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Abstract
We consider the impact that temporal correlations in the measurement statistics can have on the
achievable precision in a sequential metrological protocol. In this setting, and for a single quantum
probe, we establish that it is the transitions between the measurement basis states that plays the
most significant role in determining the precision, with the resulting conditional Fisher
information being interpretable as a rate of information acquisition. Projective measurements are
shown to elegantly demonstrate this in two disparate estimation settings. Firstly, in determining
the temperature of an environment and, secondly, to ascertain a parameter of the system
Hamiltonian. In both settings we show that the sequential estimation approach can provide a
useful method to enhance the achievable precision.

1. Introduction

Accurate measurements underpin our ability to understand all physical systems and processes. This places a
high priority on the development of useful metrological protocols, i.e. estimation schemes to infer the
maximal amount of information regarding some unknown parameters of a given system of interest. More
formally, an estimation scheme is a process that converts measurement data into an estimate of an unknown
parameter, θ. The Cramér–Rao bound [1, 2] places a lower bound on the variance of any unbiased
estimation scheme

σθ ⩾
1

Fθ
, (1)

where Fθ is the associated Fisher information [3]. In standard quantum and classical estimation schemes the
Fisher information scales linearly with the number of measurement results, N, leading to a N−1 scaling in the
variance. By making use of quantum correlations, such as entanglement, between different sub-systems it is
possible for quantum estimation schemes to achieve N−2 scaling, the so-called Heisenberg limit [4–7]. It has
recently been demonstrated that it may even be possible to surpass the Heisenberg limit by exploiting critical
phenomena [8–14].

In spite of the advantages, when dealing with quantum systems additional subtleties must be taken into
account; such as the freedom in choosing the measurement basis or considering generalized measurement
operators. In probe based metrology, where a sensor is placed in contact with a sample whose properties we
wish to learn, measurement back-action can also play a significant role [15–20]. In fact, even if the sample is
sufficiently large that the interaction between it and probe has negligible impact on its state, such back-action
can still play a significant role in the effectiveness of the protocol depending on how the measurements are
performed on the probe. If the same probe system is measured repeatedly, the backaction can cause each
measurement result to depend on the outcomes of, in principle all, previous measurements. While the
impact of this can be neglected if, as is often assumed, the probe is reset after each measurement, this has the
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deleterious effect of making the process slow and, more importantly, potentially throwing away the
opportunity to extract a better estimation by using the additional information gained due to the correlations
established between the outcomes. This is motivation behind sequential quantum metrological
protocols [21–26]. Additionally, if the probe is reset between each measurement it also precludes us from
exploiting any quantum correlations that may have built up in our system and results in the Fisher
information of such processes necessarily scaling linearly in the number of repetitions. There has been recent
numerical evidence that it is possible to achieve super-linear scaling as the number of repetitions of a
sequential measurement process increases [27, 28]. Although this scaling likely only holds for a finite number
of repetitions [29].

In the sequential setting the metrological process can be depicted as a time-series of outcomes, i.e. a
stochastic process. Due to the measurement backaction, the outcomes will generally be correlated in time.
These correlations can affect the rate at which we acquire information, however, as has recently been shown
in [30, 31], these correlations are not always beneficial and can either speed up or slow down the acquisition
of information. It is therefore highly relevant to critically assess how correlations in time impact the rate of
learning and to develop schemes that leverage the measurement backaction to increase metrological
precision.

In this work we take precisely this approach in probe-based metrology, where we consider a single system
acting as the probe, which is interacting with a sample (hereafter referred to as the environment). The
protocol involves performing sequential measurements on the probe at discrete time intervals that generate
correlations between the measurements, which can be leveraged to increase the Fisher information. For a
process with finite Markov order, the Fisher information will necessarily scale linearly in the long-time limit,
in contrast to the large Markov order found, e.g. in continuous [32–38] and weak [39, 40] measurement
schemes, which can make parameter estimation difficult [41]. We demonstrate that stroboscopically
performing projective measurements on the probe, whose underlying dynamics is otherwise Markovian,
leads to a Markov order-1 measurement scheme. This results in a significantly simpler optimal estimation
protocol and clear evidence of the role that temporal correlations in the measurement outcomes can have on
the resulting Fisher information, which we can interpret as the rate of information acquisition. The small
Markov order allows for effective feedback control [42, 43] to be implemented simply by adjusting the time
between measurements. We analyse this approach in two paradigmatic metrological settings, thermometry
of a large environment and estimation of the Rabi frequency of a qubit.

2. Correlated Fisher information

We consider a general setup of a system, with initial state ρS interacting with an environment at a state ρE, via
a unitary U. From the perspective of the system, this can be described by the completely positive
trace-preserving map

Eθ (ρS) = trE
{
U(ρS ⊗ ρE)U

†}=∑
i

Ki ρSK
†
i , (2)

where {Ki} are Kraus operators satisfying
∑

i K
†
i Ki = I. In the most general setting, the state of the

environment ρE and/or the unitary U depend on an unknown parameter θ which we wish to estimate. The
channel Eθ therefore transfers information about θ to the probe system’s state. Such a setting encompasses
several broad classes of dynamics, including the case of purely unitary dynamics of the system, which occurs
when U is a tensor product of unitaries. It also captures the case of generic quantum channels defined only
by the Kraus operators, i.e. cases where we only have access to θ-dependent Ki’s.

The basic task of probe-based metrology is to extract an estimate of θ from measurements of the system
alone. That is, we perform a generalized measurement on the system described by a set of operators Lω with
outcomes ω. The probability of obtaining outcome ω is

p(ω|ρS) = Tr(ρSMω) , Mω = L†ωLω, (3)

and the state of the system, given that the outcome was ω, is updated as

ρS →Lω (ρS) =
LωρSL†ω
p(ω|ρS)

, (4)

where the channel Lω is now non-linear as it refers to a specific outcome ω.
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Typical probe based metrological protocols involve the resetting the state of the system and environment
after each measurement, making each outcome ω iid (independent and identically distributed). The variance
σθ of any estimator is bounded by the Cramér–Rao bound

σθ ⩾
1

NFiidθ
, (5)

where Fiidθ is the Fisher information associated with a single outcome

Fiidθ =
∑
ω∈Ω

1

p(ω|Eθ (ρS))

(
∂

∂θ
p(ω|Eθ (ρS))

)2

. (6)

Resetting leads to the inevitable linear scaling for an iid measurement protocol. Relaxing the requirement to
reset the system, and therefore moving beyond the iid setting, leads to correlations being established between
the measurement outcomes and we examine the impact that these correlations have on the resulting Fisher
information in the remainder of this section.

2.1. Correlated outcomes
We consider a scenario where we sequentially measure the same probe [22, 23, 25, 44, 45], i.e. after each
measurement is performed the same probe is made interact with the environment again. For ease of
calculation, we assume that the environment is sufficiently large and therefore its state resets at each time as
is the case for dynamics accurately captured under the Markov approximation, or when the environment is
modelled by a suitable collision model [46, 47]. In practice, this is tantamount to the assumption that the
same channel Eθ is applied each time. Crucially however, while the environment’s state remains the same, the
sequential nature of the process means that the system’s state at the start of each interaction cycle will depend
on the result of the previous measurements. Therefore, the results of the measurements are correlated with
each other.

We consider a process where we first measure the system according to equation (4), then apply the
channel (2) and then repeat this sequence. This leads to a string of outcomes ω1:N := (ω1, . . . ,ωN). The state
of the system conditioned on these N outcomes will then be given by

ρS (ω1:N) = Eθ ◦LωN . . . ◦ Eθ ◦Lω1

(
ρ0S
)
, (7)

where ◦ denotes map composition. At each step, the probability of obtaining the next outcome ωn+1 given all
previous outcomes ω1:n is

p(ωn+1|ω1:n) = Tr
(
ρS (ω1:n)Mωn+1

)
, (8)

and the probability of observing a particular sequence ω1:N is

P(ω1:N) = p(ωN|ω1:N−1) . . .p(ω2|ω1)p(ω1) . (9)

This therefore describes a correlated (and generally non-Markov) stochastic process.
The measure-evolve-repeat sequence provides sufficient versatility that we can naturally introduce a

feedback mechanism where the applied channels Eθ are assumed to be conditioned on the previous
measurement outcome. This modifies equation (7) according to

ρS (ω1:N) = EωN
θ ◦LωN . . . ◦ E

ω1
θ ◦Lω1

(
ρ0S
)
. (10)

This feedback could be introduced, e.g. by assuming that the unitary U applied in equation (2) at each step
depends on the previous measurement outcome. This can lead to more information about the parameter of
interest allowing to increase the estimation precision over iid protocols, as we detail below and demonstrate
with explicit examples.

To formalise our ideas, consider the map Φω(ρ) that represents one iteration of the sequential
measurement process with a specific measurement outcome,

Φω (ρS) = Eω
θ ◦LωρS. (11)

We assume that the unconditional channel Φ(ρS)≡
∑

ω p(ω|ρS)Φω(ρS) has a unique steady-state, Φ(π)=π.
We remark that P(ω1:N) is still conditioned on the initial state of the system. However, as will become clear
below, the choice of initial state plays only a small role in the sequential measurement scheme, and therefore
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to simplify the dynamics we assume the probe’s initial state is given by the steady state; i.e. ρ0S = π, thus
making the probability distribution P(ω1:N) ‘stationary’ [30].

Since the resulting stochastic process (9) is now correlated, the Cramér–Rao bound (5) becomes

σθ ⩾
1

Fθ (ω1:N)
, (12)

where

Fθ (ω1:N) =
∑

ω1,...,ωN

1

P(ω1:N)

(
∂

∂θ
P(ω1:N)

)2

. (13)

The computation of Fθ(ω1:N) is, in general, quite difficult as it involves a high-dimensional summation.
Recently, it was shown by some of us [30] that the calculation of equation (13) simplifies for processes having
a finite Markov orderM, an assumption which is true in many cases of interest. It is also approximately true
in cases with infinite Markov order, as one can often define some sufficiently high effective Markov order
Meff [29]. For systems with a finite Markov order equation (13) reduces to

Fθ (ω1:N) = Fθ (ω1:M)+ (N−M)Fθ (ωM+1|ω1:M) . (14)

The first term is the Fisher information of a block ofM outcomes, while the second is the conditional Fisher
information, defined as

Fθ (ωM+1|ω1:M) =
∑

ω1,...,ωM

P(ω1:M)
∑
ωM+1

(∂θp(ωM+1|ω1:M))
2

p(ωM+1|ω1:M)
. (15)

The quantity p(ωM+1|ω1:M) is the probability of future outcomes given all the relevant past, i.e. up to the
Markov order. Equation (15) is the Fisher information of this distribution averaged over all possible pasts.
For N≫M, equation (14) shows that the dominant contribution to the Fisher information is given by
Fθ(ω1:N)≃ NFθ(ωM+1|ω1:M). This therefore allows us to interpret the conditional Fisher information as a
Fisher information rate

Fθ (ωM+1|ω1:M) = lim
N→∞

Fθ (ω1:N)

N
. (16)

That is, it represents the effective Fisher information acquired per outcome. Notice that this is generally
different from Fiidθ , as defined in equation (6). In fact, as shown in [30], there is no general relation between
the two quantities, and Fθ(ωM+1|ω1:M) can be both smaller or larger than Fiidθ depending on the problem in
question.

2.2. Projective measurements
A particularly elegant and useful instance of this corresponds to when the measurement operators Lω in
equation (4) are projective measurements onto some basis {|k⟩}. Since the projection erases all information
about previous states, this corresponds to a Markov orderM= 1; that is, each measurement result only
depends on the previous outcome, i.e. when the underlying dynamics adheres to the Markov approximation.
The probability of obtaining each outcome reduces to p(k|ρS)=⟨k|ρS|k⟩ and the channel Φω(ρS) in
equation (11) simplifies to

Φk (ρS) = Ek
θ (|k⟩⟨k|) . (17)

Hence, the conditional probability (8) reduces to

P(k|k ′) = ⟨k|
[
Ek ′

θ (|k ′⟩⟨k ′|)
]
|k⟩. (18)

This formula elegantly encompasses the relationship between the quantum channel Eθ and the actual
measurement record that is observed, which in this case has the form of a Markov chain. The steady-state of
Φk is π=

∑
k qk|k⟩⟨k| where qk is the solution of the Markov equation

qk =
∑
k ′

qk ′P(k|k ′) . (19)
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For Markov order-1 processes, equation (14) simplifies to [30]

Fθ (k1, . . . ,kN) = F1 +(N− 1)F2|1, (20)

where we introduce the slightly simpler notation F1=
∑

k(∂θqk)
2/qk for the Fisher information of the

steady-state distribution qk, and

F2|1 =
∑
k ′

qk ′

∑
k

1

P(k|k ′)

(
∂

∂θ
P(k|k ′)

)2

, (21)

for the conditional Fisher information. This quantity is precisely the Fisher information rate in
equation (16). Interestingly, this result shows that for projective measurements, the rate at which we acquire
information is directly related to the Fisher information of the transition probabilities P(k|k ′). For a Markov
order 1 process, we learn about θ by observing the transitions. It is therefore clear that the correlations
between measurement outcomes in a sequential protocol will have an impact on the attainable precision. In
section 3 we demonstrate that these correlations can both enhance and hinder an estimation scheme, and
subsequently in section 4 provide explicit examples of how they can be leveraged to boost the effectiveness of
a given protocol.

3. Comparison to other strategies

The key insight arising from equation (20) is that for a metrological scheme employing sequential
measurements on a single probe system, what matters for the acquisition of information are the transitions
from k ′ → k. This is clear from the fact that F2|1 depends on ∂θP(k|k ′), i.e. on how sensitive the transitions
are to changes in θ. Conversely, F1 depends on ∂θqk. One would naturally be tempted to compare F2|1 with
F1, or to any other meaningful quantity. It turns out, however, that these comparisons are quite subtle and
can, in fact, lead to incomplete or incorrect conclusions due to neglecting specific aspects of a given
implementation. We now attempt to clarify this issue.

3.1. Comparing with Fiidθ in equation (6)
A first, somewhat naive, choice would be to compare F2|1 with the case where the outcomes are i.i.d. There
are two possible ways one might obtain iid outcomes. The first is to have N copies of the probe and send each
one individually through the channel Eθ, equation (2). However, this introduces an arbitrariness on the
choice of initial state ρS, which can in principle be prepared in any way. This leads to a clear problem in
comparing with the sequential setup since the states in that case are only prepared once and subsequently
evolve. The second is to obtain iid outcomes by resetting the state of the probe system after each
measurement. This could mean, for example, coupling it to a heat bath after each measurement, hence
erasing information about past outcomes. Once again, this introduces an arbitrariness as to how the reset
occurs and an additional arbitrary parameter, which is the time it takes to re-prepare the system.

In [25], the authors compared their results with the iid scenario. In particular, they considered the
situation in which the system was always re-prepared in specific states |k ′⟩. The corresponding Fisher
information is then a single term in the sum appearing in equation (20),

F2|1=k ′ :=
∑
k

1

P(k|k ′)

(
∂

∂θ
P(k|k ′)

)2

. (22)

It is clear from equation (21) that F2|1 will be a convex sum of such quantities:

F2|1 =
∑
k ′

qk ′F2|1=k ′ . (23)

We can therefore have F2|1=k ′ ≶F2|1, depending on the particular choice of k′. The quantities F2|1=k ′ are
useful, as they tell us which outcomes k′ lead to higher information gains. However, if one is using just a
single probe then the quantity in fact being sampled is F2|1.

3.2. Comparison with F1
Alternatively, we may be inclined to compare F2|1 with F1. The former is the information contained in the
transition probabilities P(k|k ′) and the latter is the information contained in distribution qk (equation (19)).
However, this comparison is generally not fair since the qk-information is not acquired over independent
trials. Instead, it is determined sequentially in a single run. This subtle point was recently discussed by some
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of us in [31] and can be clarified as follows. The actual data we have at hand is the string k1, . . . ,kN.
Estimation therefore proceeds by building a function θ̂(k1, . . . ,kN) to use as the estimator. For any (unbiased)
estimator, the error for large N will be bounded by 1/(NF2|1).

To achieve this bound, however, we must use estimators that make use of the transitions. For example,
suppose that the functional form of a specific transition reads P(2|1) = f(θ), for some function f(θ). Then a
potential estimator could be constructed as follows: given a single string k1, . . . ,kN, we count how many times
k=1 was followed by k=2, and use this to build an estimate P̂(2|1) for the transition probability. The
function f−1(P̂(2|1)) would then be an estimator of θ, which will generally be unbiased for large N. Since this
estimator uses information about transitions, itmight saturate the Cramér–Rao bound asymptotically,
although there is no guarantee of this.

In practice, we might prefer to use simpler estimators. For example, we can build a histogram of the
outcomes. That is, given a string k1, . . . ,kN, where each ki ranges over some alphabet ki ∈ {1, . . . ,d}, we can
build a histogram counting how meany times ki = 1 is recorded, how many times ki = 2 is recorded and so
on. This is called the empirical distribution (ED) and is a form of data compression. It can be shown that the
ED is an unbiased estimator of the steady-state probabilities qk, and hence, naively, we might expect that the
information associated to it should be F1. However this is not the case, as shown in [31]. The reason being
that the data string k1, . . . ,kN is not i.i.d. Instead, it is acquired sequentially on a single run. As a consequence,
due to correlations between sequential outcomes, the resulting Fisher information is affected. The actual
form for the Fisher information in the ED is described in [31].

The only way we would obtain an information rate given by F1 is if we perform the same protocol as
section 2.2, but only use data points spaced by a large distance∆≫ 1. That is, we would have to perform
N∆measurements, however, instead of building an estimator based on k1, . . . ,kN∆, we discard intermediate
data and build an estimator involving only k1,k∆+1,k2∆+1, . . .. This, of course, is a terrible strategy since it
involves throwing away valuable data.

3.3. Direct measurements on the environment
In our approach, information about a parameter of the environment is obtained by coupling it to a probe
system via the map (2). Suppose that the only dependence on θ is in the environment’s state ρθE. Then
equation (2) represents a form of data compression; that is, information is lost when it is transferred from ρθE
to ρS. A natural way to quantify the amount lost is to compute the quantum Fisher information of ρE, which
already maximizes over all possible measurements on the environment. The resulting quantity must then
necessarily exceed F2|1. In reality, of course, this compression can be significant, for example if the
environment is very large and the system is small. In appendix A we prove a stronger result: we consider a
maximization only over measurements that have the same number of outcomes as the dimension of the
system. We find that

F2|1 ⩽ Fiid
∗

θ ⩽ F(ρE,G
∗
i ) , (24)

where Fiid
∗

θ is equation (6) maximised over all initial states and {G∗
i } is the optimal POVM with the same

number of measurement outcomes as the dimension of ρS. Hence, even restricting the number of outcomes
in the environment, a direct measurement would still be better than using a probe. This agrees with the
results of [48], which studied temperature estimation in thermal states.

3.4. Relation to collisional schemes
The sequential measurement approach shares several commonalities with the recently proposed framework
of collisional thermometry [49–52]. Instead of performing the measurement on the system itself, an auxiliary
system is used which interacts (collides) with the probe system and the measurement is subsequently made
on this auxiliary system. For projective measurements performed immediately after the interaction, we find
that the Fisher information is equivalent to the sequential measurement scheme. We assume that the system
and colliding auxiliary unit are initially uncorrelated and evolve via a unitary interaction

ρSC = U(ρS ⊗ ρC)U
†, (25)

after which we perform a measurement of the auxiliary unit in an arbitrary basis {|i⟩}. The probability of
getting a measurement result i is then given by

6



New J. Phys. 26 (2024) 033048 E O’Connor et al

P(i) = Tr [ρSC (IS ⊗ |i⟩⟨i|)]

= TrS

∑
j

Fi,jρSF
†
i,j


= TrS [ρSEi] , (26)

where we have defined Fi,j=⟨i|U|pj⟩ with |pj⟩ an eigenvector of the auxiliary unit and Ei =
∑

j F
†
i,jFi,j .

Through a similar analysis to the one in appendix A we can prove that {Ei} is a POVM on ρS. Therefore,
performing a measurement on the auxiliary unit immediately after interaction is equivalent to performing a
(different) measurement on the system itself. In fact, Neumark’s theorem [53] proves that any POVM on the
system can be realised via a suitable projective measurement on a collisional unit. This may be a useful
practical method of realising some more complicated forms of POVMs on the system. The collisional setup
still provides some additional freedom to make use of initial correlations between measurements [50] or
collective measurements on multiple collisional units but a significant advantage has yet to be demonstrated
for these methods.

4. Applications

4.1. Precision thermometry
We now turn to applications of our formalism. First, we consider the case of quantum thermometry [54–60],
where it is known that an advantage can be obtained by using quantum probes for low temperatures [61–63].
Nevertheless, estimation of thermal probes is limited by the thermal Fisher information [64] which is
maximised by using a D level probe with a non-degenerate ground state and (D− 1)-degenerate excited
states [64]. The Hamiltonian reads Hp = e0|e0⟩⟨e0|+

∑D−1
i=1 e1|ei⟩⟨ei|, with energy spacing e1 − e0=Ω.

Following [64], we model the environment as a bosonic heat bath with a flat spectral density. In suitable
limits, this leads to the following master equation

dρS
dt

= LρS = γ
D−1∑
i=1

{(1+ n̄)D [|e0⟩⟨ei|] + n̄D [|ei ⟩⟨e0]}ρS, (27)

whereD[L]ρ= LρL† − 1
2{L

†L,ρ}, γ is the system-environment coupling and n̄= 1/(eh̄Ω/kBT − 1) is the
mean occupation number. Our goal will be to estimate the occupation n̄, from which we can estimate T
assuming Ω is fixed and known [14]. The map E , equation (2), corresponds to the evolution
ρS(t) = E(ρS(0)) = eLτρS(0), up to a certain time τ . This defines the time between measurements and will be
used as a free parameter of the model which can be optimized over to enhance the estimation precision. We
will restrict to measurements in the energy basis, since this is known to be optimal in the case of incoherent
states. As a consequence, the system remains diagonal throughout the protocol.

In the limit of infinite evolution time τ→∞, the steady state of the master equation (27) is the Gibbs
thermal state, with ground-state occupation q0 = ⟨e0|ρssS |e0⟩= 1+n̄

1+Dn̄ , and excited state occupation
qi = ⟨ei |ρssS |ei⟩= n̄

1+Dn̄ , for all states i = 1, . . . ,D− 1. In this limit the map E completely resets the state of the
system, causing the outcomes to become i.i.d. The corresponding Fisher information, which is the analog of
equation (6), is given by

F th=
1

q0

(
∂

∂n̄
q0

)2

+(N− 1)
1

q1

(
∂

∂n̄
q1

)2

=
D− 1

n̄(1+ n̄)(1+Dn̄)2
, (28)

and is precisely the thermal Fisher information. Particular to this setup, equation (28) coincides with all of
the comparison quantities in section 3, making it the logical benchmark for the correlated process.

Similar in spirit to the collisional thermometry scheme of [49], with sequential measurements we can
exploit the additional information about temperature that is contained in the thermalization rates of the
probe by relaxing the assumption that τ→∞ between each measurement, therefore the probe only partially
thermalizes after each measurement. The first step is to compute the transition probability P(k|k ′) in
equation (18), where |k⟩ now corresponds to the energy basis |ek⟩ of the probe Hamiltonian. These
probabilities can be explicitly calculated, as detailed in appendix B, and we find

P(0|0) = 1− qe (1− f) (29)

7
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P(i|0) = qe (1− f)

D− 1
(30)

P(0|i) = q0 (1− f) (31)

P(i|j) = qe (1− f)+ f − g

D− 1
, j ̸= i (32)

P(i|i) = g+ P(i|j) , (33)

where we have defined the probability of finding the system in any of the excited states, qe = 1− q0, as well as
the functions g= e−γτ(n̄+1) and f = e−γτ(Dn̄+1) which represent the two most relevant relaxation rates of the
problem. We remark that these rates naturally depend both on the choice of τ , as well as on n̄, but we omit
these explicit dependences for clarity of notation. The steady-state of the Markov chain, equation (19) is
given by the same equilibrium probabilities qk defined above. This is not immediately obvious: while it
certainly must hold true when τ →∞, for finite times this is less evident. The rationale behind this is
explained in detail in appendix B.

Using these results we can compute the conditional Fisher information rates F2|1=k ′ in equation (22). If
the measurement outcome was k ′=0 (i.e. the system was found in the ground-state), then the Fisher
information rate for the next measurement will be

F2|1=e0 =
[∂n̄P(0|0)]2

P(0|0)
+ (D− 1)

[∂n̄P(0|1)]2

P(0|1)
(34)

=
(∂n̄x)

2

x(1− x)
, (35)

where x= qe(1− f) = 1− P(0|0) is the probability that, after observing the system in the ground state, it is
excited to any of the excited states after a time τ . This conditional Fisher information rate is therefore the
same as that of a binary random variable, where the system is either in the ground or in the excited state after
a time τ , given that at time t=0 it was in the ground state. Similarly, we can calculate the conditional Fisher
information rate given that the outcome was one of the excited states i = 1, . . . ,D− 1. From equation (22) it
follows that

F2|1=ei =
[∂n̄P(0|1)]2

P(0|1)
+

[∂n̄P(1|1)]2

P(1|1)
+ (D− 2)

[∂n̄P(2|1)]2

P(2|1)
, (36)

where the factor of D− 2 represents the number of excited states the system can go to, other than i, given that
it was initially detected in i. With some simplifications, the final expression reads

F2|1=ei =
(∂n̄y)2

y
+

1

D− 1

[(∂n̄y)− (D− 2)(∂n̄g)]
2

1− y− (D− 2)g
+

D− 2

D− 1

[(∂n̄y+ ∂n̄g]
2

1− y− g
, (37)

where y= 1− x− f. The first term is the Fisher information of the binary process i→ 0, the second is the rate
for i→ i, and the third is the rate for i→ j with j ̸= i, weighted by the D− 2 possible j’s.

From these results, the total Fisher information rate in equation (20) is

F2|1 = q0F2|1=e0 + qeF2|1=ei , (38)

where, recall, qe = (D− 1)qi. The quantities F2|1=e0 , F2|1=ei and F2|1 are shown in figures 1(a) and (b) as a
function of the measurement time γτ . We analyze the three different contributions, equations (35), (37)
and (38) for D= 4 and D= 8. It is clear that there is an optimal finite time at which the Fisher information
rates are maximized, i.e. partial thermalization is favorable as it allows us to gain more information about the
temperature of the system from the relaxation rates. We can find this optimal Fisher information by
calculating F∗2|1 =maxτ F2|1 for any given value of n̄.

From figure 1(a) it is clear that the value of the inter-measurement times γτ which give the highest
precision depend on whether the outcome was the ground or the excited state. Based on this, we can
therefore envision a feedback mechanism that chooses the value of τ depending on the outcome. This would
amount to using different values of τ in the probabilities (29)–(33). However, some care must be taken in
doing so because the steady-state distribution qk will no longer be the thermal distribution. As a
consequence, the optimal times are not exactly the peaks of the dashed lines in figures 1(a) and (b). The new
steady state probabilities are given by

q0 =

(
1− f

(
τg
))
n̄

1+Dn̄
(
1− f

(
τg
))

+ f
(
τg
)
n̄− (1+ n̄) f(τe)

. (39)
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Figure 1. Ratio of the relevant Fisher informations from the sequential scheme to the thermal Fisher information. We show F2|1
[solid] and the individual contributions to this Fisher information for specific previous measurement results F2|1=e0 [dashed],
and F2|1=e1 [dot-dashed] of the D− 1 degenerate probe as a function of the time between measurements for arbitrary choice of

n̄= 1 and (a) D= 4 and (b) D= 8. (c) Maximum enhancement, F#
2|1/F

∗
2|1, for the optimised protocol leveraging information

about the previous measurement outcome as a function of n̄. We show the results for different values of D= 3 [bottom-most,
solid], 4 [dotted], 5 [dot-dashed], and 6 [top-most, dashed].

To determine the maximal achievable precision we must optimise the combined Fisher information,
equation (38), over both τ e and τ g , giving F

#
2|1 =maxτg,τe F2|1, which is a complex optimization problem

which must be solved numerically. In figure 1(c) we show the enhancement achievable, i.e. F#2|1/F
∗
2|1, as a

function of n̄, which also scales with the increasing dimension of the probe. We find that the ratio of the
optimal τ g and τ e changes very little with temperature implying that the feedback mechanism can reliably
achieve this enhancement.

4.2. Themometry with coarse grained energy measurements
Due to the degeneracy of the probe, there is a subtle distinction when we only have access to an energy
measurement which is unable to distinguish between measurement outcomes in the degenerate eigenspace
and which we will call partially indiscriminate, instead of the full measurement in the energy basis considered
in section 4.1. The result of such a partially indiscriminate energy measurement would be the POVM

E0 = |e0⟩⟨e0|; E1 =
D−1∑
i=1

|ei⟩⟨ei|. (40)

Although this is no longer a projective measurement, the Fisher information still retains the same form as a
projective measurement, i.e. that of equation (21). This is because the transition probability from one energy
eigenspace to another is independent of the the specific state that the system is initially in within that
subspace. The transition probabilities can be calculated in a analogous manner to the full energy basis
measurement case detailed before and we find

P(0|0) = 1− qe (1− f) (41)

P(1|0) = qe (1− f) (42)

P(0|1) = q0 (1− f) (43)

P(1|1) = 1− q0 (1− f) . (44)

As anticipated, the transition probabilities here are identical for transitions to the ground state and the
transition probabilities to the excited subspace are simply the sum of all the transition probabilities to the
individual excited energy eigenstates. The main difference now is that we are unable to distinguish measuring
the same excited energy eigenstate two measurements in a row from measuring two different excited energy
eigenstates. We can see the consequences of this difference in figure 2(a) and comparing it with figure 1(a).

9
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Figure 2. As for figure 1, however, considering coarse grained energy measurements which cannot distinguish between
measurement outcomes in the degenerate eigenspace.

We see that the Fisher information is exactly the same when the previous measurement was a ground state
(upper blue curve) but it is significantly lower for previous measurements that resulted in an excited state
outcome due to the reduction in information we have for this measurement (bottom-most red dot-dashed
curve). For low values of n̄ the Fisher information attainable when the previous measurement was excited is
never larger than the thermal Fisher information. In this case an obvious measurement strategy to pursue
would be to allow the system to fully thermalise after an excited energy measurement outcome is recorded
and then optimise the Fisher information over the measurement time after a ground state measurement
outcome is obtained. In fact, this is the optimal strategy for small n̄ and we can see in figure 2(c) that it can
still provide a significant advantage over any strategy without feedback control.

This strategy indicates that there are other possible metrology protocols that, while not being projective
measurements, nonetheless maintain the same form of the Fisher information as seen in equation (21). For
equation (21) to hold, outcomes must depend only on the result of the directly preceding measurement.
While projective measurements are an example of such a process, they are not the only example. As just
discussed, we satisfy this condition if all of the POVM operators project onto degenerate subspaces.
Additionally if we have POVM operators that project onto a non-degenerate subspace we could allow the
system to fully equilibrate after obtaining that measurement result, the system will therefore be in the
equilibrium state, independent of any previous measurements.

4.3. Rabi frequency estimation
We next demonstrate that the sequential metrology approach can be employed to determine a property of
the system Hamiltonian, such as the Rabi frequency of a driven qubit [22], thus extending its applicability
beyond estimating parameters of only the environment. To make our ideas concrete, we consider a qubit
probe with Hamiltonian HS=Ωσx which is coupled to an environment according to the master equation

dρS
dt

= LρS =−i [H,ρS] + γD [σ−]ρS. (45)

We once again consider sequential projective measurements in the system, with a free evolution of duration τ
in between. Equation (18) then becomes

P(k|k ′) = ⟨k|
(
eLτ (|k ′⟩⟨k ′|

)
|k⟩. (46)

From this we can determine the steady-state distribution qk in equation (19) and subsequently determine the
conditional Fisher information rates F2|1=k ′ in equation (22), as well as its average F2|1 in equation (21).

Figure 3 shows results for F2|1=k ′ and F2|1 in the case of measurements in the computational basis
k ′ = {|0⟩, |1⟩} and we show the results for Ω/γ=0.2 in panel (a) and Ω/γ = 1.0 in (b). The eigenvalues of

10
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Figure 3. Fisher information from the sequential scheme for estimating the Rabi frequencyΩ in the Rabi model (45). We show
F2|1 [solid] and the individual contributions to this Fisher information for specific previous measurement results F2|1=|0⟩
[dashed], and F2|1=|1⟩ [dot-dashed] for (a)Ω/γ = 0.2 and (b)Ω/γ = 1.0. The measurements are performed in the
computational basis.

the Liouvillian depend on
√
γ2 − 64Ω2, which becomes imaginary for Ω/γ>1/8. This is evident by

comparing the behavior between the two settings in figure 3 as all Fisher rates show significantly more
oscillations for larger Ω. We also see from the images that the information rates depend sensibly on τ , and
this becomes particularly strong for large Ω/γ, cf figure 3(b), to the point where the Fisher information can
actually be zero at certain points.

One could also study the same problem for bases in other directions. Measurements in the σx basis yield
no information, while measurements in σy can and, in fact, generally do lead to somewhat larger Fisher
information rates, although their behavior with γτ is also different. Finally, one could ask about what is the
optimal basis. However, this quickly becomes a difficult problem to solve in general since the basis will
depend on the actual value of Ω, as well as on τ .

5. Conclusions

We have examined how temporal correlations established between measurement outcomes impact the
achievable precision in estimating a parameter of interest using quantum probes. We considered a sequential
measurement protocol, where the probe system is stroboscopically measured. We established that the
resulting conditional Fisher information captures the rate at which information about the parameter of
interest can be obtained. For protocols employing projective measurements, we have used our formalism to
demonstrate that advantageous schemes can be developed. In the case of thermometry we showed that
allowing for different waiting times between measurements of the probe based on the previous measurement
outcomes allows for an increase in the achievable precision. Furthermore, we demonstrated that the protocol
is versatile, allowing to effectively estimate Hamiltonian parameters such as the Rabi frequency. The latter
example also established that the choice of measurement can play a significant role in the achievable
precision, thus opening the possibility to explore whether further enhancement can be achieved by extending
an adaptive scheme beyond allowing for different measurement times but also implementing measurements
in a different basis at each step.

This work builds on [30, 31], which studied stochastic metrology of generic correlated outcomes in
classical processes and connects those results with quantum processes. In particular, with the stochastic
outcomes obtained when a quantum system is subject to stroboscopic measurements. Our work highlights
the subtlety and care that must be considered when measurement outcomes in a metrological protocol are
not independent and identically distributed. Furthermore, it provides a useful framework to explore a wider
class of sensing protocols, in particular those that can leverage the temporal correlations to be more
metrologically effective.
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Appendix A. Coarse grained comparison

We consider the setup from equation (2) of a general system-environment evolution with U and ρS
independent of θ and ρS =

∑
i si|si⟩⟨si|. When this is not the case it is possible do violate the following bound.

The addition of an auxiliary system such as was considered in [48] has no effect on the following proof as
long as the auxiliary system also has no θ dependence. Our first step is to derive the map E ′(ρE) = E(ρS)

E (ρS) = TrE
[
U(ρS ⊗ ρE)U

†]
=
∑
i

E⟨bi|U

∑
j

sj S|sj⟩⟨sj|S ⊗ ρE

U† |bi⟩E

=
∑
i,j

sj E⟨bi|U|sj⟩SρE S⟨sj|U†|bi⟩E

=
∑
i,j

Mi,jρEM
†
i,j

= E ′ (ρE) , (A.1)

where {|bi⟩} is an arbitrary basis ofHE andMi,j =
√
sj E⟨bi|U|sj⟩S. For the following analysis we require that

Mi,j is independent of θ with is clearly true when U and ρS are independent of θ but can also be true even
when this is not the case. The quantum Fisher information of E(ρS) is then given by the Fisher information
of pi(E(ρS),Ei) = Tr[E(ρS)Ei]maximised over all possible POVMs {Ei}. Where {Ei} is a set of hermitian,
positive semi-definite matrices that sum to the identity. Lets now look at the quantum Fisher information of
E(ρS) = E ′(ρE) =

∑
jMjρEM

†
j . We will label the optimal POVM as {Fi}

pi (E (ρS) ,Fi) = pi (E ′ (ρE) ,Fi)

= Tr [E ′ (ρE)Fi] = Tr

∑
j,k

Mj,k ρEM
†
j,kFi


=
∑
j,k

Tr
[
Mj,k ρEM

†
j,kFi
]
=
∑
j

Tr
[
ρEM

†
j,kFiMj,k

]

= Tr

ρE
∑

j,k

M†
j,kFiMj,k

 . (A.2)

We can now define a new set of operators Gi =
∑

j,kM
†
j,kFiMj,k, it is important to note that {Gi} has the

same number of elements as {Fi}. Now we need to prove that {Gi} is a valid POVM onHE . Since Fi is
Hermitian then Gi clearly is too. A matrix is positive semi-definite if and only if it can be decomposed into a
product Fi = L†i Li. Since {Fi} is a POVM we know that it can be decomposed. Therefore we can write

Gi =
∑

j,kM
†
j,kL

†
i LiMj,k =

∑
j,kK

†
i,j,kKi,j,k with Ki,j,k = LiMj,k. This means Gi is the sum of positive

semi-definite matrices and is therefore also positive semi-definite. The last thing to show is that {Gi} sums to
the identity

12
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∑
i

Gi =
∑
i

∑
j,k

M†
j,kFiMj,k

=
∑
j,k

M†
j,k

(∑
i

Fi

)
Mj,k =

∑
j,k

M†
j,kMj,k

=
∑
j,k

sk S⟨sk|U†|bj⟩E E⟨bj|U|sk⟩S

=
∑
k

sk S⟨sk|UU† |sk⟩S

= IE. (A.3)

This implies that the quantum Fisher information of E(ρS), F(E(ρS)) is upper bounded by the optimal
coarse grained measurement on ρE with the same number of outcomes as the dimension on ρS which we will
denote by F(ρE,G∗

i ). Finally, we know that F2|1=k ′ = F(Ek ′
(|k ′⟩⟨k ′|), |k⟩⟨k|) which implies

F2|1 =
∑
k ′

qk ′F2|1=k ′ ⩽
∑
k ′

qk ′F
(
Ek ′

(|k ′⟩⟨k ′|)
)

⩽
∑
k ′

qk ′F(ρE,G
∗
i ) = F(ρE,G

∗
i ) . (A.4)

This result is also interesting when the environment has a smaller dimension than the system such as might
be the case in a collision model setup. In this case the Fisher information we can obtain from measuring the
system is bounded by the quantum Fisher information of the environment, therefore larger probes are not
necessarily more informative.

Appendix B. Exact solution of the sequential thermometry problem

In this appendix we give details on how to calculate the probabilities P(k|k ′) for the metrology problem in
equations (29)–(33). The system obeys the master equation (27), which forms the so-called Davies maps,
which do not create coherences. Hence, the evolution after each measurement will remain diagonal and we
can map this into a classical master equation problem. Define the D-dimensional transition matrix

W=


−γ (D− 1) n̄ γ (n̄+ 1) γ (n̄+ 1) . . .

γn̄ −γ (n̄+ 1) 0 . . .
γn̄ 0 −γ (n̄+ 1) . . .
...

...
...

. . .

 . (B.1)

The transition probabilities will then be

P(k|k ′) =
(
eWτ
)
kk ′ , (B.2)

where τ is the time between measurements.
To compute this matrix exponential we solve the corresponding master equation

dpk
dt

=
∑
k ′

Wkk ′pk ′ , (B.3)

for all initial conditions of the form pk(0) = δk,i. We proceed in 2 steps. First, define pe =
∑D−1

i=1 qi. Then,
because of the symmetry of the problem, we can actually solve a simple 2-dimensional equation for p0 and pe:

dp0
dt

= γ (n̄+ 1)pe − γ (D− 1) n̄p0, (B.4)

dpe
dt

= γ (D− 1) n̄p0 − γ (n̄+ 1)pe. (B.5)

The solution is

p0 (t) = (q0 + qef)p0 (0)+ q0 (1− f)pe (0) , (B.6)

pe (t) = qe (1− f)p0 (0)+ (qe + q0f)pe (0) , (B.7)
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where f = e−γt(Dn̄+1). From this we can already read off P(0|0) in equation (29), as being the coefficient in
equation (B.6) that multiplies p0(0). Similarly, because pe(0) =

∑D−1
i=1 pi(0), we can also read off from

equation (B.6) the element P(0|i).
For the remaining elements we need to determine the probabilities of the individual states pi. From the

master equation (B.3) we have that

dpi
dt

=−γ (n̄+ 1)pi + γn̄p0 (t) . (B.8)

Since p0(t) is known the solution will be

pi(τ) = gpi(0)+ γn̄

τ̂

0

dt ′ g(τ − t ′)

[
(q0 + qef(t

′))p0(0)+ q0(1− f(t ′))

(
D−1∑
i=1

pi(0)

)]
, (B.9)

where g≡ g(τ) = e−γτ(n̄+1). The remaining matrix elements (eWt)kk ′ can now all be directly read off from
these results. For example, the element P(i|0) is read from equation (B.9) by looking at all terms that
multiply p0(0). Carrying out the time integrals we obtain the results in equations (29)–(33).

This analysis also shows why the thermal probabilities qk are still steady-states of the Markov process,
even if τ is finite. Namely, sinceWq= 0, it follows that eWtq= q.
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