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Abstract 
Extracellular polymeric substances (EPS) are produced by microorganisms and interact to form a complex matrix called biofilm. In 
soils, EPS are important contributors to the microbial necromass and, thus, to soil organic carbon (SOC). Amino sugars (AS) are used 
as indicators for microbial necromass in soil, although the origin of galactosamine and mannosamine is largely unknown. However, 
indications exist that they are part of EPS. In this study, two bacteria and two fungi were grown in starch medium either with or without 
a quartz matrix to induce EPS production. Each culture was separated in two fractions: one that directly underwent AS extraction 
(containing AS from both biomass and EPS), and another that first had EPS extracted, followed then by AS determination (exclusively 
containing AS from EPS). We did not observe a general effect of the quartz matrix neither of microbial type on AS production. The 
quantified amounts of galactosamine and mannosamine in the EPS fraction represented on average 100% of the total amounts of these 
two AS quantified in cell cultures, revealing they are integral parts of the biofilm. In contrast, muramic acid and glucosamine were also 
quantified in the EPS, but with much lower contribution rates to total AS production, of 18% and 33%, respectively, indicating they are 
not necessarily part of EPS. Our results allow a meaningful ecological interpretation of mannosamine and galactosamine data in the 
future as indicators of microbial EPS, and also attract interest of future studies to investigate the role of EPS to SOC and its dynamics. 
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Introduction 
Extracellular polymeric substances (EPS) are produced by 
microorganisms, with the purpose of attaching microbial cells 
to each other and to surfaces [1-3]. EPS also interact to form 
a complex matrix often referred to as biofilm [3]. Biofilm 
development necessarily depends on microbial attachment, 
a process influenced by several factors, such as surface and 
cell-wall hydrophobicity as well as quantity and quality of EPS 
production [3]. Other than the structural function of biofilms, 
they also provide several strategic benefits for the microbial 
community, such as nutrient and water retention [2, 4, 5] and
protection of extracellular enzymes [2, 6]. When biofilms are 
formed in soils, for example, they additionally offer a series 
of benefits for this ecosystem, like increasing formation and 
strengthening aggregate stability [7, 8], improving the soil’s 
drought and salinity resistance [9-11] and boosting organic matter 
decomposition rates [12]. 

Knowledge on EPS composition in soils is, however, not as 
advanced as in aquatic ecosystems, for instance [7]. EPS are 
mainly composed of exopolysaccharides and proteins, but other 
substances such as lipids and DNA have also been detected [2, 
3, 13]. Additionally, there is growing evidence that amino sugars 
(AS) are also part of soil EPS [14], even though they are often 

not considered in the analysis of the biofilm matrix, as they 
are already remarked as important biomarkers for soil microbial 
necromass [15]. This happens mostly due to methodological con-
straints, involving methods used for EPS extraction [7] and  lack  of  
knowledge regarding the presence of AS in soils [14]. 

In soil ecosystems, AS are exclusively produced by microor-
ganisms. Some of them form an integral part of microbial cell 
walls, and are used as indicators of the microbial necromass 
contribution to soil organic carbon (SOC) [16, 17]. Only four AS are 
regularly quantified in soils: muramic acid (MurN), mannosamine 
(ManN), galactosamine (GalN), and glucosamine (GlcN); in total 
contributing between 2 and 5% to SOC [18, 19]. MurN occurs exclu-
sively in bacterial cell walls [14], especially in the murein skeleton 
of Gram-positive species [20, 21]. GlcN is the principal component 
of chitin, a polymer of N-acetyl-GlcN, in soil mainly of fungal 
origin [22, 23]. Furthermore, GlcN also occurs in murein, which 
derives from bacteria; therefore, the contribution of bacterial cell-
wall murein to total soil GlcN content can be estimated, assuming 
that MurN and GlcN occur at a molar 1-to-2 ratio in the total 
amount of AS estimated in soils [20]. GlcN contributes between 
47 and 68% to AS in soil, while MurN to about 3%–16% [14]. 

GalN is the second most common amino sugar in soil [18, 24, 
25] and adds up to 42% to total AS content [14]. However, it is not
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a cell-wall component of bacteria, neither of actinobacteria [26] 
and has been rarely found in fungal [27] or archaeal cell walls [28]. 
Still, in bacterial and fungal laboratory cultures, 4%–15% of total 
AS consists of GalN [20]. Also, GalN has been previously detected 
as a component of teichoic acids produced by bacteria, important 
molecules in the mechanism of cell attachment [29, 30]. This 
suggests GalN occurs extracellularly, as part of the microbial 
residue fraction, encompassing for example EPS [14]. 

Lastly, ManN has been detected as a component of sialic acids 
in fungi, e.g. on the conidial surface of Aspergillus fumigatus [31] 
or Gymnopilus spectabilis [32]. ManN is additionally an unspecific 
marker for microbial residues (similarly to GalN), as it also has 
been found in bacteria, specifically in protective capsular com-
ponents [33, 34] as well as in teichoic acids  [35] and in EPS of 
Gram-positive bacteria [36]. Small amounts of ManN may also 
be present as linkage units between peptidoglycan and glycerol 
teichoic acid [37], which also indicates it could originate from 
microbial residues and occur in the extracellular fraction. ManN 
contributes approximately 4% to soil AS content [14] and due to 
its low concentration and specificity, ManN data have not been 
presented in many recent studies [16, 38-40]. 

It is possible that GalN and ManN are important components 
of EPS in soil, which has been repeatedly stated [41-44], but not 
yet proven. Further, the cation-exchange resin (CER) extraction 
method for EPS [7, 45] gives the unique possibility to directly inves-
tigate the contribution of AS, especially GalN and ManN, to freshly 
formed bacterial and fungal EPS under laboratory conditions. 
Applying this method, we tested the following hypotheses: (i) The 
amino sugar concentration of EPS is increased by the presence 
of a surface as a trigger for microbial adhesion processes. (ii) 
The cell-wall components MurN and GlcN remain in the biomass 
and contribute only small amounts to the extracted EPS. (iii) 
GalN and ManN are solely components of EPS and can be fully 
removed from the cultures by CER extraction. If successful, this 
would allow a meaningful ecological interpretation of ManN but 
especially GalN data obtained by amino sugar analysis. 

Materials and methods 
Microbial strains 
Four species were chosen for this experiment for being microbes 
commonly found in soils and/or isolated from soils. Two were bac-
teria (Escherichia coli and Bacillus subtilis) and two fungi  (Fusarium 
acutatum and Arcopilus cupreus). B. subtilis (DSM10) was acquired 
from the German Collection of Microorganisms and Cell Cultures 
(DSMZ) and E. coli (MG1655) was obtained from a culture main-
tained at the Freie Universität Berlin, Germany. 

Both fungal strains, F. acutatum and Anolis cupreus, were iso-
lated from an agricultural soil (unfertilized plots of the long-term 
field experiment in Thyrow, Humboldt-University of Berlin) and 
identified with the use of molecular techniques, also at the Freie 
Universität Berlin (details on fungal isolation can be found in 
Supporting information S1). 

Growth conditions for EPS production 
To induce EPS production, microorganisms were individually 
incubated in shake flasks either with or without a matrix of SOM-
free sterile quartz (SiO2, 0.4–0.8 mm – Carl Roth), and with a starch 
culture medium. This carbon source has been previously reported 
to yield high EPS production [46]. Starch medium contained per 
liter of deionized water: 45 g starch, 0.45 g yeast extract, 0.45 g 
peptone, 0.225 g (NH4)2SO4, 5.8 g KH2PO4, 2 g NaCl, 0.6 g MgSO4 × 7 
H2O, and 1 ml of a micronutrient solution. The micronutrient 

solution used to supplement the media contained per liter of 
deionized water: 1.99 g FeCl2 × 4 H2O, 2.23 g MnSO4 × 4 H2O, 2.38 g 
CoCl2 × 6 H2O, 1.67 g CaCl2 × 2 H2O, 0.25 g CuSO4 × 5 H2O, and 
0.29 g ZnSO4 × 7 H2O. Each flask was finally filled with 50 ml 
of culture medium, 142 g of quartz (when necessary) and the 
microbial species. Flasks were incubated at 30◦C and shaken 
(100 rpm) for 4 days until EPS extraction and AS determination. 
After the incubation period, cultures were still in growth stage (or 
hyphal for the fungi) as no sporulation was detected. 

Subsampling 
Following incubation, each flask was separated in two subsam-
ples (fraction): (i) one that was immediately hydrolyzed for AS 
analysis (“cell culture”) and (ii) another that first underwent 
EPS extraction, only then to be hydrolyzed for AS determination 
(“EPS”). For the EPS extraction (resulting in the “EPS” fraction), we 
collected 10 ml aliquots from the cell cultures (both with and 
without quartz) using a standing graduated cylinder for accurate 
volume measurement. And for AS determination, a 2 ml aliquot 
was taken from either the cell cultures or the extracted EPS 
fractions. The purpose of this subsampling was to determine the 
contribution of the EPS fraction to total AS production. Assum-
ing the “cell culture” fraction would contain AS both from the 
microbial cell wall (either bacterial or fungal) and from the EPS; 
whereas the “EPS” fraction would contain only the AS embedded 
in the biofilm matrix, in the extracellular environment. In this 
way, if the EPS contribution of an AS (MurN, ManN, GalN, or GlcN) 
to total AS production (quantified in the “cell culture”) was equal 
or higher than 90% (arbitrary threshold to avoid overestimation), 
for instance, that would be indication enough to assume this AS 
belongs to EPS (and the extracellular environment). 

EPS extraction and amino sugar analysis 
The EPS extraction was carried out following the method pro-
posed by Frølund et al. [45], using the recommended amount of 
cation exchange resin (CER) determined for Pseudomonas putida. 
The first step in this method includes a centrifugation, to ensure 
cells are separated from the extracellular environment [45]. Even 
though the CER method has been thoroughly used to extract EPS 
from both sludge and soil samples [7, 45, 47, 48], usually only 
polysaccharides and proteins are measured. Therefore, it has not 
been shown that this method is able to fully extract other EPS 
components, such as AS. One of our aims with this experiment 
was to test exactly that, as stated in our third hypothesis. 

In order to determine AS content, the subsamples (either “cell 
culture” or “EPS”) were hydrolyzed in an autoclave for 10 min 
at 100◦C (parameters determined following a hydrolysis test, 
described in detail in Supporting information S2). Despite the 
possible interference of AS from the culture medium (e.g. 0.45 g 
yeast extract per L, containing approximately 22.5 mg of GlcN per 
L, ref. 23), we chose not to use the starch medium as a blank for 
AS quantification. This is mainly for two reasons: first, the culture 
medium would not be a very accurate baseline reference as the 
AS (from the yeast extract) would be consumed over the course 
of the 4-day incubation. And secondly, because 50 ml of medium 
was added in each flask, meaning 1.25 mg of GlcN was initially 
incubated with the microbial cultures (GlcN is used as a reference 
because it would be the AS found in highest concentrations, Ref. 
23). Assuming that part of that AS content would be degraded 
during incubation, we deemed this interference insignificant. 

Following hydrolysis, the AS MurN, ManN, GlcN, and GalN were 
measured by high performance liquid chromatography (HPLC) 
according to Appuhn et al. [49] as described by Indorf et al. [50].
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AS were automatically derivatized with ortho-phthaldialdehyde 
in a Dionex (Germering, Germany) HPLC Ultimate WPS-3000TSL 
analytical autosampler with in-line split-loop injection and ther-
mostat, coupled to an Ultimate 3000 pump and an Ultimate 
3000 fluorescence detector set at 445 nm emission and 330 nm 
excitation wavelengths. 

Statistical analysis 
Data analysis was performed using the R Statistical Software 
(v4.3.1, ref. 51). Our dataset included four variables (MurN, ManN, 
GalN, and GlcN) and also four factors: species (four levels: E. coli, 
B. subtilis, F. acutatum, and A. cupreus), microbial type (two levels:
bacteria and fungi), matrix (two levels: with and without quartz)
and fraction (two levels: cell culture and EPS). Every quantified AS
value was calculated back to the amount of cell culture it was
originally extracted from (after the 4-day incubation), so results
are expressed in μg of AS ml−1 of cell culture. We first conducted
a Dixon test using the outliers R package (v0.15, Ref. 52) to identify
potential outliers. Results with P < 0.05 were considered outliers
and removed from the dataset. Subsequently, our data failed to
pass the Shapiro–Wilk normality test (even after data transfor-
mation), carried out with the dplyr R package (v1.1.2, ref. 53). One
reason for this was the high variation of AS quantified within
different species, results partly expected. For instance, B. subtilis
is a Gram-positive, whereas E. coli is a Gram-negative bacterium,
which means B. subtilis has a much higher MurN content in its
cell wall due to the thicker peptidoglycan layer [54]. Accounting
for this high variation, we performed a mixed-effect linear model
analysis (with the lme4 R package - v1.1.34, Ref. 55), using species
as a random factor to correct for the lack of normality of our
dataset, whereas microbial type, matrix, and  fraction were used as
fixed factors. Results with P < 0.05 were considered significant
effects. The data were plotted in four box plots (one per measured
AS), using the SigmaPlot 13.0 software (Systat, San Jose, USA). We
also calculated the contribution of EPS to total AS production
(%) for each AS, using the following formula: EPS contribution
(%) = ASEPS / ASCULTURE × 100, where ASEPS represents the amount
of amino sugar quantified in the EPS fraction and ASCULTURE the
amount quantified in the cell culture.

Results 
Matrix had no general effect alone on total amino sugar pro-
duction, and the presence of quartz even led to reduced GlcN 
concentrations in cell cultures (Table 1, Fig. S2). Further, micro-
bial type also did not have a significant impact on total amino 
sugar production as a single effect, however, when combined to 
other factors, bacterial and fungal species presented contrasting 
behaviors. For instance, regarding ManN and GalN quantification, 
whereas bacteria mostly had the same amounts of AS quantified 
both in the cell cultures and in the EPS, fungal cultures presented 
higher amounts of those AS quantified in the EPS when compared 
to cell cultures. 

Fraction, on the other hand, had significant effects in the 
amounts of quantified AS across all measured variables, either on 
its own, and/or in interaction with other factors. Moreover, even 
despite the fact each species produced contrasting amounts of the 
four AS (Table 1), the contribution of EPS to total AS production 
followed similar patterns across species. Regarding MurN, bacte-
rial cell cultures presented notably higher MurN concentrations 
when compared to the extracted EPS. Similarly, in both matrix 
treatments, higher amounts of GlcN were quantified in bacterial 
cell cultures in comparison with the extracted EPS. The same 

difference was observed in the fungal cultures, however, those 
grown without the quartz matrix had higher GlcN production. 

Bacterial cell cultures presented either the same or higher 
amounts of ManN when compared with the extracted EPS 
(Table 1, Fig. S2). Contrastingly, fungal cell cultures had less ManN 
quantified when compared with the extracted EPS fractions. 
Moreover, bacterial cell cultures also presented either equal or 
higher amounts of GalN compared to the extracted EPS, regardless 
of the presence of the matrix. Contrastingly, fungal cultures grown 
with quartz displayed lower GalN amounts when compared with 
the extracted EPS; whereas cultures grown without the matrix 
had higher GalN values quantified than their respective EPS 
fractions. 

When comparing the percentage of EPS contribution to AS 
production (Table 2), while ManN and GalN presented an average 
of approximately 100% contribution of the EPS fraction, MurN 
and GlcN were recovered in much lower rates of 18% and 33%, 
respectively. 

Discussion 
The overall lack of quartz matrix effects on amino sugar produc-
tion in our study refutes our first hypothesis and contrasts with 
what is found in the literature for other EPS components [56-58]. 
Biofilm formation and microbial colonization are known to be 
triggered by the presence of a surface, even if its effects on EPS pro-
duction and composition are still not clear [59]. In this experiment, 
we used a matrix of sterile quartz as an inert mineral with the sole 
purpose to induce cell attachment. Nevertheless, it is possible that 
quartz’s reactivity towards microbial cells was too weak, leading 
to this lack of overall effect of the quartz matrix. In fact, in a 
study with B. subtilis cell cultures, when compared with other 
minerals such as kaolinite, montmorillonite and goethite, quartz 
presented significantly lower reactivity to the cells [60]. Another 
possibility is that the effect of a surface triggering EPS production 
is different for AS compared to other known EPS components such 
as carbohydrates and proteins, which were not measured in this 
study. Therefore, we encourage future experiments to test this 
effect in more detail with larger sample sizes and more complex 
experimental designs. 

GalN and ManN are intrinsic parts of EPS, as expressed by the 
percentage of contribution of the EPS fraction to total GalN and 
ManN production, which was of 100% in average, supporting our 
second hypothesis. ManN is an amino sugar often overlooked in 
scientific studies. It has been rarely quantified in recent pub-
lications [16, 38-40], and when detected, values present strong 
variation without specificity, because ManN is produced by both 
fungi and bacteria [14, 26, 40]. However, ManN is a component 
of sialic acids, which are molecules that contribute to several 
cell adhesion processes [61], so it should naturally occur in EPS 
[14]. Our results provide some explanation to this difficulty in 
detecting ManN, indicating that it is an integral part of EPS. The 
biofilm matrix is held together by bonds with bivalent cations and 
hydrophobic interactions [45]. As ManN is embedded within this 
matrix, it is likely that the hydrolysis with 6 M HCl, (the first step 
to quantify AS, Ref. 50), might not be able to break all bonds within 
the EPS matrix on its own. In contrast, during the EPS extraction 
process, cell cultures are gently stirred with the CER in a step 
that mechanically breaks the bonds that make up the biofilm 
matrix, allowing for its components to be recovered later. The CER 
used for EPS extraction might be more efficient in breaking up the 
matrix and thus help to quantitatively recover ManN provided EPS 
extracts subsequently undergo hydrolysis with 6 M HCl [50]. This
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Table 1. AS quantities determined for each species and each treatment. Values are the average between replicates (n = 4). SD is the 
standard deviation between replicates and NS stands for non-significant effects (P > 0.05). 

Species Matrix Suspension MurN ManN GalN GlcN 

(μg ml−1 of cell culture) (±SD) 

E. coli Quartz Cell culture 4 ± 0.1 8 ± 0.3 7 ± 0.01 17 ± 0.3 
EPS 0.01 ± 0.01 9 ± 0.5 7 ± 0.1 12 ± 1 

No quartz Cell culture 9 ± 0.3 11 ± 0.1 5 ± 0.02 29 ± 1 
EPS 0.1 ± 0.06 12 ± 0.1 5 ± 0.1 15 ± 1 

B. subtillis Quartz Cell culture 103 ± 5 15 ± 0.2 11 ± 0.6 115 ± 3 
EPS 42 ± 5 13 ± 0.4 8 ± 0.1 43 ± 4 

No quartz Cell culture 111 ± 19 14 ± 1 11 ± 0.6 115 ± 19 
EPS 3 ± 1 8 ± 0.4 7 ± 0.03 14 ± 3 

F. acutatum Quartz Cell culture 1 ± 0.1 3 ± 0.5 2 ± 0.2 30 ± 7 
EPS 0.1 ± 0.03 5 ± 0.01 3 ± 0.01 2 ± 0.2 

No quartz Cell culture 2 ± 0.2 2 ± 0.3 12 ± 1 223 ± 35 
EPS ND 4 ± 0.02 3 ± 0.02 2 ± 0.1 

A. cupreus Quartz Cell culture 2 ± 0.1 9 ± 0.8 4 ± 0.6 33 ± 3 
EPS 0.6 ± 0.02 13 ± 0.4 5 ± 0.02 11 ± 1 

No quartz Cell culture 2 ± 1 11 ± 3 3 ± 1 27 ± 17 
EPS 0.6 ± 0.1 17 ± 1 2 ± 0.05 14 ± 2 

Probability values 
Matrix (quartz vs. no quartz) NS NS NS 0.02 
Type (bacteria vs. fungi) NS NS NS NS 
Suspension (culture vs. EPS) <0.01 NS <0.01 <0.01 
Matrix x type NS NS <0.01 0.01 
Matrix x suspension NS NS <0.01 <0.01 
Type x suspension <0.01 <0.01 NS NS 
Matrix x type x suspension NS NS <0.01 NS 

ND, non-detectable value; SD, standard deviation. 

Table 2. Average EPS contribution to amino sugar production in cultured cells. 

Species Matrix MurN ManN GalN GlcN 

EPS contribution (%) 

E. coli Quartz 0.3 113 105 69 
No quartz 1 106 102 54 

B. subtillis Quartz 41 85 68 38 
No quartz 2 55 65 12 

F. acutatum Quartz 12 194 171 8 
No quartz ND 220 26 1 

Anolis cupreus Quartz 38 135 135 35 
No quartz 33 162 62 51 

Average contribution (%) (±CV) 18 ± 23 134 ± 7 92 ± 6 33 ± 12 

CV = mean coefficient of variation between replicates in % (n = 4); ND = not determined, as values were below the limit of detection. 

could be an explanation for the high recovery rate of ManN in the 
EPS, which is higher than 100%. 

GalN, contrastingly, is still frequently quantified [14], and it is 
the second most common AS, after GlcN, found in soil and litter 
[18]. Our results reveal that GalN occurs exclusively in the EPS 
matrix, together with ManN. This observation fills a long-term 
knowledge gap regarding the origin of GalN [14, 44, 62]. EPS have 
functions similar to mucins, exuded, e.g. in the ileum of many 
vertebrate animals [63, 64]. These mucins are a family of proteins 
of high molecular weight that are heavily glycosylated and glycol-
conjugated, containing high concentrations of GalN [65]. Similar 
mucous substances, such as EPS and capsular polysaccharides, 
but also lipopolysaccharides attached to the cell walls are likely 
the dominating source of GalN in soil [29, 66-71]. 

The contribution of EPS to total MurN and GlcN production was 
much lower (18% and 33%, respectively), indicating, that some 
GlcN is possibly derived from EPS. On the other hand, one could 

speculate that some of the MurN and GlcN extracted in the EPS 
fraction are due to artifacts from the extraction process itself or by 
the co-extraction of living and/or dead microbial cells. Microbial 
necromass is an important SOM pool [17] and its presence in 
the biofilm matrix has been previously suggested [7, 15], as dead 
cells could be used as nutrient source for the living biomass. We 
suggest that future studies investigate, for example, necromass 
formation within cell cultures and link it to possible indicators in 
the EPS matrix as a way to establish the origin of MurN and GlcN 
found in cultured cells EPS. 

EPS as a (small) source of GlcN may be an explanation for the 
molar 1:2 ratio of MurN to GlcN obtained in cultured bacteria [20], 
which exceeds the 1:1 ratio known from textbooks. However, even 
though our results do not provide enough evidence to determine 
the origin of MurN and GlcN in the EPS fraction, our data clearly 
allow to dismiss them as quantitative indicators of EPS for future 
experiments.
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As a conclusion, while muramic acid and glucosamine mostly 
remained in the biomass of cell cultures, galactosamine and 
mannosamine were fully removed by extraction with CER, indi-
cating that the predominant (or only) source of GalN and ManN 
in soils are microbial EPS. Moreover, out of the total amount 
quantified in cell cultures, only 18% of MurN and 33% of GlcN 
were measured in the EPS fraction, confirming that they are cell-
wall components. Further investigations are needed in order to 
establish why MurN and GlcN are still present in the EPS fraction 
and if they are indicators of microbial necromass in the biofilms. 
We suggest firstly the possibility that some GlcN might be part 
of EPS, but also that both GlcN and MurN (when found in EPS) 
might be indicators of microbial necromass. Our results allow 
for a meaningful ecological interpretation of mannosamine but 
especially galactosamine data in the future as indicators of EPS as 
part of the microbial residue fraction in soil. While there has been 
a strong focus on studying the contribution of necromass to SOC 
in recent years, this study can shift the focus to the role of EPS 
and other microbial residues as well. Lastly, the CER extraction 
method of EPS allows an improved quantitative measure of the 
microbial necromass contribution to SOC stocks under different 
environmental conditions. 
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