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Abstract

Many biological systems can be described by the concept of barrier crossing.
Rare events, such as protein folding or chemical reactions, can be modeled
as systems that must cross a barrier potential to change their states.These
systems do not occur in isolation but, are rather coupled with their envi-
ronment. Typically we choose a reaction coordinate and project out all the
other orthogonal degrees of freedom. If the orthogonal degrees of freedom
relax as rapidly as the reaction coordinates, non-Markovian memory effects
must be taken into account in order to accurately describe the dynamics.

In this thesis, we study the mean first-passage time 73,rp for various non-
Markovian systems using the generalized Langevin equation. We begin by
considering a multi-exponential memory kernel exhibiting various memory
times and friction coefficients. We then propose a heuristic formula that
shows that the 7);pp is dominated by the single memory exponential with
short memory time as well as large amplitude.

Following this, we take into consideration a generalized Langevin equation
out of equilibrium, thereby deriving three effective parameters that consider
the effect of the memory time out of equilibrium. Changing the temperature,
the 7y/rp demonstrates non-Arrhenius behavior and increases dramatically
when the random force relaxation time is longer than the friction relaxation
time.

Since many chemical and biological systems exhibit asymmetric free-
energy profiles, we next consider an asymmetric potential. From simulation
data, we gather evidence that the dynamics in one well is independent of
the other. Therefore, we describe the dynamics via the times 7175, that are
needed to reach the barrier from left and right, respectively.

In the final section, we focus on another important factor that charac-
terizes the process of barrier crossing, the mean transition path time 73;7p.
Again, we concentrate on a non-Markovian system, and, with the help of
simulations, derive a heuristic formula. In particular, we introduce the mem-
ory time, substituting the effective parameters found above into a previous
Markovian formula. Contrary to the mean first-passage time 7y,rp, the mean
transition path time 7);7p reaches its maximum in the Markovian case; for
intermediate memory time it decreases, particularly for smaller mass, and
settles on a constant value for large memory times.




Kurzfassung

Viele biologische Systeme kénnen mit dem Konzept des Barriereiibergangs
beschrieben werden. Seltene Ereignisse, wie die Proteinfaltung oder chemi-
sche Ereignisse, konnen als Systeme modelliert werden, die eine Potenzialbar-
riere iiberwinden miissen, um ihren Zustand zu &ndern. Diese Systeme tre-
ten nicht isoliert auf, sondern sind vielmehr mit ihrer Umgebung gekoppelt.
Typischerweise wird eine Reaktionskoordinate gewéhlt, wobei alle anderen
orthogonalen Komponenten in der Projektion nicht betrachtet werden. Falls
die orthogonalen Freiheitsgrade so schnell wie die Reaktionskoordinaten rela-
xieren, miissen Memoryeffekte beriicksichtigt werden, um die Dynamik genau
zu beschreiben.

In dieser Arbeit untersuchen wir die mittlere Reaktionszeit my;pp fiir ver-
schiedene nicht-Markovsche Systeme mithilfe der generalisierten Langevin-
Gleichung. Zuerst betrachten wir einen multi-exponentiellen Memorykernel,
der verschiedene Memoryzeiten und Reibungskoeffizienten aufweist. Wir schla-
gen dann eine heuristische Formel vor, die zeigt, dass 7p,rp von einer ein-
zelnen Exponentialfunktion mit sowohl kurzer Memoryzeit als auch grofer
Amplitude dominiert wird.

Im Anschluss betrachten wir eine generalisierte Langevin-Gleichung ab-
seits des Gleichgewichts und leiten drei effektive Parameter ab, die den Effekt
der Memoryzeit auferhalb des Gleichgewichts beriicksichtigen. Andert man
die Temperatur, verhélt sich die mittlere Reaktionszeit 7p;pp nicht gemafs
der Arrhenius-Gleichung und steigt dramatisch an, wenn die Relaxationszeit
der Zufallskraft langer ist als die Reibungsrelaxationszeit.

Da viele chemische und biologische Systeme asymmetrische freie-Energie-
Profile aufweisen, betrachten wir als Néchstes ein asymmetrisches Potenzial.
Aus Simulationsdaten sammeln wir Beweise dafiir, dass die Dynamik in einem
Tal des Potenzials unabhéngig vom Anderen ist. Daher beschreiben wir die
Dynamik durch die benétigten Zeiten 7175, um die Barriere von links bzw.
von rechts zu erreichen.

Im letzten Abschnitt betrachten wir einen weiteren wichtigen Faktor, der
den Prozess des Barriereiibergangs charakterisiert, die mittlere Ubergangs-
pfadzeit 7p;rp. Wir betrachten wieder ein nicht-Markovsches System und
leiten mithilfe von Simulationen eine heuristische Formel her. Insbesondere
fiihren wir die Memoryzeit ein, indem wir die oben erwahnten effektiven Para-
meter in eine bereits bekannte Markovsche Formel einsetzen. Im Gegensatz
zur mittleren Reaktionszeit 7y pp erreicht die mittlere Ubergangspfadzeit
Tyrp ihr Maximum im Markovschen Fall; fiir intermedidre Memoryzeiten
nimmt sie ab, insbesondere fiir kleine Massen, und nimmt fiir grofse Memo-
ryzeiten einen konstanten Wert an.
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Chapter 1

Introduction

When we study biophysical objects (biological phenomena studies with a
physical model), we come to realize that such objects never occur in isolation,
but are rather immersed in a kind of heat bath. In 1827, Scottish botanist
Robert Brown observed under a microscope the motion of pollen particles in
water, noting that the single pollen particle was moving in a chaotic fashion
[1]. This mechanism was later explained as the result of many minor collisions
between the pollen particle and the surrounding water molecules. So in order
to ascertain the final position of the pollen particle, one must consider a
multitude of random variables. This dynamic occurs not only in biophysical
systems, but also across a more comprehensive range of systems, for example
in the price of an asset [2,3] or the tracking of a tropical cyclone [4].

The first theoretical explanation of Brownian motion was put forth in 1905
by Albert Einstein [5] and independently discovered one year later by Marian
Smoluchowski [6]. Einstein and Smoluchowski described the phenomenon
with a diffusion equation without considering inertial effects. Subsequently,
in 1908, Paul Langevin took into account the inertial behavior of the particle
and introduced a stochastic force |7] as follows:

mi(t) = —yi(t) — VU (z(t)) + Fr(t), (1.1)

where m and ~ denote the particle’s mass and its friction coefficient, respec-
tively. The variable x represents the particle’s position, and the dots denote
the derivative with respect to time. The external potential is U (z(t)), which
for Brownian motion is zero, and Fg(t) is a Gauss distributed stochastic
force, which indicates that its mean is zero, i.e. (Fg(t)) = 0. In the case of
Brownian motion, i.e. a heavy particle surrounded by lighter particles with
different diffusion times, we must take into account the concept of separa-
tion of scales. The interaction between the environment and the particle is
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modeled by a friction and a random force, which are correlated (in equilib-
rium) according to the fluctuation-dissipation theorem. The time scale of the
lightweight particles is much smaller than of the tracked particle, considering
that the bath is stationary and the random force must take into account the
average behavior of the light particles. In other words, it is possible to find a
lag-time ¢, where, in the interval between ¢ and ¢ +¢', the change in velocity
is minimal, but simultaneously, the random force in ¢ + ' is independent of
the value of Fr(t), i.e. (Fr(t)Fr(t+1t")) =0.

Sometimes, these time scales are comparable, so we can not consider
the friction contribution instantaneous. In the 1960s, H. Mori [8] and R.
Zwanzig [9,10] posited that the interaction between particles requires a finite
amount of time and, using the Langevin equation (LE) (1.1), they introduced
the Generalized Langevin equation (GLE)

mi(t) = — /Ot L(a(t —t)dt' — VU (z(t)) + Fr(t). (1.2)

Mori obtained this integro-differential equation via linearly projecting the
phase space dynamics of a Hamiltonian system onto a one-dimensional reac-
tion coordinate, using the Liouville operator formalism. The memory kernel
['(¢') in Eq. (1.2) encloses the degrees of freedom orthogonal to the reaction
coordinate x, and, if we are at equilibrium, the memory kernel is proportional
to the autocorrelation of the random force. A peculiar difference between the
Langevin equation (1.1) and the GLE (1.2), the former being Markovian, is
that the acceleration equation depends solely on the time ¢, and not also
on the previous time . Going from Eq. (1.1) to Eq. (1.2) depends on the
separation time scale, in other words, if we are able to approximate the in-
teraction between particles as instantaneous. It is instantaneous when the
decay of the memory kernel I'(¢) is much faster than the velocity time scale.
If one substitutes the memory kernel with a delta function in Eq. (1.2), one
comes back at Eq. (1.1). As we have already stated, the Langevin equation
has widespread applicability in stochastic mechanics, because the reaction
coordinate x could be used to describe a particle’s position, as well as more
abstract objects, such as a vector connecting two particles, an end-to-end
vector, or the fluctuating price of an asset.

From Eq. (1.1) and Eq. (1.2) it is clear that it is always easier to work with
the first equation, because the memory function does not have a universal
description and can become very complicated and thus difficult to express
analytically. Several methods exist in the literature to determine I'(¢), but
none is universal [11, 12|, because the methods depend on the type of the
studied system.

Model systems can be simulated by solving the LE or GLE numerically.

Laura Lavacchi 2
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Solving LE is easier when we find the optimal reaction coordinate, but in
some cases, optimal reaction coordinat does not exist, so one has to solve
GLE. The numerical simulation is useful to verify an analytical model.

Another noteworthy aspect of the GLE is the relationship between the
random force and the memory kernel; as we have already clarified, the ran-
dom force Fgr(t) is Gaussian distributed and, at the point of equilibrium,
obeys the fluctuation-dissipation theorem (FDT)

(Fr(t)FR(t')) = ksTT(t — '), (1.3)

where kg is the Boltzmann constant.

One process that is often described by the Langevin equation is protein
folding, because the dynamics are characterized by the friction coefficient.
The process can be modeled by a one-dimensional barrier crossing that di-
vides the folded and the unfolded state. The double-well is a simple potential
that describes the crossing process in one dimension. The barrier crossing
defines the probability of going to a certain point B starting from point A.
This process is affected by various parameters, e.g., the friction coefficient or
the mass. As stated above, Markovian dynamics is an approximation where
one considers the interaction between the particle and the environment as
instantaneous. However, if the time scales between the particle and the envi-
ronment are comparable, one must additionally consider the non-Markovian
dynamics [13,14]|. The protein folding process is a typical example where
the time scales are similar. For this reason, the duration of the particle
interactions will be finite. Apart from that, the memory time changes the
probability of crossing the barrier, inducing an acceleration of the time to
cross with respect to the Markovian case for intermidiate memory times and
a slow-down for long memory times.

Protein folding is a vital cell process, and the failure of this process, or
the misfolding, is the cause of many neurodegenerative diseases, for example,
Alzheimer’s or Parkinson’s Disease [15]. To prevent such misfolding, other
proteins are involved in the process, acting as chaperones: these molecules
increase the folding efficiency, reducing the probability of different types of
aggregation [16]. The stabilizing effect of these chaperones does not occur in
a state of equilibrium, because they consume chemical energy [17|. FDT does
not hold in this case, and the system is in a condition of non-equilibrium that
changes its thermodynamics. This is the condition of Active Matter, where
active agents consume energy to produce work. This activity, measured in
a state of non-equilibrium, is characteristic of other living systems, such as
cell migration or cell division.

Laura Lavacchi 3
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1.1 Outline

This thesis will set out to consider the ways in which memory effects influ-
ence the dynamics of a one-dimensional potential landscape. Utilizing both
simulations as well as analytical calculations, we will investigate how the
mean-first passage time (MFPT) over a single barrier modifies its crossing
velocity. In particular, we will consider various systems, modifying both the
memory kernel and the potential. We will also study systems in which the
FDT is violated, because a model far from a state of equilibrium can describe
a range of chemical reactions and molecular conformational transition.

In chapter 3, we will simulate the GLE (1.2) for a multi-exponential
memory kernel, considering various friction coefficients v; and memory times
7;, in particular for two or three exponentials. Furthermore, we will verify the
validity of previous works and, based on a new heuristic formula, generate
a general scaling diagram. This diagram will depict the Markovian regime
for short memory times and an asymptotic long-memory-time regime. The
MFPT grows quadratically in the region of long-memory-time and the scaling
variable is 7;/7?. Therefore the memory contributions with long memory
times 7; or small amplitudes ~; are negligible compared to other memory
contributions. For the other memory time, we observe an intermediate non-
Markovian regime, characterized by acceleration, or by a slowdown of the
MFPT, depending on the particle mass.

In chapter 4, we will concentrate on the easiest exponential memory ker-
nel, the single one; the autocorrelation of the random force is proportional
to another exponential function, similar to the memory kernel, but with a
different relaxation time. Using a harmonic approximation, we will present
an analytical result for the MFPT based on the positional autocorrelation
function. This calculation generalizes previous works [18,19] and provides
effective parameters that correspond to our simulation data, producing a
heuristic formula for a double-well potential. The new MFPT shows a non-
Arrhenius behavior, where the non-equilibrium random forces have a relax-
ation time longer than the friction relaxation time. The effective parameters
also describe the spatial and velocity distributions.

Another step to better describe the protein folding process is to consider
an asymmetric double-well potential, as we will demonstrate in chapter 5.
Using the results of the previous chapter, we will modify the heuristic for-
mula for a potential with various barrier heights on the two sides of the top
and separation lengths between the top and the left and the right minima,
respectively. We will compare the procedure with the simulation to demon-
strate its validity. We will also be able to conclude that the two wells operate
independently of one another, and the mean first passage time from the bot-
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1.1. OUTLINE

tom of one well to the top is not influenced by the dynamic of the other
well.

In chapter 6, we will analyze another important concept in the context
of barrier crossing: the transition path time, i.e., the time taken to reach a
target without revisiting the initial position. Additionally in this case, us-
ing the effective parameters found in chapter 4, we will develop a heuristic
formula for single and double exponential memory kernels. We are there-
fore demonstrating that the presence of a memory kernel will accelerate this
process, in particular when the mass of the particle is small; in other words,
the mean of the transition path time (MTPT) in the non-Markovian case is
shorter than the MTPT in the Markovian case. For more elevated values of
memory time, we will find that it reachs a plateau.

Laura Lavacchi 5
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Chapter 2

Methods and Simulations

2.1 Langevin Equation

In this chapter we will discuss in greater detail the theoretical instruments
and simulation method that we will apply in the following chapters. As pre-
viously mentioned, Langevin developed his equation in 1908 |7], subsequently
applying it to the theory of Brownian motion. Brownian motion [1,20] de-
scribes the random dynamics of a particle immersed in a fluid, though it can
also be used to describe systems of greater variability, as previously men-
tioned in the introduction. Langevin started with the Newtonian approach
and the motion of a particle immersed in a fluid without the influence of
external forces as described by

mo(t) = —vyu(t), (2.1)

where m is the particle mass, v the friction coefficient and v(t) the particle
velocity. The solution of this first-order differential equation is

o(t) = e 7™y (0). (2.2)

According to this solution, the velocity of a Brownian particle decays to zero
at longer times. But on the other hand, we can calculate that in the canonical
ensemble the mean square velocity is

(v(t)*) = kT /m, (2.3)

from the law of equipartition [21].

This means that the total force applied to the particle comes not only from
the frictional force, but also from another "random" force, so the Langevin
equation for a Brownian particle therefore becomes

7
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mo(t) = —yvu(t) + Fr(t). (2.4)

Both of the forces stem from the interaction of the particle with its environ-
ment, also referred to as the "heat bath". The random force is considered to
vary extremely rapidly over the time of observation following the Gaussian
distribution, therefore the first two moments of the random force averaged
out over an infinitesimal time interval are given by

(Fr(t)) =0, (2.5)
(Fr(t)Fr(t')) = 2Bd(t — 1), (2.6)

where B is the strength of the random force. The solution of the first-
order differential Eq. (2.4) is

¢
v(t) = e ™p(0) —l—/ dt'e 1M pp () Jm. (2.7)

0

Squaring the velocity solution we obtain three terms

e~ 2my(0)2, (2.8)
t
2e=/m4y(0) / 4 =1 E=/m () i, (2.9)
0
t t
/ dt' e pa ) Jm / dt" e/ (1) fm. (2.10)
0 0

Averaging these three terms over time, we observe that the cross term (2.9)
disappears and in the term (2.10) we substitute the Eq. (2.6). The final mean
squared velocity is

B
(v(t)?) = e~ 2™y (0)2 4+ — (1- e’27t/m) : (2.11)
ym
When ¢t — +o0o the exponential terms disappear and the mean square
velocity obeys the law of equipartition (2.3), therefore
B = ~kgT, (2.12)

the fluctuation-dissipation theorem. This theorem represents the balance
between the friction constant and the strength of the random force.

Laura Lavacchi 8



2.2. GENERALIZED LANGEVIN EQUATION

2.2 Generalized Langevin Equation

2.2.1 Projection formalism

A projection P is an operator with the following properties [22]
e Linear P(c;A+ c2B) = cyPA+ «oPB
e idempotent P?A = PA,

where ¢1,c5 € R and A, B are two arbitrary observables.

The projection @ = 1—P projects an observable onto the complementary
subspace, where 1 is the identity operator. The operator P projects on the
relevant subspace. From the definition of idempotency of the two operators,

PQ = QP =0. (2.13)

2.2.2 Liouville dynamics and projection method

To use the projector operators we must rewrite the dynamic evolution with
the Liouville operator. If we take a point w = (r, p) in the phase space Q, r
is the vector of the Cartesian position and p the conjugate momentum, the
corresponding Hamiltonian is an invariant of motion, given by

H(w) = P + V(r), (2.14)

2m

where V (r) is a potential. The evolution of the point w is defined by a linear
differential equation, the Liouville’s equation through

wy = Lwy, (2.15)

L= (EV, — (V:V)Vp) is the Liouwville operator. The subscript ¢ defines the
location in the phase space of the point w at time ¢. Solving the Eq. (2.15)

wy = %y, (2.16)

the initial point wy is propagated by the operator et~.
The same equation governs the evolution of an observable

At - ,CAt, (217)

where A; = A(w;) = A(wo, t) an observable that depends on the real-valued
function of the phase space and implicitly on time. We thus define an inner

Laura Lavacchi 9
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product, as the observables are elements of a Hilbert space, a vector space
within an inner product,

(Ay, By) = /deo Peq(wo) A(wo, t) B(wo, t'), (2.18)

where peq(wo) = %e_'BHO(‘”O) is the canonical Boltzmann distribution, with
b= kBLT and the partition function Z = fQ dwgePHowo),

Having defined the dynamic evolution, we can decompose the Liouville
equation with the projector operators,

Ay = eF LAy = (P + Q)LA) = e “PLA; + £ QL A,. (2.19)

e'*Q propagates in time the observables that lie on the complimentary
space, using that

d
dt
and solving the inhomogeneous differential equation, we obtain

et Q =LY = PLY + e QLQ, (2.20)

t
L Q = QetFe + / du e"“PLQ etWEQ (2.21)

0

Using the equivalence Qetrl = ¢t9LQ and substituting s = t — u, we obtain

¢
etQ =e'FQ + / ds et=)EPpL 2L Q. (2.22)

0

The first term lies on the complementary subspace, whereas the second
term is a coupling between the two subspaces. Inserting the Eq. (2.22) inside
Eq. (2.19), we obtain [8,9,23]

t
Ay = FPLA) + / ds e""IEPLFR(s) + Fr(t) (2.23)
0

Fr(t) = !9 QLA; = Qe 2L A,. (2.24)

Fgr(t) is a function that lays on the complementary space and depends on
the initial condition. In the Eq. (2.23) the first term is similar as the term
(2.24), but remains on the relevant subspace. The second term is a coupling
between the operator P and the function LFg(t). The Eq. (2.23) has the
form of the Langevin equation, but to have an explicit expression, we must
specify which projection is applied.

Laura Lavacchi 10



2.2. GENERALIZED LANGEVIN EQUATION

2.2.3 The Mori projection

Considering an observable A;, the Mori projection is given by |§|

Ay, Bo) (As, By)
<B§> 0 <Bg> By, (2.25)

where the bracket defines the inner product as in the Eq. (2.18). The
Eq. (2.25) projects the observable A; onto the subspace of all the functions
linear in the observable By, Bo.

As a projection Py, is linear and idempotent, but also self-adjoint with
respect to the inner product, therefore satisfying the relations

PMAt - <

(PumAs, Cy) = (A, PuCr), (2.26)
(PymAr, QuCr) =0, (2.27)
given two arbitrary observables Ay, Cy.

If we substitute in the Eqs. (2.23), (2.24) the Mori projection and we
project directly on the interested observable B; = A;, B; = A;, we obtain

A= —KA, — /t dsI’M(s)At,s + FR(wp, t). (2.28)
(43)

K= (2.29)

gy = ((zli ;; 1) (2.30)

The first term in the Eq. (2.28) is a force stemming from a potential
of quadratic form, the second and the third term are connected via the
fluctuation-dissipation theorem. The equation is an exact derivation from
the Liouville equation, but the random force is an explicit function of the
initial state of the entire system; therefore it can only be computed for very
simple systems.

2.2.4 The Zwanzig projection

Similarly to the Mori projection, the Zwanzig projection is linear, idempotent
and self-adjoint, but it is nonlinear in the functions By, By 9], because

(01B(&0) — Bwo)ld[B (o) — B(wo)], A@.1))

PzAt == T
<5[B(5J0) - B(Wo)]fs[B(@o) - B(wo)]>

= (A1) g, 1,0 (2:31)

Laura Lavacchi 11
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where wy are integrated over. Choosing as the projection function the posi-
tion (By — ro) and the linear momentum (By — py), the Liouville equation
becomes

t v P T
Pt = —Vy,Upnr(r:) +/ ds [(—p - i)} [7(t — 5,15, ps)
0

B m (2.32)
+FR(C<J0, t)
where the memory kernel has the following shape
BUE(t = 5,15, 05) = (F(0), Ff(t = $))r, p.- (2.33)

In this case the first term in the Eq. (2.32) is a derivative of the potential
of mean force (PMF) Upyp(r) = —kpT In(é(ro — r)); a force that acts on
a particle to provide the equilibrium positional distribution. The advantage
of this projection is that we always obtain the correct distribution at equi-
librium; when considering the stochastic description the random force has a
mean value of 0 [24]. The Zwanzig projection is difficult to apply, because
the memory kernel also depends on the particle position r; and momentum

Ps-

2.2.5 Mori-Zwanzig projection

The GLE mainly used in the literature is,
t
mi(t) = — / () #(t — #)dt — VU (2(t)) + Fa(t).  (2.34)
0

It is an approximate GLE, obtained from the Zwanzig projection imposing a
memory function independent of the position and the momentum, as in the
Eq. (2.30). In this GLE the random force is Gaussian for longer time limits
and the memory function depends only upon the value for time, and therefore
can be estimated numerically from the trajectory data. It is demonstrated
that the Eq. (2.34) reproduces the full system dynamics [14].

2.3 Mean first-passage time
Another important concept, upon which we will expand later, is the mean

first-passage time: the average of the time necessary to reach a target point
for the first time beginning from a defined position.

Laura Lavacchi 12



2.3. MEAN FIRST-PASSAGE TIME

2.3.1 Kramers problem high friction

Kramers studied the escape probability of a Brownian particle over a poten-
tial barrier [25]. Starting from the Smoluchowski equation

0f(2,t) _ 0 _suw 9 v

@ f(z,1), (2.35)

ot Ox Ox
the diffusion of the probability distribution f(x,t) in the phase space in an
external potential with the diffusion coefficient D = kBTT We assume that

J=—De Y <$>§65U @) f(x,t) = const., (2.36)
X

the flux is constant, therefore the process is stationary (f = 0).
Writing the equality

JefU@) 0 J [ 22
= = 5 [ — ), ()

D ox

1

because the flux J and the diffusion coefficient D are assumed constants. We
also assume, that at the maximum x5 we have absorbing boundary conditions,
therefore f(z3) = 0. The Eq. (2.37) becomes

BU (1) t
J el t) (2.38)
D f$1 eBU(x)

Expanding the potential U(z) around the maximum xs,

Ulx) =Uy — UTQ(x — Z3), the integral at the denominator is given by,

xr2 T2 Ué/ 1 o0 Ué’
/ PUG) _ BU) / o BE @) o L U / o8 (@)
1 1 2 —00

(2.39)
_ L v [ 2T
2 BUY

Introducing this expression in the flux, we obtain

[268UY
J = De AU2=0Y) % f(x). (2.40)

The final step is to write explicitly f(z;). We assume that it is given by the
equilibrium distribution and we expand the potential around the minimum
Ty, U(l’) - Ul + U{/(.ZU - x1)27

e—ﬁU(xl) U{/

-~ . 2.41
J(x1) ffj drx eBU=) — 2 (241)
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In conclusion the flux becomes
J = D— VU//U —-BAU (2 42)
Wk?BT ¢ 7 '

it depends exponentially on the potential difference and on the curvature of
the potential. Substituting the diffusion coefficient, and knowing that the
crossing rate k is half of the flux, we obtain

po YUY sav (2.43)

27?7

If we consider a double well potential

U=U, ((%)2—1>2, (2.44)

2\/_U0 e Plo.
7rfyL2

the crossing rate is

k= (2.45)

The inverse of the crossing rate is the mean first-passage time for a Markovian
system in high friction limit, 7y;pp = 1/k.

2.3.2 Grote-Hynes theory

The Grote-Hynes (GH) theory predicts the barrier crossing time with frequency-
dependent friction [26]

roH — 2z ouy (2.46)
Awm’m,
where Wiaz = \/|U/ ol /m and winin, = /|U/.,|/m are the frequencies at

the free energy maximum and minimum respectively. In Eq. (2.46), we rec-
ognize the Transition state theory (TST) prediction for the barrier crossing,

rst _ 2T v (2.47)

For a symmetric double-well potential, the frequencies respectively, are

Wiaz = V46Uo/(TpTm) and winin = +/8B8Us/(TpTim). A is the barrier reactive

frequency, solution of the Grote-Hynes equation

I _ e

A2+ )\ 2 s (2.48)

m
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2.3. MEAN FIRST-PASSAGE TIME

10%

™ FP/ D

107 107 107! 10°
T/TD

Figure 2.1: MFPT as a function of rescaled 7/7p for a symmetric double-
well potential Eq. (2.44) with Uy, = 3, red for 7,,/7p = 0.1 and black for
Tm/Tp = 0.01. The thick lines are the Grote-Hynes theory following the
Eq. (2.46). The circles are the simulation data, connected with broken lines.

where T'()\) is the Laplace transform of the friction memory kernel, and
in the case of a single exponential memory kernel, it is given by

~ o0 A ’}/
T\ = [ TE)eMdt = . 2.49
W= [ e - (2.49)

Inserting the Laplace transform of the friction memory kernel into the GH
equation (2.48), we obtain a cubic polynomial, which has a real and positive
root.

In Fig.2.1, we observe the agreement between the Grote-Hynes Theory,
and the simulation data for small values of 7/7p, but a deviation for inter-
mediate and high values. To better understand this behavior, we must study
the various limits of GH-Theory.

e Markovian limit (7/7p — 0), equivalent to the Kramers (Kr) rate for
intermediate-high friction.

In other words I'(A\) = v, meaning that

y 2 2
A — Ly (D2 9.
m <4m2 + wmam) ) ( 50)

taking the positive root we obtain
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7 vz
Kr __ 2 TST
T = Wmaz [(4_7TL2 + wmax) - %] T .

— High friction limit (X > 1)

A:

1/2
L(H%)/_L

2m 2 2m
Y, M Y
2m v 2m

2
mwmax

Y

21
T,fjf S L Pl
MWmazWmin

— Low friction limit (> < 1).

because A = Wz

e Low mass (m — 0).
The GH’s equation (2.48) becomes

e
(I+7A)m Wmaz

= A

GH

low—mass —

Kr _ _TST
Ty =T,

Y 2 —0,

Wi M/Y
B 1- Tw?na.tm//y‘

2
_ 27T(1 T wma:ch/’Y) 66UO,
Wminwmaxm/’y

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

The speed-up regime is recovered for intermediate 7, but the transi-
tion time continuously decreases with the increasing memory time, as
depicted in Fig.2.1.

e Long memory limit (7/7p > 1), in this limit, the Laplace transform of
the memory kernel is

(2.58)
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2.3. MEAN FIRST-PASSAGE TIME

1/2
= A = Whae (1 B ) . (2.59)

2
TWnaz

an - el 8o (2.60)

long—memory 1/2 e )
8
Winin (1 - mwm)

for 7 — 0, the transition time is independent of 7 and for this reason
we observe a constant value in Fig.2.1.

_GH  _ 2m/m
T—00 \/U/_l'j
mwn

The transition time trends towards zero as m — 0.

(2.61)

2.3.3 Mel’'nikov Meshkov theory

The idea behind Me’lnikov Meshkov theory [27] is to derive the Green’s
function of the Fokker-Planck equation in the form of a system of integral
equations. By Fourier transform the equations can then be solved by the
Wiener-Hopf method [28]. As a first step we calculate the action of one
oscillation of a particle with zero total energy

S = / V=UoB (22 —1)2 — 1)dz. (2.62)
V2

The final expression for the MFPT is

TMFP_l \/SU()B/(TmTD) (\/1+ 1

N 472 4UoB/ (TonTp)

™D 2w
(2.63)
1

21, /400 B (D)

2.3.4 Calculation of the mean first passage time from
simulation

) A(Tm7 D, Sl)e_Ban

There is no unique method of calculating the mean first passage time from
simulation, or rather the average time to make a transition between states.
One method is to consider the mean first-to-first passage time (MFFPT),
in other words the time that a system spends in a certain state. The other
method is to consider the mean all-to-first passage time MAFPT, which tells
us how long it takes a system to transition from one state to another. In the
Fig.2.2 we illustrate the two definitions.
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Chapter 2

So—T—wnowo

Time Time

Figure 2.2: Particle trajectory, on the left the definition of the first-to-first
passage time, which is the difference in time between the green and the red
cross. On the right are shown various all-to-first passage times; the gap times
between every green crosses and the red one.

In rare event systems, such as the folding of a protein or a phase transi-
tion, it is convenient to consider the all-to-first mean first passage time, in
order to reduce the noise and enhance statistical accuracy. The two times are
comparable for Markovian systems, but when memory effects are present, the
two times diverge. The 7Ty 4pp corresponds to the longest time of dynam-
ics, and the MFFPT in non-Markovian systems scales alongside the mean
transition path time.

In the remainder of this thesis we will discuss in greater detail the mean
all to first passage time, which we will refer to the MAFPT.

2.4 Langevin simulation methods

In this section, we will explain the equations that we use to simulate the
non-Markovian dynamics.

If we consider an exponential memory kernel

T(t) = Leltim, (2.64)
T

and to efficiently simulate the system, we first derive a dimensionless version
of the GLE,
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2.4. LANGEVIN SIMULATION METHODS

mi(t) = — / t Y-S5V dt — VU (2(t)) + Fr(?),

T
m— (1 /——e )t — VU (2(8)) + e Fa(t),
l{?BT k‘BTT ]CBT ]CBT R
L L. y it Lo, L L
) =— rpdt — —— —F

]{?BT TD ( ) / ]{?BT 7_6 D ( )TD k?BTVU( ( )) + kJBT R

Imz@) = — (7D I BVl + F [#(D)] + Fr(D),

D 1o T

(2.65)

where t = t/1p, i(t) = z(1pt)/L, and F(&) = —(kgT)~'LU'(LZ). Dots in
the equations denote derivatives with respect to time. In a state of equi-
librium, the generalized Langevin equation Eq. (2.65) can be rewritten as a
coupled set of Markovian differential equations,

z(t) = — (2.66)
() = :—Z (R({) 4 F [@(m) , (2.67)
R(i) = —TTD (R(f) + () — g”(f)) . (2.68)

Here, R(t) is an auxiliary variable and the correlation function of the dimen-
sionless random force f (t) is given by

(EDED)) =25~ ). (2.69)

Solving the inhomogeneous differential Eq. (2.68) we obtain

R(i) = —%’ /t gexp {-%D(f - 5')] (gé(ff) - é(f’)) di.  (2.70)

Substituting this result into Eq. (2.67), we obtains Eq. (2.65), the rescaled
equilibrium version of the GLE (2.34) [19], and where the random force is
given by

Fa(f) = TTD /t exp [-%D(f —z?')] ()t (2.71)
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Calculating the random force autocorrelation

to {0 T
™m\2 [* a ™ ,~ ™ -~
=2 (—D) / dy/ exp [——D(t - y)} exp [——D(t’ - y’)} oy —y)dy'
T , £ T T
2 L min{t,#'}
=2 (T7D> exp [—%(t + t’)] / exp [Z%y] dy
to
™\ 2 ™ ,~ -~ T ™ . o~ D ~
=2 <TD> exp [—TD(t + t’)] D <exp [27Dm1n{t,t'}] — exp [271)750})
=2 (exp [—T—D|£— fﬂ — exp [—T—D(f—l— t— 250)D :
T T T (272)
for t +t' > 2t, we have
o~ T TH ~ o~
(Fr(DFr(?)) = Zexp |2l - 7] (2.73)

This is the rescaled version of Eq. (1.2) for the equilibrium case. In the sim-
ulations we use Eqs. (2.66)-(2.68) in conjunction with the 4th order Runge-
Kutta method [29,30]. The time step is fixed at

At = At/7p - min{7,/7p,7/Tp, TrR/TD}- (2.74)

In this thesis we will take in consideration different memory kernels, in the
following sections we take in consideration how the Markovian embedding
changes for various memory function.

2.4.1 Multi-exponential memory kernel
The function of a multi-exponential memory kernel is
N .
ri)y =3 Teum, (2.75)

7‘.
i=1 't

The Markovian embedding for the multi-exponential memory kernel can be
written as
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2.4. LANGEVIN SIMULATION METHODS

i) = dfg), (2.76)
T = )[R+ F (D) 2.77)
5 (7Y — D | p(f lj iy g s i .
Ri(t) = - [Rz(t) + y (t) 7@(1&)} 1<i:<N, (2.78)

where ¢ = t/7p, @(f) = z(rpt)/L, the R; are auxiliary variables, F(Z) =
(kpT)"*LU'(LZ), dots here denote derivatives with respect to t, and the
correlators of the dimensionless random forces & (f) := (kpT) 'L fr,(Tpt)
are given by

(€i(B)&; () = 20(t — )0 (2.79)

Solving the inhomogeneous harmonic oscillator Eq. (2.78) for the auxiliary
variable R;, substituting the result into Eq. (2.77), it is seen that Eqgs. (2.76-
2.79) are equivalent to the GLE with multi-exponential memory kernel [18].

2.4.2 GLE out of equilibrium

As already said before, a GLE is ouf of equilibrium when the FDT is violated,
for this reason we consider a single exponential friction memory kernel I'y
and for the random force correlator we take another exponential memory
function with different memory time I'g,

_ 1t
Ty (t) = Z—:e v, (2.80)
Lr(t) = Z—ge_fi% for t>0 (2.81)

The dimensionless version of the GLE is

. e .
Imid) = — | e " #(@)dl + F [#(0)] + Fa(t). (2.82)
D i TV
To simulate the non-equilibrium GLE, we need to split the auxiliary vari-

able R(t) into two variables Ry () and Rr(f) and use the coupled set of
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Markovian equations

z(t) = — (2.83)
F(F) = T—Z (RV(E) + Rp(D)+ F [@(f)}) , (2.84)
Ry(f) = —:—’;’ (Rv (D) + (7)), (2.85)
Ry(T) = =2 (Ra(d) (D) (2:86)

Solving the inhomogeneous differential Eqgs. (2.85) and (2.86), we obtain

Ry (i) = —:—i i: exp {—:—f;(f —E')l #(F)dt, (2.87)
Ral®) =2 /;exp {—:—2(5 - E’)} E(i)dP. (2.88)

Inserting these results into Eq. (2.84) we arrive at the rescaled GLE (2.82),
where in this case the random force and its correlation are given by

Fald) = 2 /i:exp {—:—Z@— f’)} (), (2.89)
(a0 ) = Zexp | -2l - 7). (2.90)
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Barrier crossing in the presence of
multi-exponential memory
functions

3.1 Introduction

Most biological and chemical processes work at the nano-scale, such as chem-
ical reactions and protein folding. The dynamics of the molecules involved
are stochastic processes in a liquid governed by thermal noise. These sys-
tems are studied by either the Langevin or the Fokker-Plank equations. In
the Markovian limit, the orthogonal degrees of freedom reach a state of relax-
ation more rapidly than the diffusive and inertial time scales of the reaction
coordinate [11,31-35|. However, the adiabatic approximation, in which one
neglects the relaxation of these degrees of freedom, is not always valid, as
is the case for dihedral barrier crossing, reactions in peptides and alkalis, as
well as for ion-pairing kinetics [36-42]. Sometimes, the characteristic times
for the reaction coordinate and the environment are similar; we must, there-
fore, include memory effects to characterize the dynamics of the reaction
coordinate correctly. In other words, we are dealing with a non-Markovian
process. In most systems, a single time scale is not sufficient, and it is neces-
sary to consider several memory time scales in order to produce an accurate
description, depending on the complexity of the system [31,36,43-46].

Often, these processes can be described as a barrier-crossing in a one-
dimensional landscape [25,47-55], and they are mainly studied in the frame-
work of the generalized Langevin equation (GLE) [8,9,26,55-58]

mi(t) = — /O Tt — )i (#)dt — U’ [2(t)] + Fr(t). (3.1)
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where m is the effective mass of the reaction coordinate z, I'(t) is the mem-
ory kernel function and U’(z) is the derivative of the potential U(x). Fg(t)
denotes the Gaussian time-dependent random force with (Fgr(t)) = 0. At
equilibrium, which is the scenario we will consider in this chapter, the re-
lationship between the friction kernel T'(¢) and the autocorrelation of the
random force is given by

(Fr(t)Fr(t")) = kpTT(|t —t']), (3.2)

where T' is the temperature and kg is the Boltzmann constant. To describe
the barrier crossing, we will choose a symmetrical double-well potential

X

U(z) = Uy {(Z)Q . 1} g (3.3)

The separation between the two wells is 2L, and the barrier height is given
by Uy, as shown in Fig.3.1a). In the main part of this discussion, we will use
Uy = 3kpT.

Considering a memory kernel expressed as a sum of N exponentials

(t) = i B =t/m, (3.4)

T.
i=1 °

where 7; and ; are the i-th memory time and friction coefficient. Accordingly,
the random force in Eq. (3.1) can be decomposed in

N
Fr(t) =Y fa(t), (3.5)

i=1

where A
(Fr(8) i, (£)) = kT L t=0Vm6, i j. (3.6)
The integral over the memory function y = [;° T'(¢)dt = SN v defines the
total friction coefficient and, by construction, is independent of the memory

times.

The most important characteristic of these systems is the mean first-
passage time (MFPT), the mean of the time necessary to first reach a min-
imum of the double well potential starting from the other minimum. As
illustrated in Fig.3.1b), the MFPT is the average time between each blue
and red lines.

In Ref. [18], for single-exponential memory (N = 1), it was proven that
the mean first-passage time 7);rp is a function of the memory time 7 and
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(a)
=]
=
50.5
0.0- ®
-1 0 1 199.0 199.2 199.4 199.6 199.8 200.0

Xx/L t/tp

Figure 3.1: a) Picture of a double well potential as defined in the Eq. (3.3)
with a massive particle. The first passage time is the time required for a
massive particle to cross the minimum, for example, /L = —1, and reach
the other minimum (x/L = 1) for the first time. In b), we see the illustration
of how the first-passage times (FPTs) are calculated; the blue vertical lines
depict the crossing of the minimum z/L = 1, and the red vertical line denotes
the initial crossing of the other minimum x/L = —1. The difference between
the red line and each blue line provides us with a sample for the FPT. The
mean first-passage time (MFPT) is obtained by taking an average of all the
values of FPT. The parameters used for the depicted trajectory are 7,,,/7p =
0.001, 7y /7p =1, 1o /7p = 10, 72 /71 = 2 and barrier height 5U, = 3.

Laura Lavacchi 25



Chapter 3

Memory
a slowdown
< ~fy
g€
l.a
Intermediate
memory
speedup
0% 102 10! 10° 10" 102
T/Tp

Figure 3.2: Scaling behaviour of the MFPT as a funtion of 7,,/7p on the
y-scale and of 7/7p on the x-scale. The transition between the Markovian
regime (blue area) and the intermediate memory speedup (purple area) is
defined when the MFPT is 5% smaller than the Markovian time. The green
area is the memory slowdown, that means that 7j;pp/7p is higher than the
Markovian time. The asympotic behavior is 72 /7.

the friction coefficient 7, with an asymptotic behavior 7y;pp ~ 72/ for long
values of memory time as shown in the Fig.3.2 in the light-green area. In
fact, in Fig.3.2 we show a phase diagram for the behaviour of the MFPT
as a function of 7,,,/7p and the memory time. The barrier-crossing kinetics
are modified in the presence of the slowly decaying memory, even when the
MFPT is much longer than the memory time. This simply means that time-
scale separation, where the memory time modifies the MFPT only when they
have similar values, is no longer valid. On the other hand, in the friction-
dominated regime and for intermediate memory time, we are able to observe
a speed-up regime of the MFPT (purple in Fig.3.2), meaning that the barrier-
crossing kinetics are faster than those observed in the Markovian model. The
value of the memory time determines whether the barrier-crossing process
will accelerate or decelerate.

For a system with a bi-exponential memory kernel (N = 2), where the
friction amplitudes contribute equally (v = 72 = =), it was previously
demonstrated that the MFPT is dominated by the shorter memory time [19],
provided that one of the two memories is larger than the intrinsic diffusion
time.

By examining the trajectories in Fig.3.3, we can visualize how the system
is altered when the memory times are modified. In the figure, we depict
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Tm/TD =0.01, 'Y2/'Y1 =5

50+
40~
30~
.| 20+
~
=~
104
0-
T1/tp =100
T2/Tp=31.6
—109  +j/1p=0.00316
" 1p/1p=0.01
_o04d— T1/1p=0, T2/Tp=0
L) L) L) 1] 1
—60 —40 -20 0 20
x/L
Figure 3.3: Two-dimensional particle trajectories for 7,,/7p = 0.01
and /vy = 5 without an external potential for the Markovian case

71/Tp = T2/7p = 0 (magenta), for bi-exponential memory with 7 /7p =
0.00316, 72/7p = 0.01 (blue) and 71 /7p = 100, 72 /7p = 31.6 (light blue).

the trajectories in 2-D of three particles without an external potential with
various memory times. In magenta, a particle with Markovian dynamics, in
blue short memory times (71 /7p = 0.00316, 7 /7p = 0.01) and in light blue
with long memory times (7 /7p = 100, 71 /7p = 31.6). In particular, the
free particle has a different dynamic even when introducing lower values of
memory time (blue line) compared the Markovian case (magenta line).

This chapter will consider a position-independent memory function as
a sum of two exponentials with different memory times and friction coeffi-
cients. Furthermore, we will take into account the sum of three exponentials.
By comparing our simulation data with the previous formula (for the bi-
exponential memory kernel in a limited case), we are able to confirm the
validity of a previously [19] suggested heuristic formula for the mean first-
passage time, Ty pp.

3.2 Setup

In order to analyze a general non-Markovian system according to Eq. (3.1),
we introduce two time-scales
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L2y

™D = ij—T, (37)
m

Tm = —, 3.8
. (39

where 7p and 7, represent the diffusion and inertial times, respectively. The
diffusion time depends on the separation between the two potential wells 2L,
the friction coefficient 7, and the temperature T. The inertial time is pro-
portional to the mass m and inversely proportional to the friction coefficient.
Using the two time-scales defined in Eq. (3.7) and (3.8), we rewrite Eq. (3.1)
as

f
T v~ ™ Vi —TD oo o Uy . 5 -~
—t:—E— —e mz(t)dt +4 1-— Fr(t 3.9

=1

where t = t/7p and Z(t) = x(7pt)/L are the dimensionless time and particle
position respectively, we define the dimensionless random force as F R(t) =
LFg(tpt)/kpT. Tt is, therefore, clear that the problem is accurately described
by the rescaled potential barrier Uy/kpT and the characteristic time scales
Tp, Tm, and 7;. To simulate numerically Eq. (3.9), we must first rewrite it
as a set of Markovian embedding equations, adding N auxiliary variables

Ri(t) [59], as

Sld) = )
di{g;(g) _ :_2 (i Ri(f) + 4]{2—07@(1 _ 5:2)) , (3.10)
G0 = -2 (R®+ 20 -6@), for i€ L]
where f
Ri(f) = _TT_I; 0 e (%i(f’) - g(f’)) df’. (3.11)

Here &;(f) are random variables, with

(&(t)) =0,

(&g = 2%5(5_ 7)5,;. (3.12)
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3.3. FIRST PASSAGE TRAJECTORIES AND
DISTRIBUTIONS

In chapter 2, we show that the set of Egs. (3.10), (3.11), and (3.12) is
equivalent to Eq. (3.9). From our simulations, we collect all values of first
passage time Tpp; the time that the particle needs to reach the minimum
z/L = 1 crossing the minimum x/L = —1. Since we are considering a

symmetric potential, we can also count the crossing time from the minimum
x/L=—1tox/L=1. The MFPT is the average of these values.

3.3 First passage trajectories and distributions

In Fig.3.4, we depict a number of simulation trajectories, for an one-dimensional
system with a double-well potential. First, this figure shows the importance
of considering a range of friction coefficients. All the trajectories are for
71/7p = 1 and 7o/7p = 10, in the upper row the plots are characterized
by 7yn/7p = 0.001 (high friction) and in the bottom row by 7,,/7p = 10
(low friction). From left to right, we have various ratios between the friction
coefficients 75 /v1 = 100, v2/71 = 2 and 72 /v = 0.01, respectively.

We are thus able to observe a variety of behaviors in the trajectories when
we transition from a) to ¢) and from d) to f), where the ratio between /7,
decreases. In fact, from left to right, the mean first passage time decreases
because we see more transition between the two minima.

In Fig.3.5, we plot the rescaled first-passage time distribution in a semi-
logarithmic representation, with the same parameters as in Fig.3.4. We are,
therefore, able to observe that the distributions follow an exponential dis-
tribution. For all simulation data, we further check whether the simulation
distribution has an exponential behavior in order to be sure that our simu-
lations are equilibrated and sufficiently long,

1

TMFP

p(Trp) = exp(—Trp/TMFP), (3.13)

analytically depicted with red lines in Fig.3.5.

3.4 Bi-exponential and triple-exponential mem-
ory kernel

The aim of this section is to find a heuristic formula for MFPT with a
multi-exponential memory kernel. For this, we first study the case for a
bi-exponential memory kernel with a fixed ratio v2/7;. We run simulations
for the Markovian embedding (3.10) and extract the MFPT. We compare
them with a previously proposed heuristic crossover formula [19]
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Tm/Tp=0.01 7vy5/y1=100 Tm/Tp=0.01 yo/y1=2 c Tm/Tp=0.01 Y2/v1=0.01
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Figure 3.4: Simulation trajectories in one dimension for a barrier crossing
potential with height Uy = 3 for memory times 71 /7p = 1 and 7 /7p = 10.
In the upper row (a-c) are trajectories for high friction with 7,,/7p = 0.01,
while in the lower row (d-f) for low friction with 7,,/7p = 10. Each column
corresponds to a different ratio v,/ equal to 100 (a,d), 2 (b,e), or 0.01 (c,f).
The black dashed lines indicate the positions of the two potential minima.

TMFP:ZTéD—F (Zl/TED)_l, (3.14)

which is the sum of the overdamped contribution to the MFPT

7 BUy
ToD Yi€ ™ 1 Tm
_ + Up— |, 3.15
™ vBUy | 24/2 1+ 108UqT; /D \/ h OTD ( )
and the energy-diffusion contribution
3 BUy N\ 2
Tep _J€ | Im +45U0(3) + ./ BU (3.16)
™D BUy | T D ™D

In Fig.3.6 we observe a close agreement between the analytical expres-
sion (3.14) and the simulation data (stars) of the rescaled MFPT 7y pp/7p
as a function of 7 /7p and for fixed values of m/7p, ¥2/71, and Uy/kpT.
In particular, for 71/7p > 1, we observe that the MFPT is constant with
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3.4. BI-EXPONENTIAL AND TRIPLE-EXPONENTIAL
MEMORY KERNEL
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Figure 3.5: First passage time distribution for barrier crossing. The param-
eters used for the simulation are the same as in Fig.3.4: the potential height
is fixed fUy = 3 and the memory times as 71 /7p = 1 and 75/7p = 10. The
upper row corresponds to high friction 7,,/7p = 0.01, and the bottom row
to low friction. Various ratios of the two friction coefficients correspond to
v2/m = 100 in a) and d), v9/71 = 2 in b) and e), and /7, = 0.01 in c)
and f), respectively. The green histograms denote the rescaled probability
distribution p(7rp), and on every plot, the respective MFPT is indicated, as
well as the average of all the samples and the MFPT from the Eq. (3.14).
The red lines highlight the exponential decay explained in Eq. (3.13).

respect to 71/7p, as was already observed in the previous work [19]. The
black lines on the right of the figure show the MFPT for a single exponential
memory kernel (7; = 0); taking this into account, we rescale the MFPT in
order to compare the expressions for the single- and bi-exponential MFPT,

respectively
TMFPy 72 _ TMFP27 (3.17)
™Dy, 7 ™D
where in 7p, = L2, /kpT instead of «y there is ;. The dash-dotted line on the
bottom left-hand side of the figure depicts the Markovian limit v, = 7, = 0.
For the values of 75/7p = 0.1 and 75 /7p = 0.316, we observe a near-constant
behavior for 71 /7p < 1 as well as 71/7p > 1. These two lines agree closely

with the dashed line. This means that the MFPT is dominated by the
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Figure 3.6: Rescaled MFPT for bi-exponential memory kernel 7y, pp/7mp as a
function of 71 /7p for several values of 7o/7p and fixed 7,,,/7p = 1, 72/71 = 2,
and Uy/kgT = 3. The stars denote the simulation results, and the colored
lines represent the heuristic formula Eq. (3.14). The horizontal dashed line
represents the Markovian limit, corresponding to 74 = 72 = 0. The black
horizontal lines for high 7 /7p values denote the heuristic formula for a single
exponential memory kernel, i.e., v = 0.

overdamped contribution in Eq. (3.15), this contribution being almost equal
to the Markovian expression.

In the following paragraph, we analyze the influence of the ratio between
the two friction coefficients v, /v1. In Fig.3.7, we plot the rescaled MFPT as
a function of v, /v, for various values of 7,,,/7p. In Fig.3.7a) fixing 7 /7p = 1
and 79 /7p = 10, we observe a plateau for both v5/7; > 1 and /7 < 1.
The black horizontal lines depict the single exponential result for v = 0 on
the left, and «; = 0 on the right; when the amplitude of either exponential
contribution to the memory kernel is lower than the other, its effect on the
MFPT disappears, as follows from the agreement b