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Abstract
Many biological systems can be described by the concept of barrier crossing.
Rare events, such as protein folding or chemical reactions, can be modeled
as systems that must cross a barrier potential to change their states.These
systems do not occur in isolation but, are rather coupled with their envi-
ronment. Typically we choose a reaction coordinate and project out all the
other orthogonal degrees of freedom. If the orthogonal degrees of freedom
relax as rapidly as the reaction coordinates, non-Markovian memory effects
must be taken into account in order to accurately describe the dynamics.

In this thesis, we study the mean first-passage time τMFP for various non-
Markovian systems using the generalized Langevin equation. We begin by
considering a multi-exponential memory kernel exhibiting various memory
times and friction coefficients. We then propose a heuristic formula that
shows that the τMFP is dominated by the single memory exponential with
short memory time as well as large amplitude.

Following this, we take into consideration a generalized Langevin equation
out of equilibrium, thereby deriving three effective parameters that consider
the effect of the memory time out of equilibrium. Changing the temperature,
the τMFP demonstrates non-Arrhenius behavior and increases dramatically
when the random force relaxation time is longer than the friction relaxation
time.

Since many chemical and biological systems exhibit asymmetric free-
energy profiles, we next consider an asymmetric potential. From simulation
data, we gather evidence that the dynamics in one well is independent of
the other. Therefore, we describe the dynamics via the times τL,RMFP that are
needed to reach the barrier from left and right, respectively.

In the final section, we focus on another important factor that charac-
terizes the process of barrier crossing, the mean transition path time τMTP .
Again, we concentrate on a non-Markovian system, and, with the help of
simulations, derive a heuristic formula. In particular, we introduce the mem-
ory time, substituting the effective parameters found above into a previous
Markovian formula. Contrary to the mean first-passage time τMFP , the mean
transition path time τMTP reaches its maximum in the Markovian case; for
intermediate memory time it decreases, particularly for smaller mass, and
settles on a constant value for large memory times.
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Kurzfassung
Viele biologische Systeme können mit dem Konzept des Barriereübergangs
beschrieben werden. Seltene Ereignisse, wie die Proteinfaltung oder chemi-
sche Ereignisse, können als Systeme modelliert werden, die eine Potenzialbar-
riere überwinden müssen, um ihren Zustand zu ändern. Diese Systeme tre-
ten nicht isoliert auf, sondern sind vielmehr mit ihrer Umgebung gekoppelt.
Typischerweise wird eine Reaktionskoordinate gewählt, wobei alle anderen
orthogonalen Komponenten in der Projektion nicht betrachtet werden. Falls
die orthogonalen Freiheitsgrade so schnell wie die Reaktionskoordinaten rela-
xieren, müssen Memoryeffekte berücksichtigt werden, um die Dynamik genau
zu beschreiben.

In dieser Arbeit untersuchen wir die mittlere Reaktionszeit τMFP für ver-
schiedene nicht-Markovsche Systeme mithilfe der generalisierten Langevin-
Gleichung. Zuerst betrachten wir einen multi-exponentiellen Memorykernel,
der verschiedene Memoryzeiten und Reibungskoeffizienten aufweist. Wir schla-
gen dann eine heuristische Formel vor, die zeigt, dass τMFP von einer ein-
zelnen Exponentialfunktion mit sowohl kurzer Memoryzeit als auch großer
Amplitude dominiert wird.

Im Anschluss betrachten wir eine generalisierte Langevin-Gleichung ab-
seits des Gleichgewichts und leiten drei effektive Parameter ab, die den Effekt
der Memoryzeit außerhalb des Gleichgewichts berücksichtigen. Ändert man
die Temperatur, verhält sich die mittlere Reaktionszeit τMFP nicht gemäß
der Arrhenius-Gleichung und steigt dramatisch an, wenn die Relaxationszeit
der Zufallskraft länger ist als die Reibungsrelaxationszeit.

Da viele chemische und biologische Systeme asymmetrische freie-Energie-
Profile aufweisen, betrachten wir als Nächstes ein asymmetrisches Potenzial.
Aus Simulationsdaten sammeln wir Beweise dafür, dass die Dynamik in einem
Tal des Potenzials unabhängig vom Anderen ist. Daher beschreiben wir die
Dynamik durch die benötigten Zeiten τL,RMFP , um die Barriere von links bzw.
von rechts zu erreichen.

Im letzten Abschnitt betrachten wir einen weiteren wichtigen Faktor, der
den Prozess des Barriereübergangs charakterisiert, die mittlere Übergangs-
pfadzeit τMTP . Wir betrachten wieder ein nicht-Markovsches System und
leiten mithilfe von Simulationen eine heuristische Formel her. Insbesondere
führen wir die Memoryzeit ein, indem wir die oben erwähnten effektiven Para-
meter in eine bereits bekannte Markovsche Formel einsetzen. Im Gegensatz
zur mittleren Reaktionszeit τMFP erreicht die mittlere Übergangspfadzeit
τMTP ihr Maximum im Markovschen Fall; für intermediäre Memoryzeiten
nimmt sie ab, insbesondere für kleine Massen, und nimmt für große Memo-
ryzeiten einen konstanten Wert an.
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Chapter 1

Introduction

When we study biophysical objects (biological phenomena studies with a
physical model), we come to realize that such objects never occur in isolation,
but are rather immersed in a kind of heat bath. In 1827, Scottish botanist
Robert Brown observed under a microscope the motion of pollen particles in
water, noting that the single pollen particle was moving in a chaotic fashion
[1]. This mechanism was later explained as the result of many minor collisions
between the pollen particle and the surrounding water molecules. So in order
to ascertain the final position of the pollen particle, one must consider a
multitude of random variables. This dynamic occurs not only in biophysical
systems, but also across a more comprehensive range of systems, for example
in the price of an asset [2, 3] or the tracking of a tropical cyclone [4].

The first theoretical explanation of Brownian motion was put forth in 1905
by Albert Einstein [5] and independently discovered one year later by Marian
Smoluchowski [6]. Einstein and Smoluchowski described the phenomenon
with a diffusion equation without considering inertial effects. Subsequently,
in 1908, Paul Langevin took into account the inertial behavior of the particle
and introduced a stochastic force [7] as follows:

mẍ(t) = −γẋ(t)−∇U (x(t)) + FR(t), (1.1)

where m and γ denote the particle’s mass and its friction coefficient, respec-
tively. The variable x represents the particle’s position, and the dots denote
the derivative with respect to time. The external potential is U (x(t)), which
for Brownian motion is zero, and FR(t) is a Gauss distributed stochastic
force, which indicates that its mean is zero, i.e. 〈FR(t)〉 = 0. In the case of
Brownian motion, i.e. a heavy particle surrounded by lighter particles with
different diffusion times, we must take into account the concept of separa-
tion of scales. The interaction between the environment and the particle is
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Chapter 1

modeled by a friction and a random force, which are correlated (in equilib-
rium) according to the fluctuation-dissipation theorem. The time scale of the
lightweight particles is much smaller than of the tracked particle, considering
that the bath is stationary and the random force must take into account the
average behavior of the light particles. In other words, it is possible to find a
lag-time t′, where, in the interval between t and t+ t′, the change in velocity
is minimal, but simultaneously, the random force in t + t′ is independent of
the value of FR(t), i.e. 〈FR(t)FR(t+ t′)〉 = 0.

Sometimes, these time scales are comparable, so we can not consider
the friction contribution instantaneous. In the 1960s, H. Mori [8] and R.
Zwanzig [9,10] posited that the interaction between particles requires a finite
amount of time and, using the Langevin equation (LE) (1.1), they introduced
the Generalized Langevin equation (GLE)

mẍ(t) = −
∫ t

0

Γ(t′)ẋ(t− t′)dt′ −∇U (x(t)) + FR(t). (1.2)

Mori obtained this integro-differential equation via linearly projecting the
phase space dynamics of a Hamiltonian system onto a one-dimensional reac-
tion coordinate, using the Liouville operator formalism. The memory kernel
Γ(t′) in Eq. (1.2) encloses the degrees of freedom orthogonal to the reaction
coordinate x, and, if we are at equilibrium, the memory kernel is proportional
to the autocorrelation of the random force. A peculiar difference between the
Langevin equation (1.1) and the GLE (1.2), the former being Markovian, is
that the acceleration equation depends solely on the time t, and not also
on the previous time t′. Going from Eq. (1.1) to Eq. (1.2) depends on the
separation time scale, in other words, if we are able to approximate the in-
teraction between particles as instantaneous. It is instantaneous when the
decay of the memory kernel Γ(t) is much faster than the velocity time scale.
If one substitutes the memory kernel with a delta function in Eq. (1.2), one
comes back at Eq. (1.1). As we have already stated, the Langevin equation
has widespread applicability in stochastic mechanics, because the reaction
coordinate x could be used to describe a particle’s position, as well as more
abstract objects, such as a vector connecting two particles, an end-to-end
vector, or the fluctuating price of an asset.

From Eq. (1.1) and Eq. (1.2) it is clear that it is always easier to work with
the first equation, because the memory function does not have a universal
description and can become very complicated and thus difficult to express
analytically. Several methods exist in the literature to determine Γ(t), but
none is universal [11, 12], because the methods depend on the type of the
studied system.

Model systems can be simulated by solving the LE or GLE numerically.
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Introduction

Solving LE is easier when we find the optimal reaction coordinate, but in
some cases, optimal reaction coordinat does not exist, so one has to solve
GLE. The numerical simulation is useful to verify an analytical model.

Another noteworthy aspect of the GLE is the relationship between the
random force and the memory kernel; as we have already clarified, the ran-
dom force FR(t) is Gaussian distributed and, at the point of equilibrium,
obeys the fluctuation-dissipation theorem (FDT)

〈FR(t)FR(t′)〉 = kBTΓ(t− t′), (1.3)

where kB is the Boltzmann constant.
One process that is often described by the Langevin equation is protein

folding, because the dynamics are characterized by the friction coefficient.
The process can be modeled by a one-dimensional barrier crossing that di-
vides the folded and the unfolded state. The double-well is a simple potential
that describes the crossing process in one dimension. The barrier crossing
defines the probability of going to a certain point B starting from point A.
This process is affected by various parameters, e.g., the friction coefficient or
the mass. As stated above, Markovian dynamics is an approximation where
one considers the interaction between the particle and the environment as
instantaneous. However, if the time scales between the particle and the envi-
ronment are comparable, one must additionally consider the non-Markovian
dynamics [13, 14]. The protein folding process is a typical example where
the time scales are similar. For this reason, the duration of the particle
interactions will be finite. Apart from that, the memory time changes the
probability of crossing the barrier, inducing an acceleration of the time to
cross with respect to the Markovian case for intermidiate memory times and
a slow-down for long memory times.

Protein folding is a vital cell process, and the failure of this process, or
the misfolding, is the cause of many neurodegenerative diseases, for example,
Alzheimer’s or Parkinson’s Disease [15]. To prevent such misfolding, other
proteins are involved in the process, acting as chaperones: these molecules
increase the folding efficiency, reducing the probability of different types of
aggregation [16]. The stabilizing effect of these chaperones does not occur in
a state of equilibrium, because they consume chemical energy [17]. FDT does
not hold in this case, and the system is in a condition of non-equilibrium that
changes its thermodynamics. This is the condition of Active Matter, where
active agents consume energy to produce work. This activity, measured in
a state of non-equilibrium, is characteristic of other living systems, such as
cell migration or cell division.

Laura Lavacchi 3



Chapter 1

1.1 Outline

This thesis will set out to consider the ways in which memory effects influ-
ence the dynamics of a one-dimensional potential landscape. Utilizing both
simulations as well as analytical calculations, we will investigate how the
mean-first passage time (MFPT) over a single barrier modifies its crossing
velocity. In particular, we will consider various systems, modifying both the
memory kernel and the potential. We will also study systems in which the
FDT is violated, because a model far from a state of equilibrium can describe
a range of chemical reactions and molecular conformational transition.

In chapter 3, we will simulate the GLE (1.2) for a multi-exponential
memory kernel, considering various friction coefficients γi and memory times
τi, in particular for two or three exponentials. Furthermore, we will verify the
validity of previous works and, based on a new heuristic formula, generate
a general scaling diagram. This diagram will depict the Markovian regime
for short memory times and an asymptotic long-memory-time regime. The
MFPT grows quadratically in the region of long-memory-time and the scaling
variable is γi/τ 2

i . Therefore the memory contributions with long memory
times τi or small amplitudes γi are negligible compared to other memory
contributions. For the other memory time, we observe an intermediate non-
Markovian regime, characterized by acceleration, or by a slowdown of the
MFPT, depending on the particle mass.

In chapter 4, we will concentrate on the easiest exponential memory ker-
nel, the single one; the autocorrelation of the random force is proportional
to another exponential function, similar to the memory kernel, but with a
different relaxation time. Using a harmonic approximation, we will present
an analytical result for the MFPT based on the positional autocorrelation
function. This calculation generalizes previous works [18, 19] and provides
effective parameters that correspond to our simulation data, producing a
heuristic formula for a double-well potential. The new MFPT shows a non-
Arrhenius behavior, where the non-equilibrium random forces have a relax-
ation time longer than the friction relaxation time. The effective parameters
also describe the spatial and velocity distributions.

Another step to better describe the protein folding process is to consider
an asymmetric double-well potential, as we will demonstrate in chapter 5.
Using the results of the previous chapter, we will modify the heuristic for-
mula for a potential with various barrier heights on the two sides of the top
and separation lengths between the top and the left and the right minima,
respectively. We will compare the procedure with the simulation to demon-
strate its validity. We will also be able to conclude that the two wells operate
independently of one another, and the mean first passage time from the bot-
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1.1. OUTLINE

tom of one well to the top is not influenced by the dynamic of the other
well.

In chapter 6, we will analyze another important concept in the context
of barrier crossing: the transition path time, i.e., the time taken to reach a
target without revisiting the initial position. Additionally in this case, us-
ing the effective parameters found in chapter 4, we will develop a heuristic
formula for single and double exponential memory kernels. We are there-
fore demonstrating that the presence of a memory kernel will accelerate this
process, in particular when the mass of the particle is small; in other words,
the mean of the transition path time (MTPT) in the non-Markovian case is
shorter than the MTPT in the Markovian case. For more elevated values of
memory time, we will find that it reachs a plateau.
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Chapter 2

Methods and Simulations

2.1 Langevin Equation

In this chapter we will discuss in greater detail the theoretical instruments
and simulation method that we will apply in the following chapters. As pre-
viously mentioned, Langevin developed his equation in 1908 [7], subsequently
applying it to the theory of Brownian motion. Brownian motion [1, 20] de-
scribes the random dynamics of a particle immersed in a fluid, though it can
also be used to describe systems of greater variability, as previously men-
tioned in the introduction. Langevin started with the Newtonian approach
and the motion of a particle immersed in a fluid without the influence of
external forces as described by

mv̇(t) = −γv(t), (2.1)

where m is the particle mass, γ the friction coefficient and v(t) the particle
velocity. The solution of this first-order differential equation is

v(t) = e−γt/mv(0). (2.2)

According to this solution, the velocity of a Brownian particle decays to zero
at longer times. But on the other hand, we can calculate that in the canonical
ensemble the mean square velocity is

〈v(t)2〉 = kBT/m, (2.3)

from the law of equipartition [21].
This means that the total force applied to the particle comes not only from

the frictional force, but also from another "random" force, so the Langevin
equation for a Brownian particle therefore becomes

7



Chapter 2

mv̇(t) = −γv(t) + FR(t). (2.4)

Both of the forces stem from the interaction of the particle with its environ-
ment, also referred to as the "heat bath". The random force is considered to
vary extremely rapidly over the time of observation following the Gaussian
distribution, therefore the first two moments of the random force averaged
out over an infinitesimal time interval are given by

〈FR(t)〉 = 0, (2.5)
〈FR(t)FR(t′)〉 = 2Bδ(t− t′), (2.6)

where B is the strength of the random force. The solution of the first-
order differential Eq. (2.4) is

v(t) = e−γt/mv(0) +

∫ t

0

dt′e−γ(t−t′)/mFR(t′)/m. (2.7)

Squaring the velocity solution we obtain three terms

e−2γt/mv(0)2, (2.8)

2e−γt/mv(0)

∫ t

0

dt′e−γ(t−t′)/mFR(t′)/m, (2.9)
∫ t

0

dt′e−γ(t−t′)/mFR(t′)/m

∫ t

0

dt′′e−γ(t−t′′)/mFR(t′′)/m. (2.10)

Averaging these three terms over time, we observe that the cross term (2.9)
disappears and in the term (2.10) we substitute the Eq. (2.6). The final mean
squared velocity is

〈v(t)2〉 = e−2γt/mv(0)2 +
B

γm

(
1− e−2γt/m

)
. (2.11)

When t → +∞ the exponential terms disappear and the mean square
velocity obeys the law of equipartition (2.3), therefore

B = γkBT, (2.12)

the fluctuation-dissipation theorem. This theorem represents the balance
between the friction constant and the strength of the random force.

Laura Lavacchi 8



2.2. GENERALIZED LANGEVIN EQUATION

2.2 Generalized Langevin Equation

2.2.1 Projection formalism

A projection P is an operator with the following properties [22]

• Linear P(c1A+ c2B) = c1PA+ c2PB

• idempotent P2A = PA,

where c1, c2 ∈ R and A,B are two arbitrary observables.
The projection Q = 1−P projects an observable onto the complementary

subspace, where 1 is the identity operator. The operator P projects on the
relevant subspace. From the definition of idempotency of the two operators,

PQ = QP = 0. (2.13)

2.2.2 Liouville dynamics and projection method

To use the projector operators we must rewrite the dynamic evolution with
the Liouville operator. If we take a point ω = (r,p) in the phase space Ω, r
is the vector of the Cartesian position and p the conjugate momentum, the
corresponding Hamiltonian is an invariant of motion, given by

H(ω) =
p2

2m
+ V (r), (2.14)

where V (r) is a potential. The evolution of the point ω is defined by a linear
differential equation, the Liouville’s equation through

ω̇t = Lωt, (2.15)

L =
(
P
m
∇r − (∇rV )∇p

)
is the Liouville operator. The subscript t defines the

location in the phase space of the point ω at time t. Solving the Eq. (2.15)

ωt = etLω0, (2.16)

the initial point ω0 is propagated by the operator etL.
The same equation governs the evolution of an observable

Ȧt = LAt, (2.17)

where At = A(ωt) = A(ω0, t) an observable that depends on the real-valued
function of the phase space and implicitly on time. We thus define an inner

Laura Lavacchi 9



Chapter 2

product, as the observables are elements of a Hilbert space, a vector space
within an inner product,

〈At, Bt′〉 =

∫

Ω

dω0 ρeq(ω0)A(ω0, t)B(ω0, t
′), (2.18)

where ρeq(ω0) = 1
Z
e−βH0(ω0) is the canonical Boltzmann distribution, with

β = 1
kBT

and the partition function Z =
∫

Ω
dω0e

−βH0(ω0).
Having defined the dynamic evolution, we can decompose the Liouville

equation with the projector operators,

Ät = etLLȦ0 = etL(P +Q)LȦ0 = etLPLȦ0 + etLQLȦ0. (2.19)

etLQ propagates in time the observables that lie on the complimentary
space, using that

d

dt
etLQ = etLLQ = etLPLQ+ etLQLQ, (2.20)

and solving the inhomogeneous differential equation, we obtain

etLQ = QetLQ +

∫ t

0

du euLPLQ e(t−u)LQ. (2.21)

Using the equivalence QetLQ = etQLQ and substituting s = t− u, we obtain

etLQ = etQLQ+

∫ t

0

ds e(t−s)LPL esQLQ. (2.22)

The first term lies on the complementary subspace, whereas the second
term is a coupling between the two subspaces. Inserting the Eq. (2.22) inside
Eq. (2.19), we obtain [8, 9, 23]

Ät = etLPLȦ0 +

∫ t

0

ds e(t−s)LPLFR(s) + FR(t) (2.23)

FR(t) = etQLQLȦ0 = QetLQLȦ0. (2.24)

FR(t) is a function that lays on the complementary space and depends on
the initial condition. In the Eq. (2.23) the first term is similar as the term
(2.24), but remains on the relevant subspace. The second term is a coupling
between the operator P and the function LFR(t). The Eq. (2.23) has the
form of the Langevin equation, but to have an explicit expression, we must
specify which projection is applied.

Laura Lavacchi 10



2.2. GENERALIZED LANGEVIN EQUATION

2.2.3 The Mori projection

Considering an observable At, the Mori projection is given by [8]

PMAt =
〈At, B0〉
〈B2

0〉
B0 +

〈At, Ḃ0〉
〈Ḃ2

0〉
Ḃ0, (2.25)

where the bracket defines the inner product as in the Eq. (2.18). The
Eq. (2.25) projects the observable At onto the subspace of all the functions
linear in the observable B0, Ḃ0.

As a projection PM is linear and idempotent, but also self-adjoint with
respect to the inner product, therefore satisfying the relations

〈PMAt, Ct′〉 = 〈At,PMCt′〉, (2.26)
〈PMAt,QMCt′〉 = 0, (2.27)

given two arbitrary observables At, Ct′ .
If we substitute in the Eqs. (2.23), (2.24) the Mori projection and we

project directly on the interested observable Bt = At, Ḃt = Ȧt, we obtain

Ät = −KAt −
∫ t

0

dsΓM(s)Ȧt−s + FR(ω0, t). (2.28)

K =
〈Ȧ2

0〉
〈A2

0〉
(2.29)

ΓM(t) =
〈FR(0), FR(t)〉

〈Ȧ2
0〉

. (2.30)

The first term in the Eq. (2.28) is a force stemming from a potential
of quadratic form, the second and the third term are connected via the
fluctuation-dissipation theorem. The equation is an exact derivation from
the Liouville equation, but the random force is an explicit function of the
initial state of the entire system; therefore it can only be computed for very
simple systems.

2.2.4 The Zwanzig projection

Similarly to the Mori projection, the Zwanzig projection is linear, idempotent
and self-adjoint, but it is nonlinear in the functions B0, Ḃ0 [9], because

PZAt =
〈δ[B(ω̂0)−B(ω0)]δ[Ḃ(ω̂0)− Ḃ(ω0)], A(ω̂, t)〉
〈δ[B(ω̂0)−B(ω0)]δ[Ḃ(ω̂0)− Ḃ(ω0)]〉

= 〈At〉B0,Ḃ0
, (2.31)
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where ω̂0 are integrated over. Choosing as the projection function the posi-
tion (B0 → r0) and the linear momentum (Ḃ0 → p0), the Liouville equation
becomes

ṗt = −∇rtUPMF (rt) +

∫ t

0

ds

[(∇ps

β
− ps
m

)]T
ΓZ(t− s, rs,ps)

+FR(ω0, t)

(2.32)

where the memory kernel has the following shape

βΓZi,j(t− s, rs,ps) = 〈FR
i (0), FR

j (t− s)〉rs,ps . (2.33)

In this case the first term in the Eq. (2.32) is a derivative of the potential
of mean force (PMF) UPMF(r) = −kBT ln〈δ(r0 − r)〉; a force that acts on
a particle to provide the equilibrium positional distribution. The advantage
of this projection is that we always obtain the correct distribution at equi-
librium; when considering the stochastic description the random force has a
mean value of 0 [24]. The Zwanzig projection is difficult to apply, because
the memory kernel also depends on the particle position rs and momentum
ps.

2.2.5 Mori-Zwanzig projection

The GLE mainly used in the literature is,

mẍ(t) = −
∫ t

0

Γ(t′) ẋ(t− t′)dt′ −∇U (x(t)) + FR(t). (2.34)

It is an approximate GLE, obtained from the Zwanzig projection imposing a
memory function independent of the position and the momentum, as in the
Eq. (2.30). In this GLE the random force is Gaussian for longer time limits
and the memory function depends only upon the value for time, and therefore
can be estimated numerically from the trajectory data. It is demonstrated
that the Eq. (2.34) reproduces the full system dynamics [14].

2.3 Mean first-passage time

Another important concept, upon which we will expand later, is the mean
first-passage time: the average of the time necessary to reach a target point
for the first time beginning from a defined position.
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2.3. MEAN FIRST-PASSAGE TIME

2.3.1 Kramers problem high friction

Kramers studied the escape probability of a Brownian particle over a poten-
tial barrier [25]. Starting from the Smoluchowski equation

∂f(x, t)

∂t
= D

∂

∂x
e−βU(x) ∂

∂x
eβU(x)f(x, t), (2.35)

the diffusion of the probability distribution f(x, t) in the phase space in an
external potential with the diffusion coefficient D = kBT

γ
. We assume that

J = −De−βU(x) ∂

∂x
eβU(x)f(x, t) = const., (2.36)

the flux is constant, therefore the process is stationary (ḟ = 0).
Writing the equality

JeβU(x)

D
= − ∂

∂x
eβU(x)f(x, t)⇒ J

D

∫ x2

x1

eβU(x) = −eβU(x)f(x, t)
∣∣x2

x1
, (2.37)

because the flux J and the diffusion coefficient D are assumed constants. We
also assume, that at the maximum x2 we have absorbing boundary conditions,
therefore f(x2) = 0. The Eq. (2.37) becomes

J

D
=
eβU(x1)f(x1, t)∫ x2

x1
eβU(x)

. (2.38)

Expanding the potential U(x) around the maximum x2,
U(x) = U2 − U ′′2

2
(x− x2), the integral at the denominator is given by,

∫ x2

x1

eβU(x) = eβU(x2)

∫ x2

x1

e−β
U′′2
2

(x−x2) ' 1

2
eβU(x2)

∫ ∞

−∞
e−β

U′′2
2

(x−x2)

=
1

2
eβU(x2)

√
2π

βU ′′2
.

(2.39)

Introducing this expression in the flux, we obtain

J = De−β(U2−U1)

√
2βU ′′2
π

f(x1). (2.40)

The final step is to write explicitly f(x1). We assume that it is given by the
equilibrium distribution and we expand the potential around the minimum
x1, U(x) = U1 + U ′′1 (x− x1)2,

f(x1) =
e−βU(x1)

∫ x2

x0
dx e−βU(x)

' U ′′1
2π
. (2.41)
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In conclusion the flux becomes

J =
D
√
U ′′1U

′′
2

πkBT
e−β∆U , (2.42)

it depends exponentially on the potential difference and on the curvature of
the potential. Substituting the diffusion coefficient, and knowing that the
crossing rate k is half of the flux, we obtain

k =

√
U ′′1U

′′
2

2πγ
e−β∆U . (2.43)

If we consider a double well potential

U = U0

((x
L

)2

− 1

)2

, (2.44)

the crossing rate is

k =
2
√

2U0

πγL2
e−βU0 . (2.45)

The inverse of the crossing rate is the mean first-passage time for a Markovian
system in high friction limit, τMFP = 1/k .

2.3.2 Grote-Hynes theory

The Grote-Hynes (GH) theory predicts the barrier crossing time with frequency-
dependent friction [26]

τGH =
2πωmax
λωmin

eβU0 , (2.46)

where ωmax =
√
|U ′′max|/m and ωmin =

√
|U ′′min|/m are the frequencies at

the free energy maximum and minimum respectively. In Eq. (2.46), we rec-
ognize the Transition state theory (TST) prediction for the barrier crossing,

τTST =
2π

ωmin
eβU0 . (2.47)

For a symmetric double-well potential, the frequencies, respectively, are
ωmax =

√
4βU0/(τDτm) and ωmin =

√
8βU0/(τDτm). λ is the barrier reactive

frequency, solution of the Grote-Hynes equation

λ2 + λ
Γ̃(λ)

m
= ω2

max, (2.48)
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GH

τm/τD = 0.1
τm/τD = 0.01

Figure 2.1: MFPT as a function of rescaled τ/τD for a symmetric double-
well potential Eq. (2.44) with βU0 = 3, red for τm/τD = 0.1 and black for
τm/τD = 0.01. The thick lines are the Grote-Hynes theory following the
Eq. (2.46). The circles are the simulation data, connected with broken lines.

where Γ̃(λ) is the Laplace transform of the friction memory kernel, and
in the case of a single exponential memory kernel, it is given by

Γ̃(λ) =

∫ ∞

0

Γ(t′)e−λt
′
dt′ =

γ

1 + τλ
. (2.49)

Inserting the Laplace transform of the friction memory kernel into the GH
equation (2.48), we obtain a cubic polynomial, which has a real and positive
root.

In Fig.2.1, we observe the agreement between the Grote-Hynes Theory,
and the simulation data for small values of τ/τD, but a deviation for inter-
mediate and high values. To better understand this behavior, we must study
the various limits of GH-Theory.

• Markovian limit (τ/τD → 0), equivalent to the Kramers (Kr) rate for
intermediate-high friction.

In other words Γ̃(λ) = γ, meaning that

λ = − γ

2m
±
(
γ2

4m2
+ ω2

max

)1/2

, (2.50)

taking the positive root we obtain

Laura Lavacchi 15



Chapter 2

τKr = ωmax

[(
γ2

4m2
+ ω2

max

)1/2

− γ

2m

]−1

τTST . (2.51)

– High friction limit ( γ
m
� 1)

λ =
γ

2m

(
1 +

4m2ω2
max

γ2

)1/2

− γ

2m

' γ

2m
+
mω2

max

γ
− γ

2m

=
mω2

max

γ
. (2.52)

τKrhf =
2πγ

mωmaxωmin
eβU0 . (2.53)

– Low friction limit ( γ
m
� 1).

τKrlf = τTST , (2.54)

because λ = ωmax.

• Low mass (m→ 0).
The GH’s equation (2.48) becomes

λ
γ

(1 + τλ)m
− ω2

max = 0, (2.55)

⇒ λ =
ω2
maxm/γ

1− τω2
maxm/γ

. (2.56)

τGHlow−mass =
2π(1− ω2

maxτm/γ)

ωminωmaxm/γ
eβU0 , (2.57)

The speed-up regime is recovered for intermediate τ , but the transi-
tion time continuously decreases with the increasing memory time, as
depicted in Fig.2.1.

• Long memory limit (τ/τD � 1), in this limit, the Laplace transform of
the memory kernel is

Γ̃(λ) ' γ

τλ
, (2.58)
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⇒ λ = ωmax

(
1− γ

τω2
max

)1/2

. (2.59)

τGHlong−memory =
2π

ωmin

(
1− γ

τmω2
max

)1/2
eβU0 , (2.60)

for τ → 0, the transition time is independent of τ and for this reason
we observe a constant value in Fig.2.1.

τGHτ→∞ =
2π
√
m√

U ′′min
, (2.61)

The transition time trends towards zero as m→ 0.

2.3.3 Mel’nikov Meshkov theory

The idea behind Me’lnikov Meshkov theory [27] is to derive the Green’s
function of the Fokker-Planck equation in the form of a system of integral
equations. By Fourier transform the equations can then be solved by the
Wiener-Hopf method [28]. As a first step we calculate the action of one
oscillation of a particle with zero total energy

S1 =

∫ 0

−
√

2

√
−U0β ((x2 − 1)2 − 1)dx. (2.62)

The final expression for the MFPT is

τMFP

τD

−1

=

√
8U0β/(τmτD)

2π

(√
1 +

1

4τ 2
m4U0β/(τmτD)

− 1

2τm
√

4U0β/(τmτD)

)
A(τm, τD, S1)e−βU0 ,

. (2.63)

2.3.4 Calculation of the mean first passage time from
simulation

There is no unique method of calculating the mean first passage time from
simulation, or rather the average time to make a transition between states.
One method is to consider the mean first-to-first passage time (MFFPT),
in other words the time that a system spends in a certain state. The other
method is to consider the mean all-to-first passage time MAFPT, which tells
us how long it takes a system to transition from one state to another. In the
Fig.2.2 we illustrate the two definitions.
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Figure 2.2: Particle trajectory, on the left the definition of the first-to-first
passage time, which is the difference in time between the green and the red
cross. On the right are shown various all-to-first passage times; the gap times
between every green crosses and the red one.

In rare event systems, such as the folding of a protein or a phase transi-
tion, it is convenient to consider the all-to-first mean first passage time, in
order to reduce the noise and enhance statistical accuracy. The two times are
comparable for Markovian systems, but when memory effects are present, the
two times diverge. The τMAFP corresponds to the longest time of dynam-
ics, and the MFFPT in non-Markovian systems scales alongside the mean
transition path time.

In the remainder of this thesis we will discuss in greater detail the mean
all to first passage time, which we will refer to the MAFPT.

2.4 Langevin simulation methods

In this section, we will explain the equations that we use to simulate the
non-Markovian dynamics.

If we consider an exponential memory kernel

Γ(t) =
γ

τ
e−|t|/τ , (2.64)

and to efficiently simulate the system, we first derive a dimensionless version
of the GLE,
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mẍ(t) =−
∫ t

t0

γ

τ
e−
|t−t′|
τ ẋ(t′)dt′ −∇U(x(t)) + FR(t),

m
L

kBT
ẍ(t) =−

∫ t

t0

L

kBT

γ

τ
e−
|t−t′|
τ ẋ(t′)dt′ − L

kBT
∇U(x(t)) +

L

kBT
FR(t),

m
L

kBT

L

τ 2
D

¨̃x(t̃) =−
∫ t̃

t̃0

L

kBT

γ

τ
e−

τD |t̃−t̃
′|

τ
L

τD
˙̃x(t̃′)τDdt̃

′ − L

kBT
∇U(x(t)) +

L

kBT
FR(t),

τm
τD

¨̃x(t̃) =−
∫ t̃

t̃0

τD
τ
e−

τD |t̃−t̃
′|

τ ˙̃x(t̃′)dt̃′ + F̃
[
x̃(t̃)

]
+ F̃R(t̃),

(2.65)

where t̃ = t/τD, x̃(t̃) = x(τD t̃)/L, and F̃ (x̃) = −(kBT )−1LU ′(Lx̃). Dots in
the equations denote derivatives with respect to time. In a state of equi-
librium, the generalized Langevin equation Eq. (2.65) can be rewritten as a
coupled set of Markovian differential equations,

˙̃x(t̃ ) =
dx̃(t̃)

dt̃
, (2.66)

¨̃x(t̃ ) =
τD
τm

(
R(t̃) + F̃

[
x̃(t̃)

])
, (2.67)

Ṙ(t̃ ) = −τD
τ

(
R(t̃) + ˙̃x(t̃ )− ξ̃(t̃)

)
. (2.68)

Here, R(t̃) is an auxiliary variable and the correlation function of the dimen-
sionless random force ξ̃(t̃) is given by

〈ξ̃(t̃)ξ̃(t̃′)〉 = 2δ(t̃− t̃′). (2.69)

Solving the inhomogeneous differential Eq. (2.68) we obtain

R(t̃) = −τD
τ

∫ t̃

t̃0

exp
[
−τD
τ

(t̃− t̃′)
] (

˙̃x(t̃′)− ξ̃(t̃′)
)
dt̃′. (2.70)

Substituting this result into Eq. (2.67), we obtains Eq. (2.65), the rescaled
equilibrium version of the GLE (2.34) [19], and where the random force is
given by

F̃R(t̃) =
τD
τ

∫ t̃

t̃0

exp
[
−τD
τ

(t̃− t̃′)
]
ξ̃(t̃′)dt̃′. (2.71)
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Calculating the random force autocorrelation

〈F̃R(t̃)F̃R(t̃′)〉 =

(τD
τ

)2
∫ t̃

t̃0

dy

∫ t̃′

t̃0

exp
[
−τD
τ

(t̃− y)
]
exp

[
−τD
τ

(t̃′ − y′)
]
〈ξ̃(y)ξ̃(y′)〉dy′

= 2
(τD
τ

)2
∫ t̃

t̃0

dy

∫ t̃′

t̃0

exp
[
−τD
τ

(t̃− y)
]
exp

[
−τD
τ

(t̃′ − y′)
]
δ(y − y′)dy′

= 2
(τD
τ

)2

exp
[
−τD
τ

(t̃+ t̃′)
] ∫ min{t̃,t̃′}

t̃0

exp
[
2
τD
τ
y
]
dy

= 2
(τD
τ

)2

exp
[
−τD
τ

(t̃+ t̃′)
] τ

2τD

(
exp

[
2
τD
τ
min{t̃, t̃′}

]
− exp

[
2
τD
τ
t̃0

])

=
τD
τ

(
exp

[
−τD
τ
|t̃− t̃′|

]
− exp

[
−τD
τ

(t̃+ t̃′ − 2t̃0)
])
,

(2.72)

for t̃+ t̃′ � 2t̃0 we have

〈F̃R(t̃)F̃R(t̃′)〉 =
τD
τ
exp

[
−τD
τ
|t̃− t̃′|

]
. (2.73)

This is the rescaled version of Eq. (1.2) for the equilibrium case. In the sim-
ulations we use Eqs. (2.66)-(2.68) in conjunction with the 4th order Runge-
Kutta method [29,30]. The time step is fixed at

∆t̃ = ∆t/τD ·min{τm/τD, τ/τD, τR/τD}. (2.74)

In this thesis we will take in consideration different memory kernels, in the
following sections we take in consideration how the Markovian embedding
changes for various memory function.

2.4.1 Multi-exponential memory kernel

The function of a multi-exponential memory kernel is

Γ(t) =
N∑

i=1

γi
τi
e−t/τi . (2.75)

The Markovian embedding for the multi-exponential memory kernel can be
written as
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˙̃x(t̃ ) =
dx̃(t̃)

dt̃
, (2.76)

τm
τD

¨̃x(t̃ ) =
N∑

i=1

[
Ri(t̃) + F̃

(
x̃(t̃ )

)]
, (2.77)

Ṙi(t̃ ) = −τD
τi

[
Ri(t̃ ) +

γi
γ

˙̃x(t̃ )−
√
γi
γ
ξ̃i(t̃ )

]
1 ≤ i ≤ N, (2.78)

where t̃ = t/τD, x̃(t̃) = x(τD t̃)/L, the Ri are auxiliary variables, F̃ (x̃) =
(kBT )−1LU ′(Lx̃), dots here denote derivatives with respect to t̃, and the
correlators of the dimensionless random forces ξ̃i(t̃) := (kBT )−1LfRi(τD t̃)
are given by

〈ξ̃i(t̃)ξ̃j(t̃′)〉 = 2δ(t̃− t̃′)δij. (2.79)

Solving the inhomogeneous harmonic oscillator Eq. (2.78) for the auxiliary
variable R̃i, substituting the result into Eq. (2.77), it is seen that Eqs. (2.76-
2.79) are equivalent to the GLE with multi-exponential memory kernel [18].

2.4.2 GLE out of equilibrium

As already said before, a GLE is ouf of equilibrium when the FDT is violated,
for this reason we consider a single exponential friction memory kernel ΓV
and for the random force correlator we take another exponential memory
function with different memory time ΓR,

ΓV (t) =
γV
τV
e
− |t|
τV , (2.80)

ΓR(t) =
γR
τR
e
− t
τR for t > 0 (2.81)

The dimensionless version of the GLE is

τm
τD

¨̃x(t̃) = −
∫ t̃

t̃0

τD
τV
e
− τD |t̃−t̃

′|
τV ˙̃x(t̃′)dt̃′ + F̃

[
x̃(t̃)

]
+ F̃R(t). (2.82)

To simulate the non-equilibrium GLE, we need to split the auxiliary vari-
able R(t̃) into two variables RV (t̃) and RR(t̃) and use the coupled set of
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Markovian equations

˙̃x(t̃ ) =
dx̃(t̃)

dt̃
, (2.83)

¨̃x(t̃ ) =
τD
τm

(
RV (t̃) +RR(t̃) + F̃

[
x̃(t̃)

])
, (2.84)

ṘV (t̃ ) = −τD
τV

(
RV (t̃) + ˙̃x(t̃ )

)
, (2.85)

ṘR(t̃ ) = −τD
τR

(
RR(t̃)− ξ̃(t̃)

)
. (2.86)

Solving the inhomogeneous differential Eqs. (2.85) and (2.86), we obtain

RV (t̃) = −τD
τV

∫ t̃

t̃0

exp
[
−τD
τV

(t̃− t̃′)
]

˙̃x(t̃′)dt̃′, (2.87)

RR(t̃) =
τD
τR

∫ t̃

t̃0

exp
[
−τD
τR

(t̃− t̃′)
]
ξ̃(t̃′)dt̃′. (2.88)

Inserting these results into Eq. (2.84) we arrive at the rescaled GLE (2.82),
where in this case the random force and its correlation are given by

F̃R(t̃) =
τD
τR

∫ t̃

t̃0

exp
[
−τD
τR

(t̃− t̃′)
]
ξ̃(t̃′)dt̃′, (2.89)

〈F̃R(t̃)F̃R(t̃′)〉 =
τD
τR

exp
[
−τD
τR
|t̃− t̃′|

]
. (2.90)
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Barrier crossing in the presence of
multi-exponential memory
functions

3.1 Introduction

Most biological and chemical processes work at the nano-scale, such as chem-
ical reactions and protein folding. The dynamics of the molecules involved
are stochastic processes in a liquid governed by thermal noise. These sys-
tems are studied by either the Langevin or the Fokker-Plank equations. In
the Markovian limit, the orthogonal degrees of freedom reach a state of relax-
ation more rapidly than the diffusive and inertial time scales of the reaction
coordinate [11, 31–35]. However, the adiabatic approximation, in which one
neglects the relaxation of these degrees of freedom, is not always valid, as
is the case for dihedral barrier crossing, reactions in peptides and alkalis, as
well as for ion-pairing kinetics [36–42]. Sometimes, the characteristic times
for the reaction coordinate and the environment are similar; we must, there-
fore, include memory effects to characterize the dynamics of the reaction
coordinate correctly. In other words, we are dealing with a non-Markovian
process. In most systems, a single time scale is not sufficient, and it is neces-
sary to consider several memory time scales in order to produce an accurate
description, depending on the complexity of the system [31,36,43–46].

Often, these processes can be described as a barrier-crossing in a one-
dimensional landscape [25,47–55], and they are mainly studied in the frame-
work of the generalized Langevin equation (GLE) [8, 9, 26,55–58]

mẍ(t) = −
∫ t

0

Γ(t− t′)ẋ(t′)dt′ − U ′ [x(t)] + FR(t), (3.1)
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where m is the effective mass of the reaction coordinate x, Γ(t) is the mem-
ory kernel function and U ′(x) is the derivative of the potential U(x). FR(t)
denotes the Gaussian time-dependent random force with 〈FR(t)〉 = 0. At
equilibrium, which is the scenario we will consider in this chapter, the re-
lationship between the friction kernel Γ(t) and the autocorrelation of the
random force is given by

〈FR(t)FR(t′)〉 = kBTΓ(|t− t′|), (3.2)

where T is the temperature and kB is the Boltzmann constant. To describe
the barrier crossing, we will choose a symmetrical double-well potential

U(x) = U0

[(x
L

)2

− 1

]2

. (3.3)

The separation between the two wells is 2L, and the barrier height is given
by U0, as shown in Fig.3.1a). In the main part of this discussion, we will use
U0 = 3kBT .

Considering a memory kernel expressed as a sum of N exponentials

Γ(t) =
N∑

i=1

γi
τi
e−t/τi , (3.4)

where τi and γi are the i-th memory time and friction coefficient. Accordingly,
the random force in Eq. (3.1) can be decomposed in

FR(t) =
N∑

i=1

fRi(t), (3.5)

where
〈fRi(t)fRj(t′)〉 = kBT

γi
τi
e−|t−t

′|/τiδij ∀i, j. (3.6)

The integral over the memory function γ =
∫∞

0
Γ(t)dt =

∑N
i=1 γi defines the

total friction coefficient and, by construction, is independent of the memory
times.

The most important characteristic of these systems is the mean first-
passage time (MFPT), the mean of the time necessary to first reach a min-
imum of the double well potential starting from the other minimum. As
illustrated in Fig.3.1b), the MFPT is the average time between each blue
and red lines.

In Ref. [18], for single-exponential memory (N = 1), it was proven that
the mean first-passage time τMFP is a function of the memory time τ and
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Figure 3.1: a) Picture of a double well potential as defined in the Eq. (3.3)
with a massive particle. The first passage time is the time required for a
massive particle to cross the minimum, for example, x/L = −1, and reach
the other minimum (x/L = 1) for the first time. In b), we see the illustration
of how the first-passage times (FPTs) are calculated; the blue vertical lines
depict the crossing of the minimum x/L = 1, and the red vertical line denotes
the initial crossing of the other minimum x/L = −1. The difference between
the red line and each blue line provides us with a sample for the FPT. The
mean first-passage time (MFPT) is obtained by taking an average of all the
values of FPT. The parameters used for the depicted trajectory are τm/τD =
0.001, τ1/τD = 1, τ2/τD = 10, γ2/γ1 = 2 and barrier height βU0 = 3.
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Figure 3.2: Scaling behaviour of the MFPT as a funtion of τm/τD on the
y-scale and of τ/τD on the x-scale. The transition between the Markovian
regime (blue area) and the intermediate memory speedup (purple area) is
defined when the MFPT is 5% smaller than the Markovian time. The green
area is the memory slowdown, that means that τMFP/τD is higher than the
Markovian time. The asympotic behavior is τ 2/γ.

the friction coefficient γ, with an asymptotic behavior τMFP ' τ 2/γ for long
values of memory time as shown in the Fig.3.2 in the light-green area. In
fact, in Fig.3.2 we show a phase diagram for the behaviour of the MFPT
as a function of τm/τD and the memory time. The barrier-crossing kinetics
are modified in the presence of the slowly decaying memory, even when the
MFPT is much longer than the memory time. This simply means that time-
scale separation, where the memory time modifies the MFPT only when they
have similar values, is no longer valid. On the other hand, in the friction-
dominated regime and for intermediate memory time, we are able to observe
a speed-up regime of the MFPT (purple in Fig.3.2), meaning that the barrier-
crossing kinetics are faster than those observed in the Markovian model. The
value of the memory time determines whether the barrier-crossing process
will accelerate or decelerate.

For a system with a bi-exponential memory kernel (N = 2), where the
friction amplitudes contribute equally (γ1 = γ2 = γ), it was previously
demonstrated that the MFPT is dominated by the shorter memory time [19],
provided that one of the two memories is larger than the intrinsic diffusion
time.

By examining the trajectories in Fig.3.3, we can visualize how the system
is altered when the memory times are modified. In the figure, we depict
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Figure 3.3: Two-dimensional particle trajectories for τm/τD = 0.01
and γ2/γ1 = 5 without an external potential for the Markovian case
τ1/τD = τ2/τD = 0 (magenta), for bi-exponential memory with τ1/τD =
0.00316, τ2/τD = 0.01 (blue) and τ1/τD = 100, τ2/τD = 31.6 (light blue).

the trajectories in 2-D of three particles without an external potential with
various memory times. In magenta, a particle with Markovian dynamics, in
blue short memory times (τ1/τD = 0.00316, τ1/τD = 0.01) and in light blue
with long memory times (τ1/τD = 100, τ1/τD = 31.6). In particular, the
free particle has a different dynamic even when introducing lower values of
memory time (blue line) compared the Markovian case (magenta line).

This chapter will consider a position-independent memory function as
a sum of two exponentials with different memory times and friction coeffi-
cients. Furthermore, we will take into account the sum of three exponentials.
By comparing our simulation data with the previous formula (for the bi-
exponential memory kernel in a limited case), we are able to confirm the
validity of a previously [19] suggested heuristic formula for the mean first-
passage time, τMFP .

3.2 Setup

In order to analyze a general non-Markovian system according to Eq. (3.1),
we introduce two time-scales
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τD =
L2γ

kBT
, (3.7)

τm =
m

γ
, (3.8)

where τD and τm represent the diffusion and inertial times, respectively. The
diffusion time depends on the separation between the two potential wells 2L,
the friction coefficient γ, and the temperature T . The inertial time is pro-
portional to the mass m and inversely proportional to the friction coefficient.
Using the two time-scales defined in Eq. (3.7) and (3.8), we rewrite Eq. (3.1)
as

τm
τD

¨̃x(t̃) = −
N∑

i=1

τD
τi

∫ t̃

0

γi
γ
e
− τD
τi ˙̃x(t̃′)dt̃′ + 4

U0

kBT
x̃(1− x̃2) + F̃R(t̃), (3.9)

where t̃ = t/τD and x̃(t̃) = x(τD t̃)/L are the dimensionless time and particle
position respectively, we define the dimensionless random force as F̃R(t̃) =
LFR(τD t̃)/kBT . It is, therefore, clear that the problem is accurately described
by the rescaled potential barrier U0/kBT and the characteristic time scales
τD, τm, and τi. To simulate numerically Eq. (3.9), we must first rewrite it
as a set of Markovian embedding equations, adding N auxiliary variables
Ri(t̃) [59], as

d

dt̃
x̃(t̃) = ˙̃x(t̃),

d

dt̃
˙̃x(t̃) =

τD
τm

(
N∑

i=1

Ri(t̃) + 4
U0

kBT
x̃(1− x̃2)

)
,

d

dt̃
Ṙi(t̃) = −τD

τi

(
Ri(t̃) +

γi
γ

˙̃x(t̃)− ξi(t̃)
)
, for i ∈ [1...N ]

(3.10)

where

Ri(t̃) = −τD
τi

∫ t̃

0

e
− τD
τi

(
γi
γ

˙̃x(t̃′)− ξ(t̃′)
)
dt̃′. (3.11)

Here ξi(t̃) are random variables, with

〈ξi(t̃)〉 = 0,

〈ξi(t̃)ξj(t̃′)〉 = 2
γi
γ
δ(t̃− t̃′)δij.

(3.12)
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3.3. FIRST PASSAGE TRAJECTORIES AND
DISTRIBUTIONS

In chapter 2, we show that the set of Eqs. (3.10), (3.11), and (3.12) is
equivalent to Eq. (3.9). From our simulations, we collect all values of first
passage time τFP ; the time that the particle needs to reach the minimum
x/L = 1 crossing the minimum x/L = −1. Since we are considering a
symmetric potential, we can also count the crossing time from the minimum
x/L = −1 to x/L = 1. The MFPT is the average of these values.

3.3 First passage trajectories and distributions

In Fig.3.4, we depict a number of simulation trajectories, for an one-dimensional
system with a double-well potential. First, this figure shows the importance
of considering a range of friction coefficients. All the trajectories are for
τ1/τD = 1 and τ2/τD = 10, in the upper row the plots are characterized
by τm/τD = 0.001 (high friction) and in the bottom row by τm/τD = 10
(low friction). From left to right, we have various ratios between the friction
coefficients γ2/γ1 = 100, γ2/γ1 = 2 and γ2/γ1 = 0.01, respectively.

We are thus able to observe a variety of behaviors in the trajectories when
we transition from a) to c) and from d) to f), where the ratio between γ2/γ1

decreases. In fact, from left to right, the mean first passage time decreases
because we see more transition between the two minima.

In Fig.3.5, we plot the rescaled first-passage time distribution in a semi-
logarithmic representation, with the same parameters as in Fig.3.4. We are,
therefore, able to observe that the distributions follow an exponential dis-
tribution. For all simulation data, we further check whether the simulation
distribution has an exponential behavior in order to be sure that our simu-
lations are equilibrated and sufficiently long,

ρ(τFP ) =
1

τMFP

exp(−τFP/τMFP ), (3.13)

analytically depicted with red lines in Fig.3.5.

3.4 Bi-exponential and triple-exponential mem-
ory kernel

The aim of this section is to find a heuristic formula for MFPT with a
multi-exponential memory kernel. For this, we first study the case for a
bi-exponential memory kernel with a fixed ratio γ2/γ1. We run simulations
for the Markovian embedding (3.10) and extract the MFPT. We compare
them with a previously proposed heuristic crossover formula [19]

Laura Lavacchi 29



Chapter 3

0 100 200 300 400 500

t/τD

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x/
L

τm/τD = 0.01 γ2/γ1 = 100

0 100 200 300 400 500

t/τD

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x/
L

τm/τD = 0.01 γ2/γ1 = 2

0 100 200 300 400 500

t/τD

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x/
L

τm/τD = 0.01 γ2/γ1 = 0.01

0 1000 2000 3000 4000 5000

t/τD

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x/
L

τm/τD = 10 γ2/γ1 = 100

0 1000 2000 3000 4000 5000

t/τD

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x/
L

τm/τD = 10 γ2/γ1 = 2

0 1000 2000 3000 4000 5000

t/τD

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x/
L

a) b) c)

d) e) f)
τm/τD = 10 γ2/γ1 = 0.01

Figure 3.4: Simulation trajectories in one dimension for a barrier crossing
potential with height βU0 = 3 for memory times τ1/τD = 1 and τ2/τD = 10.
In the upper row (a-c) are trajectories for high friction with τm/τD = 0.01,
while in the lower row (d-f) for low friction with τm/τD = 10. Each column
corresponds to a different ratio γ2/γ1 equal to 100 (a,d), 2 (b,e), or 0.01 (c,f).
The black dashed lines indicate the positions of the two potential minima.

τMFP =
∑

τ iOD +
(∑

1/τ iED

)−1

, (3.14)

which is the sum of the overdamped contribution to the MFPT

τ iOD
τD

=
γie

βU0

γβU0

[
π

2
√

2

1

1 + 10βU0τi/τD
+

√
βU0

τm
τD

]
, (3.15)

and the energy-diffusion contribution

τ iED
τD

=
γeβU0

γiβU0

[
τm
τD

+ 4βU0

( τi
τD

)2

+

√
βU0

τm
τD

]
. (3.16)

In Fig.3.6 we observe a close agreement between the analytical expres-
sion (3.14) and the simulation data (stars) of the rescaled MFPT τMFP/τD
as a function of τ1/τD and for fixed values of τ2/τD, γ2/γ1, and U0/kBT .
In particular, for τ1/τD � 1, we observe that the MFPT is constant with
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Figure 3.5: First passage time distribution for barrier crossing. The param-
eters used for the simulation are the same as in Fig.3.4: the potential height
is fixed βU0 = 3 and the memory times as τ1/τD = 1 and τ2/τD = 10. The
upper row corresponds to high friction τm/τD = 0.01, and the bottom row
to low friction. Various ratios of the two friction coefficients correspond to
γ2/γ1 = 100 in a) and d), γ2/γ1 = 2 in b) and e), and γ2/γ1 = 0.01 in c)
and f), respectively. The green histograms denote the rescaled probability
distribution ρ(τFP ), and on every plot, the respective MFPT is indicated, as
well as the average of all the samples and the MFPT from the Eq. (3.14).
The red lines highlight the exponential decay explained in Eq. (3.13).

respect to τ1/τD, as was already observed in the previous work [19]. The
black lines on the right of the figure show the MFPT for a single exponential
memory kernel (γ1 = 0); taking this into account, we rescale the MFPT in
order to compare the expressions for the single- and bi-exponential MFPT,
respectively

τMFP2

τD2

γ2

γ
=
τMFP2

τD
, (3.17)

where in τD2 = L2γ2/kBT instead of γ there is γ2. The dash-dotted line on the
bottom left-hand side of the figure depicts the Markovian limit γ1 = γ2 = 0.
For the values of τ2/τD = 0.1 and τ2/τD = 0.316, we observe a near-constant
behavior for τ1/τD � 1 as well as τ1/τD � 1. These two lines agree closely
with the dashed line. This means that the MFPT is dominated by the
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Figure 3.6: Rescaled MFPT for bi-exponential memory kernel τMFP/τD as a
function of τ1/τD for several values of τ2/τD and fixed τm/τD = 1, γ2/γ1 = 2,
and U0/kBT = 3. The stars denote the simulation results, and the colored
lines represent the heuristic formula Eq. (3.14). The horizontal dashed line
represents the Markovian limit, corresponding to γ1 = γ2 = 0. The black
horizontal lines for high τ1/τD values denote the heuristic formula for a single
exponential memory kernel, i.e., γ1 = 0.

overdamped contribution in Eq. (3.15), this contribution being almost equal
to the Markovian expression.

In the following paragraph, we analyze the influence of the ratio between
the two friction coefficients γ2/γ1. In Fig.3.7, we plot the rescaled MFPT as
a function of γ2/γ1 for various values of τm/τD. In Fig.3.7a) fixing τ1/τD = 1
and τ2/τD = 10, we observe a plateau for both γ2/γ1 � 1 and γ2/γ1 � 1.
The black horizontal lines depict the single exponential result for γ2 = 0 on
the left, and γ1 = 0 on the right; when the amplitude of either exponential
contribution to the memory kernel is lower than the other, its effect on the
MFPT disappears, as follows from the agreement between the colored lines
and the black lines. In Fig.3.7a), we observe a number of discrepancies
between the simulation data and the formula (3.14), particularly for small
values of γ2/γ1, though generally, the formula describes the simulation data
accurately. In Fig.3.7b), we observe the same behavior as in Fig.3.7a) with
constant values for small and large γ2/γ1. In this case, however, we observe
a more extended range of values of MFPT; here τ1/τD = 0.316 and τ2/τD =
31.6, therefore the ratio between these two memory times is 100, and in
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Figure 3.7: Mean first-passage time for bi-exponential memory and
U0/kBT = 3: (a) τMFP/τD for fixed τ1/τD = 1, τ2/τD = 10 as a function
of γ2/γ1 for several values of τm/τD, (b) τMFP/τD for fixed τ1/τD = 0.316,
τ2/τD = 31.6 as a function of γ2/γ1 for several values of τm/τD. The stars il-
lustrate the simulation results, while the colored lines represent the heuristic
formula Eq. (3.14). The horizontal dash-dotted lines represent the Marko-
vian limit, corresponding to γ1 = γ2 = 0. The horizontal black lines denote
the heuristic formula for a single exponential memory kernel for γ2 = 0 on
the left and γ1 = 0 on the right.

Fig.3.7a) it is 10. In order to understand the importance of the effect of
memory on the MFPT, we compare the Markovian and non-Markovian cases,
where the dash-dotted lines depict the Markovian case. From Fig.3.7, we
intuit that the scaling variable (that describes the relative importance of
exponential memory contributions) is proportional to γi/τ 2

i , which we will
derive in more detail in the following paragraph.

Having discussed the bi-exponential case, we next analyze the tri-exponential
memory kernel. In Fig.3.8 we depict the MFPT for fixed τm/τD = 1,
τ1/τD = 0.316, τ2/τD = 1, τ3/τD = 3.16 and U0/kBT = 3. In Fig.3.8a),
we plot the MFPT as a function of γ2/γ1 for various values of γ3/γ1 and in
Fig.3.8b) as a function of γ1/γ2 for various values of γ3/γ2. In both panels,
we observe an agreement between the data, the symbols, and the analytical
expression (3.14), as depicted by the colored lines. We can, therefore, con-
clude that the analytical expression accurately describes the tri-exponential
memory kernel as well as the bi-exponential, thus providing an accurate de-
scription for a generic multi-exponential memory kernel. The data exhibit an
asymptotic behavior on the left and right of the two plots. In particular, when
one of the amplitudes of the memory kernel goes to infinity, (γ2/γ1 →∞ in
Fig.3.8a) and γ1/γ2 → ∞ in Fig.3.8b)), the MFPT reaches the single expo-
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Figure 3.8: Mean first-passage time for tri-exponential memory. In a), we
plot the simulation results for the rescaled MFPT τMFP/τD as a function
of γ2/γ1 for fixed τm/τD = 1, τ1/τD = 0.316, τ2/τD = 1, τ3/τD = 3.16 and
U0/kBT = 3. The colored stars represent the results for various values of
γ3/γ1. The colored lines represent the heuristic formula 3.14. In b), τMFP/τD
is shown as a function of γ1/γ2 for fixed τm/τD = 1, τ1/τD = 0.316, τ2/τD = 1,
τ3/τD = 3.16. The different colored stars denote the results for the various
fixed values of γ3/γ2. The colored lines represent the heuristic formula 3.14.
In both plots, the horizontal black lines to the right represent the heuristic
formula for single exponential memory, in a) for γ1 = γ3 = 0 and in b) for
γ2 = γ3 = 0, while the horizontal black lines to the left represent the heuristic
formula for double exponential memory.

nential limit on the right. On the left we see the bi-exponential limits, for
γ2/γ1 → 0 in 3.8a) and γ1/γ2 → 0 in 3.8b) respectively. Both limits are
depicted with black lines, while the dashed lines denote the Markovian limit.

After checking the close agreement between the formula (3.14) and bi-
exponential kernel data for various memory times, friction coefficients, and
inertial times, we additionally compare its validity for different weight poten-
tials, as in Fig.3.9. In this figure, we plot the rescaled MFPT as a function
of U0/kBT for various γ2/γ1 and fixed τm/τD = 1, τ1/τD = 10 and τ2/τD = 1.
The formula (3.14) accurately describes the data, dominated by the Arrhe-
nius term τMFP ' eβU0 when the barrier height satisfies U0/kBT ≥ 2.
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Figure 3.9: Bi-exponential memory. Simulation results for the rescaled
MFPT τMFP/τD as a function of the rescaled barrier height U0/kBT for
τm/τD = 1, τ1/τD = 10 and τ2/τD = 1 and different values of γ2/γ1 =
0.1, 2, 10. The stars and lines depict the simulation data and the heuristic
formula (3.14), respectively.

3.5 Scaling diagrams

In the previous section, we learned that the expression (3.14) agrees with
the simulation data when U0/kBT ≥ 2. We will now analyze the behavior of
MFPT for multi-exponential memory kernels in the case of various friction
coefficients based on Eq. (3.14). Studying Eq. (3.14) we observe that, when
all the memory times are τi/τD � 1, the MFPT scales as

τMFP

τD
∝ 4eβU0

[∑

i

(
τD
τi

)2
γi
γ

]−1

. (3.18)

In particular, the MFPT is dominated by the exponential term for which(
τD
τi

)2
γi
γ

is the largest. We, therefore, consider that the slower energy ex-
change between the particle and the heat bath dominates the barrier cross-
ing in the energy-diffusion limit. In the limit τi/τD � 1 for ∀i, the bar-
rier crossing rate is a sum of every individual rate. Therefore, the shortest
memory time is the most relevant in the sum because it exchanges energy
quickly [60]. In Fig.3.10a) and b), we create scaling diagrams of the MFPT

for bi-exponential memory kernels as a function of
(
τ1
τD

)2
γ
γ1

and
(
τ2
τD

)2
γ
γ2
,

in the high friction limit τm/τD = 0.01 in panel a) and in the low friction
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Figure 3.10: a) and b) scaling diagrams for the MFPT in the presence of
bi-exponential memory, based on the heuristic formula (3.14) as a function
of the scaling variables (τ1/τD)2γ/γ1 and (τ2/τD)2γ/γ2 for three ratios of
the friction coefficients γ2/γ1 = 1, 3, 10 and U0/kBT = 3. The transition
from the Markovian regime to the intermediate memory-speed-up regime
is located where τMFP is smaller by 5% than the value in the Markovian
limit (τ1 = τ2 = 0). The transition from the Markovian regime to the
intermediate memory-slowdown regime is defined where τMFP is larger by
5% than the value in the Markovian limit. The asymptotic memory slow-
down regime is defined where τMFP is 10 times the value of the Markovian
limit. The dashed blue line in a) represents the transition between the inter-
mediate memory-speed-up regime and the intermediate memory-slowdown
regime. This transition is only seen for γ2/γ1 = 10. Results are also shown
for the high friction case τm/τD = 0.01 in a) and for the low friction regime
τm/τD = 10 in b). The dashed black diagonal lines in a) and b) in the asymp-
totic memory-slowdown regime indicate the crossover from the τ1-dominated
barrier crossing for τ 2

1 /γ1 � τ 2
2 /γ2, to the τ2-dominated barrier crossing for

τ 2
2 /γ2 � τ 2

1 /γ1. We are therefore able to observe that the Markovian regime
is entered when both (τ1/τD)2γ/γ1 and (τ2/τD)2γ/γ2 exhibit lower values.
Conversely, the asymptotic memory-slowdown regime is entered when both
(τ1/τD)2γ/γ1 and (τ2/τD)2γ/γ2 exhibit higher values. The two asymptotic
regimes are separated by intermediate slowdown or speed-up regimes. The
minor deviation between the scaling boundaries for the three different ra-
tios of the friction coefficients γ2/γ1 = 1, 3, 10 demonstrates that the scaling
diagram in terms of the scaling variables (τ1/τD)2γ/γ1 and (τ2/τD)2γ/γ2,
accurately describes the global behavior, leading to a diagram almost inde-
pendent of γ2/γ1.
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limit τm/τD = 10 in panel b) for various values of γ2/γ1. The figures are
based on the numerical analysis of the heuristic formula (3.14). In Fig.3.10a)

and b) for lower values of
(
τ1
τD

)2
γ
γ1
→ 0 and

(
τ2
τD

)2
γ
γ2
→ 0 we are in the

Markovian regime (τ1 = τ2 = 0), in high friction (Fig.3.10a)) and inertial
regime (Fig.3.10b)). Both diagrams illustrate the memory slowdown regime,
reached when the MFPT is 10 times the Markovian value. With the diago-
nal dashed black line, we depict the cross-over from the asymptotic scaling
behavior τMFP ∼ τ 2

1 for τ 2
1 /γ1 � τ 2

2 /γ2 to the other asymptotic behavior
τMFP ∼ τ 2

2 for τ 2
2 /γ2 � τ 2

1 /γ1. We are thus able to observe the interme-
diate memory acceleration and the intermediate memory slowdown regimes
between the two regimes. The intermediate memory acceleration regime is
obtained if the MFPT is smaller than in the Markovian case, and the transi-
tion is located where the MFPT is smaller than the Markovian limiting result
by 5%. The intermediate memory speed-up regime was also observed for a
single memory kernel [18], and we can, therefore, interpret it as acceleration
from the memory friction following an unsuccessful barrier-crossing attempt,
which pushes the particle towards the barrier. Similarly to the acceleration,
we can define the intermediate memory slowdown regime by a τMFP that
is larger than the Markovian limiting result by 5%. In a) we observe both
the intermediate memory speed-up and slowdown regimes, but only for the
friction coefficient γ2/γ1 = 10, for this reason, in Fig.3.10a) we see only
the intermediate slowdown regime, depicted with the blue dashed line. The
intermediate regimes decrease in size with the ratio’s increase between the
friction coefficients, particularly in the direction of (τ1/τD)2γ/γ1. To better
understand the behavior of the MFPT in Fig.3.11a) and b), we fix the value
of (τ1/τD)2γ/γ1 = 10−4 for the high and low friction cases. In a), we ob-
serve that small values of (τ2/τD)2γ/γ2 τMFP/τD have the same value as in
the Markovian case (black dashed line), and then the value decreases. After
reaching its minimum value, the MFPT for the friction coefficients γ2/γ1 = 3
and γ2/γ1 = 10 increases and becomes constant as (τ2/τD)2γ/γ2 increases. It
is clear that the intermediate memory slowdown regime will only be reached
for γ2/γ1 = 10 as the MFPT exhibits higher values than the Markovian case.
Furthermore, in b), for small values of (τ2/τD)2γ/γ2, the MFPT is equal to
the value in the Markovian case. Increasing (τ2/τD)2γ/γ2 the MFPT grows
for every friction coefficient, subsequently becoming constant because the
term (τ1/τD)2γ/γ1 predominates.
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Figure 3.11: In a) and b), the rescaled MFPT τMFP/τD is plotted according
to Eq. (3.14) as a function of (τ2/τD)2γ/γ2 for fixed (τ1/τD)2γ/γ1 = 10−4

for the ratios γ2/γ1 for τm/τD = 0.01 in a) and for τm/τD = 10 in b). The
dashed horizontal lines denote the Markovian limit, obtained from Eq. (3.14)
by setting τ1 = τ2 = 0.

3.6 Conclusion

In summary, having simulated the barrier crossing of a massive particle in a
one-dimensional double-well potential, we have studied that the dynamics of
the particle governed by the generalized Langevin equation with both bi- and
tri-exponential memory kernels, as well as varying amplitudes. Comparing
the numerical simulation with the heuristic expression (3.14) demonstrates
a good agreement between the formula and the simulations. The expres-
sion was already previously introduced [19], but for the specific case of bi-
exponential memory with γ1 = γ2. In the section 3.4, we primarily focus on
the effect of the various friction coefficients and memory times on the MFPT
and are thus able to conclude that τMFP/τD is dominated by the scaling vari-
able (τi/τD)2γ/γi, the rescaled ratio of the individual friction coefficient γi
and the squared memory time τ 2

i . In the section 3.5, using Eq. (3.14), we de-
scribe the general behavior of the MFPT for a bi-exponential memory kernel
with scaling variables. In the scaling diagrams in Fig.3.10, we observe that
the MFPT reaches the same values as in the Markovian regime for small val-
ues of the two scaling variables. We reach the asymptotic memory slowdown
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regime when both scaling variables have high values. Between the Marko-
vian regime and the asymptotic memory slow-down regimes, we observe two
intermediate areas for both higher and lower values of the MFPT than in the
Markovian case, depending on the various parameters (mass and friction coef-
ficients). In conclusion, we characterize MFPT for bi- and triple-exponential
memory kernels and various friction coefficients via the formula (3.14), thus
observing that for the non-Markovian regime, the dominant contribution is
the smallest scaling variable (τi/τD)2γ/γi; thus, we are able to understand the
importance of considering different friction amplitudes, due to their influence
upon the scaling variable.
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Chapter 4

Barrier crossing for systems far
from equilibrium

4.1 Introduction

The majority of biological systems do not exist in a state of equilibrium [61]
because an external time-dependent force is often present, by which energy
from the environment is injected into the system [62–64]. As an example of
such systems, let us consider the zipping of a DNA or RNA hairpin [65]. The
two minima of a double-well potential can be used to describe the transition
between the zipped/unzipped configuration and an external force that brings
the system out of equilibrium [65–68]. The theory of off-equilibrium systems
behavior is not well understood.

Non-equilibrium reaction kinetics is a fascinating area of study that ex-
plores the dynamic processes, e.g., chemical reactions, far from equilibrium.
In these systems, non-thermal forces are crucial in determining barrier-crossing
dynamics in a reaction coordinate space. The concepts of non-equilibrium
statistical mechanics, rare events, and non-Markovian dynamics have been
observed in these systems [69,70]. As examples, we can cite metastable evo-
lutionary dynamics [71], barrier effects on motion patterns of mammals [72]
and cancer cells [73], protein folding under non-equilibrium conditions [74],
and chemical reactions in the presence of strong time-dependent electric
fields [75].

For many years, much attention has been devoted to the mean first-
passage time (MFPT), i.e., the time necessary for a particle to cross a bar-
rier of height U0 in a double-well potential [47, 76, 77]. One of the initial
results was the Arrhenius law that demonstrates that the barrier escape time
satisfies τMFP ∼ e(U0/kBT ) [78]. To describe a Markovian system, Kramers
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Figure 4.1: a) Double-well potential in Eq. (4.3). b) Non-equilibrium trajec-
tories for moderate barrier height βU0 = 3, low rescaled mass τm/τD = 0.1
and friction memory time τV /τD = 0.3. The red trajectory represents ran-
dom correlation time τR/τD = 0.1 and shows many barrier crossing events,
the blue trajectory is for τR/τD = 0.9 and shows no barrier-crossing event.

discovered, in the low and high friction limit, an expression [25] where the pre-
exponential factor depends on the ratio of mass over friction [27, 55]. This
formula describes reaction-diffusion processes [79], chemical reactions [80],
protein folding [76,81,82] and nucleic-acid hairpin formation [66]. In certain
systems such as molecular conformational dynamics [32, 83], chemical reac-
tion kinetics [77] and protein folding [38, 39, 84, 85], as well as colloidal dy-
namics in viscoelastic materials [86], the memory time can not be neglected,
and this causes substantial modification of the pre-exponential factor in the
MFPT [18,19,26,47,57,87,88]. But for the system at the equilibrium state,
Markovian and non-Markovian formulae do not modify the Arrhenius expo-
nential, therefore if the pre-exponential factor does not correspond with the
Arrhenius exponential, means that the system is far from equilibrium.

In this chapter, we will discuss a non-Markovian, non-equilibrium barrier-
crossing process in one dimension, as is shown in Fig.4.1a). We must con-
sider two different relaxation times of the friction memory kernel and the
random force [40, 69, 70]; therefore violating the fluctuation-dissipation the-
orem [68, 89–92]. We investigate the behavior of MFPT out of equilib-
rium [40, 69, 70, 93]. In particular, we observe that the MFPT increases
rapidly when the ratio between the memory time of the random force and
the memory time in the memory kernel is greater than 1. On the other hand,
when the ratio is smaller than 1, the MFPT decreases slowly, as we observe
in Fig.4.1b) because the state of non-equilibrium modifies the Arrhenius fac-
tor itself. We have depicted two non-equilibrium simulation trajectories in
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Fig.4.1b) to better describe what we stated above. We see that when the
ratio between the random correlation and the time in the memory kernel
is less than 1 (red trajectory), many barrier-crossing events take place. In
the same simulation time for the blue trajectory any barrier crossing occurs,
where the ratio between the memory times is greater than 1, all the other
parameters remain the same, so we can conclude that increasing the random-
force correlation time will also increase the barrier-crossing time. We must,
therefore, introduce an effective temperature [94], proportional to the square
of the friction and random relaxation-time ratio. The effective temperature
corresponds to the simulation data and characterizes the non-equilibrium
position and velocity distributions. A similar effective temperature was also
introduced in previous work to describe the modification of the transition
path time at the point of non-equilibrium [95].

4.2 Setup
Our model is based on the generalized Langevin equation (GLE)

mẍ(t) = −
∫ t

t0

ΓV (t− t′)ẋ(t′)dt′ −∇U(x(t)) + FR(t), (4.1)

where m is the particle mass, ΓV (t) the friction memory kernel, t0 some
initial time and FR(t) denotes the random force characterized by a general
autocorrelation

〈FR(t)FR(t′)〉 = β−1ΓR(t− t′), (4.2)

where β is a numerical constant. We choose the double-well potential,

U(x) = U0

[(x
L

)2

− 1

]2

, (4.3)

where 2L is the separation between the minima and U0 is the barrier height
as in Fig.4.1a).

At equilibrium, the fluctuation-dissipation theorem asserts ΓR(t) = ΓV (t)
and β−1 = kBT , which is equal to the thermal energy of the heat bath. In a
general non-equilibrium scenario, ΓR(t) and ΓV (t) are independent functions,
which we describe as single exponentials

ΓR(t) =
γR
τR
e
− t
τR for t > 0 (4.4)

ΓV (t) =
γV
τV
e
− |t|
τV , (4.5)
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and β is not associated with a heat-bath temperature. With no loss of
generality, we can consider equal prefactors γR = γV = γ, since different
prefactors can be absorbed into the definition of β in Eq. (4.2). For different
random and friction memory times, τR 6= τV , the fluctuation-dissipation
theorem is irrevocably violated, and thus the system is out of equilibrium
[96–98]. The two remaining time scales to characterize the model are the
inertial time τm = m/γ and the diffusion time τD = L2γβ.

4.3 Calculation of the positional autocorrela-
tion function

We will first present our analytical results for the MFPT, which are based on
the positional autocorrelation function C(t) = 〈x(t)x(0)〉. For this, we will
employ a harmonic approximation of Eq. (4.1) and use Uhar(x) = Kx2/2,
where K is the second derivative of the double-well potential, K = U ′′(L) =
8U0/L

2. Fourier transforming Eq. (4.1) for t0 → −∞ and solving for x̃(ω),
we obtain

x̃(ω) =
F̃R(ω)

K −mω2 + iωΓ̃+
V (ω)

≡ χ̃(ω)F̃R(ω), (4.6)

which defines the response function χ̃(ω). The half-sided Fourier transform
Γ̃+
V (ω) of the memory kernel ΓV (t) is given by

Γ̃+
V =

∫ ∞

0

dte−iωtΓV (t) =
γ

1 + iωτV
, (4.7)

while the Fourier transform of the symmetric random force correlation ΓR(t)
is

Γ̃R(ω) = Γ̃+
R(ω) + Γ̃+

R(−ω) =
2γ

1 + ω2τ 2
R

. (4.8)

Using the Fourier transform of the generalized Langevin equation (4.6)
we can write the autocorrelation function as

C(t) ≡ 〈x(t)x(0)〉 =

∫
dω

2π
eiωt

∫
dω′
2π
〈x̃(ω)x̃(ω′)〉

=

∫
dω

2π
eiωt

∫
dω′
2π

χ̃(ω)χ̃(ω′)〈F̃R(ω)F̃R(ω′)〉

= kBT

∫
dω

2π
eiωt

∫
dω′
2π

2πδ(ω + ω′)Γ̃R(ω)χ̃(ω)χ̃(ω′)

= kBT

∫
dω

2π
eiωtΓ̃R(ω)χ̃(ω)χ̃(−ω),

(4.9)
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where we used 〈F̃R(ω)F̃R(ω′)〉 = kBT2πδ(ω + ω′)Γ̃R(ω). From this, the
Fourier transform of the autocorrelation function follows as

C̃(ω) = β−1Γ̃R(ω)χ̃(ω)χ̃(−ω). (4.10)

Inserting the Fourier transform of the random force kernel ΓR(t), Γ̃R(ω) =
2γ/(1 + ω2τ 2

R), in Eq. (4.10) we obtain

C̃(ω) =
2γβ−1(1 + ω2τ 2

R)−1

(
K − ω2

[
m− τV γ

1+τ2
V ω

2

])2

+ ω2γ2

(1+ω2τ2
V )2

(4.11)

which can be rewritten in a form that corresponds to the standard result for
the memory-less harmonic oscillator in equilibrium

C̃(ω) =
2γeffβ

−1
eff

(K −meffω2)2 + ω2γ2
eff

(4.12)

where we have introduced an effective frequency-dependent friction, mass,
and temperature

γeff =
γ

1 + τ 2
V ω

2
, (4.13a)

meff = m− c1τV γeff, (4.13b)

βeff =
1 + ω2τ 2

R

1 + ω2τ 2
V

β, (4.13c)

where c1 is a numerical constant that takes into account the approximation of
the harmonic potential. In other studies [18], this mapping was introduced,
but for the equilibrium case for asymptotic limits of high and low frequency.
In this chapter, we use the mapping for a system far from equilibrium and for
arbitrary frequency. For τR = τV equilibrium is recovered and βeff = β, and
for τR = τV = 0 the Markovian limit is recovered and γeff = γ and meff = m.
Note that the potential curvature K is not renormalized.

4.3.1 Low-friction limit

In low friction limit, i.e. for γeff = 0, Eq. (4.12) is dominated by the pole

ω2
L = K/meff for

Kmeff

γ2
eff

> 1. (4.14)

Inserting Eq. (4.14) into Eq. (4.13a), we arrive at a quadratic equation
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γeff =
γ

1 +
τ2
VK

m−c1τV γeff

γeff(m− c1τV γeff + τ 2
VK) = γ(m− c1τV γeff)

γ2
eff − γeff

(
m

c1τV
+

1

c1

τVK + γ

)
+

γm

c1τV
= 0

γeff =
m

2c1τV
+
τVK

2c1

+
γ

2
±
√(

m

2c1τV
+
τVK

2c1

+
γ

2

)2

− γm

c1τV

γeff =
m

2c1τV
+
τVK

2c1

+
γ

2
±
√(

m

2c1τV
+
τVK

2c1

− γ

2

)2

+
1

c1

τVKγ.

In the limit τV → 0 we obtain

γeff =
m

2c1τV
+
τVK

2c1

+
γ

2
± m

2c1τV

[(
1 +

τ 2
VK

m
− c1τV γ

m

)2

+
4c1τ

3
VKγ

m2

]1/2

γeff '
m

2c1τV
+
τVK

2c1

+
γ

2
± m

2c1τV

[
1− 2c1τV γ

m
+

2τ 2
VK

m
+
c2

1τ
2
V γ

2

m2
+

2c1τ
3
VKγ

m2

]1/2

γeff '
m

2c1τV
+
τVK

2c1

+
γ

2
± m

2c1τV

(
1− c1τV γ

m
+
τ 2
VK

m
+

2c1τ
3
VKγ

m2

)
,

(4.15)

and taking the minus sign

⇒ γeff ' γ − γ τ
2
VK

m
. (4.16)

In the limit τV →∞ we obtain

γeff =
m

2c1τV
+
τVK

2c1

+
γ

2
± τVK

2c1

[(
1 +

c1γ

τVK
+

m

τ 2
VK

)2

− 4c1γm

τ 3
VK

2

]1/2

γeff '
m

2c1τV
+
τVK

2c1

+
γ

2
± τVK

2c1

[
1 +

2c1γ

τVK
+

2m

τ 2
VK

+
c2

1γ
2

τ 2
VK

2
+

2c1γm

τ 3
VK

2
− 4c1γm

τ 3
VK

2

]1/2

γeff '
m

2c1τV
+
τVK

2c1

+
γ

2
± τVK

2c1

[
1 +

2c1γ

τVK
+

2m

τ 2
VK

+
c2

1γ
2

τ 2
VK

2
− 2c1γm

τ 3
VK

2

]1/2

γeff '
m

2c1τV
+
τVK

2c1

+
γ

2
± τVK

2c1

(
1 +

c1γ

τVK
+

m

τ 2
VK
− 2c1γm

τ 3
VK

2

)
, (4.17)
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and taking the minus sign

⇒ γeff '
γm

τ 2
VK

. (4.18)

Combining the two limits Eqs. (4.16)-(4.18), we obtain the expression

γLeff =
γ

1 +
c2τ2

VK

m

, (4.19)

where c2 is a numerical constant. Inserting Eq. (4.19) into Eq. (4.13b), we
obtain the expression

mL
eff = m− c1τV γ

1 + c2τ 2
VK/m

. (4.20)

Inserting Eqs. (4.19) and (4.20) into Eq. (4.13c) we obtain

βL
β

=
1 + ω2

Lτ
2
R

1 + ω2
Lτ

2
V

=
τ 2
R +m/K − c1τV γ

L
eff/K

τ 2
V +m/K − c1τV γLeff/K

=
τ 2
R +m/K − c1τV γ/(K + c2τ

2
VK

2/m)

τ 2
V +m/K − c1τV γ/(K + c2τ 2

VK
2/m)

.

(4.21)

4.3.2 High-friction limit

In the high friction limit, i.e. for meff = 0, Eq. (4.12) is dominated by the
pole

ω2
H = −K2/γ2

eff
Kmeff

γ2
eff

< 1. (4.22)

Inserting this expression into Eq. (4.13) we obtain

γeff =
γ

1− τ 2
VK

2/γ2
eff

=
γγ2

eff

γ2
eff − τ 2

VK
2

γ2
eff − γγeff − τ 2

VK
2 = 0

γeff =
γ

2
±
√
γ2

4
+ τ 2

VK
2 taking the positive sign

⇒ γHeff =
γ

2

[
1 +

(
1 +

4c3τ
2
VK

2

γ2

)1/2
]
, (4.23)

where c3 is a numerical constant. Inserting Eq. (4.23) into Eq. (4.13c), we
obtain
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βH
β

=
1 + ω2

Hτ
2
R

1 + ω2
Hτ

2
V

=
τ 2
R − (γHeff/K)2

τ 2
V − (γHeff/K)2

=

1−
{
KτR/

[
γ
2

(
1 +

(
1 +

4c3τ2
VK

2

γ2

)1/2
)]}2

1−
{
KτV /

[
γ
2

(
1−

(
1 +

4c3τ2
VK

2

γ2

)1/2
)]}2 .

(4.24)

4.4 MFPT formula at equilibrium

We use the mapping introduced above to obtain an approximate expression
for MFPT for a non-equilibrium, non-Markovian system in a double well
potential. The first step is to find an expression for an equilibrium (τV = τR)
and Markovian system (τV = τR = 0). From Eq. (4.13c) we see that βeff = β
and knowing the Kramers limits

High friction τMFP = eβU02
√

2π
γ

K
, (4.25a)

Low friction τMFP = eβU03π
m

8
√

2βU0γ
, (4.25b)

we build a heuristic formula

τMFP = eβU0

[
1

βU0

3π

8
√

2

m

γ
+ 2
√

2π
γ

K
+ 4

√
2
m

K

]
. (4.26)

In Eq. (4.26), we summarized the Eqs. (4.25) and added a crossover term.
We show in Fig.4.2 the Eq. (4.26) with a broken black line, and the two
Kramers limits with the red lines. The stars depict the simulation data
for three different barrier heights; the simulation method is described in
chapter 2. Equation (4.26) describes the simulation data and agrees with the
Melnikov-Meshkov theory (orange line), which is exact for the high-barrier
limit, as shown in chapter 2.

The second step is to relax the Markovian condition and consider the
more generic non-Markovian case; to this end, we insert the effective friction
and mass from Eqs. (4.13) in Eq. (4.26).

In the low friction limit, the inertial time is given by

mL
eff

γLeff
=
m

γ
− c1τV + c2τ

2
VKγ. (4.27)

Laura Lavacchi 48



4.4. MFPT FORMULA AT EQUILIBRIUM

10−5 10−1 103

τm/τD

102

104

τ
M

F
P
/τ

D

βU0

8
5
3

Kramers
MM
Eq.13

Figure 4.2: MFPT in the equilibrium Markovian limit as a function of
τm/τD for three different βU0. Comparison of simulation results (symbols),
Eq. (4.26) (dashed lines) and the Melnikov-Meshkov (MM) theory [27] (col-
ored lines). The red straight lines show the Kramers limits [25,99].

The expression shows two different behaviors for various values of memory
time: for lower memory time values, we obtain an acceleration of the bar-
rier crossing, and for a higher value, a deceleration in the MFPT [18]. We
must, therefore, combine the memory acceleration term with the overdamped
contribution in Eq. (4.26) to avoid singular behavior.

γ/K − c1τV /(βU0) ≈ γ/K/(1 + c1KτV /(γβU0)), (4.28)

this new term provides a better description of the numerical data.
Inserting, also, the high friction term (4.23) in the Eq. (4.26), we obtain

τMFP = eβU0

[
1

βU0

3π

8
√

2

(
m

γ
+
c2Kτ

2
V

γ

)
+ 4

√
2
m

K

+

√
2πγ

K

1

1 + 3c1KτV /(16βU0γ)
+

√
2πγ

K

(
1 +

4c3τ
2
VK

2

γ2

)1/2
]
.

(4.29)

In Fig.4.3, we compare Eq. (4.29) for various values of τm/τD as a function
of the rescaled memory time τ/τD with the simulation data for two different
values of the numerical constant c3. We observe that we need a small value
of c3 ' 0.01 in order to obtain an accurate agreement with the simulation
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Figure 4.3: MFPT in the equilibrium non-Markovian case for fixed βU0 = 3
and various values of τm/τD as a function of memory time τV /τD. Simulation
results (symbols) are compared with Eq. (4.29) with c1 = 64/3 and c2 = 2/3.

data. It transpires that we can neglect this constant and actually set c3 = 0;
for this reason, we must replace the effective term only in the inertial term
(∝ m/γ) because it is the dominant term compared with the high-friction
and crossover terms respectively (∝ γ/K).

The value of the other two constants c1 and c2, which take into account
the deviation from parabolic potential, is obtained by fitting the simulation
data in Fig.4.4 for fixed barrier height βU0 = 3 and several different rescaled
masses τm/τD (symbols), the same data as in Fig.4.3. The Eq. (4.30) accu-
rately describes the data for general mass/friction ratios and rescaled mem-
ory times τV /τD, when c1 = 64/3 and c2 = 2/3. For c1 = 1 and c2 = 1 is
recovered from the exact harmonic model.

τMFP = eβU0

[
1

βU0

3π

8
√

2

(
m

γ
+
c2Kτ

2
V

γ

)

+
2
√

2πγ

K

1

1 + 3c1KτV /(32βU0γ)
+ 4

√
2
m

K

]
,

(4.30)

an expression equivalent to a previous heuristic formula [18,88].

Laura Lavacchi 50
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Figure 4.4: MFPT in the equilibrium non-Markovian case for fixed βU0 = 3
and various values of τm/τD as a function of memory time τV /τD. Simulation
results (symbols) are compared with Eq. (4.30) with c1 = 64/3 and c2 = 2/3.

4.5 Joint position-velocity distribution

The non-equilibrium case is the final step. Thus, we release the condition
τV = τR. The only effective term (4.13), which depends on τR is the inverse
of effective temperature Eq. (4.13c) and inserting in the relation the pole
expressions in the limit of low and high friction, we obtain

βLeff

β
=
τ 2
R +m/K − c1τV γ

L
eff/K

τ 2
V +m/K − c1τV γLeff/K

(4.31)

βHeff

β
=
τ 2
R − (γHeff/K)2

τ 2
V − (γHeff/K)2

. (4.32)

In the limits τm/τV < 1, τm/τR < 1, γ/(KτV ) > 1, γ/(KτR) > 1, which
applies to the systems considered numerically, as we will demonstrate below,
we can write

βNEQ/β = τ 2
R/τ

2
V ≈ βLeff/β ≈ βHeff/β. (4.33)

The new temperature for a system in a state of non-equilibrium is propor-
tional to the square ratio τR/τV . Subsequently, we must concentrate on the
overdamped case, as most of the systems we model with the GLE fall within
this regime, and we choose τm/τD = 0.1.
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Figure 4.5: a) Logarithmic position distributions for τm/τD = 0.1, βU0 = 3
and various τR/τD and τV /τD. b) Logarithmic position distributions rescaled
by the fitted factor β/βeff .

We can test our mapping with the joint position-velocity distribution.The
distribution with the effective parameters is given by

P (x, v) ∝ e−βeffU(x)−βeffv
2meff/2. (4.34)

In Fig.4.5 we show on the left the logarithmic positional distribution
− lnP (x) and on the right the rescaled distribution − lnP (x)β/βeff for var-
ious values of τV /τD and τR/τD. The simulation data are shifted to agree
for x = ±L. In both plots, the equilibrium case τR = τV is represented
by the black line, with the black spheres indicating the expected result
− lnP (x) = βU(x); we, therefore, observe perfect agreement between the
simulation data and the expected result. The other colored lines represent
the non-equilibrium simulation data.

In Fig.4.5b), all distributions begin to overlap when they are rescaled with
the fitted prefactor β/βeff . In Fig.4.6, we consider the same plot as in Fig.4.5,
except for the velocity distribution. On the left, we depict the logarithmic
velocity distribution − lnP (v) for various values of τV /τD and τR/τD. The
data are shifted to agree for v = 0. Also, in this case, the colored lines show
the non-equilibrium simulation data, the black line the equilibrium case, and
the black spheres the Maxwell-Boltzmann distribution − lnP (v) = βmv2/2.
Thus, the rescaled prefactor in b) is β/βeff , and furthermore, the rescaled
simulation data with the fitted parameter are superimposed.

In Fig.4.7, we plot the rescaled parameters, with red stars, as a function
of τR/τD in a) and c) and τV /τD in b) and d). In all of the plots, we observe
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Figure 4.6: a) Logarithmic velocity distributions for τm/τD = 0.1, βU0 = 3
and various τR/τD and τV /τD. b) Logarithmic velocity distributions rescaled
by the fitted factor β/βeff .

an agreement between the data and the effective parameter written above in
the Eqs. (4.31) dashed red line, (4.32) blue line, and (4.33) black dots. By
studying the position and velocity distribution, we can verify that an effec-
tive temperature (ratio of memory and random relaxation times) accurately
describes the non-equilibrium case.

4.6 MFPT formula far from equilibrium
After verifying the joint position-velocity distribution, we insert βNEQ instead
of β in Eq. (4.30), we achieve a formula for the MFPT, that is valid also for
the non-equilibrium case

τMFP = eβNEQU0

[
1

βNEQU0

3π

8
√

2

(
m

γ
+

2Kτ 2
V

3γ

)

+
2
√

2πγ

K

1

1 + 2KτV /(βNEQU0γ)
+ 4

√
2
m

K

]
.

(4.35)

We compare Eq. (4.35) with the simulation data, in Fig.4.8. In this figure,
we plot the rescaled MFPT as a function of τR/τV for three values of τV /τD.
Note that we recover the equilibrium case by setting τR/τV = 1. The data
are quite well described by Eq. (4.35), which is an equation deduced using
a non-equilibrium, non-Markovian harmonic oscillator model applied to the
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Figure 4.7: a), b), c) and d), βeff/β from the fit (symbols) are compared with
the predictions of the effective parameters in Eqs. (4.31) blue line, (4.32) red
dashed line, (4.33) black dots. The fitting factors in a) and b) come from
the position distribution in Fig.4.5, respectively on the left for various τR/τD
and on the right for τV /τD. In c) and d), the velocity distribution rescaled
factors are shown (Fig.4.6).

barrier-crossing dynamics in a double-well potential. The pronounced feature
that we can see in the figure is the monotonic increase of the MFPT with
τR/τV .

4.7 Conclusion

In conclusion, we insert the effective friction, mass, and temperature (derived
by solving the non-equilibrium, non-Markovian harmonic oscillator) in the
heuristic formula for the barrier crossing dynamics of a Markovian single mas-
sive particle and obtain an equation for the non-equilibrium non-Markovian
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Figure 4.8: Non-equilibrium MFPT as a function of τR/τV for various values
of τV /τD for fixed βU0 = 3 and τm/τD = 0.1. The lines show the predictions
from Eq. (4.35), and the stars denote simulation data.

barrier-crossing dynamics. The final expression (4.30) at the equilibrium is
equivalent to a previously suggested heuristic formula [18,88]. We have thus
demonstrated how the new non-equilibrium formula is asymmetrically influ-
enced by the random correlation time τR and the memory friction time τV .
The barrier crossing time increases monotonically as τR/τV increases. Apart
from the memory and inertial effects that modify the exponential prefac-
tor in the MFPT, the Arrhenius factor changes in non-equilibrium, which
dramatically changes the MFPT. This result could be significant for in vivo
non-equilibrium protein folding because in recent experiments, a delay of
the folding has been measured for the folding speed of a nascent polypep-
tide during translation [74]. Our results, therefore, depend on the functional
form of the memory kernel, which we adopt to be exponential in this thesis.
Additionally, we have proved that the derived effective temperature accu-
rately describes the position and velocity joint-probability for a non-linear
barrier-crossing system far from equilibrium.
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Chapter 5

Asymmetric double-well potential

5.1 Introduction

Starting with Arrhenius’ early works [54, 78,100], the escape rate over a po-
tential barrier sparked universal interest in the physics and chemistry commu-
nities. Kramers developed a Markovian theory for the transition rate [25],
introducing the interaction between the particle and the heat bath. Ad-
ditionally, Kramers calculated explicit formulae for the high and low fric-
tion limit escape rate. The regime between the two limits (high and low
friction), the Kramers turnover, was considered by Mel’nikov and Meshkov
(MM) [27]. Another essential step was the introduction of the generalized
Langevin equation by Zwanzig [10]. Using the Mori-Zwanzig projection [8,9],
the dimension of the system can be reduced since with the projection, we con-
centrate only on some relevant observables, but this produces non-Markovian
effects [31,38,101]. Grote and Hynes (GH) [26] derived a self-consistent equa-
tion for the mean first passage time (MFPT) in the limit of short memory
time and medium to high friction regime. A solution for the turnover prob-
lem in the presence of short and long memory was given by Pollak, Grabert,
and Hänggi (PGH) [57]. Many of the studies above considered a parabolic
well approximation of the potential U(x) = −1

2
Kx2 [102].

However, in many biological and chemical events, the relaxation in the
potential well is also considered to be essential. Hence, a double-well poten-
tial is more realistic for chemical reactions and protein folding [48–55]. Most
previous theoretical studies consider symmetric double well potentials. How-
ever, in many simulation and experimental systems, we find that free energy
potential profiles are typically asymmetric. For example, in Fig.5.1 we show
the free energy profiles for four different proteins as a function of the fraction
of native contacts, i.e. coordinate Q. It is evaluated in connectivity space

57
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Figure 5.1: Free energy profiles for the fraction of native contacts reaction co-
ordinate Q evaluated for four fast-folding proteins. The unfolded Qu, barrier
Qb, and folded Qf reaction coordinate values are indicated for each protein.
Free energy profiles are calculated from U(Q) = −kBT log[p(Q)] where p(Q) is
the probability density for a given reaction coordinate value. The parameters
that define these proteins are the free-energy barriers Uf = U(Qb)− U(Qf ),
Uu = U(Qb) − U(Qu) and the separation between the barrier and minima,
Lf = Qb−Qf and Lu = Qu−Qb. Respectively we find for NTL9: βUf = 6.7,
βUu = 2.3, Lf = 0.23, Lu = 0.16 for Protein G: βUf = 4.5, βUu = 2.3,
Lf = 0.16, Lu = 0.10, for α3D: βUf = 3.2, βUu = 1.7, Lf = 0.14, Lu = 0.09
and for λ-repressor: βUf = 2.1, βUu = 2.1, Lf = 0.24, Lu = 0.047, as
reported in [46].
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Figure 5.2: Free energy profiles for the fraction of native contacts reaction co-
ordinate Q. Free energy profiles are calculated from U(Q) = −kBT log[p(Q)]
where p(Q) is the probability density for a given reaction coordinate value.
The dashed lines denote the analytical potential that describes the free-
energy profile around the folded an unfolded states.

and is, for this reason, dimensionless. In the folded state, it is close to Q =
1. In the unfolded state, it is closer to Q = 0. The research group of David E.
Shaw provided the data, and this was originally published by Lindorff-Larsen
et al. [103]. The figure demonstrates that the reaction coordinate free energy
landscape could be approximated by a double-well potential but not by a
symmetric one.

In Fig.5.2, we fit the free-energy profile to provide analytical expressions
for these profiles,

a)

U(x) =





2.3
[(

x
0.23

)2 − 0.6
]2

if x < 0

6.7
[(

x
0.16

)2 − 0.6
]2

− 4.4 if x > 0,
(5.1)
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b)

U(x) =





2.3
[(

x
0.16

)2 − 0.66
]2

if x < 0

4.5
[(

x
0.1

)2 − 0.66
]2

− 2.2 if x > 0,
(5.2)

c)

U(x) =





1.7
[(

x
0.14

)2 − 0.66
]2

if x < 0

3.2
[(

x
0.09

)2 − 0.66
]2

− 1.5 if x > 0,
(5.3)

d)

U(x) =





2.1
[(

x
0.24

)2 − 0.7
]2

if x < 0

2.1
[(

x
0.047

)2 − 0.7
]2

if x > 0.
(5.4)

In this chapter, we investigate the effects of asymmetric double-well po-
tential [104, 105] on the MFPT, i.e., the mean of the time taken to reach a
target state from an initial point, also recrossing the initial point. We de-
velop another formula for a non-Markovian system with a massive particle.
We know that the time to reach the top of the barrier starting from one well
is half of the time to go from well to well for a diffusive Markovian system. In
the next section, we present a model to study our formula for MFPTs in an
asymmetric double-well potential. We use the results of chapter 4 to develop
the new formula.

5.2 Setup
As was shown previously [46, 85], the folding of short homopeptide chains
and fast-folding proteins follows non-Markovian dynamics, and the best pre-
diction of the folding time is given by a generalized Langevin equation (GLE)
with multi-exponential memory. As an approximation, we consider the GLE
with linear friction [8, 10, 106,107]

mẍ(t) = −
∫ t

t0

Γ(t− t′)ẋ(t′)dt′ −∇U(x(t)) + FR(t), (5.5)

where m is the mass of the reaction coordinate, Γ(t) the memory kernel, t0
some initial time and, FR(t) denotes the random force characterized by the
general autocorrelation

〈FR(t)FR(t′)〉 = β−1Γ(t− t′), (5.6)
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where β = 1/kBT is the inverse thermal energy. As a memory kernel, we
choose a single exponential

Γ(t) =
γ

τ
e−
|t|
τ , (5.7)

where τ is the decay time scale of the memory effects.
To represent the experimental system, we select an asymmetric double-

well potential

U(x) =





UL

[(
x
LL

)2

− 1

]2

if x < 0

UR

[(
x
LR

)2

− 1

]2

+ (UL − UR) if x > 0,

(5.8)

where (LL + LR) is the separation between the two minima, and UL and UR
are the barrier heights, as shown in Fig.5.3a). Note that the second derivative
is discontinuous at the top of the barrier, but this is not problematic when
we only consider MFPTs to the top of a barrier.

In order to rescale the system, we must first introduce two essential time
scales. They are the diffusion time τD and inertial time τm, respectively:

τD = βL2
Lγ,

τm =
m

γ
.

(5.9)

To illustrate the influence of our choice of parameters on the system dy-
namics, we depict in Fig.5.3 the trajectories of a particle for various memory
times, barrier heights, and potential widths. In Fig.5.3b), we fix the memory
time and the potential widths LL and LR, and we vary the barrier height.
Subsequently, we observe that the green trajectory, where the right barrier
height is lower (symmetric case), spends more time in the right well than the
yellow trajectory. Considering the same time frame, between 200 and 400
t/τD, in Figures c), we vary the width of the potential, and the red trajectory
shows a shorter MFPT than the yellow trajectory. In Figure d), we plot only
one trajectory with LR/LL = 0.5, βUR = 5, and memory time τ/τD = 1.
Considering a longer memory time with respect to Figures b) and c), we need
a longer time frame to observe a relevant number of crossing. From Fig.5.3,
it is clear that these variables (barrier height, length scale, and memory time)
influence the dynamics of the particle.
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Figure 5.3: In a) the potential is depicted as in Eq. (5.8). In b), c), and
d) trajectories of various systems with different parameters are shown, the
same color trajectories show systems with the same parameters. All the
trajectories have βUL = 3 and τm/τD = 0.01. In b), memory time is fixed
to τ/τD = 0.01 and LR/LL = 1.5, and for the yellow line βUR = 5 and for
the dark-green βUR = 3. In c) βUR = 5 and the same memory time as in b)
τ/τD = 0.01, but with two different LR/LL. In d) the right potential height
as in c) βU = 5, but only for LR/LL = 0.5 and with τ/τD = 1.
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5.3. FORMULA COMPARISON

5.3 Formula comparison

In chapter 3 and chapter 4, we proposed two formulae to calculate the MFPT
as a function of the particle mass, the friction coefficient, memory time,
and the symmetric potential [18, 19, 88, 108]. In this section, we explain the
difference, and propose another choice.

From chapter 3, if we rewrite the MFPT for a single exponential memory
kernel as a function of mass, friction, and potential curvature (βU0/τD =
K/(8γ)), we obtain

τMFP = eβU0

[
1

βU0

(
m

γ
+
Kτ 2

2γ

)

+
2
√

2πγ

K

1

1 + 5Kτ/γ
+ 4

√
2
m

K

]
.

(5.10)

In chapter 4 for the equilibrium case, we use the following formula

τMFP = eβU0

[
1

βU0

3π

8
√

2

(
m

γ
+

2Kτ 2

3γ

)

+
2
√

2πγ

K

1

1 + 2Kτ/(βU0γ)
+ 4

√
2
m

K

]
.

(5.11)

And in this chapter, we introduce the new expression,

τMFP = eβU0

[
1

βU0

3π

8
√

2

(
m

γ
+

2Kτ 2

3γ

)

+
2
√

2πγ

K

1

1 +KβU0τ/(4γ)
+ 4

√
2
m

K

]
.

(5.12)

Comparing the three formulae, we can conclude that the main difference
is the speed-up term. The other difference is the constants used in front of
the first two terms, but in front of the inertial term in Eqs. (5.11) and (5.12),
coming from the Kramers limit, we have 3π/(8

√
2) ' 0.833 ≈ 1 the constant

in the Eq. (5.10). In front of the memory slow-down term in the last two
equations, there is π/(4

√
2) ≈ 0.5 as in the formula in chapter 3. So, we

can conclude that the three equations are the same, except for the speed-up
term. With regards to the speed-up term, the βU0/4 in the denominator in
the Eq. (5.12) becomes βU0/4 → 5 in Eq. (5.10) and βU0/4 → 2/βU0 in
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Figure 5.4: In a) MFPT is shown as a function of rescaled τ/τD for a sym-
metric double-well potential with βU0 = 3 for various values of τm/τD. Com-
parison of simulation results (stars), Eq. (5.12) (continuous lines), Eq. (5.10)
(dashed lines) and Eq. (5.11) (dash-dotted lines). In b) and c) MFPT re-
spectively for τm/τD = 0.01 and τm/τD = 0.1 for three different values of the
barrier height is shown.

Eq. (5.11). This variation is significant when we consider a system with a
small mass, as it is relevant for protein folding.

In Fig.5.4, we plot the rescaled MFPT for various inertial times in a)
and three different barrier heights in b) and c) and we compare the three
Eqs. (5.10) dashed line, (5.11) dashed-dotted line, and (5.12) continuous line.
The main differences between the three formulae are visible for small values
of the inertial time at the minimum of the MFPT in Fig.5.4a) and for high
barrier weights in Fig.5.4b),c). As we can see from Fig.5.4, the equation that
best describes the data is Eq. (5.12). Equation (5.10) does not adequately
describe the data at the minimum for small mass, and Eq. (5.11) does not
fit the data for a high value of potential height.

In any case, the differences between the formulae are rather small. And
in the preceding chapters, we concentrated on the weight potential βU0 = 3;
for this reason, the results in the chapter 3 and chapter 4 remain valid.

In Fig.5.5, we repropose Fig.5.4, but showing only Eq. (5.12). The equa-
tion describes the simulation data considering various values of τm/τD in a)
and different potential heights in b) and c). In this chapter as in the pre-
vious one from the simulation we consider the mean of all-to-first passage
time. As mentioned in section 5.1, Grote-Hynes (GH) developed a theory for
the MFPT in the limit of short memory time and medium-to-high friction;
in fact, for short memory time, GH describes the MFPT, but in the limit
τ →∞, τMFP decreases and, in particular, goes to zero as m→ 0, as shown
in the chapter 2. On the other hand, Eq. (5.12) shows a finite value at the
minimum. In fact, assuming 10βU0τ/τD � 1 andm→ 0, Eq. (5.12) becomes
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Figure 5.5: In a) MFPT as a function of rescaled τ/τD for a symmetric
double-well potential with βU0 = 3 for various values of τm/τD is depicted.
Comparison of simulation results (stars) and Eq. (5.12) (lines). In b) and
c) MFPT respectively for τm/τD = 0.01 and τm/τD = 0.1 for three different
values of the barrier heights (βU0 = {3, 5, 8}) is shown.

τMFP = eβU0

[
1

βU0

3π

8
√

2

2Kτ 2

3γ
+

2
√

2πγ

K

1

KβU0τ/(4γ)

]
. (5.13)

The memory time, for which we have the minimum
(
∂τMFP

∂τ
= 0
)
, is given

by

τ ∗ =
3
√

32γ

K
, (5.14)

it is finite and goes to zero as U0 →∞. The value of the mean first passage
time at the minimum is

τMFP =
eβU0

βU0

πγ

K

[
(

3
√

4)2 +
4
√

2
3
√

4

]
. (5.15)

5.4 Mean-first passage time from well to top
Before studying the asymmetric case, we must first investigate the role of
memory and inertial time in the symmetric case. This section does not
consider the MFPT from well to well. Rather, we consider the mean first
passage time to the top of the barrier from either the left well τLMFP or
the right well τRMFP . In other words, we consider the time necessary for a
massive particle to go from one of the two minima to the top of the barrier.
By doing so, we can decouple the dynamics in the two wells. The only
coupling contribution is due to recrossing. Still, these events are rare and do
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not significantly contribute to the mean. As we know from previous studies
and analysis [23, 109], when we consider an overdamped Markovian system
(τ = 0 and m = 0), also taking into account high barriers, the time to reach
the top is half that of the time to go from one well to the other,

τLMFP = τRMFP = τMFP/2, (5.16)

where τLMFP and τRMFP are the mean first passage time to reach the top,
starting from the left and from the right well, respectively. In order to test
the relation (5.16) for inertial non-Markovian systems, in Fig.5.6a) we plot
the rescaled MFPT as a function of the rescaled memory time for two values
of the inertial time (τm/τD = 0.01 and τm/τD = 0.1). The red and black lines
show Eq. (5.12), while the circles denote the simulation data for τMFP . The
triangles depict the simulation data for the rescaled τRMFP . We only show
τRMFP , because we are considering the symmetric case, therefore τRMFP =
τLMFP . As we anticipated from Eq. (5.16) for small values of the memory time,
there is more discrepancy between the time taken to reach the top and the
time taken to go from one to the other well, in particular, for the system with
a smaller mass. This aspect can be better investigated in Fig.5.6b), where
we plot the ratio between τRMFP and τMFP for the two inertial memory times.
For small inertial times and memory times, we record a value closer to 0.5
than when we consider higher inertial time, we are taking into consideration a
massive non-Markovian system. Both curves increase along with the memory
time, both approaching a value of 1. This necessitates a new formula for the
well-to-the-barrier-top case.

5.5 Asymmetric potential with different barrier-
height and potential length

To design a formula for τLMFP and τRMFP , we must first understand the origin
of the different terms in Eq. (5.12). Equation (5.12) was derived by summing
the low and high friction limits of the MFPT for a non-Markovian system
plus an intermediate term (chapter 4) [108].

When we calculate the mean first passage time from one of the two wells
to the barrier top (and not from well to well), the only term influenced by
this change is the high friction term. As suggested by Fig.5.6b), the black
line is close to 0.5. This can therefore be taken into account if we assume
that τLMFP = τRMFP = τMFP/2 when m = 0 and τ = 0. For this reason,
we insert one half in front of the high friction term proportional to γ/K in
Eq. (5.12), and we must therefore consider that, in the asymmetric case, the
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5.5. ASYMMETRIC POTENTIAL WITH DIFFERENT
BARRIER-HEIGHT AND POTENTIAL LENGTH
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Figure 5.6: a) MFPT as a function of rescaled τ/τD for a symmetric double-
well potential with βU0 = 3. Comparison of simulation results to go from the
left to the right well (black circles) and Eq. (5.12) (lines) for two values of
the inertial memory time (red for τm/τD = 0.1 and black for τm/τD = 0.01 ).
The triangles show the simulation data for the time to reach the barrier top
starting from the right well τRMFP . b) The ratio τRMFP/τMFP as a function
of rescaled memory time. The dashed lines show the two limits. On the top
(τRMFP/τMFP = 1), the plateau value that the two curves reach for τ/τD →
∞. On the bottom, τRMFP/τMFP = 0.5 the limit for τ/τD = 0 and τm/τD = 0
and βU0 � 1.

height and length of the potential are different in the left and right parts.
Therefore, we must substitute U0 → UL,R and K → KL,R = 8UL,R/L

2
L,R.

From Eq. (5.12), we arrive at the formula

τL,RMFP = eβUL,R
[

1

βUL,R

3π

8
√

2

(
m

γ
+

2KL,Rτ
2

3γ

)

+

√
2πγ

KL,R

1

1 + βUL,RKL,Rτ/(4γ)
+ 4

√
2
m

KL,R

]
.

(5.17)

Initially, we must take into consideration a symmetric potential as in
Fig.5.3a), where the widths of the two wells are identical (LL = LR), and
βUL = 3 is fixed and only the right barrier height βUR varies. Figure 5.7
shows the rescaled τL,RMFP as a function of the rescaled memory time for two
different values of τm/τD, respectively, τm/τD = 0.001 on the left and τm/τD =
1 on the right. In both plots, we are thus able to observe an agreement
between Eq. (5.17) (lines) and the simulation data (symbols), so we are thus
able to conclude that the formula is indeed applicable for various values of
mass, memory time, and potential barrier height. On the grey lines, many
markers are overlapping as they represent the data for τLMFP/τD, obtained
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Figure 5.7: Well-to-top MFPT as a function of rescaled τ/τD for asymmetric
double-well potential with equal distance between the two minima LL = LR.
The potential has fixed-left height barrier βUL = 3, and τRMFP/τD is shown
by the color lines for the three different potentials βUR = 4 (green), βUR = 5
(magenta) and βUR = 6 (light blue). The lines show Eq. (5.17) in a) for
τm/τD = 0.001 and in b) τm/τD = 1. The grey line depicts τLMFP/τD with
the simulation data overlapping for different barrier heights on the right-hand
side.

by varying the barrier heights on the right well when the left well is fixed.
Therefore, we can conclude that the dynamics in one well are independent
of the other well. As we have already stated, the only coupling would come
from recrossing events, which are rather be uncommon.

In the previous part, we studied the case with two different barrier heights
on the left and on the right while maintaining an equal distance between the
two minima LL = LR. In Fig.5.3a), we consider different lengths between the
two minima and the top. In particular, we fix the barrier heights, changing
only the distance between the top and the right-hand minimum LR/LL. In
Fig.5.8 we plot τL,RMFP/τD for βUL = 3 and βUR = 5 as a function of the
memory time when τm/τD = 0.01 and various values of LR/LL. For every
value of LR/LL corresponding a color, we observe a good agreement between
the stars (simulation data) and the lines (Eq. (5.17)). The grey line depicts
τLMFP/τD, and the yellow marks overlap because the particle motion in the
left well is independent of the right well. The dependence of the lengths
scale in the Eq. (5.17) is only in the function K(L,U). In other words, if
Eq. (5.17) does not explicitly depend on one of the two wells, it comes back
to Eq. (5.12), except for the factor 1/2. We thus conclude that Eq. (5.17)
accurately describes the simulation data for various values of inertial time,
asymmetric barrier-height, and length scale.
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Figure 5.8: Well-to-top MFPT as a function of rescaled τ/τD for τm/τD =
0.01 for an asymmetric double-well potential, where the barrier heights are
fixed (on the left βUL = 3 and the right βUR = 5) and various potential
lengths on the right. The grey line depicts τLMFP/τD with overlapping yellow
marks that express the simulation data for different potential lengths on the
right-hand side. The colored lines show τRMFP/τD for the different potentials.
The lines represent Eq. (5.17), while the stars and yellow marks are the
simulation data.

5.6 Non-equilibrium system
We subsequently investigate the case when the system is not in equilibrium.
For this, we consider a GLE where the fluctuation-dissipation theorem (FDT)
is violated [96–98],

mẍ(t) = −
∫ t

t0

ΓV (t− t′)ẋ(t′)dt′ −∇U(x(t)) + FR(t), (5.18)

〈FR(t)FR(t′)〉 = β−1ΓR(t− t′), (5.19)
as introduced in chapter 4. We consider both functions as exponentials with
the explicit form

ΓV (|t|) =
γ

τV
e
− |t|
τV ,

ΓR(t) =
γ

τR
e
− |t|
τR ,

(5.20)
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Figure 5.9: Non-equilibrium well-to-top MFPT as a function of the ratio
τR/τV , for various potential lengths in the right well, the weight potential
on the left is βUL = 3, on the right βUR = 4 and τm/τD = 0.1. The grey
line depicts τLMFP/τD, while the other colored lines show τRMFP/τD for the
various potential lengths. The lines exhibit the Eq. (5.21) and the markers
the simulation data.

where the friction coefficients are the same but have different memory times.
The system is in equilibrium when the two memory times are the same (τV =
τR). For the non-equilibrium case, Eq. (5.17) can be adapted by including
an effective temperature, as shown in the chapter 4, leading to

τL,RMFP =

eβNEQUL,R
[

1

βNEQUL,R

3π

8
√

2

(
m

γ
+

2KL,Rτ
2
V

3γ

)

+

√
2πγ

KL,R

1

1 + βNEQUL,RKL,RτV /(4γ)

+ 4

√
2
m

KL,R

]
,

(5.21)

where βNEQ/β = τ 2
R/τ

2
V , as shown previously [108]. Figure 5.9 shows that the

MFPT increases with τR/τV . We plot the rescaled MFPT as a function of the
ratio of the two memory times, showing with the lines the formula (5.21) and
with the markers the simulation data. The non-equilibrium effective temper-
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ature βNEQ in the exponential in Eq. (5.21) is the main contributing factor
concerning the variation of the potential length scale. Therefore the three
colored lines are mostly overlapping. In conclusion, Eq. (5.21) qualitatively
describes the simulation data for a system out of equilibrium [108].

5.7 Conclusion
Having studied the mean first passage times from a well to the barrier top,
we reach the following conclusion: for an asymmetric double-well potential,
the time necessary for a particle to travel from one of the two minima to the
top barrier in a non-Markovian system is independent of the dynamics in the
other well. For this reason, we must study the problem separately and find an
equation that allows time to reach the top from the left or right-hand side.
From the literature, [18, 108], we understand how to modify Eq. (5.12) to
arrive at the Eq. (5.17). Using the simulation data, we show that Eq. (5.17)
accurately describes the τLMFP and τRMFP for various values of barrier-height,
potential length, and inertial time. In the last part, we investigate the case of
a system far from a state of equilibrium, observing the qualitative agreement
between the data and the Eq. (5.21).
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Chapter 6

Barrier-crossing transition path
times for non-Markovian systems

6.1 Introduction

Many biological transitions, particularly protein-folding, can be modeled as
diffusion of a reaction coordinate in a one-dimensional, free-energy landscape.
In the last decade, various experiments have been conducted to measure the
transition path times in nucleic acids and protein folding [54, 110–118]. The
measurement of the transition path time was found to be a challenge, as it
represents only a small fraction of the stochastic trajectories, as illustrated in
Fig.6.1. The barrier potential for proteins is typically higher than the char-
acteristic thermal energy kBT ; for this reason, the particle spends most of its
time close to the two minima of the double well potential. These new mea-
surements brought about a push to investigate this process, taking a theoret-
ical and computational approach [119,120]. Many of these studies considered
Markovian models, but computational simulation and experimental studies
suggested that the protein-folding dynamics is subdiffusive [46, 85, 121, 122].
This implies that memory effects must be included in the theory, and in re-
cent years, new studies centering around non-Markovian models have been
developed [84,95,122–124]. The importance of non-Markovianity, i.e., mem-
ory effects, is also shown in Fig.6.1; in fact, in Fig.6.1 a) and b) we plot
the trajectories for two different memory times, observing a different value
for the first passage time, as these are more than ten times longer than the
corresponding transition path times in c) and d). We also notice the opposite
effect of memory time on the first passage time and the transition path time.
Longer memory time induces a shorter transition path time, as shown in c)
and d), but a longer first passage time, as observed in a) and b).
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Figure 6.1: Trajectory for a non-Markovian system, where the potential
height βU0 = 3, τm/τD = 0.001 and respectively in a) and c) τ/τD = 0.001
and in b) and d) τ/τD = 1. The dashed black lines show the two poten-
tial minima. In a) and b), the horizontal red lines show the first passage
time, and in c) and d), the transition path time. In a) τFPT/τD ' 2 and
τMFPT/τD = 7.1, in b) τFPT/τD ' 195 and τMFPT/τD = 90.4, the values of
the mean first passage time (MFPT) come from the formula in (5.12). The
vertical red lines highlight the last and the first time the particle crossed a
minimum before and after passing the barrier. In c) τTP/τD = 0.190 and
in d) τTP/τD = 0.046 is the average on the six transition path times in the
figure. Using the Eq. (6.27) respectively, we obtain τMTP/τD = 0.374 in c)
and τMTP/τD = 0.037 in d). The averages are of the same order of magnitude
as the values found in this case.
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6.2 Setup
In order to investigate the transition path time in 1D while considering mem-
ory effects, we will derive a heuristic formula that we will compare with
simulation data. With τMTP we denote the average of the transition path
time [125–129], in other words, the time necessary to go from one minimum
to the other without recrossing the initial minima, as depicted in Fig.6.1 c)
and d).

We begin by writing out the generalized Langevin equation (GLE)

mẍ(t) = −
∫ t

t0

Γ(t− t′)ẋ(t′)dt′ −∇U(x(t)) + FR(t), (6.1)

where m is the particle mass, Γ(t) the memory kernel, t0 a value of initial
time and ∇U(x(t)) is the derivative of a double-well potential

U(x) = U0

[(x
L

)2

− 1

]2

. (6.2)

FR(t) denotes the random force characterized by its first two moments

〈FR(t)〉 = 0

〈FR(t)FR(t′)〉 = β−1Γ(t− t′), (6.3)

where β = 1/kBT . As a memory kernel, we choose a single exponential

Γ(t) =
γ

τ
e−
|t|
τ , (6.4)

where τ is the memory time, and γ is the friction coefficient. We define
diffusion and inertial time, respectively, as

τD = βL2γ,

τm =
m

γ
.

(6.5)

The diffusion time τD is the time it would take the particle to diffuse by L
in the overdamped limit and in absence of a potential. The inertial time τm
characterizes the time scale of the viscous dissipation of particle momentum.

Previously, it was discovered that, for a Markovian system with finite
mass in the large barrier limit, the mean transition path time is [126]

τMTP =
1

λ+(γ,m)
(log(βU0) + A(γ,m)) , (6.6)
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where

λ+(γ,m) =
−γ +

√
∆

2m
, (6.7)

A(γ,m) = log

(
4
√

∆

γ +
√

∆
eC

)
, (6.8)

with ∆ = γ2 + 8mβU0 and C = 0.577 is the Euler-Mascheroni constant.
The result was obtained by calculating the transition path distribution, thus
approximating a parabolic barrier.

6.2.1 Transition path time in overdamped case

In the overdamped case ∆ = γ2 + 8mβU0 ' γ2, if we insert this value into
Eq. (6.8), we obtain

A = log

(
4
√

∆

γ +
√

∆
eC

)
= log

(
4γ

2γ
eC
)

= log
(
2eC
)
, (6.9)

and λ+ becomes

λ+ =
−γ +

√
γ2(1 + 8mβU0/γ2)

2m

=
γ(−1 + 1 + 4mβU0/γ

2)

2m
= 2βU0/γ.

(6.10)

Inserting these two values in the Eq. (6.6), we arrive at

τ γMTP =
γ

2βU0

log(2eCβU0). (6.11)

6.2.2 Transition path time in inertial case

The other limit (inertial case), for γ → 0, is described by [127]

τmMTP =

∫ ∞

U0

dE
βe−βE

e−βU0

∫ L

−L
dx

√
m/2

E − U(x)
. (6.12)

The expression in (6.12), is equivalent to the integral,

τMTP =

∫ ∞

0

dt pTP (t) τTP , (6.13)
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where the transition path time can be described as a function of the total
energy given by

τTP (E) =

∫ L

−L

dx
√
m/2√

E − U(x)
. (6.14)

At equilibrium, the distribution of transit time is given by

pTP (t) =

∫∞
U0
dE e−βEδ (t− τTP (E))∫∞

U0
dE e−βE

. (6.15)

For a parabolic barrier, the distribution can be rewritten as

pTP (t) =

√
2βU0

m
βU0

cosh
(√

2βU0

m
t/2

)

sinh3

(√
2βU0

m
t/2

)×

exp


−

βU0

sinh2

(√
2βU0

m
t/2

)


 ,

(6.16)

in the limit of high barrier βU0 � 1, it becomes

pTP (t) ≈4

√
2βU0

m
βU0×

exp

[
−
√

2βU0

m
t− 4βU0e

−
√

2βU0
m

t

]
.

(6.17)

The maximum of the distribution is achieved for t =
√

m
2βU0

ln(4βU0) and the

corresponding mean transition path time is Eq. (6.18).
In conclusion, if we approximate the double-well potential of a parabolic

barrier with potential U(x) = −U0(x/L)2, and within the limits of the high
barrier βU0 � 1, we reach the asymptotic expression [119,126],

τmMTP '
√

m

2βU0

log(4eCβU0). (6.18)
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Figure 6.2: Transition path time as a function of the inertial time for var-
ious values of the potential height in a Markovian system (τ = 0). Differ-
ent markers denote the simulation data, and the lines show Eq. (6.6). The
dashed yellow horizontal lines and the green lines show the overdamped case
(Eq. (6.11)) and the limit for γ → 0 respectively Eq. (6.18).

6.2.3 Transition path time for Markovian case

In Fig.6.2, we present the transition path time as a function of inertial time for
various values of the potential height U0 and in the absence of memory effects,
i.e., for τ = 0. The colored lines show that Eq. (6.6) aligns perfectly with the
simulation data plotted with different markers. Eq. (6.6) was derived in the
large barrier limit, although we observe that it can also be used to describe
the case when βU0 = 1. The dashed yellow horizontal lines denote the
overdamped limit (m→ 0) Eq. (6.11) [125, 126, 130]. The expression (6.18),
inertial case, is shown as the dashed green lines. In Fig.6.2, we reproduce
the τMTP and its asymptotic behaviors.

6.3 Transition path time for non-Markovian sys-
tem

To consider the effect of memory on τMTP , we must first present analytical
results for the positional autocorrelation function C(t) = 〈x(t)x(0)〉 [18,108],
as previously shown in chapter 4. Therefore, we must employ a harmonic
approximation of Eq. (6.1) and use Uhar(x) = Kx2/2, where K is the second
derivative of the double-well potential at the minima, K = U ′′(L) = 8U0/L

2.
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Fourier transforming Eq. (6.1) for t0 → −∞ and solving for x̃(ω), we obtain

x̃(ω) =
F̃R(ω)

K −mω2 + iωΓ̃+(ω)
≡ χ̃(ω)F̃R(ω), (6.19)

which defines the response function χ̃(ω). The half-sided Fourier transform
Γ̃+(ω) of Γ(t) is given by

Γ̃+ =

∫ ∞

0

dte−iωtΓ(t) =
γ

1 + iωτ
, (6.20)

while the Fourier transform of the symmetric random force correlation Γ(t)
is

Γ̃(ω) = Γ̃+(ω) + Γ̃+(−ω) =
2γ

1 + ω2τ 2
. (6.21)

The Fourier transform of C(t) is given by C̃(ω) = β−1Γ̃(ω)χ̃(ω)χ̃(−ω) and
reads (as in the chapter 4)

C̃(ω) =
2γβ−1(1 + ω2τ 2)−1

(
K − ω2

[
m− τγ

1+τ2ω2

])2
+ ω2γ2

(1+ω2τ2)2

. (6.22)

This can be rewritten in a form that corresponds to the standard result for
the memory-less harmonic oscillator (i.e., τ = 0)

C̃(ω) =
2γeffβ

−1

(K −meffω2)2 + ω2γ2
eff
, (6.23)

where we have introduced effective frequency-dependent friction, mass, and
temperature

γeff =
γ

1 + τ 2ω2
, (6.24a)

meff = m− c1τγeff. (6.24b)

We have, therefore introduced a numerical constant that, in the harmonic
case, assumes the value c1 = 1, which will be used as a fit parameter for
non-harmonic corrections. Note that the potential curvature K is not renor-
malized. In the low and high friction limits, we find the following poles
ω2
L = K/meff for Kmeff > γ2

eff and ω2
H = −K2/γ2

eff for Kmeff < γ2
eff (see chap-

ter 4). From these characteristic frequencies, we obtain from Eq. (6.24a) the
effective friction in the low friction limit (see chapter 4)

γLeff =
γ

1 + c2τ 2K/m
, (6.25)
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Figure 6.3: Transition path time as a function of memory time for various
values of inertial memory time (τm/τD = 0.001 green, τm/τD = 0.01 blue,
τm/τD = 0.1 magenta, τm/τD = 1 yellow and τm/τD = 10 red) and fixed
height potential βU0 = 3. Different markers plot the simulation data. The
lines show Eq. (6.27) for different values of the constants c1 and c2, as ex-
plained in the legend.

where we introduced another numerical constant, c2. As for the high friction
limit, we have already demonstrated in [108] that

γHeff ' γ. (6.26)

Returning to the problem of the transition path time τMTP , we must apply
the effective parameters at the low friction limit to consider the memory
time’s effect on the dynamics. For this reason, we will insert the effective
parameters (6.25) and (6.26) into Eq. (6.6) thus arriving at the expression

τMTP =
1

λ+(γLeff,m
L
eff)

(
log(βU0) + A(γLeff,m

L
eff)
)
. (6.27)

In Fig.6.3, we plot the transition path time as a function of the rescaled
memory time for various values of inertial time and fixed potential weight
βU0 = 3. We show results for different values of the two constants c1 and c2

and observe that the values c1 = 0.1 c2 = 0.025 give a better agreement with
the simulation data. The dash-dotted line with the values c1 = 0.1, c2 = 0.01
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Figure 6.4: Transition path time as a function of memory time for various
values of inertial memory time (τm/τD) and fixed potential height βU0 = 3
[131]. Different markers plot the simulation data, and the lines demonstrate
Eq. (6.27) with c1 = 0.1 and c2 = 0.025.

better describes the simulation data for the lower mass but is inaccurate for
the higher mass data (τm/τD = 0.01 and τm/τD = 0.1).

In Fig.6.4, we have the same plot as in Fig.6.3, where the Eq. (6.27),
depicted as colored lines, aligns well with the simulation data. In Ref. [95],
the authors derived the same quantity (τMTP ) as in Eq. (6.27), but in the
overdamped case and with a power-law memory kernel, using the same pro-
cedure as in [126]. They discovered that the transition path time in the
non-Markovian case is always less than in the Markovian case, and it de-
creases as the memory time value increases. For intermediate memory times,
we can reach the same conclusion as is observed in Fig.6.4, particularly for
small values of mass, the closer scenario to the overdamped case. We are
thus able to explain the decrease in the transition path time, observing that
the effective friction coefficient Eq. (6.25) decreases with the increase of the
memory time. The reason for this decrease is the insertion of this new effec-
tive friction into Eq. (6.11). This behavior is also observed in the mean first
passage time for intermediate memory time, but for higher values of memory
time, it increases due to τMFP ∼ τ 2/τD see Eq. (5.12). In the mean transition
path time, no term is found to increase with the memory time.
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Figure 6.5: Transition path time as a function of the ratio between the two
friction coefficients. For a fixed value of τm/τD = 0.01, τ2/τD = 31.6 and
height potential βU0 = 3 for various values of τ1/τD. Different markers
are therefore used to plot the simulation data, and the lines demonstrate
Eq. (6.29). The blue dashed lines denote the singular exponential formula
(6.27) respectively on the left and the right for τ1/τD and τ2/τD.

6.4 Transition path time for bi-exponential mem-
ory kernel

In the following section, we will study the case of a double exponential mem-
ory kernel; instead of Eq. (6.4) in the GLE, we will consider the following
kernel,

Γ(t) =
γ1

τ1

e
− |t|
τ1 +

γ2

τ2

e
− |t|
τ2 , (6.28)

and we thus define γ =
∫∞

0
Γ(t)dt = γ1 + γ2 as the total friction coefficient.

To obtain a transition path time formula for a double exponential GLE, we
sum the single-exponential formula Eq. (6.27) with their weights

τMTP =
γ1

γ

1

λ+(γ1
eff,m

1
eff)

(
log(βU0) + A(γ1

eff,m
1
eff)
)

+

γ2

γ

1

λ+(γ2
eff,m

2
eff)

(
log(βU0) + A(γ2

eff,m
2
eff)
)
,

(6.29)
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where the superscript defines which effective friction coefficient is to be con-
sidered. If we draw a parallel with the formula for the MFPT [19, 88], the
MFPT has an overdamped term and an energy-diffusion term. The over-
damped term is additive for the multi-exponential memory kernel, but the
energy-diffusion term is inversely addictive. For the mean transition path
time, the energy-diffusion contribution gives a constant contribution, and
the overdamped term induces the speed-up behavior; for this reason, we can
assume the additivity for the multi-exponential memory kernel.

In Fig.6.5 we compare Eq. (6.29) with the data for a fixed inertial time
τm/τD = 0.01 and τ2/τD = 31.6 for various values of τ1/τD and potential
βU0 = 3. We selected a small inertial time because, for higher values, the
transition path time is almost constant for every value of memory time. The
agreement between the data and the formula in Fig.6.5 is clear, in particular
for τ1/τD = 0.0316 and τ1/τD = 0.316, where in both of the cases we are
on the plateau (Fig.6.4). For the intermediate value of τ1/τD, there is a
discrepancy between the data and the formula, though this value is in the
inflection area in Fig.6.4. Additionally, in the inflection zone, we observe
slight deviations from Eq. (6.27), and in Fig.6.5, the y-scale is smaller.

6.5 Conclusion
In conclusion, starting from a GLE, we derive a heuristic formula for the
transition path time, using a previous derivation Eq. (6.6) and inserting
the effective mass and friction coefficient derived in [108]. The heuristic for-
mula (6.27) corresponds perfectly with the simulation data, therefore demon-
strating that the Markovian case represents the maximum of the transition
path time. The transition path time exhibits a constant behavior for both
small and large memory times, with a decrease for the intermediate values
more evident for smaller values of inertial time. In the final section, we study
the case of a double exponential memory kernel, observing that Eq. (6.29)
accurately describes the simulation data.
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Chapter 7

Summary and Outlook

During the course of this thesis, several open questions have been put forth,
particularly concerning the effects of memory time on barrier crossing in
various biological soft-matter system dynamics. In particular, we have in-
vestigated different aspects of the barrier crossing in non-Markovian model
systems, considering single and multi-exponential memory, in and far from
equilibrium. Besides using a system in a double-well potential, we have taken
into account a more generic potential compared to the symmetric double-
well, which mimics barrier crossing in biological systems more realistically.
In the last chapter, we studied another important system characteristic: the
transition path time and the ways in which it is modified by the memory
time.

In chapter 3 we set out to investigate the mean first passage time for non-
Markovian dynamics, where the memory kernel is a sum of single-exponential
functions, which exhibit different memory times and friction coefficients. In
particular, we considered the cases featuring double and triple exponential
memory kernel. We were thus able to derive a formula to predict the MFPT
over many orders of magnitude for the mass, friction coefficient, and mem-
ory time. We compared the analytical prediction with results from Langevin
simulations. We discovered that the multi-exponential memory kernel could
be reduced to an effective single memory kernel, simplifying the description
of the system. Each exponential is described by the scaling variable γi/τ 2

i ;
the exponential with short memory time or higher amplitude is most relevant
with regards to the other. Using the formula for the MFPT, we established a
scaling diagram in which we recognize a Markovian inertial regime, a mem-
ory slowdown regine, and two intermediate memory regimes, which include
regimes of slow-down and speed-up. In the intermediate memory speed-up
regime, the memory times reduce the barrier crossing time, compared to the
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Markovian case. This formula is a useful tool for understanding the rele-
vance of memory effects in many systems or estimating memory times from
MFPT measured in experiments or MD simulations. Future investigations of
the barrier-crossing process may involve, for example, a more complex mem-
ory kernel expressed as a sum of exponential memories and instantaneous
frictional forces [46,85,132].

In chapter 4 we considered a system far from a state of equilibrium,
thus violating the fluctuation-dissipation theorem. The inequality between
the single exponential function that defines the memory kernel and the sin-
gle exponential function in the random force autocorrelation is obtained by
considering two different relaxation times. When the two times are equal,
equilibrium is reached. We find three effective parameters: mass, friction,
and temperature by conducting an asymptotic analysis of the propagator for
the generalized Langevin equation. Extending the standard result for the
memory-less harmonic oscillator in equilibrium, we can obtain the effective
mass and friction for the non-Markovian case; the effective temperature be-
comes relevant when the system is far from a state of equilibrium. The effec-
tive mass and friction corroborate the formula for the mean first passage time
similarly to the formula that we considered in the chapter 3. The effective
temperature is proportional to the square of the memory and random relax-
ation times ratio. By rescaling the joint position-velocity distribution with
the effective temperature, the distributions of our nonlinear barrier-crossing
system achieve an agreement, meaning that the effective temperature accu-
rately describes the system when it is far from a state of equilibrium. Starting
from the Kramers limits for the MFPT (and inserting the effective param-
eters), we obtain a formula that describes qualitatively the simulation data
for a barrier-crossing system far from a state of equilibrium. In particular,
we notice that the MFPT increases dramatically when the ratio between the
random and the memory time is greater than 1. This is primarily because the
effective temperature modifies the Arrhenius factor. In the equilibrium case,
where the memory time only modifies the constant in front of the Arrhenius
exponential, the state of non-equilibrium brings about a number of changes.
In this thesis, we took the first step in understanding non-equilibrium sys-
tems; further study could also take into consideration a memory function
given by the sum of a single exponential decay and instantaneous frictional
forces.

Another step in generalizing our model of barrier crossing we made in
chapter 5, where we considered barrier crossing with a single exponential
memory kernel. In contrast to previous studies [18, 78, 88, 102], where a
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symmetric double-well potential was taken into consideration as in chap-
ter 3, we considered an asymmetric double-well potential. In that chapter,
we presented another version of the heuristic formula, similar to chapter 3
and chapter 4, but with a variation in the speed-up term, more accurately
describing barrier crossing in asymmetric potentials. Considering varying
potential widths and barrier heights in the left and right well, we analyzed
the mean time taken to reach the peak, starting from one of the two wells,
not the time taken to reach one well from the other. In overdamped Marko-
vian systems, the time taken to reach the barrier is half that of the time
taken to arrive at the other well. In this formula, we inserted one half in
front of the over-damped Markovian term, thus obtaining a formula that
describes the simulation data for a wide range of asymmetrical potentials,
both in equilibrium and non-equilibrium. Simulating the particle’s dynamic,
we understand that the dynamics in the two wells are independent of one
another because the recrossing is the only coupled contribution. However,
it occurs only rarely, and its contribution is not significant. Therefore, we
can construct a heuristic formula with the characteristics of only one well.
In this chapter, we contributed to creating a formula that better determines
the MFPT for the given system. In fact, in multiple experiments (or in MD
simulation), the free-energy profile obtained for chemical reactions or protein
folding [48–55] can be approximated by a double-well potential, but not to a
symmetric one. A future step could be to consider a more complicated poten-
tial that more accurately describes these processes or even include multiple
minima.

In chapter 6, we investigate another important property of soft matter
systems: the mean transition path time. The transition path time is only
a fraction of the first passage time, as it represents the required time for a
particle to reach a certain point without recrossing the starting point. We
generalized a formula for the transition path time for a particle crossing
a parabolic barrier in the Markovian case, which was derived in previous
work [126], for the non-Markovian case. For this we substitute the mass
and the friction coefficient by the effective parameters derived in chapter 4
to include the effects of the memory time. The new formula accurately de-
scribes the data that we have obtained, simulating the generalized Langevin
equation for a single exponential memory function in a double-well potential.
We were subsequently able to observe that the maximum value of MTPT is
reached for the Markovian case, as was also found in a previous work [95],
but for an overdamped system with a power-law memory kernel. The MTPT
decreases for intermediate values of memory time, particularly for low values
of the inertial time, and is constant for both high and low values of the mem-
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ory time. Furthermore, we discovered that we obtain a good description of
simulation data by taking the sum of the contributions of each memory time
(we made a simulation for bi-exponential memory). Also, in this section, as
in chapter 3 and chapter 4, the obvious next step would be the generalization
of the memory function.

In conclusion, in this thesis, we were able to tackle barrier crossing in
different important applications, which will be relevant for experiments and
future work on realistic biological systems.
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