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Abstract

Large scale sensor networks form an important part of the Industrial Internet of Things. To
maintain the operation of such networks over time, quality of the sensor readings needs to be
ensured. This leads to the development of a metrological traceable in-situ calibration method
based on a Bayesian framework which leverages local sensor redundancy. Furthermore, automation
of such in-situ calibration tasks is a key feature. To this end, an extension of existing sensor-related
ontologies is proposed to cover relevant metrological terms. Sensor self-descriptions based on these
knowledge representations allow for support of in-situ calibration by finding suitable reference
sensors and initialization the mathematical method presented here. The mathematical method
is evaluated in simulation studies against a state of the art in-situ calibration. The evaluation
results show good estimation performance in cases of time-depending input signals or sensors
of comparable uncertainty levels, but also reveal higher computational costs. The developed
ontologies are evaluated by a corpus comparison, ontology metrics as well as logical checks of the
taxonomic backbone and indicate a good agreement with existing ontology quality standards.
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1.1 Thesis Focus

This thesis focuses on the description of homogeneous networks of calibrated sensors and the
application of metrological methods therein. This includes development of an online co-calibration
method for linear affine sensor transfer behavior using a Bayesian framework as well as proposing
a merge of knowledge representations to describe metrological use cases in such sensor networks
with semantic expressiveness. Furthermore, it is shown how the developed mathematical method
benefits from the use of semantic knowledge.
The following sections 1.1.1 to 1.1.3 introduce the context of this thesis, the problems it solves
and what scientific questions are guiding it. Section 1.1.4 motivates the structure of the remaining
document.

1.1.1 Context

Technical, industrial and natural processes are monitored using sensors. To ensure the quality
of their measurements, these sensors need to be calibrated against reference devices that trace
back to international standards provided by national metrology institutes (NMIs) [1]. Current
developments, accelerated by the idea of an (industrial) internet of things ((I)IoT), lead to dense
sensor networks with an increasing amount of sensors that require calibration on a regular basis
[2].
As of now, in order to calibrate1 a sensor, it is taken out of the process, send to an accredited
calibration laboratory and is brought back into the process after the calibration [4, 5]. It is of
interest to shorten this process by using surrounding sensors as references to co-calibrate the
sensor in place. Moreover, available semantic knowledge about the sensors in the network (e.g.,
self-descriptions provided by smart sensors) needs to support the automated selection of suitable
reference sensors and initialization of the method. The combination of semantics and mathematics
paves the way for machine-actionable co-calibration and automated use in dense sensor networks,
adding a new perspective to the inclusion of expert knowledge into a calibration process.
Sensor networks typically generate a stream of time-series data for each sensor. The internal clocks
of (the network interfaces of) the sensors can be assumed to be synchronized to a common time-
base, e.g., via the network time protocol (NTP). However, the data acquisition is in general not
synchronized, leading to an uncertainty-aware interpolation task. Moreover, it is not guaranteed,

1in an NMI-sense, which is defined in the International Vocabulary of Metrology [3]
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that all sensors of interest provide data within the period of interest. To provide traceable
calibration, the proposed method therefore needs to operate online on data streams with non-
equidistant/-synchronized time, varying amount of reference sensors due to dropouts and potential
outliers, uncertainty awareness and semantic pre-knowledge.

1.1.2 Tasks and Solution Ideas

In the set context, four tasks can be identified and ideas to their solutions outlined. The
formulation of these tasks requires specific terms and concepts that are introduced in part II of
this thesis.

Task 1: Metrology-aware Sensor Description

Metrology and with that traceability to the International System of Units (SI) is a key component
of the quality infrastructure. However, this is so far not reflected by common knowledge
representations describing sensors and sensor networks.
Solution idea: Although not every aspect required to cover metrological use cases is provided by
a single knowledge representation, most concepts can be found in existing ontologies. The idea is
to establish a metrologoy-aware sensor (network) description by proposing a merge of existing
concepts and addition of missing concepts to achieve metrological usability.

Task 2: Traceable Co-calibration

Methods for estimating the transfer behavior of linear affine type exist, but do not evaluate the
uncertainty of the estimate and therefore do not continue the traceability chain.
Solution ideas: To preserve traceability, it is necessary to maintain a calibration chain from
national standards to the sensor of interest. This - by definition - excludes pure blind calibration
methods. Recent approaches (e.g., [6, 7]) allow to specify certain sensors as reference sensors via
proper configuration. Therefore, evaluation of uncertainty according to the GUM [8] for these
existing co-calibration methods would achieve traceable estimates.
An alternative approach is a Bayesian estimation method to provide probabilistic information
about the estimate. This approach is preferred, as it also allows to address Task 3 and Task 4.

Task 3: Usefulness in Practical Applications

The co-calibration is assumed to be used in real process environments. Data is available in
continuous streams, providing blocks of measurement data. Temporal alignment of measurement
data of different streams cannot be guaranteed. Moreover, the data can include outliers from
failing sensors or dropouts due to network communication errors. If multiple reference sensors are
available during the co-calibration, an uncertainty-aware, traceable and robust consensus value
needs to be calculated. Existing approaches cover some of these constraints, but not all at once.
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Solution ideas: Temporal alignment can be achieved by uncertainty-aware interpolation to an
agreed time-base. Multiple reference sensors could then be fused into a single reference using
methods from analysis of interlaboratory comparisons and meta analysis, achieving robustness
with regard to outliers and the number of input references. Online capabilities are enabled
using iterative parameter estimation methods that calculate a posterior from the neighbourhood
consensus.

Task 4: Using Pre-Knowledge in the Co-calibration

The shift towards digital technologies opens up vast automation possibilities. Although smart
sensors are able to communicate their self-descriptions within the network, machine-interpretable
self-descriptions are not used so far for automatic and ideal initialization of co-calibration methods.
Solution idea: A suitable transfer model structure is assumed to be deducible from a sensor’s
self-description and an informative prior for the parameterization can be chosen.

1.1.3 Research Questions

Dealing with the above mentioned tasks leads to the following research questions:

RQ1 How can information relevant for metrological co-calibration be stored in a semantically
expressive way? What level of reasoning complexity is a fair trade-off between practicality
and expressiveness?

RQ2 How can an iterative, outlier-robust and traceable co-calibration within a homogeneous
sensor network be achieved using Bayesian methods?

RQ3 How can semantic pre-knowledge be incorporated to provide informative initializations of
mathematical operations?

RQ4 What conditions must be fulfilled to perform a successful co-calibration in a homogeneous
sensor network?

1.1.4 Content Structure

The thesis is structured as follows: The introduction (part I) establishes the scientific context
by outlining the methodological approach chosen, guided by relevant publications the author of
this thesis was involved in. Moreover, a small exemplary sensor network is introduced to show
specific aspects of the proposed co-calibration method. The relevant background knowledge of
this thesis is presented in part II by describing related fields, summarizing the state-of-the-art
and introducing relevant theoretical concepts. Part III presents the proposed co-calibration
method by specifying it mathematically and semantically. The methods are evaluated in part IV
by implementing them and applying them to specific use cases. Moreover, the methods are
also compared to an existing co-calibration method and the simulation results as well as the
gained semantic expressiveness are discussed. The thesis closes with a conclusion of the presented
research and provides an outlook on future topics in part V.
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1.2 Approach and Contributions

This chapter provides an overview of the methods developed as part of this thesis, shows how
they interconnect, mentions related publications and highlights the individual contributions to
the state of the art.

1.2.1 Approach

The task of a “co-calibration under consideration of semantic knowledge” is divided into several
distinct but linked subtasks, providing solutions to the problems mentioned in section 1.1.2. The
general assumption is that there is a sensor network available which is supposed to be used to
co-calibrate a “new” sensor 2. The selection of a subnetwork of suitable reference sensors from the
sensor network requires additional knowledge (i.e., measured quantity, calibration information).
Such knowledge needs to be represented in a semantically expressive way in order to enable
an automated and machine-interpretable process, similar to the idea of the semantic web [9].
The metrological relevant information is used to select homogeneous calibrated reference sensors
and, if necessary, to compensate and provide uncertainty information to the data stream of each
reference sensor. Moreover, all uncertainty-enhanced data streams need to be interpolated to
the same time-base. Offline [10, 11] or online [12] linear interpolation can be used (with some
adjustments to reject interpolation if the period between two timestamps gets too long). If
multiple reference sensors are available, they are fused into an uncertainty-aware robust reference
value. The fused reference value and the calibration target are then used in a co-calibration
method to provide estimates of the parameters characterizing the transfer behavior of the “new”
sensor. Upon successful co-calibration (e.g., based on the uncertainty of the parameter estimate)
the result is transferred back into the semantically expressive form and attached to the “new”
sensor, making it a part of the network of (co-)calibrated sensors. Figure 1.2.1 summarizes this
in a block diagram. The method is tested on simulated datasets.

2The “new” sensor could be a physically new sensor or an existing sensor for which some heuristic proposes a
re-calibration.
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Figure 1.2.1: Distinct aspects of the proposed co-calibration method with relevant citations and links to the specific chapters in this thesis.
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1.2.2 Scientific Methods

The chosen scientific method is of quantitative nature, as a co-calibration routine is proposed
and evaluated against a ground truth in simulative studies and against another state-of-the-art
co-calibration method [20]. The executed research is constructive, in that it proposes a solution
to the identified problem and evaluates it against an existing method.

1.2.3 Contributions

Multiple aspects of the proposed methods have already been published and an overview of the
corresponding publications is given in table 1.2.1.
In terms of contributions to the state-of-the-art, the following advancements have been made:

• integration of semantic information to the co-calibration process
• uncertainty aware co-calibration of linear affine transfer behavior
• explicit consideration of metrological traceability in the method design



Publication Title Authors Relevant contribution Related to Type Status
Semantic Information in Sensor Networks: How to Com-
bine Existing Ontologies, Vocabularies and Data Schemes
to Fit a Metrology Use Case [18]

Gruber et al. merge of existing ontologies RQ1 Conference
Proceedings

Published ⋆

Uncertainty-Aware Sensor Fusion in Sensor Networks [16] Gruber et al. sensor fusion method with
uncertainty

RQ2 Conference
Proceedings

Published ⋆

Discrete Wavelet Transform on Uncertain Data: Efficient
Online Implementation for Practical Applications [14]

Gruber et al. online uncertainty-aware
IIR filter

RQ2 Book Series Published ⋆

Application of Uncertainty-Aware Sensor Fusion in Physi-
cal Sensor Networks [17]

Gruber et al. application of fusion
method

RQ2 Conference
Proceedings

Published ⋆

Modeling Dynamic Measurements in Metrology and Prop-
agation of Uncertainties [21]

Gruber et al. introduction to dynamic
measurement uncertainty
and mapping of calibra-
tion task to the GUM
(part of [22])

RQ2 Book
chapter

Published

Uncertainty-Aware Data Pipeline of Calibrated MEMS
Sensors Used for Machine Learning [15]

Dorst et al. application of uncertainty-
aware interpolation

RQ2 Journal
Paper

Published ⋆

Semantics in Sensor Networks: An Ontology for Dynamic
Transfer Behavior in Calibrated Sensors [19]

Vedurmudi et
al.

extension of [18] to cover dy-
namic transfer behavior

RQ1 Conference
Proceedings

Published ⋆

Toward Smart Traceability for Digital Sensors and the
Industrial Internet of Things [13]

Eichstädt et
al.

use calibration information
to compensate dynamic
data stream

RQ3 Journal
Paper

Published ⋆

Table 1.2.1: An overview of relevant publications the author of this thesis was involved in. Peer-reviewed publications are highlighted by
⋆. Additional publications the author was involved in are listed in appendix E.3.



1.3 Exemplary Use Case

This chapter briefly introduces a prototypical sensor network which will be used throughout this
thesis to illustrate aspects of the development of a co-calibration method. The network consists
of six sensors measuring different quantities at three locations, as summarized in table 1.3.1 and
visualized in figure 1.3.1.
Despite being a very small sensor network, it is a distributed heterogeneous sensor network that
contains a subset of sensors forming a homogeneous sensor network. On an abstract level, this
matches a setup which could be found in an industrial setting. There, large sensor networks are
deployed but can contain subsets of sensors that are suitable for the co-calibration presented in
this thesis. Moreover, these large networks highlight the need for machine-interpretable sensor
self-descriptions in order to automate the identification of such co-calibration capable homogeneous
sub-networks.

ID quantity location calibrated
S1 acceleration A yes
S2 acceleration A yes
S3 acceleration B yes
S4 temperature A yes
S5 temperature C no
S6 acceleration A no

Table 1.3.1: Sensors of the exemplary sensor network.
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Figure 1.3.1: Topology of the exemplary use case.
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2.1 Related Fields and Developments

This chapter provides an overview of the domains related to this thesis and outlines their recent
developments.

2.1.1 Metrology

Metrology is the science of measurement. It is concerned with providing stable, comparable and
accurate measurements within a stated level of confidence [1, 3]. As such, it is a key part of
any quality infrastructure, enabling and supporting scientific, environmental, technological and
engineering advancements. Metrological competence is often concentrated in National Metrology
Institutes (NMIs) that are concerned with the establishment of measurement units and their
transfer to industry using measurement standards [23].
To meet these aims and enable trust in measurements, four interlinked concepts fundamental
to metrology are at work: references, calibration, uncertainty and traceability. A reference
can provide measurement results that are fit enough to assess the measurement trueness of
another measurement device [3, VIM 2.7]. Primary references are typically hosted by NMIs
and realized according to international standards [24] that are based on the definition of the
SI units in terms of fundamental constants [25]. The quality of measurement of this reference
is quantitatively characterized by stating the associated uncertainty, which is a “non-negative
parameter characterizing the dispersion of the [measurement values]” [3, VIM 2.26]. The process
of calibration provides uncertainty information about indications based on corresponding reference
measurements [3, VIM 2.39]. Furthermore, a relation to obtain (an estimate of) the measurement
result from the indication can be fitted. This is necessary, because the sensor’s transfer behavior
can differ from identity. Transfer behaviors can come in various degrees of complexity, ranging from
linear static, dynamic to non-linear behavior and their modelling is motivated by the measurement
principle. A measurement result is called traceable, if it can be related to a (primary) “reference
through a documented unbroken chain of calibrations” [3, VIM 2.41].
Calibrations therefore not only allow to specify the level of confidence of a measurement device,
but also link it to the primary standards and thereby to the SI. This justifies comparison of
measurements taken by different devices at different locations can be compared (within bounds
specified by the attributed uncertainty). A common representation of the relations between
standards, calibration, traceability and uncertainty is provided in the “metrology pyramid” shown
in figure 2.1.1.
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Figure 2.1.1: The metrology pyramid, based on [24, 26, 27].

More recent developments in the field of metrology are concerned with the extension of calibration
models to cover dynamic transfer behavior. Moreover, it is of interest to prepare metrology for a
shift towards digital technologies. This includes metrological precise and complete communication
of measurement data with digital tools [28]. Additionally, transfer of existing certification
documents into machine-actionable counterparts is an important part of this emerging digital
transformation.
The unbroken chain of calibrations required for a traceable measurement is in practice achieved
by regulating the institutions that provide calibration services, i.e., they are required to fulfill
the requirements given in ISO 17025 [4] and complete an official accreditation process3. These
institutions can then issue calibration certificates for a device that certifies the operability within
certain operation ranges. In an ongoing effort to prepare this system for the digital age, a digital
calibration certificate (DCC) is developed [30]. A DCC is an XML data structure, that allows to
specify regulatory calibration aspects such as administrative data and measurement results as
well as comments in a recognized and machine-readable format. Regulatory data fields are fixed
and mandatory (e.g., calibration laboratory, calibration object or customer). Measurement data
can be included in different ways, but always needs to provide unit, quantity and uncertainty
information in accordance with the SI, e.g., by adopting the data format of the digital SI (D-SI)
[31]. Additional information about the measurement process can be included in the unregulated
comment section of a DCC. A DCC can embed a human-readable version of itself in the form of a
PDF/A document in a separate section. Moreover, the XML document can be cryptographically
signed, to verify its origin and enable integrity checks. With this, the DCC format provides a
solid base to enable automated applications that require trusted and traceable measurement data.

3E.g., within the European Union this process is defined by regulation 765/2008 [29] and its transfer into
national legislations of the member states.



2.1.2. SEMANTIC WEB 17

rdf:type

S1:sensor

sosa:Sensor

sosa:hasProperty ssn-system:inCondition

rdf:type

S1:model

"1971-12-27"

rdf:type

xsd:date

schema:endDate

rdf:type

S1:calibrationPeriod

ssn-system:Conditiontrans:TransferModel

Figure 2.1.2: Knowledge graph expressed by listing 2.1.1.

2.1.2 Semantic Web

The Semantic Web is an extension of the already existing web (World Wide Web) and based on
the idea of transforming human readable information into (also) machine-actionable information.
It is based on three basic components [9]:
First, the addition of formal logic to the web. This translates to providing a language to express
data and rules to enable machines to reason about the web’s content. Moreover, this language
needs to be powerful enough to describe complex properties, but also remain logically decidable
within practical bounds, e.g., whether a question leads to a conflict given some specific knowledge
basis.
Second, the integration with existing standards. By building atop of accepted tools that are
already in use for the web development, the semantic web is an evolution rather than a parallel
instance of the existing web. The extensible markup language (XML) allows to add (hidden)
annotations to objects or web content, as the structure of annotations is open to custom types.
The resource description framework (RDF) allows to express the meaning and relations of terms
by using triples. These triples correspond to elementary sentences (subject, verb, object) and
thereby allow the expression of knowledge in a very structured and fundamental way. The uniform
resource identifier (URI), allows to globally and uniquely identify concepts [32] 4. By combining all
three technologies, it is possible to state relations between globally unique concepts (addressable
by their URI) by using them in RDF triples. These triples can then be attached to elements of
some web content by XML annotations.
Third, the availability of collections of information that capture domain specific knowledge. This
is done within ontologies that define concepts and relations between them. Relations to concepts
of other ontologies are possible as well, e.g., allowing to define synonyms or sub-concepts.
As a short example consider the sentence “Sensor S1 is calibrated until 12th of April
2026.”. Using the XML elements <div> (block-container) and <span> (inline-container) in
listing 2.1.1 it is possible to annotate information to this sentence without altering its visual
rendering [33]. Although not directly observable by a user, the sentence now contains the
machine-actionable knowledge graph shown in figure 2.1.2.

4The uniform resource locator (URL) is a subset of the URI.
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<div about="S1:sensor">
<span typeof="sosa:Sensor">Sensor S1 </span>
<span property="sosa:hasProperty" content="S1:model">is calibrated </span>

</div>
<div about="S1:model">

<span typeof="trans:TransferModel"></span>
<span property="ssn-system:inCondition" content="S1:calibrationPeriod"></span>

</div>
<div about="S1:calibrationPeriod">

<span typeof="ssn-system:Condition"></span>
<span property="schema:endDate" content="2026-04-12" datatype="xsd:date">

until 12th of April 2026.
</span>

</div>

Listing 2.1.1: Expressive version of the sentence “Sensor S1 is calibrated until 12th of
April 2026.” using Semantic Web methods.

2.1.3 Industrial Internet of Things

The industrial internet of things (IIoT) describes a new era in industry that marks a change
in the use of available information and availability of computational resources [34]. Knowledge
previously only used for specific tasks is made available on a much larger scale, forming networks
of connected knowledge and enabling process optimization in a more global sense. This increase
in connectivity and information processing requires computational resources. Use cases in this
sense are, e.g., automatic selection of fallback sensors in case of sensor failure, re-calibration of
drifting sensors based on redundant local information, production plan adjustments based on
logistic information or adaptive maintenance schedules based on a predicted device status.
The foundation of the IIoT are data sources (i.e., databases, sensor data streams, process settings)
that can communicate via standardized network interfaces [34]. This can be achieved by including
such requirements during the design of a new plant or retrofitting devices in existing processes.
Computational resources close to the hardware are typically referred to as edge-devices. They
often act as network adapters for sensing and actuation hardware, but also provide limited
computational resources capable of simple information aggregation tasks. Although this seems
like an issue, it rather is an asset, leading to low power requirements. More complex analysis can
be performed on more capable hardware that is no longer close to the actual process hardware,
commonly referred to as a cloud-device. Both, cloud- and edge-devices, complement each other
and establish prototypical concepts of IIoT-devices. Figure 2.1.3 shows an exemplary hierarchical
schematic
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2.2 State of the Art

The main contributions of this thesis are in the domain of sensor networks. Specifically, contribu-
tions to co-calibration in homogeneous sub-networks, use of semantic information for initialing
such co-calibration and representation of metrological aspects in the semantic descriptions of
these networks are developed. The following sections provide an outline of the current state of
the art in these fields.

2.2.1 Co-Calibration in Sensor Networks

National Metrology Institutes (NMIs) are concerned with the establishment of measurement units
and their transfer to industry using measurement standards [23]. Therefore, the evaluation and
interpretation of measurement uncertainty play an important role in metrology. Sensor calibration
is a key element of metrology to assess the performance of a sensor in comparison to primary
measurement standards. A calibration is performed at laboratories of NMIs and accredited bodies
against confirmed and maintained references.
Data acquisition and measurement are key components for process control in industrial environ-
ments. Within the development of smart factories (“Industrie 4.0”), additional sensors (“Industrial
Internet of Things”) and exhaustive analysis of this data enables further improvements in terms of
safety, efficiency and quality improvements by exploiting unused capacities [37]. The deployment
of networks consisting of low-cost, small and portable sensors becomes increasingly popular [2]
in this context. Recent applications of sensor networks can be found in any domain with high
sensor counts, e.g., monitoring of technical equipment [38, 39, 40], object detection [41, 42], or
environment surveillance [43, 44, 45, 46]. Typically, the single sensors show reduced accuracy
and reliability compared to established industrial sensors, often accompanied by non-traceable or
missing “calibration” data.
Thorough calibration of low-cost sensors following methods developed at NMIs is usually neither
within budget limits nor feasible due to the sheer number and difficult accessibility of sensors -
especially in industrial contexts. To this end, the term co-calibration is introduced to relate to
a process that mimics the calibration process under conditions and resources available on-site.
Therefore, co-calibration of sensor networks has recently received a lot of attention and several
methods have been suggested for this purpose [45, 46]. Some of these methods make use of an
overall reduction of the number of calibrations through so-called multi-hop methods [47, 48, 49].
Other approaches apply Kalman filtering for drift correction [50, 51, 52, 53].
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Co-calibration (or blind calibration) in sensor networks typically refers to parameter estimation
of a sensor model such that a consensus about the underlying physical phenomenon causing the
sensor readings is found, e.g., the method proposed in [6]. A recent review on low-cost sensor
networks highlights the need for on-site re-calibration to maintain the system’s measurement
performance [54]. Another need in this context is the reliability of the achieved results, which is
described in [55].
Sensor networks are commonly described as communication graphs [6, 49, 56, 57], that allow
flexible grouping of neighboring nodes. Changing topology is considered in [58].
The calibration models encountered in the literature are typical of linear affine type [6, 45, 49,
52, 54, 57, 59, 60, 61, 62, 63]. Non-linear calibration models are observed as well [45, 59, 64],
but no indications of non-static sensor models have been found, i.e., such that the sensor output
depends on the history of the input. The closest match would be a non-ideal transmission by a
fixed transfer function in [56]. A physical phenomenon in [56] is assumed to follow a differential
equation, but this does not seem to be further utilized within the proposed calibration scheme.
In [61] the known dynamics of multiple input phenomenons are used to allow sensors to observe
different phenomenons over time.
Uncertainty of input, output, parameters or estimates is considered in [65] - although without links
to common concepts of metrology. Other papers do not consider uncertainty directly, but provide
convergence analysis of their methods [6, 56, 60]. Another approach to evaluate uncertainty is by
incorporation of Bayesian methods [52, 61], e.g., in [61] distributions for input, output, gain and
offset are approximated and used. However, the mentioned methods lack the rigorous uncertainty
quantification that has been established for single-sensor calibration, e.g., [eichstÃďdt_2012, 8,
66, 67, 68].
It is often assumed that sensor readings of all sensors are available at the same time with
equidistant spacing in time. However, some authors also research the case and influence of
non-ideal timestamps (delayed, lossy, non-synchronous) [6, 56] or are to some extend independent
of them [69]. The majority of the publications mentioned here operate directly on the time-series
data, but other approaches are exploited as well, e.g., [69] is inspired by transfer learning and
adjusts model parameters by comparison of distributions.
Sensor network calibration relies on redundant information about the same physical phenomenon
causing the sensor observations. Therefore, homogeneous sensor networks are of major interest
and refer to sensors that measure the same quantity kind (e.g., [7]) or (in a more specific sense)
measuring the same measurand, implying a certain proximity of the sensors (e.g., [6]). Initially,
dense sensor networks are assumed to provide a sufficient degree of redundancy within the
sensor readings, e.g., [59]. In [60] an abstract limit for the redundancy is found by utilization of
subspace-methods. This idea is adopted in [52, 61, 70].
The co-calibration process can be carried out all at once (e.g., [71]) or continuously on new
available data (e.g., [6]).

2.2.2 Semantics of Sensor Networks

Knowledge representation frameworks have reached a state that allows to express (for most
practically relevant applications) sufficiently complex domain knowledge while staying decidable
within practical limitations [72]. Within the semantic web community, knowledge is mostly
represented using domain specific ontologies and vocabularies based on the web ontology language
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(OWL) [73]. The adoption of a common format simplifies the linking and combination of existing
ontologies, e.g., using manual or (semi-)automated merge and alignment approaches [74]. Multiple
variants of OWL exist to fulfill different needs of expressiveness and reasoning complexity [75, 76].
Evaluations and reasoning over such (distributed) knowledge graphs can be accomplished using
reasoners that make implicit relations explicit (e.g., [77]) and the SPARQL query language which
is designed to operate on knowledge graphs [78]. Other querying languages exist as well [79, 80,
81, 82].
Most current ontologies and vocabularies related to sensors and sensor networks often build on
the technologies of the semantic web [83, 84, 85, 86, 87, 88, 89]. Some knowledge representations
are not (yet) compatible with OWL, but relevant to describe sensor networks in a metrological
sense [30, 31, 90].
The data model of the Digital SI (D-SI, [31]) is the outcome of recent efforts of metrology institutes
and can be used to represent values, units and uncertainties in digital communications. It defines
a data model for the exchange of measurement results and complies with existing metrology
standards, mainly “Le Système internationale d’unités” [24]. The concept of a quantity value
(si:realQuantityType) is specified by a numeric value, unit, optional label, optional timestamp
and optional uncertainty expression (which covers expanded uncertainty, coverage intervals and
multivariate covariances). Recent discussions in the metrologic community have also identified
the quantity kind as an essential part of the measurands description, as equality of units does not
guarantee physically meaningful combinations of two sensor readings [91, 92].
Often, additional information about single sensors is available, e.g., in a (digital) calibration
certificate. This information is so far largely neglected in the development of methods for
the self-calibration of sensor networks. One reason is the use of machine-readable, but not
machine-actionable representations of such knowledge. To this end, the DCC marks a turning
point by designing a structure intended for machine use. The Digital Calibration Certificate
(DCC, [30]) implements a data scheme that aims to replace paper certificates. It therefore
contains administrative data, information about the calibration process, measurement data and a
mathematical description of the identified transfer behavior including an uncertainty quantification.
The resulting XML document is machine-readable and can be electronically signed. At its core,
the DCC characterizes the results of a calibration, i.e., measurement results or mathematical
descriptions of the sensor behavior. While equations are represented as LATEX-style or MathML
expressions, measurement data is provided in the D-SI format.
The D-SI and DCC cover essential aspects of metrology and with that provide a comprehensive
set of metrological core knowledge. However, they do not express the interconnection between
the used concepts (quantity, unit, calibration model, etc.) in a machine-understandable form.
To evolve mere machine-readability into machine-interpretability, the used descriptors need to
be linked together - and with that become semantically enriched concepts. To achieve this, the
following knowledge representation frameworks could provide core concepts that can then be
linked to achieve a semantic description of sensor networks.
The Semantic Sensor Network (SSN, [83]) and Sensor, Observation, Sampling and Actuation
(SOSA, [84]) ontologies are developed by the World Wide Web Consortium (W3C) and the
Open Geospatial Consortium (OGC). They complement each other by providing modular and
broad knowledge representations for sensor applications. While SOSA covers core relations of
sensors, observations, results, measurands and measurement procedures, SSN focusses more on
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the systemic aspect of sensors and sensor networks. In that SSN can be used to annotate detailed
properties, system description, and deployment characteristics for instance. Alignements from
SSN and SOSA to other ontologies are available, and the IoT-focused ontology IoT-Lite [85] is
based on SOSA/SSN.
The Ontology of Units of Measure and Related Concepts (OM, [86]) defines units, quantities,
quantity kinds and measures as concepts. Multiples and products of units can be defined as new
units, e.g., allowing to introduce prefixed units (e.g., “milli-second”) while linking the constituent
concepts. Moreover, many common units and subsets of units for specific fields are predefined.
Conversion to SI units is possible from the available knowledge, and quantity kinds are defined by
their dimensions in the SI base kinds. Measurement results are represented by a numerical value
and unit (and with that implicitly also a quantity). The concept of measurement uncertainty is
not covered by OM.
The Quantities, Units, Dimensions and Types (QUDT, [87]) ontology has a similiar scope as OM
and lists [24] as a key reference. It consists of a central ontology with accompanying vocabularies
for specific unit, quantity and (physical) dimension instances. Quantity dimensions are uniquely
represented using a vector storing the exponents of base dimensions in a chosen unit representation
system (e.g., SI, Imperial, CGS). An extensive list of common quantities, units and systems of
units are predefined and conversions are possible. Units with prefixes (e.g., centi-meter) are
handled as a derived units, hence keeping the link between both and allowing conversion via a
conversion factor. The result of a measurement is called a quantity value, which is specified by a
quantity kind, numeric value, unit and an optional standard uncertainty.
The Engineering Mathematics (EngMath, [90]) ontology allows to describe mathematical models
used in engineering contexts. As such, it provides the semantic concepts relevant to make variables,
physical meaning (quantity kind), units and data dimensionality explicit. These concepts in
general allow to check for dimensional consistency in an automated way. Although it is an
ontology, it is not available as an OWL-ontology, as it was developed before the existence of the
OWL-standard.
Representing spatial information can require both geometrical as well as topological aspects to
define e.g., a proximity relation. The Geographic Query Language (GeoSPARQL, [88]) vocabulary
covers both of these aspects by defining spatial objects and their relations in an abstract way.
Based on this vocabulary, a custom ontology that provides spatial information relevant to a use
case can be created.
The Mathematical Markup Language (MathML, [89]) is developed by the W3C intended to
capture mathematical formula. Two variants exist: while the “presentation markup” aims at
capturing common mathematical notation (e.g., a*b), the “content markup” captures the meaning
of operations (e.g., multiplication(a, b)) and therefore reduces ambiguity from overlapping
notations. MathML is not an ontology, but the content markup provides a semantically expressive
way to serialize mathematical formula by providing links from operators and terms to semantic
definitions through a <semantic> element.



2.3 Fundamentals and Definitions

This chapter provides key concepts of relevant fields, details mathematical aspects and an
introduction to the required terminology. Because the developed co-calibration method is based
on Bayesian inference, the fundamental concepts of this framework are also provided. Moreover,
the concept of uncertainty evaluation and propagation according to metrological standards is
presented. Relevant definitions from the field of sensor calibration and sensor networks are either
quoted or formulated to establish a common understanding of the concepts used throughout this
thesis. An introduction of semantic knowledge representation and reasoning is given to prepare
the use of these methods in sensor network contexts.

2.3.1 Bayesian Framework

Bayesian statistics is characterized by modeling all (latent and observable) unknowns as random
variables - which contrasts classical statistics, where only observable variables are modeled [93].
This is a consequence of the meaning that the term “probability” has in Bayesian statistics:
rather than using it in the (frequentist) sense of a “rate of occurrence”, it is seen as a “degree of
belief”. This fundamentally different notion allows to assign a probability to latent variables. In
the majority of practically relevant cases, the knowledge about an unknown (numerical) variable
θ
¯

can then be expressed using a probability density function (PDF) p(θ
¯
) [94].5

Definition 1 (probability density function properties, [95]). Let θ
¯

∈ RN with N ∈ N be a
N -dimensional parameter. Then a probability density function p : [95]

• maps from RN → R
• is non-negative: ∀θ

¯
∈RN p(θ

¯
) ≥ 0

• covers all possibilities:
∫
RN p(θ

¯
)dθ

¯
= 1

Hence, a variable is not characterized by a single value, but by a range of possible values each
with potentially different probability.
The process of updating existing beliefs based on new evidence (e.g., experimental data) is
called Bayesian inference [94]. It utilizes the Bayesian theorem, which is based on conditional
probabilities and provides its own interpretation of the result.

5Although out of scope, it should be noted that in the general case not every random variable necessarily has a
PDF.
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Theorem 1 (Bayes Theorem [94]). Let p(θ
¯

) be a probability density function of a parameter
θ
¯

∈ RN and X
¯

∈ RM some new experimental data whose distribution depends on θ
¯

. Then the
updated belief p(θ

¯
|X
¯

) (read “θ under the condition that X
¯

was observed”) is: [94]

p(θ
¯

|X
¯

) = p(X
¯

|θ
¯

) · p(θ
¯

)
p(X

¯
) (2.3.1)

∝ p(X
¯

|θ
¯

) · p(θ
¯

) (2.3.2)

Where p(θ
¯

) is commonly referred to as the prior (belief), p(X
¯

|θ
¯

) the likelihood, p(θ
¯

|X
¯

) the posterior
(belief) and p(X

¯
) the model evidence.

In order to use this formula in practical applications, further assumptions are necessary. A suitable
prior is required, which can include informative choices based on expert knowledge (typically
leading to PDFs with narrow bands of high density) or non-informative choices (leading to very
wide bands of non-zero density). The likelihood (which is seen as a function of θ

¯
) needs to provide

an answer to the question “How likely are the observed data, given some value of θ
¯
?” and with

that models the relation between parameters and data. Once assumptions on prior and likelihood
are established, the posterior can be evaluated using analytical (preferred, but often unfeasible),
numerical (e.g., evaluating an analytical solution on a discrete grid) or sampling based (e.g.,
Markov-Chain-Monte-Carlo (MCMC)) methods.

2.3.2 Uncertainty Evaluation

Uncertainty propagation in metrology typically refers to the “Guide to the expression of uncertainty
in measurement” (GUM) and its specialized parts [8, 96, 97, 98]. The different documents have
individual scopes:

• GUM-3: uncertainty evaluation for scalar quantities depending on multiple scalar input
quantities using a first order approximation [8]

• GUM-7: uncertainty evaluation for scalar quantities depending on multiple scalar input
quantities using Monte Carlo simulations [96]

• GUM-8: uncertainty evaluation for vector quantities depending on multiple input quantities
(first order and Monte Carlo) [97]

• GUM-6: guidance on the development and use of (dynamic) measurement models [98]

Uncertainty evaluation in the GUM is a three stage process of: formulation of model assumptions,
propagation of uncertainty (or of complete distributions associated with the input quantities)
through the model and summarizing the propagation result in terms of an estimate and its
associated uncertainty [97].
In the formulation stage, a measurement function f

¯
: RN → RM is required that relates the

sought quantity Y
¯

∈ RM to the input quantities X
¯

∈ RN :

Y
¯

= f
¯
(X

¯
) (2.3.3)

The model f
¯

can be a placeholder for explicit mathematical equations or involved algorithms.
The knowledge about X

¯
is specified by a (joint) probability density function (PDF) g

¯X
¯

or by
stating an estimate x̂

¯
of X

¯
along with a covariance matrix Ux̂.
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The propagation stage then yields either a PDF g
¯Y

¯
representing the knowledge about the

measurand Y
¯

, or an estimate y
¯

with a covariance matrix Uy. The evaluation of the propagation
stage can use (1) analytical methods, (2) the law of propagation of uncertainty or (3) Monte
Carlo methods. Analytical methods result in non-approximative mathematical representation
of g

¯Y
¯
, but the required calculations only remain manageable for simple measurement models

and PDFs. To keep calculations manageable and often still maintain a sufficient treatment,
the “law of propagation of uncertainty” proposes to perform the propagation using a first order
approximation of f

¯
. The resulting estimate y

¯
of the measurand Y

¯
is obtained by inserting the

estimate x
¯

of the input quantity X
¯

into the functional relationship (equation (2.3.3)). The
associated covariance matrix Uy is calculated from the covariance of the inputs Ux and the
sensitivity C of the measurement function f

¯
[97]:

Ux = V(X
¯

) (2.3.4)

C =


∂f1
∂X1

. . . ∂f1
∂XN... . . . ...

∂fM

∂X1
. . . ∂fM

∂XN

 (2.3.5)

Uy = V(Y
¯

)
= CUxCT (2.3.6)

As a second alternative to the analytical propagation, Monte Carlo methods (MCM) can be used to
propagate samples of the PDF associated with the input quantity through equation (2.3.3), yielding
a comprehensive empirical representation of the output PDF. The MCM draws independent
samples x

¯i from the PDF g
¯X

¯
and for each sample the model (equation (2.3.3)) is evaluated. The

resulting samples y
¯i

then provide independent samples from the output’s PDF g
¯Y

¯
. This takes

full account of non-linearities in the measurement model. MCMs are usually computationally
intensive (depending on the chosen number of drawn samples (“runs”) and the complexity of f

¯
).

The summary stage provides an expected output value with corresponding uncertainty. Therefore,
applying a propagation of distributions, the estimate y

¯
and covariance Uy of the output quantity

Y
¯

are given by the expectation and covariance operator:

y
¯

= E(Y
¯

) (2.3.7)
Uy = V(Y

¯
) (2.3.8)

To extract the same information from the result of an MCM, expectation and covariance matrix
can be estimated according to:

y
¯

= 1
m

m∑
i=1

y
¯i

(2.3.9)

Uy = 1
m− 1

m∑
i=1

(y
¯i

− y
¯
)(y

¯i
− y

¯
)T (2.3.10)

The GUM approach is mapped to measurements of sensors with dynamic transfer behavior in [66,
98, 99, 100].
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2.3.3 Sensor Calibration and Transfer Behavior

The International vocabulary of metrology (VIM) distinguishes between a sensor and a measuring
system [3]. While the sensor is the physical element influenced by the measurand, the measuring
system can consist of multiple sensors and also covers the operation of and information retrieval
from the sensor(s).

Definition 2 (measuring system, [3, VIM 3.2]). set of one or more measuring instruments and
often other devices, including any reagent and supply, assembled and adapted to give information
used to generate measured quantity values within specified intervals for quantities of specified kinds

Definition 3 (sensor, [3, VIM 3.8]). element of a measuring system that is directly affected by a
phenomenon, body, or substance carrying a quantity to be measured

However, to adopt the common use of the term sensor (and sensor network), in this thesis a sensor
also refers to what the VIM defines as a measuring system with a single measuring instrument.

Definition 4 (sensor). A sensor is a device, that is directly affected by a physical phenomenon
x(t) at a time t and provides an indication y(t).

No sensor is ideal and it is of interest to quantify the relation between actual measurand values
and the indicated values by comparing them to reference measurements. Such knowledge then
allows to propose a relation that maps indications to measurand values, but only at a certain
level of accuracy. This task is called a calibration, which the VIM defines as:

Definition 5 (calibration, [3, VIM 2.39]). operation that, under specified conditions, in a first
step, establishes a relation between the quantity values with measurement uncertainties provided by
measurement standards and corresponding indications with associated measurement uncertainties
and, in a second step, uses this information to establish a relation for obtaining a measurement
result from an indication

To understand the importance of sensor calibration as a cornerstone of the quality infrastructure,
the (metrological) concepts of uncertainty, reference and traceability are required. Metrology
assesses the quality of measurements and the central indicator for this is the uncertainty:

Definition 6 (uncertainty, [3, VIM 2.26]). non-negative parameter characterizing the dispersion
of the quantity values being attributed to a measurand, based on the information used

Depending on the level of uncertainty in its measurement values, a measuring device might be
suitable to estimate the error of another sensor and check for consistency in terms of quoted
uncertainties. This device is then called a reference device:

Definition 7 (reference measurement procedure, [3, VIM 2.7]). measurement procedure accepted
as providing measurement results fit for their intended use in assessing measurement trueness of
measured quantity values obtained from other measurement procedures for quantities of the same
kind, in calibration, or in characterizing reference materials

A special case are primary references which are not traceable but directly constructed by convention
or based on fundamental constants stated in the SI [24]. A quality anchor for these standards are
key comparisons [101].
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To calibrate a new reference device, an existing calibrated reference is required. To resolve this
recursive logic, the chain of calibration needs to start at a primary reference. This chain is the
essence of metrological traceability and another cornerstone of the quality infrastructure:
Definition 8 (metrological traceability, [3, VIM 2.41]). property of a measurement result whereby
the result can be related to a reference through a documented unbroken chain of calibrations, each
contributing to the measurement uncertainty

Therefore, calibrations are the links that establish traceability and with that enable trust in a
measurement by relating ultimately to the same primary reference and quantifying the uncertainty.
In the literature, the term “in-situ calibration” is used to denote calibrations at the place of use
of a sensor and is established thoroughly by the works of Delaine, Lebental, and Rivano [46, 102].
Definition 9 (in-situ calibration algorithm, [102]). In situ calibration algorithms aim at calibrating
measuring instruments while leaving them in the field, preferably without any physical intervention.

The term “in-situ calibration” (as used in [102]) is deliberately chosen to cover a wide range of
procedures. However, only a reference-based definition can maintain traceability in the calibration
results. Also, it is not always possible to introduce additional metrological equipment into a sensor
network. Therefore, definition 10 introduces the term co-calibration as an important subclass of
in-situ calibrations, which allows to maintain traceability.
Definition 10 (co-calibration). An in-situ calibration relying solely on available and traceable
measurement information in a sensor network. This includes cases, in which no (official) reference
measurement procedure is available, but instead a virtual reference is formed from a homogeneous
and collaborative sensor network. Using the taxonomy introduced in [102], this corresponds to a
“reference-based group-wise in-situ calibration”.

A special case of this is a homogeneous co-calibration using only reference sensor that are spatially
close (co-location) and measure the same quantity.
Definition 11 (homogeneous co-calibration). A co-calibration that is performed in a homogeneous
sensor network (definition 17)).

Mathematically, a calibration operation requires to describe the sensor’s transfer behavior,
measurement data and a regression task to estimate the former from the latter. Such a model is
often called the transfer behavior of the sensor.
Definition 12 (sensor transfer behavior). A mathematical model that characterizes the input-
output-behavior of the sensor, typically a parameterized model structure fθ

¯
with parameter θ

¯
[103].

The input x(t) is the time-resolved value of the measurand (physical phenomenon), the output y(t)
is a time series of indications of the sensor.

y(t) = fθ
¯

(x(t)) (2.3.11)

Depending on whether the output of this model depends on the history of the input, the model is
called dynamic (if yes) or static (if not). 6

The calibration task can then be formulated as follows using the formalism established in the
“Guide to the expression of uncertainty in measurement” (GUM [8, 96], see section 2.3.2). The
same (unknown) measurand ψm(t) is simultaneously measured using a reference sensor and the
sensor under test at k discrete points in time t0, ..., tk−1. The reference sensor provides a discrete

6Note, that a time-dependent (input or) output does not imply a dynamic transfer behavior.
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time series ψ
¯r

that is taken as the expected value of an associated PDF g
¯r

(which allows to
quantify the uncertainty). Similarly, the sensor under test provides a discrete time series ψ

¯c
that

can optionally be assigned with an associated PDF g
¯c

, such that

ψ
¯

∗
r

∼ g
¯r

with E(ψ
¯

∗
r
) = ψ

¯r
= [ψr(t0), . . . , ψr(tk−1)] (2.3.12)

ψ
¯

∗
c

∼ g
¯c

with E(ψ
¯

∗
c
) = ψ

¯c
= [ψc(t0), . . . , ψc(tk−1)] (2.3.13)

A (regression based) method f
¯cal can then extract a parameter estimate θ̂

¯
for the assumed model

structure f
¯θ

¯
. In the estimation routine the initial knowledge of the sought parameter θ

¯
can be

quantified using a PDF g
¯θ0

, such that

θ
¯

∗
0 ∼ g

¯θ0
(2.3.14)

This leads to the following choices for X
¯

, Y
¯

and f
¯

of equation (2.3.3) and allows to quantify the
uncertainty of the parameter estimate θ̂

¯
using the propagation stage (section 2.3.2):

X
¯

=

ψ¯∗
r

ψ
¯

∗
c
θ
¯

∗
0

 ∼

 g¯r
g
¯c
g
¯θ0

 (formulation)

Y
¯

= f
¯cal(X¯

) (propagation)

θ̂
¯

= E(Y
¯

) , Uθ̂
¯

= V(Y
¯

) (summarizing)

2.3.4 Sensor Networks

Multiple definitions of the term sensor network coexist for different applications. For instance,
if the use case depends on whether or not a sensor can exchange data with another sensor to
form an evaluation consensus the network could be represented as a graph of the connectivity
of nearby sensors and neighborhood-properties [6, 104]. In another example, all sensors might
be connected via a wired network-connection, and a useful graph representation (rather than
the all-to-all connectivity graph) would cover how sensors arrange along a monitored industrial
process [105]. A very broad definition of a sensor network is given in definition 13. This definition
covers different relations constituting the network, but also distinguishes a sensor network from a
mere set of sensors by requiring that there exists the possibility to combine sensor readings of
different sensors.

Definition 13 (sensor network). A set of two or more sensors (measuring devices) that are
linked by purpose, connectivity, proximity, measurand, quantity kind, or other relationships. There
exists at least one evaluation node that has the ability to access at least two sensors.

Definition 14 (evaluation node). place, where an evaluation routine or method is (computa-
tionally) executed. This functionality can be part of a sensor or some specialized centralized
service.

It is physically not possible to have multiple sensors at the exact same place. However, sensor
that are spatially close could still measure the same quantity in practical terms. This region is
called a co-location and defined in definition 15.
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Definition 15 (co-location). Two sensors are co-located, if they are in spatial proximity. The
usable proximity region depends on the underlying physical process, e.g. symmetry, topology or
homogeneity of the observed quantity.

Two further specializations of a sensor network are of interest.

Definition 16 (transient sensor network). A sensor network is called transient, if the set of
sensors or their relations change over time, e.g., sensors are added or removed, or the connectivity
changes.

Definition 17 (homogeneous sensor network). A sensor network is called homogeneous, if all its
sensors observe the same quantity kind in direct or co-located proximity, i.e., the network observes
the same measurand.

Sensors provide measurement data. Typically, the measurement is repeated continuously at a
(potentially changing) rate, yielding temporally resolved measurements. The data has no obvious
beginning or end, but is available in the form of a (endless) stream. Such sensor data streams
provide the most recent measurement information of each sensor in the network.

Definition 18 (sensor data stream). A time-series of sensor data that only becomes available in
blocks of finite length.

2.3.5 Knowledge Representation, Semantic Expressiveness
and Reasoning

Semantics is the study of the meaning of concepts and symbols [106]. The meaning of a concept can
often be captured by highlighting its relations to other concepts, forming a graph of knowledge.
This can be formalized by logical expressions and with that made machine-actionable. The
knowledge formalization often builds on the framework of description logic (DL), which combines
concepts and roles using axioms and predefined constructors. [72]
Every DL consists of terminological axioms, which define that one concept (or role) includes or
equals another concept (or role). Additionally, assertional axioms allow to specify that an element
is an instance of a certain concept or relate two elements by a relation. More complex concepts
and roles can be created using predefined logical constructors and every such combination is
again a concept or role within this DL7. The chosen set of available constructors defines the
expressiveness of the DL. [107]
An interpretation I links concepts or roles to a (set) expression that allows evaluation of matching
instances within a given domain ∆. The interpretation of a concept C is given by CI ⊆ ∆I and
the interpretation of a role R is given by RI ⊆ ∆I × ∆I .
The OWL 2 Web Ontology Language provides a practical implementation of a DL and builds on
RDF. As such, it is an important part of the technology stack of the Semantic Web. The basic
axioms, concept constructors and role constructors of the OWL2 DL are stated in tables 2.3.1
and 2.3.2 using concepts C, D, roles R, S and individuals a, b and c. Moreover, OWL2 DL

7Description logics have their own naming convention, which is based on the included constructors. However,
the scheme is not detailed here, but can be found, e.g., in [107].
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supports some axioms and constructors for datatypes. By relying on the stated constructors, the
OWL2 DL provides the base for expressive domain description. However, this expressiveness
can lead to undecidable or very complex (NP-Hard) computations if all allowed constructors of
OWL2 DL are considered.
To increase computational efficiency for tasks that do not require full expressive power, OWL2
defines profiles which only support subsets of the OWL2 DL constructors [76]. Three profiles are
provided: OWL2 EL for ontologies with a large number of properties or classes (but not too high
expressive needs, like e.g., inverse property, symmetry or disjointness) as well as OWL2 QL and
OWL2 RL for smaller ontologies from which a large number of individuals is constructed. It is
beneficial to check against the full profile specifications [76] whether an application fits without a
(major) loss in expressive power into one of these profiles, as computational complexity can be
significantly reduced.
Based on the base axioms and constructors available within a DL, a domain of knowledge can
be modeled, which is often referred to as ontology engineering. Evaluation of an ontology is
(among other things) achieved by formulating competency questions (CQs) which specify design
goals for an ontology [108]. These CQs define the requirements of an ontology by outlining
what information needs to be available and how potential applications access or retrieve this
information.

2.3.6 On the Use of Pre-Knowledge and Prior Knowledge

In this thesis, pre-knowledge and prior knowledge refer to distinct but related concepts. Pre-
knowledge is the semantic information that is available in advance about sensors in a network.
This includes a very broad range of properties and relations and the details of it are discussed in
chapter 3.2. The terms prior, prior knowledge or prior belief refer to the mathematical object
which quantifies the degree of belief of some variable. As such, it is primarily used in the
description of the mathematical core of the co-calibration method in chapter 3.1. Despite the
differences between these two terms, specific pre-knowledge can be used to deduce prior knowledge.
This is conceptualized in chapter 3.3.



Axiom / Constructor Notation Interpretation
inclusion SubClassOf(C,D) CI ⊆ DI

equivalence EquivalentClasses(C1, . . . , Cn) ∀1≤i,j≤nC
I
i = CI

j

disjointedness DisjointClasses(C1, . . . , Cn) ∀1≤i,j≤n;i ̸=jC
I
i ∩ CI

j = ∅
disjoint union DisjointUnion(C,C1, . . . , Cn) CI =

⋃
1≤i≤n C

I
i and DisjointClasses(C1, . . . , Cn)

assertion ClassAssertion(C, a) aI ∈ CI

intersection⋆ ObjectIntersectionOf(C1, . . . , Cn)
⋂

1≤i≤n C
I
i

union⋆ ObjectUnionOf(C1, . . . , Cn)
⋃

1≤i≤n C
I
i

complement⋆ ObjectComplementOf(C) ∆I\CI

one-of⋆ ObjectOneOf(a1, . . . , an)
{
aI

1 , . . . , a
I
n

}
existential restriction⋆ ObjectSomeValuesFrom(R,C)

{
a|∃b ∈ ∆I s.t. (a, b) ∈ RI and b ∈ CI}

value restriction⋆ ObjectAllValuesFrom(R,C)
{
a|∀b ∈ ∆I , if (a, b) ∈ RI , then b ∈ CI}

has value⋆ ObjectHasValue(R, a)
{
b|(b, a) ∈ RI}

is reflexive ObjectHasSelf(R)
{
a|(a, a) ∈ RI}

qualified min. restriction⋆ ObjectMinCardinality(n,R)
{
a|

∣∣{b ∈ ∆I |(a, b) ∈ RI and b ∈ CI}∣∣ ≥ n
}

qualified max. restriction⋆ ObjectMaxCardinality(n,R)
{
a|

∣∣{b ∈ ∆I |(a, b) ∈ RI and b ∈ CI}∣∣ ≤ n
}

qualified exact restriction⋆ ObjectExactCardinality(n,R)
{
a|

∣∣{b ∈ ∆I |(a, b) ∈ RI and b ∈ CI}∣∣ = n
}

equivalence SameIndividual(a1, . . . , an) ∀1≤i,j≤na
I
i = aI

j

non-equivalence DifferentIndividuals(a1, . . . , an) ∀1≤i,j≤n;i ̸=ja
I
i ̸= aI

j

Table 2.3.1: Concept axioms and expressions supported by the OWL2 description logic. Entries marked with ⋆ are available for datatype
classes. [72, 107, 109, 110]



Axiom / Construc-
tor

Notation Interpretation

inclusion⋆ SubObjectPropertyOf(R,S) RI ⊆ SI

equivalence⋆ EquivalentObjectProperties(R1, . . . , Rn) ∀1≤i,j≤nR
I
i = RI

j

disjointedness⋆ DisjointObjectProperties(R1, . . . , Rn) ∀1≤i,j≤n;i ̸=jR
I
i ∩RI

j = ∅
assertion⋆ ObjectPropertyAssertion(R, a, b) (aI , bI) ∈ RI

negative assertion⋆ NegativeObjectPropertyAssertion(R, a, b) (aI , bI) /∈ RI

chaining ObjectPropertyChain(R,S1, . . . , Sn) ∀a0, . . . , an : ∧1≤i≤n(ai−1, ai) ∈ SI
i =⇒ (a0, an) ∈ RI

inverse InverseObjectProperties(R,S) ∀a, b : (a, b) ∈ RI =⇒ (b, a) ∈ SI

domain⋆ ObjectPropertyDomain(R,C) ∀a, b : (a, b) ∈ RI =⇒ a ∈ CI

range⋆ ObjectPropertyRange(R,C) ∀a, b : (a, b) ∈ RI =⇒ b ∈ CI

functional⋆ FunctionalObjectProperty(R) ∀a, b, c : (a, b) ∈ RI and (a, c) ∈ RI =⇒ b = c
inverse functional InverseFunctionalObjectProperty(R) ∀a, b, c : (a, c) ∈ RI and (b, c) ∈ RI =⇒ a = b
reflexivity ReflexiveObjectProperty(R) ∀a : (a, a) ∈ RI

irreflexivity IrreflexiveObjectProperty(R) ∀a : (a, a) /∈ RI

symmetry SymmetricObjectProperty(R) ∀a, b : (a, b) ∈ RI =⇒ (b, a) ∈ RI

asymmetry AsymmetricObjectProperty(R) ∀a, b : (a, b) ∈ RI =⇒ (b, a) /∈ RI

transitive closure TransitiveObjectProperty(R) ∀a, b, c : (a, b) ∈ RI and (b, c) ∈ RI =⇒ (a, c) ∈ RI

Table 2.3.2: Role axioms and expressions supported by the OWL2 description logic. Entries marked with ⋆ are available for datatype
properties. [72, 107, 109, 110]
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3.1 Development of a Consensus Based
Co-Calibration Method

In this chapter, the mathematical details of the developed co-calibration methods are provided. At
its core, a co-calibration provides traceable8 estimates of the parameters defining a sensor’s transfer
behavior given uncertain input data. Hence, it belongs to the class of parameter estimation
methods. On a high-level, the method works as shown in figure 3.1.1.

calculate posterior estimate
of parameters terminate

check continuation
conditions, e.g. achieved

accuracy, number  
of cycles

obtain new data

Figure 3.1.1: High-level overview of the proposed co-calibration method.

The method is supposed to have the following properties in order to fit the set context:

• online applicability
• robustness with regard to the number of input reference sensors
• robustness with regard to outliers
• robustness with regard to non-equidistant time-bases
• inclusion of pre-knowledge (by transferring it to prior knowledge, see chapter 3.3)
• traceable results

These requirements can be translated into the following development choices:

• interpolation resolves non-synchronous and non-equidistant time-bases [12, 15]
• sensor fusion allows consolidation of a varying amount of input reference sensors
• robust sensor fusion allows rejection of possible outliers [16, 17]
• working iteratively on blocks of available data and updating an internal abstract state of the

method enables online capabilities [14]
8More details are provided in section 3.1.6
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• Bayesian methods allow to include prior knowledge and quantify uncertain information
• uncertainty evaluation enables traceability

In figure 3.1.2, these guiding choices are brought together to visualize the input, output and
internal structure of such a co-calibration method. The details are then given in the following
sections.



sensor fusion

(adapted key
comparison)

Bayes update

Xai = Xoi + ε̃i

Y = aXai + b + εi

p(a, b, σy, Xa|Y, Xo)

∝ p(Y |Xa, a, b, σy, Xo)·
p(a, b, σy)

distribution
fitting

(mainly Laplace
approximation)

internal state

[x1(tk), . . . , x1(tk+n−1)] + unc.

online co-calibration methodblockwise data

[x2(tk), . . . , x2(tk+n−1)] + unc.

[xn(tk), . . . , xn(tk+n−1)] + unc.

...

[y(tk), . . . , y(tk+n−1)]

a, ua

b, ub

σy, uσy

Figure 3.1.2: Outline of the mathematical method.
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3.1.1 Input Structure

The online co-calibration method expects blockwise time-synced input data, i.e., an interpolation
is usually required. Moreover, to maintain traceability after the interpolation to a common time-
base, an uncertainty aware interpolation method needs to be chosen. Uncertainty propagation for
various interpolation schemes are provided [10, 11] and have been implemented and applied by
the author in [15].
Achieving online capable interpolation, however, is more involved. To achieve matching inter-
polation results between online and offline application, the interpolation influence needs to be
locally bounded. This practically reduces the choice to zero- or first-order interpolation schemes.
Smooth interpolation schemes like cubic-spline interpolation do not fulfill these criteria. Although
the splines are themselves locally bounded, the calculation of their coefficients is an optimization
over the whole available time-interval. Hence, smooth online interpolation can only estimate
spline coefficients, e.g., using a Kalman filter [12].
After the interpolation, the blockwise data consist of n measurement values xj(ti) (with i =
k, . . . , k + n− 1 and j = 1, . . . , N) of each of the N reference sensors and the indicated values
y(ti) (with i = k, . . . , k + n− 1) of the sensor to be co-calibrated. For each measurement value of
the reference sensors a corresponding standard uncertainty u(xj(ti)) is known. Some of these
readings can be empty, e.g., because of communication issues or the sample rate of a sensor being
too low.

3.1.2 Sensor Fusion

The input reference sensor data xj(ti) is fused into a single time series x(ti) by performing a
sensor fusion at every available time ti. The procedure is motivated by a structurally similar
approach from the field of key comparison among national metrology institutes (NMIs) [101] and
has been published by the author in [16, 17]. This procedure follows a frequentist approach to
the sensor fusion task. Bayesian sensor fusion methods are described as well (e.g., [111, 112, 113,
114]), but were not employed in favour of the well established key-comparison-based approach.
The main idea of the chosen procedure is to robustify an uncertainty-weighted mean with an
uncertainty-aware outlier detection.
In a first step, the weighted mean xfusion(ti) of all reference sensors with valid readings is
calculated according to definition 19 and theorem 2 by setting the set of considered sensors
to CS = {1, . . . , N}. The weights γj are set to the inverse squared standard uncertainty, such
that more certain values are weighted higher. In a second step, a χ2-test for outlier detection is
performed and the set of considered sensors CS is adjusted as detailed in theorem 3. The chosen
hypothesis allows more uncertain sensors to deviate further from the (assumed) value. If some
xj(ti) are identified as outliers by this test, xfusion(ti) is recalculated with the updated CS . If all
xj(ti) are identified as outliers by this test, xfusion(ti) is set to the median of all xj(ti).

Definition 19 (Sensor Fusion using Weighted Mean). The weighted mean of input values xj(ti)
with uncertainty u(xj(ti)) is

xfusion(ti) = 1
k

∑
j∈CS

γjxj(ti) (3.1.1)
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with weights

γj = 1
u(xj(ti))2 k =

∑
j∈CS

γj (3.1.2)

Theorem 2 (Uncertainty of Weighted Mean). The uncertainty of the fused value xfusion(ti)
calculated as in definition 19 is given by

u(xfusion(ti))2 =
∑

j∈CS

(γj

k

)2
u(xj(ti))2 (3.1.3)

Proof. Assuming that the xj(ti) are not correlated, the uncertainty u(xfusion(ti)) of xfusion(ti) is
a direct application of the “law of propagation of uncertainty” given in the GUM [8].

Theorem 3 (Outlier Detection). Given the setting in definition 19, outliers in the input values
xj(ti) are detected using a χ2-test with null hypothesis “The observed measurements come from
normal distributions with mean yfusion(ti) and variance u(xj(ti))2.”. The observed χ2

obs-value is
then calculated as

χ2
obs =

∑
j

(
xj(ti) − xfusion(ti)

u(xj(ti))

)2
(3.1.4)

p = 1 − Fχ2,N−1(χ2
obs) (3.1.5)

with Fχ2,n being the cumulative distribution function of a χ2-distribution with n degrees of freedom.
If p < 0.05, it is assumed that outliers are present in the data and set CS of non-outlier values
xj(ti) is given by

CS = {j if |∆j | ≤ 2 ∗ u∆j
} (3.1.6)

with

∆j = xj(ti) − xfusion(ti) u∆j
= u(xj(ti))2 − u(xfusion(ti))2 (3.1.7)

Remark: The hypothesis allows more uncertain sensors to deviate further from the (assumed)
value.

Proof. This follows the approach presented in [16, 17] and follows the methodology of Cox
[101].

3.1.3 Bayesian Update

The Bayesian update is the core of the co-calibration method. While the details and variants of
it are described in the following subsections, the more general question “Why is this providing
traceable results?” is of equal importance and answered in section 3.1.6.
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3.1.3.1 Setup

Sensors with an ideal linear affine measurement function from measurand x to indication y are
considered, as defined in definition 20. This corresponds to the most popular choice considered in
the literature (see chapter 2.2) and allows to represent a first order Taylor approximation of the
true transfer behavior. For sensors with such a transfer model, it is of interest to infer knowledge
about the gain a and offset b based on (multiple) observations of x and y.

Definition 20 (Sensor Transfer Model). A linear affine transfer behavior is characterized by its
gain a and offset b. Given some input x(t), the output y(t) is obtained by

y(t) = a · x(t) + b

= f(x(t), θ
¯

) with θ
¯

=
[
a
b

]
(3.1.8)

This adopts the nomenclature and notation of the GUM and VIM [3, 8].

The measurand x is not known directly, but only through observation by a reference sensor. This
leads to a statistical model describing the relations between the measurand, indications of the
reference sensors and indications of the device under test. The (fused) reference device does not
provide the actual (true) value of the measurand Xai but an observed value Xoi = xfusion(ti) that
differs by an (unknown) error term ε̃i. Knowledge about the distribution of ε̃i can be derived
from the uncertainties u(t) = u(xfusion(t)) of the (fused) reference device. The indication Yi of
the DUT differs from the ideal model f(Xai, θ¯

) by an error εi. The distribution of εi is not fully
known and needs to be identified as part of the calibration process. The statistical model is
summarized by definition 21.

Definition 21 (Statistical Model of Sensor Indications). A statistical model for the described
setting is given by [115]

Yi = f(Xai, θ¯
) + εi (3.1.9)

Xoi = Xai + ε̃i (3.1.10)

with (true) measurand values Xai, device under test indications Yi, reference sensor indications
Xoi and device under test transfer behavior f(Xai, θ¯

) as in definition 20.
In this thesis, θ

¯
, Xa

¯
and σy are unknowns and the following assumptions on the distributions of

the errors are made

εi ∝ N (0
¯
, σ2

y · In) (3.1.11)
ε̃i ∝ N (0

¯
,Ux) (3.1.12)

Ux =

u
2(tk)

. . .
u2(tk+n−1)

 (3.1.13)

Sensor readings required for the co-calibration process become available in blocks of data ∆,
which take the structure given in definition 22.
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Definition 22 (Available Datapoints). Available datapoints take the form of δ
¯ i and the proposed

method operates on a set ∆ containing n datapoints δ
¯ i at a time.

δ
¯ i = [ti, y(ti), x(ti), ux(ti)]T

= [ti, Yi, Xoi, σxi]T (3.1.14)
∆ = {δ

¯ k, δ¯ k+1, . . . , δ¯ k+n−1} (3.1.15)

The joint distribution of the mentioned variables is p(θ
¯
, Xa

¯
, σy, Y¯

, Xo
¯
, σx︸ ︷︷ ︸

∆

) . The parameters θ
¯
, the

actual measurand values Xa
¯

and σy are unknown. The main interest lies in inferring knowledge
about these unknowns from the measurement data ∆ via Bayesian inference. Two common
solutions to this inference task are considered [116, 117, 118]. Method 1 (section 3.1.3.2) describes
the details of an MCMC-based method and method 2 (section 3.1.3.3) evaluates the posterior on
a discrete grid. In both approaches, the initial prior and the likelihoods are chosen in the same
way.
The initial choice for the prior is given by definition 23. After that, the prior is set9 to the posterior
of the previous iteration. Note that, given the Bernstein-von Mises theorem, the influence of the
initial prior diminishes given enough data [119].
Definition 23 (Informative Joint Prior Distribution). Assuming (a, b, σy) ∼ N (µa, σ

2
a) ×

N (µb, σ
2
b ) × InverseGamma(α, β) leads to the following PDF of the initial prior:

p(σy, θ¯
|Xa
¯

) = p0(a, b, σy)

= 1√
2πσ2

a

exp
{

− 1
2σ2

a

(a− µa)2
}

·

1√
2πσ2

b

exp
{

− 1
2σ2

b

(b− µb)2
}

·

βα

Γ(α)σ
−α−1
y exp

{
− β

σy

}
(3.1.16)

The likelihoods used in theorems 4 and 9 are given by definition 24.
Definition 24 (Likelihoods). Taking a Gaussian approach, the likelihoods used in equations (3.1.20)
to (3.1.22) and (3.1.28) are given by:

p(Y
¯

|Xa
¯
, θ
¯
, σy) ∝ 1√

(σ2
y)N

exp
{

− 1
2σ2

y

N∑
i=1

(Yi − f(Xai, θ¯
))2

}
(3.1.17)

p(Xa
¯

|Ux, Xo
¯

) ∝ 1√
|Ux|

exp
{

−1
2(Xa

¯
−Xo

¯
)T Ux

−1(Xa
¯

−Xo
¯

)
}

(3.1.18)

3.1.3.2 Method 1: Posterior Evaluation using Block-Gibbs-Sampling

One solution to obtain an MCMC method for the inference on a, b, σy and Xa
¯

is given by
theorem 4.

9Slight adjustments like a distribution fit onto the empirical Monte Carlo result or interpolation onto a new
grid are used.
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Theorem 4 (Equations of a Gibbs Sampler). The conditional for the posterior of the unknown
variables [115]

p(θ
¯
, Xa

¯
|Y
¯
, Xo

¯
)︸ ︷︷ ︸

posterior

∝ p(Y
¯

|Xa
¯
, θ
¯
, Xo

¯
)︸ ︷︷ ︸

likelihood

p(θ
¯
, Xa

¯
|Xo
¯

)︸ ︷︷ ︸
prior

(3.1.19)

leads to the following conditionals of a Gibbs Sampler:

p(Xa
¯

|θ
¯
, σy, σx, Y¯

, Xo
¯

) ∝ p(Y
¯

|Xa
¯
, θ
¯
, σy)p(Xa

¯
|σx, Xo

¯
) (3.1.20)

p(θj |θ(j), Xa
¯
, σy, Y¯

) ∝ p(Y
¯

|Xa
¯
, θ
¯
, σy) p(θj |θ(j), Xa

¯
, σy)︸ ︷︷ ︸

assume p(θj)

(3.1.21)

p(σy|θ
¯
, Xa

¯
, Y
¯

) ∝ p(Y
¯

|Xa
¯
, θ
¯
, σy) p(σy|θ

¯
, Xa

¯
)︸ ︷︷ ︸

assume p(σy)

(3.1.22)

and defines an MCMC method.

Proof. Adaption of the equations provided by Dellaportas et al. [115] to the assumptions made in
definitions 20 and 21.

The Block-Gibbs-Sampling method requires a description of the posterior distribution of each
unknown variable. Theorems 5 to 8 provide the explicit expressions for the posteriors given in
theorem 4.

Theorem 5 (Explicit Posterior of Xa
¯

). The explicit posterior of Xa
¯

is given by:

p(Xa
¯

|θ
¯
, σy, σx, Y¯

, Xo
¯

) ∝ exp
{

−1
2(Xa

¯
−M

¯
)T V −1(Xa

¯
−M

¯
)
}

(3.1.23)

Which corresponds to a multivariate Gaussian N (M
¯
,V ) with

M
¯

= V (Ux
−1Xo

¯
+ F2

¯
) F1 = a2

σ2
y

· IN

V −1 = (F1 + Ux
−1) F2

¯
= a

σ2
y

[
Y1 − b . . . YN − b

]T

Proof. Evaluation of equation (3.1.20) using the assumptions in definitions 20, 21 and 24 is given
in appendix B.1.1.

Theorem 6 (Explicit Posterior of a). The explicit posterior of a is given by:

p(a|b,Xa
¯
, σy, Y¯

) ∝ exp
{
A(a− B

A
)2

}
(3.1.24)

Which corresponds to a Gaussian N ( B
A ,−

1
2A ) with

A = −
N∑

i=1

X2
ai

2σ2
y

− 1
2σ2

a

B =
N∑

i=1

(b− Yi)Xai

2σ2
y

− µa

2σ2
a
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Proof. Evaluation of equation (3.1.21) with θi = a using the assumptions in definitions 20, 21
and 24 is given in appendix B.1.2.

Theorem 7 (Explicit Posterior of b). The explicit posterior of a is given by:

p(b|a,Xa
¯
, σy, Y¯

) ∝ exp
{
A(a− B

A
)2

}
(3.1.25)

Which corresponds to a Gaussian N ( B
A ,−

1
2A ) with

A = − N

2σ2
y

− 1
2σ2

b

B =
N∑

i=1

aXai − Yi

2σ2
y

− µb

2σ2
b

Proof. Evaluation of equation (3.1.21) with θi = b using the assumptions in definitions 20, 21
and 24 is given in appendix B.1.3.

Theorem 8 (Explicit Posterior of σy). The explicit posterior of σy is given by:

p(σy|θ
¯
, Xa

¯
, Y
¯

) ∝ exp
{

−N ln(|σy|) − Ã
1
σ2

y

− (α+ 1) ln(σy − γ) − β

σy − γ

}
(3.1.26)

with

Ã = 1
2

N∑
i=1

(Yi − aXai − b)2

Proof. Evaluation of equation (3.1.22) using the assumptions in definitions 20, 21 and 24 is given
in appendix B.1.4.

While drawing samples from the Gaussian posterior distributions of Xa
¯

, a and b is typically
supported by numerical toolboxes, drawing from the posterior distribution of σy is not. To sample
from this non-classic distribution, a sample u is drawn from a uniform distribution U(0, 1) (on
the unit interval). The following expression then leads to a corresponding sample of the posterior
distribution of σy and can be evaluated using numerical integration in conjunction with numerical
optimization:

σ̃y = arg min
x

∥
∫ x

−∞
p(σy|θ

¯
, Xa

¯
, Y

¯
)dσy − u∥ (3.1.27)

In the later implementation of method 1, two simplifications to the underlying data model
(definition 21) are investigated: (1) deterministic reference sensor readings and (2) known
variance of the sensor to be co-calibrated. A deterministic reference sensor can be specified by
setting Xa

¯
= Xo

¯
. Although this reduces the number of variables drastically, it does only affect

the computational load to a small extend, as drawing samples from a multivariate Gaussian
distribution is efficient. A known variance can be specified by setting σy ≡ known constant. This
reduces the computational load drastically, as drawing samples from the distribution of σy is
quite involved.
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3.1.3.3 Method 2: Posterior Evaluation on a Discrete Grid

Instead of using Gibbs sampling (as a variant of MCM), the joint marginalized posterior of the
sought parameters a, b and σy can also be evaluated directly. The calculation are executed
numerically on a discrete (hyper)cube. Theorem 9 provides an expression for a joint posterior
p(σy, θ¯

|Y
¯
, Xo

¯
) of the unknowns with the measurand values being marginalized.

Theorem 9 (Marginalization over Xa
¯

). The marginalized joint posterior is expressed by

p(σy, θ¯
|Y
¯
, Xo

¯
) ∝ p(σy, θ¯

) · exp
{

−1
2(Xo

¯
T Ux

−1Xo
¯

−M
¯

T V −1M
¯

+ F3)
}

·
√

|V |
|σy|N

(3.1.28)

with

M
¯

= V (Ux
−1Xo

¯
+ F2

¯
) F1 = G1

T G1

V −1 = (F1 + Ux
−1) F2

¯
= G1G2

¯
G1 = a

σy
· IN F3 = G2

¯
TG2

¯

G2
¯

= 1
σy

[
Y1 − b . . . YN − b

]T

Proof. The marginalization is written out as integration over Xa
¯

. Then Bayes theorem (see
theorem 1) is used to obtain a description of the joint posterior distribution p(σy, θ¯

|Y
¯
, Xo

¯
) with

marginalized Xa
¯

. The calculation steps are given in appendix B.2.1.

Theorem 9 can then be used to implement a numerical update scheme. The sought joint
distribution depends on three variables and is discretized on a rectilinear grid. Two different grid
behaviors are used: a static grid following definition 25 and an adaptive grid that focuses the
grid around the region of highest posterior density as given in definition 26. The resolution of
the static grid should be chosen not too broad (meaningfulness of result), but also not too fine
(computational cost). The adaptive grid avoids these problems and allows to use a computationally
lighter grid that still achieves a fine resolution after some iterations. To avoid numerical overflow,
the calculations and storage of the discrete distribution is done using the logarithm of the above
mentioned probability distributions and likelihoods (except during integration).

Definition 25 (Static Grid). The static grid is given by a cube spanning

[µa − 3 ∗ σa, µa + 3 ∗ σa]lin (3.1.29)
×[µb − 3 ∗ σb, µb + 3 ∗ σb]lin (3.1.30)
×[1e− 6, 1e2]log (3.1.31)

with “lin” and “log” referring to linear and logarithmic grid spacing respectively. Note: Because the
grid remains the same for all iterations, the final position of the maximum a-posteriori probability
(MAP) should lie within the bounds of the grid.
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Definition 26 (Adaptive Grid). The initial adaptive grid is identical to definition 25. Given a
posterior distribution the grid is adjusted to cover a (hyperrectangular) box where the logarithm
of the posterior is greater than a threshold τ . To allow both contraction and expansion of the
parameter space (and with that prevent early convergence), the minimal bounding box matching
this criteria is expanded proportionally to the box dimensions by a “zoom out”-factor zout. The
default values are τ = −1000 and zout = 0.2. The posterior is then transferred to the new grid
using a multidimensional linear interpolation.

3.1.4 Internal State

The Block-Gibbs-Method uses parametric distributions that are fitted against the drawn samples
of the posterior distribution. Due to the chosen parametric models, potential correlation between
the parameters are lost. As indicated by the structure of the posterior terms, a Gaussian PDF is
used to fit parametric models for a and b. The distribution for σy is approximated as inverse
gamma distribution, to match the assumption in the next cycle’s update equations.
The discrete state method stores the full hypercube as its internal state. Therefore, full correlation
information in the posterior is maintained across update cycles and - apart from the chosen
discretization - no parametric models are enforced in the posterior.

3.1.5 Distribution Fitting for Result Communication

To obtain parameter estimates for later use and document the current state of the method, a
Laplace approximation around the maximum a posteriori (MAP) estimate of the internal state is
calculated. The fitting starts by obtaining the marginalized posterior PDF of the corresponding
parameter (either from its formula or via numerical integration of unused axis (trapz)). A cubic
spline is fitted to the logarithmic PDF. The maximum of the spline is calculated and taken as
the MAP. Moreover, the second order derivative of the spline at the position of the maximum is
calculated to obtain an uncertainty measure of it. If not enough data points for fitting a spline
are available, the method falls back to the maximum as MAP and grid spacing as uncertainty
estimate.

3.1.6 Traceability of the Parameter Estimate

As quoted in definition 8, traceability is achieved by a chain of calibrations starting at a primary
reference. In order to continue the traceability chain, the proposed co-calibration method needs
to match the definition of “calibration” with respect to some agreed standard.
Bayesian uncertainty analysis (as employed in section 3.1.3) can be made equivalent to an
uncertainty evaluation as defined in the GUM [8, 96]. However, this requires a very specific
(non-informative) selection of the prior distribution for the sought parameters [120]. The prior
distributions used in the proposed co-calibration do not fulfill these specific requirements by
design, but use informative priors based on knowledge from the semantic sensor descriptions (see
chapter 3.3). Strictly speaking, the presented co-calibration approach therefore is not evaluating
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the uncertainty in a GUM-compatible approach.10 However, it is in the spirit of a GUM-7
(GUM S1) Type B uncertainty evaluation, which employs a Bayesian approach and allows for
subjective priors. Even more, the proposed co-calibration method does hold up to the definition
of a calibration in the VIM, which is summarized as theorem 10.

Theorem 10 (Traceability of the Proposed Co-Calibration). The proposed co-calibration method
summarized by figure 3.1.2 continues the traceability chain by matching the definition of a
calibration as specified by the VIM (see definition 5).

Proof. In order to justify the compliance of the proposed co-calibration method with the definition
of a calibration given in the VIM, all specified requirements are mapped to the related aspects of
the developed method. According to [3, VIM 2.39], a calibration is an

• operation that, under specified conditions, in a first step,
• establishes a relation between

→ established by equation (3.1.9)
• the quantity values with measurement uncertainties provided by measurement standards

→ Xoi are obtained from a GUM-compliant sensor fusion of calibrated sensors, see section 3.1.2
• and corresponding indications

→ Yi, see equation (3.1.9)
• with associated measurement uncertainties

→ equation (3.1.9) allows to provide a GUM-compliant uncertainty value for Yi based on the
estimated a, ua, b, ub and σy as well as Xoi and u(Xoi)

• and, in a second step, uses this information to establish a relation for obtaining a measurement
result from an indication
→ an inverse model allows to obtain an estimate of Xai based on Yi (see theorem 18)

3.1.7 Application to the Exemplary Use Case

In the sensor network presented in chapter 1.3, it is of interest to co-calibrate the accelerometer
S6 from the measurements provided by the acceleration sensors S1 and S2. The measurand,
measurements taken by S1, measurements taken by S2 and the indications of S6 are shown in
figure 3.1.3. In this setup, it is assumed that the data is already available as blockwise data.
The blockwise structure can be observed in the zoomed plot in figure 3.1.4. Five variants of
the proposed co-calibration method are listed in table 3.1.1 and executed on the same incoming
data stream. The resulting estimates for a, b and σy are shown in figure 3.1.5. The standard
uncertainty of these parameter estimates can be seen as "tube" in figure 3.1.5 or separately in
figure 3.1.6. Table 3.1.2 summarizes the results of the runs by stating numerical values for the
estimates after n = 399, 599, 1999 datapoints. As the data is simulated, the true values of the
parameters are known.

10This also implies that the proposed co-calibration method is (in strict manner) not traceable with respect to
the ISO17025 standard [4], as it states that the “measurement uncertainty [. . . ] is evaluated according to agreed
methods” and especially references the GUM [8] in that context.
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Figure 3.1.3: Simulated blockwise data of the measurand, measurement data of sensor 1 (S1),
measurement data of sensor 2 (S2) and the indicated values by sensor 6 (S6).

name refers to
gibbs_minimal method 1
gibbs_known_sigma_y method 1, but σy is not sampled
gibbs_no_EIV method 1, but no error-in-variables model is assumed, therefore Xa

¯is not sampled
joint_posterior method 2, with fixed discrete grid
joint_posterior_agrid method 2, with auto-adjusting discrete grid

Table 3.1.1: Overview of used method names and what method this name refers to.
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Figure 3.1.4: Detail of the blockwise structure. Zoomed-in version of figure 3.1.3, shows the
blockwise data of measurand (simulation), measurement data of sensor 1 (S1), measurement data
of sensor 2 (S2) and the indicated values by sensor 6 (S6).
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Figure 3.1.5: Estimated parameter values â, b̂ and σ̂y of four different co-calibration methods
after each processed block. The transparent bands indicates a region of one standard uncertainty
above and below the estimate (±u). True values of each parameter used in the simulation are
given by horizontal black lines.
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Figure 3.1.6: Estimated parameter uncertainties uâ, ub̂ and uσ̂y
of of four different co-calibration

methods after each processed block.



parameter a± ua b± ub σy ± uσ

method estimate with
n datapoints

true 2.00e+00 1.00e+00 5.00e-01

gibbs_known_sigma_y
399 1.96e+00 ± 6.65e-03 9.77e-01 ± 2.47e-02 5.00e-01 ± 0.00e+00
599 1.97e+00 ± 5.86e-03 9.99e-01 ± 1.03e-02 5.00e-01 ± 0.00e+00
1999 1.96e+00 ± 3.97e-03 1.01e+00 ± 2.55e-03 5.00e-01 ± 0.00e+00

gibbs_minimal
399 1.94e+00 ± 1.14e-02 1.04e+00 ± 2.50e-02 1.69e+00 ± 1.55e-01
599 1.93e+00 ± 9.60e-03 1.03e+00 ± 2.90e-02 1.40e+00 ± 2.30e-01
1999 1.97e+00 ± 3.61e-03 1.02e+00 ± 3.99e-03 1.69e+00 ± 2.34e-01

gibbs_no_EIV
399 1.95e+00 ± 8.34e-03 1.03e+00 ± 1.90e-02 6.19e-01 ± nan
599 1.94e+00 ± 1.03e-02 1.05e+00 ± 8.75e-03 5.80e-01 ± 1.14e-02
1999 1.95e+00 ± 1.82e-03 1.03e+00 ± 7.28e-03 5.62e-01 ± 3.33e-01

joint_posterior
399 1.96e+00 ± 2.31e-02 1.13e+00 ± 3.30e-02 5.42e-01 ± 1.98e-02
599 1.96e+00 ± 1.90e-02 1.14e+00 ± 2.68e-02 5.32e-01 ± 1.52e-02
1999 1.96e+00 ± 1.16e-02 1.11e+00 ± 1.63e-02 6.28e-01 ± 1.59e-02

joint_posterior_agrid
399 2.06e+00 ± 2.93e-02 1.10e+00 ± 3.33e-02 4.96e-01 ± 1.44e-02
599 1.99e+00 ± 1.06e-02 1.10e+00 ± 2.53e-02 7.13e-01 ± 2.14e-02
1999 2.00e+00 ± 9.08e-03 9.63e-01 ± 1.33e-02 6.09e-01 ± 1.00e-02

Table 3.1.2: Summary of exemplary simulation results.
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Chapter Summary

A consensus based co-calibration method is developed. In a first step, the general requirements,
main functional components and their connections are outlined. The mathematical details of the
individual blocks are then given by stating the structure of the input, providing the equations for
a robust fusion of multiple reference sensors, detailing the formulas and numerical schemes for
the Bayesian parameter estimation and explaining how a parameter estimate with uncertainty
quantification is obtained from the internal representation. Moreover, the traceability of the
method is discussed and multiple variants of the proposed update scheme are applied the sensor
network previously presented in chapter 1.3.



3.2 Semantic Representation of Metro-
logical Sensor Networks

It is of interest to represent metrological core knowledge such as calibration information, measurand
specification and measurement uncertainty alongside the general semantic description of the
sensors in a sensor network. This knowledge will then be used in chapter 3.3 to support and
initialize the co-calibration method presented in the previous chapter 3.1. To obtain such a
representation, the approach is to set the level of detail required, identify the overlap with existing
knowledge representations and propose minimal extensions where necessary. Major parts of this
work have been published in [18] with additions in [19], but some definitions have been adjusted.

3.2.1 Representation Requirements

The purpose of this representation is to support a co-calibration routine in sensor networks. The
requirements of an ontology are typically formulated in terms of competency questions [121]. In
the context of this thesis, the following competency questions are of special importance:

• Is a specific sensor currently calibrated?
• What sensors measure the same quantity?
• Which sensors are located at the same place?
• Which sensors can be used to co-calibrate a specific sensor?

Answering these questions requires to capture information about the individual sensors in the
network, as well as their arrangement in the network. Following a decentralized approach, the
knowledge of the sensor network is not represented explicitly, but implicitly by its constituting
sensors. Requirements are therefore posed in terms of the description of individual sensors.
Addressing and identifying sensors in the network requires their (locally) unique identifiers,
manufacturer information, measurand and location. The latter two are also necessary to derive
the relevant topology of the sensor network. The co-calibration requires information about the
validity ranges (measurand- and date-wise), the mathematical transfer behavior and traceable
measurements of the sensors.
A summary of the aspects required to describe metrological use cases are provided in table 3.2.1
and figure 3.2.1.

55
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Aspect Detail Covered by (proposal)
general description identifier / name SOSA

manufacturer / production date SOSA
measurement principle SOSA
measurement quantity OM

location general concept extension
geometric GeoSPARQL
topological (hierarchical, neighbors) GeoSPARQL, SOSA

calibration general, date, method XML schema datatypes
range of validity SSN
model type / equation MathML + extension
parameter uncertainty OM + D-SI
accuracy, sensitivity, precision SSN

observation result time SOSA
value OM
uncertainty D-SI
unit (SI) OM

Table 3.2.1: Overview of requirements and proposed coverage.

3.2.2 Merge of Existing Knowledge Representations

None of the knowledge frameworks mentioned in section 2.2.2 cover all required aspects. Moreover,
the reviewed schemes overlap in certain aspects, especially for units and quantities. In the following,
a sensible combination of relevant ontologies that each provide certain aspects of the required
functionality is discussed.
Subtle but important differences between OM and QUDT are stated in [86] and [122]. Recent
updates of the QUDT ontology have strengthened its expressiveness.11 Now, both (OM and
QUDT) link (sub)multiples of units to their constituent prefix and base unit, which is in line with
the D-SI syntax specification for unit terms [31]. Still, OM provides a higher level of granularity
in its concepts and relations and is therefore favored.
General aspects of sensors and sensor networks can be suitably and adequately captured using the
SOSA and SSN ontologies. Location information can be represented using GeoSPARQL, other
ontologies listed by the W3C in [123] and custom extensions.
By translating ideas from EngMath into a combination of OM and Content MathML, calibration
information can be represented. If available, the required information about the sensor can be
extracted from a DCC. If calibration information is available for a sensor (sosa:Sensor), it
becomes an instance of the (new) scal:CalibratedSensor class. Additional concepts like system
accuracy, precision, property and capability are already available within the module SSN-System,
and each sensor can be linked to those.

11There is no recent publication highlighting these changes, but https://github.com/qudt/qudt-public-repo
/graphs/contributors shows increased activity in the source code of QUDT since 2019.

https://github.com/qudt/qudt-public-repo/graphs/contributors
https://github.com/qudt/qudt-public-repo/graphs/contributors
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OM D-SI

SOSA OM GeoSPARQL

XSD

MathML + ext.

SSN

General Location

Observation Calibration

meas. principle

identifier

manufacturer

time

meas. quantity topologic
geometric

date, method

model-type
equation

range of validity

sensitivity, 
precision

parameter
 uncertainty

uncertaintyunit
value

Figure 3.2.1: Required information and coverage by existing knowledge representations.

By combining time aspects from SOSA (sosa:phenomenonTime, sosa:resultTime), physi-
cal quantity kind (om:Quantity) and units (om:Unit) from OM, observations and results
(sosa:Observation, sosa:Result) will be represented. To quantify the uncertainties of values,
the om:Measure description needs to be extended. This is achieved by introducing a subclass
(scal:MeasureWithUncertainty) which adds metrological statements following the D-SI data
model. This subclass can also be used to represent parameters with uncertainties and therefore
allows to capture calibration model descriptions in the same way as in the DCC.
A manual merging approach is chosen, as not all selected knowledge sources are available as
ontology (D-SI) or in a common format (EngMath). Figure 3.2.1 and the last column of table 3.2.1
summarize the proposed merge. Although many requirements are already covered using existing
frameworks, some new core concepts need to be defined. This is done within two new ontologies
that provide the central parts interconnecting all properties from above. These ontologies are
presented in the following section.

3.2.3 Extensions to the Proposed Merge

The mentioned requirements lead to the design of two distinct but closely linked ontologies.

3.2.3.1 scal Ontology

The scal ontology provides concepts relevant for the (co-)calibration of sensors that are part of a
sensor network. It is mainly an extension of the SOSA/SSN ontology to cover metrological use
cases.
The main contributions are
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• scal:CalibratedSensor a sensor with calibration information
• scal:CalibrationModel to describe the sensor’s transfer behavior
• scal:Location to describe the sensors position
• scal:EquationModel as a specific subclass of scal:CalibrationModel
• scal:MeasureWithUncertainty to communicate full metrological detail of measurement results

The SOSA ontology allows a sosa:Sensor to have (multiple) ssn:Property. A new (sub-)
property scal:CalibrationModel is introduced to provide a generic handle to attach calibration
information to a sensors description. Every sensor that has a scal:CalibrationModel becomes a
scal:CalibratedSensor. The relations are visualized in figure 3.2.2. By introducing the concept
of a calibration model, fundamental metrological information can be attached to a sensor’s
description.

ssn:hasProperty
sosa:Sensor ssn:Property

rdfs:subClassOf

scal:CalibrationModel

rdfs:subClassOf

scal:hasCalibrationModel
scal:CalibratedSensor

Figure 3.2.2: Details of scal:CalibrationModel and relations to other ontologies.

Positional information about a sosa:Sensor can be provided by the sosa:isHostedBy property
which links a sosa:Platform. Although this allows to describe typical sensor mounting schemes
in industrial plants by defining the hierarchy between platforms, other geometries and topologies
are not covered [83]. Therefore a new scal:Location is introduced which is a subclass of
sosa:Platform to maintain compatibility. Moreover, scal:Location also inherits from geo:-
SpatialObject to open up location description vocabulary and evaluation methods provided by
GeoSPARQL [123]. This enables the description of topological and geometrical spatial relations,
e.g., according to the WGS84 standard [124]. The relations are shown in figure 3.2.3.

rdfs:subClassOf

scal:Location
sosa:isHostedBy

sosa:Sensor

sosa:Platform

rdfs:subClassOf

geo:SpatialObject

Figure 3.2.3: Details of scal:Location and relations to other ontologies.
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Often, a calibration model is expressed as mathematical formula. Therefore, an scal:EquationModel
is introduced as a possible representation of calibration information, which draws some inspiration
from the conceptualization of the EngMath ontology [90]. The scal:EquationModel is specified
by one scal:Equation, at least one scal:Variable and some scal:Parameters. The distin-
guishing aspect between parameters and variables is the availability of explicit numeric knowledge.
Variables are provided or sought for during runtime, whereas parameters are numerically known
(up to uncertainty) in advance. An scal:Equation is represented using a Content-MathML string,
which captures the semantic structure of the equation. Because a scal:Variable is inheriting
features of om:Quantity, consistency checks of the equation are enabled. scal:Parameter is a
subclass of om:Measure allowing to provide a numerical value, a physical unit and a corresponding
quantity kind - this also includes a scal:MeasureWithUncertainty (see next paragraph). The
relations are shown in figure 3.2.4

scal:CalibrationModel

rdfs:subClassOf

scal:hasEquation

scal:hasVariable

scal:hasParameter

scal:EquationModel

scal:hasMathMLDefinition

scal:Equation

rdfs:subClassOf

scal:Parameter

rdfs:subClassOf

xsd:string om:Measureom:Quantity

scal:Variable

Figure 3.2.4: Details of scal:EquationModel and relations to other ontologies.

In SOSA a sosa:Sensor can make an sosa:Observation. To attach a metrology-aware
sosa:Result to a given sosa:Observation the concept of a scal:MeasureWithUncertain-
ty is introduced. It inherits from sosa:Result as well as om:Measure and extends it with the
scal:hasUncertainty property. The relations are shown in figure 3.2.5.
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sosa:Sensor

sosa:madeBySensor

sosa:Observation

sosa:hasResult

sosa:resultTime

sosa:Result

rdfs:subClassOf

rdfs:subClassOf

om:hasNumericalValue

om:hasUnit

scal:hasUncertainty

scal:MeasureWithUncertainty

om:Measure

xsd:dateTime

xsd:string

om:hasQuantity

om:Unit

si:Uncertainty

om:Quantity

Figure 3.2.5: Details of scal:MeasureWithUncertainty and relations to other ontologies.



3.2.3. EXTENSIONS TO THE PROPOSED MERGE 61

3.2.3.2 trans Ontology

Signal processing often uses rather involved (e.g., dynamic, non-linear) transfer behavior. A
representation of this as MathML-strings is (at least in full detail) not feasible and it is bene-
ficial to refer to transfer behavior concepts within MathML by providing links to semantically
defined concepts. Therefore, the ideas of the scal ontology are extended to provide common
representations of the mathematical description of the transfer behavior which can be used as
scal:CalibrationModel. This leads to the trans ontology which enables representation of
common signal processing transfer behaviors. It is conceptualized in a joint publication together
with Vedurmudi et al. in [19].
The trans ontology introduces two main new concepts: an abstract transfer model and a
mathematical representation for such models. With that, each trans:TransferModel trans:is-
ExpressedBy a trans:MathematicalObject. The relations to other ontologies and some further
distinguishing properties of practical relevance are shown in figure 3.2.6.

scal:CalibrationModel

rdfs:subClassOf

trans:isExpressedBy

trans:isDefinedInDomain

trans:isOfSystemType

trans:TransferModel om:Measure
om:hasValue

owl:equivalentClass

trans:MathematicalObject

trans:AnalyticalDomain

trans:SystemType

mathematics:E34

trans:hasBehavior
trans:QualitativeBehavior

Figure 3.2.6: Overview of the trans ontology and relations to other ontologies.

The trans:TransferModel is a super-class to many transfer behaviors common in signal pro-
cessing. Available sub concepts, classification and which mathematical objects are used for their
representation are shown in figure 3.2.7.
Mathematical objects are often numerically represented using (multidimensional) arrays. However,
the interpretation of the values in these arrays is highly dependent on the chosen mathematical
object. Therefore, common mathematical objects in signal processing are provided and linked to
an array representation in figure 3.2.8.
Signals and systems are often classified with regard to (e.g.) domain, type or (qualitative)
behavior. To represent these classifications within the ontology, trans:TransferModel adds
additional properties as seen in figure 3.2.6. Further sub-concepts of these properties are shown
in figure 3.2.9.
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trans:hasBehavior

trans:isDefinedInDomain
trans:FilterType

trans:FiniteImpulseResponseModel

trans:ImpulseResponseModel

trans:InfiniteImpulseResponseModel

trans:isExpressedBy

trans:LinearAffineModel

trans:LinearStateSpaceModel trans:NonLinearStateSpaceModel

trans:StateSpaceModel

trans:isOfSystemType

rdfs:subClassOf

trans:StepResponseModel

trans:TransferModel

trans:Besseltrans:Butterworth

rdfs:subClassOf

trans:isExpressedBy

trans:Chebyshev

rdfs:subClassOf

trans:ContinuousImpulseResponseModel

trans:Elliptic

trans:FrequencyBehaviortrans:FrequencyDomain

trans:Polynomialtrans:Polynomial trans:EllipticRationalFunction

trans:hasBehavior
trans:isDefinedInDomain

trans:Dynamic trans:TimeDomain trans:LinearSystem

trans:isExpressedBy trans:isExpressedBy

trans:isOfSystemTypetrans:hasBehavior trans:isDefinedInDomain

trans:Static trans:TimeDomain trans:NonlinearSystem

trans:hasBehavior

trans:isDefinedInDomain

trans:Dynamic trans:TimeDomain

trans:isOfSystemType

trans:NonlinearSystem

rdfs:subClassOf

trans:isOfSystemType

trans:LinearSystem

trans:isExpressedBy

trans:StateSpaceMatrixNotation

trans:GainOffsetNotation

Figure 3.2.7: Details of trans:TransferModel and relations to other ontologies.
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rdfs:subClassOf

trans:EllipticRationalFunction

trans:hasValueArray

trans:hasFrequencyArray
trans:FrequencySpectrum

trans:hasCoefficientstrans:LinearDifferenceEquation

owl:equivalentClass

trans:LinearOrdinaryDifferentialEquation

trans:MathematicalObject

owl:equivalentClass

trans:Polynomial

trans:hasDenominator

trans:hasNumerator

trans:RationalFraction

trans:StateSpaceMatrixNotation

trans:TimeSeries

rdfs:subClassOf

trans:Array
rdfs:subClassOf

trans:ArrayWithUncertainty

trans:hasCoefficients

trans:hasCoefficients
trans:hasPolynomialRoots

mathematics:E1995

mathematics:E2822

trans:hasSystemMatrix
trans:hasInputMatrix
trans:hasOutputMatrix

trans:hasFeedthroughMatrix

trans:hasValueArray

trans:hasTimeArray

om:Measure

trans:GainOffsetNotation

rdfs:subClassOf

trans:hasOffset

trans:hasGain

Figure 3.2.8: Details of trans:MathematicalObject and relations to other ontologies.
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Figure 3.2.9: Additional properties of trans:TransferModel.
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3.2.4 Representing the Exemplary Use Case

In order to describe the exemplary use case (see chapter 1.3), the self-descriptions of all sensors
are required. This is exemplified for a single sensor using the RDF/Turtle syntax. A self-contained
self-description of sensor S1 is given by joining listings 3.2.1 to 3.2.7, where:

• listing 3.2.1 imports the required ontologies and namespaces
• listing 3.2.2 represents the actual sensor
• listing 3.2.3 defines the location
• listing 3.2.4 defines the observed quantity
• listing 3.2.5 defines the calibration model
• listing 3.2.6 defines parameters, variables, equation and validity used in the calibration model
• listing 3.2.7 specifies, that observations made by this sensor have a specific unit

Alternatively, a visual representation of the same relations is given in figures 3.2.10 and 3.2.11.

# general prefixes
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix schema: <https://schema.org/> .
@prefix om: <http://www.ontology-of-units-of-measure.org/resource/om-2/> .
@prefix sosa: <http://www.w3.org/ns/sosa/> .
@prefix ssn: <http://www.w3.org/ns/ssn/> .
@prefix ssn-system: <http://www.w3.org/ns/ssn/systems/> .
@prefix scal: <https://purl.org/onto/scal/> .
@prefix trans: <https://purl.org/onto/trans/> .
@prefix si: <https://ptb.de/si#> .

# specific prefixes
@prefix local: <http://www.example.com/ns/local/> .
@prefix : <http://www.example.com/ns/S1/> .

Listing 3.2.1: Imports of the example.

:sensor
a owl:NamedIndividual , sosa:Sensor;
sosa:isHostedBy local:location_A;
sosa:observes local:acceleration;
ssn:hasProperty :model .

Listing 3.2.2: Turtle representation of the sensor.
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rdf:type

sosa:isHostedBy

sosa:observes

ssn:hasProperty

sosa:Sensor

rdf:Typelocal:location_A scal:Location

rdf:type

om:hasDimension

local:acceleration

sosa:ObservableProperty

om:Quantity

om:acceleration-Dimension

rdf:type

om:hasNumericalValue
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scal:hasUncertainty

S1:offset
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S1:equationS1:calibrationPeriod
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Figure 3.2.10: Main sensor self-description of S1.
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S1:uses_unit

sosa:Observationrdf:type(ad hoc)

sosa:Restrictionrdf:type

owl:onProperty

owl:hasValue

(ad hoc)

sosa:madeBySensor

S1:sensor

sosa:Restrictionrdf:type

owl:onProperty

owl:hasValue

(ad hoc)

sosa:hasUnit

om:metrePerSecond-
TimeSquared

owl:unionOf

Figure 3.2.11: Additional relations to specify the unit of observations made by sensor S1.

local:location_A
rdf:type owl:NamedIndividual , scal:Location .

Listing 3.2.3: Turtle representation of the sensor’s locations.

local:acceleration
a owl:NamedIndividual , sosa:ObservableProperty , om:Quantity;
om:hasDimension om:acceleration-Dimension .

Listing 3.2.4: Turtle representation of observed quantities.

:model rdf:type owl:NamedIndividual , trans:LinearAffineModel;
trans:isExpressedBy :equation ;
ssn-system:inCondition :calibrationPeriod .

Listing 3.2.5: Turtle representation of the calibration model.
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:gain rdf:type scal:Parameter ;
om:hasNumericalValue 1.2 ;
om:hasUnit om:one ;
scal:hasUncertainty [rdf:type
si:ExpandedUncertainty;
si:hasNumericalValue 0.1;
si:hasCoverageFactor 2.0;
si:hasCoverageProbability 0.95] .

:offset rdf:type scal:Parameter ;
om:hasNumericalValue -0.1 ;
om:hasUnit om:metrePerSecond-TimeSquared ;
scal:hasUncertainty [rdf:type
si:ExpandedUncertainty;
si:hasNumericalValue 0.15;
si:hasCoverageFactor 2.0;
si:hasCoverageProbability 0.95] .

:equation rdf:type trans:GainOffsetNotation;
# y = a * x + b
trans:hasGain :gain ;
trans:hasOffset :offset .

:calibrationPeriod rdf:type ssn-system:Condition ;
schema:startDate "2022-04-21T20:00"^^xsd:dateTime ;
schema:endDate "2026-04-20T00:00"^^xsd:dateTime .

Listing 3.2.6: Turtle representation of objects needed for the calibration model.

:uses_unit
a owl:Class;
owl:unionOf (

[a sosa:Observation]
[a owl:Restriction;

owl:onProperty sosa:madeBySensor;
owl:hasValue :sensor

]
[a owl:Restriction;

owl:onProperty om:hasUnit;
owl:hasValue om:metrePerSecond-TimeSquared

]
) .

Listing 3.2.7: Turtle representation of unit used for observations.
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Chapter Summary

The available state of the art of knowledge representations in the domain of sensors and sensor
networks is analyzed with regard to its metrological expressiveness. An extension to these
knowledge representations is proposed to cover metrological relevant aspects of sensor networks.
The additions are formulated as two distinct but connected ontologies. The scal ontology extends
the sosa and ssn ontologies with relevant objects to describe a calibration model and enables the
communication of uncertainty information in sensor observations. The trans ontology allows to
represent common transfer behaviors and also capture the mathematical thereof. The proposed
merge and extensions are applied to a sensor of the sensor network from chapter 1.3.
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3.3 Initializing the Co-Calibration
from Semantic Knowledge

Once knowledge of a sensor network is represented in the semantically expressive form proposed
in the previous chapter (see section 3.2.4), it can be used to initialize the co-calibration method.
This includes the selection of suitable calibration reference sensors and the initial prior of the
parametrization of the transfer behavior. The general task is to translate the competency questions
(CQs) presented earlier into logical expressions that can be evaluated using a combination of
semantic querying and reasoning tools. Providing these expressions leads to machine-actionable
operations on interoperable knowledge representation that initialize a mathematical method.
Hence, highlighting the potential and emerging synergy of linking the semantic and mathematical
domain for automated approaches.

3.3.1 Finding Suitable Calibration References in a Network

A sensor S (of an existing sensor network) is suitable to act as a calibration reference in a
homogeneous co-calibration12 of a another sensor Stbc if it13:

• has a (valid) calibration model (S ∈ Acal)
• measures the same quantity14 as the sensor to be co-calibrated (S ∈ Aqty)
• is located at the same place15 as the sensor to be co-calibrated (S ∈ Aloc)

This directly corresponds to the CQs raised to design the ontology proposed in the previous
chapter. In the following, these CQs are translated into logical expressions that can be evaluated
on a joined knowledge graph of the sensor network. To obtain all sensors with a valid calibration
model, the set expression defined in theorem 11 needs to be evaluated which makes use of the
definitions 27 and 28. To obtain all sensors that observe the same quantity as Stbc, evaluate the
expression in theorem 12. The set of all suitable reference sensors to co-calibrate Stbc is then given
by the intersection of the three sets from theorems 11 to 13, which is summarized as theorem 14.

12see also definition 11
13The index “tbc” stands for “to be co-calibrated”. There are multiple reasons to co-calibrate a sensor, e.g. it is

new and was not calibrated before, its calibration model is no longer valid or a sensor performance monitoring
routine suggested an out-of-schedule re-calibration.

14see also definition 17
15see also definitions 15 and 17
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Evaluating these set expressions requires some reasoning, as (e.g., use case specific) derived
sub-classes and sub-properties of the mentioned concepts need to match as well. The expressions
for Acal, Aqty and Aloc have been designed in a way that translates directly into SPARQL-queries.
The implementation details are provided in chapter 4.1.

Definition 27 (Subclass Chain Property). The a/rdfs:subClassOf* property defines a re-
lationship that matches a specific type or any derived subclasses of this type16 and is given
by

(a/rdfs:subClassOf*)I =
(rdf:type)I

∪ (rdfs:subClassOf)I

∪ (ObjectPropertyChain(rdfs:subClassOf, rdfs:subClassOf))I

∪ . . .
∪ (ObjectPropertyChain(rdfs:subClassOf, ..., rdfs:subClassOf))I

∪ . . .

(3.3.1)

Definition 28 (Exemplified Temporal Validity Check). The isvalid(p) check provides a boolean
value whether the model p is considered valid. E.g. to check if a calibration period is available, it
could be evaluated by

isvalid(p) = if ∃ c, t1, t2 :
(p, c) ∈ (ssn-system:inCondition)I

∧ (c, t1) ∈ (schema:startDate)I

∧ (c, t2) ∈ (schema:endDate)I

then (t1 ≤ now()) ∧ (now() ≤ t2)
else true (3.3.2)

Theorem 11 (Set of Calibrated Sensors). The set of all (known) validly calibrated sensors is
given by

Acal ={
S | ∀S, p :

(S, sosa:Sensor) ∈ (a/rdfs:subClassOf*)I

∧ (S, p) ∈ (ssn:hasProperty)I

∧ (p, scal:CalibrationModel) ∈ (a/rdfs:subClassOf*)I

∧ isvalid(p)}
(3.3.3)

Rationale. The expression checks if a sensor has a calibration model and if this is valid.

16Note: Using a instead of rdf:type is a common shortcut. The asterix * is used in the sense of common regular
expression syntax.
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Theorem 12 (Sensors Observing the same Quantity). The set of (known) sensors measuring the
same quantity as sensor Stbc is given by

Aqty(Stbc) ={
S | ∀S,m1,m2 :

(S,m1) ∈ (sosa:observes)I

∧ (Stbc,m2) ∈ (sosa:observes)I

∧ (m1,m2) ∈ (owl:sameIndividual)I

∧ (S,Stbc) ∈ (owl:differentIndiviuals)I}
(3.3.4)

Rationale. The expression checks if a sensor’s observed quantity matches the observed quantity
of Stbc.

Theorem 13 (Sensors at the same Location). The set of all sensors that are located at the same
place as Stbc is given by

Aloc(Stbc) ={
S | ∀S, l1, l2 :

(S, l1) ∈ (sosa:isHostedBy)I

∧ (Stbc, l2) ∈ (sosa:isHostedBy)I

∧ (l1, l2) ∈ (owl:sameIndividual)I

∧ (S,Stbc) ∈ (owl:differentIndiviuals)I}
(3.3.5)

Rationale. The expression checks if another sensor’s location is the same as the location of
Stbc.

Theorem 14 (Reference Sensors). The set of all (known) reference sensors is given by

Aref (Stbc) = Acal ∩Aqty(Stbc) ∩Aloc(Stbc) (3.3.6)

Rationale. The expression intersects the realizations of the initially stated requirements.

3.3.2 Finding Initial Prior for the Transfer Behavior

Before any prior of the transfer behavior can be initialized, it is necessary to select a suitable model
structure. Once this decision is fixed, a distribution that characterizes the initial parametrization
of the chosen model structure can be specified. It can, however, not be assumed, that all
information required to initialize the co-calibration is always available from the relevant sensor
self-descriptions. As the co-calibration routine always requires the same level of information detail
for computations, this potential information gap needs to be closed. In the following, decision
flow charts are presented that provide heuristics for the model and parameter selection. The
general idea is to use what is given, while reverting back to predefined defaults otherwise.



74 CHAPTER 3.3. INITIALIZING THE CO-CALIBRATION FROM SEMANTIC KNOWLEDGE

3.3.2.1 Selecting a Model Structure for the Transfer Behavior

If Stbc already has a (potentially invalid) calibration model, the same model structure is reused. If
no further model information is available from the sensor itself, it is first checked whether a similar
sensor (e.g. same manufacturer, same observed quantitiy kind, etc.) is available in the sensor
network. If that is not the case, another check tests, if most of the selected reference sensors share
the same model structure. E.g., if more than half of all reference sensors use the same subclass
of trans:TransferModel, it will also be selected for Stbc. If none of the above two steps lead
to a model structure, a default model structure (e.g., linear affine model) is chosen. This could
of course be extended to cover multiple models of varying complexity, which are co-calibrated
in parallel and the best fitting model (according to an agreed upon metric) is chosen. If such a
metric indicates only unsuitable results for all co-calibrated models, the co-calibration fails and
manual intervention is required. Moreover, it generally needs to be checked, whether this leads to
a model choice that the co-calibration method can handle, as it cannot proceed otherwise. The
decision process is visualized in figure 3.3.1.
In case of the specific co-calibration method presented in chapter 3.1, the only model structure
supported is trans:LinearAffineModel, as the method is designed for linear affine transfer
behavior.17

3.3.2.2 Selecting a Prior of the Parametrization

Initializing the prior means to parameterize the prior probability distribution. If the model
structure newly selected for Stbc matches the model structure already in use, the parameter values
can be directly reused. If Stbc is still considered to be valid, uncertainty of these parameters can
be reused as well. Otherwise, the uncertainty will be increased by a factor to account for the
outdated/invalid parameter values. If the model structure was selected based on the majority
of the reference sensor models, the sensor parameters can be obtained from the median of their
values and the maximum of each parameters uncertainty. In all other cases, default values for
the selected model structure are used for the initialization of the prior. The decision process is
visualized in figure 3.3.2.
As the presented co-calibration method is suited only for linear affine models, this leads to a PDF
p0(a, b, σy) as stated in equation (3.1.16). The parameters necessary to specify p0 are µa, σa for
a Gaussian distribution of a, µb and σb for a Gaussian distribution of b and α, β for an inverse
gamma distribution of σy. The defaults are µa = 1, µb = 0, σa = 1, σb = 1, α = 2, β = 1. From
a sensor’s self-description at most µa = a, µb = b, σa = ua, σb = ub and (maybe) σy ≥ σb can be
updated.
The default represents a sensor with ideal transfer behavior such that input and output are
equivalent. Without any further information, this is a sensible assumption, as it represents an
ideal sensor transfer characteristic and sensors are often designed to match this ideal.
For other sub-types of the scal:CalibrationModel, individual connectors can extract the relevant
information for the priors of a method.

17The linear affine model structure is a generic and very common choice in the related literature, see also
chapter 2.2 and section 3.1.3.
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Figure 3.3.1: Decision scheme to select a specific model class.
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Figure 3.3.2: Decision scheme to initialize the parameter values of the chosen model class.
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3.3.3 Initializing Compensation Models of Reference Sen-
sors

The result of a (co-)calibration is a mathematical transfer behavior that quantifies the behavior
from the measurand to the indication (see definition 12). From this knowledge and in line with
definition 5, a relation to reconstruct the measurand value from the indications can be obtained.
In order to calibrate against the best available estimates of the measurands, the reference sensor
indications therefore need to be compensated using a reconstruction model. The reconstruction
model is a regularized inverse model to the calibration model and specific inversion routines
can be applied based on the information given in the sensor’s self description. By checking
the subclass of the scal:CalibrationModel attached to each reference sensor, specific model
inverting procedures can be applied:

• trans:LinearAffineModel are inverted as shown in appendix A.4
• trans:InfiniteImpulseResponseModel are inverted using the approach shown in [eichstÃďdt_2012,

13, 99]. Model inversion of dynamic sensor transfer behaviors is not straightforward and requires
additional assumptions (or regularization) to obtain causal inverse models (e.g., constraints
with regard to the frequency response).

• many other models are invertable by mapping them to a discrete IIR filter and proceeding with
the before mentioned method.

If the fitted reconstruction model is given as discrete trans:ImpulseResponseModel, the recon-
struction filter can be applied using the online IIR filter method proposed in [14]. Moreover, the
above mentioned methods return uncertainty-aware reconstruction models, leading to traceable
estimated measurand values. Further information about model inversion and input reconstruction
is given in an upcoming book on dynamic measurements [22].

3.3.4 Application to the Exemplary Use Case

Let S6 be an acceleration sensor which was recently introduced into the sensor network used
throughout this thesis (see chapter 1.3). S6 is not calibrated and it is of interest to prepare a run
of the co-calibration routine. This requires to:

• select suitable reference sensors within the sensor network
• select an appropriate model structure
• provide an initial prior of the model parametrization

3.3.4.1 Suitable Reference Sensors

The set of suitable reference sensors is given by equation (3.3.6). The relevant subsets are
evaluated on the self-descriptions of all six sensors given in chapter 1.3 and using equations (3.3.3)
to (3.3.5) with Stbc = S6.
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Acal = {S1, S2, S3, S4} (3.3.7)
Aqty(S6) = {S1, S2, S3} (3.3.8)
Aloc(S6) = {S1, S2, S4} (3.3.9)

From this it follows that the set of suitable reference sensors to co-calibrate S6 is

Aref (S6) = {S1, S2} (3.3.10)

3.3.4.2 Model Structure

The schema visualized in figure 3.3.1 is applied to sensor S6 in order to select a model structure
that will be used in the co-calibration. Looking at the relevant parts of the self-description of S6
in listing 3.3.1, it can be seen that the sensor has a :model of type trans:LinearAffineModel
attached. The model is not parameterized and invalid, as the attached date range condition is
unsatisfiable by construction. Nevertheless, following figure 3.3.1 the selected model structure for
S6 is a trans:LinearAffineModel.

:sensor
a owl:NamedIndividual , sosa:Sensor ;
sosa:isHostedBy local:location_A ;
sosa:observes local:acceleration ;
ssn:hasProperty :model .

:invalid rdf:type ssn-system:Condition ;
schema:startDate "2022-01-01T00:00"^^xsd:dateTime ;
schema:endDate "2022-01-01T00:00"^^xsd:dateTime .

:model rdf:type owl:NamedIndividual , trans:LinearAffineModel;
ssn-system:inCondition :invalid .

Listing 3.3.1: Details of the self-description of sensor S6.

3.3.4.3 Model Parametrization

Following figure 3.3.2, the selected model structure for S6 coincides with the model structure
previously used for S6. Because the previous model is invalid and no parameters of :model are
provided, no default values are overwritten. The (uninformative and default) initial prior for the
co-calibration of a trans:LinearAffineModel is therefore (see section 3.3.2.2): µa = 1, µb = 0,
σa = 1, σb = 1, α = 2, β = 1.
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Chapter Summary

This chapter conceptualizes, how semantic information about sensors in a sensor network can
be used in the context of a co-calibration task. This is achieved by defining expressions to find
co-calibration references, provides a heuristic to select a transfer behavior and then outlines how
parameters can be initialized from these findings. With that, the ideas of this chapter connect
the mathematical and semantic contributions presented in chapters 3.1 and 3.2.
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Part IV

Evaluation and Experiments

81





4.1 Proof-of-Concept Implementa-
tion

In order to test and evaluate the proposed co-calibration method, proof-of-concept implementations
for the mathematical and semantic part are provided. To document these implementations,
the following chapter includes descriptions of the frameworks used, configuration possibilities,
execution and results.

4.1.1 Simulation Environment for Homogeneous Sensor
Networks

The simulation environment is centered on use cases and the evaluation of different co-calibration
algorithms in these. Therefore, a use case is set up in a configuration step. The configuration is
handed to the execution step, which runs the specified methods on the same input data. The
results are then stored in a common format from which visualizations can be generated in a
successive step.

4.1.1.1 Setup

To support a variety of use cases and methods, the simulation environment is highly configurable.
Each configuration is defined using nested key-value pairs stored in one (or more) configuration
file(s). The nested structure has six top level entries that are detailed in the following.
In "random_state" the initial state of the random number generator used by the numerical
methods can be specified. The (noisy) signal creation and proposed Monte-Carlo methods rely
on random number generation processes. However, for ideal recreation of simulation outcomes
(e.g. for error inspection), it is necessary to fix the random state. If "random_state" : null is
given, the initial random state typically differs between runs, leading to non-identical results.
The entry "reference_sensors" allows to specify how many reference sensors should be used.
Initializing arguments (e.g.: model type, parameters, parameter uncertainties, dropout rate,
outlier rate) are passed to the routine that creates the CalibratedSensor objects which are later
used during the simulation. It can be selected, whether the parameters of the transfer function
should be randomized according to the provided parameter uncertainty. Alternatively, a list of
fully specified reference sensor descriptions can be provided, that includes three models: one for

83



84 CHAPTER 4.1. PROOF-OF-CONCEPT IMPLEMENTATION

simulation, one known from calibration and one used for the compensation of indicated values
(which is the inverse to the calibration model). The distinction between a simulation model and
calibration model is crucial, as this matches the real world case, where only the calibration model
is known - but not the true transfer characteristic of a sensor.
The "device_under_test" describes the sensor that will be co-calibrated by providing the
simulation model and initial estimates for the calibration model and its inverse.
In "measurand" the time signal of the physical quantity being observed by all sensors is specified
as a function that can be evaluated at arbitrary timestamps. It is possible to choose a sinusoidal
process with or without (random) discontinuities, system noise, varying frequency (chirp) and
constant amplitude. A discrete-time version of the measurand is evaluated at the timestamps,
which are also later used for the measurement values of all sensors.
In "sensor_readings" the simulated indicated values of all sensors (reference sensors and device
under test) are computed from the individual simulation model and the time-discrete measurand.
In "cocalibration" actual details of the co-calibration routine are configured. To test a method’s
online capabilities, the input signals can be split into predefined or random blocks which the
method is called sequentially upon. Moreover, the actual methods to be used for co-calibration
are initialized by providing a (Python-)class name and arguments to instantiate the class.
For all top-level settings inside the configuration file, the nested key-value pairs can either be
given directly or by specifiying a path to another file, that stores the actual content. This enables
e.g. reusable definitions of the methods of interest. With this, configuration aspects relevant
for more than one use case (e.g., the specific method settings) can be reused across simulations.
Moreover, this allows to identically recreate interesting or problematic method outcomes.
The configuration file for the example given in section 3.1.7 is listed in listing 4.1.1. The mentioned
configuration of the device_under_test is given by listing 4.1.2 and of the gibbs_minimal
method by listing 4.1.3.

4.1.1.2 Execution

Upon execution, the configuration is loaded and details about the simulation environment
(machine, operating system, processor, Python version, installed Python packages and the commit
hash of the current simulation code repository) are logged for later reference. Based on the
descriptions given in the configuration file, executable objects are created.
Each co-calibration method provides (at least) an update_parameter-method, which receives
the (blockwise) sensor readings and returns the updated parameter estimate given the new data.
Once a method has consumed all available data, the collected and incrementally returned results
are written into a JSON output file. The execution time of each method is logged into a separate
file.

4.1.1.3 Source Code Details

The simulation environment to co-calibrate a sensor transfer behavior based on (already selected
and suitable) reference sensor readings is implemented in the Python programming language
using additional packages:

• Python (3.9.2) [125]
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{
"random_state": null,
"reference_sensors": "experiments/07_thesis_example/reference_sensors.json",
"device_under_test": "experiments/07_thesis_example/device_under_test.json",
"measurand": {

"type": "SinusoidalMeasurand",
"args": {

"sigma_x": 0.01,
"amplitude": 2.0,
"value_offset": 1.0

},
"time_args": {

"time_start": 0,
"time_end": 20.0,
"dt": 0.01

}
},
"sensor_readings": {

"dut_noise": "based_on_sigma_y_true",
"ref_noise": "based_on_unc",
"sigma_y_true": 0.1

},
"cocalibration": {

"interpolate": false,
"blockwise": true,
"split_indices" : [200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800],
"methods": {

"gibbs_minimal": "method_args/gibbs_minimal.json",
"gibbs_known_sigma_y": "method_args/gibbs_known_sigma_y.json",
"gibbs_no_EIV": "method_args/gibbs_no_EIV.json",
"joint_posterior": "method_args/joint_posterior.json",
"joint_posterior_agrid": "method_args/joint_posterior_grid_adjust.json"

}
}

}

Listing 4.1.1: Configuration file config.json for section 3.1.7.
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{
"S6": {

"hasSimulationModel": {
"type": "LinearAffineModel",
"params": {

"a": 2,
"b": 1,
"ua": 0.01,
"ub": 0.01,
"uab": 0.0

}
},
"hasCalibrationModel": {

"type": "LinearAffineModel",
"params": {

"a": 1,
"b": 0,
"ua": 1,
"ub": 1,
"uab": 0.0

}
},
"hasCompensationModel": {

"type": "LinearAffineModel",
"params": {

"a": 1,
"b": 0,
"ua": 1,
"ub": 1,
"uab": 0.0

}
},
"misc": {}

}
}

Listing 4.1.2: Configuration file device_under_test.json used in listing 4.1.1.
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{
"class_name": "GibbsPosterior",
"arguments": {

"gibbs_runs": 100,
"burn_in": 10,
"use_every": 5,
"sigma_y_is_given": false,
"no_error_in_variables_model": false,
"use_robust_statistics": false,
"prior": {

"a": {
"type": "norm",
"params": {

"loc": 1.0,
"scale": 1.0

}
},
"b": {

"type": "norm",
"params": {

"loc": 0.0,
"scale": 1.0

}
},
"sigma_y": {

"type": "invgamma",
"params": {

"a": 2.0,
"loc": 0.0,
"scale": 1.0

}
}

}
}

}

Listing 4.1.3: Configuration file gibbs_minimal.json used in listing 4.1.1.
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• numpy (1.22.1) [126]
• scipy (1.7.3) [127]
• sympy (1.9) [128]
• matplotlib (3.5.1) [129]
• time-series-buffer (0.1.4b0) [130]

The source code for the implementation is part of the supplementing digital documents of this
thesis, as well as available at:
https://github.com/mgrub/phd_sensor_simulation

4.1.2 Reasoning Environment

In order to evaluate the set expressions established in chapter 3.3, all required knowledge needs
to be available in a common format and implicit relations need to be made explicit by the use of
a reasoner. Therefore, existing ontologies and relevant sensor self-descriptions are loaded from
their respective Turtle files with an intermediate translation step to RDF/XML. A HermitT [77]
reasoner is then applied to all RDF-triples initially loaded. Once this is achieved, SPARQL-
requests are build that match the sought set expressions and return potential reference sensors
on execution.

4.1.2.1 Translation of Set Expressions into Queries

As mentioned in chapter 3.3, the set expressions used in theorem 14 (equations (3.3.3) to (3.3.5))
can be directly translated in to SPARQL templates given by listings 4.1.4 to 4.1.6. These templates
are turned into valid SPARQL request by adding relevant prefix definitions and substituting
@@TARGET@@ with a specific sensor identifier, e.g. sensor_S6:sensor.

SELECT ?s
WHERE {

?s a/rdfs:subClassOf* sosa:Sensor ;
ssn:hasProperty ?prop .
?prop a/rdfs:subClassOf* scal:CalibrationModel .
OPTIONAL {

?prop ssn-system:inCondition ?cond .
?cond schema:startDate ?start .
?cond schema:endDate ?end .

}
FILTER( !BOUND(?start) || ?start <= NOW() ) .
FILTER( !BOUND(?end) || NOW() <= ?end ) .

}

Listing 4.1.4: SPARQL template matching theorem 11.

https://github.com/mgrub/phd_sensor_simulation
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SELECT DISTINCT ?s
WHERE {

@@TARGET@@ sosa:observes ?m1 .
?s sosa:observes ?m2 .
?m1 om:hasDimension ?d1 .
?m2 om:hasDimension ?d2 .
FILTER( SAMETERM(?d1, ?d2) && !SAMETERM(?s, @@TARGET@@) )

}

Listing 4.1.5: SPARQL template matching theorem 12.

SELECT ?s
WHERE {

?s sosa:isHostedBy ?l1 .
@@TARGET@@ sosa:isHostedBy ?l2 .
FILTER( SAMETERM(?l1, ?l2) && !SAMETERM(?s, @@TARGET@@) )

}

Listing 4.1.6: SPARQL template matching theorem 13.

4.1.2.2 Source Code Details

The reasoning environment to identify suitable reference sensors based on sensor self-descriptions
is implemented in the Python programming language using additional packages:

• Python (3.11.2) [125]
• Owlready2 (0.41) [131]
• rdflib (6.3.2) [132]

The source code for the implementation is part of the supplementing digital documents of this
thesis, and as well available at:
https://github.com/mgrub/phd_semantic_init

Chapter Summary

Independent proof of concept implementations are provided for the semantic and mathematical
contributions of this thesis. The implementations are flexible and enable the evaluation of
different use cases. For reproducibility, the Python source code is referenced and the used software
environments are mentioned.

https://github.com/mgrub/phd_semantic_init
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4.2 Simulation Experiments

The mathematical co-calibration method(s) presented in chapter 3.1 is evaluated by simulating
different scenarios using the implementation given in chapter 4.1. The scenarios are designed to
address specific aspects of the proposed co-calibration method. Moreover, metrics are presented
to provide indicators for result comparison of the simulation results of different methods and
scenarios.

4.2.1 Scenarios, Methods and Evaluation Metrics

The following subsections present and motivate the simulated scenarios and the applied co-
calibration variants therein. Moreover, the metrics to evaluate each method’s performance are
introduced.

4.2.1.1 Selection of Simulation Scenarios

To evaluate specific design aspects of the co-calibration method, the scenarios cover different
input signals, number of reference sensors, communication errors and uncertainty of reference
sensors. An overview of the main simulated scenarios is given in table 4.2.1. The first group of
scenarios (1a, 1b, 1c) evaluates the performance of the algorithms with regard to three different
input signal types. No noise is added to the measurand or sensor readings, although each signal
has an uncertainty associated with it. The second group (2a, 2b, 2c) is the same as the first group,
but uses noisy signals by adding noise to the measurand (according to a configurable setting) and
to the sensor measurements (based on the associated model variance).

Scenario Input Signal Noisy Inputs Number of Reference Sensors

1a static no 3
1b sinusoidal no 4
1c chirp + jumps no 5
2a static yes 3
2b sinusoidal yes 4
2c chirp + jumps yes 5

Table 4.2.1: Design aspects covered by the main simulated scenarios.
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Moreover, an extended set of scenarios is evaluated, to further highlight certain properties of the
developed co-calibration methods. The extended scenarios are shown in table 4.2.2. A third group
(3a, 3b, 3c) is similar to 2c, but with different partitions of the input data stream blocks and
without jumps. It therefore allows to observe the influence of blocksizes onto the co-calibration
routine. The fourth group (4a, 4b) evaluates the applicability of the co-calibration methods in
case of dropouts or outliers in the input data streams. It evaluates the robustness of the methods
against faulty or missing input data. The fifth group of scenarios (5a, 5b, 5c) shows the influence
of the uncertainty-level of the reference sensors in relation to the uncertainty level of the sensor
under test. In all other scenarios the uncertainty of the reference sensor indications is lower than
the model error of the device under test. Moreover, suitability for different numbers of input data
streams is evaluated by using between one and five reference sensors.



Scenario Input Signal Noisy Inputs Number of Reference Sensors Comm. Errors Unc. of Ref. Blocksize

1a static no 3 - < DUT 200
1b sinusoidal no 4 - < DUT 200
1c chirp + jumps no 5 - < DUT 200
2a static yes 3 - < DUT 200
2b sinusoidal yes 4 - < DUT 200
2c chirp + jumps yes 5 - < DUT 200
3a chirp yes 3 - < DUT variable
3b chirp yes 3 - < DUT 100
3c chirp yes 3 - < DUT 200
4a sinusoidal yes 2 dropouts < DUT 200
4b sinusoidal yes 5 outliers < DUT 200
5a sinusoidal yes 1 - < DUT 200
5b sinusoidal yes 1 - ≈ DUT 200
5c sinusoidal yes 1 - > DUT 200

Table 4.2.2: Design aspects covered by the extended simulated scenario.
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4.2.1.2 Co-Calibration Methods to be Evaluated

Multiple co-calibration methods for linear affine sensor models have been presented and mentioned
in this thesis. In the above scenarios the co-calibration methods presented in table 4.2.3 are
executed independently on the same input data streams. This includes the proposed methods
presented in sections 3.1.3.2 and 3.1.3.3 and variations thereof to evaluate computational reduction
potential. Moreover, three variants of a co-calibration method proposed by Stankovic are applied
to the data as well [6, 133]. Differing from the original implementation (see [6]), all three included
variants are augmented with uncertainty evaluation following the GUM framework. The base,
base with uncertainty-weighted calculation and the enhanced Stankovic methods are presented in
appendices A.1 and A.2.
In the discussion following in chapter 4.4, the newly developed co-calibration methods (gibbs_-
base, gibbs_minimal, gibbs_known_sigma_y, gibbs_no_EIV, joint_posterior, joint_poste-
rior_agrid) are referred to as the proposed methods, while the state-of-the-art Stankovic methods
(stankovic_base, stankovic_base_unc, stankovic_enhanced_unc) are referred to as reference
methods.



Method calc a, b, ua, ub calc σy, uσ use unc. Method Documentation Note

gibbs_base∗ yes yes yes section 3.1.3.2 Method 1 high sample count
gibbs_minimal yes yes yes section 3.1.3.2 Method 1 low sample count
gibbs_known_sigma_y yes no yes section 3.1.3.2 Method 1 with fixed σy

gibbs_no_EIV yes yes yes section 3.1.3.2 Method 1 without EIV model
joint_posterior yes yes yes section 3.1.3.3 Method 2 static grid
joint_posterior_agrid yes yes yes section 3.1.3.3 Method 2 adaptive grid
stankovic_base yes no no appendix A base Stankovic method
stankovic_base_unc yes no yes appendix A uncertainty weighted gradient
stankovic_enhanced_unc yes no yes appendix A.2 extended Stankovic method

Table 4.2.3: Co-calibration methods used in each simulated scenario. (∗ only used in scenarios 2a, 2b, 2c)
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4.2.1.3 Metrics for Co-Calibration Evaluation

To compare the performance of the consensus-based co-calibration with other methods of same
purpose, multiple metrics are introduced in definitions 29 to 36 and used in section 4.2.2.
These allow to quantify the convergence to the true model parameters, convergence efficiency,
computational requirements and numerical stability.
Computational requirements are captured using the runtime metric in definition 29. To evaluate
the estimates of parameters a, b and σy; the mean signed difference (definition 30) and the
normalized mean absolute error (definition 31) are used as consistency metrics. Consistency can
also be evaluated in terms of the quality of the estimated measurand using the inverse f−1 of
the fitted transfer behavior f . The details are provided in appendix A.4 and allow to obtain an
estimate X̂ai = f−1(Yi, θ̂¯

) with uncertainty u(X̂ai) of the measurand Xai. The application of the
inverse model makes use of the parameter uncertainties and (if available) the estimated variance
σ2

y of the model error εi (see equation (3.1.9)). The consistency of this estimated measurand is
evaluated using the mean signed difference (definition 30), the mean squared error (definition 32)
and normalized mean squared error (see definition 33). The corresponding metrics MSDX ,
MSEX and NMSEX are calculated over the whole available time series, hence the expectation
operator is the mean over all available points in time.
To quantify the convergence behavior of a method, it can be observed how the span between
maximum and minimum of all future estimates (starting from some t) develops. This is possible,
because an updated parameter estimate becomes available after each evaluated block of input
data. This span sϕ(t) is defined according to definition 34. Another possibility to rate the
convergence is to assess after which time (of the input data) the estimated parameter uncertainty
is lower than a given threshold. Two slightly different metrics are evaluated, definition 35 returns
the first time the uncertainty level is reached, while definition 36 provides from when on this level
is maintained until the end of the simulation.
An overview of all the metrics that are applied to each simulation result is given in table 4.2.4.

Definition 29 (Runtime Metric). The runtime metric trun is defined as

∆trun = tend − tstart (4.2.1)

with the logged start-time tstart and end-time tend of a method. It is used to measure the practical
computation time on the used computer system, but not the total CPU time spend.

Definition 30 (Mean Signed Difference Metric). The mean signed difference MSDϕ of a (time-
series of a) parameter ϕ with true (simulated) value ϕtrue and estimated value ϕ̂ is given by

MSDϕ = E[ϕ̂− ϕtrue] (4.2.2)

and is used as a consistency metric [134]. Note: In contrast to an absolute difference metric, it
allows to check for systematic under- or overestimation of a method.

Definition 31 (Normalized Mean Absolute Difference Metric). The normalized mean absolute
error NMAEϕ of a (time-series of a) parameter ϕ with true (simulated) value ϕtrue, estimated
value ϕ̂ and estimated uncertainty uϕ̂ is defined by

NMAEϕ = E[ |ϕ̂− ϕtrue|
uϕ̂

] (4.2.3)
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and is used as a consistency metric.

Definition 32 (Mean Squared Error Metric). The normalized mean squared error NMSEϕ of a
(time-series of a) parameter ϕ with true (simulated) value ϕtrue and estimated value ϕ̂ is defined
by

MSEϕ = E[(ϕ̂− ϕtrue)2] (4.2.4)

and is used as a consistency metric [134].

Definition 33 (Normalized Mean Squared Error Metric). The normalized mean squared error
NMSEϕ of a (time-series of a) parameter ϕ with true (simulated) value ϕtrue, estimated value ϕ̂
and estimated uncertainty uϕ̂ is defined by

NMSEϕ = E[ (ϕ̂− ϕtrue)2

u2
ϕ̂

] (4.2.5)

and is used as a consistency metric.

Definition 34 (Convergence Span Metric). The convergence span sϕ(t) of a parameter ϕ with
estimated value ϕ̂(t) is defined by

sϕ(t) = max
t∗≥t

θ̂(t∗) − min
t∗≥t

θ̂(t∗) (4.2.6)

and is used as a convergence metric. The time dependence of ϕ̂(t) is meant in the sense of an
updated estimate after each new evaluated block of input data. Hence, although the true parameter
is constant, the estimate of it changes over the course of the simulation.

Definition 35 (Uncertainty Threshold Reached Metric). The time tθ(τ) after which the estimated
uncertainty uϕ̂ of a parameter ϕ falls below a given threshold τ for the first time is defined by

tϕ(τ) = min
t≥t0

t s.t. uϕ̂(t) ≤ τ (4.2.7)

and is used as a convergence metric.

Definition 36 (Uncertainty Threshold Maintained Metric). The time tθ(τ) after which the
estimated uncertainty uϕ̂ of a parameter ϕ falls below a given threshold τ for all future (simulated)
times is defined by

t∗θ(τ) = min
t≥t0

t s.t. ∀s≥tuϕ̂(s) ≤ τ (4.2.8)

and is used as a convergence metric.

4.2.1.4 Computational Execution

The methods are executed on a computer with an “AMD Ryzen 7 2700X Eight-Core Processor”
and 32GB of memory. The operating system is “Debian 10” with kernel 4.19.0-23-amd64. Multiple
scenarios are executed sequentially in advance. Each scenario logs software configuration and
results individually into corresponding files.
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Metric Symbol Definition Dimension
runtime ∆trun 29 om:Time
mean signed difference a MSDa 30 same as a
norm. mean abs. error a NMAEa 31 om:dimensionOne
mean signed difference b MSDb 30 same as b
norm. mean abs. error b NMAEb 31 om:dimensionOne
mean signed difference σy MSDσy

30 same as σy

norm. mean abs. error σy NMAEσy 31 om:dimensionOne
mean signed difference X

¯ a MSDX 30 om:dimensionOne
mean squared error X

¯ a MSEX 32 om:dimensionOne
norm. mean squared error X

¯ a NMSEX 33 om:dimensionOne
span of a shrinks sa(4s) > sa(16s) 34
span of b shrinks sb(4s) > sb(16s) 34
span of σy shrinks sσ(4s) > sσ(16s) 34
ua below 0.1 ta(0.1), t∗a(0.1) 35, 36 om:Time
ub below 0.1 tb(0.1), t∗b(0.1) 35, 36 om:Time
uσ below 0.1 tσ(0.1), t∗σ(0.1) 35, 36 om:Time

Table 4.2.4: Metrics used to evaluate the results of each co-calibration method in specific scenarios.

4.2.2 Results

The results are presented in two complementing ways. To compare the performance of individual
methods in different scenarios with regard to a specific metric, suitable plots are provided in this
section. The x-axis corresponds to the abbreviated scenario (e.g., 03b) and the y-axis equals
to the value of the specific metric. Different methods are distinguished by the marker symbol
and the color of each marker indicates the kind of the method (blue: method-1-type, cyan:
method-2-type, black: Stankovic-type). The runtime and consistency metrics are visualized in
figures 4.2.1 to 4.2.10. To maintain a good presentation of the plots, values well above or below18

the main data range are indicated with ↑! or ↓! at the upper and lower boundaries of each plot.
The data underlying these figures is also provided in scenario-wise tables in appendix D. There,
the detailed performance (including the convergence metrics) of each method in each scenario
is given in tables D.1 to D.42. These tables also contain the estimated parameters as the main
results of each simulation. A discussion of the results is provided in chapter 4.4.

18From all values within a plot the range from the 10%-quantile to the 90%-quantile is calculated. Values more
than twice this range above the 90%-quantile or below the 10%-quantile are considered outliers in this plot. If a
logarithmic scale is used, the logarithm of the values is used in these computations.
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Figure 4.2.1: Overview of ∆trun (computation duration) for multiple methods in different
scenarios.
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Figure 4.2.2: Overview of MSDa (mean signed difference of a) for multiple methods in different
scenarios.
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Figure 4.2.3: Overview of NMAEa (normalized mean absolute error of a) for multiple methods
in different scenarios. Outliers are drawn outside above or below the plot area to maintain a good
display of the majority of data points.
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Figure 4.2.4: Overview of MSDb (mean signed difference of b) for multiple methods in different
scenarios. Outliers are drawn outside above or below the plot area to maintain a good display of
the majority of data points.
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Figure 4.2.5: Overview of NMAEb (normalized mean absolute error of b) for multiple methods
in different scenarios. Outliers are drawn outside above or below the plot area to maintain a good
display of the majority of data points.
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Figure 4.2.6: Overview of MSDσy
(mean signed difference of σy) for multiple methods in different

scenarios. Outliers are drawn outside above or below the plot area to maintain a good display of
the majority of data points.
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Figure 4.2.7: Overview of NMAEσy
(normalized mean absolute error of σy) for multiple methods

in different scenarios. Outliers are drawn outside above or below the plot area to maintain a good
display of the majority of data points.
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Figure 4.2.8: Overview of MSDX (mean signed difference of X) for multiple methods in different
scenarios. Outliers are drawn outside above or below the plot area to maintain a good display of
the majority of data points.
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Figure 4.2.9: Overview of MSEX (mean squared error of X) for multiple methods in different
scenarios. Outliers are drawn outside above or below the plot area to maintain a good display of
the majority of data points.
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Figure 4.2.10: Overview of NMSEX (normalized mean squared error of X) for multiple methods
in different scenarios. Outliers are drawn outside above or below the plot area to maintain a good
display of the majority of data points.
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Chapter Summary

The scenarios in which multiple methods are applied to compute a co-calibration are presented
in detail. Moreover, the metrics used to evaluate the results are described. The results of these
simulations are presented as metric-wise figures for comparison of methods in scenarios with
regard to one specific metric. This prepares the detailed discussion in chapter 4.4.



4.3 Ontology Assessment

The two ontologies proposed in chapter 3.2 need to be evaluated whether they match good
ontology design practice and are fit for the intended purpose. This is done by multiple means
that cover qualitative, logical and quantitative views. Ontology evaluation should focus on seven
criteria [135]:

• accuracy: compliance of the axioms with the domain knowledge
• completeness: coverage of the domain of interest
• conciseness: no irrelevant elements or redundant representations
• adaptability: performance in non-anticipated use cases
• clarity: efficient communication of the intended meaning of terms
• computational efficiency: ability and speed of reasoning tasks
• consistency: no inclusion of or potential for contradictions

As proposed by [135], established methods for ontology evaluation can be grouped into four
categories. Each of these has a different profile with regard to which criteria it is able to support.
Accuracy, completeness and conciseness will be checked by comparing the ontologies with the
corpus of a domain-relevant book. By checking the coverage of the intended purpose in terms of
competency questions and highlighting future extension, adaptability is addressed, although not
thoroughly. Clarity and consistency of the backbone taxonomy will be evaluated by applying the
OntoClean methodology to it. By computing metrics of the proposed ontologies and relying on
the OWL2 DL, conclusions about general feasibility and computational efficiency of reasoning
tasks can be made. Moreover, the relevance of a semantic approach is discussed.

4.3.1 Corpus Comparison

A semi-automated corpus based evaluation of the trans ontology is performed [135]. As corpus
the book Signals & Systems (2nd Ed.) by Oppenheim, Willsky, and Nawab is chosen [136]. The
book covers fundamental aspects of systems and transfer behaviors and with that is a good
candidate for the comparison. However, the book covers more than just system transfer behavior.
The top 500 “keywords” (n-grams up to a length of three) are extracted from the book’s PDF
(approx. 990 pages) using the the YAKE!-algorithm [137].
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The string representing each base concept in the ontology (omitting the prefix trans:) is then
compared to the extracted keywords using the Jaro-Winkler-similarity measure [138]. The most
similar match is saved and manually examined. Out of 46 defined concepts, 17 are well represented,
9 fairly well and 21 are not found in the extracted top 500 keywords. After manual re-inspection
of not well matching terms against the corpus, 31 concepts can be considered to be present in the
corpus of the book. The detailed mapping and some explanation are provided in table 4.3.1.



Concept Keyword Score ++ + - *+ Remark

BandPass bandpass 1.00 ✓ ✓
Butterworth butterworth filters 0.92 ✓ ✓
Continuous continuous-time 0.93 ✓ ✓
Discrete discrete time 0.92 ✓ ✓
Dynamic dynamics 0.97 ✓ ✓
Elliptic elliptic 1.00 ✓ ✓
FilterType filter 0.92 ✓ ✓
HighPass highpass 1.00 ✓ ✓
ImpulseResponseModel impulse response 0.94 ✓ ✓
LinearSystem linear system theory 0.92 ✓ ✓
LowPass lowpass 1.00 ✓ ✓
LTISystem lti system. sec 0.91 ✓ ✓
NonlinearSystem nonlinear system 0.99 ✓ ✓
Polynomial polynomials 0.98 ✓ ✓
StepResponseModel step response asymptotically 0.88 ✓ ✓
SystemType system 0.92 ✓ ✓
TimeDomain time domain 0.98 ✓ ✓
BandStop band 0.90 ✓ ✓ mentioned in book
EllipticRationalFunction elliptic 0.87 ✓ ✓
FrequencyBehavior frequency 0.91 ✓ ✓
FrequencyDomain frequency modulation 0.94 ✓ ✓
FrequencySpectrum frequency 0.91 ✓ ✓
TimeSeries time 0.88 ✓ ✓
FiniteImpulseResponseModel finite 0.85 ✓ ✓ listed in index
InfiniteImpulseResponseModel iii 0.73 ✓ ✓ listed in index
LinearDifferenceEquation linear 0.85 ✓ ✓ listed in index
LinearOrdinaryDifferentialEquation linear 0.84 ✓ ✓ "linear differential equation" listed in index
LinearStateSpaceModel linear amplitude scale 0.86 ✓ ✓ only hint on state space models in book
StateSpaceMatrixNotation statement 0.83 ✓ ✓ only hint on state space models in book
StateSpaceModel statement 0.82 ✓ ✓ only hint on state space models in book
TransferModel transforms 0.90 ✓ ✓ "transfer function" listed in index
MathematicalObject mathematical 0.93 ✓ computational representation not scope of book
NonLinearStateSpaceModel nonlinear system 0.88 ✓ only hint on state space models in book
RationalFraction rational 0.90 ✓
AnalyticalDomain lti 0.73 ✓ not mentioned in book
Array area 0.83 ✓ computational representation not scope of book
ArrayWithUncertainty write 0.68 ✓ computational representation not scope of book
Bessel essentially 0.76 ✓ Bessel filter not mentioned in book
Chebyshev achieve 0.69 ✓ Chebyshev filter not mentioned in book
ContinuousImpulseResponseModel continuous-time fourier series 0.86 ✓ only parent concept mentioned
DimensionStructure distinct 0.82 ✓ not mentioned in book
GainOffsetNotation gain 0.84 ✓ not mentioned in book
LinearAffineModel linear 0.87 ✓ not mentioned in book
QualitativeBehavior lie 0.72 ✓ not mentioned in book
Static statistical signal 0.87 ✓ not mentioned in book
TemporalBehavior temperature 0.82 ✓ not mentioned in book

Table 4.3.1: Details of the corpus evaluation of the trans ontology. Good match (++), mediocre match (+), bad match (-), match based
on manual review(*+).
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4.3.2 Coverage of the Intended Purpose

The main intention of the scal and trans ontologies is to represent metrologically relevant
information in sensor (network) descriptions. This intention is made explicit by competency
questions which capture what a knowledge representation on the basis of this ontology should be
able to answer. As noted by [121, 139], three general categories of competency questions can be
distinguished: class and relation queries, decision queries and interrogative queries.
The scal ontology was designed using the (decision and interrogative) CQs listed in chapter 3.2.
Chapters 3.3 and 4.1 show, how these can be translated into machine-actionable queries. From
this, it can be concluded that it is possible to answer the competency questions. However, it
should be noted, that the first question (a decision query) is rephrased into two sequentially
linked questions: (1) “Has a specific sensor a property of type CalibrationModel?” and (2) “Are
all conditions of this property fulfilled?”. In addition, the ontology allows to answer the following
questions, which have not been part of the design constraints:

• What Parameters and Variables are used in an EquationModel?
• Is a Parameter defined with or without uncertainty?

Despite many answerable questions, there are questions which cannot be answered based on the
scal ontology:

• Is a specific EquationModel input-ouput-equivalent to another specific EquationModel?
• Is a specific EquationModel input-ouput-equivalent to a specific trans:TransferModel?

Competency questions for the trans ontology have not been stated so far in this thesis, but are
partly given in [19]. Leading competency questions in the design of trans are:

• What is the TransferModel of a specific sensor?
• Is the TransferModel of a specific sensor a specialization of another TransferModel type?
• What mathematical objects characterize a specific TransferModel?
• What are qualitative behaviors of a specific TransferModel?
• Is a specific TransferModel represented by mathematical objects which have an assigned

uncertainty?

These questions all refer to constraints on an individual transfer model and can be directly
answered by design. Moreover, the ontology can guide developers of software frameworks what
transfer behaviors they may want to implement (and if how), by asking use case independent
questions:

• Which subtypes of TransferModel exist?
• Which mathematical object can be used to express a LinearStateSpaceModel?
• What are the attributes of a TransferModel?

However, there are questions that can not be answered using just the knowledge available in the
trans ontology.

• Is a specific TransferModel input-output-equivalent to another specific TransferModel?
• What is the discrete variant of a continuous TransferModel?



4.3.3. EVALUATION OF THE BACKBONE TAXONOMY 109

As exemplified, this (as for scal) concerns questions regarding the equivalence of two systems in
terms of input-output behavior. No conversion-links are provided in the ontology, but are often
available in signal-processing toolboxes.
Another intention of the proposed ontologies is to enable sensor self descriptions that are ready
for machine-interpretable content according to the five levels of digitalization [140]. That means,
that these descriptions are not only machine-readable, but the relationships and meaning used
within the description are provided in a machine-actionable way. By relying on Semantic Web
technologies (mainly OWL and RDF), the proposed sensor self description based on scal and
trans fulfill the requirements of level four and prepare the fifth level.

4.3.3 Evaluation of the Backbone Taxonomy

The OntoClean methodology is based on modal logics and allows to reveal inconsistencies in the
taxonmic backbone of an ontology [141, 142, 143]. The method requires assignment of general
(rather) philosophical meta-properties to each concept in the ontology. These meta-properties
are: [142]

• rigidity: Is a property essential to an entity in every possible world?
• identity: Can one recognize two individuals as being the same or different?
• unity: Can one recognize all the parts that form an individual entity? 19

• dependency: Can an entity exist only on existence of another?

For all these properties, a corresponding non-property (can hold for some of its instances) and for
some anti-properties (holds for none of its instances) exists. Although there is no definite right or
wrong way of assigning these meta-properties to concepts within an ontology (as this depends
on the intended meaning), there are rules how some of these properties are inherited along
class-subclass-relations. These rules are formulated as an ontoclean ontology, which allows to
search for inconsistencies with these rules in a programmatic way [144]. To apply the OntoClean
method to scal and trans, the approach follows the essential steps of the tutorial provided
in [144]. First, the ontology under evaluation needs to be adapted (“punning”) to match the
application requirements of the ontoclean ontology. To yield the backbone taxonomy (which
can be written into a separate file):

• extract all mentioned owl:Class
• extract all mentioned rdfs:subClassOf relations between the classes
• convert each extracted owl:Class into owl:NamedIndividual and ontoclean:Class
• convert each extracted rdfs:subClassOf into ontoclean:subClassOf

Next, the meta-properties are assigned to each ontoclean:Class using the following classes and
abbreviations:

• rigidity (+R) by ontoclean:RigidityClass
• non-rigidity (-R) by ontoclean:NonRigidityClass
• anti-rigidity (~R) by ontoclean:AntiRigidityClass

• unity (+U) by ontoclean:UnityClass
19Or expressed differently: If an individual can be decomposed into instances of the same class, it has a non-unity

meta-property.



110 CHAPTER 4.3. ONTOLOGY ASSESSMENT

• non-unity (-U) by ontoclean:NonUnityClass
• anti-unity (~U) by ontoclean:AntiUnityClass

• identity (+I) by ontoclean:SortalClass
• non-identity (-I) by ontoclean:NonSortalClass

• dependence (+D) by ontoclean:DependentClass
• non-dependence (-D) by ontoclean:NonDependentClass

Moreover, the ontoclean ontology needs to be listed as explicit import in the adapted backbone
taxonomy. Finally, a reasoner is applied to the extracted and adjusted file to detect potential
inconsistencies, e.g., the HermiT reasoner can be executed via the Protégé-Frontend [145, 146].
The meta-properties assumed in the scal and trans ontologies are provided in tables 4.3.2
and 4.3.3 respectively. Because no meta-properties of the underlying external ontologies are
known, they are assigned to the best of one’s knowledge. No inconsistencies are found within the
current state of the ontologies.
To see what would happen in case of an inconsistency, consider the following: If scal:Location
would be assumed to carry unity +U (in the sense of “a single location is a whole and cannot be
split into multiple locations”), then the checks would reveal a unity-issue because scal:Location
is a subclass of sosa:Platform (-U) and geo:SpatialObject (~U). However, a subclass of a
anti-unity carrying class cannot be carrying unity [142] and in the Protégé UI this inconsistency
would be visualized and explained as shown in figure 4.3.1.

Class Rigidity Unity Identity Dependence
sosa:Platform ∗ +R ~U +I -D
sosa:Result ∗ +R +U +I -D
geo:SpatialObject ∗ +R -U +I -D
om:Measure ∗ +R +U +I -D
om:Quantity ∗ +R +U +I -D
sosa:Sensor ∗ +R +U +I -D
ssn:Property ∗ +R +U +I -D
scal:CalibratedSensor +R +U +I +D
scal:CalibrationModel +R +U +I -D
scal:Location +R -U +I -D
scal:MeasureWithUncertainty +R +U +I +D
scal:EquationModel +R +U +I +D
scal:Equation +R +U +I -D
scal:Parameter +R +U +I -D
scal:Variable +R +U +I -D

Table 4.3.2: Detailed assertions of meta-properties to the classes in scal. (Classes marked with ∗

are assertions to external concepts.)
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Class Rigidity Unity Identity Dependence

math:E34 ∗ +R -U +I -D
om:Measure ∗ +R +U +I -D
scal:CalibrationModel ∗ +R +U +I -D
si:MeasureWithUncertainty ∗ +R +U +I +D
trans:AnalyticalDomain +R +U +I -D
trans:Array +R +U +I +D
trans:ArrayWithUncertainty +R +U +I +D
trans:BandPass -R +U -I -D
trans:BandStop -R +U -I -D
trans:Bessel +R +U +I +D
trans:Butterworth +R +U +I +D
trans:Chebyshev +R +U +I +D
trans:Continuous +R +U +I -D
trans:ContinuousImpulseResponseModel +R +U +I +D
trans:DimensionStructure +R +U +I -D
trans:Discrete +R +U +I -D
trans:Dynamic -R +U -I -D
trans:Elliptic +R +U +I +D
trans:EllipticRationalFunction +R +U +I +D
trans:FilterType +R +U +I +D
trans:FiniteImpulseResponseModel +R +U +I +D
trans:FrequencyBehavior +R +U -I -D
trans:FrequencyDomain +R +U +I -D
trans:FrequencySpectrum +R -U +I +D
trans:GainOffsetNotation +R +U +I +D
trans:HighPass -R +U -I -D
trans:ImpulseResponseModel +R +U +I +D
trans:InfiniteImpulseResponseModel +R +U +I +D
trans:LinearAffineModel +R +U +I +D
trans:LinearDifferenceEquation +R +U +I +D
trans:LinearOrdinaryDifferentialEquation +R +U +I +D
trans:LinearStateSpaceModel +R +U +I +D
trans:LinearSystem +R +U +I -D
trans:LowPass -R +U -I -D
trans:LTISystem +R +U +I -D
trans:MathematicalObject +R -U +I -D
trans:NonLinearStateSpaceModel +R +U +I +D
trans:NonlinearSystem +R +U +I -D
trans:Polynomial +R +U +I +D
trans:QualitativeBehavior +R +U -I -D
trans:RationalFraction +R +U +I +D
trans:StateSpaceMatrixNotation +R +U +I +D
trans:StateSpaceModel +R +U +I +D
trans:Static -R +U -I -D
trans:StepResponseModel +R +U +I +D
trans:SystemType +R +U +I -D
trans:TemporalBehavior -R +U -I -D
trans:TimeDomain +R +U +I -D
trans:TimeSeries +R -U +I +D
trans:TransferModel +R +U +I +D

Table 4.3.3: Detailed assertions of meta-properties to the classes in scal. (Classes marked with ∗

are assertions to external concepts.)
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Figure 4.3.1: Protégé screenshot revealing an inconsistency in a hypothetical version of the scal
ontology.

4.3.4 Schema Metrics

The scal and trans ontologies are evaluated according to existing schema metrics [147]. The
metrics are based on counting objects in the ontology with certain properties and are computed
using a combination of SPARQL-queries with subsequent calculations in Python. All queries
are evaluated on the ontology after the application of a reasoner and therefore include implicit
relations.
The relationship richness (RR) metric defined in definition 37 “reflects the diversity of relations
[...] in the ontology” [147] by quantifying the percentage of taxonomic (class-subclass) relations in
it. The attribute richness (AR) metric defined in definition 38 “indicate[s] [...] the quality of the
ontology design” [147] by quantifying the amount of (human readable) labels and annotations. The
inheritance richness (IR) metric defined in definition 39 “describes the distribution of information
across different levels of the ontology’s inheritance tree” [147] by calculating the mean number of
subclasses per class.
The numeric results of all three metrics are provided in table 4.3.4.

Definition 37 (Relationship Richness Metric). Within a selected ontology, let SC be the number
of all unique classes with a rdfs:subClassOf-relation and ALL be the number of unique classes
with at least one relation. The relationship richness metric RR is then calculated according to
[147]

RR = 1 − SC

ALL
(4.3.1)

Where SC is computed using listing C.1 and ALL is computed using listing C.2. Values of RR
close to zero indicate that the majority of relations are of hierarchical nature, while values close
to one indicate the opposite.
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Definition 38 (Attribute Richness Metric). Within a selected ontology, let C be the number of
classes and ATT be the number of number of classes that are annotated. The attribute richness
metric AR is then calculated according to [147]

AR = ATT

C
(4.3.2)

Where C is computed using listing C.3 and ATT is computed using listing C.4. Values of AR
close to one indicate that most of the classes are annotated, while a value of zero means that no
class is annotated.

Definition 39 (Inheritance Richness Metric). Within a selected ontology, let Hsum be the sum of
subclasses of each class and C be the number of classes in the ontology. The inheritance richness
metric IR is then calculated according to [147]

IR = Hsum

C
(4.3.3)

Where Hsum is computed using listing C.5 and C is computed using listing C.3). Smaller values of
IR indicate a shallow taxonomic graph, while higher values indicate a large number of inheritance
levels.

Metric scal trans

relationship richness (RR) 0.75 0.53
attribute richness (AR) 1.00 0.20
inheritance richness (IR) 0.125 1.59

Table 4.3.4: Results of schema metric evaluation.

Chapter Summary

The two proposed ontologies scal and trans are evaluated according to existing methods to
describe the multiple aspects of these ontologies. Specifically, a corpus comparison revealed good
agreement to a book, the execution of competency questions shows the agreement to initial design
goals, the OntoClean methodology assesses the consistency of the backbone taxonomy and basic
ontology metrics can be calculated. This prepares a discussion of the results in chapter 4.4.
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4.4 Discussion of Results

In this chapter, the results presented in the previous two chapters 4.2 and 4.3 are assessed and
conclusions are drawn. The discussion covers a critical comparison to the existing state-of-the-art
and reflects the consequences with regard to the research questions of this thesis.

4.4.1 Mathematical Insights

Based on the provided measures in different scenarios, statements about the robustness and
applicability of each method can be made. Moreover, it is possible to compare the proposed
methods against state-of-the-art reference methods developed by Stanković et al. [6, 133]. The
general idea is to assess the individual performance aspects based on the simulation results of a
specific scenario group.

4.4.1.1 General Performance (02a, 02b, 02c)

General method performance is assessed using scenarios 02a, 02b and 02c, which differ in the
characteristic of the input signal (stationary input, sinusoidal input, jumping chirp input).
Parameter estimates â show a good agreement to the true value used in the simulation (atrue = 2.0)
with regard to the MSDa metric in figure 4.2.2 for the proposed methods only in scenarios 02b and
02c. This is confirmed with values below of NMAEa < 2.0 for the gibbs_base, gibbs_minimal
and joint_posterior methods. Parameter estimates â in scenario 02a are weak according to
MSDa and the NMAEa metric indicates an underestimated parameter uncertainty.
Parameter estimates for b̂ show good agreement with the true value used in the simulation
(btrue = 1.0) with regard to the MSDb metric in figure 4.2.4 in all three scenarios. However, only
gibbs_base and joint_posterior are also consistent (NMAEb < 2.0) within their estimated
parameter uncertainty in all three scenarios, as seen in figure 4.2.5.
Parameter estimates for σ̂y do not show a good agreement with the true value used in the simulation
(σy = 0.1) as indicated by the MSDσy metric in figure 4.2.6 in all three scenarios. Although there
is a tendency to overestimate this parameter value by all methods, the deviation remains within
an acceptable range of NMAEσy

< 2.0 for the gibbs_minimal and gibbs_no_EIV methods as
shown in figure 4.2.7. The joint_posterior_agrid method consistently underestimates the
parameter uncertainty in all three cases, yielding a high NMAEσy

metric.
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The general behavior of the parameter estimations is explainable, as the effect of â and b̂ onto
the output signal of the device under test can only be separated if a variation in the input signal
exists. Moreover, because the proposed methods (in contrast to the reference methods) are also
estimating σ̂y, variations similar to (white) noise contribute to the estimation thereof and do not
(or only to a small extend) influence the estimate â. In contrast, the reference methods use any
variation (and with that also noise) in the input data to estimate â, as they aren’t estimating the
error term related to σ̂y. Therefore, the proposed methods need to operate on time varying signals,
in which the white noise and deterministic signal can be distinguished. This also shows, that
the proposed methods not only can operate on time varying signals, but also need a noticeable
variation over time to obtain usable parameter estimates.
Using the estimated parameters to compute an inverse model yields practically bias-free estimates
of the measurand as indicated by the MSDX metric being close to zero (|MSDX | ≤ 10−1)
in figure 4.2.8 in all scenarios for all proposed methods. Moreover, the mean squared error
MSEX is kept below 0.02 indicating a good agreement (see figure 4.2.9), but with a potentially
overestimated model error σy indicated by the NMSEX metric being much lower than (the ideal
value of) 1.0 in figure 4.2.10.
All three reference methods (stankovic_base, stankovic_base_unc, stankovic_enhanced_unc)
are providing good parameter estimates in 02a, however performance degrades for non-stationary
input signals (scenarios 02b and 02c) in all consistency metrics (e.g., check MSDa, MSDb

and NMSEX in figures 4.2.2, 4.2.4 and 4.2.10). This was to some extend unexpected, as no
limitations regarding the input signal are mentioned in the related publications, e.g. [6].
Convergence behavior is supporting the performance observations already made and details are
given in tables D.12, D.15 and D.18. In scenario 02a, although most of the parameter estimate
spans reduce, a target uncertainty of 0.1 is reached (and maintained) only for few methods with
parameter a, but for all methods in parameter b and σy. In all scenarios, the proposed methods
reach a target uncertainty level of 0.1 earlier than the reference methods.
Runtime metric ∆trun varies greatly between methods as seen in figure 4.2.1, but computation
runtime of a specific method remains stable across scenarios. In general, the reference methods are
one to two orders of magnitude faster than the proposed methods. This is a direct consequence of
the involved mathematics behind the methods. While the reference methods use gradient-based
and computationally light update formulas that need to be evaluated just once per input data
point, the proposed methods use computationally more demanding expressions (PDF-calculations)
that are evaluated on a block of input data and need to be evaluated either multiple times
(Block-Gibbs-Sampling) or for many parameter combinations (Discrete Grid). For the proposed
methods, the quality of the results is directly related to the number of Monte Carlo runs or grid
resolution, setting a limit to computational performance gains.

4.4.1.2 Streaming Performance (03a, 03b, 03c)

Streaming performance is assessed using scenarios 03a, 03b and 03c, which differ only in the
length of the incoming input blocks (variable length 1 − 400, blocksize 100, blocksize 200). It is of
interest, whether the method results are affected by the different splits and if there are runtime
changes.
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Method results are affected by the input data blocksize, except joint_posterior. Longer
blocksizes yield better parameter estimates in terms of the NMAEa and NMAEb metrics. This
is expected to a certain degree and a consequence of the block-wise data processing. The reason
is that the Bernstein-von Mises theorem [119] does only apply to the joint_posterior and
joint_posterior_agrid methods (method 2), where the full posterior information is maintained
between update cycles within the internal state. In contrast - although not a general limitation of
MCMC-based methods - the method-1-based methods discard correlations between the parameters
because the result distributions are fitted against marginalized posterior samples. Hence, longer
blocksizes allow to keep the correlation information over more input data points, resulting in
better estimates. Additionally, only the analytical posteriors of a and b are of the same type as
their priors, while the posterior for σy does not directly yield again an inverse gamma distribution
(see appendix B.1.4). The joint_posterior and joint_posterior_agrid methods are based on
analytically non-approximate calculations, with potential issues only arising from the grid update
and numerical treatment. Inverse model performance (figures 4.2.8 to 4.2.10) and convergence
performance (tables D.21, D.24 and D.27) are good for all proposed methods.
Runtime is affected by the input data blocksize. While runtime decreases with larger blocksize
for methods that need to draw samples from the σy-posterior distribution (gibbs_minimal,
gibbs_no_EIV), it increases for methods that do not (gibbs_known_sigma_y, joint_posterior,
joint_posterior_agrid). This is expected, as the latter methods benefit from longer, but fewer
blocks in total, reducing the total amount of required (computation intensive) samples from the
σy-posterior distribution. Conversely, for the former methods, the main runtime influence is given
by the error-in-variables model which requires matrix decompositions that scale worse-than-linear
with blocksize.
Runtime and estimates are practically identical in all three scenarios for the reference methods.
This is expected as the reference methods internally process each data point separately and
calculations are therefore not affected by the choice of input blocks.

4.4.1.3 Dropout and Outlier Performance (04a, 04b)

Performance in the presence of outliers and dropouts in the reference sensor measurements is
assessed using scenarios 04a and 04b. The robustness against such communication errors is
provided by the sensor fusion ahead of the actual parameter estimation routine, as described in
chapter 3.1. Hence, multiple reference sensors are required to provide a basis for the statistics-based
outlier detection.
In both scenarios, the proposed methods show similar performance as in scenarios without outliers
(e.g., 02b, 02c). Although no test regarding a breakdown point of this performance is executed,
from the design of the sensor fusion method it can be inferred, that this performance can be
maintained, as long as less than half of the sensors are affected by outliers at a single point in
time.
While the reference methods maintain good performance in case of dropouts, their performance
breaks down in the presence of outliers. This can be best observed in the MSDa and MSDb

metrics in figures 4.2.2 and 4.2.4.
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4.4.1.4 Influence of Reference Sensor Uncertainty (05a, 05b, 05c)

Performance for different levels of uncertainty of the reference sensors is assessed using scenarios
05a, 05b and 05c. These scenarios differ only in the uncertainty of the reference sensor reading
and the added sensor noise based on this uncertainty level.
In scenarios 05a and 05b performance of the proposed methods stays on a similar and good
level. However, the performance degrades in scenario 05c, especially parameter a and inverse
model performance can no longer be maintained consistently (see figures 4.2.3, 4.2.8 and 4.2.10).
This indicates that the proposed methods can supply usable results even if a sensor with similar
characteristics as the device under test is used as reference sensor. A sensor that performs worse
than the device under test should not be used as reference sensor, although the (inverse) model
for measurand estimation remains consistent within the stated uncertainty, mainly due to a high
(and overestimated) σy.
For the reference methods, the performance is affected in scenario 05b and 05c. Only due to high
estimated uncertainties of the parameter estimates, consistency can be maintained in all three
scenarios.

4.4.1.5 No-noise Performance (01a, 01b, 01c)

Performance of the methods is tested in a way that deviates from the statistical model given in
definition 21 by setting the error terms of equations (3.1.9) and (3.1.10) to zero in scenarios 01a,
01b and 01c. These scenarios are otherwise equivalent to 02a, 02b and 02c.
The proposed methods do not perform well in scenario 01a, especially MSDa and NMAEa

deviate far from their ideal values (figures 4.2.2 and 4.2.3). This is due to missing variations in
the input signal, which does not allow to distinguish effects of the parameter a and b properly.
In scenario 01b only the gibbs_minimal and gibbs_known_sigma_y methods perform well. The
proposed methods fail to provide parameter uncertainties in scenario 01c. The reason for these
unsuccessful simulations are numerical instabilities from very narrow posterior distributions.
These are reached because no noise or error is present in the data, which is a deviation from the
actual statistical model underpinning these methods. An application of the proposed methods
should therefore check in advance, how well the actual measurement data matches the assumed
statistical model.
The parameter estimates of the reference methods are comparable to the corresponding results
of 02a, 02b and 02c. Hence, scenario 01a is providing good results, while performance on
non-stationary signals in scenarios 01b and 01c is degraded.

4.4.1.6 Further Observations

The results of the joint_posterior method show equal uncertainty levels in most of the scenarios.
Closer inspection of the simulation results shows that the posterior distribution became too narrow
to estimate a variance, in which case the algorithm falls back to the grid spacing as uncertainty
quantification. Hence, the reported uncertainty level is not representative. For this reason, a
variant of the method with auto-adjusting grid is introduced as joint_posterior_agrid.
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To quantify, whether the reported parameter values are consistent within the limits of their
stated uncertainty, the normalized estimation error metrics (NMAEa, NMAEb, NMAEσy ) are
taken into account. These indicate a too narrow uncertainty (if NMAE > 1.0) for the proposed
methods. Closer inspection reveals, that this is not an issue of the Bayes-methods themselves, but
of the Laplace approximation, which only fits a Gaussian around the maximum of the posterior,
leading to narrower reported uncertainty. Internally (see figure 3.1.2 and section 3.1.4), these
methods use distributions with larger variances.

4.4.2 Semantic Insights

The results of the evaluation in chapter 4.3 are discussed and put into context. Furthermore, the
general necessity and requirement of a semantic approach is discussed.

4.4.2.1 Discussion of the Evaluation

Based on the corpus comparison, it can be stated that a majority of the classes in the ontology
are found in the chosen corpus. Terms covering state space systems, linear affine behavior and
the mathematical notation of transfer behavior are not very well represented in the corpus.
Moreover, certain subsuming terms introduced in the ontology are not present in the corpus (e.g.,
QualitativeBehavior). Nevertheless, the trans ontology can be called complete and accurate
according result of the corpus comparison.
Redundancy is avoided by relying on and refining existing concepts of other ontologies whenever
suitable. Although not all terms can be found in the chosen corpus, these terms are not
irrelevant, but only out of scope in that specific corpus. The OntoClean-methodology identified
no “attributes”20, supporting the relevance of all established concepts. Overall, the absence of
redundant or irrelevant terms indicates that the ontology is concise.
The intended competency questions and also additional queries can be answered (or decided)
based on the two proposed ontologies and with that support already a wide range of use cases.
Moreover, the design of the trans ontology allows straightforward addition of new transfer
behaviors. Questions concerning the input-output-equivalence of two models are not answerable
(by design). Overall, adaptability to non-anticipated use cases is given but limited.
No structural inconsistencies are disclosed by the OntoClean methodology. Providing the meta-
properties rigidity, unity, identity and dependence together with the ontologies allows to carry the
full intended meaning of each concept in an explicit way. Hence, both ontologies are consistent
and clear in the use of their terms, from which users and developers can benefit.
The result of the evaluated relationship richness confirms the need of using an ontological
structure to cover the considered knowledge, by indicating that a majority of the relations are
not of hierarchical/subclass-type (for both ontologies) and therefore can not be represented by a
pure taxonomy. In scal ontology, all introduced classes are annotated, leading to an excellent
AR-value. However, the trans ontology is not document well and leaves room for improvement.
The inheritance richness shows that the scal ontology is a broader knowledge representation,
covering multiple concepts, but stays at a rather abstract level and does not focus on providing

20concepts with only weak meta-properties (-R, -I, -U, -D) [142]
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class-subclass details. In contrast, the trans ontology is more specialized and detailed in capturing
specific domain knowledge by specifying (on average) between one and two subclasses per class.
This fits the intentions of both knowledge representations well and confirms the decisions made
during the design process.
Moreover, by extracting these metrics (semi-)automatically it is shown that both ontologies are
executable in a programmatic way. Furthermore, because both ontologies are designed within the
OWL2 DL standard, it can be assumed that the computations are efficient as state-of-the-art
tools and reasoners are available and optimized for this task.

4.4.2.2 Relevance of the Semantic Approach

Another important aspect is the general relevance of choosing a semantic approach. This should
answer questions like: Is a semantic approach to represent metrological information in sensor
networks in general a suitable and efficient approach? What benefits would a (hypothetical)
solution without semantic methods have over the implemented semantic approach? In order
to discuss this, general benefits and disadvantages of semantic approaches are discussed and a
connection to the domain of the IoT and sensor networks is shown.
A driving idea of the IoT and Semantic Web is the reuse of information in multiple use cases
and contexts [148, 149, 150]. Neither a semantic nor non-semantic approach can guarantee the
reuse of existing concepts, descriptions or knowledge. However, a non-semantic approach would
define a list of relevant properties for a specific use case, which cannot enable the reuse of these
properties outside its intended scope without a manual mapping. In contrast, the chosen semantic
representation opens up that possibility by referring to published knowledge representations that
clearly, precisely and transparently provide the descriptions of its concepts and their relations.
Another desirable property for knowledge models in general is interoperability and typically
involves that exchanged information can be unambiguously interpreted. In a non-semantic
knowledge representation this is typically achieved by an agreement across all participants on
a syntactic structure to exchange the knowledge. A benefit of following a semantic approach is
that parties (or systems) can interoperate without such an explicit agreement, as the meaning
of the communicated knowledge is transferred (or at least obtainable) as well. E.g. within a
sensor network, two sensors might provide their measurement results using different unit systems.
Because the used unit system is communicated along the actual unit information, a translation is
automatically possible, if corresponding mappings have been provided in one or the other unit
system (e.g., QUDT provides mappings to multiple unit systems for many relevant units). This
however points to the issue of redundantly defined concepts or relations that coexist in multiple
ontologies with overlapping goals and definitions, which is a side effect of the Semantic Web
idea. This redundancy can affect the interoperability of a semantic approach, if not taken care of
already at the definition level.
Semantic approaches require a good understanding of the semantic concepts, tools and domain
relevant ontologies and often come with a (depending on the chosen ontology potentially sub-
stantial) overhead in the implementation. With that and as of now, skilled personal is required
to implement and maintain such solutions [148, 149]. 21 These increased efforts of a semantic
approach over an often (computationally) lighter, simpler and faster to implement non-semantic
solution need good justifications. One justification is that the semantic representation helps to

21I.e. “semantic” means not necessarily easier - but the complexity is made more transparent and explicit to
users and applications.
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carry over the meaning of a concept to algorithms, skilled users and non-experts alike. Another
reason for these additional efforts can come from scaling effects that result from the agreement-free
interoperability. Once established, the expansion of a semantic approach is straightforward and
communication thereof uses the same mechanisms that are already in place. Moreover, lightweight
ontologies can help to produce a similar overhead as comparable non-semantic approaches.
The proposed method is designed with IIoT applications in mind and therefore interoperability
plays a key role. Moreover, the additional communication overhead can be covered well within
communication brokers like OPC-UA [151] and could be abstracted from the user in automated
tools. Finally, a highly relevant aspect in the implemented semantic approach is the ability to per-
form semantic filtering, e.g., even a local subclass custom:VerySpecificSensor of sosa:Sensor
will still match queries that search for sensors in the sense of sosa:Sensor.

4.4.3 Result Summary

The proposed co-calibration methods show clear advantages for time-depending input signals,
outliers in the input data and regarding the achievable uncertainty of the parameter estimate.
Moreover, an additional estimated parameter allows to distinguish the parameter uncertainty
and the additional (gaussian) model error. Furthermore, the proposed methods perform well
even if the uncertainty of the input data is equal to the model error of the device under test,
which is an important observation regarding the adaption in IIoT environments and allows
to co-calibrate against sensors with similar specifications. The two proposed special cases of
method 1 provide some computational runtime gains, but perform worse in many of the tested
scenarios. The preferred approach is therefore to optimize method parameters of both proposed
base methods to achieve better computational efficiency. This has been done for gibbs_base
(leading to gibbs_minimal with reduced Monte Carlo runs) and joint_posterior (leading to
joint_posterior_agrid with fewer grid points, but adaptive grid). Overall, the gibbs_minimal
and joint_posterior_agrid provide a suitable performance to computational effort ratio.
The computational runtime indicates potential issues for real-time execution on IIoT edge
hardware. These can be solved by either running the methods at the cloud-level with appropriate
computational capacities or transferring the method to a compiled programming language (e.g.,
C++). On a smaller scale, a noticeable runtime improvement would already be achievable by
providing native support to draw samples from the posterior distribution of σy.
The reference methods outperform the proposed methods in case of static input signals and
the computational runtime is significantly reduced by approximately two orders of magnitude.
However, in the practically relevant case of time-dependent input signals, these benefits do not
persist and parameter estimation performance is degraded for the reference methods. Moreover,
outlier robustness is not on the level of the proposed methods. The GUM-based uncertainty
evaluation of the reference methods shows in general high parameter uncertainties, leading to
mostly consistent parameter estimations (but at a less restricted level than the proposed methods).
The ontology assessment shows a good agreement of the proposed ontologies to established criteria
using existing evaluation methods. The proposed knowledge representations therefore build a
solid base to provide sensor self-descriptions in metrological use cases, based on which the flow
charts presented in chapter 3.3 can initialize the mathematical co-calibration method. Moreover,
the general need for a semantic solution is discussed and favored with regard to the intended
application domain.
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5.1 Conclusion

This chapter concludes this thesis by referring back to the research questions, summarizing the
findings and highlighting the contributions made. It will also cover the limitations of the thesis
with regard to its framing, approach and methods. Potential topics and questions for future work
are provided in chapter 5.2.

5.1.1 Answering the Research Questions

Based on the research presented in this thesis, it is possible to provide answers to the research
questions formulated in chapter 1.1.
Regarding the semantic representation of relevant metrological knowledge (RQ1), the proposed
method of relying on existing knowledge representations and only adding specific missing concepts
allows to represent metrological relevant knowledge about a sensor in a semantic expressive and
machine-executable way. The latter part is established through techniques and methods of the
Semantic Web. One result of the research is that all required concepts can be represented within
the possibilities of the OWL2 DL, allowing to profit from available and efficient reasoners. An
iteratively executable Bayesian parameter estimation method suited for linear affine sensor transfer
behavior is developed, directly addressing the second research question (RQ2). It uses available
uncertainty information from calibrated reference devices in an error-in-variables model for the
inputs, estimates parameters with uncertainty of the transfer behavior and also quantifies a model
error of this transfer behavior. Robustness with regard to the number of input sensors and outliers
is achieved by relying on a robust sensor fusion. The traceability of the method is discussed in
terms of agreement to established definitions of calibration, matching the definition provided in
the VIM. To see how the semantic knowledge can be used to initialize the mathematical method
(RQ3), a concept is provided. Semantic knowledge can be used to initialize a mathematical
method by following the developed decision flowcharts. As the mathematical methods always
require the same level of detail for initialization, information gaps can arise and need to be
filled with low-informative assumptions. Hence, the provided flowcharts fill these gaps based on
heuristics. Conditions that must be fulfilled in order to perform a successful co-calibration (RQ4)
can be specified by a combination of the semantic queries (chapter 3.2) and the requirements of
the mathematical method (chapter 3.1), alongside the findings of the evaluation (chapter 4.2). In
summary, there must be at least one reference sensor qualifying the semantic queries, this sensor
needs to provide a time-varying signal that matches the assumptions of the statistical model and
moreover needs to have a lower or equal uncertainty compared to the (simulated) noise level of
the device under test.
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5.1.2 Significance, Implications and Contribution

This work considers two aspects that are essential to maintaining trust in large scale dense
sensor networks, which have not been considered in this connected way before. These are the
explicit consideration of metrological traceability of in-situ calibration operations and the use of
existing knowledge that is available in a semantic expressive form. It is shown, what metrological
relevant information was not representable within existing ontologies. These gaps are closed in a
constructive approach and a sensor self-description making use of these new concepts is shown.
Furthermore, this explicit machine-interpretable knowledge is used to find suitable reference
sensors in a sensor network and develop a concept to initialize a co-calibration method based
on this knowledge. The research indicated that the term “calibration” is often not used in the
strict metrological sense within the sensor network literature. Therefore, the term co-calibration
is introduced and a mathematical method that explicitly considers metrological traceability by
evaluating the uncertainty of its results in a VIM-compatible way is developed. This method is
designed to be used in homogeneous sensor networks and also considers streaming applicability,
outlier robustness and inclusion of pre-knowledge. The evaluation shows good co-calibration
results even in the case of reference sensors with comparable uncertainty characteristics as the
device under test, which is of great value for applications in IIoT-environments. Furthermore,
while evaluating the proposed method against the state of the art, it was found that the proposed
method is suited for time-dependent input signals, while the state of the art reference method
cannot yield a usable estimation quality for these non-stationary signals.

5.1.3 Limitations

In order to obtain the above results, certain limitations of the scope are necessary. Although the
developed trans ontology supports a large selection of transfer behaviors, only linear affine
transfer behavior is considered in the mathematical method. This decision was made in order to
limit the amount of mathematical complexity and still maintain comparability to a majority of
the state-of-the-art in-situ calibrations. In general, linear affine behavior is a valid and common
model choice for many applications, but far from generic, as it, e.g., cannot cover dynamic or
non-linear transfer behaviors. Interpolation of input data is a highly relevant topic within
sensor networks because of a (typically) non-synchronized data acquisition. However, as methods
for uncertainty-aware interpolation are available22, the topic is considered out of scope in this
thesis and the general assumption is, that the input data is already available on a common
time-base. The iterative co-calibration is meant to operate on streaming input data. Although
the method is designed to support this, the computational efforts involved currently prevent a
true online / real-time application even on capable hardware. This might be less of a problem
for cloud-level applications, but is a major concern for potential edge-level implementations.
Depending on the temporal behavior of the input signal, the evaluated reference methods with
added uncertainty propagation can provide a less computationally intensive alternative. The
semantic and mathematical aspects of this thesis have been developed to jointly interact. However,
the actual implementation considers each domain separately. The focus of this thesis is to
develop a co-calibration method and evaluate it against a ground truth. This lead to the decision
to perform a simulation-based evaluation that allows for a direct comparison against the true
values and exact repeatability of the evaluation results. Although some parts of the method
(sensor fusion) have been deployed on a real-world testbed, others (Bayesian update) have not.

22although with limitations, see section 3.1.1



5.2 Outlook

Many exciting continuations of the work in this thesis are possible and leave room for future
research and projects. Although many of these suggestions target the mathematical co-calibration
method, they go hand in hand with an extension of the semantics as well. In general, it would be
very interesting to apply the full proposed method in a suitable and productive sensor network
over an extended period of time.
The proposed co-calibration method could be extended to: (i) distributed homogeneous sensor
networks (by means of spatio-temporal interpolation), (ii) heterogeneous sensor networks (by
forming virtual traceable references from laws of physics or artificial intelligence) and (iii) support
of different and more complex transfer behaviors. Another aspect are efficiency enhancements of
the core Bayesian update. These are necessary in order to make it suitable for edge devices in
production environments and could be achieved by developing a random sample generator for the
less common posterior distributions used. Furthermore, recent developments [152, 153] hint at a
revision of the GUM with a shift towards the Bayesian probability notion, which could enable an
extension of theorem 10 in the direction of the ISO17025 standard [4].
It could be evaluated, how the co-calibration can be used to detect failure, drift or aging of single
sensors. A potential way to achieved this could be based on inferring knowledge from cross-
validation style co-calibrations on a routine schedule. Development over time of the estimated
parameters can then be analyzed to decide whether a re-calibration or sensor replacement is
required.
Regarding the semantic contributions of this thesis, it would be interesting to provide a semantic
sound framework for the representation of formulas and mathematical knowledge. Such a
framework would enable translation of mathematical representations into specific executable
programming languages and contribute to the interoperability. Another important aspect is
to allow different systems of units in the sensor self-description and making sure that they are
compatible.
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A Uncertainty Evaluation for the
Stankovic Method and Linear Affine
Models

To evaluate the performance of the co-calibration methods presented in chapter 3.1, a method
of the state of the art developed by Stanković et al. is presented in detail and extended with
GUM-compliant uncertainty evaluation for the estimated parameters [6, 133].
Sensors with linear affine input-output behavior are considered. The real transfer model with
parameters (αj , βj) are unknown. From a calibration the estimated compensation model is known
and given by parameters (aj , bj) of another affine linear model. The inverse of the compensation
model is the estimated transfer model.

(estimated) sensor behavior (estimated) compensation

x(t)
yj = αjx+ βj x̂ = ajyj + bj

yj [n] x̂j [n]

indicated
value

estimated
measurand

measurand

Figure A.1: Assumed system structure for estimation.

The scalar input signal x(t) ((bounded) stochastic stationary process) is measured by a network
N of sensors. The i-th sensor measures yj(t) = αj ∗ x(t) + βj . To estimate the original input, the
inverse model x̂j = aj ∗ yj(t) + bj is required.
For new a sensor i the parameters (ai, bi) are unknown and can be estimated from the neighbors
Ni of the new sensor. This can be achieved by the proposed update equation from [6], which is
based on a gradient optimization scheme:

θ
¯
[n+ 1] = θ

¯
[n] + δ(t) ∗ ∇

¯
J (A.1)
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With

θ
¯

= [ai, bi]T (A.2)

∇
¯
J =

∑
j∈Ni

γijE
{

(x̂j [n] − x̂i[n]) ∗
[
yi[n− d]

1

]}

=
∑

j∈Ni

γij

[
−ai[n] ∗ yi[n− d]2 + (x̂j [n] − bi[n]) ∗ yi[n− d]

−ai[n] ∗ yi[n− d] + (x̂j [n] − bi[n])

]
(A.3)

and weights γij = 1 for the baseline method or γij ∝ 1
u(x̂j [n]) to achieve an uncertainty-weighted

gradient calculation (to which sensors with smaller uncertainty contribute more).

A.1 Uncertainty of the Parameter Update

The uncertainty of the parameter update proposed by Stankovic and reproduced in equation (A.1)
is given by theorem 15.

Theorem 15 (Uncertainty of Parameter Update). The uncertainty of θ
¯

[n + 1] as used in
equation (A.1) is given by

Uθ
¯

[n+1] = C ∗ U ∗ CT (A.4)

with covariance of the inputs U and sensitivities C

U =


u(ai[n])2 u(ai[n], bi[n]) 0 0

u(ai[n], bi[n]) u(bi[n])2 0 0 · · ·
0 0 u(yi[n− d])2 0
0 0 0 u(x̂j [n])2

...
. . .

 (A.5)

C =
[

∂ai[n+1]
∂ai[n]

∂ai[n+1]
∂bi[n]

∂ai[n+1]
∂yi[n]

∂ai[n+1]
∂x̂j [n]

∂bi[n+1]
∂ai[n]

∂bi[n+1]
∂bi[n]

∂bi[n+1]
∂yi[n]

∂bi[n+1]
∂x̂j [n]

]
(A.6)
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and

∂ai[n+ 1]
∂ai[n] = 1 + δ(t) ∗

∑
j∈Ni

γij ∗ (−yi[n− d]2) (A.7)

∂ai[n+ 1]
∂bi[n] = 0 + δ(t) ∗

∑
j∈Ni

γij ∗ (−yi[n− d]) (A.8)

∂ai[n+ 1]
∂yi[n] = 0 + δ(t) ∗

∑
j∈Ni

γij ∗ (−2ai[n] ∗ yi[n− d] + x̂j [n] − bi[n]) (A.9)

∂ai[n+ 1]
∂x̂j [n] = 0 + δ(t) ∗ γij ∗ yi[n− d] (A.10)

∂bi[n+ 1]
∂ai[n] = 0 + δ(t) ∗

∑
j∈Ni

γij ∗ (−yi[n− d]) (A.11)

∂bi[n+ 1]
∂bi[n] = 1 + δ(t) ∗

∑
j∈Ni

γij ∗ (−1) (A.12)

∂bi[n+ 1]
∂yi[n] = 0 + δ(t) ∗

∑
j∈Ni

γij ∗ (−ai[n]) (A.13)

∂bi[n+ 1]
∂x̂j [n] = 0 + δ(t) ∗ γij (A.14)

Proof. The update procedure defined by equation (A.1) can be written to fit the GUM-8 (GUM
S2) [97] formalism Y

¯
= f

¯
(X

¯
) by choosing

X
¯

=

ai[n], bi[n], yi[n− d], x̂j [n], . . .︸ ︷︷ ︸
j∈Ni


T

(A.15)

Y
¯

= θ
¯
[n+ 1] (A.16)

f
¯

= see equation (A.1) (A.17)

Then apply GUM-8 [8], i.e., calculate sensitivity (first order partial derivatives) and construct
relevant matrices. Note that U contains information from Uθ

¯
[n] and δ(t) is assumed to be

deterministic (e.g., constant). Uncertainty of x̂j is obtained by propagating an input through a
linear affine model with uncertain parameters, as described in theorem 17.
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A.2 The enhanced Stankovic algorithm

Stanković et al. also proposes an enhanced version that is better suited for noisy measurements
yi with known variance σ2

y = u2
y [6]. The central parameter update equation is given by

θ
¯
[n+ 1] =

[
1 + c 0

0 1

]
θ
¯
[n] + δ(t) ∗ ∇

¯
J (A.18)

c = δ(t)σ2
y

∑
j∈Ni

γij (A.19)

This results in a change from the sensitivity stated in theorem 15 and is summarized as theorem 16.

Theorem 16 (Uncertainty of Enhanced Parameter Update). The uncertainty of θ
¯

[n+ 1] as used
in equation (A.18) is given in analogy to theorem 15, but with

∂ai[n+ 1]
∂ai[n] = (1 + c) + δ(t) ∗

∑
j∈Ni

γij ∗ (−yi[n− d]2) (A.20)

replacing equation (A.7).

Proof. Apply GUM-8 [8] in analogy to theorem 15.

A.3 Uncertainty of Output of Linear Affine Transfer-Function

The uncertainty of the output of a linear affine model is given by theorem 17.

Theorem 17 (Uncertainty of Linear Affine Output). The output uncertainty uy of a linear affine
model with parameters (a, b) and input x is given by

uy
2 = C ∗ U ∗ CT (A.21)

with

U =

 u(a)2 u(a, b) 0
u(a, b) u(b)2 0

0 0 u(x)2

 (A.22)

C =
[
x 1 a

]
(A.23)

Proof. Fit the linear affine model y = a ∗ x+ b to the GUM-formalism Y
¯

= f
¯
(X

¯
) by choosing

X
¯

= [a, b, x]T (A.24)
Y
¯

= [y] (A.25)
f
¯

= [a ∗ x+ b] (A.26)

Then apply GUM-8 [8], i.e., calculate sensitivity (first order partial derivatives) and construct
relevant matrices.



A.4. UNCERTAINTY OF THE ESTIMATED INVERSE MODEL-PARAMETERS 149

A.4 Uncertainty of the estimated inverse Model-Parameters

The algorithm of Stankovic [6] estimates the compensation model (see figure A.1). However,
the actual sensor behavior is of interest as well. The inverse of a linear affine model is again
linear affine, but the parameter uncertainties need some attention. Inverting the model given in
definition 20 yields:

x = 1
a

∗ y − b

a
(A.27)

= ainv ∗ y + binv (A.28)

The parameters of the inverse model are a function of the initial model. The parameter uncertainty
of this inverse model is then given by theorem 18.

Theorem 18 (Uncertainty of Inverse Linear Affine Model Parameters). The covariance Uinv of
the parameters of the inverse of a linear affine model with parameters (a, b) is given by

Uinv = C ∗ U ∗ CT (A.29)

with

U =
[
u(a)2 u(a, b)
u(a, b) u(b)2

]
(A.30)

C =
[
− 1

a2 0
b

a2 − 1
a

]
(A.31)

Proof. The inverse model parameters (gain and offset) are given by, e.g., reorganizing the equation
given in definition 20 for x:

[ainv, binv]T = [1
a
,− b

a
]T (A.32)

This relation fits the GUM-formalism Y
¯

= f
¯
(X

¯
) by choosing

X
¯

= [a, b]T (A.33)
Y
¯

= [ainv, binv]T (A.34)

f
¯

= [1
a
,− b

a
]T (A.35)

Then apply GUM-8 [8], i.e., calculate sensitivity (first order partial derivatives) and construct
relevant matrices.
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B Calculations of Posterior Distri-
butions

B.1 Posteriors for Block-Gibbs-Sampling

B.1.1 Posterior for Xa
¯

Evaluate equation (3.1.20).

p(Xa
¯

|θ
¯
, σy, σx, Y¯

, Xo
¯

)
∝ p(Y

¯
|Xa

¯
, θ
¯
, σy)p(Xa

¯
|σx, Xo

¯
) (B.1)

∝ exp
{

− 1
2σ2

y

N∑
i=1

(Yi − aXai − b)2

}
· exp

{
−1

2(Xa
¯

−Xo
¯

)T Ux
−1(Xa

¯
−Xo

¯
)
}

(B.2)

∝ exp
{

− 1
2σ2

y

N∑
i=1

(a2X2
ai + 2abXai − 2aYiXai + Y 2

i + b2 − 2bYi)
}

· exp
{

−1
2(Xa

¯
T Ux

−1Xa
¯

−Xa
¯

T Ux
−1Xo

¯
−Xo

¯
T Ux

−1Xa
¯

+Xo
¯

T Ux
−1Xo

¯
)
}

(B.3)

∝ exp
{

− 1
2σ2

y

N∑
i=1

(a2X2
ai + 2a(Yi − b)Xai)

}

· exp
{

−1
2(Xa

¯
T Ux

−1Xa
¯

−Xa
¯

T Ux
−1Xo

¯
−Xo

¯
T Ux

−1Xa
¯

)
}

(B.4)

∝ exp
{

−1
2(Xa

¯
T F1Xa

¯
−Xa

¯
TF2

¯
− F2

¯
TXa

¯
)
}

· exp
{

−1
2(Xa

¯
T Ux

−1Xa
¯

−Xa
¯

T Ux
−1Xo

¯
−Xo

¯
T Ux

−1Xa
¯

)
}

(B.5)

∝ exp

−1
2(Xa

¯
T (F1 + Ux

−1)︸ ︷︷ ︸
V −1

Xa
¯

−Xa
¯

T (F2
¯

+ Ux
−1Xo

¯
) − (F2

¯
T +Xo

¯
T Ux

−1)Xa
¯

)

 (B.6)

∝ exp

−1
2(Xa

¯
T V −1Xa

¯
−Xa

¯
T V −1 V (Ux

−1Xo
¯

+ F2
¯

)︸ ︷︷ ︸
M
¯

−M
¯

T V −1Xa
¯

)

 (B.7)

∝ exp
{

−1
2(Xa

¯
−M

¯
)T V −1(Xa

¯
−M

¯
)
}

(B.8)
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The following matrices are introduced to transform the sum into a matrix operation:

F1 = a2

σ2
y

· IN (B.9)

F2
¯

= a

σ2
y

[
Y1 − b . . . YN − b

]T (B.10)

B.1.2 Posterior for a

Evaluate equation (3.1.21) for θi = a.

p(a|b,Xa
¯
, σy, Y¯

)
∝ p(Y

¯
|Xa

¯
, θ
¯
, σy) p(a|b,Xa

¯
, σy)︸ ︷︷ ︸

N (µa,σ2
a)

(B.11)

∝ exp
{

− 1
2σ2

y

N∑
i=1

(Yi − aXai − b)2

}
· exp

{
− 1

2σ2
a

(a− µa)2
}

(B.12)

∝ exp
{

− 1
2σ2

y

N∑
i=1

(a2X2
ai + 2abXai − 2aYiXai + Y 2

i + b2 − 2bYi) − 1
2σ2

a

(a2 − 2aµa − µ2
a)

}
(B.13)

∝ exp
{

− 1
2σ2

y

N∑
i=1

(a2X2
ai + 2a(b− Yi)Xai) − 1

2σ2
a

(a2 − 2aµa)
}

(B.14)

∝ exp

−2a
[

N∑
i=1

(b− Yi)Xai

2σ2
y

− µa

2σ2
a

]
︸ ︷︷ ︸

B

+a2

[
−

N∑
i=1

X2
ai

2σ2
y

− 1
2σ2

a

]
︸ ︷︷ ︸

A

 (B.15)

∝ exp
{
A(a− B

A
)2

}
(B.16)
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B.1.3 Posterior for b

Evaluate equation (3.1.21) for θi = b.

p(b|a,Xa
¯
, σy, Y¯

)
∝ p(Y

¯
|Xa

¯
, θ
¯
, σy) p(b|a,Xa

¯
, σy)︸ ︷︷ ︸

N (µb,σ2
b

)

(B.17)

∝ exp
{

− 1
2σ2

y

N∑
i=1

(Yi − aXai − b)2

}
· exp

{
− 1

2σ2
b

(b− µb)2
}

(B.18)

∝ exp
{

− 1
2σ2

y

N∑
i=1

(a2X2
ai + 2abXai − 2aYiXai + Y 2

i + b2 − 2bYi) − 1
2σ2

b

(b2 − 2bµb − µ2
b)

}
(B.19)

∝ exp
{

− 1
2σ2

y

N∑
i=1

(2b(aXai − Yi) + b2) − 1
2σ2

b

(b2 − 2bµb)
}

(B.20)

∝ exp

−2b
[

N∑
i=1

aXai − Yi

2σ2
y

− µb

2σ2
b

]
︸ ︷︷ ︸

B

+b2
[
− N

2σ2
y

− 1
2σ2

b

]
︸ ︷︷ ︸

A

 (B.21)

∝ exp
{
A(a− B

A
)2

}
(B.22)

B.1.4 Posterior for σy

Evaluate equation (3.1.22).

p(σy|θ
¯
, Xa

¯
, Y

¯
)

∝ p(Y
¯

|Xa
¯
, θ
¯
, σy) p(σy|θ

¯
, Xa

¯
)︸ ︷︷ ︸

invgamma(α,β,γ)

(B.23)

∝ 1
|σy|N

exp

− 1
2σ2

y

N∑
i=1

(Yi − aXai − b)2

︸ ︷︷ ︸
2Ã

 · βα

Γ(α) (σy − γ)−α−1 exp
{

− β

σy − γ

}
(B.24)

∝ exp
{

−N ln(|σy|) − Ã
1
σ2

y

− (α+ 1) ln(σy − γ) − β

σy − γ

}
(B.25)
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B.2 Posteriors for Discrete Grid

B.2.1 Marginalization over Xa
¯

p(σy, θ
¯

|Y
¯

, Xo
¯

)

=

∫
RN

p(σy, θ
¯

, Xa
¯

|Y
¯

, Xo
¯

)dXa
¯

(B.26)

∝

∫
RN

p(Y
¯

, Xo
¯

|σy, θ
¯

, Xa
¯

) · p(σy, θ
¯

, Xa
¯

)dXa
¯

(B.27)

=

∫
RN

p(Y
¯

|Xo
¯

, σy, θ
¯

, Xa
¯

) · p(Xo
¯

|σy, θ
¯

, Xa
¯

) · p(Xa
¯

|σy, θ
¯

)·︸ ︷︷ ︸ p(σy, θ
¯

)dXa
¯

(B.28)

=

∫
RN

p(Y
¯

|Xo
¯

, σy, θ
¯

, Xa
¯

) · p(Xo
¯

, Xa
¯

|σy, θ
¯

) · p(σy, θ
¯

)dXa
¯

(B.29)

=

∫
RN

p(Y
¯

|Xo
¯

, σy, θ
¯

, Xa
¯

) · p(Xa
¯

|σy, θ
¯

, Xo
¯

) · p(Xo
¯

|σy, θ
¯

) · p(σy, θ
¯

)dXa
¯

(B.30)

= p(Xo
¯

|σy, θ
¯

) · p(σy, θ
¯

) ·

∫
RN

p(Y
¯

|Xo
¯

, σy, θ
¯

, Xa
¯

) · p(Xa
¯

|σy, θ
¯

, Xo
¯

)dXa
¯

(B.31)

= p(Xo
¯

) · p(σy, θ
¯

) ·

∫
RN

p(Y
¯

|σy, θ
¯

, Xa
¯

) · p(Xa
¯

|Xo
¯

)dXa
¯

(B.32)

∝ p(σy, θ
¯

) ·

∫
RN

p(Y
¯

|σy, θ
¯

, Xa
¯

) · p(Xa
¯

|Xo
¯

)dXa
¯

(B.33)

∝ p(σy, θ
¯

) ·

∫
RN

1

|σy|N
· exp

{
−

1

2σ2
y

N∑
i=1

(a
2

X
2
ai − 2a(Yi − b)Xai + (Yi − b)2)

}
·

1√
|Ux|

· exp
{

−
1

2
(Xa

¯
− Xo

¯
)T

Ux
−1(Xa

¯
− Xo

¯
)
}
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¯

(B.34)

=
p(σy, θ

¯
)

|σy|N
√

|Ux|
·

∫
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exp
{

−
1

2
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T

F1Xa
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− Xa
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T
F2
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− F2
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T
Xa

¯
+ F3)

}
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1

2
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¯

T
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¯
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−1
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(B.35)

=
p(σy, θ

¯
)

|σy|N
√

|Ux|
·

∫
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exp
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1

2
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¯
T (F1 + Ux
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T
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(B.36)

=
p(σy, θ

¯
)

|σy|N
√
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·
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exp
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2
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(B.37)

=
p(σy, θ

¯
)

|σy|N
√

|Ux|
· exp

{
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1

2
(Xo

¯
T

Ux
−1

Xo
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T
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·

∫
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2
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¯
)T

V
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¯
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dXa
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(B.38)

∝ p(σy, θ
¯

) · exp
{

−
1

2
(Xo

¯
T

Ux
−1

Xo
¯

− M
¯

T
V

−1
M
¯

+ F3)
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·

√
|V |
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156 APPENDIX B. CALCULATIONS OF POSTERIOR DISTRIBUTIONS

with (similar to appendix B.1.1)

F1 = G1
T G1 (B.40)

F2
¯

= G1G2
¯

(B.41)
F3 = G2

¯
TG2

¯
(B.42)

G1 = a

σy
· IN (B.43)

G2
¯

= 1
σy

[
Y1 − b . . . YN − b

]T (B.44)



C SPARQL Queries

C.1 Queries to Evaluate Ontology Metric

SELECT (SAMPLE(?s) AS ?subject) (COUNT(?o) as ?n_props)
WHERE {

?s a/rdfs:subClassOf* ?o .
FILTER(STRSTARTS(STR(?s), @@onto_ns@@))

}
GROUP BY ?s

Listing C.1: SPARQL template querying elements of ontology @@onto_ns@@ with subclass
relations.

SELECT (SAMPLE(?s) AS ?subject) (COUNT(?o) as ?n_props)
WHERE {

?s ?p ?o .
FILTER(STRSTARTS(STR(?s), @@onto_ns@@))

}
GROUP BY ?s

Listing C.2: SPARQL template querying elements of ontology @@onto_ns@@ with any kind of
relations.

SELECT DISTINCT ?s
WHERE {

?s a owl:Class .
FILTER(STRSTARTS(STR(?s), @@onto_ns@@))

}

Listing C.3: SPARQL template querying unique classes of ontology @@onto_ns@@.
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SELECT (SAMPLE(?s) AS ?subject) (COUNT(?att) as ?n_att)
WHERE {

{
?s a owl:Class ;
rdfs:comment ?att

}
UNION
{

?s a owl:Class ;
rdfs:label ?att

} .
FILTER(STRSTARTS(STR(?s), @@onto_ns@@))

}
GROUP BY ?s

Listing C.4: SPARQL template querying unique annotated classes of ontology @@onto_ns@@.

SELECT (SAMPLE(?s1) AS ?subject) (COUNT(?s2) as ?n_subclasses)
WHERE {

?s1 a owl:Class .
?s2 rdfs:subClassOf+ ?s1 .
FILTER(STRSTARTS(STR(?s2), @@onto_ns@@))

}
GROUP BY ?s1

Listing C.5: SPARQL template querying number of subclasses of each class in ontology
@@onto_ns@@.



D Evaluation Results per Scenario

In tables tables D.1 to D.42 values coming from a method that did not run or did not run
successfully are denoted by /, while values that are not applicable are denoted by -.
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D.1 Scenario 01a_static_input

a b σy â b̂ σ̂y uâ u
b̂

gibbs_base / / / / / / / /
gibbs_minimal 2.00e+00 1.00e+00 0.00e+00 8.36e-01 9.99e-01 1.08e-01 8.15e-02 1.03e-03
gibbs_no_EIV 2.00e+00 1.00e+00 0.00e+00 1.24e+00 1.00e+00 1.35e-01 2.21e-01 1.30e-03
gibbs_known_sigma_y 2.00e+00 1.00e+00 0.00e+00 9.40e-02 9.97e-01 - 1.55e-01 3.76e-04
joint_posterior 2.00e+00 1.00e+00 0.00e+00 2.32e+00 8.57e-01 1.32e-01 1.37e+00 2.86e-01
joint_posterior_agrid 2.00e+00 1.00e+00 0.00e+00 9.42e-01 1.00e+00 3.16e-02 3.29e-02 5.66e-04
stankovic_base 2.00e+00 1.00e+00 0.00e+00 2.16e+00 1.00e+00 - 3.29e+00 6.83e-03
stankovic_enhanced_unc 2.00e+00 1.00e+00 0.00e+00 1.82e+00 1.00e+00 - 2.35e+00 5.06e-03
stankovic_base_unc 2.00e+00 1.00e+00 0.00e+00 1.82e+00 1.00e+00 - 2.35e+00 5.06e-03

Table D.1: Main results of scenario 01a_static_input.

∆trun MSDa NMAEa MSDb NMAEb MSDσy NMAEσy MSDX MSEX NMSEX

gibbs_base / / / / / / / / / /
gibbs_minimal 2.56e+02 -1.16e+00 1.43e+01 -6.68e-04 6.46e-01 1.08e-01 3.25e-01 7.99e-04 6.38e-07 3.80e-05
gibbs_no_EIV 2.33e+02 -7.63e-01 3.45e+00 7.20e-04 5.55e-01 1.35e-01 4.04e-01 -5.82e-04 3.39e-07 2.85e-05
gibbs_known_sigma_y 7.66e+00 -1.91e+00 1.23e+01 -3.39e-03 9.00e+00 - - 3.60e-02 1.30e-03 3.65e-01
joint_posterior 6.04e+01 3.21e-01 2.34e-01 -1.43e-01 5.00e-01 1.32e-01 1.75e+00 6.15e-02 3.79e-03 1.92e-01
joint_posterior_agrid 1.39e+01 -1.06e+00 3.22e+01 1.97e-03 3.47e+00 3.16e-02 5.99e+01 -2.09e-03 4.37e-06 3.87e-03
stankovic_base 4.19e-01 1.57e-01 4.76e-02 -9.99e-16 1.46e-13 - - 5.00e-16 2.50e-31 2.49e-26
stankovic_enhanced_unc 4.43e-01 -1.78e-01 7.60e-02 -7.77e-16 1.54e-13 - - 4.44e-16 1.97e-31 2.56e-26
stankovic_base_unc 3.98e-01 -1.78e-01 7.60e-02 -7.77e-16 1.54e-13 - - 4.44e-16 1.97e-31 2.56e-26

Table D.2: Runtime and consistency metrics of scenario 01a_static_input.

s
a

(4
s

)
>

s
a

(1
6s

)

s
b

(4
s

)
>

s
b

(1
6s

)

s
σ

(4
s

)
>

s
σ

(1
6s

)

ta(0.1) t∗
a(0.1) tb(0.1) t∗

b
(0.1) tσ(0.1) t∗

σ(0.1)

gibbs_base / / / / / / / / /
gibbs_minimal yes yes yes 5.99e+00 1.40e+01 1.99e+00 1.99e+00 never never
gibbs_no_EIV yes yes yes never never 1.99e+00 1.99e+00 3.99e+00 never
gibbs_known_sigma_y yes yes - never never 1.99e+00 1.99e+00 - -
joint_posterior yes yes yes never never 1.99e+00 never 1.99e+00 1.99e+00
joint_posterior_agrid yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00
stankovic_base yes yes - never never 5.99e+00 5.99e+00 - -
stankovic_enhanced_unc yes yes - never never 9.99e+00 9.99e+00 - -
stankovic_base_unc yes yes - never never 9.99e+00 9.99e+00 - -

Table D.3: Convergence metrics of scenario 01a_static_input.
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D.2 Scenario 01b_sinusoidal_input

a b σy â b̂ σ̂y uâ u
b̂

gibbs_base / / / / / / / /
gibbs_minimal 2.00e+00 1.00e+00 0.00e+00 2.00e+00 1.00e+00 2.09e-01 8.37e-04 3.81e-03
gibbs_no_EIV - - - - - - - -
gibbs_known_sigma_y 2.00e+00 1.00e+00 0.00e+00 2.00e+00 9.99e-01 - 4.70e-04 9.24e-04
joint_posterior / / / / / / / /
joint_posterior_agrid / / / / / / / /
stankovic_base 2.00e+00 1.00e+00 0.00e+00 1.11e+00 8.13e-01 - 9.95e-03 2.61e-02
stankovic_enhanced_unc 2.00e+00 1.00e+00 0.00e+00 1.04e+00 9.29e-01 - 3.79e-02 1.36e-01
stankovic_base_unc 2.00e+00 1.00e+00 0.00e+00 1.04e+00 9.29e-01 - 3.79e-02 1.36e-01

Table D.4: Main results of scenario 01b_sinusoidal_input.

∆trun MSDa NMAEa MSDb NMAEb MSDσy NMAEσy MSDX MSEX NMSEX

gibbs_base / / / / / / / / / /
gibbs_minimal 2.32e+02 -1.37e-03 1.64e+00 1.60e-03 4.19e-01 2.09e-01 3.06e+00 -1.14e-04 9.53e-07 8.70e-05
gibbs_no_EIV 0.00e+00 - - - - - - - - -
gibbs_known_sigma_y 7.64e+00 -4.59e-04 9.76e-01 -1.26e-03 1.36e+00 - - 8.58e-04 8.41e-07 2.03e+00
joint_posterior / / / / / / / / / /
joint_posterior_agrid / / / / / / / / / /
stankovic_base 4.21e-01 -8.89e-01 8.94e+01 -1.87e-01 7.15e+00 - - 9.69e-01 2.22e+00 1.12e+03
stankovic_enhanced_unc 4.39e-01 -9.55e-01 2.52e+01 -7.09e-02 5.20e-01 - - 9.82e-01 2.64e+00 6.05e+01
stankovic_base_unc 3.99e-01 -9.55e-01 2.52e+01 -7.09e-02 5.20e-01 - - 9.82e-01 2.64e+00 6.05e+01

Table D.5: Runtime and consistency metrics of scenario 01b_sinusoidal_input.
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ta(0.1) t∗
a(0.1) tb(0.1) t∗

b
(0.1) tσ(0.1) t∗

σ(0.1)

gibbs_base / / / / / / / / /
gibbs_minimal yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 3.99e+00 2.00e+01
gibbs_no_EIV - - - - - - - - -
gibbs_known_sigma_y yes yes - 1.99e+00 1.99e+00 1.99e+00 1.99e+00 - -
joint_posterior / / / / / / / / /
joint_posterior_agrid / / / / / / / / /
stankovic_base yes yes - 7.99e+00 7.99e+00 1.40e+01 1.40e+01 - -
stankovic_enhanced_unc yes yes - 7.99e+00 7.99e+00 never never - -
stankovic_base_unc yes yes - 7.99e+00 7.99e+00 never never - -

Table D.6: Convergence metrics of scenario 01b_sinusoidal_input.
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D.3 Scenario 01c_jumping_input

a b σy â b̂ σ̂y uâ u
b̂

gibbs_base / / / / / / / /
gibbs_minimal - - - - - - - -
gibbs_no_EIV / / / / / / / /
gibbs_known_sigma_y / / / / / / / /
joint_posterior / / / / / / / /
joint_posterior_agrid / / / / / / / /
stankovic_base 2.00e+00 1.00e+00 0.00e+00 8.58e+00 -5.59e+00 - 6.30e-01 6.32e-01
stankovic_enhanced_unc 2.00e+00 1.00e+00 0.00e+00 -7.31e-04 2.70e+00 - 2.88e-08 2.22e-05
stankovic_base_unc 2.00e+00 1.00e+00 0.00e+00 -7.31e-04 2.70e+00 - 2.88e-08 2.22e-05

Table D.7: Main results of scenario 01c_jumping_input.

∆trun MSDa NMAEa MSDb NMAEb MSDσy NMAEσy MSDX MSEX NMSEX

gibbs_base / / / / / / / / / /
gibbs_minimal 0.00e+00 - - - - - - - - -
gibbs_no_EIV / / / / / / / / / /
gibbs_known_sigma_y / / / / / / / / / /
joint_posterior / / / / / / / / / /
joint_posterior_agrid / / / / / / / / / /
stankovic_base 4.09e-01 6.58e+00 1.04e+01 -6.59e+00 1.04e+01 - - 1.12e-01 8.41e-01 9.33e+01
stankovic_enhanced_unc 4.32e-01 -2.00e+00 6.94e+07 1.70e+00 7.64e+04 - - -1.40e+01 1.06e+07 4.93e+08
stankovic_base_unc 3.89e-01 -2.00e+00 6.94e+07 1.70e+00 7.64e+04 - - -1.40e+01 1.06e+07 4.93e+08

Table D.8: Runtime and consistency metrics of scenario 01c_jumping_input.
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ta(0.1) t∗
a(0.1) tb(0.1) t∗

b
(0.1) tσ(0.1) t∗

σ(0.1)

gibbs_base / / / / / / / / /
gibbs_minimal - - - - - - - - -
gibbs_no_EIV / / / / / / / / /
gibbs_known_sigma_y / / / / / / / / /
joint_posterior / / / / / / / / /
joint_posterior_agrid / / / / / / / / /
stankovic_base No yes - 1.60e+01 never 1.60e+01 never - -
stankovic_enhanced_unc yes No - 1.80e+01 1.80e+01 1.80e+01 1.80e+01 - -
stankovic_base_unc yes No - 1.80e+01 1.80e+01 1.80e+01 1.80e+01 - -

Table D.9: Convergence metrics of scenario 01c_jumping_input.
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D.4 Scenario 02a_static_input_noisy

a b σy â b̂ σ̂y uâ u
b̂

gibbs_base 2.00e+00 1.00e+00 1.00e-01 3.06e-01 1.00e+00 7.45e-01 3.21e-01 6.96e-03
gibbs_minimal 2.00e+00 1.00e+00 1.00e-01 -1.27e-01 9.92e-01 2.97e-01 3.99e-01 1.44e-03
gibbs_no_EIV 2.00e+00 1.00e+00 1.00e-01 -2.76e+00 1.01e+00 -2.78e-17 4.24e-08 1.27e-10
gibbs_known_sigma_y 2.00e+00 1.00e+00 1.00e-01 2.31e-01 9.98e-01 - 1.06e-01 6.53e-04
joint_posterior 2.00e+00 1.00e+00 1.00e-01 3.00e+00 8.57e-01 1.82e-01 5.50e-01 2.86e-01
joint_posterior_agrid 2.00e+00 1.00e+00 1.00e-01 1.23e+00 9.80e-01 2.11e-01 9.82e-02 3.07e-03
stankovic_base 2.00e+00 1.00e+00 1.00e-01 2.19e+00 1.01e+00 - 3.26e+00 1.92e-02
stankovic_enhanced_unc 2.00e+00 1.00e+00 1.00e-01 1.85e+00 1.02e+00 - 2.42e+00 2.52e-02
stankovic_base_unc 2.00e+00 1.00e+00 1.00e-01 1.86e+00 1.02e+00 - 2.40e+00 2.02e-02

Table D.10: Main results of scenario 02a_static_input_noisy.

∆trun MSDa NMAEa MSDb NMAEb MSDσy NMAEσy MSDX MSEX NMSEX

gibbs_base 2.09e+03 -1.69e+00 5.27e+00 -2.73e-04 3.92e-02 6.45e-01 7.32e+03 3.63e-03 1.10e-01 1.75e-02
gibbs_minimal 2.76e+02 -2.13e+00 5.33e+00 -7.74e-03 5.38e+00 1.97e-01 5.90e-01 -7.79e-02 6.46e-01 3.76e-02
gibbs_no_EIV 5.29e+01 -4.76e+00 1.12e+08 1.31e-02 1.04e+08 -1.00e-01 3.00e-01 1.10e-03 1.35e-03 4.18e+15
gibbs_known_sigma_y 7.70e+00 -1.77e+00 1.67e+01 -1.62e-03 2.49e+00 - - 1.17e-02 1.94e-01 4.67e+00
joint_posterior 6.12e+01 1.00e+00 1.82e+00 -1.43e-01 5.00e-01 8.18e-02 1.50e+01 4.52e-02 3.19e-03 2.45e-01
joint_posterior_agrid 1.38e+01 -7.72e-01 7.86e+00 -1.98e-02 6.43e+00 1.11e-01 4.31e+01 1.45e-02 7.04e-03 2.38e-01
stankovic_base 4.11e-01 1.85e-01 5.69e-02 1.15e-02 6.02e-01 - - -7.49e-03 2.21e-03 4.07e-01
stankovic_enhanced_unc 4.30e-01 -1.48e-01 6.13e-02 2.09e-02 8.32e-01 - - -1.34e-02 3.18e-03 4.89e-01
stankovic_base_unc 3.89e-01 -1.38e-01 5.76e-02 2.11e-02 1.04e+00 - - -1.34e-02 3.15e-03 5.26e-01

Table D.11: Runtime and consistency metrics of scenario 02a_static_input_noisy.
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ta(0.1) t∗
a(0.1) tb(0.1) t∗

b
(0.1) tσ(0.1) t∗

σ(0.1)

gibbs_base yes yes yes never never 1.99e+00 1.99e+00 9.99e+00 1.80e+01
gibbs_minimal yes yes yes never never 1.99e+00 5.99e+00 1.99e+00 never
gibbs_no_EIV No yes yes 7.99e+00 7.99e+00 1.99e+00 1.99e+00 1.99e+00 never
gibbs_known_sigma_y yes yes - 1.80e+01 never 1.99e+00 1.99e+00 - -
joint_posterior No yes yes never never 1.99e+00 never 1.99e+00 1.99e+00
joint_posterior_agrid yes yes yes 3.99e+00 3.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00
stankovic_base yes yes - never never 5.99e+00 5.99e+00 - -
stankovic_enhanced_unc yes yes - never never 9.99e+00 9.99e+00 - -
stankovic_base_unc yes yes - never never 9.99e+00 9.99e+00 - -

Table D.12: Convergence metrics of scenario 02a_static_input_noisy.
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D.5 Scenario 02b_sinusoidal_input_noisy

a b σy â b̂ σ̂y uâ u
b̂

gibbs_base 2.00e+00 1.00e+00 1.00e-01 1.99e+00 1.00e+00 3.14e-01 1.05e-02 1.10e-02
gibbs_minimal 2.00e+00 1.00e+00 1.00e-01 2.00e+00 9.96e-01 3.33e-01 1.72e-03 1.52e-03
gibbs_no_EIV 2.00e+00 1.00e+00 1.00e-01 1.99e+00 9.97e-01 3.33e-01 1.30e-03 2.29e-03
gibbs_known_sigma_y 2.00e+00 1.00e+00 1.00e-01 2.00e+00 9.98e-01 - 2.04e-04 7.73e-04
joint_posterior 2.00e+00 1.00e+00 1.00e-01 1.86e+00 1.14e+00 2.28e-01 2.86e-01 2.86e-01
joint_posterior_agrid 2.00e+00 1.00e+00 1.00e-01 1.95e+00 1.05e+00 4.98e-01 5.57e-03 9.60e-03
stankovic_base 2.00e+00 1.00e+00 1.00e-01 1.09e+00 8.01e-01 - 2.34e-02 3.47e-02
stankovic_enhanced_unc 2.00e+00 1.00e+00 1.00e-01 1.02e+00 9.12e-01 - 4.82e-02 1.40e-01
stankovic_base_unc 2.00e+00 1.00e+00 1.00e-01 1.02e+00 9.13e-01 - 4.85e-02 1.41e-01

Table D.13: Main results of scenario 02b_sinusoidal_input_noisy.

∆trun MSDa NMAEa MSDb NMAEb MSDσy NMAEσy MSDX MSEX NMSEX

gibbs_base 2.05e+03 -9.19e-03 8.75e-01 6.45e-04 5.89e-02 2.14e-01 1.13e+05 2.93e-03 2.69e-03 1.08e-01
gibbs_minimal 3.74e+02 2.16e-03 1.26e+00 -4.44e-03 2.92e+00 2.33e-01 7.00e-01 -2.34e-04 2.63e-03 9.49e-02
gibbs_no_EIV 3.30e+02 -5.04e-03 3.88e+00 -3.29e-03 1.44e+00 2.33e-01 7.00e-01 2.80e-03 2.66e-03 9.52e-02
gibbs_known_sigma_y 7.61e+00 -2.32e-03 1.13e+01 -2.49e-03 3.22e+00 - - 1.04e-03 2.64e-03 1.51e+04
joint_posterior 5.97e+01 -1.43e-01 5.00e-01 1.43e-01 5.00e-01 1.28e-01 9.85e-01 -1.28e-03 1.46e-02 1.68e-01
joint_posterior_agrid 1.38e+01 -5.27e-02 9.46e+00 5.21e-02 5.43e+00 3.98e-01 5.21e+01 -1.02e-03 4.15e-03 6.33e-02
stankovic_base 4.10e-01 -9.07e-01 3.88e+01 -1.99e-01 5.74e+00 - - 1.01e+00 2.40e+00 2.87e+02
stankovic_enhanced_unc 4.32e-01 -9.82e-01 2.04e+01 -8.81e-02 6.27e-01 - - 1.05e+00 2.97e+00 4.59e+01
stankovic_base_unc 3.89e-01 -9.75e-01 2.01e+01 -8.74e-02 6.19e-01 - - 1.04e+00 2.89e+00 4.51e+01

Table D.14: Runtime and consistency metrics of scenario 02b_sinusoidal_input_noisy.
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ta(0.1) t∗
a(0.1) tb(0.1) t∗

b
(0.1) tσ(0.1) t∗

σ(0.1)

gibbs_base yes yes No 1.99e+00 1.99e+00 1.99e+00 1.99e+00 2.00e+01 2.00e+01
gibbs_minimal yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 never never
gibbs_no_EIV yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 never never
gibbs_known_sigma_y yes yes - 1.99e+00 1.99e+00 1.99e+00 1.99e+00 - -
joint_posterior yes yes yes 1.99e+00 never 1.99e+00 never 1.99e+00 never
joint_posterior_agrid yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00
stankovic_base yes yes - 7.99e+00 7.99e+00 1.40e+01 1.40e+01 - -
stankovic_enhanced_unc yes yes - 5.99e+00 5.99e+00 never never - -
stankovic_base_unc yes yes - 5.99e+00 5.99e+00 never never - -

Table D.15: Convergence metrics of scenario 02b_sinusoidal_input_noisy.
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D.6 Scenario 02c_jumping_input_noisy

a b σy â b̂ σ̂y uâ u
b̂

gibbs_base 2.00e+00 1.00e+00 1.00e-01 2.01e+00 9.92e-01 9.31e-01 5.25e-03 2.81e-02
gibbs_minimal 2.00e+00 1.00e+00 1.00e-01 2.00e+00 9.94e-01 3.14e-01 2.84e-03 2.22e-03
gibbs_no_EIV 2.00e+00 1.00e+00 1.00e-01 2.01e+00 9.88e-01 3.38e-01 1.57e-03 5.59e-03
gibbs_known_sigma_y 2.00e+00 1.00e+00 1.00e-01 2.00e+00 1.00e+00 - 3.38e-04 1.20e-03
joint_posterior 2.00e+00 1.00e+00 1.00e-01 2.14e+00 8.57e-01 2.32e-01 2.86e-01 2.86e-01
joint_posterior_agrid 2.00e+00 1.00e+00 1.00e-01 2.04e+00 9.61e-01 3.48e-01 5.80e-03 1.06e-02
stankovic_base 2.00e+00 1.00e+00 1.00e-01 2.83e-04 -5.02e-02 - 3.13e-06 3.83e-03
stankovic_enhanced_unc 2.00e+00 1.00e+00 1.00e-01 4.02e-08 -5.02e-02 - 1.31e-10 1.16e-03
stankovic_base_unc 2.00e+00 1.00e+00 1.00e-01 4.09e-08 -5.02e-02 - 1.33e-10 1.16e-03

Table D.16: Main results of scenario 02c_jumping_input_noisy.

∆trun MSDa NMAEa MSDb NMAEb MSDσy NMAEσy MSDX MSEX NMSEX

gibbs_base 1.94e+03 8.79e-03 1.67e+00 -7.65e-03 2.72e-01 8.31e-01 2.81e+00 -1.87e-04 2.50e-03 1.16e-02
gibbs_minimal 3.28e+02 2.34e-03 8.24e-01 -6.41e-03 2.89e+00 2.14e-01 6.42e-01 2.03e-03 2.52e-03 1.02e-01
gibbs_no_EIV 4.40e+02 7.61e-03 4.86e+00 -1.24e-02 2.22e+00 2.38e-01 7.15e-01 2.69e-03 2.51e-03 8.82e-02
gibbs_known_sigma_y 7.71e+00 1.58e-03 4.68e+00 3.77e-04 3.14e-01 - - -1.03e-03 2.52e-03 6.15e+03
joint_posterior 5.99e+01 1.43e-01 5.00e-01 -1.43e-01 5.00e-01 1.32e-01 2.93e+01 7.81e-03 7.74e-03 1.49e-01
joint_posterior_agrid 1.39e+01 4.16e-02 7.18e+00 -3.92e-02 3.70e+00 2.48e-01 5.76e+01 1.10e-03 2.85e-03 9.78e-02
stankovic_base 4.12e-01 -2.00e+00 6.39e+05 -1.05e+00 2.74e+02 - - 9.94e+03 1.65e+08 7.35e+03
stankovic_enhanced_unc 4.37e-01 -2.00e+00 1.53e+10 -1.05e+00 9.05e+02 - - 7.00e+07 8.17e+15 8.50e+04
stankovic_base_unc 3.89e-01 -2.00e+00 1.51e+10 -1.05e+00 9.05e+02 - - 6.88e+07 7.91e+15 8.50e+04

Table D.17: Runtime and consistency metrics of scenario 02c_jumping_input_noisy.
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ta(0.1) t∗
a(0.1) tb(0.1) t∗

b
(0.1) tσ(0.1) t∗

σ(0.1)

gibbs_base yes yes No 1.99e+00 1.99e+00 1.99e+00 1.99e+00 never never
gibbs_minimal yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 3.99e+00 never
gibbs_no_EIV yes No yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 3.99e+00 never
gibbs_known_sigma_y yes yes - 1.99e+00 1.99e+00 1.99e+00 1.99e+00 - -
joint_posterior yes yes yes 1.99e+00 never 1.99e+00 never 1.99e+00 1.99e+00
joint_posterior_agrid yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00
stankovic_base No yes - 1.60e+01 1.60e+01 1.80e+01 1.80e+01 - -
stankovic_enhanced_unc No No - 2.00e+01 2.00e+01 2.00e+01 2.00e+01 - -
stankovic_base_unc No yes - 2.00e+01 2.00e+01 2.00e+01 2.00e+01 - -

Table D.18: Convergence metrics of scenario 02c_jumping_input_noisy.
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D.7 Scenario 03a_variable_blockwise

a b σy â b̂ σ̂y uâ u
b̂

gibbs_base / / / / / / / /
gibbs_minimal 2.00e+00 1.00e+00 1.00e-01 1.99e+00 1.01e+00 1.04e-01 5.71e-04 3.51e-04
gibbs_no_EIV 2.00e+00 1.00e+00 1.00e-01 1.99e+00 1.01e+00 9.98e-02 4.67e-04 9.21e-04
gibbs_known_sigma_y 2.00e+00 1.00e+00 1.00e-01 2.00e+00 1.01e+00 - 1.13e-03 7.09e-04
joint_posterior 2.00e+00 1.00e+00 1.00e-01 1.86e+00 1.14e+00 1.32e-01 2.86e-01 2.86e-01
joint_posterior_agrid 2.00e+00 1.00e+00 1.00e-01 2.01e+00 1.05e+00 4.45e-01 7.57e-03 9.30e-03
stankovic_base 2.00e+00 1.00e+00 1.00e-01 1.85e+00 1.14e+00 - 3.27e-01 4.32e-01
stankovic_enhanced_unc 2.00e+00 1.00e+00 1.00e-01 1.68e+00 1.28e+00 - 4.18e-01 5.76e-01
stankovic_base_unc 2.00e+00 1.00e+00 1.00e-01 1.68e+00 1.28e+00 - 4.19e-01 5.77e-01

Table D.19: Main results of scenario 03a_variable_blockwise.

∆trun MSDa NMAEa MSDb NMAEb MSDσy NMAEσy MSDX MSEX NMSEX

gibbs_base / / / / / / / / / /
gibbs_minimal 7.31e+02 -1.06e-02 1.86e+01 1.16e-02 3.29e+01 4.19e-03 1.26e-02 -7.66e-04 2.56e-03 9.33e-01
gibbs_no_EIV 5.33e+02 -6.78e-03 1.45e+01 1.33e-02 1.45e+01 -1.53e-04 4.60e-04 -3.56e-03 2.55e-03 1.02e+00
gibbs_known_sigma_y 1.10e+01 -4.37e-03 3.88e+00 8.64e-03 1.22e+01 - - -2.40e-03 2.54e-03 8.71e+03
joint_posterior 8.20e+01 -1.43e-01 5.00e-01 1.43e-01 5.00e-01 3.25e-02 4.30e-01 -8.40e-04 5.84e-03 1.22e-01
joint_posterior_agrid 1.91e+01 8.39e-03 1.11e+00 4.58e-02 4.92e+00 3.45e-01 5.76e+01 -2.72e-02 3.25e-03 6.61e-02
stankovic_base 4.32e-01 -1.52e-01 4.65e-01 1.43e-01 3.32e-01 - - 3.80e-03 6.31e-03 7.20e-02
stankovic_enhanced_unc 4.45e-01 -3.20e-01 7.66e-01 2.81e-01 4.88e-01 - - 2.16e-02 2.21e-02 1.07e-01
stankovic_base_unc 3.99e-01 -3.16e-01 7.55e-01 2.78e-01 4.81e-01 - - 2.11e-02 2.16e-02 1.04e-01

Table D.20: Runtime and consistency metrics of scenario 03a_variable_blockwise.
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(0.1) tσ(0.1) t∗
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gibbs_base / / / / / / / / /
gibbs_minimal yes yes yes 4.00e-02 4.00e-02 4.00e-02 4.00e-02 4.00e-02 never
gibbs_no_EIV yes yes yes 4.00e-02 4.00e-02 1.90e-01 1.90e-01 4.00e-02 never
gibbs_known_sigma_y yes yes - 4.00e-02 4.00e-02 4.00e-02 4.00e-02 - -
joint_posterior yes yes yes 1.90e-01 never 1.90e-01 never 1.90e-01 1.90e-01
joint_posterior_agrid yes yes yes 2.33e+00 2.33e+00 2.33e+00 2.33e+00 4.00e-02 4.00e-02
stankovic_base yes yes - never never never never - -
stankovic_enhanced_unc yes yes - never never never never - -
stankovic_base_unc yes yes - never never never never - -

Table D.21: Convergence metrics of scenario 03a_variable_blockwise.
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D.8 Scenario 03b_smaller_blocks

a b σy â b̂ σ̂y uâ u
b̂

gibbs_base / / / / / / / /
gibbs_minimal 2.00e+00 1.00e+00 1.00e-01 1.98e+00 1.03e+00 3.33e-01 3.60e-03 3.37e-03
gibbs_no_EIV 2.00e+00 1.00e+00 1.00e-01 1.99e+00 1.01e+00 2.68e-01 1.05e-03 2.11e-03
gibbs_known_sigma_y 2.00e+00 1.00e+00 1.00e-01 2.00e+00 1.01e+00 - 8.60e-04 5.09e-04
joint_posterior 2.00e+00 1.00e+00 1.00e-01 1.86e+00 1.14e+00 1.32e-01 2.86e-01 2.86e-01
joint_posterior_agrid 2.00e+00 1.00e+00 1.00e-01 1.95e+00 9.05e-01 4.87e-01 1.10e-02 1.80e-02
stankovic_base 2.00e+00 1.00e+00 1.00e-01 1.85e+00 1.14e+00 - 3.27e-01 4.32e-01
stankovic_enhanced_unc 2.00e+00 1.00e+00 1.00e-01 1.68e+00 1.28e+00 - 4.18e-01 5.76e-01
stankovic_base_unc 2.00e+00 1.00e+00 1.00e-01 1.68e+00 1.28e+00 - 4.19e-01 5.77e-01

Table D.22: Main results of scenario 03b_smaller_blocks.

∆trun MSDa NMAEa MSDb NMAEb MSDσy NMAEσy MSDX MSEX NMSEX

gibbs_base / / / / / / / / / /
gibbs_minimal 7.38e+02 -2.09e-02 5.81e+00 3.29e-02 9.76e+00 2.33e-01 7.00e-01 -6.41e-03 2.66e-03 9.39e-02
gibbs_no_EIV 3.89e+02 -5.04e-03 4.81e+00 1.36e-02 6.43e+00 1.68e-01 5.04e-01 -4.54e-03 2.55e-03 1.42e-01
gibbs_known_sigma_y 3.93e+00 -4.73e-03 5.51e+00 7.34e-03 1.44e+01 - - -1.57e-03 2.54e-03 1.62e+04
joint_posterior 4.02e+01 -1.43e-01 5.00e-01 1.43e-01 5.00e-01 3.25e-02 4.30e-01 -8.40e-04 5.84e-03 1.22e-01
joint_posterior_agrid 1.02e+01 -4.95e-02 4.52e+00 -9.48e-02 5.27e+00 3.87e-01 2.90e+01 7.36e-02 8.38e-03 1.34e-01
stankovic_base 4.08e-01 -1.52e-01 4.65e-01 1.43e-01 3.32e-01 - - 3.80e-03 6.31e-03 7.20e-02
stankovic_enhanced_unc 4.29e-01 -3.20e-01 7.66e-01 2.81e-01 4.88e-01 - - 2.16e-02 2.21e-02 1.07e-01
stankovic_base_unc 3.85e-01 -3.16e-01 7.55e-01 2.78e-01 4.81e-01 - - 2.11e-02 2.16e-02 1.04e-01

Table D.23: Runtime and consistency metrics of scenario 03b_smaller_blocks.
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a(0.1) tb(0.1) t∗

b
(0.1) tσ(0.1) t∗

σ(0.1)

gibbs_base / / / / / / / / /
gibbs_minimal yes yes yes 9.90e-01 9.90e-01 9.90e-01 9.90e-01 never never
gibbs_no_EIV yes yes yes 9.90e-01 9.90e-01 9.90e-01 9.90e-01 9.90e-01 never
gibbs_known_sigma_y yes yes - 9.90e-01 9.90e-01 9.90e-01 9.90e-01 - -
joint_posterior yes yes yes 9.90e-01 never 9.90e-01 never 9.90e-01 9.90e-01
joint_posterior_agrid yes yes yes 9.90e-01 9.90e-01 9.90e-01 9.90e-01 9.90e-01 9.90e-01
stankovic_base yes yes - never never never never - -
stankovic_enhanced_unc yes yes - never never never never - -
stankovic_base_unc yes yes - never never never never - -

Table D.24: Convergence metrics of scenario 03b_smaller_blocks.



168 APPENDIX D. EVALUATION RESULTS PER SCENARIO

D.9 Scenario 03c_larger_blocks

a b σy â b̂ σ̂y uâ u
b̂

gibbs_base / / / / / / / /
gibbs_minimal 2.00e+00 1.00e+00 1.00e-01 1.99e+00 1.01e+00 3.27e-01 2.84e-03 2.72e-03
gibbs_no_EIV 2.00e+00 1.00e+00 1.00e-01 2.00e+00 1.00e+00 9.59e-02 7.17e-04 9.17e-04
gibbs_known_sigma_y 2.00e+00 1.00e+00 1.00e-01 1.99e+00 1.01e+00 - 1.65e-03 8.70e-04
joint_posterior 2.00e+00 1.00e+00 1.00e-01 1.86e+00 1.14e+00 1.32e-01 2.86e-01 2.86e-01
joint_posterior_agrid 2.00e+00 1.00e+00 1.00e-01 2.01e+00 1.01e+00 3.97e-01 5.76e-03 7.60e-03
stankovic_base 2.00e+00 1.00e+00 1.00e-01 1.85e+00 1.14e+00 - 3.27e-01 4.32e-01
stankovic_enhanced_unc 2.00e+00 1.00e+00 1.00e-01 1.68e+00 1.28e+00 - 4.18e-01 5.76e-01
stankovic_base_unc 2.00e+00 1.00e+00 1.00e-01 1.68e+00 1.28e+00 - 4.19e-01 5.77e-01

Table D.25: Main results of scenario 03c_larger_blocks.

∆trun MSDa NMAEa MSDb NMAEb MSDσy NMAEσy MSDX MSEX NMSEX

gibbs_base / / / / / / / / / /
gibbs_minimal 3.48e+02 -1.35e-02 4.77e+00 1.16e-02 4.28e+00 2.27e-01 6.82e-01 6.67e-04 2.57e-03 9.48e-02
gibbs_no_EIV 3.50e+02 3.16e-03 4.40e+00 2.57e-03 2.81e+00 -4.13e-03 1.24e-02 -3.09e-03 2.52e-03 1.10e+00
gibbs_known_sigma_y 7.77e+00 -5.06e-03 3.06e+00 8.75e-03 1.01e+01 - - -2.11e-03 2.54e-03 5.19e+03
joint_posterior 6.03e+01 -1.43e-01 5.00e-01 1.43e-01 5.00e-01 3.25e-02 4.30e-01 -8.40e-04 5.84e-03 1.22e-01
joint_posterior_agrid 1.41e+01 1.03e-02 1.79e+00 1.31e-02 1.73e+00 2.97e-01 6.83e+01 -1.19e-02 2.65e-03 6.80e-02
stankovic_base 4.20e-01 -1.52e-01 4.65e-01 1.43e-01 3.32e-01 - - 3.80e-03 6.31e-03 7.20e-02
stankovic_enhanced_unc 4.35e-01 -3.20e-01 7.66e-01 2.81e-01 4.88e-01 - - 2.16e-02 2.21e-02 1.07e-01
stankovic_base_unc 3.97e-01 -3.16e-01 7.55e-01 2.78e-01 4.81e-01 - - 2.11e-02 2.16e-02 1.04e-01

Table D.26: Runtime and consistency metrics of scenario 03c_larger_blocks.
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gibbs_base / / / / / / / / /
gibbs_minimal yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 3.99e+00 never
gibbs_no_EIV yes yes yes 1.99e+00 1.40e+01 1.99e+00 1.99e+00 5.99e+00 never
gibbs_known_sigma_y yes yes - 1.99e+00 1.99e+00 1.99e+00 1.99e+00 - -
joint_posterior yes yes yes 1.99e+00 never 1.99e+00 never 1.99e+00 1.99e+00
joint_posterior_agrid yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00
stankovic_base yes yes - never never never never - -
stankovic_enhanced_unc yes yes - never never never never - -
stankovic_base_unc yes yes - never never never never - -

Table D.27: Convergence metrics of scenario 03c_larger_blocks.
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D.10 Scenario 04a_dropouts

a b σy â b̂ σ̂y uâ u
b̂

gibbs_base / / / / / / / /
gibbs_minimal 2.00e+00 1.00e+00 1.00e-01 1.99e+00 1.01e+00 3.33e-01 3.36e-03 2.81e-03
gibbs_no_EIV 2.00e+00 1.00e+00 1.00e-01 2.00e+00 9.98e-01 3.33e-01 1.75e-03 1.58e-03
gibbs_known_sigma_y 2.00e+00 1.00e+00 1.00e-01 2.00e+00 9.99e-01 - 4.56e-04 5.00e-04
joint_posterior 2.00e+00 1.00e+00 1.00e-01 1.86e+00 1.14e+00 2.77e-01 2.86e-01 2.86e-01
joint_posterior_agrid 2.00e+00 1.00e+00 1.00e-01 1.99e+00 9.41e-01 4.61e-01 3.41e-03 9.15e-03
stankovic_base 2.00e+00 1.00e+00 1.00e-01 1.81e+00 9.65e-01 - 1.34e-01 2.75e-01
stankovic_enhanced_unc 2.00e+00 1.00e+00 1.00e-01 1.49e+00 8.94e-01 - 1.30e-01 3.57e-01
stankovic_base_unc 2.00e+00 1.00e+00 1.00e-01 1.50e+00 8.96e-01 - 1.31e-01 3.59e-01

Table D.28: Main results of scenario 04a_dropouts.

∆trun MSDa NMAEa MSDb NMAEb MSDσy NMAEσy MSDX MSEX NMSEX

gibbs_base / / / / / / / / / /
gibbs_minimal 3.60e+02 -7.16e-03 2.13e+00 5.37e-03 1.91e+00 2.33e-01 7.00e-01 -6.01e-04 2.60e-03 9.29e-02
gibbs_no_EIV 3.22e+02 -1.72e-03 9.84e-01 -2.07e-03 1.32e+00 2.33e-01 7.00e-01 4.06e-04 2.57e-03 9.23e-02
gibbs_known_sigma_y 7.92e+00 -2.11e-03 4.62e+00 -9.07e-04 1.81e+00 - - 1.65e-05 2.57e-03 2.01e+04
joint_posterior 6.24e+01 -1.43e-01 5.00e-01 1.43e-01 5.00e-01 1.77e-01 4.98e+01 -1.64e-03 1.46e-02 1.52e-01
joint_posterior_agrid 1.43e+01 -6.11e-03 1.79e+00 -5.92e-02 6.47e+00 3.61e-01 4.56e+01 3.13e-02 3.57e-03 6.66e-02
stankovic_base 4.00e-01 -1.85e-01 1.39e+00 -3.48e-02 1.26e-01 - - 1.19e-01 3.79e-02 6.74e-01
stankovic_enhanced_unc 4.19e-01 -5.14e-01 3.95e+00 -1.06e-01 2.97e-01 - - 4.15e-01 4.15e-01 3.04e+00
stankovic_base_unc 3.79e-01 -5.04e-01 3.84e+00 -1.04e-01 2.89e-01 - - 4.04e-01 3.95e-01 2.90e+00

Table D.29: Runtime and consistency metrics of scenario 04a_dropouts.
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gibbs_base / / / / / / / / /
gibbs_minimal yes yes No 1.99e+00 9.99e+00 1.99e+00 1.80e+01 1.99e+00 never
gibbs_no_EIV yes yes yes 1.99e+00 2.00e+01 1.99e+00 1.99e+00 1.99e+00 never
gibbs_known_sigma_y yes yes - 1.99e+00 1.99e+00 1.99e+00 1.99e+00 - -
joint_posterior yes yes yes 1.99e+00 never 1.99e+00 never 1.99e+00 1.99e+00
joint_posterior_agrid yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00
stankovic_base yes yes - never never never never - -
stankovic_enhanced_unc yes yes - never never never never - -
stankovic_base_unc yes yes - never never never never - -

Table D.30: Convergence metrics of scenario 04a_dropouts.
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D.11 Scenario 04b_outliers

a b σy â b̂ σ̂y uâ u
b̂

gibbs_base / / / / / / / /
gibbs_minimal 2.00e+00 1.00e+00 1.00e-01 2.01e+00 9.99e-01 3.33e-01 2.06e-03 1.99e-03
gibbs_no_EIV 2.00e+00 1.00e+00 1.00e-01 2.00e+00 9.87e-01 3.41e-01 4.06e-03 3.86e-03
gibbs_known_sigma_y 2.00e+00 1.00e+00 1.00e-01 2.00e+00 1.00e+00 - 1.04e-03 1.29e-03
joint_posterior 2.00e+00 1.00e+00 1.00e-01 2.14e+00 8.57e-01 2.28e-01 2.86e-01 2.86e-01
joint_posterior_agrid 2.00e+00 1.00e+00 1.00e-01 1.96e+00 9.46e-01 5.46e-01 9.86e-03 1.23e-02
stankovic_base 2.00e+00 1.00e+00 1.00e-01 2.71e-06 -4.09e-01 - 2.65e-07 1.60e-01
stankovic_enhanced_unc 2.00e+00 1.00e+00 1.00e-01 -4.08e-05 8.37e+00 - 8.12e-05 1.36e+01
stankovic_base_unc 2.00e+00 1.00e+00 1.00e-01 -3.73e-05 7.77e+00 - 6.75e-05 1.13e+01

Table D.31: Main results of scenario 04b_outliers.

∆trun MSDa NMAEa MSDb NMAEb MSDσy NMAEσy MSDX MSEX NMSEX

gibbs_base / / / / / / / / / /
gibbs_minimal 3.46e+02 5.98e-03 2.91e+00 -9.12e-04 4.58e-01 2.33e-01 6.99e-01 -3.72e-03 2.53e-03 9.18e-02
gibbs_no_EIV 4.55e+02 2.46e-03 6.05e-01 -1.27e-02 3.28e+00 2.41e-01 7.24e-01 3.88e-03 2.53e-03 8.72e-02
gibbs_known_sigma_y 7.71e+00 1.48e-03 1.42e+00 -2.73e-04 2.11e-01 - - -1.82e-03 2.52e-03 3.17e+03
joint_posterior 5.96e+01 1.43e-01 5.00e-01 -1.43e-01 5.00e-01 1.28e-01 9.85e-01 -6.54e-04 1.09e-02 1.95e-01
joint_posterior_agrid 1.37e+01 -4.38e-02 4.44e+00 -5.40e-02 4.38e+00 4.46e-01 4.62e+01 4.85e-02 6.06e-03 7.76e-02
stankovic_base 4.26e-01 -2.00e+00 7.56e+06 -1.41e+00 8.82e+00 - - 1.25e+06 2.66e+12 6.35e+01
stankovic_enhanced_unc 4.39e-01 -2.00e+00 2.46e+04 7.37e+00 5.42e-01 - - 1.32e+05 2.22e+10 9.13e-02
stankovic_base_unc 3.94e-01 -2.00e+00 2.96e+04 6.77e+00 5.99e-01 - - 1.28e+05 2.22e+10 1.07e-01

Table D.32: Runtime and consistency metrics of scenario 04b_outliers.

s
a

(4
s

)
>

s
a

(1
6s

)

s
b

(4
s

)
>

s
b

(1
6s

)

s
σ

(4
s

)
>

s
σ

(1
6s

)

ta(0.1) t∗
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gibbs_base / / / / / / / / /
gibbs_minimal yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00 never
gibbs_no_EIV yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 3.99e+00 never
gibbs_known_sigma_y yes No - 1.99e+00 1.99e+00 1.99e+00 1.99e+00 - -
joint_posterior yes yes yes 1.99e+00 never 1.99e+00 never 1.99e+00 never
joint_posterior_agrid yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00
stankovic_base yes yes - 1.99e+00 1.99e+00 3.99e+00 never - -
stankovic_enhanced_unc No No - 1.99e+00 1.99e+00 1.99e+00 never - -
stankovic_base_unc No No - 1.99e+00 1.99e+00 1.99e+00 never - -

Table D.33: Convergence metrics of scenario 04b_outliers.
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D.12 Scenario 05a_better_references

a b σy â b̂ σ̂y uâ u
b̂

gibbs_base / / / / / / / /
gibbs_minimal 2.00e+00 1.00e+00 1.00e-01 2.00e+00 9.91e-01 3.33e-01 1.71e-03 3.66e-03
gibbs_no_EIV 2.00e+00 1.00e+00 1.00e-01 2.00e+00 1.00e+00 3.33e-01 1.26e-03 3.52e-03
gibbs_known_sigma_y 2.00e+00 1.00e+00 1.00e-01 2.00e+00 1.00e+00 - 4.43e-04 8.59e-04
joint_posterior 2.00e+00 1.00e+00 1.00e-01 1.86e+00 1.14e+00 2.75e-01 2.86e-01 2.86e-01
joint_posterior_agrid 2.00e+00 1.00e+00 1.00e-01 1.96e+00 9.57e-01 5.03e-01 6.46e-03 1.42e-02
stankovic_base 2.00e+00 1.00e+00 1.00e-01 2.32e+00 9.80e-01 - 4.17e-01 7.48e-01
stankovic_enhanced_unc 2.00e+00 1.00e+00 1.00e-01 2.31e+00 9.79e-01 - 4.14e-01 7.45e-01
stankovic_base_unc 2.00e+00 1.00e+00 1.00e-01 2.32e+00 9.80e-01 - 4.17e-01 7.48e-01

Table D.34: Main results of scenario 05a_better_references.

∆trun MSDa NMAEa MSDb NMAEb MSDσy NMAEσy MSDX MSEX NMSEX

gibbs_base / / / / / / / / / /
gibbs_minimal 3.70e+02 3.39e-03 1.98e+00 -8.77e-03 2.40e+00 2.33e-01 7.00e-01 2.57e-03 2.63e-03 9.51e-02
gibbs_no_EIV 3.32e+02 -2.91e-04 2.31e-01 1.47e-03 4.17e-01 2.33e-01 7.00e-01 -6.85e-04 2.62e-03 9.43e-02
gibbs_known_sigma_y 7.80e+00 -3.07e-03 6.93e+00 2.48e-03 2.89e+00 - - 2.08e-04 2.62e-03 9.43e+03
joint_posterior 6.07e+01 -1.43e-01 5.00e-01 1.43e-01 5.00e-01 1.75e-01 4.83e+01 5.44e-04 1.44e-02 1.46e-01
joint_posterior_agrid 1.39e+01 -3.76e-02 5.82e+00 -4.26e-02 2.99e+00 4.03e-01 2.65e+01 4.09e-02 5.01e-03 7.61e-02
stankovic_base 3.95e-01 3.17e-01 7.61e-01 -2.05e-02 2.74e-02 - - -1.29e-01 5.69e-02 2.50e-01
stankovic_enhanced_unc 4.14e-01 3.08e-01 7.43e-01 -2.07e-02 2.78e-02 - - -1.26e-01 5.39e-02 2.37e-01
stankovic_base_unc 3.72e-01 3.17e-01 7.61e-01 -2.05e-02 2.74e-02 - - -1.29e-01 5.69e-02 2.50e-01

Table D.35: Runtime and consistency metrics of scenario 05a_better_references.
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gibbs_base / / / / / / / / /
gibbs_minimal yes yes No 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00 never
gibbs_no_EIV yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 never never
gibbs_known_sigma_y yes yes - 1.99e+00 7.99e+00 1.99e+00 1.99e+00 - -
joint_posterior yes yes yes 1.99e+00 never 1.99e+00 never 1.99e+00 1.99e+00
joint_posterior_agrid yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00
stankovic_base yes yes - never never never never - -
stankovic_enhanced_unc yes yes - never never never never - -
stankovic_base_unc yes yes - never never never never - -

Table D.36: Convergence metrics of scenario 05a_better_references.
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D.13 Scenario 05b_equal_references

a b σy â b̂ σ̂y uâ u
b̂

gibbs_base / / / / / / / /
gibbs_minimal 2.00e+00 1.00e+00 1.00e-01 1.98e+00 1.01e+00 1.46e-01 1.09e-03 2.07e-03
gibbs_no_EIV 2.00e+00 1.00e+00 1.00e-01 1.99e+00 9.99e-01 5.38e-01 1.01e-03 1.88e-03
gibbs_known_sigma_y 2.00e+00 1.00e+00 1.00e-01 2.00e+00 9.97e-01 - 1.27e-03 1.73e-03
joint_posterior 2.00e+00 1.00e+00 1.00e-01 1.86e+00 1.05e+00 2.30e-01 2.86e-01 9.81e-03
joint_posterior_agrid 2.00e+00 1.00e+00 1.00e-01 2.02e+00 1.01e+00 5.01e-01 3.24e-03 7.58e-03
stankovic_base 2.00e+00 1.00e+00 1.00e-01 2.48e+00 1.04e+00 - 4.64e-01 7.73e-01
stankovic_enhanced_unc 2.00e+00 1.00e+00 1.00e-01 2.46e+00 1.04e+00 - 4.61e-01 7.69e-01
stankovic_base_unc 2.00e+00 1.00e+00 1.00e-01 2.48e+00 1.04e+00 - 4.64e-01 7.73e-01

Table D.37: Main results of scenario 05b_equal_references.

∆trun MSDa NMAEa MSDb NMAEb MSDσy NMAEσy MSDX MSEX NMSEX

gibbs_base / / / / / / / / / /
gibbs_minimal 3.82e+02 -1.63e-02 1.50e+01 9.62e-03 4.66e+00 4.56e-02 2.08e+00 2.74e-03 2.69e-03 4.99e-01
gibbs_no_EIV 1.49e+02 -1.10e-02 1.08e+01 -5.87e-04 3.12e-01 4.38e-01 1.31e+00 5.24e-03 2.64e-03 3.60e-02
gibbs_known_sigma_y 7.67e+00 -4.51e-03 3.55e+00 -3.47e-03 2.01e+00 - - 3.49e-03 2.57e-03 1.89e+03
joint_posterior 5.99e+01 -1.43e-01 5.00e-01 5.24e-02 5.35e+00 1.30e-01 2.12e+01 4.66e-02 1.66e-02 1.98e-01
joint_posterior_agrid 1.39e+01 2.11e-02 6.52e+00 1.39e-02 1.83e+00 4.01e-01 3.38e+01 -1.75e-02 3.05e-03 4.97e-02
stankovic_base 3.97e-01 4.76e-01 1.03e+00 4.43e-02 5.73e-02 - - -2.06e-01 1.19e-01 5.48e-01
stankovic_enhanced_unc 4.27e-01 4.65e-01 1.01e+00 4.37e-02 5.67e-02 - - -2.03e-01 1.14e-01 5.26e-01
stankovic_base_unc 3.77e-01 4.76e-01 1.03e+00 4.43e-02 5.73e-02 - - -2.06e-01 1.19e-01 5.48e-01

Table D.38: Runtime and consistency metrics of scenario 05b_equal_references.
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a(0.1) tb(0.1) t∗
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(0.1) tσ(0.1) t∗

σ(0.1)

gibbs_base / / / / / / / / /
gibbs_minimal yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 5.99e+00 5.99e+00
gibbs_no_EIV yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00 never
gibbs_known_sigma_y yes yes - 1.99e+00 1.99e+00 1.99e+00 1.99e+00 - -
joint_posterior yes yes yes 1.99e+00 never 1.99e+00 1.99e+00 1.99e+00 1.99e+00
joint_posterior_agrid yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00
stankovic_base yes yes - never never never never - -
stankovic_enhanced_unc yes yes - never never never never - -
stankovic_base_unc yes yes - never never never never - -

Table D.39: Convergence metrics of scenario 05b_equal_references.
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D.14 Scenario 05c_worse_references

a b σy â b̂ σ̂y uâ u
b̂

gibbs_base / / / / / / / /
gibbs_minimal 2.00e+00 1.00e+00 1.00e-01 1.39e+00 1.24e+00 1.22e+00 2.06e-03 1.66e-02
gibbs_no_EIV 2.00e+00 1.00e+00 1.00e-01 1.36e+00 1.64e+00 1.04e+00 6.66e-03 3.47e-03
gibbs_known_sigma_y 2.00e+00 1.00e+00 1.00e-01 1.37e+00 9.89e-01 - 1.12e-03 5.90e-03
joint_posterior 2.00e+00 1.00e+00 1.00e-01 1.44e+00 1.17e+00 4.03e-01 1.85e-02 4.58e-02
joint_posterior_agrid 2.00e+00 1.00e+00 1.00e-01 1.65e+00 9.07e-01 1.47e-01 1.30e-02 1.97e-02
stankovic_base 2.00e+00 1.00e+00 1.00e-01 2.57e+00 1.09e+00 - 5.46e-01 8.19e-01
stankovic_enhanced_unc 2.00e+00 1.00e+00 1.00e-01 2.56e+00 1.09e+00 - 5.42e-01 8.16e-01
stankovic_base_unc 2.00e+00 1.00e+00 1.00e-01 2.57e+00 1.09e+00 - 5.46e-01 8.19e-01

Table D.40: Main results of scenario 05c_worse_references.

∆trun MSDa NMAEa MSDb NMAEb MSDσy NMAEσy MSDX MSEX NMSEX

gibbs_base / / / / / / / / / /
gibbs_minimal 1.50e+02 -6.09e-01 2.96e+02 2.41e-01 1.45e+01 1.12e+00 5.17e+00 2.75e-01 4.63e-01 6.00e-01
gibbs_no_EIV 1.37e+02 -6.44e-01 9.68e+01 6.37e-01 1.83e+02 9.39e-01 2.82e+00 1.71e-02 4.56e-01 7.76e-01
gibbs_known_sigma_y 7.70e+00 -6.34e-01 5.67e+02 -1.13e-02 1.91e+00 - - 4.84e-01 6.69e-01 2.44e+04
joint_posterior 6.06e+01 -5.55e-01 3.00e+01 1.65e-01 3.61e+00 3.03e-01 6.89e+00 2.79e-01 3.77e-01 4.67e+00
joint_posterior_agrid 1.41e+01 -3.46e-01 2.65e+01 -9.25e-02 4.70e+00 4.70e-02 6.64e+00 2.70e-01 1.64e-01 1.89e+01
stankovic_base 3.96e-01 5.73e-01 1.05e+00 8.84e-02 1.08e-01 - - -2.63e-01 1.70e-01 6.95e-01
stankovic_enhanced_unc 4.16e-01 5.61e-01 1.04e+00 8.79e-02 1.08e-01 - - -2.59e-01 1.65e-01 6.73e-01
stankovic_base_unc 3.75e-01 5.73e-01 1.05e+00 8.84e-02 1.08e-01 - - -2.63e-01 1.70e-01 6.95e-01

Table D.41: Runtime and consistency metrics of scenario 05c_worse_references.
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gibbs_base / / / / / / / / /
gibbs_minimal yes yes yes 1.99e+00 1.99e+00 1.99e+00 9.99e+00 never never
gibbs_no_EIV yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 never never
gibbs_known_sigma_y yes yes - 1.99e+00 1.99e+00 1.99e+00 1.99e+00 - -
joint_posterior yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 3.99e+00 7.99e+00
joint_posterior_agrid yes yes yes 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00 1.99e+00
stankovic_base No No - never never never never - -
stankovic_enhanced_unc No No - never never never never - -
stankovic_base_unc No No - never never never never - -

Table D.42: Convergence metrics of scenario 05c_worse_references.
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