
inhibiting their further uneven amplification before the PCR step [278].
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In practice, MDA and MALBAC are predominant. Although both
were reported to perform similarly in human cells, some differences and
trade-offs in the final amplification products are present. For example, in
one report, MDA surpassed MALBAC in genome coverage (84% versus 52%)
and, consequently, in the SNV detection rates to a similar degree. On the
other hand, MALBAC produced more uniform coverage and fared better
in detecting CNVs [279]. Other reported identical results: MDA shows a
better range than MALBAC but suffers in uniformity of sequences covered
compared to MALBAC [280].

Overall, an all-around-winning approach for preparing genome mate-
rial from single cells has yet to be. Although whole genomes can be sequenced
from single cells, it comes with the trade-off of increased rates of false-positive
and false-negatives and the cost of the inability to cover the entirety of the
genome reliably.

In the context of cancer heterogeneity, single-cell WGS is of value.
Considering the drawbacks discussed, the phylogeny of cancer cells and
clonal mutational profiles can still be recovered after imposing appropriate
mutational rate cutoffs, similar to the standard procedure in bulk WGS [281].
In 2011, Navin et al., for the first time, utilised sequencing of whole genomes
from single nuclei extracted from cancer cells of a breast tumour and related
metastasis [282]. The group sequenced 100 cells from 5 to 12 different tumour
regions and metastasis. It could detect patterns of punctuated clonal evolu-
tion in both cases, i.e. all detected clonal subpopulations were each distant
from their root without observable branching and connecting subpopulations.
A more recent analysis of single-cell genomes from metastatic colorectal
cancer managed to reconstruct a phylogenetic tree and identify a clonal
population that survived the treatment-induced evolutionary bottleneck and
evolved for years under adjuvant therapy before expanding rapidly following
the termination of treatment [283]. Similarly, circulating tumour cells can
be isolated and interrogated using single-cell sequencing. Although there are
questions about whether the cancer cells captured this way would be enough
to characterise the diversity of the tumour, this possibility is very appealing
for non-invasive diagnostics and disease monitoring [284, 285]. Alongside
the experimental forays, new methods constantly develop to reliably infer
evolutionary trajectories from single cells [286].

To conclude, single-cell genomics is positioned to be the technology
that, with proper scaling, could allow chartering an exhaustive map of
cancer evolution. Nevertheless, current methods suffer from methodological
inefficiencies and low throughput. If hypothesised with enthusiasm, it may
be that only a few years of honing the existing strategies divide us from
breakthroughs.
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2.13 Single-cell RNA-seq data normalisation

Together with incredible resolution, single-cell profiling brought along new
computational issues. As of 2021, for every three studies involving single-
cell RNA-seq profiling, two single-cell RNA-seq computational tools were
published [269]. In this regard, single-cell RNA-seq is undergoing the same
process as bulk RNA-seq and microarrays in their infancy. In other words,
many different tools and approaches will be published before the field con-
verges to a status quo. Currently, there are two venues to work with single-cell
RNA-seq data: data transformation followed by general statistical methods
and statistical modelling of the observed data.

Let us first consider the first approach. The common motivation
for data transformation arises from the fact that distributions of mRNA
counts are heteroscedastic, i.e. the variance increases along the mean of the
observations. This is usually accounted for by so-called variance stabilising
transformation or vst. Usually, mean-variance dependency is accounted for
by assuming Negative Binomial (NB) distribution, the same as a Gamma-
Poisson mixture. In this regard, scRNA-seq data is no different from bulk
RNA-seq: almost all statistical tests devised to compare classes in categorical
experiments utilise generalised linear models (GLM) that assume count data
following either NB of similar distributions [287]. It is worth mentioning
that differential expression between conditions is of only limited interest for
single-cell studies that are more concerned about the identities of the groups
of cells that might correspond to functionally different cell types (clustering
analysis) and the inference of developmental trajectories [288].

Nevertheless, as long as most dimensionality reduction and cluster-
ing methods often use metrics based on Euclidian distance, which implies
normality, the data transformation task stays on the agenda. Coming back
to the data transformations, the mentioned NB distribution with mean µ and
overdispersion parameter α implies a quadratic mean-variance relationship
defined as follows:

Var[Y] = ν(µ) = µ+ αµ2 (1)

Here, α parameter defines the measure of overdispersion, whereas α = 0 will
result in a Poisson distribution. Assuming a functional form of a relationship
between mean and variance as V ar(y) = g(µ), the goal is to find a function
g for which the standard deviation is constant:

Sd[Y] = const (2)

Delta method allows to approximate the standard deviation of a transformed
random variable from the function of a random variable:

Sd[g(Y)] ≈ |g′(µ)|Sd[Y] (3)
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Putting (2) and (3) together, one can set the requirement for (3) to be
constant as in (2) and solve for |g′(µ)|:

g′(µ) =
const

Sd[Y]
=

const√
ν(µ)

(4)

Since the constant does not affect variance stabilising properties, one can
now derive a function form of this transformation by solving the integral
[289]:

g(µ) =

∫
1√
ν(µ)

=

∫
1√

µ+ αµ2
=

2√
α
asinh(

√
αµ) (5)

Finally, (4) is our variance stabilising function for NB distribution. Peculiarly,
these transformations of NB distribution were explored by Anscombe, who
considered a well-working and familiar observation of the solution above
[290]:

g(y) = log(y +
1

2α
) (6)

The latter approximation has the same form as the heuristic log transform,
but instead of an arbitrarily picked pseudo count to mask zero values, a
data-driven “pseudo count” is used. This transformation generally smoothens
the variance for well (and strongly) expressed genes, while the small counts
still exhibit a mild mean-variance dependency. Overall, no transformation
works well on small counts, so the only option is to fare onward [291].

Another normalisation procedure involves scaling expression by size
factors. Bulk-sequencing size factors are essential to account for heteroge-
neous sequencing depth across different samples. Although most scRNA-seq
protocols nowadays use unique molecular identifiers (UMIs) that remove
technical variation due to PCR amplification, technical variation due to
stochastic molecular processes, such as the efficiency of reverse transcription
or differences in cell lyses, remain unaccounted [292]. In this regard, one
common approach is to use a normalisation factor, such as the total number
of UMIs per cell multiplied by a scale factor. This approach, for example, is
used in a standard workflow of Seurat [293]. Alternatively, the 10x genomics
pipeline suggests normalising by scaling factor computed as a ratio between
the median UMI count per cell and the total number of UMIs per cell [294].

The second approach utilises statistical modelling and can be subdi-
vided into two categories based on the conceptual differences: observation
and data-driven, or hypothesis-driven modelling [295].

Let us consider first the data-driven modelling. Models that follow
this principle are hierarchical and try to simulate to the best extent two
sources of variance: the true biological variability, i.e. true variance in
expression of genes within/across cells, and the technical variability that
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masks true expression levels from the ones observed in an experiment. Here,
it is important to note one property of single-cell data: an abundance of
zeros, or “dropouts”, among the expression estimates. In early single-cell
transcriptomics, an assumption prevailed that scRNA-seq data is zero-inflated,
i.e., it contains more zero counts than expected by chance. This “dropout”
phenomenon was first referenced in a study that analysed scRNA-seq data
from low-throughput plate-based methods like Smart-seq [296]. It was noticed
that differential expression between two cellular subpopulations assayed with
scRNA-seq showed more zero values than was observed in comparison to
typical bulk RNA-seq samples. How the idea of dropouts and zero inflation
permeated the field of droplet-based methods so far remains unknown [297].

This notion led to the development of various methodologies to
counter zero inflation. One concept suggested that an overabundance of
zeros corresponds to missing data and that the latter can be predicted from
the expression of other genes if there was no dropout [298, 299, 300]. The
procedure to predict missing data based on existing observations is called
imputation and is somewhat common in other machine-learning domains
[301]. Over time, even imputation-based clustering methods were developed
to work with single-cell data [302]. In an alternative approach, NB models
were augmented with a probability to observe a zero in any given draw,
i.e. “zero-inflated negative binomial” distribution-based modelling [303, 304].
However, closer investigations of droplet scRNA-seq counter the assumption
of zero inflation as an inherent property of these data. Multiple studies found
that NB can reliably model scRNA-seq gene expression values and didn’t
benefit from adding an inflation component [305, 306]. One peculiar paper
suggested that a zero-inflation-like appearance could be simply a consequence
of logarithmic data normalisation that introduces an artificial gap between
zero and non-zero counts that can be alleviated by generalised PCA models
[307]. When disregarded, the per-cell proportion of zeros can become the
main source of variance in the dataset and bias the biological signal from gene
expression. Overall, the compounding evidence from the multiple studies
with scRNA-seq of negative controls with known mRNA contents suggests
that the number of observed zeros is consistent with those expected from an
NB distribution, and the additional inflated component is unnecessary. It is
worth mentioning that the number of zeros per cell is also affected by the
efficiency of RNA material capture after the lysis (10x Genomics V3 protocol
estimates 30% capture efficiency); therefore, improvements in the sequencing
depth per droplet would allow counting more molecules and sequentially
reduce the number of zeros. On the other hand, Kim et al. noticed in the
example of the PBMC dataset that genes annotated with immune-related
terms are significantly zero-enriched compared to the rest of the population,
attributing the biological variance to zero-fraction. They proposed to use a
test for cellular heterogeneity using zero-fraction statistic [308].
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Now that zero inflation is addressed, data-driven modelling can be
further discussed. As was mentioned earlier, two models constitute the final
model, one accounting for the expression variance and another for technical
variance. As it should be evident by now, the most common choice is NB, a
Gamma-Poisson mixture model, where expression is modelled by Gamma
distribution and measurement error is modelled by Poisson distribution. Let
us recite and consider the following terminology: the final model used is
the Observational model, the model to account for true gene expression
variance is the Expression model, and the model to account for technical
variance is the Measurement model. This resource developed by Sarkar et
al. holds a complete annotation of existing scRNA-seq methods with the
associated models [309]. Similarly, the mentioned model that accounted for
zero inflation in expression values used point-Gamma distribution as the
expression model [304]. We have already discussed the connection between
the NB model and the variance stabilising transformation to explain the
feasibility of log transformation with a data-driven selection of a pseudo
count. Data-driven modelling is sometimes also used for data transformation.
Seurat’s sctransform function exemplifies this approach, which uses Pearson
residuals from the NB model [310]. This approach, however, was brought
to question by Lause et al., who found evidence of over-specification in the
model used by the authors. In detail, the authors fitted the NB expression
model with three parameters, two of which were estimated gene-wise for
each gene. Further examination showed that the two gene-wise estimated
parameters show powerful correlations (Pearson’s R = -0.91), especially for
weakly expressed genes, altogether bringing up the evidence for overfitting
[311]. The suggestions of Lause et al. were considered in the next release
of the sctransform that now uses an offset model with only two parameters
and a fixed slope. Benchmarking 59 real datasets, the authors conclude
the overall applicability of the NB model for scRNA-seq data, inasmuch as
all datasets exhibited overdispersion with the exclusion of the genes with
minimal counts [312].

On the contrary, the hypothesis-driven approach tries to build the
model describing observed gene expression around the mental concepts of
actual biological processes. Therein originates the restriction that the esti-
mated values of these models should represent meaningful physical quantities
and be accompanied by estimate errors. One example of this approach is a
Sanity framework, as abbreviated from “SAmpling-Noise-corrected Inference
of Transcription activity” [313]. In this regard, Sanity follows the flow of
information from the physical transcription process to the observed gene
expression patterns. The model first considers the transcriptional activity
of the cell as the sum of all gene-wise transcriptional activities, which in-
dividually represent a weighted average of recent transcription and mRNA
decay rates. Each mRNA count is then defined as a Poisson sample with
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the mean equal to the transcriptional activity of a related gene. Finally, the
detected number of UMI is a Poisson sample with a mean of transcriptional
activity multiplied by a capture probability. Although authors state that the
probability of observing mRNA molecule given by Poisson distribution is
independent of how the transcription and decay rates fluctuated over time,
others report that non-independent, i.e. targeted, mRNA degradation and
promoter fluctuations resulting in transcriptional bursts lead to deviation
from Poisson statistics, whereby “Sanity” could show bias in its estimates
[314]. On the contrary, other models are built specifically around the patterns
of transcriptional bursting [315, 316, 317]. The model of Jiang et al., for
example, utilises two hierarchical Beta-Poisson models to estimate true allele-
specific expression and then models the technical noise from the hierarchical
mixture of Poisson and Bernoulli random process [317]. To conclude, at this
point, there exists no universal solution to model scRNA-seq ideally and
for some tasks, the complications of elaborate models are time-ineffective,
e.g. gene-wise fitting of overdispersion parameter in NB takes around 40
minutes for an average-sized scRNA-seq dataset, and not truly necessary,
therein bringing us back full circle to the most widely used approach of
log-transformation and depth-normalisation [287].
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2.14 Computational suite for single-cell RNA-seq analysis

As mentioned in the previous paragraph, scRNA-seq data are primarily
of interest for the search for new functional states of the cells and their
developmental trajectories. Methods whereby the scRNA-seq data is analysed
towards the mentioned goals, are not lacking in abundance. For clarity, the
author will concentrate on the most popular techniques from the following
computational tasks: feature selection, dimensionality reduction, clustering,
and trajectory inference.

Commonly encountered scRNA-seq datasets assay the expression of
roughly ten to twenty thousand genes, which, for the most part, do not carry
valuable informational load and, if retained, may interfere with downstream
analysis. Therefore, feature selection (FS), or, to be more precise, gene
selection, occupies a key position in a scRNA-seq analysis pipeline insomuch
that every analysis implemented downstream, one way or another, derives
its results from the set of features selected afore.

The basic FS methods follow the idea that genes whose expres-
sion vary the strongest across the cells within the dataset are the most
informationally-heavy and capture the largest fraction of biological vari-
ation within the dataset [318]. The most straightforward way to select
features would be to assess mean-variance relation at the gene level and
pick those genes that exceed a certain threshold. A vigilant reader would
notice a fallacy in this approach, inasmuch as mean-variance relation in
scRNA-seq datasets is heteroscedastic, and selection by a threshold would
by all odds introduce a bias towards highly expressed genes (see section
2.13). Therefore, variance-based FS methodologies are designed to account
for mean-variance correlation by modelling mean-variance dependency: only
the genes whose variance across cells surpasses the null-model are selected;
these informationally-heavy genes are colloquially known as highly variable
genes (HVGs) [319].

Although variance-based FS arguably stands as the most common
appraoch in scRNA-seq analysis, there other methods that follow conceptually
different strategies. One earlier tool extracted features with highest loadings
from PCA reduction of the normalised dataset and desribed the extracted
genes in a familiar way: high loading genes (HLVs) [320]. More recent publi-
cations leveraged graphs and gene-gene correlations to extract informative
features, yet the comprehensive benchmarking is yet to be performed to
reliably assess the performance of these tools [321, 322].

Dimensionality reduction is a standard procedure in every single-cell
analysis pipeline. The importance of dimensionality reduction (DR) was
secondary in the era of bulk sequencing, where the number of samples in
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the dataset, i.e. the number of dimensions, was small enough to be handled
by methods like PCA or MDS. On the contrary, single-cell datasets are
composed of tens of thousands of cells, i.e., dimensions, and the problem of
DR is acute. First of all, why is DR important? In bulk RNA-seq, DR is
used to assess the quality of the experiment visually, e.g. differences between
conditions and similarities between replicates, before proceeding with the
downstream analysis. In the case of a single-cell experiment, the DR is
applied with a similar aim, i.e. to assess the cells in the experiment visually.
Yet, the downstream consequences of this visualisation carry much more
gravity. In other words, its penultimate task is to produce a visualisation,
or rather a map, of the dataset in question that is tractable by the human
eye and minimal in terms of informational loss. In the downstream analysis,
this map is used to identify assemblies of cells, i.e., clusters, that are further
interrogated for their functional qualities, expressed markers, developmental
trajectories, etc. It makes it evident that the chosen DR method should be
able to preserve hidden local and global structures of the data for downstream
analysis to bear meaning [323].

In the last years, the trial and error approach of the community
outlined a popular standard workflow that often co-utilises linear DR by
PCA to a few dozen dimensions and non-linear DR of the PCA output.
The non-linear part is done by either t-SNE or UMAP [324, 325]. Let us
first have a cursory view of these methods starting with t-SNE. Developed
to visualise high-dimensional data, t-SNE quickly found its application in
single-cell data analysis. In their 2019 work, Kobak&Berens reviewed in
detail how the t-SNE is used in single-cell transcriptomics and advised on
good practices and how to avoid potential pitfalls in one’s analysis [326]. To
give the basic intuition about t-SNE, let us informally outline the founding
concepts of this method. In general terms, t-SNE maps the points in a high-
dimension to a low-dimensional space so that neighbouring points remain
neighbours and distant points remain distant. To achieve this, the algorithm
randomly distributes all points over the low-dimensional space, allowing
them to interact as if they were physical entities like molecules. Analogous
to the physical world, the positions of each point after the initialisation are
governed by two powers: repulsion from each other and attraction to the
nearest neighbours. Attraction is controlled by the perplexity parameter that
effectively decides how many nearest neighbours the point is attracted to,
whereas the power of repulsion is effective against all points in the dataset,
not only nearest neighbours, and is controlled by the ρ parameter. This
definition is enough to develop an intuition on the effect of the balance
between these powers: favoured repulsion would lead to a smaller number
of bigger and more stable clusters, whilst the favoured attraction would be
more sensitive and capture finer data structures.

65



One thing to remember using any stochastic neighbour embedding
(SNE) based methods, which include both UMAP and t-SNE, is that, al-
though, neighbouring points, i.e. clusters, are preserved in low dimensional
representation, the geometrical arrangement of these clusters is not reliably
captured; spatial positioning of the clusters relative to each other could be
misleading. This drawback’s severity scales with the size of the analysed
dataset. When considered, these drawbacks can be accounted for and ame-
liorated by the proper analysis procedure, a recipe of sorts. The recipe of
Kobak&Berens advises on PCA initialisation, multi-scale similarities, and
increased learning rate [326]. In detail, PCA can identify the global archi-
tecture of the data, and the initialisation of the t-SNE algorithm with PCA
coordinates instead of random positioning helps t-SNE to identify finer sub-
structures while preserving the geometrical structures provided by the PCA
[327]. Multi-scale similarities approach suggests using multiple perplexity
metrics simultaneously and averaging them for the final decision on cell
attraction. This allows the method to simultaneously consider adjacent cells
and more distant neighbours, thereby better capturing the data structures
[328]. Multiple studies suggested that the default learning rate of 200 is
insufficient for large datasets and leads to suboptimal convergence, with some
adopting the learning rate constant of 1000 in their t-SNE implementations
[329, 330]. Finally, the authors advise using the following empirically devised
rule of thumb for the learning rate: η = n/12 [329].

The second method, UMAP, or Uniform manifold approximation and
projections, although published ten years later than t-SNE, attracted many
followers due to its seemingly faster performance than the original t-SNE
[331]. The latter difference is likely not to stand anymore, as contemporary
t-SNE algorithms are reported to perform as fast as UMAP on similar
hardware [332]. Conceptually, UMAP and t-SNE are similar as both use the
same forces of attraction and repulsion. However, the nature of repulsion
forces and sampling-based approach to optimisation differ between UMAP
and t-SNE. Both methods seem to produce comparable results regarding
the preservation of geometric structures, although slightly different visually.
In one report, a particular tuning of attraction-repulsion forces (stronger
attraction) in t-SNE generated close-to-identical reproduction of UMAP
visualisation [333]. In the same report, the t-SNE algorithm geared towards
extreme attraction can recover continuous superstructures from simulated
data and produce results similar to graph-based methods such as ForceAtlas2
[334]. This may be a glimpse of the hidden potential of t-SNE’s DR in the
tasks of trajectory inference. Before that, however, this approach needs to
be formalised.

Trajectory inference (TI), whereby an investigator can conclude the
developmental or any other temporal trajectories within a population of
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cells, is a technique inseparable from the contemporary scRNA-seq analysis.
Across the fields of cancer and developmental biology, the dynamic changes
of cell states and lineages underlie the core questions of the respective
disciplines. Insofar as temporal studies are experimentally tricky due to
the cell-destructive nature of the sequencing process, TI methods are of
interest for a panoply of studies. Therefore, many dedicated their work to
developing computational methods to infer the temporal trajectories from a
static snapshot of cell states, scRNA-seq [335, 336, 337]. Early methods were
mainly focused on aligning the data to fixed topologies, such as linear or
bifurcating trajectories [338, 339, 340]. More specialised techniques looked
for circular topologies to model cell cycle [341, 342]. Approaches developed
afterwards also infer a topology without a fixed reference and extend available
trajectory topologies with graphs, cycles, and disjointed topologies, which
makes the problem even more computationally complex [335, 343, 344].

In contrast to DR, where the state-of-the-art approach converged in
UMAP and t-SNE, the TI methods at one’s disposal are as diverse as many.
Many undertakings tried to apply different TI methods alongside each other
to the same dataset in attempts to make a comprehensive characterisation
of their strengths and weaknesses [345, 346]. To the author’s knowledge, the
largest attempt in this direction was made in 2019. It culminated in a web
database dedicated to cataloguing and integrating the whole universe of TI
methods in one place [347, 348]. Despite the differences in the structures
they infer, most of the methods start with DR as the first step; it is worth
noting that t-SNE or UMAP are not used as the goal here is not visualisation
but an attempt to repel the curse of dimensionality. PCA is often used, while
the other common alternatives are diffusion maps and linear embeddings
[349, 350, 351]. After this, the methodologies bifurcate into those that first
identify clusters, i.e. cluster-based, and others that construct a similarity
graph, i.e. a graph where data points are vertices that are connected by edges
built from a selected distance metric and infer topologies from the graph via
various probabilistic methods such as Hidden Markov Model (HMM).

Clustering-based methods, as the name implies, first locate stable
cell states, i.e. clusters, in the dataset and then draw a trajectory through
these clusters. Different clustering methods are used, including hierarchical
clustering, k-Nearest Neighbours (kNN), non-negative matrix factorisation
(NMF), and Louvain clustering. Some algorithms do not come with a specific
clustering method but rather take cluster annotation as input, allowing the
user to decide on the approach [352]. Clusters are commonly connected
by the minimum spanning tree (MST), a graph that connects all vertices
(clusters) with a minimum possible total edge weight. In some methods, an
additional step to construct principal curves is added after clustering and
building an MST [336].
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Graph-based methods start with building a graph representation of
the data and use diffusion or traversal methods to construct a trajectory
through the graph. Most methods build kNN-graph with Euclidian distance
metric, while the approaches to trajectory constructions vary. PAGA par-
titions the graph based on a cluster annotation provided by the user (the
original method used Louvain clustering). Then for each partition, a “PAGA
connectivity measure” is defined, which is the ratio of inter-edges between
clusters to an expected number of inter-edges under random assignment, to
reveal connected and disconnected regions [335]. Pseudotime is inferred using
a modification of the diffusion pseudotime (DPT) algorithm that allows it to
deal with disjointed partitions. One recent method was designed to expand
the TI framework to include lineage tracing data [353]. Considering the
contemporary trends of multi-modal single-cell data analysis, new universal
methods can be anticipated to infer TI from different kinds of omic data
[354].

As much as single-cell analysis is concerned with studies of cell
communities, it depends on correctly identifying these communities, which
is a clustering problem. Cluster analysis is omnipresent in all single-cell
analysis pipelines, and selecting the correct method is paramount for proper
biological interpretation. Although impressive progress has been achieved in
the last years in the development of new clustering approaches, the latter
has not yet converged to a consensus.

Before clustering, many tools start with variants of feature selection
and DR. In practice, selecting the most variable features (HVGs) is sufficient
in most cases [318]. For DR, PCA and its variations are ubiquitous [355].
Finally, the distances are calculated from the obtained low-dimensional space.
Many metrics are available, including Pearson’s and Spearman’s correlations,
Euclidian distance, Cosine similarity and Jensen-Shannon divergence. For
the clustering itself, the most popular algorithm is k-means. However, it
should be used wisely as k-means results depend a lot on the initial positions
of centroids and can converge to a local minimum. It is advised to re-run
the algorithm multiple times to achieve a stable solution, as is implemented
in the SC3 scRNA-seq analysis suite [355]. Another issue is that k-means
is biased towards clusters of similar sizes, which results in the admixture
of smaller clusters towards bigger groups. One way to solve it is to add an
outlier detection function to the procedure [356]. Hierarchical clustering (HC)
is another universal method that fares well for single-cell analysis. However,
the method is costly regarding computational time and memory requirements
that scale quadratically with the number of cells in the dataset because, for
every split, the algorithm considers distances between many, if not all, data
points. One peculiar expansion of HC that improves its ability to identify
small clusters is to carry out DR after every split and merge [357].

68



Due to the mentioned limitations of k-means and HC, especially
for large datasets, graph-based community detection algorithms are rapidly
gaining popularity. The main conceptual difference is that these algorithms
identify densely connected communities, i.e. vertices sharing many nodes,
instead of neighbours packed densely. Another advantage of graph-based
approaches is that they do not require an input of the predefined number
of clusters. Naturally, these methods imply the construction of a k-NN
graph, whereas the graph structure, the number and size of final clusters
depend on the selected k number of neighbours. This is commonly resolved
by reweighting the graph based on the shared nearest neighbours of each pair
of cells. Although many algorithms for community detection are developed
to study larger communities like social networks and the world web, only
the Louvain algorithm has been extensively used in single-cell analysis [358].
The combination of Louvain clustering with shared-nearest-neighbour graphs
became a preferred choice for a large share of the single-cell community and
is now incorporated in both Seurat and Scanpy [359, 330]. In contrast to
k-means and HC, however, this approach performs poorly in small datasets
[360]. Overall, many other methods are in one way or another based on
the concepts discussed but slightly deviate in their implementation and,
therefore, might be better suited for specialised tasks [354]. As a forewarning,
it is wise to remember that no universal clustering method achieves sound
performance in all situations. Therefore, a clustering approach should be
considered based on the data at hand.

Clustering leaves a researcher with a catalogue of functionally distinct
cell groups, and unless the input cells were gated by FACS-sorting, the
identities of these groups are not known. Thus, bringing to the front another
computational problem — cell annotation. The veracity of cell annotation
underlies all downstream biological interpretations of the patterns uncovered
in the data. The task is further aggravated by the sheer size of an average
scRNA-seq dataset that makes manual annotation unfeasible. Therein is the
basis for a demand for automated annotation tools [361].

Observing the problem, one can soundly consider annotating clusters
by referencing cluster-specific DEGs against some trustworthy reference. This
approach, marker-based annotation, is among the most commonly used and
is backed by dozens of large-scale scRNA-seq studies that aimed to create a
reliable reference, i.e., cell atlases [362, 363, 364, 365]. The latter are available
in different resolutions for most mouse and human tissues. Peculiarly, cellular
landscapes of more exotic models were also chartered in recent years [366].
These datasets provide a faithful foundation to catalogue cell-type specific
reference markers. Many resources readily utilised this foundation to build
exhaustive and rigid reference databases [367, 368].
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Similarly, a resource for identifying cancer-specific cellular processes,
i.e. hallmarks of cancer, was developed building upon a compendium of
cancer single-cell and bulk datasets [369]. The annotation tools such as
scCATCH and SCSA provide the interface to these databases, which can
automatically query the marker genes and score clusters based on their affinity
to the reference cell [370, 371]. Another approach to annotation eliminates
the marker gene intermediates and infers cluster identities directly from the
correlation of query gene expression with the reference. One way to do this is
to compare averages of the query clusters against an average expression of the
reference cluster, a pseudo-bulk-based procedure in its essence. However, this
upfronts the identified clusters’ veracity, whereas unstable clusterisation of
the query may lead to biased annotation. Additionally, it disallows cell-wise
quantitative annotation, although the gains in annotation speed from moving
from cell-wise to cluster-wise correlation are indubitable [372, 373].

Contrasting this approach, more fine-grained methods correlate the
expression of individual cells to the reference. However, how the correlation
or similarity of a cell to the reference is computed varies. In some, bulk-cell
references are used, while others proceed with single-cell and bulk references.
In these methods, feature selection plays a pivotal role in cell scoring, and,
as a result, multiple strategies were devised, including the use of randomly
selected genes, highly-variable genes, DEGs, and iterative correlation of
random gene subsets against the reference [374, 375, 376, 377]. Although
more computationally demanding, the ability to provide individual cell scores
is an undeniable advantage. The same ability allows better identification of
the bordering cell types in-between clusters.

Finally, the last group of methods utilises various machine-learning
techniques to annotate cells. In essence, this task of supervised classification
can be taken on from many different angles, starting from the way reference
is constructed and ending with the selected model itself. In this regard,
classic models like Random Forest (RF), Support Vector Machines, and kNN
classifiers are utilised [378, 379, 380]. More recently, neural-network-based
methods started gaining momentum [381, 382]. The enhanced capability
of these methods to deal with the batch effect in the reference dataset is
often highlighted [361]. In summary, the current status quo of annotation
tools mirrors the one within the TI field, as evident from the large-scale
benchmarks of annotation tools that often conclude by remarking on the
situational superiority of some methods in different conditions [383, 384].

Another problem that arises whilst working with large masses of
scRNA-seq seq data is the correction for batch effects. Inasmuch as the fight
against batch effects is a long standing one in the bioinformatics field, it begs
a question: could the methods developed earlier for bulk RNA-seq data be
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readily, and, more importantly, succesfully, applied to the scRNA-seq data?
The short answer is yes, but there is a nuance; even so, let us proceed with
order.

The honing of scRNA-seq methods gradually led to the alleviation of
constaints to the number of cells in the studies and promoted an establishment
of large projects such as Mouse and Human cell atlases along with organ-
specific atlases [362, 365, 265]. Naturally, the studies of that volume bring
along issues of logistical nature: data is often generated by multiple operators,
in different genomic centres, and, ultimately, by different hands. All of this
inevitably introduces batch effects that will mask biological signal if the data
to be integrated and analysed together, which is becoming the case more
and more often, therefore necessitating batch correction, lest the biological
signal remains entangled with technical noise [385].

Now, speaking of the batch correction methods desinged for bulk
RNA-seq. To author’s knowledge, the most popular are limma and ComBat
[386, 387]; both operate by fitting a linear regression for each gene with a
coefficients for a batch structure. ComBat additionally employs empirical
Bayessian shrinkage of batch coefficients by sharing the information between
genes. Now, the nuance: bulk RNA-seq methods operate on the assumption
that cell composition in different batches is identical, i.e. the systemctic
differences in gene expression are attributed solely to technical variation,
which we know is not the case [388]. A panolply of factors could affect
the end-state of a scRNA-seq library, from the stochastic variation in RNA
sampling to cell sorting, resulting in the batches of variable cell composition.
Consequently, the batch coefficients in linear models would seize on a fraction
of biological signal along with the technical variability producing biased
results. Nevertheless, one cannot attribute this fallacy exclusively to bulk
RNA-seq methods as far as every batch effect correction inevitably regresses
out a fraction of biological signal, the question is how big of a fraction [385].
The answer to this question can only be given by rigorous benchmarking
studies that cover tasks of simple batch-removal as well as the integration
complex biological datasets [389]. Before that, however, let us consider
methods designed with scRNA-seq data specifics in mind.

In 2018, three batch correction methods were published [304, 388,
390]; let us cover them in an order of popularity, from the lowest to the highest
(according to citations). The first tool in a row, ZINB-WaVe, developed by
Risso et al., presents a zero-inflated NB model that, along with modelling of
the gene expression, can similarly include coefficients to account for batch
effects, which, nevertheless, assumes the equality of cell composition as
older regression-based tools [304]. The second popular method is based on
mutual nearest neighbours (MNNs) and called accordingly. In the essence,

71



this approach operates on the notion that cells of the same type should be
expressionally the most similar between batches. In details, consider two
batches A and B that containm and n cells accordingly. Then, for each cell iA
from batch A, the algorithm finds k nearest neighbours in batch B. Likewise,
for each cell jB in batch B the algorithm finds k nearest neighbours in batch
A. When a pair of cells is contained within each others neighbourhood in
both batches, these cells are labeled as MNNs [388]. MNNs are considered
to be cells of the same type, therefore any systamtic differences in expression
are attributed to technical variance and corrected. MNNs operate on a
number of assumptions: 1) at least on cell type is shared between batches,
2) technical and biological signals are orthogonal, 3) technical variance is
meagre compared to biological signal. While 1) and 3) are likely to hold true
in most, if not all, cases, 2) raises concerns, insofar as orthogonality is not
guaranteed. The third method is distributed within the Seurat framework
and reigns supreme in popularity alongside its parent framework [390]. First
iteration of the tool utilised Canonical Correlation Analysis (CCA), a method
conceptually similar to PCA: whereas PCA constructs linear combinations
of input features maximising variance, CCA does the same but maximises
correlation of the features between datasest, to extract correlated features
to harmonise the batches. The second iteration of this method that is
currently present in Seurat v3 combines CCA with MNN: the algorithm
first reduces the dimensions by CCA to a number of canonical variables
and then looks for MNNs (called ”anchors”) within the correlated subspace
[391]. Since the PCA was mentioned, it is worth to address another popular
method that was published in 2019: Harmony [392]. This method operates
fuzzy clustering within the subspace derived from PCA. It caclulates global
centroids that, ideally, should cover similar cell types from both batches and
then calculates correction factors relative to the centroid’s centre for each
batch. After the cells from different batches are corrected, the algorithm
repeats itself until a convergence criterion is reached. Finally, one approach
is of interest as it explicitly renounces the assumption that technical and
biological signals should be orthogonal [393]. The algorithm, LIGER, builds
upon the previously published integrative Negative Matrix Factorisation
(iNMF) method honed to identify two sets of shared and dataset specific
factors (called ”metagenes” in the LIGER publication). Loadings of the
sahred metagenes are used after to construct a neighbour graph to prevent
spurious assignment of diveregent cell types to one cluster. Finally, more
exotic methods leveraged deep neural networks to construct a probabilistic
framework for a wide variety of tasks including data integration [394]. The
main drawback of this approach, if it can be called this way, is its complixty,
which can take time to build an intuition about.

In summary, going back to the posed question: how big of a fraction
(of biological vairance is removed by integration)? With a bird’s eye view
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of the available tools, one cannot but notice that the initial question of
biological variance recovery get complemented by others, more practical
inquiries. For example, how the memory requirements scale with the sizes
of the datasets to be integrated? Does the size of the datasets affect the
integration perforamnce? Are some tools better in recovering cell states or
trajectories? How strong the batch effect a method can correct? Luckily,
the answer to all this inquiries is the same as to the founding question:
benchmarking. A recent work by Luecken et al. shines as, to author’s
knowledge, the most comprehensive and up-to-date benchmarking study of
scRNA-seq integration tools that covers all raised question [389]. For the
author, it is only left to conlude that, alike to TI and clustering, there is no
universal solution for batch effect removal, and one needs to pick a method
based on situational demands of the task at hand.

2.15 Thesis scope

From observation of the contemporary trends in the single-cell field, one
can soundly conclude that the expansion of number of cells per study is
favoured among all other directions of improvement. In this regard, the
exponential growth of the cell number makes the task of automatic cell
annotation exponentially more critical [395]. This is particularly true for
cancer studies, where the inherent heterogeneity of cancer cells places a vital
requirement of robustness upon the annotation methodology. To exemplify,
in the analysis of a scRNA-seq from a tumour sample, cancer cells often
cluster separately, potentially due to the difference in their clonal origin and
phenotypic constraints imposed by the environment, whereas the annotation
should classify them into one group. In the deliberation on the cancer
evolution, the author referenced temporal genomic profiling of ccRCC that
exhaustively catalogued the potential evolutionary trajectories of this tumour
type [234]. Six different tumour evolutionary trajectories were identified in
that study, each with a unique clonal structure and mutational signature.

Nevertheless, all trajectories gravitated towards a singular gene
pathway, hinting at the existence of a gene expression signature, from which
an investigator can infer the degree of carcinogenic activation of that path-
way. However, the gene signature design capable of capturing carcinogenic
expression patterns across different tumour types is more complex. This
complexity arises from the cancer’s tissue of origin, whose expression patterns
are still noticeable after malignant transformation [396]. This issue with
tumour heterogeneity is further exacerbated by the variability of expression
signatures due to the cell cycle and effects of the tumour microenvironment,
e.g. hypoxic condition, immune response, etc. [397].

In consideration of these methodological impositions, the author and
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his colleagues (the group) set out to develop Ikarus, an automated single-cell
classifier that can robustly discern cancer cells from normal in different cancer
types (Publication 1) [398]. The designed classifier machine operates in a
multi-step framework that combines gene signature and graph-based methods
[399]. Since the machine was conceptualised to work across cancer types,
the algorithm to build up cancer gene signatures was developed intentionally
versatile, i.e. the default gene signature identified by the group can be refined
to better suit the analysis goals by incorporating new single-cell datasets as
a reference.

Regarding gene signature, it is paramount to properly characterise
and validate the latter to ensure that the obtained combination of genes
is not composed of correlated features, consistent across different model
systems and sequencing technologies, and not already defined. To this end,
the qualities mentioned above of the gene set were ensured by an all-around
validation devised by the author. Given the method’s versatility, the group’s
efforts were steered to ascertain that the procedure could be extended to
other multi-omics data, for which CNVs were chosen as a case study [400].

Earlier, the author touched upon translating our knowledge about
cancer to the clinic and discussed the history and development of biological
systems used to model cancer. A trend is evident among the studies in this
field: the expansion of -omics profiling. This trend is omnipresent across
all models, from old to new, including cell lines, tumour xenografts and
organoids. Results from the publications accompanying releases of new multi-
omic datasets univocally affirm the benefits of multi-omic profiles whereby
novel drug sensitivities and in-sensitivities are discovered. Nevertheless, the
speed with which transcriptomic and multi-omics to this matter permeate
into clinical practice is surprisingly low. To this end, a standard approach
to diagnostics has evolved in cancer centres. This approach relies on deep
sequencing of a selection of transcripts whose widespread mutability is
supported by decades of cancer genomics [192]. Dictated by reasons of
economic feasibility and ethical needs to strike a delicate balance between
errors of the first and second kind, the panel-based approach persists in
cancer diagnostics. Despite that, the technology advances unyieldingly, and
the costs of sequencing a transcriptome from a tumour biopsy are steadily
approaching clinical affordability. In publication 2, the group set out to
test if adding transcriptomic modality to panel mutation tests significantly
increases the power to predict drug response, and if yes, to which extent and
for which categories of drugs. To be sure that results generalise to other test
systems, the analysis was repeated in cancer cell lines, xenografts, and ex
vivo treated fresh tumour specimens [148, 163, 401].
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3 Material and methods

3.1 The scraping of citation data from the Web of Science

Source data for Figures 1 and 2 were pulled manually from the Web of Science
advanced search web page. For robustness, the queries were constructed
to explicitly look for the technology in question and avoid counting unre-
lated references. The following queries were used to search for publications
mentioning scRNA-seq:

(TS=”single-cell” AND TS=”RNA sequencing”) OR (TS=”single-cell” AND
TS=”RNA seq”) OR (TS=”single-cell” AND TS=”transcriptomics”) and
DT=Article

The queries below were used to scan for the publications that refer-
ence RNA-seq:

TS=”RNA seq” OR TS=”RNA sequencing” and DT=Article

And microarray gene expression assays:

TS=”oligonucleotide array” OR (TS=”microarray” AND TS=”gene expres-
sion”) OR (TS=”array” AND TS=”gene expression”) and DT=Article
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Identifying tumor cells at the single‑cell level 
using machine learning
Jan Dohmen1, Artem Baranovskii2,3, Jonathan Ronen1, Bora Uyar1, Vedran Franke1* and Altuna Akalin1*   

Background
Cancer is a disease that stems from the disruption of cellular state. Through genetic per-
turbations, tumor cells attain cellular states that give them proliferative advantage over 
the surrounding normal tissue [1]. The inherent variability of this process has hampered 
efforts to find highly effective common therapies, thereby ushering the need for preci-
sion medicine [2]. The scale of single-cell experiments is poised to revolutionize per-
sonalized medicine by effective characterization of the complete heterogeneity within a 
tumor for each individual patient [3, 4].

Recent expansion of single-cell sequencing technologies has exponentially increased 
the scale of knowledge attainable through a single biological experiment [5]. The infor-
mation contained within a single high-throughput single-cell experiment enables not 
only characterization of variable stable states (i.e., cell types, and cell states) but also 
functional annotation of individual cells, such as prediction of the differentiation poten-
tial, susceptibility to perturbations, and inference of cell–cell interactions [6].

As with all new technologies, high-throughput single-cell sequencing also created new 
computational challenges [7]. A problem in single-cell data analysis is cell annotation—
assignment of a particular cell type or a cell state to each sequenced cell. The size of 
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lar characterization of single cells within the tumor. However, cell annotation—the 
assignment of cell type or cell state to each sequenced cell—is a challenge, especially 
identifying tumor cells within single-cell or spatial sequencing experiments. Here, 
we propose ikarus, a machine learning pipeline aimed at distinguishing tumor cells 
from normal cells at the single-cell level. We test ikarus on multiple single-cell data-
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the generated datasets made manual annotation approaches utterly unfeasible, while the 
peculiarities of data generation prompted the development of novel innovative classi-
fication methods [8–13]. This is especially apparent in datasets stemming from cancer 
tissues, where the variability in the transcriptomic states does not conform to classi-
cally defined cell types. An outstanding question is whether there exist transcriptomic 
commonalities between cancer cells originating from different cancers, and whether it 
is possible to create a model which would discriminate between cancer cells and the sur-
rounding tissue across different cancer types, and datasets.

High-throughput single-cell technologies provide unprecedented precision of char-
acterization of biological systems, with all the technical and biological influences being 
evident in the data. In cancer biology, this heterogeneity of data composition presents 
a particular problem, because it is very hard to enumerate, and correct for, all of the 
technical and biological variables which are giving rise to the measured variability [14]. 
For example, cell dissociation produces artifacts which mimic MAP kinase pathway acti-
vation [15], while it is impossible to know the exact environment influencing each cell. 
Cells might be in gradients of oxygen availability, under different physical constraints, or 
influenced by multiple varying signaling molecules. This variability presents a challenge 
for developing machine learning models, because the data coming from different condi-
tions will have different underlying distributions, meaning that methods trained on one 
dataset will not generalize to other datasets [16].

Currently, there are three types of methods for mitigating distributional differences 
between single-cell RNA sequencing datasets: (1) manifold matching methods that try 
to find commonalities between low dimensional representations of multiple datasets and 
align them into one space [17]; (2) domain adaptation deep learning tools that try to 
model (explicitly or implicitly) the batch effects through the latent space embeddings 
[18–24]; and gene set based classifiers that use learned marker genes and robust statis-
tics to transfer knowledge between datasets [8].

An issue recurrently arising in machine learning in biology is how to determine the 
generalization boundaries of trained models (i.e., on which datasets the model will 
fail). It is not evident whether the learned model will perform equally well on the data 
profiled using different sequencing technologies (i.e., Drop-Seq, 10X, CEL-seq or Flu-
idigm C1), produced by different laboratories, or originating from a different biologi-
cal source (i.e., same cell types, coming from different human individuals). Because the 
sources of the heterogeneity are frequently unknown, the models need to be explicitly 
tested for robustness on datasets corresponding to different biological conditions and 
profiled using different technologies [25]. Therefore, special care needs to be taken that 
the learned associations really are between variables of interest and are not confounded 
by the properties of the data. Both manifold matching and domain adaptation methods 
follow a tradeoff between the removal of unwanted variance, while preserving biological 
heterogeneity [25]. Gene signature based methods lie on the opposite part of the trade-
off spectrum, whereby the gene lists represent a strong inductive bias about a biologi-
cal property (cell type). If the gene lists are carefully tested, then the methods achieve a 
markedly low false positive rate.

We set out to answer a simple question: “Is it possible to make a classifier that would 
correctly differentiate tumor cells from normal cells in multiple cancer types?”. We have 
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built ikarus, a stepwise machine learning pipeline for tumor cell classification. ikarus 
consists of two steps: (1) discovery of a comprehensive tumor cell signature in the form 
of a gene set by consolidation of multiple expertly annotated single-cell datasets and (2) 
training of a robust logistic regression classifier for stringent discrimination of tumor 
and normal cells followed by a network-based propagation of cell labels using a custom 
built cell–cell network [26]. With the goal of developing a robust, sensitive, and repro-
ducible in silico tumor cell sorter, we have tested ikarus on multiple single-cell datasets 
of various cancer types, obtained using different sequencing technologies, to ascer-
tain that it achieves high sensitivity and specificity in multiple experimental contexts. 
We have strictly adhered to machine learning best practices to avoid contamination of 
results by information leakage from training into testing process.

Results
Identification of a robust marker gene set

Cell type annotations in any particular experiment are inherently noisy. This is partly 
due to the properties of single-cell data, such as the different number of detected genes 
in each cell, the influence of sample processing, and our limited knowledge of biomark-
ers that are necessary for comprehensive annotation of cell types and cell states. We 
hypothesized that we can find robust markers of cellular states by comparing multiple 
independent annotated datasets from diverse origins.

We have employed a two-step procedure to find tumor-specific gene markers. First, 
using differential expression analysis, we selected genes that are either enriched or 
depleted in cancer cells per dataset (see 9). To obtain the final gene list, we took an inter-
section of the gene sets from each of the datasets (Fig.  1A). We have applied a stand-
ard cross validation approach for gene set selection, where datasets were either used as 
training, validation, and test sets. For cross validation, we have used the two lung cancer 
datasets from Laughney [27] and Lambrechts [28], a colorectal cancer from [29], neuro-
blastoma dataset from Kildisiute [30], and a head and neck cancer datasets from [31]. For 
each pair of datasets, we have selected the gene signature and trained the logistic classi-
fier. The resulting classifier accuracy was validated on the datasets that were not used for 
training (Additional File 3: Cross validation results). As the performance metric, we have 
chosen a minimal balanced accuracy on the validation set (measuring the worst perfor-
mance of the classifier on the validation set). The cross validation procedure showed that 
the gene signature selection using multiple datasets increases the generalization perfor-
mance of the classifier (Fig. 1C). The best performing classifier combined the colorectal 
cancer dataset from Lee et al. [29] with the lung cancer from Laughney et al. [27], and 
achieved a minimal balanced accuracy of 0.97 on the validation data. The performance of 
the best performing gene set was tested on the hepatocellular carcinoma [32] (balanced 
accuracy of 0.93), and the lung carcinoid dataset [33] (balanced accuracy of 0.99).

The resulting tumor gene signature contained 162 genes that were significantly 
enriched in cancer cells across multiple datasets (Additional File 2: Gene Signatures). 
The resulting set of genes showed high specificity for cancer cells, from the head and 
neck cancer samples [31] (Additional File 1: Fig. S1A). This result indicates that the gene 
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set contains information relevant for discriminating tumor cells from non-tumor cells in 
multiple different tumor types.

The same procedure was applied to the healthy cell types. We extracted genes enriched 
in each cell type, when compared to the tumor cells. The resulting gene set was then 
merged between multiple datasets. This “normal” cell gene signature contains both cell 
type specific markers and genes which are specifically depleted in the tumor cells (Addi-
tional File 1: Fig. S1B).

To validate the specificity of the novel tumor specific gene set, we have analyzed a gas-
tric cancer dataset [34], where multiple areas of cancer and cancer-associated normal 

Fig. 1 Integration of multiple datasets enables robust extraction of informative gene sets. A, B ikarus 
workflow. ikarus is a two-step procedure for classifying cells. In the first step, integration of multiple expert 
labeled datasets enables the extraction of robust gene markers. The gene markers are then used in a 
composite classifier consisting of logistic regression and network propagation. C Comparison of cross 
validation accuracy for signature derivation and model selection. Minimal balanced accuracy on the 
validation set was chosen as the metric of choice (i.e., worse performance on the test set). Models trained 
on just one dataset achieved lower balanced accuracy than models trained on two datasets (p value given 
by the two sided Wilcoxon test is 0.063). The combination of colorectal cancer from Lee et al. [29] and lung 
cancer from Laughney et al. [27] achieved the highest minimal balanced accuracy of 0.97. D Comparison 
of gene signature scores in laser microdissected gastric cancer data [34]. The normal gene list shows 
lower signature scores in cancer samples (p value 0.052, N = 8, Mood’s median test), when compared to 
the cancer-associated normal tissue. The tumor gene signature is significantly higher for cancer samples 
than the normal tissue (p value 0.003, N = 8, Mood’s median test). E Primary cells and cancer cell lines have 
significantly different gene signature distributions. The normal-cell gene signature shows a gradual reduction 
in gene signature score distribution when compared in primary cells, cell lines, and tumor cell lines. The 
gene signature shows the complete opposite effect. Cancer cell lines have the higher gene signature score 
distribution, followed by cell lines, and primary cells. Distributions were compared using pairwise Wilcoxon 
tests with BH-FDR correction. All adjusted p values were lower than 0.01. F Patient-derived xenografts (PDX) 
show significantly higher tumor gene signature score, than the normal gene signature score. The same 
pattern is observed in multiple cancer types. Normal and tumor signature distributions were compared using 
Wilcoxon tests, for each cancer type, followed by BH-FDR correction. All adjusted p values were lower than 
0.01
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cells were separated using laser-capture microdissection (LCM) and profiled using RNA 
sequencing. Using normal and tumor gene signatures that were identified by ikarus, we 
have scored the tumor and the associated normal cells. As expected, dissected sections 
coming from the cancerous lesions had significantly higher median tumor score than 
the surrounding normal tissue (Fig. 1D, right panel). In line with the latter, normal tis-
sue scored higher than cancerous lesions when the normal gene signature was scored 
(Fig. 1D, left panel).

As another line of evidence, we have downloaded the expression data for primary, nor-
mal, and cancer cell lines from the ENCODE database [35, 36] (see 9). Tumor signature 
scores were on average highest in cancer cell lines, diminished in normal stable cell lines, 
reaching its lowest average in primary cells (Fig. 1E, left panel). When scoring using the 
normal (non-cancer) cell signature, an opposite trend was observed, i.e., score was high-
est in primary cells, intermediate in normal stable cells and the lowest in cancer cell lines 
(Fig. 1E, right panel).

Further, we tested the discriminatory power of the normal and tumor gene lists in 
multiple cancer types. To this end, we have used the patient-derived xenograft (PDX) 
samples from five cancer types provided by [37] and all of the cancer cell lines provided 
by the cancer cell line encyclopedia (CCLE) [38]. The tumor signature score was signifi-
cantly higher than the normal signature score in all PDX cancer types (Fig. 1F) and all 
cancer cell lines screened in CCLE (Additional File 1: Fig. S1C). Surprisingly, the tumor 
signature list produced significantly reduced scores for cell lines stemming from blood-
related cancers (LAML, CLL, LCML, MM, DLBC).

Accurate delineation of cancer cells

In the first step of classification, ikarus derives the tumor and normal gene set scores. 
The tumor and normal gene set scores are then used in a logistic regression classifier, 
to delineate cells with high probability of being tumorous or normal. The classification 
step is followed by the propagation of the cancer/normal label through a custom based 
cell–cell network (Fig. 1B). The cell–cell network is derived from the same gene sets that 
are used for robust scoring. By using only tumor or cell type specific genes, the resulting 
network separates communities that represent either tumor or normal cell states.

Figure 2A shows the performance of ikarus classification on all of the validation and 
test datasets. ikarus achieves an average balanced accuracy of 0.98 which is substan-
tially higher than other classical machine learning methods. In addition to the standard 
machine learning methods (SVM, random forest, and logistic regression), we have com-
pared ikarus to the top ranking tailored cell type classifiers, as evaluated in the recent 
comparison of methods for cell classification [8]: SingleCellNet [9], ACTINN [39], ItClust 
[10], scCaps [40], scHPL [12], CellAssign [41] from scvi-tools [42], and scMRMA [43]. 
We would like to emphasize that for the published methods, we have used the default 
hyperparameter settings from the corresponding descriptions or provided tutorials.

We have chosen balanced accuracy as a measure of performance because of the large 
imbalance of classes. The datasets contained, on average, 7 times more normal cells than 
annotated cancer cells (Additional File 2: Datasets). To give an unbiased view on the per-
formance, Fig. 2B shows the area under the receiver operating characteristic (AUROC) 
distribution for the different datasets. ikarus also achieves a higher average AUROC 
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than other methods. Having a high AUROC value and low balanced accuracy is an indi-
cation of class imbalance. The classification error of the classical machine learning meth-
ods, having high AUROC and low balanced accuracy, is not uniformly distributed—they 
struggle with a high false positive rate.

We have additionally compared all methods with datasets subsampled to include an 
equal number of normal and tumor cells. ikarus showed a higher median balanced accu-
racy in discriminating tumor cells from normal cells (Additional File 1: Fig. S2A). Dur-
ing the comparison of subsampled datasets, we have noticed an increase in variance of 
ikarus results. This is because the subsampling reduces the connectivity of the cell–cell 
network which is used for network propagation.

We have also tested the performance of different classification methods by scaling 
down the input genes, from all profiled genes, to the tumor and normal gene signatures. 
The reduction of input to only normal and tumor gene signatures surprisingly increased 
the performance of all classifiers, indicating that the signatures contain information for 
proper discrimination between tumor and normal cells (Additional File 1: Fig. S2B).

Figure  2C shows the classification accuracy for the Lambrechts lung cancer dataset 
[28]. The Lambrechts dataset was not used for training nor gene signature definition. 
Figure 2D and E show the classification accuracy overlaid on UMAP [44] embeddings 

Fig. 2 ikarus accurately classifies tumor and normal cells. A Balanced accuracy for classification of tumor 
and normal cells, for each of the test datasets. Red arrow highlights performance of ikarus classifier. ikarus 
achieved a significantly higher performance than competing methods (AUC distributions were compared 
using ANOVA with post hoc pairwise comparison. p values were adjusted using BH-FDR. All adjusted p values 
were lower than 0.01). B Area under receiver operating characteristic (AUROC) performance for each classifier. 
AUROC could only be calculated for methods outputting class probabilities. C Confusion matrix showing 
the performance of ikarus classifier on the Lambrechts lung cancer dataset. D Cell type annotation of the 
Lambrechts et al. dataset. E Lambrechts dataset labeled by ikarus classifier
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of the Lambrechts lung cancer dataset [28]. ikarus correctly classifies normal cells, irre-
spective of the underlying cell types. The erroneous classifications are equally distrib-
uted between false positives and false negatives. (UMAPs for other validation and test 
datasets are reported in Additional File 1: Fig. S3 A-E).

In order to test the robustness of ikarus across different single-cell sequencing tech-
nologies, we applied ikarus on a dataset of neuroblastoma tumors sequenced by either 
10X genomics or CEL-Seq2 protocols by Kildisiute et  al. [30]. ikarus achieved a high 
classification accuracy (balanced accuracy of 0.98) on all datasets, irrespective of the 
profiling technology (Figures S3B and S3C). The false positive rate we observed in the 
test datasets (1–3%) can be partly attributable to occasional erroneous labeling of cells 
by the authors of the corresponding studies. The lack of a perfectly labeled single-cell 
tumor sequencing dataset makes it difficult to quantify the actual rate of false positive 
predictions by our method. One possible strategy to remedy this issue is to test our 
method on a dataset that is presumably free of tumor cells, in other words, a healthy 
tissue sample. To ascertain the actual false positive rate for tumor cell classification, we 
have tested ikarus on the single-cell data from peripheral blood of a healthy individual 
[45], where all cells are expected to be non-tumorous. ikarus labeled all cells as non-
tumorous (Additional File 1: Fig. S3F).

Because the datasets used for training and testing consist predominantly of carcino-
mas, we decided to test ikarus performance on a synovial sarcoma sample [46]. On sar-
coma samples, ikarus achieved a reduced balanced accuracy of 0.51, which was primarily 
driven by a high false negative rate—ikarus missed sarcoma tumor cells (Additional File 
1: Fig. S3G).

Further, we were interested in how the accuracy of the classification changes in regards 
to the size and structure of the gene set. First, we have conducted an ablation study, 
where we removed from 20 to 80% of randomly selected genes from the list (Fig. 3A). 
The removal of up to 40% of the genes from the list leads to a ~ 12% (from 99 to 87%) 
drop in median accuracy. If 80% of the gene list is removed, the classification becomes 
random (median accuracy tends to ~ 50%).

Next, we explored how much the accuracy of the classification depends on individ-
ual genes. To test this, we sequentially removed each individual gene from the set and 
repeated the classification. For 160 out of the 162 genes, there was no observable change 
in the classification accuracy on the test datasets (Fig. 3B). The accuracy on the Lambre-
chts lung cancer [28] dataset was, however, particularly sensitive to the omittance of two 
genes: serum amyloid A (SAA1) and fibrinogen beta chain (FGB) (Fig. 3C). Each gene 
is a marker for a tumor specific cell cluster in the Lambrechts dataset (Fig. 3C, D), and 
their removal influences the classification probability of cells constituting that particu-
lar cluster. Such dependence was not observed for other test datasets (Additional File 2: 
Effects of SAA1 and FGB).

Properties of the tumor gene signature

Having observed the high accuracy performance of ikarus based on the detected tumor 
gene signature, we ventured forth to obtain a deeper characterization of the functional 
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content of these genes. Specifically, their involvement in the development of cancer and 
their roles in the prognosis for the patients.

Firstly, we were interested whether the genes within the tumor gene signature conform 
into expression modules, or whether their expression distribution is independent. We 
calculated the pairwise Pearson correlation between the genes from the signature for all 
datasets. To our surprise, the correlation between the genes was largely zero (Fig. 4A). 
We found only a single module (containing 34 genes) that was robustly present in all 
datasets (Additional File 1: Fig. S4A). Genes in this module are annotated as belong-
ing to the cell cycle. We further inspected whether the classification accuracy depends 
on these cell cycle-related genes. The removal of the 34 cell cycle-related genes did not 
affect the classification accuracy (results not shown).

The tumor gene signature had, to our surprise, little overlap with established can-
cer-related gene sets. When compared with the gene sets annotated in the CancerSEA 
database of cancer functional states [47], our tumor gene list had zero or very few 
overlaps with most CancerSEA gene sets, except for the cell cycle genes, which shared 
only 9 genes with our tumor gene list (Fig. 4B). Co-expression analysis, using SEEK 
[48], again showed that the tumor gene signature is partially related to cell cycle and 

Fig. 3 ikarus performance under perturbation. A Performance of ikarus classifier, on the Lambrechts’ 
validation set, when 20 to 80% of the input list is removed. ikarus performance is significantly reduced when 
the 60% of the gene list is removed (p value < 0.01, as determined by a one sample t-test, with BH-FDR 
correction). B Performance of ikarus classifier, on the Lambrechts’ validation set, upon single gene removal 
from the gene list. One hundred sixty out of the 162 genes were inconsequential for the classification. FGB 
(fibrinogen) and SAA1 (serum amyloid alpha) ablation significantly reduced the classification accuracy, but 
only on the Lambrechts et al. lung cancer dataset. C, D FGB and SAA1 are respectively strong markers for one 
of the cell state clusters in the lung cancer dataset
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DNA replication (Fig. 4C). In addition, we saw no overlap with the cancer hallmarks 
from MSIGDB [49] (Additional File 1: Fig. S4B). When compared to the complete 
MSIGDB database, the tumor gene signature preferentially overlapped with the cell 
cycle hallmark (Fig. 4D). Gene ontology (GO) analysis using gprofiler2 [50] showed 
an enrichment of terms exclusively related to cell cycle and mitosis (Additional File 1: 
Fig. S4C). We have tested the GO and SEEK enrichment after the removal of the cell 
cycle module. The analysis did not result in any statistically enriched terms.

The enrichment of cell cycle and DNA replication-related functional terms in our 
tumor gene set (Additional File 2: Enrichment analysis of tumor gene signature) led 
us to hypothesize that the novel gene set differentiates promptly cycling cells. To test 
this hypothesis, we inspected the correlation of the tumor gene set scores with the 
growth rates detected in Patient Derived Xenograft (PDX) samples from [37] and the 
doubling times of the cancer cell lines from CCLE [38]. Unexpectedly, there was no 
correlation between the tumor signature score and the PDX growth rates in any of the 
reported cancer types (Additional File 1: Fig. S4C). Repetition of the analysis on the 
cell line doubling times from CCLE again revealed the same lack of correlation (Addi-
tional File 1: Fig. S4C).

We were interested in whether the tumor cell signature is predictive of survival 
outcomes in cancer. From the protein atlas database (http:// www. prote inatl as. org) 
[51], we extracted genes predictive of survival in one or more cancers. The overlap 
of tumor gene signature with the extracted gene set showed that more than 75% of 

Fig. 4 Properties of the tumor gene signature. A Tumor gene signature co-expression analysis in tumor cells. 
Co-expression is measured as Pearson correlation between all pairs of genes from the gene list. B Tumor 
gene signature shows little overlap with known cancer-associated gene sets. The tumor gene signature was 
compared to the CancerSEA database. Out of the 162 genes, 134 showed no overlap with any of the gene 
lists. 9 genes overlapped with the cell cycle gene list. Only intersections of size 3 and more are shown. C 
Results of the gene co-expression analysis using SEEK. Top 150 co-expressed genes identified by SEEK were 
used as an input for GO enrichment analysis. D Tumor gene signature shows limited overlap with most of the 
gene sets from MsigDB. The most enriched gene set corresponds to the cell cycle
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tumor signature genes are predictive of unfavorable prognosis in at least one cancer 
type (Fig.  5A). Interestingly, when stratified by cancer type, tumor signature genes 
reported to be unfavorable are overrepresented among 5 cancer types: liver, renal, 
pancreatic, lung, and endometrial cancers (Fig. 5B). An analogous analysis was done 
with data taken from [52], where the authors systematically calculated the risk predic-
tive status for all genes in TCGA cancer types. The analysis showed that the cancer 
specific genes have a significantly higher Stoufer’s Z value (a measure of how signifi-
cantly the gene expression predicts the risk status in any cancer) than the rest of the 
annotated gene set (Fig. 5C). Furthermore, the same trend was observed in 21 out of 
33 profiled cancer types (Welch two sample t-test, Bonferroni adjusted p value < 0.05) 
(Fig. 5D).

Next, we wanted to explore how often the genes from the tumor gene list partici-
pate in genomic rearrangements, particularly gene fusions, which are frequent drivers 
of oncogenic events in multiple cancer types. We downloaded the known cancer gene 
fusions from the ChiTaRS [53] database and inspected the overlap with the novel cancer 
defining gene list. To establish enrichment, we compared the overlap with a background 

Fig. 5 Tumor gene signature is predictive of survival and associated with copy number variations. A Tumor 
gene signature genes are more likely to be significantly prognostic for patient survival in at least one cancer 
type (enrichment p value was lower than 0.01, as determined by a chi-square test). Data was extracted from 
the protein atlas. B The association of tumor gene signature genes with poor survival outcomes is evident 
in multiple cancer types. p values for within cancer comparisons are reported in Additional File 3: Statistics. 
C Data from [52] show that the tumor gene signature genes have much higher Stoufer’s z (association 
with poor survival outcomes) than rest of protein coding genes (p value was lower than 0.01, based on the 
Wilcoxon rank-sum test). D Increased association of the tumor signature genes with negative survival is 
apparent in 23 out of 33 cancer types (the BH-FDR adjusted p value was lower than 0.01 as determined by 
Wilcoxon rank-sum test). E Genes from the tumor gene signature are more likely to participate in 3′ or 5′ 
fusions. When compared to sets of randomly drawn genes, the tumor signature genes had a significantly 
higher probability of participating in genomic fusions. The red vertical line depicts the overlap of the tumor 
signature list with the corresponding gene fusion list (the BH-FDR adjusted p value was lower than 0.01, 
as determined by the resampling test). F Genes from the tumor gene signature are frequently found in 
amplified or deleted genomic regions. We have measured the percentage of the gene list which overlaps 
with the known CNV regions for each cell line in the CCLE dataset. The tumor gene signature was found to be 
enriched in 22/27 cancer types (BH-FDR adjusted empirical p value was lower than 0.01 based on resampling 
tests). Background distributions were derived from expression matched randomly sampled gene lists
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consisting of random gene sets. Genes from the tumor gene signature have a signifi-
cantly higher probability of participating in both 3′ and 5′ fusions, than a random set of 
genes (Fig. 5E).

Gain and loss of DNA content is a ubiquitous property of tumor cells. Copy number 
variation (CNV) profiles that arise from genomic rearrangements create unique genomic 
signatures that can be used for characterization and discrimination of different tumor 
types [54]. We wondered how prevalent genes from the tumor gene signature are in the 
known CNV regions. To this end, we have compared the intersection of the tumor signa-
ture list with the CNV data from CCLE. We compared the tumor gene list intersection 
to a background distribution constructed by randomly sampling expression matched 
gene sets. The tumor gene list had a significantly higher overlap with the known CNV 
regions in the majority of profiled cancer types (Fig. 5F) irrespective of CNV frequency.

Multi‑omics analysis reduces the false positive rate of classification

Characterization of biological systems from multiple viewpoints often produces syner-
gistic insights into the underlying biology. We wondered whether the classification accu-
racy of ikarus algorithm can be improved by using multi-omics measurements. To this 
end, we have used inferCNV [55] to extract copy number variations (CNVs) from the 
single-cell RNA sequencing data. InferCNV is a Bayesian method, which agglomerates 
the expression signal of genomically adjointed genes to ascertain whether there is a gain 
or loss of a certain larger genomic segment. We have used inferCNV to call copy num-
ber variations in all samples used in the manuscript.

Firstly, we wondered whether the copy number variations could be used as universal 
markers for discriminating between normal and cancer cells. We trained random forest 
classifiers to discriminate between the expert labeled normal and tumor cells. One clas-
sifier was trained on each sample. Each of the classifiers was tested on all samples. As 
expected, when evaluated on the sample which was used for the training, each random 
forest classifier correctly discriminated between the cancer and tumor cells (Fig.  6A). 
The classifiers, however, did not generalize to other cancer types—they all suffered from 
a high false positive rate. We tried to improve the generalization of the classification by 
training on multiple datasets. We trained a random forest classifier on joint Lee et al. 
and Laughney et  al. data and tested on all other datasets. Using multiple datasets for 
training did not improve the results of the classification on out of sample cells (Fig. 6B).

We then wondered whether the CNV calls could be used in conjunction with the gene 
expression data to improve ikarus classification of tumor and normal cells. We looked at 
the average CNV value and the variance of CNV values in cells, which were misclassified 
by ikarus in data from Lee et al. and Laughney et al. Both the average CNV value and the 
variance of CNVs were significantly higher in cancer cells, which were misclassified as 
normal cells (Fig. 6C). This indicated that by integrating the CNV scores with the gene 
expression classifier, we might increase the classification accuracy.

We have added an additional proofreading step into the classification procedure. We 
trained a logistic classifier on inferred CNVs, with ikarus predicted cell type labels as 
the dependent variable. Cells which obtained highly probable discordant class labels 
from the CNV classifier had their labels flipped. Using the proofreading step, the aver-
age balanced accuracy stayed the same for all of the samples. We have however noticed a 



Page 12 of 23Dohmen et al. Genome Biology          (2022) 23:123 

sudden drop in the false positive rate, with a marginal increase in the false negative rate 
(Fig. 6D, Additional File 2: Results).

Discussion
We have implemented a two-step approach for solving a problem that is perceived as 
simple: discriminating tumor cells from normal cells. In the first step, ikarus pipeline 
integrates multiple expert labeled datasets to extract gene sets which discriminate tumor 
cells from normal cells. In the second step, ikarus uses a robust gene set scoring along 
with adaptive network propagation for cell classification. By using robust gene set scor-
ing and network propagation, we have mitigated two common problems in single-cell 
analysis: the influence of batch effects on sample comparison and parameter optimiza-
tion during clustering.

The effect of technical differences between single-cell datasets is usually resolved using 
integration methods. Single-cell integration methods require extensive tuning of sets of 
parameters, most of which have non-intuitive effects on the results. Moreover, the accu-
racy of the resulting integrations cannot be trivially evaluated without extensive usage of 
biological priors. Gene set scoring methods are robust, because they use “within sample” 
rank based scores instead of direct comparison of measured expression values between 
different samples. The only technical variable that influences gene set scoring is the per-
centage of genes from the gene list which are detected in each cell. We have however 
extensively tested the influence of the number of genes on the classification accuracy.

A common step in single-cell analysis is aggregation of cells into clusters, which are 
then used for cell type annotation. Clustering is, however, a procedure with an inherently 
high number of parametric options. It is extremely hard, if not impossible, to choose a 
set of parameters that would produce the same level of accuracy (same cell types) on dif-
ferent datasets, which often necessitates manual intervention to deduce the best cluster-
ing resolution. Because cell types and cell states form highly connected modules within 
the cell–cell similarity graph, we have therefore opted to replace clustering with network 
propagation. Network propagation is a procedure where the uncertainty of cell annota-
tion can be reduced by integrating the annotation score of each individual cell with the 
scores of its nearest neighbors. Network propagation represents a parameterless alterna-
tive to clustering, while retaining the same level of sensitivity for cell annotation.

By exploring a multi-omics approach, we have tried to increase the accuracy of the 
normal–tumor cell discrimination. Using inferred CNVs, we have shown that the infor-
mation from copy number variations does not generalize across different cancer types. 
The inclusion of the copy number variation as a proofreading step reduced the false 
positive rate of the classifiers. It is still an open question, though, by how much would 
single-cell multi-omic measurements improve the classification (for example, by concur-
rently measuring mutations, CNVs, chromatin accessibility, and expression in the same 
single cells). Currently, such methods are either in their infancy, and the required data is 
not available, or have a very limited profiling range (profile only a handful of loci).

ikarus is currently constrained by the reliance on well annotated single-cell datasets. 
For both the gene set definition and testing, we rely on expert provided cell annotation. 
This requirement has limited our training and testing capabilities to the handful of pro-
filed, and annotated cancer types. We have determined that ikarus produces accurate 
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classifications in epithelial tumors, and the neuroblastoma; however, it showed reduced 
accuracy in classifying cells from synovial sarcoma. This implies that multiple trained 
models will be required for comprehensive discrimination of all cancer types. The expo-
nentially increasing number of single-cell datasets will enable us to increase both the 
number of training datasets, as well as to test ikarus on currently unavailable tumor 
types, for instance, soft tissue sarcomas. Moreover, the increasing quality of single-cell 
datasets, most importantly, increasing gene coverage, will also increase the utility of 
ikarus as a gene set based classification method.

Conclusion
By integrating multiple datasets, we have derived a tumor signature gene list which is 
surprisingly refractory to annotation. The gene list contains a sub-module (n = 34) that 
encompasses genes involved in the cell cycle. All of the other genes, however, showed 
little modularity and a lack of enrichment in any single annotation category. Interest-
ingly, the genes were highly expressed in all of the available PDX and CCLE cancer mod-
els. The ablation studies showed that the classifier was robust to the removal of any one 
of the genes. The low co-expression, combined with the lack of sensitivity to the gene 
removal indicates that the tumor signature genes provide mutually synergistic informa-
tion towards the classification accuracy.

Fig. 6 Multi-omics decreases the false positive rate. A Balanced accuracy of random forest classifiers 
trained on each of the tumor types. The classifiers have excellent performance on the same samples they 
were trained on or on similar tumors (such as the Kildisiute et al. neuroblastoma sample), while they fail to 
generalize to other tumor types. B Training on multiple tumor types does not improve the generalization of 
the classifiers. C Cells misclassified by ikarus can be discriminated based on the average CNV and variance 
of CNV values. Tumor cells misclassified as normal cells have significantly higher values of both the average 
CNV and the variance of CNV, than the corresponding normal cells. D Integration of the CNV proofreading 
decreases the false positive rate from 4% to 1%, with the same average balanced accuracy
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ikarus classifier, however, is not limited to tumor cell detection. It can be used to detect 
any cellular state, such as cell types. The only requirements are that the cellular state is 
present in at least two independent experiments, which are expertly annotated.

Automatic, parameterless discrimination between tumor cells and the surround-
ing tumor-associated tissue has multifactorial utility. Tumor cells can be streamlined 
into algorithms for neoepitope prediction, thereby enabling direct, clinically relevant 
insights. Furthermore, the increasing availability of multi-omics measurements would 
enable automatic genetic characterization of tumor subpopulations and the subpopu-
lation-based recommendation of best therapeutic course of action. Application of auto-
matic tumor classification on spatial sequencing datasets enables direct annotation of 
histological samples, thereby facilitating automated digital pathology.

The current scale of development in single-cell biology (on both the technological and 
computational levels) shows promise for quantitative characterization of the complete 
tumor heterogeneity, for each individual. However, before the personalized medicine 
approach can be readily adopted, every step in the data analysis needs to be completely 
automated, with robust performance guarantees. ikarus pipeline represents one step 
towards the implementation of personalized cancer therapy.

Methods
ikarus workflow

The presented ikarus pipeline consists of two major steps. In the first step, ikarus uses 
multiple expert labeled datasets to define gene signatures and builds a cell type specific 
classifier. In the second step, based on the constructed gene sets and classifier, unknown 
cells of interest are scored. The classifier’s scores are then propagated through a cus-
tom cell-cell network, which eventually leads to the cell annotations. While the first 
step is optional, as users can provide their own gene lists, the latter steps are manda-
tory to make a prediction. For making predictions ikarus’ API is modeled as the scikit-
learn workflow, which means 1. load data, 2. initialize a model, 3. fit the model, and 4. 
make the actual predictions on unknown data. In general, annotated data objects are 
used as data format (AnnData, https:// annda ta. readt hedocs. io). Each individual step is 
described in more detail in corresponding subsections below.

Defining gene signature lists

The count matrices of the input AnnData objects are expected to be normalized to the 
total number of reads per cell and log transformed with a base of 2 and a pseudocount of 
1. In addition to that, each AnnData object must contain for each cell the corresponding 
cell type in the observation section, possibly in multiple columns for multiple hierarchi-
cal cell type levels (e.g., tumor and normal cells, or tumor, epithelial and immune cells).

It is important to take care that the input data is not scaled and that it contains the 
complete set of profiled genes and not a preselected set (such as highly variable genes).

Then, for each gene in the input dataset, a t-test with overestimated variance is used 
to compute an approximation of log 2-fold change between two cell type classes, one 
upregulated and one downregulated class. Those classes are provided by the user and 
should be chosen in accordance with the considered columns of the AnnData obser-
vation section. Users can either perform only one comparison (e.g., tumor vs. normal 
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cells) but also multiple (e.g., tumor vs. epithelial cells and tumor vs. immune cells). This 
is done independently for each dataset.

For each gene and for each pair-wise comparison, the associated log 2 fold changes (if 
padj < 0.1, neglected otherwise) of the different input datasets are averaged. According 
to these average values the genes are then sorted, highest to lowest and a user-defined 
number of top genes is selected (for our analyses, we used the top 300 genes). The final 
list of upregulated genes is derived by taking either the intersection or the union of 
selected genes across all of the comparisons.

The whole procedure is performed once for the case that the class of interest (e.g., 
tumor) is upregulated (here we take the intersection of selected genes across all of the 
comparisons) and once for the case that this class is downregulated (here we take the 
union of selected genes across all of the comparisons). That way, we obtain two final 
gene sets. One set representing genes enriched in the class of interest (i.e., enriched in 
tumor cells), and a set depleted in the class of interest (depleted in tumor cells).

A combination of Lee, Laughney, Lambrechts, Tirosh, and Kildisiute datasets was used 
to conduct a cross validation analysis. For each pair of datasets, gene signature selec-
tion was performed, followed by training of the logistic classifier. The resulting classi-
fier accuracy was validated on the three datasets which were not used for training. The 
accuracy of the top performing classifiers was furthermore tested on the hepatocellular 
carcinoma (Ma) and carcinoid datasets (Bischoff). Cross validation results can be found 
in the Additional File 3: Cross Validation Results. As the performance metric, a minimal 
balanced accuracy on the validation set was chosen (i.e., what is the worst performance 
of the classifier on the validation set).

For comparison, classifiers were also trained on gene lists extracted from each of the 
datasets.

Cell scoring using gene sets

Both the tumor and normal gene sets were used to score each of the cells in each of 
the experiments using AUCell [56]. As input to AUCell, we provide the gene expression 
matrices that were normalized to the total number of sequenced reads per cell and sub-
sequently transformed using the log2(x + 1) function. AUCell requires that the dataset 
contains at least 80% of the genes from the input gene set.

We have noticed that the AUCell scores do not behave properly in some of the bulk 
sequencing datasets. Namely, samples which had similar transcriptomes sometimes had 
widely different AUCell scores. The user is encouraged to use different gene set scoring 
algorithms like ssGSEA.

Logistic classifier training

A logistic classifier was trained on the combined Lee et al. and Laughney et al. datasets. 
Scores of normal and tumor gene signatures were used as the input and the tumor/nor-
mal class assignment as the target variables.

Cell annotation using network propagation

ikarus implements the cell annotation as an iterative two-step process of cell type assign-
ment and label propagation. In each iteration, we assign labels to cells with a decreasing 
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stringency threshold, which are then propagated to their nearest neighbors. Firstly, the 
labels are assigned to the most probable cells, based on a robust stringency threshold. 
Cells below the stringency threshold have their LR probabilities masked to zero. The 
stringency threshold is defined based on the order statistic of the gene set score differ-
ence between the two classes of interest. In the first iteration, it is the 90% percentile of 
the (tumor–normal) gene set score difference. The label propagation is then obtained 
by computing the dot product of neighborhood connectivities and LR class probability 
estimates. Annotations are derived from the propagated class probabilities. Within each 
iteration step, the stringency threshold is reduced using exponential decay:

where
N0 is the starting stringency threshold;
t is an iteration step;
λ is an exponential decay constant.
The cell–cell graph, used for label propagation, is constructed using the normal and 

tumor gene signatures according to [57], as adopted in [58].
The label propagation procedure is repeated until less than 0.1% of cell annotations 

change.

CNV correction

Classification improvement using copy number variations

To improve the classification results, we used inferred CNV scores as an additional 
source of information. InferCNV [55] was used to compute CNV scores. A cutoff value 
of 0.1 was chosen for gene selection. CNV prediction was performed via HMM (Hidden 
Markov Models). For tumor sub-clustering the parameters were kept default (hclust = 
’ward.D2’, tumor_subcluster_pval = 0.05), though tumor_subcluster_partition_method 
was set to ’qnorm’ as this is claimed to be reasonable faster than ‘random_trees’ No prior 
information on distinct clusters was provided.

In a self-supervised fashion, we used the current ikarus cell annotations as pseudo-
labels to train an additional logistic regression model (LR). The LR takes as its input per 
cell inferred CNV values and predicts the cell annotations. The LR itself is trained on 
all cells from the validation dataset, e.g., Lambrechts et al., Kildisiute et al., Puram et al. 
This model was then used to make predictions on the same dataset assuming that logis-
tic regression should not overfit on this task. The outcome is then considered as the final 
corrected ikarus prediction.

Gene set characterization

Gene set activity in cell lines and PDX models

Tumor and normal gene signature scores were calculated for bulk RNA sequencing data 
from laser microdissected data from gastric cancer, ENCODE cell lines, CCLE cell lines, 
and PDX data. Because AUCell was developed for single-cell RNA sequencing data, the 
signature scores were calculated using ssGSEA as implemented in the escape Biocon-
ductor package [59]. The tumor gene signature scores were compared to the cell line 
doubling times and PDX growth rates that were provided as annotations to the datasets. 

N (t) = N0e
−�t
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ENCODE cell lines dataset was further stratified into three groups: primary cell line, cell 
line, and cancer cell line. The stratification was done manually based on the annotation 
provided by ENCODE.

Comparison with published gene sets

The tumor signature gene set assembled in this study was characterized by comparison 
with publicly available gene sets provided by multiple public resources. We considered 
gene sets of various provenances, e.g., all Homo sapiens gene sets published by MsigDB 
[49], cancer-specific gene sets that represent distinct functional tumor states (Cancer-
SEA) [47], novel gene lists covering previously unidentified members of cellular signal-
ing pathways [60].

Gene sets as provided by MsigDB (n = 31120) were assessed via the interface pro-
vided by the R package msigdbr version 7.2.1. Next, intersections and unions of the can-
cer gene set (this study) with every human gene set from that release (version 7.4) of 
MsigDB, as well as the members of the intersections and original sizes of query gene 
sets, were computed.

CancerSEA resource provides a collection of functional cancer gene sets derived from 
a multitude of single-cell studies, thereby supplying a single-cell level scope to the can-
cer functional hallmarks. For characterization of the cancer gene set assembled in this 
study, we downloaded 14 gene sets  nmin = 66,  nmax = 201 from the CancerSEA resource 
(http:// biocc. hrbmu. edu. cn/ Cance rSEA/ goDow nload) representative of distinct cancer 
functional states and intersected it with our gene set. The results of this analysis were 
presented with the UpSet plot framework [61] implemented in the ComplexHeatmap R 
package [62], mode intersect.

To account for recent advances in the annotation of cellular signaling pathways, we 
downloaded a novel collection of gene sets composed of genes previously unmapped 
to any signal transduction pathway. Namely, we acquired 11 gene sets of various sizes 
 nmin = 10,  nmax = 164) and intersected with the tumor signature gene set of this study. 
The visualization of this analysis was similar, i.e., the intersections were presented with 
an UpSet plot implemented in ComplexHeatmap R package, mode intersect.

Gene fusions

Data on human gene fusions were downloaded from the ChiTaRS resource as was pro-
vided on August 16, 2019 (http:// chita rs. md. biu. ac. il/ index. html) [53]. First, we con-
structed a background distribution from randomly selected sets of genes that were 
expression-matched to the tumor signature gene set (this study). Every random gene set 
was intersected with fused genes from the database and the resulting intersection sizes 
were used to fill a background distribution. Lastly, the tumor signature gene set from 
this study was intersected with the list of fused genes to compare with the background 
distribution. This analysis was done separately on 5′- and 3′-fused genes.



Page 18 of 23Dohmen et al. Genome Biology          (2022) 23:123 

Co‑expression analysis

To investigate genes that are co-expressed with the tumor signature gene list across 
many datasets, we took advantage of web-based platform SEEK (https:// seek. princ eton. 
edu/ seek/) [48]. We queried the tumor gene list to the SEEK search engine and down-
loaded a SEEK-generated ranked list of co-expressed genes. For further analyses we used 
top 150 genes from the ranked list.

Gene ontology (GO) analysis

The GO analyses throughout this study were done using the framework provided by 
gprofiler2 R package [50]. From the default run settings, p values threshold was changed 
to 10e−4 and correction_method option set to g_SCS.

Gene set sensitivity testing

To measure ikarus’ robustness on the extracted tumor gene list, we performed the fol-
lowing analyses:

Gene set size

Using the Lambrechts et  al. lung cancer dataset, we iteratively computed ikarus’ bal-
anced accuracies ablating a random section of the tumor gene list in a cumulative step-
wise manner before scoring and prediction steps. Namely, we randomly removed 20, 40, 
60, and 80% percent of the tumor gene list. Every ablation percentage was itself reiter-
ated 25 times. The predictions were not CNV-corrected.

Single gene ablation

Further, we investigated the prediction value of individual genes in the gene list. We 
employed a similar procedure as before, but in contrast to ablating the whole sections 
of the list, we removed an individual gene from the list per iteration before computing 
ikarus’ balanced accuracies.

Gene set prognostic power analysis

To infer the prognostic power of the generated gene set, we referred to prognostic data 
available in the TCGA. Namely, we downloaded a dataset of Cox-proportional hazard 
model z-scores that were generated for every gene expression feature across all available 
tumor types [43]. The distributions of the gene set z-scores were compared to the dis-
tribution of all gene expression z-scores (population) in every cancer type individually. 
Additionally, the cited research provided estimates of Stoufer’s z-scores per gene expres-
sion feature. This metric represents a normalized prognostic average over all cancer 
types available in the dataset. Here, the same procedure was used; we compared the dis-
tribution of Stoufer’s Zs in the gene set to the distribution of all gene expression features.

CNV analysis

To investigate the overrepresentation of copy number amplifications among the genes in 
the extracted tumor gene list, we referred to the COSMIC database. Namely, we down-
loaded a complete COSMIC collection of copy number alterations and stratified it by 
tumor tissue of origin (n = 27). Next, we iteratively intersected the tumor gene list from 
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this study with significantly amplified genes (denoted as “gain” in the COSMIC table) 
over tumor tissues of origin. As a random control, we prepared similarly sized random 
gene sets (n = 162) that were expression-matched to the original tumor gene list. Expres-
sion matching was done on Laughney et al., Lee et al., and Lambrechts et al. datasets 
independently. In total, 150 random gene sets were generated, 50 sets per expression 
dataset.

Comparison to reference methods

The methods used as reference for ikarus were installed and used to the best of our 
knowledge. We used default hyperparameter settings from the corresponding descrip-
tion or provided tutorials. We did not perform any kind of hyperparameter optimiza-
tion. We would like to point out that the published classification methods have many 
tunable parameters, and tuning the parameters might significantly increase their per-
formance. Both CellAssign and scMRMA assume a marker gene list for the target cell 
type prediction. We provided here the tumor and normal gene signatures generated with 
ikarus.

Dataset subsampling

To ascertain whether the classification methods accuracy can be improved by balancing 
the classes, we randomly subsampled 1000 tumor and 1000 normal cells 100 times for 
each of the following datasets used for validation, Lambrechts et al., Kildisiute et al., and 
Puram et al., and evaluated the classifier performance on the datasets.

Statistical testing

Statistical tests performed, groups in comparison, and sample sizes are summarized 
in Supplementary Additional File 3: Statistical Comparisons. In cases of multiple test-
ing, p  values were adjusted using Benjamini-Hochberg (FDR) method [63]. For situa-
tions where tests were not applicable, random background distributions were simulated 
against which the probabilities of observing an event under question were estimated. 
Testing approaches of such kind are reported as “empirical” in Supplementary Addi-
tional File 3: Statistical Comparisons. If the adjusted p value was lower than 0.01, it was 
reported as statistically significant.

For comparing the distribution of non-tumor cells from ikarus’ misclassifications for 
the Lambrechts et al. lung cancer dataset with the actual distribution of cell types, we 
performed pairwise for each of the misclassified groups 2 × 2 fisher exact test (Addi-
tional File 2: Lambrechts misclassification).
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Availability of data and materials
Code
ikarus is a python package that can be found on the following link:
https:// github. com/ BIMSB bioin fo/ ikarus
Code for reproducing the figures can be found on the following link:
https:// github. com/ BIMSB bioin fo/ ikarus% 2D% 2D- auxil iary
Zenodo repository of the software libraries is available here [64].
Both repositories are available under the MIT license.
Datasets
Single-cell RNA-seq data:
Gene expression values for single-cell RNA-seq experiments are available through the corresponding publications. If not 
explicitly declared otherwise, the 10X genomics protocol was used for scRNA-seq.
Laughney et al. provide a lung adenocarcinoma (primary tumors and metastases) dataset that include 40505 cells com-
ing from 17 patients. For our purpose, 1091 cells are considered tumorous, and 39,414 are normal.
63,689 cells from 23 colorectal cancer patients are coming from Lee et al. 16,248 cells are considered tumorous and 
47,441 are normal. After our cross validation analysis, these two datasets serve as input for model building.
A non-small-cell lung cancer dataset is coming from Lambrechts et al. It considers 52,698 cells, of which 7447 are tumor-
ous and 45,251 are normal. This dataset is used for model testing.
Puram et al. published 5578 single cells from 18 head and neck squamous cell carcinoma patients. They performed 
Fluorescence-activated cell sorting for scRNA-seq. 2215 cells are tumorous, 3363 cells are normal. We use this dataset for 
model testing.
Kildisiute et al. published a neuroblastoma cell atlas. We used 6442 cells (10X) from 5 patients (1766 tumorous, 4676 
normal) and 13281 cells (CEL-seq2) from 16 patients (1630 tumorous, 11651 normal) as two distinct datasets for model 
testing. Ma et al. made a hepatocellular carcinoma dataset available with 17,164 tumor and 39,557 non-tumor cells. It 
was used as another test set. We also used a lung carcinoid dataset by Bischoff et al. for testing. It includes 8097 tumor 
and 55,230 non-tumor cells. Jerby-Arnon et al. published a synovial sarcoma dataset that we used for testing. It includes 
8323 tumor and 851 non-tumor cells. A comprehensive description of the datasets can be found in the Additional File 2: 
Datasets.
For both input datasets, Laughney et al. lung adenocarcinoma and Lee et al. colorectal cancer, we considered a refined 
annotation for tumorous cells. Based on gene sets from MSigDB (v7.1) [49] hallmark collection HALLMARK_E2F_TARGETS, 
HALLMARK_G2M_CHECKPOINT, HALLMARK_MYC_TARGETS_V1, HALLMARK_MYC_TARGETS_V2, HALLMARK_P53_PATH-
WAY, HALLMARK_MITOTIC_SPINDLE, HALLMARK_HYPOXIA, HALLMARK_ANGIOGENESIS, and HALLMARK_GLYCOLYSIS, 
we scored each cell. If the average over all considered hallmark gene list scores (in the range 0–1) exceeds a reasonable 
threshold (0.45 for Laughney et al., 0.35 for Lee et al.), the cell is considered tumorous. Thresholds are chosen to minimize 
the amount of false positives with respect to the initial annotation of normal and tumor cell sources. The distribution of 
normal and tumor cell sources obtained from the initial annotation is provided in Additional File 2: Datasets.
ENCODE cell line dataset:
Gene expression values for primary cells, cell lines, and cancer cell lines were downloaded in batch from the ENCODE 
portal with the following query: Assay title: “polyA plus RNA-seq”; Status: “released”; Perturbation: “not perturbed”; 
Organism: “Homo sapiens”; Biosample classification: “cell line”, “primary cell”; Genome assembly: “GRCh38”. Identifiers cor-
responding to the acquired data totaling 860 files are provided in the supplementary materials (Additional File 2: Encode 
IDs). Downloaded expression tables were merged and standardized by a custom R script prepare.data_encode.R to a 
combined gene expression matrix that includes all input data, HGNC symbol gene annotation and cell annotations. For 
gene expression quantification log2(TPM) with a pseudocount of 1 was used. Based on those components, an AnnData 
object is created which is then provided as an input to the ikarus package. Cancer cell line annotation was done manu-
ally and is provided in Additional File 2: Enrichment analysis of tumor gene signature.
Microdissection dataset:
The gastric cancer microdissection dataset comprises laser capture microdissected (LCM) stromal and cancer regions 
collected from a patient cohort (n = 8) totaling 16 samples. Microdissected tissue for each sample was pooled together 
before library preparation to account for the absence of replicates. Gene expression quantification of stromal and cancer 
samples, as provided by the authors of the study [34] in the form of raw counts, was first standardized to ikarus format 
and then used as an input to ikarus pipeline.
Databases:
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- Human protein atlas (https:// www. prote inatl as. org/ human prote ome/ patho logy) [51]
- Prognostic genes [52]
- Gene fusion (ChiTaRs) [53]
- SEEK (co-expression database) (https:// seek. princ eton. edu/ seek/) [48]
- g:Profiler (https:// biit. cs. ut. ee/ gprofi ler/) [50]
- CancerSEA (http:// biocc. hrbmu. edu. cn/ Cance rSEA/ home. jsp) [47]
- MsigDB (GO, Hallmark gene sets) [49]
- Atlas of co-essential modules [60]
- DepMap Achilles scores (https:// depmap. org/ portal/ downl oad/) [65]
- COSMIC (cancer.sanger.ac.uk) [66]
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Simple Summary: Cancer is a complex, heterogeneous collection of diseases with hundred of
different subtypes. Genomic aberrations that are primarily thought to be the root causes of different
cancers have been clinically used as evidence for both the diagnosis and also matching individual
patients to proper treatment options. However, the complexity of cancer manifests itself differently
in each patient when inspected at the molecular level. Even patients with the same cancer type
rarely have identical root causes for the same disease. Without an extensive molecular profile of a
patient, it has been challenging to match the patients to the best treatment options. To remedy this,
comprehensive genomic profiling panels have been developed to monitor hundreds of genes for
a given patient, which has helped broaden the treatment options for patients. However, genomic
aberrations detected in such panels still do not reflect the full complexity of how a tumour responds
to cancer drugs. In this study, we demonstrate that using an additional layer of molecular information
(called the transcriptome) on top of genomic aberrations that can be detected with cancer gene panels
can provide significant improvements in predicting the cancer drug response in pre-clinical cancer
models. Thus, this study serves as a push towards incorporating the transcriptome measurements
more routinely in (pre-)clinical practice.

Abstract: Comprehensive genomic profiling using cancer gene panels has been shown to improve
treatment options for a variety of cancer types. However, genomic aberrations detected via such
gene panels do not necessarily serve as strong predictors of drug sensitivity. In this study, using
pharmacogenomics datasets of cell lines, patient-derived xenografts, and ex vivo treated fresh tumor
specimens, we demonstrate that utilizing the transcriptome on top of gene panel features substantially
improves drug response prediction performance in cancer.

Keywords: multi-omics; cancer; drug response prediction; pharmacogenomics; panel sequencing

1. Introduction

Cancer is a collection of diseases characterized by abnormal cellular growth and the
invasion of other body parts. It affected 19 million people in 2020 and was the cause of
9.5 million deaths that year alone [1]. Cancer has been primarily considered to be a disease
of the genome, where the accumulation of alterations is the underlying cause of the trans-
formation of normal cells into malignant cancerous cells with survival and proliferation
advantages [2]. Genetic alterations of this kind have been studied to understand the mech-
anisms of cancer and to develop targeted therapies. The latter and companion diagnostic
tools have transformed oncology [3], promising more precise treatments tailored to tumors’
genetic profiles. Various targeted therapies have been successfully developed to counteract
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the defects in the molecular machinery borne out of such oncogenic mutations [4–6]. To
this date, most of the markers approved for targeted therapy decisions are single-gene
markers [7]. It has thus become crucial to develop accurate, sensitive, and high-throughput
genomic assays to accommodate the increasingly genotype-based therapeutic approaches.
Commercial companies, such as Foundation Medicine, as well as large cancer research
centers, such as Memorial Sloan Kettering and Dana Farber, have produced their panel
sequencing assays to guide therapy for cancer patients [8]. These techniques examine genes
that are frequently mutated in cancer to assess mutations and copy number variations. Es-
pecially for diagnostics, the approved methods for targeted drugs are usually the presence
or absence of the mutations. Therefore, the assay developers focus primarily on mutation
calling accuracy as a metric of the usefulness and accuracy of the assay [8].

Although comprehensive genomic profiling using cancer gene panels has demon-
strated value in broadening the treatment options for patients based on matching a patient’s
genomic lesions to cancer driver gene aberrations associated with FDA-approved treatment
indications [8,9], the presence/absence of mutations in such genes does not necessarily
translate into improved predictive power for estimating the patient’s response to the po-
tential treatments. While for some drugs the variation in drug response can be explained
by a very specific mutation (for instance, BRAF V600E mutation is a strong predictor for
response to Vemurafenib in metastatic melanoma [4]), for many drugs the knowledge of the
mechanism of action is missing. This is because many drugs are discovered via phenotypic
screening of model systems rather than target-based approaches [10]. Of note, such single
mutation markers for a given cancer type are not necessarily good markers for other cancer
types. For instance, BRAF V600E, while a good predictor for metastatic melanoma, is a
poor predictor of response in metastatic colorectal cancer [11]. More importantly, the latest
compilation of the hallmarks of cancer recognized in the field includes factors such as
the non-mutational epigenetic aberrations, the involvement of the immune system in the
tumor microenvironment, and the composition of the microbiome along with genomic
defects [12]. These layers of information cannot be sufficiently captured by focusing on
the restricted set of genomic alterations and necessitate other data modalities. Among
those, transcriptome profiling—besides being a cheap and accessible option in terms of
logistics—has been shown to yield strong predictors of drug response [13–15].

Here, we set out to quantify the extent to which the usage of the transcriptome as an
additional data modality improves the drug response prediction performance compared
to only the genetic features restricted to the cancer gene panels (such as mutations and
copy number variations). We leveraged publicly available pharmacogenomics datasets,
including genomic and transcriptomic profiles and drug sensitivity measurements in three
types of datasets: cancer cell lines (using the CCLE database [16] and PRISM project [17]), ex
vivo treated fresh tumor specimens from Acute Myeloid Leukemia patients (BeatAML) [18],
and patient-derived xenografts (PDX) [19]. These datasets span three vastly different model
systems to anti-cancer drug efficacy testing, each of which varies in biological complexity
and comes with unique challenges and advantages. Testing across these datasets should
deliver an exhaustive assessment of the importance of transcriptomic features.

2. Results

In all three settings, with an application of out-of-the-box machine learning techniques
(see Section 4), we modelled drug responses for all available drugs in two reported data
modalities, using only panel gene features (panel (PS)) or using the transcriptomic features
on top of panel features (multi-omics (MO)). While achieving only moderate predictive
power (CCLE mean R-square ~10%, n = 396; BeatAML mean R-square ~12%, n = 106),
the MO modalities of the CCLE and BeatAML datasets showed an overall increase in
predictive power (up to a 5-fold improvement for certain drugs) in comparison to PS
data (Figure 1A and Figure S1a,b, Table S1). Of note, we observed a significant positive cor-
relation (r = 0.4, p < 0.0001) between the percentage of gene expression features among the
top 100 features and an increase in MO’s predictive power over PS (Figure 1B). Modelling in
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xenografts generally conferred similar results. Ten out of twelve drugs showed a significant
increase in MO’s predictive power of PS (Wilcoxon’s p < 0.05) (Figure 1C,D, Table S1).
These results were obtained by building random forest regression models; however, we
have also reproduced similar findings, where transcriptome features added substantial
predictive power on top of panel features, using both Elastic Net (GLMnet) and Support
Vector Machines (with radial kernels) (Figure S1 and Table S1—see Section 4).

The improvement of MO over PS across all datasets is nearly univocal, yet heteroge-
neous. The most extreme improvement we have observed was for Venetoclax in beatAML
dataset, where using the panel features yielded an R2 value of 0.03, and the MO features
yielded an R2 value of 0.49. Hence, the top predictive features for Venetoclax consisted
solely of cell type and cancer hallmark signatures (Figure S2c). For some drugs, a 4- to 5-fold
improvement in drug response prediction was recorded. For others, the improvement
was modest (e.g., ~0.025 change in R2 between MO and PS). To an extent, this difference
could be explained by a drug’s mechanism of action (MOA), as some perturb larger shares
of cellular machinery than others. We selected the CCLE dataset as the most represen-
tative to test this (n drugs = 396) (Figures 1D and S2a,b). Among the drugs for which
we observed the most improvement, there are histone deacetylase (HDAC) inhibitors, a
relatively novel class of anti-cancer drugs that interferes with epigenetic regulation [20].
This MOA likely affects the transcriptome on a broad scale via secondary effects that arise
from altered transcription. Likewise, topoisomerase inhibitors and bromodomain inhibitors
drive wide transcriptional changes across the genome. The former inhibits the action of
DNA topoisomerases that lead to the activation of the DNA damage response cascade [21].
Bromodomain inhibitors compete for the bromodomains of the respective proteins and
prevent binding of the latter to acetylated histones and transcription factors [22]. Among
the drugs with a defined target pathway, the effects of MO improvement are more modest.
Altogether, the scale of off-target transcriptional perturbation seems to be beneficial for MO
modelling, as it produces a signal outside of the defined panel’s reach.
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Figure 1. Evaluation of the performance of drug response prediction when using only panel-seq features (mutations and/or copy number variations) or using
transcriptome features in combination with panel-seq features (multi-omics). (A) Improvement of multi-omics (as in R-square metric) in comparison to panel-seq
features for the testing portion of BeatAML (left panel) and CCLE (right panel) datasets for 106 and 396 drugs, respectively. (B) Correlation of the prediction
performance improvement (multi-omics vs. panel-seq) with respect to the proportion of transcriptome features among the top 100 most important predictors of drug
response for CCLE datasets. (C) Improvement of multi-omics (in red) (as in R-square metric) in comparison to panel-seq features (in blue) for the testing portion
of the PDX dataset for 12 drugs. Stars above the boxplots represent significance levels: *** for p < 0.001, ** for p < 0.01, * for p < 0.05. (D) Drug classes with loose
pathway specificity show higher average improvement in MO over PS. Drug classes (y-axis) are ordered by average improvement in MO and filtered to keep only
those that have a minimum of five drugs in a class. The dashed line corresponds to the global average improvement in MO (0.051) as reported in figure panel (C).
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3. Discussion

In this study, we set out to demonstrate two points. First, genomic features derived
with comprehensive genomic profiling methods (panel sequencing) and used during
clinical/pre-clinical drug development often have limited predictive power for drug re-
sponse in cancer pre-clinical models. Second, we sought to elucidate how the drug response
prediction could be improved using additional transcriptomic features. We showed that
using cell type and cancer hallmark gene signature scores derived from the transcriptome
on top of panel-derived features improves predictive power across different pre-clinical
models (cell lines, patient-derived xenografts, ex vivo treated human samples), irrespective
of the modelling method used. Our main aim in this study was not to argue that panel
sequencing should be replaced by transcriptome profiling, but rather to demonstrate that
using the transcriptomic features could have added benefit for treatment response predic-
tion. The logic we follow is that if modelling drug responses using only panel features has
limited power in pre-clinical models, then it would be even more limited for actual patients
who would receive such treatments based on few marker genotypes, as the pre-clinical
models cannot perfectly represent the complexity of the tumor or its microenvironment.
Our second aim in this study was to look for general trends across drugs and datasets
using off-the-shelf methods with a fair comparison of feature sets used in the modelling.
We are mainly interested in the general trends; therefore, we refrain from making strong
conclusions about individual drugs. However, we have quantified the predictive impor-
tance of all the studied features for each drug as supplementary material. It is important to
note that the top markers we report would be correlative in nature. One would need to use
causal inference methods to figure out drug-specific causal biomarkers.

Although the pre-clinical models we studied here do not perfectly reflect the complex-
ity of the actual tumor microenvironment in a human patient, this kind of a large-scale
data analysis of drug responses would not be feasible to carry out on actual patients due
to logistical and ethical limitations. While replicating this kind of a large-scale analysis
could not be extended to actual human samples, follow-up studies could address some
questions that we have not addressed here. First of all, there could be many more alter-
natives in regard to how to preprocess the genomic and transcriptomic features in terms
of converting the input data into less noisy and more information-dense latent features,
optionally with added prior knowledge. For instance, mutation data could be converted
into cancer mutational signatures, or transcriptome data could be integrated with prior
knowledge networks to derive causal subnetwork features. Moreover, different layers of
omics data modalities could be integrated using multi-omics integration methods. More
sophisticated deep learning-based drug response modelling tools could be used, including
pre-training and transfer learning approaches. Finally, the robustness and generalization
power of the prediction models could be compared in a cross-dataset setting, where the
models are built and validated in independently acquired resources or cross-tissue set-
tings, where the models could be evaluated on cell lines derived from a tissue of interest
unrelated to the tissues that are considered during the training procedure. However,
our purpose here was not to benchmark the potential data processing or modelling al-
gorithms, but rather to have a fair comparison of distinct feature sets in terms of their
predictive power for drug response.

4. Methods
4.1. Data/Code Availability

In this study, the following publicly available pharmacogenomics datasets were used:
Cancer Cell Line Encyclopedia (CCLE) [16] downloaded from https://depmap.org/

portal/download/, accessed on 11 April 2022. The drug response measurements from the
PRISM project [17] were used for the corresponding CCLE samples.

Patient-Derived Xenografts (PDX) [19].
BeatAML: ex vivo drug sensitivity screening of acute myeloid leukemia patient tumor

specimens [18] downloaded and processed using the PharmacoGx R package [23].
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Annotation of drug classes was downloaded from Drug Repurposing Hub project [24].
All codes to download, process, analyze the datasets, and reproduce the figures in

this manuscript can be found here: https://github.com/BIMSBbioinfo/multiomics_vs_
panelseq, accessed on 11 April 2022.

4.2. Data Processing

Mutations: The mutation data were converted into a matrix of mutation counts per
gene per sample. The resulting matrix was further filtered to only keep mutation data for
genes in the OncoKB cancer gene list (https://www.oncokb.org/cancerGenes, accessed on
15 April 2022.). Mutation data was available in all three datasets.

Copy Number Variations: The copy number variation data was used as downloaded
from the respective resources. Copy number variation data was also filtered to only keep
genes found in the OncoKB cancer gene list. Both the CCLE and PDX datasets contained
CNV data available, but it was not available for the BeatAML dataset.

Gene Expression (Transcriptome): To reduce the dimensionality and obtain less noisy
features, the gene expression datasets were converted into gene-set activity scores us-
ing single-sample gene set scoring (singscore R package [25]). The gene sets utilized in
this study were the Cancer Hallmarks gene signatures (50 gene sets) from the MSIGDB
database [26] and tumor microenvironment-related gene sets (64 gene sets) curated in the
xCell R package [27]. Gene expression data was available for all three datasets.

Drug Sensitivity Measures: For the CCLE and PDX datasets, AUC (area under the
curve) scores derived from dose–response curves as published in the respective resources
were used in the prediction models. For the BeatAML dataset, recomputed AAC (area
above the curve) scores were used as downloaded via the PharmacoGx R package [23].

4.3. Drug Response Modelling with Machine Learning

For drug response modelling, we considered two main scenarios based on the availabil-
ity of datasets. In the first set, we considered mutation and/or copy number variation data
for genes found in the OncoKB cancer gene list, which aims to simulate panel-sequencing.
In the second set, we considered the features as in the first set along with the whole tran-
scriptome profiling as an additional data modality, which is further converted into gene-set
activity scores. The second set represents the multi-omics condition, in which the panel
features are concatenated with the transcriptome features (gene-set scores).

4.4. For Both Settings, All Three Datasets (CCLE, PDX, BeatAML) Were Analyzed with the
Following Protocol

Only drugs that were treated on at least 100 samples were considered.
For each drug, the samples were split into training (70% of samples) and testing groups

(30% of samples). See Tables S1–S3 for the specific sample counts used for each drug.
Caret R package [28] was used to build random forest regression models (using

either ranger [29], logistic regression models (glmnet) [30], and support vector machines
(svmRadial)) on the training data, where the genomic/transcriptomic features were used
as predictors and the drug response values were used as the outcome variable. We used
3-times repeated 5-fold cross-validation for hyperparameter tuning to find the best model
parameters based on the training data. Near-zero-variation filtering, scaling, and centering
were applied as data processing steps. Applying principal component analysis (PCA) as a
processing step led to poorer prediction results for both multi-omics and panel-seq features.
However, the overall trend was the same, where MO-based models yielded better results
than PS-based models (Figure S1); therefore, we excluded PCA processing when reporting
the main results. For the PDX samples, this step was repeated 20 times by resampling the
training/testing portions. This was only applied for the PDX samples, due to the small
number of drugs (N = 12) treated on at least 100 samples.
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The final model performance was evaluated on the testing data. Spearman rank
correlation, R-square, and root mean squared error (RMSE) metrics were computed, and
the R-square metric was used to report the results in the final figures.

Feature importance rankings were obtained using ‘caret::varImp’ function and are
provided in Table S2 for each modelling method and for each drug.

Drugs were summarized according to their mechanism of action and were evaluated
by mean multi-omics improvement.

5. Conclusions

We believe that in order to better understand cancer and develop better drugs and
diagnostics, we need to make use of all the molecular features by integrating different omics
datasets. In this manuscript, using multi-omics and machine learning techniques, we showed
that multi-omics has indeed superior performance for drug response prediction in cancer.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cancers14225604/s1: Figure S1. Performance comparisons of
different drug response prediction models trained by using only panel-seq features (mutations
and/or copy number variations) or using transcriptome features in combination with panel-seq
features (multi-omics) using different pre-processing options (with PCA in A) and without PCA
(in B) and using different machine learning methods: random forests, elastic nets, and support vector
machines. (A) Comparisons of different drug response models trained with preprocessed panel-
seq and multi-omics features of beatAML and CCLE datasets using three different methods with
scaling, entering, and near-zero variance filtering. (B) Comparisons of drug response models, trained
with preprocessed (scaled/centered/filtered for near-zero-variation) and dimensionally reduced
(using PCA) panel-seq and multi-omics features of beatAML and CCLE datasets. (C) Multi-omics
(red) improvements (in terms of R-squared metric) compared to panel-seq features (blue) of the test
section of the 12-drug PDX dataset, using the elastic net regression (glmnet) model. Stars above the
boxplots represent significance levels: *** for p < 0.001, ** for p < 0.01, * for p < 0.05. (D) Multi-omics
(red) improvements (in terms of R-squared metric) compared to panel-seq features (blue) of the test
section of the 12-drug PDX dataset, using the radial support vector machine (svmRadial) model.
Stars above the boxplots represent significance levels: *** for p < 0.001, ** for p < 0.01, * for p < 0.05.
Figure S2. (A) Classes of drugs based on the average improvement in multi-omics over panel-seq
when the logistic regression (glmnet) model was used for drug response prediction. (B) Classes of
drugs based on the average improvement in multi-omics over panel-seq when the radial support
vector machine (svmRadial) model was used for drug response prediction. Mean improvement
on overall drugs marked with dashes. (C) Top 20 cell type and cancer hallmark gene signatures
associated with Venetoclax response prediction for beatAML samples using a random forest model.
Table S1: Drug response prediction performance metrics for each machine learning method and
pharmacogenomics dataset. Table S2: Feature importance metrics derived from each machine learning
model built for each drug in each pharmacogenomics dataset. Table S3: Improvement in prediction
performance across drug classes per dataset (except for PDX dataset) per built model.

Author Contributions: Conceptualization and initial planning: A.A.; Data collection and formal
analysis: A.B., I.B.G., V.F. and B.U.; Writing and editing of the manuscript: all authors; Supervision:
B.U. and A.A.; Funding acquisition: A.A. All authors have read and agreed to the published version
of the manuscript.

Funding: This research partly funded by Berlin Institute of Health, Digital Health Accelerator grant
number and The APC was funded by Helmholtz Association.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data analysed in this study have been previously published (See
Section 4.1). The raw and processed data along with the code that was used to process, analyse,
and visualise the findings reported in this study can be found at our GitHub repository: https:
//github.com/BIMSBbioinfo/multiomics_vs_panelseq (accessed on 11 April 2022).

Conflicts of Interest: The authors declare no conflict of interest.



Cancers 2022, 14, 5604 8 of 9

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020:

GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71,
209–249. [CrossRef] [PubMed]

2. Weinberg, R.A.; Hanahan, D. The Hallmarks of Cancer. Cell 2000, 100, 57–70.
3. Bedard, P.L.; Hyman, D.M.; Davids, M.S.; Siu, L.L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet

2020, 395, 1078–1088. [CrossRef]
4. Chapman, P.B.; Hauschild, A.; Robert, C.; Haanen, J.B.; Ascierto, P.; Larkin, J.; Dummer, R.; Garbe, C.; Testori, A.; Maio,

M.; et al. Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation. N. Engl. J. Med. 2011, 364,
2507–2516. [CrossRef] [PubMed]

5. Shaw, A.T.; Kim, D.-W.; Nakagawa, K.; Seto, T.; Crinó, L.; Ahn, M.-J.; De Pas, T.; Besse, B.; Solomon, B.J.; Blackhall, F.; et al.
Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 2013, 368, 2385–2394. [CrossRef]

6. Shaw, A.T.; Kim, D.-W.; Mehra, R.; Tan, D.S.W.; Felip, E.; Chow, L.Q.M.; Camidge, D.R.; Vansteenkiste, J.; Sharma, S.; de Pas, T.;
et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med. 2014, 370, 1189–1197. [CrossRef]

7. Chakravarty, D.; Gao, J.; Phillips, S.; Kundra, R.; Zhang, H.; Wang, J.; Rudolph, J.E.; Yaeger, R.; Soumerai, T.; Nissan, M.H.; et al.
OncoKB: A Precision Oncology Knowledge Base. JCO Precis. Oncol. 2017. [CrossRef]

8. Cheng, D.T.; Mitchell, T.N.; Zehir, A.; Shah, R.H.; Benayed, R.; Syed, A.; Chandramohan, R.; Liu, Z.Y.; Won, H.H.; Scott, S.N.;
et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): A Hybridization
Capture-Based Next-Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology. J. Mol. Diagn. 2015, 17,
251–264. [CrossRef]

9. Karol, D.; McKinnon, M.; Mukhtar, L.; Awan, A.; Lo, B.; Wheatley-Price, P. The Impact of Foundation Medicine Testing on Cancer
Patients: A Single Academic Centre Experience. Front. Oncol. 2021, 11, 687730. [CrossRef]

10. Swinney, D.C.; Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 2011, 10, 507–519. [CrossRef]
11. Tabernero, J.; Ros, J.; Élez, E. The Evolving Treatment Landscape in BRAF-V600E-Mutated Metastatic Colorectal Cancer. Am. Soc.

Clin. Oncol. Educ. Book 2022, 42, 254–263. [CrossRef] [PubMed]
12. Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [CrossRef] [PubMed]
13. Chen, J.; Zhang, L. A survey and systematic assessment of computational methods for drug response prediction. Brief. Bioinform.

2021, 22, 232–246. [CrossRef] [PubMed]
14. Sharifi-Noghabi, H.; Jahangiri-Tazehkand, S.; Smirnov, P.; Hon, C.; Mammoliti, A.; Nair, S.K.; Mer, A.S.; Ester, M.; Haibe-Kains, B.

Drug sensitivity prediction from cell line-based pharmacogenomics data: Guidelines for developing machine learning models.
Brief. Bioinform. 2021, 22, bbab294. [CrossRef]

15. Rodon, J.; Soria, J.-C.; Berger, R.; Miller, W.H.; Rubin, E.; Kugel, A.; Tsimberidou, A.; Saintigny, P.; Ackerstein, A.; Braña, I.; et al.
Genomic and transcriptomic profiling expands precision cancer medicine: The WINTHER trial. Nat. Med. 2019, 25, 751–758. [CrossRef]

16. Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehar, J.; Kryukov, G.V.; Sonkin, D.;
et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012, 483, 603–607.
[CrossRef] [PubMed]

17. Corsello, S.M.; Nagari, R.T.; Spangler, R.D.; Rossen, J.; Kocak, M.; Bryan, J.G.; Humeidi, R.; Peck, D.; Wu, X.; Tang, A.A.;
et al. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer 2020, 1,
235–248. [CrossRef]

18. Tyner, J.W.; Tognon, C.E.; Bottomly, D.; Wilmot, B.; Kurtz, S.E.; Savage, S.L.; Long, N.; Schultz, A.R.; Traer, E.; Abel, M.; et al.
Functional genomic landscape of acute myeloid leukaemia. Nature 2018, 562, 526–531. [CrossRef]

19. Gao, H.; Korn, J.M.; Ferretti, S.; Monahan, J.E.; Wang, Y.; Singh, M.; Zhang, C.; Schnell, C.; Yang, G.; Zhang, Y.; et al. High-throughput
screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 2015, 21, 1318–1325. [CrossRef]

20. Kim, H.-J.; Bae, S.-C. Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anti-cancer drugs. Am.
J. Transl. Res. 2011, 3, 166–179.

21. Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer 2006, 6, 789–802. [CrossRef] [PubMed]
22. Pérez-Salvia, M.; Esteller, M. Bromodomain inhibitors and cancer therapy: From structures to applications. Epigenetics 2017, 12,

323–339. [CrossRef] [PubMed]
23. Smirnov, P.; Safikhani, Z.; El-Hachem, N.; Wang, D.; She, A.; Olsen, C.; Freeman, M.; Selby, H.; Gendoo, D.; Grossmann, P.; et al.

PharmacoGx: An R package for analysis of large pharmacogenomic datasets. Bioinformatics 2016, 32, 1244–1246. [CrossRef]
24. Corsello, S.M.; Bittker, J.A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J.E.; Johnston, S.E.; Vrcic, A.; Wong, B.; Khan,

M.; et al. The Drug Repurposing Hub: A next-generation drug library and information resource. Nat. Med. 2017, 23,
405–408. [CrossRef] [PubMed]

25. Foroutan, M.; Bhuva, D.D.; Lyu, R.; Horan, K.; Cursons, J.; Davis, M.J. Single sample scoring of molecular phenotypes. BMC
Bioinform. 2018, 19, 404. [CrossRef]



Cancers 2022, 14, 5604 9 of 9

26. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.;
Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [CrossRef]

27. Aran, D.; Hu, Z.; Butte, A.J. xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017, 18, 220. [CrossRef]
28. Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]
29. Wright, M.N.; Ziegler, A. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw.

2017, 77, 1–17. [CrossRef]
30. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw.

2010, 33, 1–22. [CrossRef]



5 Discussion

This thesis comprises two studies with three unifying themes: machine
learning, multi-omics, and cancer biology. First, each work showcases an
application of machine learning techniques, be it out-of-the-box methods,
or custom-built machines, to conceptually different problems. Second, both
studies gauge the virtue of the transition from mono- to multi-omic analysis
regarding a trained model’s predictive ability. Finally, within the scope of
cancer biology, these studies’ immediate goals and results do not hold much
in common; therefore, each work entailed unique conceptual obstacles that
required not less unique solutions. The development of Ikarus , the pipeline
to segregate single-cell profiles into tumour and non-tumour, demanded
resolutions to the engineering problems encountered during the algorithm’s
optimisation alongside the questions arising from the conceptualisation of
validation procedures. On the other hand, the second work was focused on a
multi-omic approach to analysis in cancer models and didn’t concern itself
with the method development.

5.1 Robust annotation of cancer cells in scRNA-seq data

The intention behind developing Ikarus was to tackle a seemingly elementary
challenge: to distinguish between neoplastic and healthy cells within a single-
cell dataset. Our methodology constitutes two stages, both implemented
within the Ikarus pipeline.

At the outset, Ikarus amalgamates a user-provided array of expert-
annotated scRNA-seq datasets and constructs cancer cell-specific gene signa-
tures including up- and down-regulated genes. Subsequently, Ikarus scores
the constructed gene sets within single cells and passes on the scores to the
neighbouring cells via versatile network propagation. These mechanisms al-
low Ikarus to circumvent two prevailing difficulties in a single-cell annotation:
batch effects and unstable clustering.

Conventionally, batch effects stemming from technical disparities
between single-cell datasets are addressed by integration methodologies; these
are numerous but univocally demand extensive parameter tuning. In turn,
that often leads to non-intuitive effects on the integration solution. Further,
the precise accuracy of the resultant integrations can only be effortlessly
assessed with a reliance on comprehensive biological priors, i.e. reference
datasets. In this regard, gene set scoring offers a robust and computationally
feasible alternative: single-sample rank-based evaluation eliminates the need
for integration to compare disparate samples. Nevertheless, gene set scoring
is not perfect as with any other method. The primary technical variable to
affect the technique is the proportion of the gene set present in the given
samples, inasmuch as strong disbalance in the representation of gene set in
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different samples produces unstable scores. This aspect has been thoroughly
interrogated in our work with random simulations of scorings with incomplete
gene sets.

A routine single-cell analysis necessarily involves aggregating cells
into clusters that are subsequently annotated and compared to a high-fidelity
reference, e.g. cell atlas. However, irrespective of the chosen methodology,
clustering parametrisation is exceptionally challenging to yield stable solu-
tions across different datasets. Naturally, this problem renders automatic
clustering unfeasible, if not outright impossible, and often necessitates manual
tuning. Therefore, in our pipeline, we supplanted clustering with graph-based
network propagation, a parameterless alternative to clustering that retains
similar sensitivity to annotation. This method reduces the uncertainty in
cell classes by integrating the scores of densely connected neighbours.

In an extension of the pipeline, we engaged a multi-omic strategy and
aimed to improve the classification accuracy by including a data modality
of CNVs inferred from scRNA-seq. The main advantage of this type of
multi-omics is that additional data modalities are directly inferred from the
same mono-omic experiment. In this regard, a posteriori integration of CNVs
in a validation step increased the precision of a classifier, i.e. decreased the
number of false positives. However, this effect was not universal across the
diverse cancer types we analysed. Theoretically, appending more multi-omic
classification stages would further increase the machine’s performance. For
instance, tools for inference of transposable elements have been recently
published and were able to delineate differentiating stem cells. These data
could be utilised to implement a cancer-cell de-differentiation inference,
whereas transposon expression can serve as a proxy for the latter.

Nevertheless, the inquiry regarding the full potential of multi-omic
integration in single-cell analysis remains unresolved. For instance, scWGS
and single-cell epigenetic profiling are hindered by the low and uneven
sequence coverage, while di-omic profiling of transcriptome and proteome
in single cells is limited by the used array of antibodies that often range a
hundred.

The expansion of single-cell omics concurs with the development of
spatial transcriptomics. New methodologies, like 10x Visium, ¬that utilise
a barcoded grid to capture spatial information from a tissue slide, allow
interrogation of tissue sections in a spatial context with near single-cell
precision, e.g. two to ten cells per grid unit. In the case of cancer, the
usual annotation of tissue sections is done based on histological evaluation
by a pathologist: a laborious and tedious process. In this regard, Ikarus can
help to streamline the tissue section annotation process, albeit the potential
caveats arising from the uneven aggregation of cells per grid unit need to be
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explored.

Ikarus’s main methodological limitation is its reliance on expert-
annotated reference single-cell datasets. The latter is used in the identification
of gene signatures and validation of a classifier, the two steps of the Ikarus
pipeline. Therefore, the availability of the reference constrains the applica-
bility of Ikarus to a shallow pool of faithfully annotated datasets. So far,
we have ascertained Ikarus’s performance within the domain of epithelial
tumours and neuroblastoma, whereas the classification of single cells in
synovial sarcoma was inaccurate. Therein, the Ikarus needs to accommodate
multiple models to comprehensively classify different cancer types, which
necessitates the expansion of a catalogue of high-fidelity references. In this
respect, the rapidly expanding volume of single-cell datasets will yield new
references and potentially include hitherto unexamined cancer types as soft
tissue tumours.

5.2 Multi-omics fare better in the prediction of drug response
in cancer models

Genomic profiling techniques commonly utilised in pharmaceutical practice
revolve around in-depth deep profiling of a specific set of well-conserved and
validated genomic features, i.e. panel sequencing.

The pharmaceutical practice utilises genomic profiling techniques
in clinical and pre-clinical practice. In this regard, panel sequencing, i.e.
in-depth profiling of a specific panel of well-conserved and validated genomic
features, is the most widespread approach. In our work, we investigated two
points; First, the set of genomic features assayed by panel sequencing has
a constrained capacity for drug response prediction in pre-clinical cancer
models. Second, the predictive power can be improved by expanding the
panel of transcriptomic features.

We show that adding gene expression-derived rank-based signature
scores to the panel features drastically enhances the predictive ability across
various cancer models, including cell lines, patient-derived xenografts and
ex-vivo human samples, regardless of the chosen machine learning algorithm.
The improvements in prediction are most pronounced in drugs whose MOA
induces collateral transcriptomic changes, such as HDAC, bromodomain,
and DNA topoisomerase inhibitors. In our rationale, we adhered to the
workflow of pharmaceutical practice, whereby drugs are tested in pre-clinical
cancer models and then prescribed to patients based on several selected
genetic markers elucidated from pre-clinical models. If panel sequencing
fares poorly in cancer models, its prediction efficacy in patients would be
exacerbated even further, as cancer models are imperfect in capturing the
tumour microenvironment and heterogeneity. Notably, our work does not
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propose a complete departure from panel sequencing in favour of a multi-
omic approach. Rather, it showcases that the complementary transcriptomic
features generally magnify the predictive power and where this magnification
is the most pronounced.

In our study, we examined pre-clinical cancer models spanning a
wide range of biological complexity, albeit the majority of the samples in
our analysis came from the cancer cell lines, which is the simplest model
and likely the farthest from mirroring the biological complexity of an ac-
tual tumour within a patient. Although the large-scale pharmacogenomic
analysis cannot be replicated in the actual human samples due to ethical
and logistical constraints, considering modern trends to expand and improve
next-generation cancer models like organoids and xenografts, the subsequent
studies could leverage their potential in the near future. In this regard,
it would be valuable to test the generalisation capacity of the constructed
models. For instance, how the models perform in cross-tissue settings and
if the predictive power remains consistent when models are trained on one
cancer model system and tested on another, e.g. train the model in organoids
and test in xenografts, and vice versa.

As far as we were concerned with general trends, we utilised standard
data pre-processing and out-of-the-shelf machine learning methods. In this
regard, alternative data pre-processing could be employed to de-noise the
input: both transcriptomic and genomic features could be transformed into
information-dense latent features; transcriptomic data could be integrated
into gene networks; mutations could be transformed into cancer mutational
signatures based on the a priori knowledge from large scale cancer studies.
Finally, different -omics data modalities could be integrated alongside tran-
scriptomic and genomic features, potentially yielding a potent substrate for
sophisticated deep learning approaches.
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Tumor gene heatmap
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Tumor and normal gene signature characterization

A) The heat map depicts the expression of the tumor specific genes in the Tirosh head and neck cancer dataset [31],
which was not used for the signature definition. Out of the 162 genes from the signature, 132 were found to be
expressed in the Tirosh dataset. The tumor gene signature contains two sets of genes: genes that are highly enriched
in tumor cells compared to all other cells and genes that are highly enriched in tumor cells compared to each individual
cell type.

B) The normal gene signature list visualized on the Tirosh dataset (which was not used in the gene list definition).
Normal gene signature captures mostly cell type specific gene expression. The tumor/normal classification designates
whether the cells originated from the tumor or the healthy dataset.

C) Tumor and normal gene signature scores of the cancer cell line encyclopedia (CCLE) data. Tumor gene signature
shows a significantly higher score distribution in all cancer types present in the dataset. Normal and tumor signature
distributions were compared using Wilcoxon tests, for each cancer type, followed by BH-FDR correction. All adjusted p
values were lower than 0.01.
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Additional tests of ikarus performance

A) Performance of ikarus and competing classifiers on datasets where the tumor and normal classes have been
balanced by sampling. The sampling procedure was repeated 100 times (Distributions of results were compared using
ANOVA with post hoc pairwise comparison. P values were adjusted using BH-FDR. All adjusted p values were lower
than 0.01).

B) Performance of ikarus and competing classifiers when using tumor and normal gene signatures as inputs, instead
of all genes. (Distributions of results were compared using ANOVA with post hoc pairwise comparison. P values were
adjusted using BH-FDR. All adjusted p values were lower than 0.05).
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ikarus performance on multiple test datasets

A) Performance of ikarus classifier on the Puram et al. Head and Neck
Cancer dataset.

B) Performance of ikarus classifier on the Kildisiute et al. Neuroblastoma
dataset sequenced with 10X.

C) Performance of ikarus classifier on the Kildisiute et al. Neuroblastoma
sequenced with CEL-Seq2.

D) Performance of ikarus classifier on the Bischoff et al. Lung carcinoid
sequenced with 10Xx.

E) Performance of ikarus classifier on the Ma et al. Hepatocellular
carcinoma sequenced with 10Xx.

F) ikarus correctly recognizes all cells from a healthy peripheral blood as
non-tumorous.

G) ikarus shows a reduction in sensitivity when discrimination tumor form
normal cell in a sarcoma sample [46].
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Figure 3: Figure S1. Performance comparisons of different drug response prediction models
trained by using only panel-seq features (mutations and/or copy number variations) or
using transcriptome features in combination with panel-seq features (multi-omics) using
different pre-processing options (with PCA in A) and without PCA (in B) and using
different machine learning methods: random forests, elastic nets, and support vector
machines. (A) Comparisons of different drug response models trained with preprocessed
panel-seq and multi-omics features of beatAML and CCLE datasets using three different
methods with scaling, entering, and near-zero variance filtering. (B) Comparisons of
drug response models, trained with preprocessed (scaled/centered/filtered for near-zero-
variation) and dimensionally reduced (using PCA) panel-seq and multi-omics features
of beatAML and CCLE datasets. (C) Multi-omics (red) improvements (in terms of
R-squared metric) compared to panel-seq features (blue) of the test section of the 12-drug
PDX dataset, using the elastic net regression (glmnet) model. Stars above the boxplots
represent significance levels: *** for p ¡ 0.001, ** for p ¡ 0.01, * for p ¡ 0.05. (D)
Multi-omics (red) improvements (in terms of R-squared metric) compared to panel-seq
features (blue) of the test section of the 12-drug PDX dataset, using the radial support
vector machine (svmRadial) model. Stars above the boxplots represent significance levels:
*** for p ¡ 0.001, ** for p ¡ 0.01, * for p ¡ 0.05.
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Figure 4: Figure S2. (A) Classes of drugs based on the average improvement in multi-omics
over panel-seq when the logistic regression (glmnet) model was used for drug response
prediction. (B) Classes of drugs based on the average improvement in multi-omics over
panel-seq when the radial support vector machine (svmRadial) model was used for drug
response prediction. Mean improvement on overall drugs marked with dashes. (C) Top
20 cell type and cancer hallmark gene signatures associated with Venetoclax response
prediction for beatAML samples using a random forest model. Table S1: Drug response
prediction performance metrics for each machine learning method and pharmacogenomics
dataset. Table S2: Feature importance metrics derived from each machine learning
model built for each drug in each pharmacogenomics dataset.
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